In August 2006, the Netherlands reported the occurrence of bluetongue in cattle in the south of that country. Investigations revealed that the cause was BTV-8, a virus that previously was reported in sub Saharan Africa, India and the Dominican Republic. Cases were subsequently reported in cattle and sheep in Belgium, Germany and France and more recently Luxembourg. BTV had not previously been reported this far north. The infection spread rapidly and as of 11 December 2006 affected 1966 farms in Belgium, France, the Netherlands, Germany and Luxembourg. 50% of the farms raise cattle. In sheep the morbidity was reported as approximately 10% with 1% mortality whilst in cattle the morbidity was 3% with <1% mortality. The vector is believed to be Culicoides dewulfi, a local species which breeds in cattle dung. The vector was active until early December, since when it has only been detected in barns, where it may over-winter. Clinical signs in cattle included copious nasal discharge, erosions on muzzle and dental pad, oedema of udder, teats and legs. Few deaths were reported. Photographs can be viewed at website: http://ec.europa.eu/food/committees/regulatory/sfcach/animal_health/bluetongue_scofcah_belgium.pdf

The EU enforced control measures over the movement of animals from a radius of 20 km around infected farms. Movement to slaughter was allowed under strict conditions. Infection in France and Luxembourg was attributed to the movement of animals. Epidemiology reports on the outbreak prepared by the European Food Safety Authority with detailed maps can be viewed at http://www.efsa.europa.eu/en/in_focus/bluetongue/outbreak_overview.html Questions yet to be answered include where did it come from, will it become endemic, will it continue to affect cattle and what controls will the EU enforce?

Note: BTV-1 has been active in Algeria, Morocco, Tunisia, Israel and Sardinia. BTV-4 has been active in Portugal and Spain with BTV-9 in Bulgaria. BTV – 1, 20 and 21 are endemic in northern Australia and costal Queensland and NSW.

Epizootic haemorrhagic disease, caused by another orbivirus, has also been reported from north Africa and Israel.

For further information contact Dr. Richard Rubira at the Office of the Chief Veterinary Officer, Department of Agriculture, Fisheries and Forestry, Canberra
richard.rubira@daff.gov.au  or  phone (02) 6272 3851
Hendra case in NSW

In November 2006, the NSW Department of Primary Industries reported a confirmed case of Hendra virus in a horse 30 km south of the Queensland border. All previous incidents have been reported in Queensland. The paddock where the horse grazed contained trees that were roosts for flying foxes (*Pteropus sp*.).

A recent article in the Medical Journal of Australia entitled “Hendra virus infection in a veterinarian” outlined concerns that veterinarians were not adapting to the “new environment” of emerging zoonotic diseases. Human health workers have had to change their work practices because of HIV and SARS. It was suggested that veterinarians should do likewise and that they needed to give adequate consideration to potential risks and ensure use of the appropriate personal protective equipment when undertaking risky procedures, such as post mortems (http://www.mja.com.au/public/issues/185_10_201106/ han10698_fm.pdf).

This case is a salutary warning not to ignore diseases as a differential diagnosis because “they do not occur in my area” and secondly to ensure that we apply the necessary precautions when we undertake examination and specimen collection procedures from unusual cases.


Contagious equine metritis

Both these cases emphasise the possibility of this disease entering Australia, particularly stallions imported for breeding. Practitioners should keep this disease on their list of differential diagnoses in cases of reproductive failure in horses.

Equine infectious anaemia

In September 2006 German authorities reported an outbreak of equine infectious anaemia. The outbreak involved 12 horses on 3 properties. Clinical signs included: varying fever, high pulse rate (84/min), swelling of chest and abdomen, unsteady gait and bloody nasal discharge. The source of the outbreak was believed to have been the owner who had been on a riding holiday in the Czech Republic in July. Tracing revealed extensive contacts through trail rides, tournament participation and movement of animals.

In June 2006, Irish authorities advised about an outbreak of EIA. The outbreak involved 25 confirmed cases on 12 premises with more than 950 animals (12,000 samples) under test and 32 properties under restrictions. Cases continued to be detected until end of September 2006. The outbreak was detected following the admission of an acutely ill mare to a veterinary hospital and investigation of dead foals from the same property. Disease was then detected on a second farm which had no contact with the first affected property. EIA was exotic to Ireland prior to the detection of these cases. Detailed investigations indicated that the probable source of the infection was illegally imported hyper-immune plasma, which had been used to treat foals. Three of the foals which died had been treated with the product and the initial case, the mare in the veterinary hospital, was the dam of one of these foals. Many of the subsequent cases were dams of treated foals or were linked to the veterinary hospital.

This case is of interest because of the proposed source and the iatrogenic spread.