Australian Government
Biosecurity Australia

Final import risk analysis report for table grapes from the People’s Republic of China

July 2011
Contents

Acronyms and abbreviations.. ix
Abbreviations of units.. x
Summary .. xii

1 Introduction... 1
 1.1 Australia’s biosecurity policy framework ... 1
 1.2 This import risk analysis .. 1

2 Method for pest risk analysis.. 5
 2.1 Stage 1: Initiation .. 5
 2.2 Stage 2: Pest risk assessment ... 6
 2.3 Stage 3: Pest risk management .. 13

3 China’s commercial production practices for table grapes ... 15
 3.1 Assumptions used in estimating unrestricted risk ... 15
 3.2 Climate in production areas ... 15
 3.3 Pre-harvest ... 19
 3.4 Harvesting and handling procedures .. 23
 3.5 Post-harvest ... 24
 3.6 Export capability .. 28

4 Pest risk assessments for quarantine pests ... 31
 4.1 Kanzawa spider mite ... 34
 4.2 Harlequin ladybird ... 42
 4.3 Grape berry weevil ... 49
 4.4 Scarab beetles ... 56
 4.5 Oriental fruit fly .. 64
 4.6 Grape midge ... 69
 4.7 Grape whitefly .. 75
 4.8 Grape phylloxera ... 81
 4.9 Soft scales ... 90
 4.10 Cottony grape scale .. 94
 4.11 Mealybugs ... 100
 4.12 Leafrollers ... 105
 4.13 Grape plume moth .. 115
 4.14 Apple heliodinid ... 121
 4.15 Thrips ... 125
 4.16 Grape cluster black rot .. 131
4.17 Black rot ... 137
4.18 Spike stalk brown spot .. 144
4.19 Brown rot ... 150
4.20 Grapevine leaf rust .. 154
4.21 Phomopsis cane and leaf spot 160
4.22 Grapevine yellow speckle viroids 165
4.23 Grapevine fanleaf virus ... 172
4.24 Tomato ringspot virus .. 179
4.25 Tobacco necrosis viruses ... 187
4.26 Sanitary pests .. 192
4.27 Pest risk assessment conclusions 194

5 Pest risk management .. 199
5.1 Pest risk management measures and phytosanitary procedures .. 199
5.2 Responsibility of competent authority 218
5.3 Review of processes .. 219
5.4 Uncategorised pests ... 220

Appendix A1 Initiation and categorisation for quarantine pests of table grapes from China 223

Appendix A2 Sanitary pests ... 279

Appendix B Additional quarantine and sanitary pest data .. 281

Appendix C Biosecurity framework 293

Glossary .. 299

References .. 301
Tables

Table 2.1 Nomenclature for qualitative likelihoods 9
Table 2.2 Matrix of rules for combining qualitative likelihoods 9
Table 2.3 Decision rules for determining the consequence impact score based on the magnitude of consequences at four geographic scales 11
Table 2.4 Decision rules for determining the overall consequence rating for each pest 12
Table 2.5 Risk estimation matrix 12
Table 3.1 Integrated pest and disease management for the main pests of Red Globe table grapes (AQSIQ 2008) 23
Table 4.1 Quarantine pests for table grapes from China 31
Table 4.2 Summary of unrestricted risk estimates for quarantine pests associated with table grapes from China 195
Table 5.1 Phytosanitary and sanitary measures recommended for quarantine pests for table grapes from China 201

Figures

Figure 1 Map of Australia vi
Figure 2 A guide to Australia’s bio-climate zones vi
Figure 3 Structure of table grape bunch vii
Figure 3.1 Map of China showing the main grape-producing provinces and regions in blue (adapted from AQSIQ 2009). The 32 °N latitude line is the northern limit of the occurrence of Bactrocera dorsalis (Oriental fruit fly) in China. 16
Figure 3.2 Mean maximum (—♦—) and minimum (—■—) temperatures and mean relative humidity (—▲—) in table grape-producing provinces of Hebei, Henan, Jilin, Liaoning, Ningxia, Shaanxi, Shandong, Shanxi, Xinjiang and Yunnan in China, based on average monthly weather data from 1951 to 1988 17
Figure 3.3 Trellis systems – horizontal (left) and vertical (right) 20
Figure 3.4 Grape bunches covered in paper bags (left), and a single bunch in a cellophane and paper bag (right) 21
Figure 3.5 Harvesting grape bunches and preliminary sorting 24
Figure 3.6 Sorting and packing of table grapes 25
Figure 3.7 Cold room fan-forced pre-cooling (left) and automated pre-cooling unit (right) 26
Figure 3.8 Summary of vineyard and post-harvest packing house, storage and distribution steps for table grapes grown in China for export – adapted from AQSIQ (2008; 2009c) 27
Figure 3.9 Grape production in the main table grape producing provinces/regions in China, 2000–2006 in US tons (USDA 2007) 29
Figure 1 Map of Australia

Figure 2 A guide to Australia’s bio-climate zones
Figure 3 Structure of table grape bunch
Acronyms and abbreviations

<table>
<thead>
<tr>
<th>Term or abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALOP</td>
<td>Appropriate level of protection</td>
</tr>
<tr>
<td>APPD</td>
<td>Australian Plant Pest Database (Plant Health Australia)</td>
</tr>
<tr>
<td>APVMA</td>
<td>Australian Pesticides and Veterinary Medicines Authority</td>
</tr>
<tr>
<td>AQIS</td>
<td>Australian Quarantine and Inspection Service</td>
</tr>
<tr>
<td>AQSIQ</td>
<td>General Administration for Quality Supervision, Inspection and Quarantine of the People’s Republic of China</td>
</tr>
<tr>
<td>ATGA</td>
<td>Australian Table Grape Growers Association</td>
</tr>
<tr>
<td>BAA</td>
<td>Biosecurity Australia Advice</td>
</tr>
<tr>
<td>BSG</td>
<td>Biosecurity Services Group</td>
</tr>
<tr>
<td>CIQ</td>
<td>China Entry-Exit Inspection and Quarantine Bureau</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>DAFF</td>
<td>Australian Government Department of Agriculture, Fisheries and Forestry</td>
</tr>
<tr>
<td>DAFWA</td>
<td>Department of Agriculture and Food, Western Australia (formerly DAWA: Department of Agriculture, Western Australia)</td>
</tr>
<tr>
<td>EP</td>
<td>existing policy</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>FSANZ</td>
<td>Food Standards Australia and New Zealand</td>
</tr>
<tr>
<td>IDM</td>
<td>Integrated Disease Management</td>
</tr>
<tr>
<td>IPC</td>
<td>International Phytosanitary Certificate</td>
</tr>
<tr>
<td>IPM</td>
<td>Integrated Pest Management</td>
</tr>
<tr>
<td>IPPC</td>
<td>International Plant Protection Convention</td>
</tr>
<tr>
<td>IRA</td>
<td>import risk analysis</td>
</tr>
<tr>
<td>ISPM</td>
<td>International Standard for Phytosanitary Measures</td>
</tr>
<tr>
<td>NPPO</td>
<td>National Plant Protection Organization</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>NT</td>
<td>Northern Territory</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>PRA</td>
<td>pest risk analysis</td>
</tr>
<tr>
<td>Qld</td>
<td>Queensland</td>
</tr>
<tr>
<td>SA</td>
<td>South Australia</td>
</tr>
<tr>
<td>SPS</td>
<td>sanitary and phytosanitary measures</td>
</tr>
<tr>
<td>Tas.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>Vic.</td>
<td>Victoria</td>
</tr>
<tr>
<td>WA</td>
<td>Western Australia</td>
</tr>
<tr>
<td>WTO</td>
<td>World Trade Organization</td>
</tr>
</tbody>
</table>
Abbreviations of units

<table>
<thead>
<tr>
<th>Term or abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ºC</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>ºF</td>
<td>degree Fahrenheit</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>km</td>
<td>kilometre</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>μm</td>
<td>micrometre (one millionth of a metre)</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>mu</td>
<td>unit of area used in China (one fifteenth of a hectare)</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>ton</td>
<td>US ton = 0.91 tonnes</td>
</tr>
<tr>
<td>tonne</td>
<td>metric tonne = 1000 kilograms</td>
</tr>
</tbody>
</table>
Summary

This import risk analysis (IRA) assesses a proposal from the People’s Republic of China (China) for market access to Australia for table grapes.

The report recommends that the importation of table grapes to Australia from all commercial production areas of China be permitted, subject to a range of quarantine conditions.

Australia permits the importation of table grapes from Chile, United States of America (California), and New Zealand, for human consumption provided they meet Australian quarantine requirements.

This report identifies pests that require quarantine measures to manage risks to a very low level in order to achieve Australia’s appropriate level of protection (ALOP). The pests requiring measures are arthropods – kanzawa spider mite, harlequin ladybird, scarab beetles (three species), grape whitefly, Oriental fruit fly, grapevine phylloxera, mealybugs (three species), tortricid moths (four species) and thrips (two species); pathogens causing diseases – grape cluster black rot, black rot, spike stalk brown spot, brown rot and grapevine leaf rust; and two sanitary pests – black widow spider and European black widow spider.

The recommended quarantine measures take account of regional differences. Kanzawa spider mite has been identified as a quarantine pest for Western Australia, and western flower thrips for the Northern Territory. Western Australia’s state legislation currently prohibits the importation of table grapes from any source, including other parts of Australia due to the absence of grape phylloxera, grapevine fanleaf virus and phomopsis cane and leaf spot in this state. The state legislation would need to be modified before the importation of table grapes into Western Australia can occur.

This report recommends a combination of risk management measures and operational systems that will reduce the risk associated with the importation of table grapes from China into Australia to achieve Australia’s ALOP, specifically:

- area freedom or cold treatment for Oriental fruit fly
- a systems approach (vineyard control and surveillance, fruit bagging and visual inspection and remedial action) for kanzawa spider mite, grape whitefly, mealybugs, tortricid moths and thrips
- a systems approach (vineyard and packing management, and visual inspection and remedial action) for harlequin ladybird and scarab beetles
- area freedom or sulphur pad treatment for grapevine phylloxera
- area freedom for grape cluster black rot, black rot and spike stalk brown spot
- area freedom or a systems approach for grapevine leaf rust and brown rot
- area freedom or a systems approach for sanitary pests, black widow spiders
- a supporting operational system to maintain and verify the phytosanitary status of consignments. The Australian Quarantine and Inspection Service (AQIS) will verify that the proposed phytosanitary measures have occurred. An AQIS officer will be present under a pre-clearance arrangement to inspect and verify pest freedom prior to export.
Biosecurity Australia has made a number of changes to the risk analysis following consideration of stakeholder comments on the draft IRA report and subsequent review of the literature. These changes include:

- removal of bitter rot as a quarantine pest due to its confirmed absence from China
- removal of western flower thrips as a pest of regional concern for Tasmania
- addition of eight new arthropod pests to the pest categorisation
- minor changes to the rating for probability of importation, distribution, establishment, spread, or consequences for a number of other pests but resulting in no change to the unrestricted risk estimate
- addition of four new risk assessments (cottony grape scale, grapevine yellow speckle viroids, grapevine fanleaf virus and tomato ringspot virus)
- amalgamation and modification of the risk assessments for scarab beetles and tortricid moths resulting in management measures being recommended
- revised management measures for harlequin ladybird and scarab beetles based on their size and visibility, and the requirement of a systems approach for tortricid moths
- removal of a mandatory pre-shipment fumigation treatment with carbon dioxide and sulphur dioxide mixture (CO₂/SO₂) for black widow spiders, to be replaced by area freedom or a systems approach
- confirmation that the assessment for spotted wing drosophila is being conducted in a separate pest-initiated pest risk analysis.
1 Introduction

1.1 Australia’s biosecurity policy framework

Australia’s biosecurity policies aim to protect Australia against the risks that may arise from exotic pests entering, establishing and spreading in Australia, thereby threatening Australia’s unique flora and fauna, as well as those agricultural industries that are relatively free from serious pests.

The import risk analysis (IRA) process is an important part of Australia’s biosecurity policies. It enables the Australian Government to formally consider the risks that could be associated with proposals to import new products into Australia. If the risks are found to exceed Australia’s appropriate level of protection (ALOP), risk management measures are proposed to reduce the risks to an acceptable level. But, if it is not possible to reduce the risks to an acceptable level, then no trade will be allowed.

Successive Australian Governments have maintained a conservative, but not a zero-risk, approach to the management of biosecurity risks. This approach is expressed in terms of Australia’s ALOP, which reflects community expectations through government policy and is currently described as providing a high level of protection aimed at reducing risk to a very low level, but not to zero.

Australia’s IRAs are undertaken by Biosecurity Australia using teams of technical and scientific experts in relevant fields, and involves consultation with stakeholders at various stages during the process. Biosecurity Australia provides recommendations for animal and plant quarantine policy to Australia’s Director of Animal and Plant Quarantine (the Secretary of the Australian Department of Agriculture, Fisheries and Forestry). The Director, or delegate is responsible for determining whether or not an importation can be permitted under the Quarantine Act 1908, and if so, under what conditions. The Australian Quarantine and Inspection Service (AQIS) is responsible for implementing appropriate risk management measures.

1.2 This import risk analysis

1.2.1 Background

The General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (AQSIQ), requested market access to Australia for table grapes in July 2005. The access request was reconfirmed for all table grape production areas in the People’s Republic of China (China) in April 2006 and a submission provided in July 2006.
1.2.2 Scope
The scope of this IRA is to consider the quarantine risk that may be associated with the importation of commercially-produced fresh table grapes *Vitis vinifera* L. and hybrids (henceforth these will be referred to as table grapes), free from trash, from China, for human consumption in Australia.

In this IRA table grapes are defined as table grape bunches or clusters, which include peduncles, rachises, laterals, pedicels and berries (Pratt 1988) but not other plant parts. This IRA pertains to all commercially-produced table grapes, *Vitis vinifera* and hybrid cultivars and the provinces or regions of China in which they are grown.

1.2.3 Existing policy
Import policies exist for table grapes imported from Chile (Biosecurity Australia 2005c), the United States of America (California) (AQIS 2000) and New Zealand.

The import requirements for these commodities can be found at the Australian Quarantine and Inspection Service (AQIS) Import Conditions database http://www.aqis.gov.au/icon.

Domestic arrangements
The Commonwealth Government is responsible for regulating the movement of plants and plant products in and out of Australia. However, the state and territory governments are responsible for plant health controls within Australia. Legislation relating to resource management or plant health may be used by state or territory government agencies to control interstate movement of plants or their products.

Currently importation of fresh table grapes, seed, plants and used machinery into Western Australia from any source is prohibited due to the absence of grape phylloxera (*Daktulosphaira vitifoliae*), grapevine fanleaf virus and phomopsis cane and leaf spot (*Phomopsis viticola*) in this state (DAFWA 2009a).

1.2.4 Contaminating pests
In addition to the pests of table grapes from China that are identified in this IRA, there are other organisms that may arrive with the table grapes. These organisms could include pests of other crops or predators and parasitoids of other arthropods. Biosecurity Australia considers these organisms to be contaminating pests that could pose sanitary and phytosanitary risks. These risks are addressed by the procedures indicated in section 5.4.

The risk of contaminating weed seeds is also addressed by the procedures delineated in section 5.4.

1.2.5 Consultation
On 18 August 2008, Biosecurity Australia notified stakeholders in Biosecurity Australia Advice (BAA) 2008/28 of the formal commencement of a standard IRA under the regulated IRA process to consider a proposal to import table grapes from China.

Biosecurity Australia provided a draft pest categorisation table for table grapes from China to the state and territory departments of primary industry/agriculture on 15 January 2010 for their informal consideration of regional pests.
The draft IRA report was released on 19 February 2010 (BAA 2010/1) for comment and consultation with stakeholders, for a period of 60 days that concluded on 21 April 2010. Written submissions were received from eight stakeholders and were all placed on the public file and the Biosecurity Australia website. All eight submissions have been considered and material matters raised have been included in the present report.

Biosecurity Australia consulted informally with various stakeholders during the preparation of the provisional final IRA report in accordance with step 6 in the *Import Risk Analysis Handbook 2007 (update 2009)*. The state and territory governments were consulted on the revised content of the IRA report on 9 August 2010 and the Australian Table Grape Association Inc. on 13 August 2010, respectively.
2 Method for pest risk analysis

This section sets out the method used for the pest risk analysis (PRA) in this report. Biosecurity Australia has conducted this PRA in accordance with the International Standards for Phytosanitary Measures (ISPMs), including ISPM 2: Framework for Pest Risk Analysis (FAO 2007b) and ISPM 11: Pest Risk Analysis for Quarantine Pests, including analysis of environmental risks and living modified organisms (FAO 2004).

A PRA is ‘the process of evaluating biological or other scientific and economic evidence to determine whether a pest should be regulated and the strength of any phytosanitary measures to be taken against it’ (FAO 2009). A pest is ‘any species, strain or biotype of plant, animal, or pathogenic agent injurious to plants or plant products’ (FAO 2009).

Quarantine risk consists of two major components: the probability of a pest entering, establishing and spreading in Australia from imports; and the consequences should this happen. These two components are combined to give an overall estimate of the risk.

Unrestricted risk is estimated taking into account the existing commercial production practices of the exporting country and that, on arrival in Australia, AQIS will verify that the consignment received is as described on the commercial documents and its integrity has been maintained.

Restricted risk is estimated with phytosanitary measure(s) applied. A phytosanitary measure is ‘any legislation, regulation or official procedure having the purpose to prevent the introduction and spread of quarantine pests, or to limit the economic impact of regulated non-quarantine pests’ (FAO 2009).

A glossary of the terms used is provided at the back of this IRA report.

PRAs are conducted in three consecutive stages: initiation, pest risk assessment and pest risk management.

2.1 Stage 1: Initiation

Initiation identifies the pest(s) and pathway(s) that are of quarantine concern and should be considered for risk analysis in relation to the identified PRA area.

The pests assessed for their potential to be on the exported commodity (produced using commercial production and packing procedures) are listed in column 1 of Appendix A. Appendix A does not present a comprehensive list of all the pests associated with the entire plant, but concentrates on the pests that could be on the assessed commodity. Pests that are determined to not be associated with the commodity in column 3 are not considered further in the PRA. Contaminating pests that have no specific relation to the commodity or the export pathway have not been listed and would be addressed by Australia’s current approach to contaminating pests.

The identity of the pests is given in Appendix A. The species name is used in most instances but a lower taxonomic level is used where appropriate. Synonyms are provided where the current scientific name differs from that provided by the exporting country’s NPPO or where the cited literature uses a different scientific name.

For this PRA, the ‘PRA area’ is defined as Australia for pests that are absent, or of limited distribution and under official control. For areas with regional freedom from a pest, the ‘PRA
area’ may be defined on the basis of a state or territory of Australia or may be defined as a
region of Australia consisting of parts of a state or territory or several states or territories.

For pests that had been considered by Biosecurity Australia in other risk assessments and for
which import policies already exist, a judgement based on the specific circumstances was
made on the likelihood of entry of pests on the commodity and whether existing policy is
adequate to manage the risks associated with its import. Where appropriate, the previous risk
assessment was taken into consideration when developing the new policy.

2.2 Stage 2: Pest risk assessment

A pest risk assessment (for quarantine pests) is: ‘the evaluation of the probability of the
introduction and spread of a pest and of the likelihood of associated potential economic
consequences’ (FAO 2009).

In this PRA, pest risk assessment was divided into the following interrelated processes:

2.2.1 Pest categorisation

Pest categorisation identifies which of the pests with the potential to be on the commodity are
quarantine pests for Australia and require pest risk assessment. A ‘quarantine pest’ is a pest of
potential economic importance to the area endangered thereby and not yet present there, or
present but not widely distributed and being officially controlled, as defined in ISPM 5:
Glossary of phytosanitary terms (FAO 2009).

The pests identified in Stage 1 were categorised using the following primary elements to
identify the quarantine pests for the commodity being assessed:

- presence or absence in the PRA area
- regulatory status
- potential for establishment and spread in the PRA area
- potential for economic consequences (including environmental consequences) in the PRA
 area.

The results of pest categorisation are set out in columns 4 - 7 in Appendix A. The steps in the
categorisation process are considered sequentially, with the assessment terminating with a
‘Yes’ in column 4 or the first ‘No’ in columns 5 or 6. The quarantine pests identified during
pest categorisation were carried forward for pest risk assessment and are listed in Table 4.1.

Details of how to assess the ‘probability of entry’, ‘probability of establishment’ and
‘probability of spread’ of a pest are given in ISPM 11 (FAO 2004). A summary of this process
is given below, followed by a description of the qualitative methodology used in this IRA.

2.2.2 Assessment of the probability of entry, establishment and spread

Details of how to assess the ‘probability of entry’, ‘probability of establishment’ and
‘probability of spread’ of a pest are given in ISPM 11 (FAO 2004). A summary of this process
is given below, followed by a description of the qualitative methodology used in this IRA.
Probability of entry

The probability of entry describes the probability that a quarantine pest will enter Australia as a result of trade in a given commodity, be distributed in a viable state in the PRA area and subsequently be transferred to a host. It is based on pathway scenarios depicting necessary steps in the sourcing of the commodity for export, its processing, transport and storage, its use in Australia and the generation and disposal of waste. In particular, the ability of the pest to survive is considered for each of these various stages.

The probability of entry estimates for the quarantine pests for a commodity are based on the use of the existing commercial production, packaging and shipping practices of the exporting country. Details of the existing commercial production practices for the commodity are set out in Section 3. These practices are taken into consideration by Biosecurity Australia when estimating the probability of entry.

For the purpose of considering the probability of entry, Biosecurity Australia divides this step of this stage of the PRA into two components:

- **Probability of importation**: the probability that a pest will arrive in Australia when a given commodity is imported
- **Probability of distribution**: the probability that the pest will be distributed, as a result of the processing, sale or disposal of the commodity, in the PRA area and subsequently transfer to a susceptible part of a host.

Factors considered in the probability of importation include:

- distribution and incidence of the pest in the source area
- occurrence of the pest in a life-stage that would be associated with the commodity
- mode of trade (e.g. bulk, packed)
- volume and frequency of movement of the commodity along each pathway
- seasonal timing of imports
- pest management, cultural and commercial procedures applied at the place of origin
- speed of transport and conditions of storage compared with the duration of the life cycle of the pest
- vulnerability of the life-stages of the pest during transport or storage
- incidence of the pest likely to be associated with a consignment
- commercial procedures (e.g. refrigeration) applied to consignments during transport and storage in the country of origin, and during transport to Australia.

Factors considered in the probability of distribution include:

- commercial procedures (e.g. refrigeration) applied to consignments during distribution in Australia
- dispersal mechanisms of the pest, including vectors, to allow movement from the pathway to a host
- whether the imported commodity is to be sent to a few or many destination points in the PRA area
- proximity of entry, transit and destination points to hosts
- time of year at which import takes place
- intended use of the commodity (e.g. for planting, processing or consumption)
- risks from by-products and waste.

Probability of establishment

Establishment is defined as the ‘perpetuation for the foreseeable future, of a pest within an area after entry’ (FAO 2004). In order to estimate the probability of establishment of a pest, reliable biological information (life cycle, host range, epidemiology, survival, etc.) is obtained from the areas where the pest currently occurs. The situation in the PRA area can then be compared with that in the areas where it currently occurs and expert judgement used to assess the probability of establishment.

Factors considered in the probability of establishment in the PRA area include:
- availability of hosts, alternative hosts and vectors
- suitability of the environment
- reproductive strategy and potential for adaptation
- minimum population needed for establishment
- cultural practices and control measures.

Probability of spread

Spread is defined as ‘the expansion of the geographical distribution of a pest within an area’ (FAO 2004). The probability of spread considers the factors relevant to the movement of the pest, after establishment on a host plant or plants, to other susceptible host plants of the same or different species in other areas. In order to estimate the probability of spread of the pest, reliable biological information is obtained from areas where the pest currently occurs. The situation in the PRA area is then carefully compared with that in the areas where the pest currently occurs and expert judgement used to assess the probability of spread.

Factors considered in the probability of spread include:
- suitability of the natural and/or managed environment for natural spread of the pest
- presence of natural barriers
- potential for movement with commodities, conveyances or by vectors
- intended use of the commodity
- potential vectors of the pest in the PRA area
- potential natural enemies of the pest in the PRA area.

Assigning qualitative likelihoods for the probability of entry, establishment and spread

In its qualitative PRAs, Biosecurity Australia uses the term ‘likelihood’ for the descriptors it uses for its estimates of probability of entry, establishment and spread. Qualitative likelihoods are assigned to each step of entry, establishment and spread. Six descriptors are used: high; moderate; low; very low; extremely low; and negligible (Table 2.1). Descriptive definitions for these descriptors and their indicative probability ranges are given in Table 2.1. The indicative probability ranges are only provided to illustrate the boundaries of the descriptors. These indicative probability ranges are not used beyond this purpose in qualitative PRAs. The
standardised likelihood descriptors and the associated indicative probability ranges provide
guidance to the risk analyst and promote consistency between different risk analyses.

Table 2.1 Nomenclature for qualitative likelihoods

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Descriptive definition</th>
<th>Indicative probability (P) range</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>The event would be very likely to occur</td>
<td>$0.7 < P \leq 1$</td>
</tr>
<tr>
<td>Moderate</td>
<td>The event would occur with an even probability</td>
<td>$0.3 < P \leq 0.7$</td>
</tr>
<tr>
<td>Low</td>
<td>The event would be unlikely to occur</td>
<td>$0.05 < P \leq 0.3$</td>
</tr>
<tr>
<td>Very low</td>
<td>The event would be extremely unlikely to occur</td>
<td>$0.001 < P \leq 0.005$</td>
</tr>
<tr>
<td>Extremely low</td>
<td>The event would be extremely unlikely to occur</td>
<td>$0.000001 < P \leq 0.0001$</td>
</tr>
<tr>
<td>Negligible</td>
<td>The event would almost certainly not occur</td>
<td>$0 \leq P \leq 0.000001$</td>
</tr>
</tbody>
</table>

The likelihood of entry is determined by combining the likelihood that the pest will be imported into the PRA area and the likelihood that the pest will be distributed within the PRA area, using a matrix of rules (Table 2.2). This matrix is then used to combine the likelihood of entry and the likelihood of establishment, and the likelihood of entry and establishment is then combined with the likelihood of spread to determine the overall likelihood of entry, establishment and spread.

For example, if the probability of importation is assigned a likelihood of ‘low’ and the probability of distribution is assigned a likelihood of ‘moderate’, then they are combined to give a likelihood of ‘low’ for the probability of entry. The likelihood for the probability of entry is then combined with the likelihood assigned to the probability of establishment (e.g. ‘high’) to give a likelihood for the probability of entry and establishment of ‘low’. The likelihood for the probability of entry and establishment is then combined with the likelihood assigned to the probability of spread (e.g. ‘very low’) to give the overall likelihood for the probability of entry, establishment and spread of ‘very low’.

Table 2.2 Matrix of rules for combining qualitative likelihoods

<table>
<thead>
<tr>
<th></th>
<th>High</th>
<th>Moderate</th>
<th>Low</th>
<th>Very low</th>
<th>Extremely low</th>
<th>Negligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
<td>Very low</td>
<td>Extremely low</td>
<td>Negligible</td>
</tr>
<tr>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Very low</td>
<td>Extremely low</td>
<td>Negligible</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>Very low</td>
<td>Extremely low</td>
<td>Extremely low</td>
<td>Negligible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very low</td>
<td>Negligible</td>
<td>Negligible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extremely low</td>
<td>Negligible</td>
<td>Negligible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negligible</td>
<td>Negligible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time and volume of trade

One factor affecting the likelihood of entry is the volume and duration of trade. If all other conditions remain the same, the overall likelihood of entry will increase as time passes and the overall volume of trade increases.

Biosecurity Australia normally considers the likelihood of entry on the basis of the estimated volume of one year’s trade. This is a convenient value for the analysis that is relatively easy to estimate and allows for expert consideration of seasonal variations in pest presence, incidence and behaviour to be taken into account. The consideration of the likelihood of entry, establishment and spread and subsequent consequences takes into account events that might
happen over a number of years even though only one year’s volume of trade is being considered. This reflects biological and ecological facts, for example where a pest or disease may establish in the year of import but spread may take many years.

These considerations have been taken into account when setting up the matrix. Therefore, any policy based on this analysis does not simply apply to one year of trade. Policy decisions that are based on Biosecurity Australia’s method that uses the estimated volume of one year’s trade are consistent with Australia’s policy on appropriate level of protection and meet the Australian Government’s requirement for ongoing quarantine protection. Of course, if there are substantial changes in the volume and nature of the trade in specific commodities then Biosecurity Australia has an obligation to review the risk analysis and, if necessary, provide updated policy advice.

In assessing the volume of trade in this PRA, Biosecurity Australia assumed that a substantial volume of trade will occur.

2.2.3 Assessment of potential consequences

The objective of the consequence assessment is to provide a structured and transparent analysis of the likely consequences if the pests or disease agents were to enter, establish and spread in Australia. The assessment considers direct and indirect pest effects and their economic and environmental consequences. The requirements for assessing potential consequences are given in Article 5.3 of the SPS Agreement (WTO 1995), ISPM 5 (FAO 2009) and ISPM 11 (FAO 2004).

Direct pest effects are considered in the context of the effects on:
- plant life or health
- other aspects of the environment.

Indirect pest effects are considered in the context of the effects on:
- eradication, control, etc
- domestic trade
- international trade
- environment.

For each of these six criteria, the consequences were estimated over four geographic levels, defined as:
- **Local**: an aggregate of households or enterprises (a rural community, a town or a local government area).
- **District**: a geographically or geopolitically associated collection of aggregates (generally a recognised section of a state or territory, such as ‘Far North Queensland’).
- **Regional**: a geographically or geopolitically associated collection of districts in a geographic area (generally a state or territory, although there may be exceptions with larger states such as Western Australia).
- **National**: Australia wide (Australian mainland states and territories and Tasmania).
For each criterion, the magnitude of the potential consequence at each of these levels was described using four categories, defined as:

- **Indiscernible**: pest impact unlikely to be noticeable.
- **Minor significance**: expected to lead to a minor increase in mortality/morbidity of hosts or a minor decrease in production but not expected to threaten the economic viability of production. Expected to decrease the value of non-commercial criteria but not threaten the criterion’s intrinsic value. Effects would generally be reversible.
- **Significant**: expected to threaten the economic viability of production through a moderate increase in mortality/morbidity of hosts, or a moderate decrease in production. Expected to significantly diminish or threaten the intrinsic value of non-commercial criteria. Effects may not be reversible.
- **Major significance**: expected to threaten the economic viability through a large increase in mortality/morbidity of hosts, or a large decrease in production. Expected to severely or irreversibly damage the intrinsic ‘value’ of non-commercial criteria.

The estimates of the magnitude of the potential consequences over the four geographic levels were translated into a qualitative impact score (A–G)\(^2\) using Table 2.3\(^3\). For example, a consequence with a magnitude of ‘significant’ at the ‘district’ level will have a consequence impact score of D.

<table>
<thead>
<tr>
<th>Geographic scale</th>
<th>Local</th>
<th>District</th>
<th>Region</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiscernible</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Minor significance</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>Significant</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>Major significance</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
</tbody>
</table>

The overall consequence for each pest is achieved by combining the qualitative impact scores (A–G) for each direct and indirect consequence using a series of decision rules (Table 2.4). These rules are mutually exclusive, and are assessed in numerical order until one applies.

\(^2\) In earlier qualitative IRAs, the scale for the impact scores went from A to F and did not explicitly allow for the rating ‘indiscernible’ at all four levels. This combination might be applicable for some criteria. In this report, the impact scale of A-F has changed to become B-G and a new lowest category A (‘indiscernible’ at all four levels) was added. The rules for combining impacts in Table 2.4 were adjusted accordingly.

\(^3\) The decision rules for determining the consequence impact score are presented in a simpler form in Table 2.3 from earlier IRAs, to make the table easier to use. The outcome of the decision rules is the same as the previous table and makes no difference to the final impact score.
Table 2.4 Decision rules for determining the overall consequence rating for each pest

<table>
<thead>
<tr>
<th>Rule</th>
<th>The impact scores for consequences of direct and indirect criteria</th>
<th>Overall consequence rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Any criterion has an impact of ‘G’; or more than one criterion has an impact of ‘F’; or a single criterion has an impact of ‘F’ and each remaining criterion an ‘E’.</td>
<td>Extreme</td>
</tr>
<tr>
<td>2</td>
<td>A single criterion has an impact of ‘F’; or all criteria have an impact of ‘E’.</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>One or more criteria have an impact of ‘E’; or all criteria have an impact of ‘D’.</td>
<td>Moderate</td>
</tr>
<tr>
<td>4</td>
<td>One or more criteria have an impact of ‘D’; or all criteria have an impact of ‘C’.</td>
<td>Low</td>
</tr>
<tr>
<td>5</td>
<td>One or more criteria have an impact of ‘C’; or all criteria have an impact of ‘B’.</td>
<td>Very Low</td>
</tr>
<tr>
<td>6</td>
<td>One or more but not all criteria have an impact of ‘B’, and all remaining criteria have an impact of ‘A’.</td>
<td>Negligible</td>
</tr>
</tbody>
</table>

2.2.4 Estimation of the unrestricted risk

Once the above assessments are completed, the unrestricted risk can be determined for each pest or groups of pests. This is determined by using a risk estimation matrix (Table 2.5) to combine the estimates of the probability of entry, establishment and spread and the overall consequences of pest establishment and spread. Therefore, risk is the product of likelihood and consequence.

When interpreting the risk estimation matrix, note the descriptors for each axis are similar (e.g. low, moderate, high) but the vertical axis refers to likelihood and the horizontal axis refers to consequences. Accordingly, a ‘low’ likelihood combined with ‘high’ consequences, is not the same as a ‘high’ likelihood combined with ‘low’ consequences – the matrix is not symmetrical. For example, the former combination would give an unrestricted risk rating of ‘moderate’, whereas, the latter would be rated as a ‘low’ unrestricted risk.

Table 2.5 Risk estimation matrix

<table>
<thead>
<tr>
<th>Likelihood of pest entry, establishment and spread</th>
<th>Consequences of pest entry, establishment and spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Negligible risk</td>
</tr>
<tr>
<td>Moderate</td>
<td>Negligible risk</td>
</tr>
<tr>
<td>Low</td>
<td>Negligible risk</td>
</tr>
<tr>
<td>Very low</td>
<td>Negligible risk</td>
</tr>
<tr>
<td>Extremely low</td>
<td>Negligible risk</td>
</tr>
<tr>
<td>Negligible</td>
<td>Negligible risk</td>
</tr>
<tr>
<td>Negligible</td>
<td>Very low</td>
</tr>
</tbody>
</table>
2.2.5 Australia’s appropriate level of protection (ALOP)

The SPS Agreement defines the concept of an ‘appropriate level of sanitary or phytosanitary protection (ALOP)’ as the level of protection deemed appropriate by the WTO Member establishing a sanitary or phytosanitary measure to protect human, animal or plant life or health within its territory.

Australia expresses its ALOP in qualitative terms. Australia’s ALOP, which reflects community expectations through government policy, is currently expressed as providing a high level of sanitary or phytosanitary protection aimed at reducing risk to a very low level, but not to zero. The band of cells in Table 2.5 marked ‘very low risk’ represents Australia’s ALOP.

2.3 Stage 3: Pest risk management

Pest risk management describes the process of identifying and implementing phytosanitary measures to manage risks to achieve Australia's ALOP, while ensuring that any negative effects on trade are minimised.

The conclusions from pest risk assessment are used to decide whether risk management is required and if so, the appropriate measures to be used. Where the unrestricted risk estimate exceeds Australia’s ALOP, risk management measures are required to reduce this risk to a very low level. The guiding principle for risk management is to manage risk to achieve Australia’s ALOP. The effectiveness of any proposed phytosanitary measure (or combination of measures) is evaluated, using the same approach as used to evaluate the unrestricted risk, to ensure it reduces the restricted risk for the relevant pest or pests to meet Australia’s ALOP.

ISPM 11 (FAO 2004) provides details on the identification and selection of appropriate risk management options and notes that the choice of measures should be based on their effectiveness in reducing the probability of entry of the pest.

Examples given of measures commonly applied to traded commodities include:

- options for consignments – e.g., inspection or testing for freedom from pests, prohibition of parts of the host, a pre-entry or post-entry quarantine system, specified conditions on preparation of the consignment, specified treatment of the consignment, restrictions on end-use, distribution and periods of entry of the commodity

- options preventing or reducing infestation in the crop – e.g., treatment of the crop, restriction on the composition of a consignment so it is composed of plants belonging to resistant or less susceptible species, harvesting of plants at a certain age or specified time of the year, production in a certification scheme

- options ensuring that the area, place or site of production or crop is free from the pest – e.g., pest-free area, pest-free place of production or pest-free production site

- options for other types of pathways – e.g., consider natural spread, measures for human travellers and their baggage, cleaning or disinfestation of contaminated machinery

- options within the importing country – e.g., surveillance and eradication programs

- prohibition of commodities – if no satisfactory measure can be found.
Risk management measures are identified for each quarantine pest where the risk exceeds Australia’s ALOP. These are presented in the ‘Pest Risk Management’ section of this report.
3 China’s commercial production practices for table grapes

This chapter provides information on the pre-harvest, harvest and post-harvest practices of China for table grapes considered to be commercial production practices. The export capability of China is also outlined.

3.1 Assumptions used in estimating unrestricted risk

China provided Biosecurity Australia with information on the standard commercial practices adopted in the production of table grapes in the different provinces/regions and for all the commercially-produced table grape cultivars in China. This information was complemented with data from other sources and taken into account when estimating the unrestricted risk of pests that may be associated with the import of this commodity.

Biosecurity Australia visited table grape production areas in Hebei and Xinjiang Uygur Autonomous Region of China, 14-21 September 2009 to verify pest status and vineyard pest management, and observe the harvest, processing and packing procedures for export of table grapes. Biosecurity Australia’s observations and additional information provided during the visit confirmed the production and processing procedures described in this chapter as standard commercial production practices for table grapes for export.

In estimating the likelihood of pest introduction it was assumed that the pre-harvest, harvest and post-harvest production practices for table grapes as described in this chapter are implemented for all regions and for all grape cultivars within the scope of this analysis. Where a specific practice described in this chapter is not taken into account to estimate the unrestricted risk, it is clearly identified and explained in Chapter 4.

3.2 Climate in production areas

The main commercial table grape growing regions of China are located mostly in the temperate north of China (Hebei, Henan, Jilin, Liaoning, Shaanxi, Ningxia Hui Autonomous Region, Shandong, Shanxi, Xinjiang Uygur Autonomous Region), with some production in the south (Yunnan) as shown in Figure 3.1. Climate data, mean maximum and minimum temperatures and mean relative humidity, for these provinces/regions of China are presented in Figure 3.2.

The climatic conditions in the main table grape growing areas in China are diverse, with hot and humid summers in the Yantze Valley in eastern China, and very dry summer conditions in Xinjiang in western China (Li 2001).

For the coastal provinces of Hebei, Shandong and Liaoning, the climate can be described as temperate, with hot and humid summers and cold wet/snowy winters. These table grape growing provinces have similar mean maximum temperatures during summer of approximately 30 °C.

The climate in Xinjiang, Liaoning and Jilin is considerably colder in winter than the other table grape growing regions. Xinjiang has hot dry summers (maximum mean temperature 30 °C, relative humidity 43% and mean rainfall 150 mm) and very cold winters (FCC 1997). Xinjiang is the driest province and has the highest number of days of snow cover followed by Jilin and Liaoning. Average winter temperatures are considerably lower in the table grape-
producing regions of China than in the commercial table grape-producing regions of Australia.

The southern province of Yunnan is in the subtropical monsoon weather zone, with a high altitude resulting in an even temperature all year and a dry and wet season. The annual mean temperature range is 13–20 °C in most parts of Yunnan, and the annual difference in temperature is only 10–15 °C (Ministry of Commerce 2009). The mean annual rainfall is above 1000 mm in the majority of the province, with 85% of the rains occurring from May to October. In the central region of Yunnan (e.g. Dali and Chuxiong) the frost-free period is 250 days per year (YFAO 2007).

Figure 3.1 Map of China showing the main grape-producing provinces and regions in blue (adapted from AQSIQ 2009). The 32 °N latitude line is the northern limit of the occurrence of Bactrocera dorsalis (Oriental fruit fly) in China.
Figure 3.2 Mean maximum (—◊—) and minimum (—■—) temperatures and mean relative humidity (—▲—) in table grape-producing provinces of Hebei, Henan, Jilin, Liaoning, Ningxia, Shaanxi, Shandong, Shanxi, Xinjiang and Yunnan in China, based on average monthly weather data from 1951 to 1988.

- Baoding, Hebei
- Zhengzhou, Henan
- Changchun, Jilin
- Shenyang, Liaoning
- Yinchuan, Ningxia
- Xian, Shaanxi
Meteorological data source (FCC 1997).
3.3 Pre-harvest

3.3.1 Cultivars

Grapes (*Vitis vinifera* L. and other *Vitis* spp.) have been grown in China for more than 2000 years (Li 2001). Grapes are grown for fresh table grapes, dried fruit and for wine production. However, commercial production of table grapes has dramatically increased since the 1960s with the introduction of major cultivars into China. Four major expansion periods can be traced to introduced cultivars: Muscat Hamburg (Meiguixang) during the 1960s, Kyoho (also known as Jufeng) in the 1980s (AQSIQ 2006) and Red Globe (Hong Ti) in the 1990s (Zhang 2005a). More recently a number of imported seedless varieties such as Crimson, Flame and Thompson, as well as a locally developed variety (Munake), have also been grown (AQSIQ 2009b).

Hundreds of local varieties are grown and although they taste good and have high domestic demand they are not as robust as introduced internationally traded cultivars that will better withstand storage and transport. These cultivars offer larger berries, longer stems, translucent flesh, non-seededness, good taste, later growing periods and longer storage capability (AQSIQ 2009c). Although approximately 70% of the table grapes grown in China are of the Kyoho (Jufeng) variety (Zhang 2005a), the intended table grape cultivars for export are Red Globe, seedless green grapes (i.e. Thompson) and seedless red grapes (i.e. Crimson and Flame) (AQSIQ 2009b).

3.3.2 Cultivation practices

Most grape planting material used in China is propagated from cuttings (Li 2001). In some cold areas, vines are grafted on cold-resistant rootstocks, such as the hybrid Beta (a probable hybrid between *Vitis riparia* and *Vitis labrusca*) and lines from *Vitis amurensis* (Li 2001).

Thorough preparation of the land is essential for the successful establishment of the vines and for their vigorous growth during the first two to three years. Trenches are dug and the soil is mixed with organic matter or other fertilisers and the improved soil is filled back into the trenches before planting the cuttings. The plant spacing used for vines varies depending on the regions and the training systems used (Li 2001) and the cultivar. For example, plant spacing along the row of 70–100 cm were common for Red Globe and 50 cm for Flame in Xinjiang (AQSIQ 2009c) and rows were 3–4 m apart. New plantings can be commercially productive within three years.

In China, dormant pruning is undertaken in late autumn or winter before growth begins. This is one of the most important aspects of vine management to obtain consistent high yields and quality fruit. One-year-old hardwood cuttings can be left as fruiting canes and cut back to 5–9 buds. If the ‘cane pruning’ technique is used there may be up to 10 buds. Summer pruning is completed during the early growing season by thinning and pinching out flowers or bunches (Li 2001). Depending on the cultivar, the branches are trimmed to a set number of bunches to encourage a high number of berries per bunch.

The table grape branches in older vineyards are trained up and over a horizontal wire trellis forming a canopy to the next row. The majority of grape bunches hang down from the branches overhead. In newer vineyards or younger vines most of the bunches are found on the vertical trellis (Figure 3.3).
Generally, there are three to four applications of chemical fertilisers: after bud break, at flowering, during rapid growth of young fruit, and during the maturation of the grape berries. Nitrogenous and phosphorous fertilisers are usually supplied for the first two to three applications while potash is used only at the time of berry maturation. In addition, after harvest or in late autumn animal manure is often applied in large quantities to supplement the organic matter content of the soil (Li 2001).

In northern China, for example in Xinjiang, Ningxia, Jilin and Liaoning, vines are buried during winter to insulate them from the freezing temperatures and snow (Rombough 2002). These vines consist of short trunks with one or two cordons or ‘arms’ that are attached to a wire. In the autumn, the cordons are dropped into trenches ripped or dug under the wires by machine and/or hand. Both the trunks and cordons are covered under mounds of soil that insulate them from the cold and snow. In spring the mounds are levelled and the cordons are hauled up and tied back onto the wires.

In most regions it is necessary to supply extra irrigation for growing vines due to China’s continental climate which has hot dry or hot rainy summers, and very dry and cold winters. Normally at least two irrigations take place, one before the vines are buried during winter and the other one after bud break (Li 2001). In Xinjiang, grapevines are often totally dependent on irrigation (AQSIQ 2009c).

The bagging of the individual table grape bunches/clusters during fruit development is a relatively new practice in this industry compared to the use of bagging in apple and pear production in China. However, it has quickly become a routine practice for the commercial production of both domestic and export-quality table grapes. AQSIQ (2009c) advised that bagging will continue to be a standard practice for table grapes for export despite the labour costs involved.

Fruit bagging has a number of advantages, namely: improving berry and bunch shape; ensuring an even colour during development; preventing scorching from the sun and grape splitting; and keeping bunches clean from dust and other contaminants. Fruit bagging also offers some protection against arthropod and disease-causing pathogen pests and birds.

In regions with humid conditions and rain during development table grapes must be bagged to produce export quality, whereas in drier areas it is not so critical but considered good practice and has been adopted by all major growers.
The bagging practices appear to vary greatly, according to the grape cultivar, the climatic conditions and the geographic location of the vineyards. For example, Red Globe grapes grown in Xinjiang are usually bagged in early to mid August and the bags are removed from early to mid September (10–15 days before harvesting) (AQSIQ 2008; AQSIQ 2009c) and therefore the grapes are only covered by the bags for one month of their development. Earlier season cultivars in Xinjiang may be bagged 15–20 June when the berries are 8-10 mm and removed 10–15 August, 10–15 days before harvest in late August.

In Hebei, Red Globe grapes were bagged in mid-June when the berries were the size of a soybean or peanut, following established guidelines for bagging of export table grapes (AQSIQ 2009c). The bunches were sprayed with pesticides and fungicides prior to bagging and one bag was used per bunch. The bags were removed 10–15 days before harvest which occurs in the last week of August or the first week of September. The intensity of the berry colour (red or purple) required for the market will often determine when the bags are removed and the bunch harvested, a longer exposure to the sun producing a darker berry (AQSIQ 2009c) (Figure 3.4, right).

The removal of the bags depends not only on the variety and colouring of the berry sought, but also on the type of bag used. The bags are not always removed at once, initially the bottom end may be cut open and the bag left in place to protect the bunch from the sun and birds (as a ‘hat’). Where necessary, bird nets are set up prior to the bags being removed (AQSIQ 2009c). A number of types of bags are used. The bags are certified or approved by China Entry-Exit Inspection and Quarantine Bureau (CIQ) and 100% of export table grapes are bagged. Most are plain white paper bags (37 cm x 27 cm) with open bottom corners, secured to the stalk at the top of the bunch with an in-built wire tie. Other bags include ones with clear cellophane on one side with a white paper backing (Figure 3.4), white synthetic cloth-like bags or firm plastic bags.

Figure 3.4 Grape bunches covered in paper bags (left), and a single bunch in a cellophane and paper bag (right)
Vineyards intending to export table grapes are required to be registered by CIQ and AQSIQ. The requirements include a minimum vineyard size; freedom from contaminated sources of water in the surrounding area; use of the services of plant protection officers to monitor and control pests; ability to implement the approved quality management system and comply with the import conditions between China and the importing country. The registration applications received from growers are assessed and only accepted after an initial and final verification to confirm all the requirements are fulfilled. Training of plant protection officers and growers in identification and management of pests, including fruit flies, and relevant food safety issues forms an important component in the export program (AQSIQ 2009c).

3.3.3 Pest management

The following information on pest management was provided by China (AQSIQ 2006; AQSIQ 2008; AQSIQ 2009c). All export grapes are produced in vineyards registered by CIQ. Each registered vineyard follows detailed guidelines covering pest monitoring, pest prevention and control. CIQ is also responsible for instructing and overseeing the implementation of these guidelines.

The Integrated Pest/Disease Management (IPM/IDM) programs used include a range of agronomic practices to reduce the number of arthropod and pathogen pests, namely: the application of fertiliser, irrigation, pruning and bagging; as well as physical, biological and chemical control measures.

Table 3.1 exemplifies one IPM/IDM regime for Red Globe table grapes. Bordeaux mixture, effective against downy mildew and to some extent powdery mildew, was the most commonly used spray applied prior to fruit bagging and on the bagged vines in mid-August for harvest in September (AQSIQ 2009c). Some vineyards and table grape production systems in China are recognised domestically and by some importers as meeting organic production requirements (AQSIQ 2009c).

Only approved agricultural chemicals are permitted for use on fruit and vegetables in China. Each vineyard has strict registration procedures for the use of agricultural chemicals and use of these must be supervised by technical personnel (AQSIQ 2008). In June 2009, China enacted new food safety laws that apply to food and food products for both domestic production and consumption, and for imported and exported commodities (The National People's Congress 2009). Fresh table grapes for export from China need to meet both the Chinese food safety requirements and the maximum residue limits of the importing country.

In 2000, China established a system called the National Fruit Flies Trapping Network (NFFTN) to monitor the Oriental fruit fly (Bactrocera dorsalis) and other economically important fruit flies throughout China. No Oriental fruit fly has ever been detected in northern China above 32 °N latitude (Figure 3.1), where the majority of the commercial table grape production is located since this trapping system commenced in 2000. Biosecurity Australia audited and verified the NFFTN in Xinjiang, Hebei, Shandong, Shaanxi, Shanxi, Gansu, Liaoning and Beijing and found that the network has been well established and maintained and complies with ISPM 26 Establishment of pest free areas for fruit flies (Tephritidae) (FAO 2006) and Trapping Guidelines for Area-Wide Fruit Fly Programmes (IAEA 2003).
Table 3.1 Integrated pest and disease management for the main pests of Red Globe table grapes (AQSIQ 2008)*

<table>
<thead>
<tr>
<th>Growth Stage</th>
<th>Target Pest/Disease *</th>
<th>Preventative measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grape dormancy</td>
<td>Control various plant diseases and insects, as well as overwintering pathogens and insects</td>
<td>Thorough cleaning of vineyard: dry leaves and stems removed and disposed of by burning or deep burial</td>
</tr>
<tr>
<td>Bud break: after grapevine buds, pre-leaf unfold</td>
<td>Powdery mildew, downy mildew, grapevine leaf mite, two-spotted spider mite</td>
<td>Lime sulphur mixture (1.02 specific gravity (wt/vol))</td>
</tr>
<tr>
<td>Pre-blossoming</td>
<td>Downy mildew, grey mould</td>
<td>Bordeaux mixture (1:0.5:240 dilution)</td>
</tr>
<tr>
<td>Post-blossoming (after blossoms fall)</td>
<td>Downy mildew, powdery mildew, red mite, white rot</td>
<td>Bordeaux mixture (1:0.5:200 dilution) and Carbendazim (800 dilution)</td>
</tr>
<tr>
<td>Young berry formation</td>
<td>White rot, powdery mildew, red mite</td>
<td>Bordeaux mixture (1:1:200 dilution)</td>
</tr>
<tr>
<td>From berry hardening to initial grape colour development</td>
<td>White rot, powdery mildew, downy mildew</td>
<td>Bordeaux mixture (1:1:200 dilution)</td>
</tr>
<tr>
<td>From grape colour development to maturity</td>
<td>White rot, powdery mildew, downy mildew</td>
<td>Bordeaux mixture (1:1:200 dilution)</td>
</tr>
<tr>
<td>After harvest</td>
<td>Downy mildew, white rot, red mite</td>
<td>Carbendazim (800 dilution)</td>
</tr>
<tr>
<td>After leaf-fall</td>
<td>Various pests and diseases</td>
<td>Thorough cleaning of vineyard during autumn: dry leaves and stems removed and disposed of by burning or deep burial. Spray lime sulphur mixture (1.02 specific gravity (wt/vol) and 0.3% soap powder)</td>
</tr>
</tbody>
</table>

* Grey mould (*Botrytis cinerea*), grapevine leaf mite (*Colomerus vitis*), powdery mildew (*Erysiphe necator/Öidium spp.*), downy mildew (*Plasmopara viticola*), white rot (*Pilidiella diplodiella*) and two-spotted mite (*Tetranychus telarius*).

3.4 Harvesting and handling procedures

Grapes do not ripen off the vine and must be harvested at optimal maturity. Timing of harvest will depend on the colour, taste and firmness of the grapes required and also on their sugar and acid content (AQSIQ 2008). For example, Red Globe grapes planted in Xinjiang are harvested when the glucose content of the berries surpasses 18%.

Chinese table grapes for export are generally harvested from August to October (AQSIQ 2008). The introduction of new varieties and Chinese-type greenhouse facilities has allowed a small proportion of grapes to be harvested before August (Zhang 2005b) and beyond the normal season in some provinces; however, most of these table grapes would be mainly for domestic supply or limited regional export.

Harvesting is generally conducted during the coolest hours of the day, in the morning after the dew or moisture has dried off or in the late afternoon when it is cool, to minimise the temperature of the harvested fruit. In Xinjiang in mid-September, picking did not commence before mid-morning and was completed in early afternoon (AQSIQ 2009c). Vines may be harvested several times according to the quality classification, including colour requirements.

During harvest, the pickers wear gloves and a bunch of grapes is held in one hand while the stalk is cut with small secateurs close to the branch. The harvested bunches are placed gently

* This information on integrated pest and disease management was provided by AQSIQ. Biosecurity Australia notes that the preventive measures listed are only effective against the target pest/disease in **bold text**.
upright in a single layer into a lined wicker basket or larger plastic crates avoiding damage to the fruit or the removal of the blush from the grapes (AQSIQ 2008; AQSIQ 2009c).

During commercial harvesting procedures undertaken in the vineyard, pickers select and harvest only sound bunches of fruit to go to the packing house. Defective (i.e. diseased, blemished, infested, small or damaged) bunches are unlikely to be selected for harvest. Inferior berries are likely to be trimmed from bunches during harvesting (AQSIQ 2008). This initial trimming occurs either when the bunch is cut from the vine or when the harvested fruit is taken to a preliminary sorting area at the vineyard where the crates are weighed and docketed identifying the picker, row, vineyard and supervisor. Where wicker baskets are used, the grape bunches are then sorted, trimmed, placed in lined plastic crates (Figure 3.5) and docketed before transport to the packing house by tractor and trailer covered by a tarpaulin or by truck (AQSIQ 2009c).

Figure 3.5 Harvesting grape bunches and preliminary sorting

3.5 Post-harvest

3.5.1 Packing house

Sorting, grading and packaging

Harvested table grapes are transported to the packing shed in a timely manner and may be stored in single layers under shade for 6–8 hours, in the packing house or in a cool room to allow them to cool down and evaporate excess moisture, prior to sorting, grading and packing (AQSIQ 2008).

Harvested table grapes are sorted according to grape size, shape and colour, total acid content and soluble solid content. The bunches are also graded according to their size, uniformity and shape (AQSIQ 2008). All graded table grape bunches must be complete and clean without plant pests or diseases, unusual odours or excessive moisture and be fully developed with vigorous and healthy fruit stalks (AQSIQ 2008).

In the packing house during routine commercial post-harvest procedures (e.g. sorting, grading, packing and quality inspection and control), inferior or defective grapes are trimmed and removed from bunches of table grapes (AQSIQ 2008). Defective grapes are downgraded
and removed by packing house staff during sorting and grading and before packing for export. These measures assist in culling fruit that is not suitable for export.

Trained sorters and packers, carefully select, trim and place grapes into cartons or trays lined with a ventilated plastic bag in a pattern that ensures good air flow and the most efficient use of space in the carton or tray (Figure 3.6) (AQSIQ 2008; AQSIQ 2009c).

Figure 3.6 Sorting and packing of table grapes

![Sorting and packing of table grapes](image)

Depending on the export market requirements, grapes may be packed in retail-ready ventilated plastic bags holding 0.5–2 kg grapes per bag and placed in fibre-board cartons, plastic trays or styrofoam boxes/trays that carry 5–10 kg. Alternatively, grapes are packed directly in the trays or boxes lined with a perforated plastic bag liner. The table grape cartons, boxes or trays are marked or labelled with the name of the company, the cultivar, the name and/or registration number identifying the vineyard and packing house to ensure traceability.

Discarded fruit is removed from the sorting and packing area and may be sold locally or for processing. Unpacked and packed fruit are kept separate in different ends of the packing house. The packed product is stored in a clean environment during pre-cooling and cold storage (AQSIQ 2008).

Pre-cooling storage

Packed table grapes are rapidly cooled before cold storage. Cold rooms used for this purpose are disinfected and pre-cooled to -2 °C for 3 to 5 days to decrease the room temperature ahead of table grape storage (AQSIQ 2006). Pre-cooling temperatures depend on the variety of table grape and range from -2 °C for Red Globe to -1 °C for Kyoho grape and to -0.5 °C for Munake and seedless white grapes. The pre-cooling rapidly reduces the fruit temperature close to the required storage temperature and lasts for a period of 12–24 h in a fan-forced cold room environment (Figure 3.7 (left)). However it may be as quick as 1–2 h under an automated pre-cooling unit for packed fruit (Figure 3.7 (right)) which runs at -2 °C to 0 °C and draws down the ambient fruit temperature quickly and effectively.
and avoids the development of moisture (AQSIQ 2009c). When the fruit is pre-cooled sufficiently the boxes/trays are fitted with a sulphur pad and the lid before moving to cold storage facilities. Packing houses use sulphur pads sourced from Chile, South Africa or China to minimise the development of storage rots (AQSIQ 2009c).

Figure 3.7 Cold room fan-forced pre-cooling (left) and automated pre-cooling unit (right)

Storage

Commercial cold storage conditions for table grapes depend on the table grape cultivars, and range from 0.5 °C to 1 °C for Red Globe and Kyoho grapes and 0 °C to 0.5 °C for Munake and seedless white grapes. All varieties are stored under a relative humidity of 85% to 95% (AQSIQ 2008).

The storage conditions are monitored and recorded on a regular basis to guarantee they are kept within the allowable temperature ranges (AQSIQ 2006).

Cool chain management is essential during the transport of table grapes from the vineyard to the customer to ensure their quality is maintained (AQSIQ 2008).

Figure 3.8 summarises the post-harvest packing house, storage and distribution steps for Chinese table grapes produced for export.
Figure 3.8 Summary of vineyard and post-harvest packing house, storage and distribution steps for table grapes grown in China for export – adapted from AQSIQ (2008; 2009c)

- **Registered vineyards**
- **Harvest**
- **Open-air shade storage (6–8 h)**
- **Sorting and grading**
- **Packaging**
- **Pre-cooling storage (12-24 h)**
 -2 to 0 °C
- **Cold storage**
 0–1 °C
- **Quarantine inspection**
- **Refrigerated transport**
 0–2 °C
3.5.2 Export procedures

Packing houses have quality control systems in place for each batch of table grapes and conduct self-inspections. CIQ inspects packing houses to ensure these systems adhere with domestic requirements and export conditions. Only grapes that meet the requirements of the importing countries are certified and will be issued with a Phytosanitary Certificate for export by CIQ (AQSIQ 2006).

3.5.3 Transport

The clearance and loading of packed table grapes into transportation containers follows strict operating guidelines. The containers must be clean and must only transport table grapes for export. The table grapes are transported in refrigerated containers by rail or road from the production areas to China’s major ports for export by sea (AQSIQ 2006; AQSIQ 2008).

Grapes packed for export to Australia from the most distant parts of western Xinjiang will take approximately 4–7 days by road to reach the nearest seaport in Guangdong Province in the south of China (AQSIQ 2009c). Grapes packed in Hebei, Shandong and Liaoning in eastern China have closer access to the seaports of Tianjin, Qindao and Dalian, respectively. Depending on the port of departure and arrival it can take 2–6 weeks (14–42 days) for general sea freight from China to Australia (China Australia Shipping 2008). Sea transport from China to Australia for perishable fresh horticultural commodities is usually 2–3 weeks. Grapes could potentially be air freighted from China to Australia within about a week after harvest. After transit by air or sea freight, which could take from one to three weeks, table grapes from China are likely to arrive in Australia from August to November (AQSIQ 2009c).

3.6 Export capability

3.6.1 Production statistics

China’s total area of grape cultivation (table and wine grape) covers approximately 490 000 hectares, with a total production of 7.3 million tonnes of grapes per year. China ranks sixth in the world in terms of growing area and fifth in terms of production volume (AQSIQ 2009c). China uses 8.3% of its grapes for production of raisins or sultanas and is the fourth largest producer in the world (AQSIQ 2009c).

Although grapes are grown locally throughout China (ABARE 2006), the main commercial table grape production areas in China are Xinjiang, Shandong, Hebei and Liaoning, followed by Shanxi, Shaanxi, Jilin, Henan, Yunnan and Ningxia (Figure 3.1). Xinjiang accounts for 38.5% of the total table grape yield in China and Shandong produces 16.2% (AQSIQ 2006; AQSIQ 2009b). In Xinjiang in 2006, 52% of grapes were used for dried fruit, 40% for fresh table grapes and 8% for wine. Since that time there has been a big increase in new production areas of table grapes (AQSIQ 2009c). Presently in the south, Yunnan has a production area greater than 1333 hectares with 23 Red Globe vineyards registered for export in the regions of Chuxiong, Hongue and Dali, located west, south-west and north-west of Kunming, respectively (AQSIQ 2009c).

Figure 3.9 summarises the production of grapes in the main table grape producing provinces/regions from 2000 to 2006 (USDA 2007).
China is the world’s largest producer of table grapes accounting for nearly one third of world production. Average annual growth rate of table grape production in China is reported to be 42% (Magenta Consulting Limited 2008). The top five consumer countries of table grapes are China, Turkey, USA, Italy and Chile (Magenta Consulting Limited 2008).

The majority of table grapes produced in China are sold in its domestic market. Exports have increased from less than 1000 tonnes in 2001 to almost 14 000 tonnes in the period 2001–2003 (ABARE 2006) and in 2008/2009 were expected to reach 72 000 tonnes (USDA 2009a).

The main destinations for China’s grape exports have been neighbouring countries and south-east Asia. China is beginning to target some key markets for their grape exports including the European Union, the Middle East, South Africa, Russia, Singapore, Hong Kong, Thailand, Malaysia, Vietnam and Pakistan (AQSIQ 2009b; AQSIQ 2009c).

The growth of China’s exports in such a short period of time may be attributed to not only the improved quality of Chinese table grapes, but also the investments in infrastructure that have resulted in a more efficient supply chain (ABARE 2006).

3.6.3 Export season

Table grapes for export are harvested in China and exported usually between August and October each year depending on the cultivar and geographical location (AQSIQ 2008).
There may be potential for the export season to commence before or be extended beyond these three months; however, this is the anticipated export season advised by AQSIQ under current practices.
Pest risk assessments for quarantine pests

Quarantine pests associated with table grapes from China are identified in the pest categorisation process (Appendix A1). This chapter assesses the probability of the entry, establishment and spread of these pests and the likelihood of associated potential economic consequences.

Pest categorisation identified 36 quarantine pests associated with table grapes from China. Of these quarantine pests, 28 pests are of national concern and eight are of regional concern. In addition, pest categorisation identified two venomous spiders as pests of sanitary concern (Appendix A2). Table 4.1 identifies these quarantine and sanitary pests and full details of the pest categorisation are given in Appendix A. Additional quarantine and sanitary pest data are given in Appendix B. Assessments of risks associated with these pests are presented in this chapter. Pests are listed or grouped according to their taxonomic classification, consistent with Appendix A and Appendix B.

Table 4.1 Quarantine pests for table grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spider mite (Trombidiformes: Tetranychidae)</td>
<td></td>
</tr>
<tr>
<td>Tetranychus kanzawai<sup>WA</sup></td>
<td>Kanzawa spider mite</td>
</tr>
<tr>
<td>Ladybird (Coleoptera: Coccinellidae)</td>
<td></td>
</tr>
<tr>
<td>Harmonia axyridis</td>
<td>Harlequin ladybird</td>
</tr>
<tr>
<td>Weevil (Coleoptera: Rhynchitidae)</td>
<td></td>
</tr>
<tr>
<td>Merhynchites sp.</td>
<td>Grape berry weevil</td>
</tr>
<tr>
<td>Beetles (Coleoptera: Scarabaeidae)</td>
<td></td>
</tr>
<tr>
<td>Popillia japonica</td>
<td>Japanese beetle</td>
</tr>
<tr>
<td>Popillia mutans<sup>EP</sup></td>
<td>Scarab beetle</td>
</tr>
<tr>
<td>Popillia quadriguttata<sup>EP</sup></td>
<td>Chinese rose beetle</td>
</tr>
<tr>
<td>Fruit fly (Diptera: Tephritidae)</td>
<td></td>
</tr>
<tr>
<td>Bactrocera dorsalis<sup>EP</sup></td>
<td>Oriental fruit fly</td>
</tr>
<tr>
<td>Midge (Diptera: Cecidomyiidae)</td>
<td></td>
</tr>
<tr>
<td>Cecidomyia sp.</td>
<td>Grape midge</td>
</tr>
<tr>
<td>Whitefly (Hemiptera: Aleroydidae)</td>
<td></td>
</tr>
<tr>
<td>Aleurolobus taeonae</td>
<td>Grape whitefly</td>
</tr>
<tr>
<td>Phylloxera (Hemiptera: Phylloxeridae)</td>
<td></td>
</tr>
<tr>
<td>Daktulosphaira vitifoliae</td>
<td>Grapevine phylloxera</td>
</tr>
<tr>
<td>Soft scales (Hemiptera: Coccidae)</td>
<td></td>
</tr>
<tr>
<td>Parthenolecanium corni<sup>EP,WA</sup></td>
<td>European fruit lecanium scale</td>
</tr>
<tr>
<td>Parthenolecanium orientalis</td>
<td>Scale</td>
</tr>
<tr>
<td>Pulvinaria vitis</td>
<td>Cottony grape scale</td>
</tr>
<tr>
<td>Mealybugs (Hemiptera: Pseudococcidae)</td>
<td></td>
</tr>
<tr>
<td>Planococcus kraunhiae<sup>EP</sup></td>
<td>Japanese mealybug</td>
</tr>
<tr>
<td>Pseudococcus comstocki<sup>EP</sup></td>
<td>Comstock’s mealybug</td>
</tr>
<tr>
<td>Pseudococcus maritimus<sup>EP</sup></td>
<td>Grapevine mealybug</td>
</tr>
</tbody>
</table>
Pest risk assessments were done to determine whether the risk posed by each pest exceeds Australia’s ALOP and thus whether phytosanitary measures are required to manage the risk. Pest risk assessments already exist for some of the pests considered here as they have been assessed previously by Biosecurity Australia. Two types of existing pest risk assessments are considered in this IRA report.

- The first type is where there may be a change to the likelihood of entry (importation and/or distribution) from previous assessments due to differences in the commodity and/or country assessed (for example, Oriental fruit fly, apple heliodinid, western flower thrips and phomopsis cane and leaf spot).

- The second is where the assessments were carried out before the introduction of Biosecurity Australia’s current risk assessment method (for example, black rot and scarab beetles). In this case, the pest is re-assessed according to the current method.

<table>
<thead>
<tr>
<th>Pest</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tortricid moths (Lepidoptera: Tortricidae)</td>
<td></td>
</tr>
<tr>
<td>Archips micaceana</td>
<td>Leaf rolling moth</td>
</tr>
<tr>
<td>Archips podana</td>
<td>Large fruit-tree tortrix</td>
</tr>
<tr>
<td>Eupoecilia ambiguaella</td>
<td>European grape berry moth</td>
</tr>
<tr>
<td>Sparganothis pilleriana</td>
<td>Leaf rolling tortrix</td>
</tr>
<tr>
<td>Moth (Lepidoptera: Pterophoridae)</td>
<td></td>
</tr>
<tr>
<td>Nippoptilia vitis</td>
<td>Grape plume moth</td>
</tr>
<tr>
<td>Moth (Lepidoptera: Stathmopdidae)</td>
<td></td>
</tr>
<tr>
<td>Stathmopoda auriferella<sup>EP</sup></td>
<td>Apple heliodinid</td>
</tr>
<tr>
<td>Thrips (Thysanoptera: Thripidae)</td>
<td></td>
</tr>
<tr>
<td>Frankliniella occidentalis<sup>EP, NT.</sup></td>
<td>Western flower thrips</td>
</tr>
<tr>
<td>Rhipiphorothrips cruentatus<sup>EP</sup></td>
<td>Grapevine thrips, rose thrips</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
</tr>
<tr>
<td>Physalospora baccae</td>
<td>Grape cluster black rot</td>
</tr>
<tr>
<td>Guignardia bidwellii</td>
<td>Black rot</td>
</tr>
<tr>
<td>Alternaria viticola</td>
<td>Spike stalk brown spot</td>
</tr>
<tr>
<td>Monilinia fructigena<sup>EP</sup></td>
<td>Brown rot</td>
</tr>
<tr>
<td>Phakopsora euvitis</td>
<td>Grapevine leaf rust</td>
</tr>
<tr>
<td>Phomopsis viticola<sup>EP, WA</sup></td>
<td>Phomopsis cane and leaf spot</td>
</tr>
<tr>
<td>Viroids</td>
<td></td>
</tr>
<tr>
<td>Grapevine yellow speckle viroid-1<sup>WA</sup></td>
<td></td>
</tr>
<tr>
<td>Grapevine yellow speckle viroid-2<sup>WA</sup></td>
<td></td>
</tr>
<tr>
<td>Grapevine yellow speckle viroid-3<sup>WA</sup></td>
<td></td>
</tr>
<tr>
<td>Viruses</td>
<td></td>
</tr>
<tr>
<td>Grapevine fanleaf virus<sup>WA</sup></td>
<td></td>
</tr>
<tr>
<td>Tomato ringspot virus</td>
<td></td>
</tr>
<tr>
<td>Tobacco necrosis viruses<sup>EP</sup></td>
<td></td>
</tr>
<tr>
<td>Sanitary pests</td>
<td></td>
</tr>
<tr>
<td>Latrodectus mactans<sup>EP</sup></td>
<td>Black widow spider</td>
</tr>
<tr>
<td>Latrodectus tredecimguttatus</td>
<td>European black widow spider</td>
</tr>
</tbody>
</table>
The two types of assessments are reflected in the introduction and layout of the risk assessments that follow. In this IRA the superscript ‘EP’ is used for pests that have previously been assessed and a policy already exists.

Some pests identified in this assessment have been recorded in some regions of Australia, and due to interstate quarantine regulations are considered pests of regional concern. These organisms are identified with a superscript, such as ‘NT’, or ‘WA’, for the state for which the regional pest status is considered.

The unrestricted risk estimate (URE) for each quarantine pest is based on the assumption that table grapes are produced for export without fruit bagging. Biosecurity Australia considers there may be situations either currently or in the future where the practice of bagging may not be consistent, feasible or commercially viable. This approach is consistent with that taken on previous IRAs on apples and pears from China and other countries where fruit bagging is used. This approach also ensures consistency in the assessment of similar pests on table grapes between IRAs in countries where bagging is not used.

Grapes harvested, packed, stored and transported for export to Australia may need to travel variable distances to ports. Depending on the port of departure and arrival it can take 2–6 weeks for general sea freight from China to Australia (China Australia Shipping 2008). Sea transport from China to Australia for perishable fresh horticultural commodities is usually 2–3 weeks. Grapes could potentially be air freighted from China to Australia within about a week from harvest. While the unrestricted risk assessments undertaken in this IRA do not impose any mandatory measures during storage and transport, common commercial practices may impact on the survival of some pests. If these conditions are applied to all consignments for a minimum period of time, then those conditions can be considered as part of the unrestricted risk assessment. As the minimum period in storage and transport after harvest is likely to be around one week, with an optimal cool chain temperature of 0–2 °C, the impact of these conditions on pests has been broadly but conservatively considered.
4.1 Kanzawa spider mite

Tetranychus kanzawai WA

Tetranychus kanzawai is not present in the state of Western Australia and is a pest of regional quarantine concern for that state.

Tetranychus kanzawai, the kanzawa spider mite, belongs to the spider mite family, Tetranychidae (CABI 2009; Migeon and Dorkeld 2006). Spider mites are given this name as they often spin characteristic protective silk webs (Zhang 2008). *Tetranychus kanzawai* is one of the most common spider mites in the entire East Asia region (Takafuji and Hinomoto 2008).

Tetranychus kanzawai is a serious pest on a variety of agricultural crops and is most abundant in East and Southeast Asia (Bolland *et al.* 1998; Ehara 1963; Zhang 2003).

There are five stages in the life cycle of spider mites: egg, larva, two nymphal stages (protonymph and deutonymph) and adult (Zhang 2008). Adult females of *T. kanzawai* are dark red with bodies 0.51 mm long and 0.31 mm wide (CABI 2009). Unfertilised eggs develop into males, while fertilised eggs develop into females (Shih 1979). The proportion of females in a population averaged between 0.76 and 0.83. The sex ratio is determined by the genotype and age of the mother. Four-day-old females produced only females, while 15-day-old females produced only males (Shih 1979; Takafuji and Ishii 1989). Some overwintering populations consist of 100% females (Takafuji *et al.* 2007).

In Fuzhou, China, populations of *T. kanzawai* on strawberries peaked in late December and mid-February and reached outbreak proportions at the end of the growing season (CABI 2009; Zhang *et al.* 1996b). Females tend to oviposit in a localised area, with most of the eggs produced during a peak period of a few days (Shih 1979).

The average generation time was 15.4 days at 27 °C±2 °C and 65±3.0% relative humidity (RH). The preoviposition period was 0.9±0.5 days. The intrinsic rate of increase is 0.38 eggs/female/day, while the net reproductive rate is 44.64 females/female/generation (Shih *et al.* 1978). At 35 °C and 60% RH, the generation time was 6.2±0.4 4 days. The average number of eggs laid was 7.18±1.56 per day, while the oviposition period was 9.65±1.53 days. At 15 °C and 80% RH, the mites have a generation time of 27.49±2.33 days and the mean number of eggs laid per day was 2.04±0.55, while the oviposition period was 28.4±4.06 days. The optimal developmental temperature is considered to be between 25 °C and 30 °C (Cao *et al.* 1998).

The developmental threshold temperatures for the egg, protonymphal and deutonymphal stages were 13.9, 12.6 and 12.6 °C, respectively, and the corresponding temperature sums for development 39.2, 21.4 and 18.2 day-degrees °C (Tsai *et al.* 1989). A preliminary study on mature, *T. kanzawai* showed they could survive up to 10 days at -1 °C to -5 °C (Yang *et al.* 1991).

In Japan, populations of *T. kanzawai* had a strong diapause capacity on all host species. They expressed more than 90% diapause at 15 °C in the four main islands of Japan, whereas the populations on the Okinawa islands further south exhibited a very low incidence or no diapause (Takafuji *et al.* 2003; Takafuji *et al.* 2001). Geographic variation in diapause capacity among populations of *T. kanzawai* has been observed (Takafuji and Hinomoto 2008).
On hydrangea (Hydrangea macrophylla) in Japan two different seasonal population trends occur: one with a single peak occurrence between May and June, and the other with a spring peak in June and an autumn peak in September–October. Each year the populations declined abruptly just after the spring peak, possibly due to the change in secondary compounds in plants (CABI 2009). Studies on strawberry gardens in China showed that eggs and active stages are aggregated (Zhang et al. 1996b). The incidence of plant infestation may be as high as 90–100%, with the number of mites on each leaf reaching 2000–3000 (Zhang et al. 1996a).

Tetranychus kanzawai constructs complicated webs over the surface of a leaf and usually lives under these. In addition to predator avoidance T. kanzawai uses the webs as a place for refuge. It secretes pellets that repel predators on leaf surfaces (Oku 2008). In the presence of a predator, a significantly greater proportion of T. kanzawai females entered the quiescent stage (inactive adult) on webs than on leaves (Oku et al. 2003). Furthermore, significantly more females survived on webs than on leaves. In contrast, significantly fewer males guard females on webs, resulting in less opportunity to mate (Oku et al. 2003). The positive correlation between leaf hair traits (hair height and hair density) and host plant acceptance by T. kanzawai suggests that leaf hairs provide a refuge from predators for the females (Oku et al. 2006). Life history parameters of grape-adapted and bean-adapted populations of T. kanzawai were studied on grape and bean leaves and have found that beans are a better host than grapes, but the intrinsic rate of natural increase of grape-adapted population was higher than that of the bean-adapted population on grape (Kondo et al. 1987).

Tetranychus kanzawai was found in very low numbers in vineyards in Taiwan, where T. urticae Koch was the major spider mite found. Tetranychus kanzawai were found on grape clusters in eight out of 10 surveyed vineyards. Ten percent of grape clusters were infested, but the density was low, with only 0.63 mites per cluster. The percentage of grape berries infested with mites was 0.4% (Ho and Chen 1994). Experimental inoculation of unripe berries with T. kanzawai resulted in the mites either dying before development into the next instars or running away. Inoculating ripe berries led to mites being able to feed, develop and reproduce (Ho and Chen 1994). The population density varied considerably between grape cultivars (Ashihara 1996). High developmental success was observed on Muscat Bailey A (Vitis labrusca x V. vinifera x V. linsecumii) and Delaware (V. labrusca x V. vinifera x V. aestivalis) cultivars. On Kychou (V. vinifera x V. labrusca) 25% of larvae developed to adults, on Muscat of Alexandria (V. vinifera) only 2%, while none were observed on Neo Muscat (V. vinifera) and Campbell Early (V. labrusca x V. vinifera) (Ashihara 1996).

The risk scenario of concern for T. kanzawai is the presence of eggs, nymphs or adults on the peduncle, pedicel, or grape berry in the grape cluster.

4.1.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.

Probability of importation

The likelihood that T. kanzawai will arrive in Western Australia with the importation of table grapes from China is: **HIGH**.

Supporting information for this assessment is provided below:

- *Tetranychus kanzawai* is found in most of the grape growing areas (Anhui, Fujian, Jiansu, Jiangxi, Jilin, Liaoning, Shaanxi, Shandong, Shanghai and Zhejiang) of China (CABI
2009; Cao et al. 1998; EPPO 2006b; Takafuji and Hinomoto 2008; Yang et al. 1991; Zhang et al. 1996b). There is no evidence of official control measures in place to prevent its spread to other provinces.

- Most Chinese table grapes for export are likely to be sourced from Xinjiang (38.5% of production area), Liaoning (7–15%) and Shandong (16.2%) (AQSIQ 2009b; AQSIQ 2006).

- *Tetranychus kanzawai* can feed, develop and reproduce on ripe grape berries (Ho and Chen 1994).

- *Tetranychus kanzawai* is a serious pest of greenhouse grapevines in Japan (Ashihara 1995).

- On strawberries in China, the incidence of plant infestation may be as high as 90–100%, with the number of mites on each leaf reaching 2000–3000 (Zhang et al. 1996a). In contrast, in a survey of grapes in Taiwan, 10% of grape clusters were infested with a low density of mites per cluster.

- The small size (0.52 mm by 0.31 mm) (CABI 2009) of the organism and the possibility of low levels of infestation make it possible that they will be missed by a standard grading and packing process.

- The population density can vary considerably between grape cultivars (Ashihara 1996), with mites on some cultivars showing high developmental success.

- A preliminary study on mature *T. kanzawai* showed they could survive up to 10 days at -1 °C to -5 °C (Yang et al. 1991). This suggests that adults and nymphs may be able to survive under cold storage and transport.

- *Tetranychus* species are regularly intercepted on horticultural commodities at the border in Australia, New Zealand and other countries (Brake et al. 2003; DAFF 2003; MAF Biosecurity New Zealand 2009).

The mite’s ability to feed, develop and reproduce on ripe grape berries, their small size and the wide distribution of this species throughout China, all support a likelihood estimate for importation into Western Australia of ‘high’.

Probability of distribution

The likelihood that *T. kanzawai* will be distributed within Western Australia in a viable state as a result of the processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **MODERATE**.

Supporting information for this assessment is provided below:

- Packed grapes are usually not processed or handled again until they arrive at the retailers, as grapes are easily damaged through rough handling and impacts due to their thin skins (Mencarelli and Bellincontro 2005). Therefore, any pests or pathogens in the packed grapes are unlikely to be detected during transportation and distribution to retailers.

- A preliminary study on mature *T. kanzawai* showed they could survive up to 10 days at -1 °C to -5 °C (Yang et al. 1991). This suggests adults and nymphs inside packages of grapes would be able to survive cold storage.

36
Grapes will be distributed throughout Western Australia for retail sale as the intended use is human consumption and waste material would be generated (e.g. infested grapes). The majority of cold store facilities, grape retailers and consumers are located in metropolitan and suburban areas.

Individual consumers may distribute small quantities of grapes to urban, rural and wild environments. Pedicels, peduncle and uneaten berries will be thrown away. If these are discarded near hosts, it is assumed that adults would be able to move off the discarded grapes and infest nearby hosts.

Tetranychus kanzawai adults and nymphs may be found within bunches of packed grapes and are likely to travel to their destination without being detected. This pest may enter the environment as adults and nymphs discarded with infested grapes.

Tetranychus kanzawai has 160 known hosts (Migeon and Dorkeld 2006). Major hosts include citrus, grapevine, hydrangea, peach and strawberry, which are widely grown in Western Australia. Furthermore, *T. kanzawai* occurs not only on cultivated plants but also on wild ones (Oku et al. 2002a).

Juveniles (nymphs) might complete their development to adults on discarded grapes and adults and possibly juveniles might disperse to other nearby plants.

Spider mites disperse predominantly within and between host plants through crawling (Kennedy and Smitley 1985). Adult female spider mites can also be carried on air currents. While there is the potential for long range transport on wind currents, aerial dispersal is generally initiated at high population densities and is entirely passive once airborne (Kennedy and Smitley 1985). Most mites fall out of the air currents fairly soon after they are carried aloft (Kennedy and Smitley 1985). Ballooning does not occur in *T. kanzawai* (Yano et al. 2003). The probability of mites on discarded grape waste locating a suitable host would be reduced when the short dispersal range by crawling is considered.

The evidence that adults and nymphs may be distributed on grape bunches, the ability of adults and nymphs to survive cold storage and the wide host range of the mite, moderated by the limited distance the mite could disperse by crawling from discarded waste, support a likelihood estimate for distribution in Western Australia of ‘moderate’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *T. kanzawai* will enter Western Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: **MODERATE**.

4.1.2 Probability of establishment

The likelihood that *T. kanzawai* will establish within Western Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: **HIGH**.

Supporting information for this assessment is provided below:

- *Tetranychus kanzawai* has 160 known hosts (Migeon and Dorkeld 2006). Major hosts are groundnut, tea, papaw, citrus, soybean, strawberry, peach, apple, cherry, aubergine,
watermelon and grapevine (CABI 2009; Migeon and Dorkeld 2006; Moon et al. 2008), which are found in Western Australia. The species is highly polyphagous, and occurs on host plants of various taxa (Takafuji et al. 2000; Oku 2008). *Tetranychus kanzawai* also depends on wild host plants and there are frequent exchanges of individuals (mites) between crops and wild hosts (*Clerodendrum, Akebia, Trifolium* and *Hydrangea*) (Takafuji and Morishita 2003; Takafuji and Hinomoto 2008).

- *Tetranychus kanzawai* can reproduce sexually and by parthenogenesis (asexually) (Kondo and Takafuji 1985; Oku et al. 2002b).

- *Tetranychus kanzawai* has the capability to increase their population 2.3 or 10–16 fold weekly at 20 °C or 30 °C, respectively (Ho 2000). The intrinsic rates of natural increase (*r_m*) varied largely from 0.187/day to 0.283/day (depending upon hosts) (Gotoh and Gomi 2003), which also indicates that it has good adaptive capacity.

- If populations established from a large number of individuals, the high fecundity could result in significant genetic diversity (Gotoh and Gomi 2003), thus increasing the potential for adaption. Spider mites rapidly adapt to new host plants, even plants that are considered resistant to mites (Gould 1979).

- The optimal temperature for their development is considered to be within 25–30 °C (Cao et al. 1998). So, a warm and humid climate would favour the development of high population densities of this mite in Australia.

- Potential establishment of *T. kanzawai* is supported by the knowledge that other species of *Tetranychus* are established in Western Australia and *T. kanzawai* is already established in New South Wales and Queensland (CSIRO and DAFF 2004d).

- *Tetranychus kanzawai* population is also reported to develop resistance to pesticides quickly (Ho 2000; Kondo 2004). Acaricide resistance is a serious problem, with regional variation in resistance levels (Ho 2000). In Japan, most of the spider mite populations have become notably less susceptible to acaricides (Kondo 2004). Therefore, controls for other mites may not prevent establishment.

- Spider mite populations are usually kept low by predators, either natural or introduced (University of California 2000). Suitable natural enemies may be present in Australia, but their potential impact is unknown. *Tetranychus kanzawai* constructs webs over leaf surfaces and usually lives under these webs. *Tetranychus kanzawai* produces two types of excreta, black and yellow pellets, and uses its webs as a place for excreta. *Tetranychus kanzawai* also uses its webs as refuge when predatory mites are present and use its yellow pellets to reduce the risk of predation (Oku 2008). This behaviour gives it some defence against predators.

- The use of pesticides can result in an increase in spider mite populations as the predators are often more susceptible to pesticides than the pests (University of California 2000) and spider mites can develop resistance to pesticides (Ho 2000; Kondo 2004). In the absence of suitable predators, spider mite populations could increase rapidly in Western Australian vineyards or orchards or the environment.

The mite having already established in parts of Australia, its ability to reproduce on a wide variety of host plants in Australia and the capability to increase its population rapidly, support a likelihood estimate for establishment in Western Australia of ‘high’.
4.1.3 Probability of spread

The likelihood that *T. kanzawai* will spread within Western Australia, based on a comparison of factors in the source and destination areas that affect the expansion of the geographic distribution of the pest, is: **MODERATE**.

Supporting information for this assessment is provided below:

- *Tetranychus kanzawai* has been reported from a variety of environments including North America (Mexico), Africa (South Africa), Asia (China, India, Japan, Korea, Thailand, Indonesia) and Oceania (Australia, Papua New Guinea) (CABI 2009; Migeon and Dorkeld 2006). There are similar environments in warmer parts of Western Australia that would be suitable for their spread.

- *Tetranychus kanzawai* is able to survive in both cooler (Jilin, Liaoning, Shaanxi, Shandong) and warmer (Fujian, Hong Kong, Jiangsu, Jiangxi, Zhejiang) areas in China (CABI 2009; Migeon and Dorkeld 2006).

- Higher fecundity rates and reduced development times have been reported with increasing temperatures and humidities (Cao *et al.* 1998). Additionally, *T. kanzawai* undergoes a reproductive diapause mainly induced by short-days and low temperatures (Takafuji *et al.* 2007). The comparatively warmer Western Australian environment may therefore provide a larger choice of suitable habitats for the *T. kanzawai* to expand its current host range in Australia.

- The long distances between some commercial vineyards, orchards and production areas in Western Australia may make it difficult for the spider mite to disperse unaided from one production area to another.

- Wind-assisted aerial dispersal is an important mechanism for spread within and between adjacent vineyards or orchards or through urban areas (Takafuji and Hinomoto 2008).

- The polyphagous nature of this species may enable it to locate suitable hosts in the intervening areas, particularly towns or suburban areas (Oku 2008; Takafuji *et al.* 2000).

- There is little information on the ability of this spider mite to spread naturally beyond natural barriers such as deserts or mountain ranges.

- Due to the small size of *T. kanzawai* and limited capacity for independent dispersal by natural means, it is likely that the natural rate of spread of this spider mite in Western Australia would be relatively slow.

- *Tetranychus kanzawai* may infest leaves, peduncles, pedicels and grape berry and may be associated with nursery stock or amenity trees in addition to commercial crops. Movement of infested nursery stock or other plants would be an important mechanism for long distance spread.

- Existing interstate quarantine control on the movement of nursery stock and other plant material could reduce the rate of spread between states, but would be of limited use within states where control measures may not be applied.

- Spider mites may also contaminate the clothing of vineyard workers, machinery and other equipment associated with horticultural production in Australia, providing additional opportunities for spider mites to spread within vineyards or orchards or long distances between vineyards or orchards.
The wide host range and polyphagous nature, moderated by the limited mobility of the mites, support a likelihood estimate for spread in Western Australia of ‘moderate’.

4.1.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that *T. kanzawai* will enter Western Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Western Australia and subsequently spread within Western Australia is: **LOW**.

4.1.5 Consequences

The consequences of the establishment of *T. kanzawai* in Western Australia have been estimated according to the methods described in Table 2.3.

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘E’, the overall consequences are estimated to be **MODERATE**.

Reasoning for these ratings is provided below:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Plant life or health</td>
<td>Impact score: E – Significant at the regional level.</td>
</tr>
<tr>
<td></td>
<td>Tetranychus kanzawai is known as one of the most injurious mite species to various agricultural crops (Gomi and Gotoh 1996; Gotoh and Gomi 2000) and is recognised as an agricultural pest requiring control measures (Ho 2000; Ho et al. 1997; Kondo 2004; Takafuji et al. 2000). It is rated as a pest of economic concern in Japan, Korea, Taiwan and China, where it can damage the leaves and the fruit of the host plant (Ho 2000; Ho et al. 1997; Kondo 2004; University of California 2000; Takafuji et al. 2000; Zhang et al. 1996b). Spider mites in large numbers may deplete nutrients from the host plant to such an extent as to cause severe damage, resulting in very heavy production losses and even death of the plant (Cheng 2007). Groundnut, tea, papaw, citrus, soybean, strawberry, peach, apple, cherry, aubergine, watermelon and grapevine (CABI 2009; Migeon and Dorkeld 2006; Moon et al. 2008) are all reported as commercial hosts. Tetranychus kanzawai also feeds on wild host plants and there are frequent exchanges of individuals between crops and wild hosts (Clerodendrum, Akebia, Trifolium and Hydrangea (Takafuji and Morishita 2003; Takafuji and Hinomoto 2008). Clerodendrum and Trifolium are present in Western Australia (Lally 2009; Spooner 2009).</td>
</tr>
<tr>
<td>Other aspects of the environment</td>
<td>Impact score: B – Minor significance at the local level.</td>
</tr>
<tr>
<td></td>
<td>There are no known direct consequences of this species on the natural or built environment but its introduction into a new environment may lead to competition for resources with native mite species. Loss in plant vigour and the potential for defoliation of amenity plants may have perceptible effects in urban areas.</td>
</tr>
<tr>
<td>Indirect</td>
<td></td>
</tr>
<tr>
<td>Eradication, control etc.</td>
<td>Impact score: D – Significant at the district level.</td>
</tr>
<tr>
<td></td>
<td>Indirect consequences of control or an eradication program as a result of the introduction of T. kanzawai may be: (i) an increase in the use of acaricides for control of the pest due to difficulties involved in estimating optimum times for application; (ii) disruption to IPM programs due to the increased need to use acaricides. Numerous acaricides have been recommended to control this particular spider mite and resistance to acaricides has also been reported (Ho 2000; Kondo 2004); (iii) additional applications of costly pesticides that may alter the economic viability of some crops; (iv) increases in control measures and impacts on existing production practices; (v) some of the reported natural enemies of spider mite such as the phytoseiid mite Neoseiulus fallacis, predatory thrips and ladybird beetles (Stethorus species) which are present in Australia are adversely affected by acaricides/pesticides (Azam 2002); (vi) subsequent increases in costs of production to producers; (vii) increased costs for crop monitoring and consultative advice to producers.</td>
</tr>
</tbody>
</table>
Final IRA report: table grapes from China

Pest risk assessments: Kanzawa spider mite

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic trade</td>
<td>Impact score: C – Significant at the local level. If T. kanzawai became established in Western Australia it is likely to result in some intrastate trade restrictions on many commodities such as apples, citrus, peaches, cherries, strawberries, watermelons and table grapes. This could lead to loss of markets or additional costs to manage the pest on the commodity.</td>
</tr>
<tr>
<td>International trade</td>
<td>Impact score: D – Significant at the district level. The presence of T. kanzawai in commercial production areas on a wide range of horticultural commodities (e.g. apples, cherries, strawberries, peaches, table grapes, citrus) may limit access to overseas markets where the pest is not present (e.g. Canada, UK, Italy, Germany, France, Chile, and Spain) (Migeon and Dorkeld 2006). The pest is widely present in Japan, Korea, India, Taiwan and Thailand (CABI 2009; Migeon and Dorkeld 2006). However, measures are available to mitigate spider mite and it is not expected that the pest would result in a complete loss of markets, rather for increased costs to treat and inspect for the pest.</td>
</tr>
<tr>
<td>Environmental and non-commercial</td>
<td>Impact score: B – Minor significance at the local level. Additional pre-harvest pesticide applications would be required to contain and/or eradicate the pest and control them on susceptible crops. However, this is unlikely to impact on the environment to any greater extent than already occurs from run-off into waterways from commercial crops due to control measures for other pests.</td>
</tr>
</tbody>
</table>

4.1.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the estimate of consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Tetranychus kanzawai</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
<td>Low</td>
</tr>
<tr>
<td>Consequences</td>
<td>Moderate</td>
</tr>
<tr>
<td>Unrestricted risk</td>
<td>Low</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *T. kanzawai* of ‘low’ exceeds Australia’s ALOP. Therefore, specific risk management measures are required for this pest.
4.2 Harlequin ladybird

Harmonia axyridis

Harmonia axyridis, known as the harlequin ladybird, is a relatively large lady beetle (5-8mm long) with characteristic oval convex shape. Patterning is highly variable, the elytra can be light orange, red to black and marked with 0 to 19 spots (Ker and Carter 2004; Komai and Chino 1969). Pronotum of the adult is often marked with a black ‘W’ or ‘M’ (Ker and Carter 2004).

The natural range of *H. axyridis* includes China from the northeast to the Himalayas, Japan, Korea and eastern Russia (Siberia) (Koch 2003; Komai and Chino 1969; Su et al. 2009). *Harmonia axyridis* is associated with a wide range of arboreal (broadleaf and conifer) and herbaceous habitats (Ker and Carter 2004; Koch et al. 2006).

Harmonia axyridis is a voracious predator of plant pests, especially aphids and other soft bodied insects and has been released as a classical bio-control agent in North America (Koch 2003) and Europe (Brown et al. 2008b). It has become established in many countries indicating its potential as an invasive species. These include USA, Canada and Mexico (Koch et al. 2006), Argentina and Brazil in South America (de Almeida and da Silva 2002), and Austria, Belgium, France, Netherlands, Germany, Greece, Italy, Luxemburg, Switzerland, United Kingdom in Europe (Brown et al. 2008b; Roy and Roy 2008). It is also spreading eastwards, and is now present in Poland, Serbia, Hungary, Romania, Slovakia and the Ukraine (EPPO 2009). It is thought by some that founders of the established populations of *H. axyridis* in North America came on a ship from Japan (Potter et al. 2005).

Life history of *H. axyridis* is typical of coccinelids. It consists of the egg stage, four larval instars, pupae and adult. Eggs are oval, 1.2 mm long, yellow and are laid in clusters of about 20 on leaves or stems of host plants. A female can lay up to 3000 eggs at a rate of about 25 a day. Eggs hatch in 3 days at 26 °C, larvae are initially black, elongate with tubercles, and as they grow the tubercles get more marked with orange. Larvae are 2 mm long at hatching and 7.5 to 11 mm long when fully grown. At 26 °C, the larval stage lasts about 14 days. Larvae pupate exposed on a leaf or stem. Adults can live for up to 3 years (Koch 2003). In much of Asia, Europe and America, *H. axyridis* has two generations a year, but four or five are possible (Koch 2003).

Harmonia axyridis overwinters as an adult. In response to temperature, day-length and food availability, adults migrate to hibernation sites, which include natural sites such as cracks in rock faces and man-made sites such as buildings (Huelsman et al. 2010; Koch and Smith 2008; Koch 2003; Potter et al. 2005). In the autumn, buildings can be invaded by large numbers of beetles, causing distress and inconvenience to occupants (Potter et al. 2005). Exposure to these beetles can cause a range of allergenic responses (Goetz 2009; Sharma et al. 2006). In spring, beetles mate and disperse to feeding sites in search of prey (Koch 2003).

In the USA in autumn, *H. axyridis* adults are reported to congregate in large numbers on late season fruit (e.g. apples, pears, grapes, raspberries) to feed, especially on damaged fruit as invertebrate food becomes scarce (Galvan et al. 2006; Koch and Smith 2008; Kovach 2004). It is recognised as a pest of fruit including grapes (Galvan et al. 2006; Kovach 2004). They can move deep into bunches of grapes and burrow into individual grapes, from which they are difficult to remove (Koch 2003; Roy and Roy 2008). This is a particular concern in vineyards for producing wine grapes as beetles may be crushed along with grapes during processing.
The contamination produces an undesirable taint known as ‘ladybug taint’, which is bottle stable and resistant to common wine fining agents (Pickering et al. 2008; Pickering et al. 2006).

The risk scenario of concern for *H. axyridis* is the transportation of adult and possibly larvae and pupae in bunches of table grapes.

4.2.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.

Probability of importation

The likelihood that *H. axyridis* will arrive in Australia with the importation of table grapes from China is: **HIGH**.

Supporting information for this assessment is provided below:

- *Harmonia axyridis* appears to be widely distributed in China. In northern China, it is recorded from a wide range of habitats, including orchards, natural forests and vegetable gardens (Su et al. 2009).

- Adult *H. axyridis* can live up to 3 years (Koch 2003; Weeden et al. 2009) and are likely to survive journey times from China, even if these are extended.

- *Harmonia axyridis* overwinters as adults and is able to survive severe winters of northeast Asia and northeast North America. In Japan, hibernating beetles are known to survive temperatures as low as -16 °C (Koch 2003; Potter et al. 2005). Cool conditions used in the storage and transportation of grapes will reduce beetle activity and are likely to extend the lifespan of beetles.

- Adult and larvae of *H. axyridis* will range over a grapevine in search of prey. Adults are attracted to ripe fruit and will feed on damaged grape berries in autumn as invertebrate food becomes scarce. Large numbers may be present on crops at harvest and they may also be attracted to bins of picked grapes (Galvan et al. 2006; Kovach 2004). Surveys of grape growers in Ohio indicated that 50% of growers had problems with *H. axyridis* feeding on grapes prior to harvest (Kovach 2004). Laboratory tests indicated that the beetle preferred to feed at sites of previous damage, though this was not exclusive (Kovach 2004).

- Commercial harvest and processing procedures mean that visibly damaged berries and obvious insects may be removed. However, the risk remains that individual beetles may remain within bunches, especially where berries are tightly packed. *Harmonia axyridis* have been reported as being difficult to remove from bunches of grapes (Koch 2003; Kovach 2004). Recommendations to harvest grapes at cool times of day and processing and packing grapes under cool conditions are likely to reduce activity of individual beetles and decrease the likelihood that they are detected.

- *Harmonia axyridis* has been recorded arriving alive in New Zealand in ya pears imported from China (MAF Biosecurity New Zealand 2009).

The wide distribution of *H. axyridis* in China, its preference for grapes and its ability to survive cold storage and transport support a likelihood estimate for importation of ‘high’.
Probability of distribution

The likelihood that *H. axyridis* will be distributed within Australia in a viable state as a result of the processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **HIGH**.

Supporting information for this assessment is provided below:

- Packed grapes are usually not processed or handled after packing until they arrive at retail outlets, as they are easily damaged. Adult beetles are long-lived and are likely to survive the transportation and storage of grapes from place of importation to retail sale. Cool conditions are likely to cause beetles to be inactive and stay with the commodity to the point of sale or consumption, where they may warm to ambient conditions and become active again. Once active, beetles may fly to find suitable habitat and prey.

- Grapes will be distributed for retail sale to the general community throughout Australia. The majority of the imported grapes are likely to be sold in metropolitan, suburban and regional centres.

- *Harmonia axyridis* is a generalist predator of soft-bodied insects such as aphids, scales, psyllids and mealybugs (Koch *et al.* 2006; Koch 2003). It is likely that suitable prey items will be available close to the point of sale and consumption of table grapes, for example plants grown in gardens (especially vegetables), street and fruit trees and weeds.

- Grapes are likely to be consumed in urban, suburban, rural and natural settings where vegetation infested by a variety of soft bodied insects (aphids etc.) that are suitable prey for *H. axyridis* are likely to be present. Lady beetles are generally seen by members of the community as beneficial insects and the presence of an individual on fresh produce such as grapes is unlikely to cause alarm or concern, and may be intentionally released if found by a consumer.

The likely distribution of the grapes throughout Australia under cold conditions and the ability of *H. axyridis* to survive and then fly to seek suitable habitats, support a likelihood estimate for distribution of ‘high’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *H. axyridis* will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: **HIGH**.

4.2.2 Probability of establishment

The likelihood that *H. axyridis* will establish within Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: **HIGH**.

Supporting information for this assessment is provided below:

- Adult *H. axyridis* are long-lived, generalist predators capable of flight and able to efficiently search for and find suitable prey. Individual females can lay up to several thousand eggs and these are laid daily in small batches over weeks or months (Koch
2003). It is possible that a viable population could develop from the progeny of a single fertilised female.

- In Europe and North America where *H. axyridis* has recently become established, it is known to out-compete and displace native coccinellids and other predatory arthropods (Koch and Galvan 2008; Ware and Majerus 2008).

- In East Asia, *H. axyridis* is native to areas with a temperate climate. It can survive in areas with warm to hot summers and cold winters, e.g. Siberia, Beijing and northeast China (Koch *et al.* 2006; Su *et al.* 2009). In North America it is established in regions with temperate (NE USA), Mediterranean (California) and sub-tropical climates (Florida) (Koch *et al.* 2006). It is widely established in temperate areas of central and western Europe and is spreading into the Mediterranean region (Brown *et al.* 2008b; EPPO 2009). Much of non-arid southern Australia has climates similar to areas where this insect has recently become established. This includes most areas where table grapes are grown and all the areas where wine grapes are grown.

The availability of pest species and the recent establishment of *H. axyridis* in countries and areas with a wide range of climates and environments support a likelihood estimate for establishment of ‘high’.

4.2.3 Probability of spread

The likelihood that *H. axyridis* will spread within Australia, based on a comparison of factors in the source and destination areas that affect the expansion of the geographic distribution of the pest, is: **HIGH**.

Supporting information for this assessment is provided below:

- Following introduction and establishment in North America and Europe, *H. axyridis* has demonstrated its ability to spread rapidly. By 1994, *H. axyridis* had become widely distributed in the continental USA following the initial discovery of established populations in Louisiana in 1988. Rate of spread was estimated to have been up to 442 km per year through a mixture of natural dispersal and human mediated movement (Koch *et al.* 2006). From its initial discovery of in northeast France in 2004, *H. axyridis* had, by 2008, spread to the Mediterranean coast, about 800 km to the south (Ternois 2009), indicating a rate of spread of up to 200 km per year. In the UK, between 2004 and 2006, *H. axyridis* spread northwards and westwards by an average of 58 km and 144 km per year, respectively (Brown *et al.* 2008c).

- *Harmonia axyridis* is a long-lived generalist predator capable of flight and self-dispersal through residential, agricultural (e.g. horticultural, viticulture, fruit trees) and forested areas. Spread may be halted or moderated in arid zones (e.g. southwest USA) where suitable prey species may be rare or patchy when compared with the well wooded northeast of the USA (Koch *et al.* 2006). Its ability to survive in natural habitats in Australia remains untested, but given its generalist nature as a predator it is highly likely it would find sufficient food in woodland, forest and rainforest in eastern and southern Australia.

- *Harmonia axyridis* is likely to be spread by the transportation of domestically produced horticultural produce. Overwintering adults are also likely to be moved about while concealed within furniture, household effects and other goods.
The evidence of rapid spread of *H. axyridis* in North America and Europe supports a likelihood estimate for spread of ‘high’.

4.2.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that *H. axyridis* will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: **HIGH**.

4.2.5 Consequences

The consequences of the establishment of *H. axyridis* in Australia have been estimated according to the methods described in Table 2.3.

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘E’, the overall consequences are estimated to be **MODERATE**.

Reasoning for these ratings is provided below:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Plant life or health</td>
<td>Impact score: C - Minor significance at the district level.</td>
</tr>
<tr>
<td></td>
<td>Harmonia axyridis is a pest of fruit production and in autumn adults congregate on fruit trees (grapes, apples, raspberries) and will feed on ripe fruit, especially if damaged (Galvan et al. 2006; Koch and Galvan 2008; Kovach 2004). Harmonia axyridis is a predator of a wide range of hemipteran pests (aphids, scales, psyllids and mealybugs) some of which are important crop and forestry pests (Koch and Galvan 2008; Koch 2003). The likely damage to fruit on occasions is moderated by the beneficial effect of reducing the numbers of some pest species.</td>
</tr>
<tr>
<td>Other aspects of the environment</td>
<td>Impact score: D- Significant at the district level.</td>
</tr>
<tr>
<td></td>
<td>In the USA and Europe, H. axyridis is thought to have a widespread undesirable impact on native biodiversity by preying upon and displacing native coccinellids, other predatory arthropods and other non target non pest biota in natural and man-made habitats. It appears to have become the main predator of aphids in the areas it has invaded (Kenis et al. 2008; Majerus et al. 2006; Mizell, III 2007; Pell et al. 2008; Ware and Majerus 2008).</td>
</tr>
<tr>
<td>Indirect</td>
<td></td>
</tr>
<tr>
<td>Eradication, control etc.</td>
<td>Impact score: D - Significant at the district level.</td>
</tr>
<tr>
<td></td>
<td>In Minnesota USA, estimates of the cost to eliminate H. axyridis from wine grapes at harvest range from US$50/acre (US$123/ha) for an IPM program comprising spraying with carbaryl, sampling and physical removal of remaining beetles, to US$270/acre (US$667/ha) for washing of all grapes with no other measures. The figures represent a 2 to 11% addition to production costs (Galvan et al. 2006). Harmonia axyridis is a generalist predator and has the potential to become widely established in a wide range of habitats including plantations and natural forest. If this was to happen, it is unlikely that control or eradication would be possible. Eradication of a small incursion may be possible using appropriate control measures and quarantine and would likely be costly and disruptive.</td>
</tr>
<tr>
<td>Criterion</td>
<td>Estimate and rationale</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| **Domestic trade** | **Impact score:** E - Significant at the regional level.
Harmonia axyridis could become an important contaminating pest of wine grapes harvested in Australia as it has become in parts of the USA. Adult *H. axyridis* harvested along with grapes can be crushed. Contaminated juice is tainted by the chemical 2-isopropyl-3-methoxypyrazine, which is produced by the beetle as an alerting signal and an aggregation pheromone. The taint, known commercially as ‘ladybug taint’, is bottle stable and is resistant to common wine fining agents (Pickering et al. 2008; Pickering et al. 2006). In the USA, untrained tasting panels indicate that consumers can detect and will reject lady beetle tainted wine over untainted wine (Ross and Weller 2007). The impact of such rejection on the value of wine, especially in ‘premium’ products, would be considerable. In eastern USA and southern Canada, the taint is thought to have done ‘millions of dollars’ of damage to wine production (Galvan et al. 2006). The value of Australian wine produced in the 2007/08 season was $4.77 billion (ABS 2009b), of which $2.1 billion was sold locally. Even a small reduction in value of domestically consumed product could have a significant impact. For example, a 3% reduction on average returns could equate to a $60 million reduction in domestic earnings. This figure does not include knock-on effects on related sectors such as tourism and hospitality.

The presence of *H. axyridis* on grapes, other fruit and horticultural produce in general may result in interstate restrictions being placed on the movement of such goods resulting in loss of markets. |
| **International trade** | **Impact score:** D - Significant at the district level.

The presence of *H. axyridis* on grapes, other fruit and horticultural produce may limit or restrict access of such goods into overseas markets and/or require additional measures to be undertaken.

The international reputation of Australian wines could be affected as a result of the presence of ‘ladybug taint’ and export earnings could be reduced. In 2007/08, the value of exports of Australian wine was $2.68 billion (ABS 2009b). Even a small reduction in value of exported product due to taint could have a significant impact on export earnings. For example, a 3% reduction on average returns could equate to an $80 million reduction in export earnings. |
| **Environmental and non-commercial** | **Impact score:** E - Significant at the regional level.

Additional pesticide applications may be required to control *H. axyridis* in vineyards and other fruit crops. This is problematic, as applications will need to occur close to harvest and issues could arise with meeting maximum residue limits and customer contracts.

In autumn, *H. axyridis* invades buildings, including domestic residences in large numbers to find a place to overwinter. In parts of the USA, householders have reported that they are unable to leave properties without being covered with beetles (USDA 2009c; Huelsman et al. 2010; Koch and Galvan 2008). In Ohio USA, individual houses have become the preferred overwintering sites for *H. axyridis* (Huelsman et al. 2010). This invasion of large number of beetles causes distress and disruption, in addition to costs and inconvenience associated with entry, prevention, pest control and cleaning. The problem is worst during autumn at the time of invasion and in the spring when insects become active again (Huelsman et al. 2010). In addition, they are known to be a nuisance at outdoor catering events, sometimes swarming over people and food (Huelsman et al. 2010; Weeden et al. 2009). Adult *H. axyridis* are known to bite and scratch when handled. Tests show that the bite is sufficiently strong to pierce the skin (Kovach 2004) and the beetles are attracted to blood or wounds.

Adult *H. axyridis* can, if handled, crushed or alarmed, exude a foul smelling yellow orange body fluid. If the beetles are present in buildings during cooler months, these secretions can permanently stain curtains, furnishings and other personal items (Potter et al. 2005; USDA 2009c). Foul odour, staining, biting and food contamination were issues of most concern to affected Ohio residents (Huelsman et al. 2010).

Exposure to this body fluid and beetles can cause a range of allergic responses in some individuals, including allergic rhinoconjunctivitis, asthma, pruritus, urticaria, angiodema and anaphylaxis (Goetz 2009; Sharma et al. 2006). In a survey of allergy prevalence in West Virginia, USA, it was estimated that 10% of respondents had experienced ‘ladybug allergy’ (Goetz 2009). In Ohio, USA a survey of property owners affected by this insect saw 13% of respondents report allergic reactions with 6% confirmed by a doctor (Huelsman et al. 2010). Some cases reported in children have been severe and have required emergency department management (Davis et al. 2006). In addition, acute corrosion of oral mucosa has been caused in domestic dogs that had eaten adult *H. axyridis* (Stocks and Lindsey 2008).

Overwintering *H. axyridis* can invade beehives where they can be a nuisance to bee keepers but they are not known to be harmful to the bees (Koch 2003). |
4.2.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the estimate of consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Harmonia axyridis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
<td>High</td>
</tr>
<tr>
<td>Consequences</td>
<td>Moderate</td>
</tr>
<tr>
<td>Unrestricted risk</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *H. axyridis* of ‘moderate’ exceeds Australia’s ALOP. Therefore, specific risk management measures are required for this pest.
4.3 Grape berry weevil

Merhynchites sp.

Merhynchites sp., the grape berry weevil (Li 2004), has not yet been named. It belongs to the tooth-nosed snout weevil family, Rhynchitidae, which can be distinguished from other beetles by its long proboscis, called a snout, and mouth parts modified to allow it to chew into flower heads. Rhynchitidae are also known as leaf and bud weevils, as some species lay eggs in young fruit or buds of trees, which are then destroyed during larval feeding; other species feed on blossoms or foliage (McNamara 1991).

This *Merhynchites* sp. has only been recorded in north Shanxi province in China (AQSIQ 2009b; Li 2004) and table grapes (*Vitis vinifera*) and Amur grapes (*Vitis amurensis*) are the only known hosts of this weevil (AQSIQ 2009b; Li 2004).

Merhynchites sp. has four life stages; egg, larva, pupa and adult. Adults and larvae damage the fruit and young seeds of grapes. Adults are 3.4–4 mm long and 1.72 mm wide and emerge from the soil from June to late August. After emergence, adults feed on the skin and pulp of grapes for a period of time before mating. Eggs are laid in the grape seeds at a rate of one egg per seed. The eggs are oval and 0.5 mm long and 0.3 mm wide. The egg-laying hole on the fruit is covered by a brown secretion above the surface of the fruit. Eggs hatch after 5–7 days and larvae feed on the young grape seed. The larvae are 4–5 mm long and without legs (Li 2004; AQSIQ 2009b). When disturbed, adults either pretend to be dead and fall onto the ground or during the warm weather they fly away (Li 2004).

From mid-July to mid-September, mature larvae chew through the grape pulp and skin and leave the berries (Li 2004). This occurs mainly at night and the larval emergence hole is clearly visible on the berry. Larvae normally leave the fruit before the fruit is ripe (AQSIQ 2009b). Mature larvae fall to the ground and burrow 10–20 mm deep into the soil. If the soil is dry, larvae may burrow deeper. Larvae overwinter in an underground cell (AQSIQ 2007; Cranshaw et al. 1994). From early or mid-June onwards, they form pupae 3.4–4 mm long. Pupation last 9–12 days and early emerged adults will temporarily stay in the soil and wait until grapevines flower. Adults then gradually emerge. *Merhynchites* sp. has one generation per year (AQSIQ 2009b; AQSIQ 2007; Li 2004).

The risk scenario of concern for *Merhynchites* sp. is the presence of developing larvae in seeded grapes.

4.3.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.

Probability of importation

The likelihood that *Merhynchites* sp. will arrive in Australia with the importation of table grapes from China is: **LOW**.
Supporting information for this assessment is provided below:

- The grape berry weevil, *Merhynchites* sp., is only found in a small area in the north of Shanxi province in China (AQSIQ 2009b; AQSIQ 2007; Li 2004). There is no evidence of official control measures in place to prevent its spread to other provinces.

- Most Chinese table grapes for export are likely to be sourced from Xinjiang (38.5% production area) and Shandong (16.2% production area) (AQSIQ 2009b; AQSIQ 2006).

- In Shanxi, adult grape berry weevil adults emerge from the soil from June to late August and are 3.4–4 mm in length and visible to the naked eye (Li 2004).

- Adults feed for a period of time before mating. They feed on the skin and pulp of grapes by chewing a hole in the surface of young grape berries, which turns dark brown and areas near the hole become slightly concave. The grapes shrivel when infested (Li 2004).

- When disturbed, adults either pretend to be dead and fall to the ground, or fly away in warm weather. (Li 2004).

- Adult females lay their eggs in young grape seeds at a rate of one egg per seed. The total number of eggs each female can lay is unknown. The egg laying hole on the fruit is sealed by a brown secretion that is visible above the surface of the fruit (AQSIQ 2009b). Larvae emerge after 5–7 days (AQSIQ 2007; Li 2004).

- AQSIQ (2009b; 2008) reported that *Merhynchites* sp. larvae feed and damage young seeds (i.e. seeds which are not lignified) inside the grape berry and that *Merhynchites* sp. larvae are not common in ripe grapes.

- In grapes, lignification occurs in seeds after the seeds have released abscisic acid to initiate berry ripening (Cooperative Research Centre for Viticulture 2005). As berries start to ripen, the seeds become lignified and hard. *Merhynchites* sp. larvae may be uncommon in ripening and ripe grapes as they are unable to feed on the harder, older seeds.

- The grapes infested with larvae remain small and are inedible (AQSIQ 2009b). Serious larval damage results in the grape berries falling from the vine (Li 2004).

- In China, table grapes for export are harvested and exported usually between August and October each year depending on the cultivar and geographical location (AQSIQ 2008). In Shanxi, late developing larvae may be in harvested grapes during this time. However, in 2006, only 1.4% of China’s total grape production came from Shanxi (USDA 2006).

- Defective (e.g. diseased, blemished, infested, small, damaged) grapes may be downgraded and removed by pickers/trimmers and packing house staff during harvesting, sorting and grading, and before packing for export.

- Late developing larvae inside table grapes may be able to survive cold storage before and during transportation as *Merhynchites* sp. overwinter as larvae (AQSIQ 2007).

The larvae mainly feeding on young grape seeds in immature fruit, leading to conspicuous berry damage that results in removal of infested fruit from the pathway and the distribution of this species restricted to northern Shanxi, support a likelihood estimate for importation of ‘low’.
Probability of distribution

The likelihood that Merhynchites sp. will be distributed within Australia in a viable state as a result of the processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: LOW.

Supporting information for this assessment is provided below:

- Packed grapes are usually not processed or handled again until they arrive at the retailers as grapes are easily damaged through rough handling and impacts due to their thin skins (Mencarelli and Bellincontro 2005). Therefore, any pests or pathogens in the packed grapes are unlikely to be detected during transportation and distribution to retailers.

- Since Merhynchites sp. larvae are found within the grape berry, packed grapes infested with Merhynchites sp. larvae are likely to travel to their destination without being detected. This pest may enter the environment as larvae discarded with infested grapes.

- Grapes will be stored at optimum temperature and relative humidity conditions to ensure quality is maintained.

- Larvae inside table grapes may be able to survive cold storage before and during transportation and distribution as Merhynchites sp. overwinter as larvae in Shanxi. This suggests that temporary cold storage may not be effective in killing larvae inside grapes.

- The majority of cold store facilities, grape retailers and consumers are located in metropolitan and suburban areas. Grapes will be distributed to these areas in Australia for retail sale as the intended use is human consumption. Individual consumers may distribute small quantities of grapes to urban, rural and wild environments where they will be consumed or disposed of.

- Grapes infested with larvae remain small and inedible (AQSIQ 2009b). It is expected that during commercial transport, storage and distribution some table grapes will be discarded as waste. Some discarded grapes may end up close to the soil.

- In China, mature larvae leave grapes, fall to the ground and burrow 10–20 mm deep into the soil between late summer to early autumn and overwinter. If the soil is dry, larvae may burrow deeper. Larvae need to pupate for 9–12 days in the spring before emerging as adults (AQSIQ 2007; Cranshaw et al. 1994). The adults need to feed on flowers and fruit of grapes before finding a mate to reproduce (Li 2004).

- As importation into Australia is likely to occur in August to October, which is late winter to early-summer, it is unknown whether Merhynchites sp. larvae would be able to burrow into the soil and survive Australia’s summer in the soil or whether Merhynchites sp. adults would emerge during the summer period. These issues may affect the chance of Merhynchites sp. completing its life cycle.

- Table grapes (Vitis vinifera) and Amur grapes (Vitis amurensis) are the only known hosts of this pest (Li 2004). Grapevines are widely but sporadically distributed throughout Australia including in domestic and commercial environments and abandoned vineyards in temperate regions of Australia.

- Emerging adults require fruiting grapevines for feeding and then egg-laying. Locating a suitable host may affect the chance of Merhynchites sp. completing its life cycle. It is unknown how Merhynchites sp. adults locate their host plants.
Evidence that *Merhynchites* sp. larva may reside unnoticed within the fruit increasing the chance of dispersal and the ability of the larva to survive cold periods by overwintering, moderated by the need to complete its development and find a mate for sexual reproduction, support a likelihood estimate for distribution of ‘low’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *Merhynchites* sp. will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: **VERY LOW**.

4.3.2 Probability of establishment

The likelihood that *Merhynchites* sp. will establish within Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: **VERY LOW**.

Supporting information for this assessment is provided below:

- For establishment, adult weevils need to disperse in sufficient numbers and in proximity to susceptible hosts to ensure adults feed, then females can locate a male to mate with and then find a susceptible host on which to lay their eggs. Environmental conditions need to be suitable for population development.

- *Merhynchites* sp. has one generation per year (AQSIQ 2009b; AQSIQ 2007; Li 2004) and reproduces sexually. Successful mating between a male and a female must occur before viable eggs are produced (AQSIQ 2009b; AQSIQ 2007; Li 2004). It is unknown how *Merhynchites* sp. adults initially locate their mate.

- There may be more than one larva of *Merhynchites* sp. present in each infested grape dependent on the number of seeds in the grape (Li 2004). More than one larva in a grape could increase the chance of sexual reproduction as males and females need to find each other before reproduction.

- *Merhynchites* sp. has a limited distribution and has only been reported in northern Shanxi which has a continental climate with distinctive seasons of cold winters but mild summers, with a mean annual temperature of 6–14 °C. Most of the province has a mean annual precipitation of 400–650 mm (Ministry of Culture 2003). Similar climatic conditions exist in temperate parts of Australia that may be suitable for this species’ establishment.

- European grapes (*Vitis vinifera*) and Amur grapes (*Vitis amurensis*) are the only recorded hosts of *Merhynchites* sp. No other plant hosts have been recorded (AQSIQ 2009b; Li 2004). Only European grapes (wine and table grapes) are found in Australia (USDA 2010c). *Merhynchites* sp. adult females require young grape berries with seeds to lay eggs in as larvae feed on young grape seeds (AQSIQ 2009b; AQSIQ 2007; Li 2004). Based on this, *Merhynchites* sp. would not be expected to occur in seedless grapes.

- Finding suitable egg-laying sites (i.e. fruiting grapevines) may be difficult as grapevines are widely but sporadically distributed throughout Australia. They are found in domestic and commercial environments and abandoned vineyards in temperate regions of Australia where climatic conditions may be less severe than in northern China and maybe more amenable for *Merhynchites* sp. to establish.
• *Merhynchites* sp. are capable of flight but it is unknown if they are strong or poor fliers. This may affect their ability to locate a host plant and mate to complete their life cycle.

• Existing control programs in Australia, such as broad spectrum pesticide application, may be effective in preventing *Merhynchites* sp. establishing on commercial grapes, but these are not routinely applied to home grown grapes, or would not be applied to abandoned vineyards.

The wide but sporadic availability of a single host species in Australia, limited distribution in its native environment in China, moderated by the necessity to find a mate for sexual reproduction, the unknown fecundity of female *Merhynchites* sp. adults and a single generation per year, support a likelihood estimate for establishment of ‘very low’.

4.3.3 Probability of spread

The likelihood that *Merhynchites* sp. will spread within Australia, based on a comparison of factors in the source and destination areas that affect the expansion of the geographic distribution of the pest, is: **LOW**.

Supporting information for this assessment is provided below:

• *Merhynchites* sp. weevils require fruiting grapevines that produce seeded grapes to continue their life cycle (Li 2004). Grapevines are distributed throughout Australia, including in domestic and commercial environments and abandoned vineyards in temperate regions of Australia where climatic conditions may be less severe than in northern China and maybe more amenable for *Merhynchites* sp. to establish.

• *Merhynchites* sp. are capable of flight but it is unknown if they are strong or poor fliers. This may affect their ability to locate a host plant and mate to complete their life cycle.

• Natural barriers such as arid areas, climate differences and long distances, exist in Australia and may limit the natural spread of *Merhynchites* sp.

• Dispersal of this pest to previously uninfested areas may occur by transport of fruit infested with *Merhynchites* sp. larvae.

• Large volumes of wine and table grapes are transported across vast distances throughout Australia. If infested grapes from Australian vineyards where *Merhynchites* sp. become established are transported and sold on the domestic market, this could increase opportunities for the species to spread and establish in other areas in the same manner as the initial introduction (e.g. disposal of infested grapes intended for human consumption).

• However, official state legislation controls the movement of wine and table grapes to ensure pests and diseases are not introduced into new areas in Australia (QDPIF 2008). This may reduce the spread of *Merhynchites* sp. in Australia.

The limited host range, lack of a natural mechanism for long distance dispersal, only one generation per year and natural barriers and official control measures that exist in Australia between areas where grapevines occur support a likelihood estimate for spread of ‘low’.
4.3.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that Merhynchites sp. will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: **EXTREMELY LOW**.

4.3.5 Consequences

The consequences of the establishment of Merhynchites sp. in Australia have been estimated according to the methods described in Table 2.3.

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘D’, the overall consequences are estimated to be **LOW**.

Reasoning for these ratings is provided below:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Plant life or health</td>
<td>Impact score: D – Significant at the district level.</td>
</tr>
<tr>
<td></td>
<td>In China, Merhynchites sp. weevil only attacks European grapes (i.e. wine and table) (Vitis vinifera) and Amur grapes (Vitis amurensis) (Li 2004) and is found in a small part of northern Shanxi in China. External symptoms of attack by Merhynchites sp. weevils are readily visible on infested fruits and yields may be affected, since the larvae feed on grape seeds and chew through the pulp to exit the fruit when they are ready to overwinter (Li 2004). The main damage includes the egg-laying holes in the surface of the grapes and larval feeding within the berries making the grapes unfit for human consumption or unmarketable (AQSIQ 2009b). The pest’s impact on Australian native Vitaceae (e.g. Cayratia clematidea, Cissus hypoglauca and Cissus sterculifolia (Harden 2009; Herbison-Evans and Ashe 2009), some of which are found in rainforest areas (Arnold and Rossetto 2002) is unknown. Legalov (2005) states that the majority of Rhynchites develop on species of a single host, therefore it is unlikely that Merhynchites sp. will attack plants that do not belong to the Vitis genus.</td>
</tr>
<tr>
<td>Other aspects of the environment</td>
<td>Impact score: A – Indiscernible at the local level.</td>
</tr>
<tr>
<td></td>
<td>There are no known direct consequences of this pest on other aspects of the environment.</td>
</tr>
<tr>
<td>Indirect</td>
<td></td>
</tr>
<tr>
<td>Eradication, control etc.</td>
<td>Impact score: C – Significant at the local level.</td>
</tr>
<tr>
<td></td>
<td>Strict pest management programs are already in place for commercial table and wine grapes in Australia and Merhynchites sp. may be controlled by these programs. For example, synthetic pyrethroids are already registered for and used in Australian vineyards to control other weevil species (Bailey and Furness 1994). Therefore, an additional control program may not have to be implemented in infested vineyards to reduce fruit damage and yield losses, so production costs may not be greatly affected. However, in organic vineyards, home gardens and abandoned vineyards and grapevines, where strict pest control programs may not occur, Merhynchites sp. may become a pest and require pesticide applications.</td>
</tr>
<tr>
<td>Domestic trade</td>
<td>Impact score: D – Significant at the district level.</td>
</tr>
<tr>
<td></td>
<td>The presence of Merhynchites sp. in commercial production areas may result in interstate trade restrictions on table and wine grapes. These restrictions may lead to a loss of markets.</td>
</tr>
<tr>
<td>International trade</td>
<td>Impact score: D – Significant at the district level.</td>
</tr>
<tr>
<td></td>
<td>The presence of Merhynchites sp. in commercial table grape production areas could have impacts on the export of Australia’s table grape to countries where this pest is not present.</td>
</tr>
<tr>
<td>Environmental and non-commercial</td>
<td>Impact score: A – Indiscernible at the local level.</td>
</tr>
<tr>
<td></td>
<td>Additional pesticide application and other measures to control Merhynchites sp. could have additional effects on the environment.</td>
</tr>
</tbody>
</table>
4.3.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the estimate of consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Merhynchites sp.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
<td>Extremely low</td>
</tr>
<tr>
<td>Consequences</td>
<td>Low</td>
</tr>
<tr>
<td>Unrestricted risk</td>
<td>Negligible</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *Merhynchites* sp. of ’negligible’ achieves Australia’s ALOP. Therefore, specific risk management measures are not required for this pest.
4.4 Scarab beetles

Popillia japonica (Japanese beetle), *P. mutans* (scarab beetle) and *P. quadriguttata* (Chinese rose beetle) are members of the scarab beetle family (Scarabaeidae). The adults are 8–11 mm long, stout-bodied iridescent green beetles with copper wing covers, while the larvae are c-shaped, pale and soft-bodied (CSIRO 1991; Fleming 1972). The biology and taxonomy of these species is considered sufficiently similar to justify combining them into a single assessment. In this assessment, the term ‘scarab beetles’ is used to refer to these three species unless otherwise specified. *Popillia japonica* is the best known species and most of the information in this assessment is based on this species.

Popillia japonica is native to Japan and parts of the Kuril Islands within the Russian Federation. *Popillia japonica* was reported in the literature as present in China—Heilongjiang, Jilin, Zhejiang, Gansu and Qinghai (EPPO 2006a; GSAGR 2010). However, MOA (2007) lists *P. japonica* as a quarantine pest for China. A comparison of *P. japonica* and *P. quadriguttata* specimens from China also concluded that previous records of *P. japonica* in China actually refer to *P. quadriguttata* (An 1990). The status of *P. japonica* in China requires further investigation.

Popillia mutans is reported from Korea and India as well as China (Li 2004). *Popillia quadriguttata* is found in Korea (previously reported as *P. japonica*) (Lee et al. 2007), China, Russia (Amurland), Korea and Vietnam (Kim 2001; Löbl and Smetana 2006).

As with all beetles, species of *Popillia* have four life history stages: egg, larva, pupa and adult (Fleming 1972; Lawrence and Britton 1991). Adult beetles are attracted to chemicals released from damaged leaves and fruit and form feeding aggregations, which can consist of thousands of beetles (Hammons et al. 2009). Females mate up to four times, using a sex pheromone to attract a mate for the first mating. All subsequent matings rely on high densities of both sexes present in feeding aggregations (Potter and Held 2002). After mating, females disperse to find suitable hosts. Eggs are laid individually in soil associated with roots of suitable grass hosts. Females lay between 40–60 eggs during their 4–6 week lifespan, which hatch in approximately two weeks. Larvae take 2–3 weeks and 3–4 weeks to pass through the first and second instars, respectively, with third instar larvae then overwintering. Development resumes in the spring once soil temperatures rise above 10 °C, with larvae taking a further 4–8 weeks to mature. After constructing a pupal chamber in the soil, larvae enter a pre-pupal stage lasting approximately 10 days. Adults emerge after spending 7–17 days as a pupa, but remain in the pupal chamber for between 2–14 days after emergence (Potter and Held 2002).

Adult *P. japonica* feed as generalists on flowers, fruits and foliage of a wide range of plants, while the larvae feed on the roots of grasses and other plants present in pastures, lawns and sports fields (Fleming 1972). Home gardens are badly affected by this species, as they provide a large range of adult and larval hosts growing in a small area (Fleming 1972). Adults graze on the fruit surface, but can become inconspicuous if they burrow into the flesh. Grapevines are especially favoured and may be heavily infested with feeding beetles, with adults opportunistically exploiting fruits as a high energy source (Hammons et al. 2009).

Popillia japonica is notable for being accidentally introduced to the USA prior to 1916 (Fleming 1972). In 1998, suppression of this beetle cost the USA economy approximately
US$460 million, while ongoing management contributes to over 3.2 million kilograms of insecticide applied to lawns in the USA alone (Reding and Krause 2005).

The risk scenario of concern for *P. japonica*, *P. mutans* and *P. quadriguttata* is the presence of adults within bunches of grapes.

Popillia mutans and *P. quadriguttata* were assessed in the existing import policy for longan and lychee from China and Thailand (DAFF 2004a). Previous policy for *P. mutans* and *P. quadriguttata* will be updated by the current assessment in light of more recent data regarding the biology, behaviour and pest status of *P. quadriguttata* in South Korea (Lee *et al.* 2007).

4.4.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.

Probability of importation

The likelihood that *P. japonica*, *P. mutans* and *P. quadriguttata* will arrive in Australia with the importation of table grapes from China is: **LOW**.

Supporting information for this assessment is provided below:

- *Popillia japonica* is reported from the provinces of Heilongjiang, Jilin, Gansu and Qinghai (CABI 2007; GSAGR 2010). However, MOA (2007) lists *P. japonica* as a quarantine pest for China. An (1990) also states that previous records of *P. japonica* in China actually refer to *P. quadriguttata* and *P. japonica* does not occur in China (An 1990; Zhang *et al.* 2002). The status of *P. japonica* in China requires further investigation.

- *Popillia quadriguttata* occurs in the grape producing provinces of Hebei, Henan, Shaanxi, Shandong, Shanxi and Yunnan (CABI-EPPO 1997c; GSAGR 2010).

- *Popillia mutans* occurs in all provinces of China (Löbl and Smetana 2006).

- Adults of *P. japonica* are present from June to October in North America and are likely to live for 4–6 weeks (Fleming 1972). Temperatures at harvest time in Jilin are within the range of temperatures recorded when adult *P. japonica* are present in the USA, which suggests adults are likely to be present in China at harvest. *Popillia quadriguttata* adults fly in Korea in July (Lee *et al.* 2007).

- *Popillia japonica* adults are attracted to volatiles released from leaves and fruit damaged by other beetles. *Popillia quadriguttata* adults are also attracted to plant-based lures designed for *P. japonica* in South Korea (Lee *et al.* 2007). This adaptation may allow large numbers, even thousands, of adults of *P. japonica* and *P. quadriguttata* to exploit preferred food resources (Hammons *et al.* 2009; Fleming 1972).

- *Vitis vinifera* and *V. labrusca* are among the plant species that are always attacked by the beetle in the USA (Fleming 1972).

- Although *P. japonica* adults initially attack leaves of *V. vinifera* and other hosts, they opportunistically exploit sugar-rich fruits, using them as a high calorie fuel for flight (Hammons *et al.* 2009). *Popillia mutans* and *P. quadriguttata* attack the leaves and fruits of *V. vinifera* and other hosts (AQSIQ 2006; Li 2004; Zhang 2005b).
- *Popillia japonica* has a range of feeding behaviours, from nibbling leaves to skeletonising them and feeding on fruit until only a core or stone remains (Fleming 1972).

- An adult *P. japonica* has been found in a blueberry baked in a muffin (APPD 2009; Gillespie 2006). This demonstrates that adult beetles can remain on fruit through harvest and post-harvest processing activities and burrow into fruit.

- Beetles may be removed from grape bunches by picking, grading and packing operations because of their size (8–11 mm). Their iridescent green, black and copper colouration may also contrast with the berries of some grape cultivars, making them easier to spot during pre-export quality inspections.

- Adults of this species are known to cling tightly to food sources (Hammons et al. 2009), so beetles in grape bunches may be difficult to remove.

- *Popillia japonica* is not attracted to harvested grapes in North America (Hammons et al. 2009).

- Adult *P. japonica* can survive temperatures as low as −20 °C without prior cold conditioning (Payne 1928). Temperatures used for fast pre-conditioning (−2 °C to 0 °C) and cold storage (0 °C to 1 °C) of grapes are unlikely to kill *P. japonica* adults.

- Cold conditions may improve the ability of *P. japonica* to survive transport to Australia by halting its movement and increasing its lifespan.

Adults of *P. japonica*, *P. mutans* and *P. quadriguttata* being attracted to grapevines, feeding on grape berries, potentially being concealed within grape bunches and their capacity to survive cold storage, moderated by their contrasting colour patterns, their size of 8–11 mm, and adults not attracted to harvested grapes, support a likelihood estimate for importation of ‘low’.

Probability of distribution

The likelihood that *P. japonica*, *P. mutans* and *P. quadriguttata* will be distributed within Australia in a viable state as a result of the processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **HIGH**.

Supporting information for this assessment is provided below:

- Grapes are imported for human consumption. Fruit will be distributed to many localities by wholesale and retail trade and by individual consumers. Berries may be distributed to all states in unrestricted trade.

- Most fruit waste will be discarded into managed waste systems and will be disposed of in municipal tips. Consumers will discard small quantities of fruit waste in urban, rural and natural localities. Small amounts of fruit waste will be discarded in domestic compost.

- *Popillia japonica* will survive in-transit, pre-retail and retail cold storage during distribution in Australia, as adults are capable of surviving temperatures as low as −20 °C with no pre-conditioning (Payne 1928). It is also likely that *P. mutans* and *P. quadriguttata* may also survive in-transit, pre-retail and retail cold storage during distribution in Australia.

- Beetles need warm temperatures in order to move around. For *P. japonica*, temperatures above 21 °C are sufficient for flight (Fleming 1972). This is probably also true for
P. mutans and P. quadriguttata. Temperatures of the Australian spring, when grapes are proposed to be exported, will allow any P. japonica present to resume movement quickly.

- Any adult beetles associated with grapes in plastic wrapped packaging will be unable to escape until the packaging is opened. Beetles imported in such packaging may be discovered and killed by the consumer, or become trapped inside houses or other buildings. Successful escapes would most likely occur if the grapes are unpacked and eaten outside.

- Any adult beetles associated with boxed grapes are likely to escape if sold directly from the packaging by retail outlets. Beetles present in grapes sold in this manner, either outside or at the entrance to such stores, could move directly to a favourable environment.

- Adult females release pheromones to attract males and are often mated before they begin feeding in their native environment (Fleming 1972). Therefore, it is likely that any females arriving in Australia will have mated before export and will actively seek larval hosts for egg laying.

- Beetles of both sexes can fly up to 8 kilometres in one flight (Fleming 1972), which will potentially allow them to access favourable hosts in virtually any urban or agricultural area in Australia.

- Adults of P. japonica are attracted to host volatiles, allowing them to readily find food sources, and they can live for up to 6 weeks (Fleming 1972). In Korea, P. quadriguttata are active over a 5 week period (Lee et al. 2007), suggesting they have a similar lifespan to that of P. japonica.

- Urban landscapes, where the majority of grapes will be consumed, offer an abundance of larval hosts (e.g. lawn grasses) in backyards, parks and sports fields. Most adults entering the Australian environment will find suitable hosts without difficulty.

The likelihood of mated females arriving, the ability of adults to withstand cold storage of grapes, their ability to fly to find hosts and the abundance of larval hosts support a likelihood estimate for distribution of ‘high’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that P. japonica, P. mutans and P. quadriguttata will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: LOW.

4.4.2 Probability of establishment

The likelihood that P. japonica, P. mutans and P. quadriguttata will establish within Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: HIGH.

Supporting information for this assessment is provided below:

- Female P. japonica release pheromones to attract males and mate before feeding (Fleming 1972) and are then guarded by their male partner until they lay eggs (Saeki et al. 2005).
Given this is the case, any female \textit{P. japonica} entering Australia can be expected to have mated and be capable of producing fertile eggs, and may be accompanied by her previous mate. Females of both \textit{P. mutans} and \textit{P. quadriguttata} are also likely to behave like \textit{P. japonica} females.

- \textit{Popillia japonica} adults live for 4–6 weeks, with females capable of laying between 40–130 eggs during this time. Eggs are also deposited individually in the soil adjacent to roots of larval host plants (Fleming 1972). This is likely to assist establishment, as eggs scattered across multiple locations offer protection against likely predators and unfavourable temperatures.

- \textit{Popillia japonica} has a wide host range, attacking some 400 species of plants as adults, including monocots, dicots, gymnosperms and ferns. Comprehensive host listings for North America are provided by Fleming (1972) and CFIA (2009) and include many species and genera that grow in Australia as garden, agriculture, forestry and amenity plants, or as weeds (e.g. \textit{Rosa}, \textit{Prunus}, \textit{Malus}, \textit{Pinus}, \textit{Plantago}, \textit{Magnolia}, \textit{Ficus}, \textit{Morus}, \textit{Iris}).

- Host plants of adult \textit{P. mutans} include longan, lychee, persimmon and grapevines (AQSIQ 2003a; Tan 1998). \textit{Popillia quadriguttata} feed on many ornamental plants and some agricultural crops (Lee et al. 2002).

- The larvae feed on roots of both monocots and dicots, favouring species present in turf and pasture assemblages (Fleming 1972).

- The early instar larvae of \textit{P. japonica} require moist soil for survival. While summer drought in the USA significantly reduces beetle populations, the species is able to survive in irrigated areas and persist on non-favoured hosts (Fleming 1972). In the USA, the beetle has established in parts of Arizona, California, Texas and Utah.

- Lack of endemic natural enemies in North America is believed to have significantly increased the ability of \textit{P. japonica} to establish there (Fleming 1972).

- Control programs in place in Australia for other pests in orchards and vineyards and in managed turf would be likely to locally affect the establishment of these species.

\textit{Popillia japonica}, \textit{P. mutans} and \textit{P. quadriguttata} being likely to arrive as mated females, being moderately fecund, feeding on many plants as adults and larvae, being capable of making use of limited resources under dry conditions and lacking native natural enemies support a likelihood estimate for establishment of ‘high’.

4.4.3 Probability of spread

The likelihood that \textit{P. japonica}, \textit{P. mutans} and \textit{P. quadriguttata} will spread within Australia, based on a comparison of factors in the source and destination areas that affect the expansion of the geographic distribution of the pest, is: \textbf{HIGH}.

Supporting information for this assessment is provided below:

- \textit{Popillia japonica} has successfully spread in both North America and the Azores (Fleming 1972; APHIS 2008; CFIA 2009; Martins and Simoes 1985). In the USA, \textit{P. japonica} has spread from an initial introduction point in New Jersey to infest the eastern one-third of the country, with secondary infestations in Washington State, Oregon, California, Utah,
Arizona, New Mexico and Texas (NAPIS 2008). *Popillia mutans* and *P. quadriguttata* would likely have similar capacity to spread if introduced into new areas.

- Its ability to spread is attributed to the abundance of suitable hosts and habitat (grasslands/turf adjacent to broad-leaved plants) in contemporary suburban and agricultural landscapes, and the lack of natural enemies (Fleming 1972).

- The majority of spread in *P. japonica* is achieved by the adults, which are strong fliers capable of flying up to 8 km in one flight. *Popillia japonica* has spread up to 24 km (15 miles) per year in the USA (Fleming 1972).

- *Popillia japonica* will fly in swarms, often consisting of millions of individuals. There is evidence that such flights may be wind assisted (Fleming 1972), which is likely to increase their flight range (Pedgley 1982).

- Adults and larvae are transported long distances with infested produce, nursery stock and soil (Fleming 1972). There is evidence of human-assisted spread via road, rail and air (Fleming 1972), which has enabled *P. japonica* to become established in parts of the USA that are thousands of kilometres from the initial infestation (NAPIS 2008).

- Suitable hosts (Fleming 1972) are widely distributed in Australia. It is likely that dispersing beetles will find suitable adult and larval hosts in many parts of Australia.

- The early instar larvae of *P. japonica* require moist soil for survival. While summer drought in the USA significantly reduces beetle populations, the species is able to survive in irrigated areas and persist on non-favoured hosts (Fleming 1972).

- *Popillia japonica* is likely to thrive in areas with summer rainfall greater than 250 mm (Fleming 1972), the majority of which are located to the east of the Great Dividing Range in Australia (Bureau of Meteorology 2009). Establishment in drier areas will likely be facilitated by agricultural and amenity irrigation.

- There are no natural enemies of *P. japonica* native to Australia, but three exotic entomopathic nematodes effective against *P. japonica* larvae in other countries are also presented in Australia. Of these, *Heterorhabditis zealandica* is used limitedly on golf courses and playing fields. The other two, *H. bacteriophora* and *Steinernema carpocapsae*, are mainly used to protect ornamentals (Australian Biological Control 2009).

- Although these entomopathic nematodes effective against *P. japonica* larvae are used in Australian horticulture, they are unlikely to slow its spread because their use is limited to horticulture and commercial turf (e.g. professional playing fields) (Australian Biological Control 2009). As nematodes are unlikely to be present in all habitats suitable for *P. japonica* larvae, they are unlikely to act as an efficient barrier against its spread in Australia.

Popillia japonica being a successful invasive species elsewhere, all three species being capable of active and passive spread over short and long distance, lacking natural enemies and having a wide availability of hosts support a likelihood estimate for spread of ‘high’.
4.4.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that *P. japonica*, *P. mutans* and *P. quadriguttata* will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: LOW.

4.4.5 Consequences

The consequences of the establishment of *P. japonica*, *P. mutans* and *P. quadriguttata* in Australia have been estimated according to the methods described in Table 2.3.

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘E’, the overall consequences are estimated to be MODERATE.

Reasoning for these ratings is provided below:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Plant life or health</td>
<td>Impact score: E - Significant at the regional level. Adults of P. japonica cause economic damage by attacking foliage, flowers and fruit of more than 300 plant species (Potter and Held 2002). In the USA, the annual cost of controlling adults and larvae of P. japonica is approximately US$226 and US$234 million, respectively (APHIS 2004b). All sectors of the Australian horticulture industry are vulnerable to damage by adult P. japonica, especially those producing fruit and ornamental plants. Grapes, apples and peaches are attacked by the beetle in the USA. When present in large numbers, entire trees and vines can be skeletonised and fruits eaten back to the core or stone (Fleming 1972). Flowers, especially roses, are also targeted, with adults eating petals into irregular shapes; other flowers may be skeletonised. Adults also attack a range of deciduous tree species while in leaf (e.g. Japanese maples, American elm, English elm) (Fleming 1972). Large plantings of these species for autumn displays may be damaged, impacting on tourism. Popillia japonica larvae are also likely to cause severe damage to managed turf in Australia, including turf in gardens, parks and sports facilities. Pastures could also be badly affected in moderate to high rainfall areas. Grass and pasture monocultures affected by P. japonica are also more susceptible to invasion by weedy broad-leaved plants (e.g. dandelion, Taraxacum officinale) (Richmond et al. 2004). In the USA, control measures for P. japonica on turf amount to US$78 million (APHIS 2004b) and some US$156 million per year is spent on replacement turf (APHIS 2004b). Popillia mutans is a pest of longan, lychee, persimmon and grapevines (AQSIQ 2003a; Tan 1998). Popillia quadriguttata feeds on many ornamental plants and some agricultural crops is an important pest for Korean golf course (Lee et al. 2002).</td>
</tr>
<tr>
<td>Other aspects of the environment</td>
<td>Impact score: E - Significant at regional level. Popillia japonica, P. mutans and P. quadriguttata may be capable of exploiting native grassland in Australia via the larval stage. Six grassland biomes are regarded as threatened ecological communities in Australia, all of which contain many threatened species of flora and fauna, especially herbivores (DEWHA 2009b).</td>
</tr>
<tr>
<td>Indirect</td>
<td></td>
</tr>
<tr>
<td>Eradication, control etc.</td>
<td>Impact score: E - Significant at the regional level. If there was an incursion of P. japonica, P. mutans and P. quadriguttata in Australia, eradication would be costly and would only be feasible if the beetle was detected soon after establishment. In the USA, control of this beetle costs approximately US$460 million per year (APHIS 2004b). Although two nematode agents used against P. japonica in the USA (Heterorhabditis bacteriophora and Steinernema carpocapsae) (Campbell et al. 1998) are commercially available in Australia, control would likely rely on pesticides. This is the case in the USA, where nearly 3.2 million kilograms of pesticides are used on turf annually, largely for P. japonica in the eastern states (Reding and Krause 2005). The cost of maintaining home gardens and turf would probably increase. Control programs already in place in Australia for other pests in orchards and vineyards and in managed turf should provide some control of these pests.</td>
</tr>
</tbody>
</table>

62
<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic trade</td>
<td>Impact score: D – Minor significance at the regional level. The presence of P. japonica, P. mutans and P. quadriguttata in horticultural areas may result in interstate trade restrictions on movement of some fruit and field crops and nursery stock, resulting in additional costs to producers. In the USA, additional quarantine procedures have been put in place in airports to prevent the spread of P. japonica (USDA 2010a).</td>
</tr>
<tr>
<td>International trade</td>
<td>Impact score: C - Significant at the local level. Measures may be required to reduce the risk of entry of P. japonica, P. mutans and P. quadriguttata into countries free of this pest, resulting in additional costs to producers and exporters.</td>
</tr>
<tr>
<td>Environmental and non-commercial</td>
<td>Impact score: D – Minor significance at the regional level. Additional pesticide use to control P. japonica, P. mutans and P. quadriguttata may affect the environment. Pesticides from turf may leach into waterways. Insect predators may be affected by ingesting poisoned insects. Swarms of beetles in gardens are likely to be of concern to the general public, as is currently the case in parts of the USA (APHIS 2004b).</td>
</tr>
</tbody>
</table>

4.4.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the estimate of consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Popillia japonica, Popillia mutans and Popillia quadriguttata</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
<td>Low</td>
</tr>
<tr>
<td>Consequences</td>
<td>Moderate</td>
</tr>
<tr>
<td>Unrestricted risk</td>
<td>Low</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *P. japonica*, *P. mutans* and *P. quadriguttata* of ‘low’ exceeds Australia’s ALOP. Therefore, specific risk management measures are required for this pest.
4.5 Oriental fruit fly

Bactrocera dorsalis^{EP}

Bactrocera dorsalis, Oriental fruit fly, belongs to the fruit fly family Tephritidae which is a group considered to be among the most damaging pests of horticultural crops (White and Elson-Harris 1992). *Bactrocera dorsalis* is a serious pest of a wide range of commercial fruit crops in parts of Asia and Hawaii (White and Elson-Harris 1992).

Bactrocera dorsalis has four life stages: egg, larva, pupa and adult. Adults are predominantly black, or black and yellow. Eggs are laid below the skin of the host fruit. Hatched larvae feed within the fruit and third instar larva are 7.5–10.0 mm long and 1.5–2.0 mm wide. Pupation occurs in the soil under the host plant (CABI 2009). It can produce several generations a year, depending on the temperature (CABI 2009).

The risk scenario of concern for *B. dorsalis* is the presence of eggs and developing larvae within table grapes.

Bactrocera dorsalis was included and/or assessed in the existing import policy for pears from China (AQIS 1998b), longan and lychee from China and Thailand (DAFF 2004a), mangosteen from Thailand (DAFF 2004b), mangoes from Taiwan (Biosecurity Australia 2006d), mangoes from India (Biosecurity Australia 2008) and apples from China (Biosecurity Australia 2010b). The assessment of *B. dorsalis* presented here builds on these previous assessments.

The probability of importation for *B. dorsalis* was rated as ‘high’ in the assessments for longan and lychee from China and Thailand (DAFF 2004a), mangoes from Taiwan (Biosecurity Australia 2006d), and mangoes from India (Biosecurity Australia 2008) because the species is widespread in the production regions; as ‘moderate’ in the assessment of apples from China (Biosecurity Australia 2010b) because this species would not be able to survive the winter temperatures of the apple growing regions in China; and as ‘very low’ in the assessment for mangosteens from Thailand (DAFF 2004b) because mangosteen is a conditional non-host of *B. dorsalis*.

The probability of distribution for *B. dorsalis* was rated as ‘high’ in the assessments for longan and lychee from China and Thailand (DAFF 2004a), mangoes from Taiwan (Biosecurity Australia 2006d), and mangoes from India (Biosecurity Australia 2008) and apples from China (Biosecurity Australia 2010b) because this species can fly and has a wide host range; and ‘moderate’ in mangosteens from Thailand (DAFF 2004b) due to mangosteens being a conditional non-host of *B. dorsalis*. However, differences in commodities, horticultural practices and the prevalence of the pest between previous export areas (Thailand, Taiwan and India) and China make it necessary to reassess the likelihood that *B. dorsalis* will be imported into and distributed within Australia with table grapes from China.

The probability of establishment and of spread of *B. dorsalis* in Australia, and the consequences it may cause will be the same for any commodity in which the species is imported into Australia. Accordingly, there is no need to reassess these components.

4.5.1 Reassessment of probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.
Reassessment of probability of importation

The likelihood that *B. dorsalis* will arrive in Australia with the importation of table grapes from China is: **LOW**.

Supporting information for this assessment is provided below:

- **Yang et al. (1994)** reported that *B. dorsalis* is found on the Xisa Islands (Parcel Islands) in the South China Sea and as far north on mainland China as 26 degrees north latitude (26°N). Recent studies indicate that the northern-most border of *B. dorsalis* distribution in China is 30 ± 2°N (Hou and Zhang 2005; Wu 2005).

- The majority of table grape production areas are located in northern China above the latitude where *B. dorsalis* does not naturally occur (Yang *et al.* 1994). In 2003, 90% of table grape production in China occurred in seven provinces (i.e. Hebei, Henan, Jilin, Liaoning Shandong, Shanxi and Xinjiang (AQS IQ 2009b), all located north of 30 ± 2°N latitude. *Bactrocera dorsalis* does not naturally occur in these areas as it would not survive the northern winter temperatures (Hou and Zhang 2005).

- The only table grape producing province being assessed where *B. dorsalis* naturally occurs, is Yunnan (AQS IQ 2009b). *Bactrocera dorsalis* is one of the major horticultural pests in Yunnan and low infestations have been recorded on table grapes in this province (Ye and Liu 2005).

- Although *B. dorsalis* will attack table and wine grapes (*Vitis vinifera*), grapes are not common hosts of this fruit fly (Chu and Tung 1996).

- *Bactrocera dorsalis* may fly into or may be introduced during the warmer summer months into table grape producing areas in the north of China through human movement of fruit fly-infested produce as there are limited official control measures in place to prevent its spread in non-commercial fruit carried by humans from southern provinces, where *B. dorsalis* is known to occur.

- Adult female *B. dorsalis* puncture and deposit eggs beneath the skin of host fruit including table grapes (White and Elson-Harris 1992). Larval feeding causes mechanical damage and plant tissue rots due to secondary infestation by microorganisms (Mau and Matin 2007).

- Table grapes for export are harvested in China and exported usually between August and October each year depending on the cultivar and geographical location (AQS IQ 2008).

- Newly infested fruit are unlikely to be detected during picking, sorting and quality inspection due to the absence of visual blemishes, bruising and damage to the skin and are likely to be present in fruit packed for export.

- In China, *B. dorsalis* adults can withstand 13 °C as a daily average temperature however they cannot survive at temperatures lower than 10 °C (Ye and Liu 2005) as the flies are not cold tolerant with a lower temperature threshold of 11.80 °C (Wu 2005). Cold temperature treatments of 1.7 °C for 14 days or 1.0 °C for 13 days killed third instar larvae — the most cold tolerant stage — in naturally-infected citrus and longans (Wu 2005).

- This pest may enter the environment as larvae in infested grapes. Packed grapes for export are transported from China at optimum temperature and relative humidity conditions to
ensure quality is maintained. AQSIQ (2008; 2009b) report storage and transport temperature conditions for grapes as 0–1 °C.

- USDA Treatment Schedules for *B. orientalis* on other commodities recommend 0.99 °C or below for 17 consecutive days or 1.38 °C or below for 20 consecutive days (USDA 2010b).

- Based on the above treatment schedules, it is unlikely that egg and larval life stages of *B. dorsalis* would survive in table grapes under the reported routine commercial conditions during cold storage, transportation and exportation in refrigerated containers by sea freight. However, maintenance of specific cold chain conditions cannot be guaranteed under unrestricted risk. Egg and larval life stages may survive if the cold chain is broken under sea freight and under air freight.

The larvae living inside the fruit and being difficult to detect moderated by the fact that grapes are considered a minor host of fruit flies, including *B. dorsalis*, the absence of this species in the main grape producing areas and the prospect that it may not survive importation under commercial conditions, all support a likelihood estimate for importation of ‘low’.

Reassessment of probability of distribution

The likelihood that *B. dorsalis* will be distributed within Australia in a viable state as a result of the processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: MODERATE.

Supporting information for this assessment is provided below:

- Packed grapes are usually not processed or handled again until they arrive at the retailers as grapes are easily damaged through rough handling and impacts due to their thin skins (Mencarelli and Bellincontro 2005). Therefore, any pests or pathogens in the packed grapes are unlikely to be detected during transportation and distribution to retailers.

- Since *B. dorsalis* eggs and larvae are found within grape berries, packed grapes infested with *B. dorsalis* are likely to travel to their destination without being detected.

- After transit by air or sea freight which could take from 1–3 weeks, table grapes from China are likely to arrive in Australia from August to October (see Section 3.5.3) (AQSIQ 2009c).

- On arrival in Australia, it is expected that during commercial transport, storage and distribution to the end destination, packed grapes will be stored at optimum temperature and relative humidity conditions to ensure quality is maintained.

- After arriving in the Australian ports, *B. dorsalis* larvae would need to complete their development, exit the fruit, pupate in a suitable substrate and emerge as adults.

- Formation of *B. dorsalis* pupae may take place in a variety of substrates including sand, soil, leaf litter, compost heaps and grass clippings. It is feasible that infested fruit may be disposed of in sites where pupation and adult emergence could occur. Inedible and unmarketable fruit would be disposed of via landfill and compost heaps or as animal feed, or discarded where it was being eaten.

- Availability of hosts would not be a limiting factor in the distribution of *B. dorsalis*. Suitable host plants are available in Australia regardless of the season. Host records for *B. dorsalis* include more than 150 fruit and vegetables. Australia has a wide range of
naturalised, commercial, home grown and ornamental plant hosts that are widely distributed around the country.

- *Bactrocera dorsalis* is a tropical species (CABI-EPPO 1997a) with the third-instar larvae being the most cold tolerant stage (Wu 2005). Cold temperature treatments of 1.7 °C for 14 days or 1.0 °C for 13 days killed third instar larvae in naturally-infected citrus and longans (Wu 2005). Treatment regimes consistent with the USDA Treatment Manual for *B. dorsalis* on a range of commodities are 0.99 °C or below for 17 consecutive days or 1.38 °C or below for 20 consecutive days (USDA 2010b).

- Egg and larval life stages of *B. dorsalis* may not survive in table grapes during transport, storage and distribution under commercial conditions (temperature and relative humidity) because grapes may have been stored at low temperatures (0–2 °C) for 1–3 weeks before arrival, although this cannot be guaranteed. This period may be long enough to kill egg and larval stages.

The indication that infested fruit may go undetected until sold, combined with the ability of *B. dorsalis* to complete development on discarded fruit, and the wide range of suitable plant hosts throughout Australia moderated by the fact that eggs and larvae in table grapes may not survive the condition(s) of cold storage, transport and distribution, support a likelihood estimate for distribution of ‘moderate’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *B. dorsalis* will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: LOW.

4.5.2 Probability of establishment and of spread

As indicated above, the probability of establishment and of spread for *B. dorsalis* would be the same as those assessed for longan and lychee from China and Thailand (DAFF 2004a), mangosteens from Thailand (DAFF 2004b), mangoes from Taiwan (Biosecurity Australia 2006d), mangoes from India (Biosecurity Australia 2008) and apples from China (Biosecurity Australia 2010b). The ratings from the previous assessments are presented below:

- Probability of establishment: HIGH
- Probability of spread: HIGH

4.5.3 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that *B. dorsalis* will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: LOW.
4.5.4 Consequences

The consequences of the establishment of *B. dorsalis* in Australia have been estimated previously for longan and lychee from China and Thailand (DAFF 2004a), mangosteen from Thailand (DAFF 2004b), mangoes from Taiwan (Biosecurity Australia 2006d), mangoes from India (Biosecurity Australia 2008) and apples from China (Biosecurity Australia 2010b). This estimate of impact scores is provided below expressed in the current scoring system (Table 2.3).

- Plant life or health: E
- Other aspects of the environment: C
- Eradication, control etc.: F
- Domestic trade: E
- International trade: E
- Environment: D

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘F’, the overall consequences are estimated to be **HIGH**.

4.5.5 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the estimate of consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Bactrocera dorsalis</th>
<th>Low</th>
<th>High</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consequences</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unrestricted risk</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *B. dorsalis* of ‘moderate’ exceeds Australia’s ALOP. Therefore, specific risk management measures are required for this pest.
4.6 Grape midge

Cecidomyia sp.

Cecidomyia sp. belongs to the Cecidomyiidae or gall midge family and is commonly known as the grape midge.

In China, the grape midge is a small fly (3 mm long) with wings (wingspan 6–7 mm) and long antennae (Li 2004). Grapes (*Vitis vinifera*) are the only known hosts of *Cecidomyia* sp. (Li 2004). This species occurs in four northern provinces of China (Jilin, Liaoning, Shaanxi and Shanxi) (AQSIQ 2007). It has four life stages: egg, larva (or maggot), pupa and adult (Li 2004; Zhang 2005b). There are two generations a year (Li 2004).

The following biology is taken from Li (2004), Zhang (2005b) and AQSIQ (2009b; 2007). In China, first generation adults emerge in May and are active during the daytime but have limited flight ability (Li 2004). Skuhravá (1991) reports that adult gall midges do not feed at all. They lay eggs on young grapes at a rate of one egg per berry. Adults usually lay eggs in one grape bunch and attack bunches in the middle of a vine. Some varieties of grapes are more susceptible than others. Different grape varieties exhibit different damage symptoms but in general, larvae bore into and feed on the young grapes. Infested grapes develop more rapidly than uninfested fruit and become oval in shape. Ten days after petal fall, the infested grapes are twice the size of uninfested grapes. The infested grapes stop growing when they are 4–5 times larger than uninfested berries and have reached approximately 8–10 mm in diameter. The infested fruit has a slightly concave top and is dark green and glossy. The sepals and filaments are also still attached to infested fruit. The larvae feed and become mature in about 20 days then they pupate within the berries. The pupation period is about 5–7 days. Infested berries are full of frass, making the grapes unfit for human consumption and reducing the yield.

In early July, second generation adults start emerging, with mid-July being the peak period for adult emergence. After adult emergence, part of the pupal case remains in the emergence hole in the infested fruit. The adult is active during the daytime but they are weak fliers (Li 2004). Emerging adults mate and lay eggs on grape branches and hatched larvae overwinter on the branches. The life span of adult *Cecidomyia* sp. midges is unknown; however, in general Cecidomyiidae adults are very short lived, living between a few hours to a few days, males die after mating and females after egg-laying (Skuhravá 1991).

The risk scenario of concern for *Cecidomyia* sp. is the presence of late developing first generation larvae and pupae in table grapes.

4.6.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.

Probability of importation

The likelihood that *Cecidomyia* sp. will arrive in Australia with the importation of table grapes from China is: VERY LOW.
Supporting information for this assessment is provided below:

- Only grapes sourced from Jilin, Liaoning, Shaanxi and Shanxi are likely to be infested with *Cecidomyia* sp. (AQSIQ 2009b; AQSIQ 2006; Zhang 2005b). In 2006, these provinces produced approximately 30% of the total grape production in China (USDA 2006). However, most Chinese table grapes for export are sourced from Xinjiang and Shandong (AQSIQ 2009b) where *Cecidomyia* sp. is not known to occur.

- In China, *Cecidomyia* sp. reproduces sexually and has 2 generations a year with first generation adults appearing in May (late spring). First generation adults lay eggs on young grapes in a bunch at a rate of one egg per berry (AQSIQ 2007; AQSIQ 2009b; Zhang 2005b). Larval development and pupation occur in fruit that remains on the plant.

- Larvae bore into young berries to feed, causing the infested berries to enlarge and change shape and colour. The sepals and filaments also remain on infested fruit, which do not ripen or form seeds (AQSIQ 2009b). Larvae pupate inside the deformed grapes. Infested grapes are full of frass, making the grapes unfit for human consumption and leading to a reduction in yield (AQSIQ 2009b; Zhang 2005b).

- The deformed shape, size and colour of berries infested with *Cecidomyia* sp. and the presence of frass and sepals on the infested berries (AQSIQ 2009b), may result in the detection and elimination through manual removal, trimming and sorting of damaged fruit from the export pathway.

- In China, second generation adults begin emerging in early July (AQSIQ 2007) and lay eggs on grape branches where hatched larvae overwinter until the following spring (AQSIQ 2007). There is no available information on what larval instar stage overwinters on the fruit.

- In China, table grapes for export are harvested and exported usually between August and October each year depending on the cultivar and geographical location (AQSIQ 2008). Harvest time occurs after the emergence of second generation adults from infested berries (Zhang 2005b) and AQSIQ has reported that this insect is not present in ripe fruit (AQSIQ 2007; AQSIQ 2009b).

Cecidomyia sp. larvae mainly feed on young grapes, leading to conspicuous berry damage that results in removal of infested fruit from the pathway, plus the absence of *Cecidomyia* sp. from the major table grape exporting provinces, and the emergence of adults from fruit before the main export season begins, all support a likelihood estimate for importation of ‘very low’.

Probability of distribution

The likelihood that *Cecidomyia* sp. will be distributed within Australia in a viable state as a result of the processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **LOW**.

Supporting information for this assessment is provided below:

- Packed grapes are usually not processed or handled again until they arrive at the retailers, as grapes are easily damaged through rough handling and impacts due to their thin skins (Mencarelli and Bellincontro 2005). Therefore, any pests in the packed grapes are unlikely to be detected during transportation and distribution to retailers.
Larvae inside table grapes would be able to survive cold storage before and during transportation and distribution, as larvae of *Cecidomyia* sp. overwinter in China. Late developing larvae and pupae may remain in the fruit and may survive storage, transportation and distribution via wholesale or retail trade.

Grapes will be distributed throughout Australia for retail sale as the intended use is human consumption and waste material would be generated that may contain larvae and pupae. The majority of grape retailers, processors and consumers are located in metropolitan and suburban areas.

Since *Cecidomyia* sp. larvae and pupae are found within grape berries, infested grapes are likely to travel to their destination without being detected. This pest may enter the environment as larvae or pupae discarded with infested grapes.

Individual consumers may distribute small quantities of grapes to urban, rural and wild environments where they will be consumed or disposed of. Infested grapes would be discarded into compost heaps or into domestic waste and end up in landfills.

Larvae would pupate inside table grapes but adults would need to leave infested grapes to complete their life cycle.

Cecidomyia sp. is only known to feed on grapevine (*V. vinifera*) (Li 2004).

Grapevines are widely grown in vineyards and as amenity plants in Australia and imported waste material may be discarded near these plants.

Emerging *Cecidomyia* sp. adults have wings and are active during the daytime but can only fly short distances (Li 2004), which may be a significant limiting factor in their distribution from discarded fruit waste to a grapevine.

As importation of table grapes is likely to take place during the Australian winter/spring period, it is unknown whether adults from imported infested grapes would lay eggs on grape branches and hatched larvae overwinter on the branches, or lay eggs on young grape berries. This may affect the chance of the pest completing its life cycle.

The evidence that infested fruit may go undetected until sold and the ability of *Cecidomyia* sp. to complete larval and pupal development in discarded fruit waste, moderated by its limited host range and poor flight ability, support a likelihood estimate for distribution of ‘low’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *Cecidomyia* sp. will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: **VERY LOW**.

4.6.2 Probability of establishment

The likelihood that *Cecidomyia* sp. will establish within Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: **LOW**.

Supporting information for this assessment is provided below:

- Grapes (*Vitis vinifera*) are the only recorded host plant of *Cecidomyia* sp. (Zhang 2005b).
- *Cecidomyia* sp. are considered to be temperate pests as they are found in the northern provinces of China (AQSIQ 2007; Zhang 2005b) and are therefore likely to establish in temperate regions with cooler climates in Australia.

- Adults need to disperse in sufficient numbers and in proximity to susceptible hosts to ensure adult females can locate a male to mate with and then find a suitable host, fruiting grapevines in this case, on which to lay their eggs. Finally, environmental conditions need to be suitable for population development. *Cecidomyia* sp. has two generations per year (AQSIQ 2009b; AQSIQ 2007; Zhang 2005b) and reproduces sexually; thus successful mating between a male and a female must occur before viable eggs are produced (AQSIQ 2009b; AQSIQ 2007; Zhang 2005b).

- There may be a number of *Cecidomyia* sp. larva or pupa present in an infested bunch of grapes (Zhang 2005b), which could improve the chance of sexual reproduction.

- Grapevines are widely but sporadically distributed in Australia and are available in domestic and commercial environments and as abandoned grapevines in temperate regions of Australia where climatic conditions may be less severe than in northern China and maybe more amenable for *Cecidomyia* sp. to establish. These grapevines could occur near the transport pathway and/or end destination of imported table grapes.

- First generation *Cecidomyia* sp. adult females require young grape berries to lay eggs in as larvae feed and pupate in grapes (AQSIQ 2009b; AQSIQ 2007; Zhang 2005b). Adult midges do not usually feed and have short life spans (Skuhravá 1991).

- Finding suitable egg-laying sites (i.e. young grapes) may be difficult as *Cecidomyia* sp. adults are not strong fliers so have limited natural dispersal mechanisms (AQSIQ 2009b; Zhang 2005b). The fact that this species can only fly short distances from discarded fruit waste to a suitable host is a significant limiting factor.

- Gall midge adults may be dispersed longer distances through wind-assistance (EPPO 2004) however, unless the wind is blowing in the direction of grapevines, it is unknown whether *Cecidomyia* sp. would land on a grapevine through wind-assistance.

- Existing control programs in Australia, such as broad spectrum pesticide application, may be effective in preventing *Cecidomyia* sp. establishing on commercial grapes, but these are not routinely applied to home grown grapes, or may not be applied to the hosts in organic or abandoned grapevines.

The limited host range, limited natural dispersal mechanisms and the short adult life span with only two generations per year, all support a likelihood estimate for establishment of ‘low’.

4.6.3 Probability of spread

The likelihood that *Cecidomyia* sp. will spread within Australia, based on a comparison of factors in the source and destination areas that affect the expansion of the geographical distribution of the pest, is: **LOW**.

Supporting information for this assessment is provided below:

- *Cecidomyia* sp. require fruiting grapevines to continue their life cycle (Zhang 2005b).

- Grapevines are widely and sporadically distributed throughout temperate regions of Australia in domestic and commercial environments and as abandoned vines where
climatic conditions may be less severe than in northern China and maybe more amenable for *Cecidomyia* sp. to establish.

- Emerging *Cecidomyia* sp. adults have wings and are active during the daytime, but with limited flight ability so they can only fly short distances from discarded fruit waste to a suitable host (Zhang 2005b). They also have short life spans which would also restrict the distance they can disperse (Skuhravá 1991).

- Gall midge adults may be dispersed longer distances through wind-assistance (EPPO 2004). However, unless the wind is blowing in the direction of suitable hosts (i.e. grapevines), it is unknown whether *Cecidomyia* sp. would land on a grapevine through wind-assistance.

- The dispersal of *Cecidomyia* sp. to previously uninfested areas may occur through transport of table and wine grapes infested with *Cecidomyia* sp. larvae.

- However, official state legislation controls the movement of wine and table grapes to ensure pests and diseases are not introduced into new areas in Australia (QDPIF 2008). This may reduce the spread of *Cecidomyia* sp. in Australia.

The limited natural dispersal mechanisms, moderated by potential human-assisted dispersal, two generations per year and limited host range which is widely but sporadically distributed in temperate Australia, support a likelihood estimate for spread of ‘low’.

4.6.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that *Cecidomyia* sp. will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: **VERY LOW**.

4.6.5 Consequences

The consequences of the establishment of *Cecidomyia* sp. in Australia have been estimated according to the methods described in Table 2.3.

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘D’, the overall consequences are estimated to be **LOW**.

Reasoning for these ratings is provided below:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>Impact score: C – Significant at the local level. Cecidomyia sp. only causes direct harm to grapes. The main damage caused by Cecidomyia sp. in Chinese table grapes is from holes in the surface of the fruit making the grapes inedible or unmarketable (Li 2004).</td>
</tr>
<tr>
<td>Other aspects of the environment</td>
<td>Impact score: A – Indiscernible at the local level. There are no known direct consequences of this pest on other aspects of the environment.</td>
</tr>
</tbody>
</table>
4.6.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the estimate of consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Cecidomyia sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
</tr>
<tr>
<td>Consequences</td>
</tr>
<tr>
<td>Unrestricted risk</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *Cecidomyia* sp. of ‘negligible’ achieves Australia’s ALOP. Therefore, specific risk management measures are not required for this pest.
4.7 Grape whitefly

Aleurolobus taeonabe

Aleurolobus taeonabe, commonly known as the grape whitefly, is a 1.2 mm long insect (Li 2004) belonging to the whitefly family (Aleyrodidae). Aleurolobus taeonabe is described as Aleyrodes taonaboe in Li (2004). Whiteflies are tiny, white-winged moth-like insects with a fringe around the body (Blodgett 1992). They are major pests of tropical and subtropical crops and of protected crops in temperate regions (Caciagli 2007). Whitefly occur in groups and on the undersides of leaves (University of California 1999).

Known hosts of A. taeonabe include Mallotus japonicus (Euphorbiaceae), Cercis chinensis (Fabaceae), Pittosporum tobira (Pittosporaceae), Osmanthus fragrans (Oleaceae), Tanabo japonica (Theaceae) and Vitis vinifera (Vitaceae) (Dubey and Ko 2009). It is also reported on hawthorn (Crataegus spp.) (Li 2004). Given these hosts are from widely differing plant families it is likely that other, as yet unrecorded hosts, occur. Little information on the ecology of this pest appears to be available.

Aleurolobus taeonabe is known from China, Taiwan, Japan and India (Dubey and Ko 2009). In China, it is recorded from Hebei, Shandong and Shanxi provinces (Li 2004).

In China, A. taeonabe is reported to have three generations per year. Eggs overwinter on hawthorn bushes and hatch the following spring. First generation adults emerge in late May and leave hawthorn bushes and fly to grapevines to lay eggs on leaves. Eggs are scattered on grape leaves and hatched nymphs mostly feed on the back of grape leaves. Second generation adults emerge from late July to mid-August and also lay eggs on grapevine leaves. Adults and hatching nymphs continue to damage leaves and ripening fruit of grapevines. Third generation adults emerge in September and these lay eggs on other hosts e.g. hawthorn (Crataegus spp.). Aleurolobus taeonabe overwinters as eggs (Li 2004).

Aleurolobus taeonabe adults and nymphs suck plant juices from the leaves of grapevines. The leaves become yellow-brown and dry, then curl up and drop off the vine, leading to reduced vigour of the plant (Li 2004).

Damage to the grape bunches occurs when A. taeonabe adults and nymphs suck nutrients from ripening berries, leading to damage that reduces both yield and quality of the fruit (Li 2004). During the feeding process, whiteflies excrete honeydew, which can encourage the growth of sooty moulds on the plant host and may affect the quality of grape bunches (Blodgett 1992).

The risk scenario of concern for A. taeonabe is that second generation adults and their nymphs may be imported in table grape bunches.

4.7.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.

Probability of importation

The likelihood that A. taeonabe will arrive in Australia with the importation of table grapes from China is: MODERATE.
Supporting information for this assessment is provided below:

- *Aleurolobus taeonabe* has been recorded on table grapes (*Vitis vinifera*), including grape bunches (Dubey and Ko 2009; Li 2004).

- *Aleurolobus taeonabe* has been reported in Hebei, Shandong and Shanxi in north-eastern China (Li 2004). Most Chinese table grapes for export are sourced from Xinjiang and Shandong, which account for 38.5% and 16.2% of the total table grape production area, respectively (AQSIQ 2006).

- Second generation *A. taeonabe* adults and their nymphs that appear from late July to mid-August (Li 2004) may be associated with table grapes harvested between August and October destined for export to Australia (AQSIQ 2008).

- Whilst feeding on leaves and fruit, whitefly adults and nymphs excrete honeydew on which black, sooty moulds may grow (Blodgett 1992). Grapes with high levels of infestation by whitefly adults and nymphs and/or with honeydew or sooty moulds present are unlikely to be selected for harvest.

- Inferior or defective bunches and grape berries are downgraded and removed by packing house staff during sorting and grading and before packing for export. These measures may assist in culling fruit that is not suitable for export and removing heavily infested grape bunches from the export pathway.

- It is not known if *A. taeonabe* nymphs and adults inside table grape bunches are able to survive cold storage before and during transportation and importation.

The association of adults and nymphs with grape bunches at harvest and visible sooty mould under high infestation, moderated by the poorly understood distribution and unknown incidence in table grapes in China, support a likelihood estimate for importation of ‘moderate’.

Probability of distribution

The likelihood that *A. taeonabe* will be distributed within Australia in a viable state as a result of the processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **MODERATE**.

Supporting information for this assessment is provided below:

- Packed grapes are usually not processed or handled again until they arrive at the retailers, as they are easily damaged during handling (Mencarelli and Bellincontro 2005). Therefore, pests or pathogens in packed grapes are unlikely to be detected during transportation and distribution to retailers.

- Distribution of the commodity would be for retail sale, as the intended use of the commodity is human consumption. *Aleurolobus taeonabe* nymphs and adults present within grape bunches could potentially be distributed via wholesale and retail trade, and waste material could be generated in the form of discarded bunches or bunch stems. Transport of infested fruit is reported as the main means of dispersal of whiteflies to previously uninfested areas (Caciagli 2007).

- On arrival in Australia, it is expected that cool storage will be continued up to the point of retail sale. It is not known if *A. taeonabe* nymphs and adults can survive these conditions but cool and humid conditions may increase the longevity of individuals of this species.
The majority of cold store facilities, grape retailers and consumers are located in metropolitan and suburban areas. Individual consumers will distribute small quantities of grapes to urban, rural and wild environments where they will be consumed or disposed of.

Infested grape waste may be discarded into compost heaps or into domestic waste and end up in landfills. Some discarded grapes may end up close to grapevines and other potential hosts.

Aleurolobus taeonabe adults may only fly short distances from discarded fruit waste searching for suitable hosts. Known hosts of *A. taeonabe* include *Mallotus japonicus* (Euphorbiaceae), *Cercis chinensis* (Fabaceae), *Pittosporum tobira* (Pittosporaceae), *Osmanthus fragrans* (Oleaceae), *Tanabo japonica* (Theaceae) and *Vitus vinifera* (Vitaceae) (Dubey and Ko 2009). It is also reported on hawthorn (*Crataegus* spp.) (Li 2004). Adults may also be dispersed on the wind.

The association with infested fruit, moderated by the need to complete development with limited flight ability to find a suitable host plant, supports a likelihood estimate for distribution of ‘moderate’

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *A. taeonabe* will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: **LOW**.

4.7.2 Probability of establishment

The likelihood that *A. taeonabe* will establish within Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: **HIGH**.

Supporting information for this assessment is provided below:

- *Aleurolobus taeonabe* is reported to feed on grapevines and a range of other trees and shrubs, some of which are grown as ornamental and hedging plants in Australia. For example, *Pittosporum* spp. are widely used as hedging plants in temperate parts of Australia. Species of *Mallotus* and *Pittosporum* are native to Australia (ANPSA 2008; Florabank 2010; Coleman 2008b; PlantNet 2009). It is likely that suitable hosts for this pest will be available close to point of consumption as garden and hedging plants.

- This whitefly is recorded from China, Japan, India and Taiwan (Dubey and Ko 2009). The environment and climate in sub-tropical and more humid temperate regions of Australia, including irrigated areas in inland southern Australia, are likely to be suitable for establishment of *A. taeonabe*.

- It is likely that adult females will be mated and able to lay fertile eggs when they locate a host.

- In China, *A. taeonabe* is reported to have three generations per year on *V. vinifera* (Li 2004), which is a deciduous species in China and southern Australia. In Australia, this whitefly may continue to multiply on evergreen species such as *Mallotus* and *Pittosporum* species.
- *Aleurolobus taeonabe* can overwinter as eggs (Li 2004).

- Integrated pest management programs are used in grape production in Australia (Nicholas *et al.* 1994; University of California 2008b) but are unlikely to prevent the establishment of *A. taeonabe*.

- Systematic control measures will not be in place for populations in suburban and natural environment or in abandoned vineyards. Populations may become a self-sustaining reservoir from which this species can spread.

- Several genera and species of whitefly (*Aleurolobus* spp., *Aleyrodes* spp. and *Aleurodicus* spp.) (DEWHA 2009a) are present in Australia, demonstrating the suitability of conditions for their survival.

The fact that hosts of *A. taeonabe* are widely grown in Australia in suburban and urban environments where environmental conditions are suitable for its reproduction supports a likelihood estimate for establishment of ‘high’.

4.7.3 Probability of spread

The likelihood that *A. taeonabe* will spread within Australia, based on a comparison of factors in source and destination areas that affect the expansion of the geographic distribution of the pest, is: **HIGH**.

Supporting information for this assessment is provided below:

- Adult *A. taeonabe* are poor fliers (Caciagli 2007) but they may also be dispersed on the wind.

- Eggs and nymphs may be transported longer distances with infested plant material.

- Likely hosts of *A. taeonabe* (*Crataegus*, *Cercis*, *Mallotus*, *Pittosporum*, *Osmanthus*, *Tanabo* and *Vitus*) are widely grown in Australia as crops, ornamentals and for hedging. Some, such as *Pittosporum* spp., are widely used in gardens in temperate parts of Australia. Species of *Mallotus* and *Pittosporum* are native to Australia.

- Whiteflies have many natural enemies including predators, parasites and pathogens (Martin 1999) which may slow the spread of *A. taeonabe*.

The presence of host plants species that are widely distributed in Australia and its ability to disperse on the wind and as eggs and nymphs on nursery stock support a likelihood estimate for spread of ‘high’.

4.7.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that *A. taeonabe* will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: **LOW**.
4.7.5 Consequences

The consequences of the establishment of *A. taeonabe* in Australia have been estimated according to the methods described in Table 2.3.

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘E’, the overall consequences are estimated to be MODERATE.

Reasoning for these ratings is provided below:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct: Plant life or health</td>
<td>Impact score: E – Significant at the regional level. Aleurolobus taeonabe causes direct harm to a range of plant hosts including grapevines and a number of genera of trees and shrubs. These include species of Mallotus (Euphorbiaceae), Cercis (Fabaceae), Pittosporum (Pittosporaceae), Osmanthus (Oleaceae), Tanabo (Theaceae) (Dubey and Ko 2009) and hawthorn (Crataegus spp.) (Li 2004). These genera are grown as ornamentals and for hedging in urban and suburban Australia, while hawthorn is a weed in southeast Australia. Given the wide range of plant families recorded as hosts, it is likely that this species will also attack other species and families. Infestations may result in reduced vigour and growth of affected plants. No reports of A. taeonabe acting as a vector of viruses have been found. Control programs for other whitefly pest in Australia may reduce the impact if this pest was introduced. About 20 species of Pittosporum are native to Australia and some species are widely distributed (ANPSA 2008; Florabank 2010). Mallotus spp. are native to rainforest habitats in northern and north eastern Australia (Coleman 2008b; PlantNet 2009). Some of these species will occur in National Parks and threatened ecological communities that are protected under State and Commonwealth law.</td>
</tr>
<tr>
<td>Direct: Other aspects of the environment</td>
<td>Impact score: B – Minor significance at the local level. Establishment of this whitefly into natural environments may lead to competition with native herbivores.</td>
</tr>
<tr>
<td>Indirect: Eradication, control etc.</td>
<td>Impact score: D – Significant at district level. Existing pest management in commercial vineyards and in the nursery industry may or may not provide effective control for this insect. If populations of this insect became established in parks, gardens and natural habitats, it is unlikely that they could be eradicated. Native biological control agents (e.g. predatory ladybirds, parasitic wasps and fungal pathogens) commonly found in Australia attack native whiteflies (Nicholas et al. 1994) and may assist in the control of A. taeonabe in the field</td>
</tr>
<tr>
<td>Domestick trade</td>
<td>Impact score: D – Significant at district level. The presence of A. taeonabe in commercial vineyards may result in the imposition of measures for interstate trade in table and wine grapes. Measures may also be put in place on the movement of hosts (e.g. Pittosporum) that are widely grown and used by the nursery and landscaping industries. Honeydew excreted forms a substrate for the growth of black, sooty moulds, fouling fruit and impairing photosynthesis, and sometimes causing premature leaf drop. Sooty mould fouling reduces the value and marketability of produce and ornamentals.</td>
</tr>
<tr>
<td>International trade</td>
<td>Impact score: C – Significant at the local level. The presence of A. taeonabe in Australia may increase the costs of production of commercial table grapes for export to countries where this pest is not present.</td>
</tr>
<tr>
<td>Environmental and non-commercial</td>
<td>Impact score: B – Minor significance at the local level. Aleurolobus taeonabe is likely to be an additional pest of parks and gardens. Depending on the severity of infestations it may reduce the amenity value provided by affected species.</td>
</tr>
</tbody>
</table>
4.7.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the estimate of consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Aleurolobus taeonabe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
<td>Low</td>
</tr>
<tr>
<td>Consequences</td>
<td>Moderate</td>
</tr>
<tr>
<td>Unrestricted risk</td>
<td>Low</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *A. taeonabe* of ‘low’ exceeds Australia’s ALOP. Therefore, specific risk management measures are required for this pest.
4.8 Grape phylloxera

Daktulosphaira vitifoliae

Daktulosphaira vitifoliae is commonly known as the grape phylloxera or grapevine root-aphid and belongs to the Phylloxeridae family. _Daktulosphaira vitifoliae_ attacks the leaves and/or roots of some plants in the genus _Vitis_ including those of commercial grapevines; feeding on roots of the vine will lead to death of the plant (Corrie _et al._ 2003). This pest causes considerable losses in both quality and yield of grapevines throughout many grape producing areas around the world (INRA 2009; PGIBSA 2003).

Daktulosphaira vitifoliae was first observed in China in 1892 (Sun _et al._ 2009) and is present in Liaoning, Shaanxi and Shandong provinces, where it is considered a domestic quarantine pest (AQSIQ 2009a). Sun _et al._ (2009) identified 13 clonal types belonging to two clades and related to populations in different areas of the USA and suggestive of two separate introductions into China. _Daktulosphaira vitifoliae_ is also present in Australia, where it is also a domestic quarantine pest and strict quarantine restrictions have been in place since 1917 (Umina _et al._ 2007). It is under official control and restricted to parts of New South Wales and Victoria (Loch and Slack 2007).

The roots of European grapevine, _Vitis vinifera_, are extremely susceptible to attack by _D. vitifoliae_ but the leaves are resistant to clones present in Australia; leaf attacking clones have been reported overseas (Botton and Walker 2009; Molnár _et al._ 2009). Populations of _D. vitifoliae_ in Australia mostly feed on roots. Leaf gall formation is rare, occurring in humid conditions in late summer on leaves of American _Vitis_ species or their hybrids (Loch and Slack 2007). The roots of American species _V. berlandieri_, _V. rupestris_ and _V. riparia_ are resistant to attack (Skinkis _et al._ 2009), but their resistance to leaf attack appears to vary depending on the _D. vitifoliae_ genotype (Downie _et al._ 2000; Granett _et al._ 2001). The use of resistant American species as rootstock is advised for establishing new grapevines in Australia (PGIBSA 2003). However, the cost of grafted rootstocks can be a limitation for some growers (Powell 2008a).

Umina _et al._ (2007) surveyed roots and leaves in _D. vitifoliae_-infested areas of Australia and reported 83 genotypes, of which 11 occur both on leaves and roots, 23 on leaves and the remaining 49 on roots. Those that occur on leaves in Australia are mainly restricted to areas in north-eastern Victoria and are found on leaves from rootstocks other than _V. vinifera_ (Thomas 2010).

The life cycle of _D. vitifoliae_ has recently been reviewed by Forneck and Huber (2009) and in common with other members of the superfamily Aphidoidea the life cycle is complex (Downie 2006). During spring and summer _D. vitifoliae_ reproduces parthenogenetically on the roots and/or on the leaves of susceptible plants. Wingless females 0.8–1.5 mm long, produce eggs up to 0.25–0.3 mm long and 0.18–0.2 mm wide (Forneck and Huber 2009) with approximately 50 eggs (Granett _et al._ 2001) or up to 400–600 eggs (Skinkis _et al._ 2009) produced per female. The number of parthenogenetic generations produced ranges from 3–4 (Forneck and Huber 2009) to 3–10 (Granett _et al._ 2001). These eggs hatch into the first instar (crawler stage) that can move between leaves and roots (Forneck and Huber 2009). Three typically sedentary instars occur before the adult is produced (Granett _et al._ 2001). If disturbed these later instars can relocate to another feeding site (Kingston _et al._ 2009). For populations living on roots the first instar is considered to be the overwintering stage (Granett _et al._ 2001).
During summer and autumn the wingless females living on roots produce winged sexupara (Forneck and Huber 2009) also often termed alates that move to the leaves and may fly to disperse (Granett et al. 2001). Downie (2006) has suggested that crowding and resource deterioration induce the formation of sexupara as much as cooler weather. Where the environment is suitable, the sexupara then go on to produce 4–8 eggs per female which hatch to produce male and female sexuals (Forneck and Huber 2009). After mating, the female lays a single sexual egg under bark. This is an overwintering stage which hatches into a fundatrix next spring. This stage produces the next round of wingless females (Forneck and Huber 2009).

On leaves during summer to late autumn, the wingless females do not produce alates and instead produce wingless sexupara and the life cycle continues as described above except that the number of sexual eggs produced by these wingless sexupara ranges between 1–63, but if they are producing asexual eggs the range is between 1–90 (Downie and Granett 1998). Based on the different data sources quoted above, the number of asexual eggs produced seems to vary between 1–600 per female. There is no explanation in the literature for such a wide ranging level of fecundity but possibly there are genotypic and climatic factors involved.

The life cycle described above is not the only mode of reproduction available to *D. vitifoliae*. Forneck and Huber (2009) describe reports in earlier literature that found that wingless females on roots can also produce wingless sexupara that produce sexuals which produce eggs that hatch into a fundatrix that can feed on roots and produce wingless females. In China evidence for a sexual component of the life cycle is limited, as is the case in Australia (Corrie et al. 2003).

The root gall form is more commonly found in China (Li 2004; Zhang 2005b), where there are extensive commercial plantings of European grapevines for table and wine grapes. In China, early instar nymphs overwinter on roots and become active in April (Li 2004). By June, winged adults begin to emerge from the soil and fly to the vines (Li 2004). *Daktulosphaira vitifoliae* has up to eight generations per year in China and reproduces both parthenogenetically and more rarely, sexually (Li 2004).

The risk scenario of concern for *D. vitifoliae* is that winged adults or crawlers may be imported in table grapes. *Daktulosphaira vitifoliae* may become established outside of its existing limited distribution in eastern Australia. It may then spread throughout the wine, table grape and dried fruit growing regions of Australia, with potential serious consequences for these grape based industries.

4.8.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.

Probability of importation

The likelihood that *D. vitifoliae* will arrive in Australia with the importation of table grapes from China is: MODERATE.

Supporting information for this assessment is provided below:

- *Daktulosphaira vitifoliae* has been recorded on table grapes (*Vitis vinifera*) in the provinces of Shaanxi, Shandong and Liaoning in China (Li 2004). Most Chinese table
grapes for export are sourced from Xinjiang and Shandong with 38.5% and 16.2% of the total table grape production area, respectively (AQSIQ 2006).

- Sun et al. (2009) report that *D. vitifoliae* has spread within China as no strict quarantine restrictions are implemented for the movement of grapevine seedlings. Mechanisms for preventing the spread of *D. vitifoliae* with grape products, machinery and personnel, and travel by visitors have not been identified as in place in China. As it can be several years before an outbreak is detected (Loch and Slack 2007), it is assumed that *D. vitifoliae* has the potential to establish and spread throughout the grape growing areas of China.

- In China, grapes are mostly harvested between August and October (AQSIQ 2006; AQSIQ 2009b). During this time, winged *D. vitifoliae* and crawlers may be associated with harvested grapes destined for export to Australia. The first instar crawlers are about 0.3 mm long (King and Buchanan 1986). Owing to their small size, it is unlikely that those in or on the bunches will be observed during routine field and packing house procedures. Winged adults are larger than crawlers, being about 2 mm long (Forneck and Huber 2009), but they may still be too small to be observed, particularly if they are in the bunch.

- Packed grapes for export are transported from China in cold humidified storage to ensure grape quality is maintained. AQSIQ (2008) report storage and transport conditions for grapes as 0–1 °C for temperature and 85–95% for relative humidity. It is unknown if *D. vitifoliae* will survive in table grapes under routine commercial conditions during cold storage, transportation and export. The crawlers have been reported to survive under water at 5 °C for seven days (Korosi et al. 2009) and without food for seven days at 25 °C (Kingston et al. 2009). For populations living on roots, the first instar is considered to be the overwintering stage (Granett et al. 2001). The first instar may survive temperatures associated with cold storage and transport.

The association of winged and crawler dispersal stages of *D. vitifoliae* with grape bunches, their limited capacity to be detected in normal picking and packing procedures combined with the uncertainty about survival of storage and transport conditions support a likelihood estimate for importation of ‘moderate’.

Probability of distribution

The likelihood that *D. vitifoliae* will be distributed within Australia in a viable state as a result of the processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: MODERATE.

Supporting information for this assessment is provided below:

- Packed grapes are usually not processed or handled again until they arrive at the retailers as grapes are easily damaged through rough handling and impacts due to their thin skins (Mencarelli and Bellincontro 2005). Therefore, any alates or crawlers of *D. vitifoliae* in the packed grapes are unlikely to be detected during transportation and distribution to retailers.

- In Australia, commercial table grapes are transported and distributed under controlled conditions (0–0.5 °C and 90–95% relative humidity) to ensure quality is maintained (Sydney Postharvest Laboratory and Food Science Australia 2001). The majority of cold store facilities, grape retailers and consumers are located in metropolitan and suburban areas.
The first instar crawlers are the overwintering stage, for populations on roots stage (Granett et al. 2001) so they may have a good chance of surviving temperatures associated with transport and storage in Australia. It is unknown whether D. vitifoliae will survive in table grapes under routine commercial conditions during transportation and cold storage.

Distribution of the commodity would be for retail sale, as the intended use of the commodity is human consumption. Daktulosphaira vitifoliae alates or crawlers present within the fruit could potentially be distributed via wholesale and retail trade and waste material could be generated in the form of discarded bunches or bunch stems. Infested grape waste may be discarded into compost heaps or into domestic waste and end up in landfills. Individual consumers may distribute small quantities of grapes to urban, rural and wild environments where they will be consumed or discarded. Some discarded grapes may end up close to grapevine plantings.

In the absence of any disinfestation measures, transport of infested fruit is considered to be a potential means of dispersal of D. vitifoliae to uninfested areas (NVHSC 2005).

In Australia, D. vitifoliae feed on the roots of Vitis vinifera and on leaves of grapes derived from American rootstocks (Loch and Slack 2007). Grapevines are widely and sporadically distributed throughout Australia. Domestic plantings, both in a maintained and abandoned condition, occur throughout Australia in all or most Australian towns and by many farm houses.

Domestic plantings which also include ornamental varieties are not expected to be resistant to D. vitifoliae. Some ornamental varieties are capable of supporting the leaf galling phase of the life cycle (NVHSC 2005).

Table grape production occurs in the Northern Territory and all Australian states (Australian Table Grape Association 2008; DPIW Tasmania 1999), but these states do not typically use resistant rootstocks (Thomas 2010). Extensive wine grape plantings are found across the south-eastern quarter of Australia and southwest of Western Australia (Kiri-ganai Research Pty Ltd 2006). Trethowan and Powell (2007) report that more than 80% of these plantings use ungrafted non-resistant rootstock. However, resistant rootstocks can still support populations of D. vitifoliae (Granett et al. 2005).

Adult winged D. vitifoliae have been recorded flying up to 48 m (Stevenson and Jubb, Jr. 1976). However, while winged adults are part of the sexual cycle, the sexual cycle occurs very rarely in areas where D. vitifoliae is present in Australia and currently winged adults are believed not to be a risk factor for the commencement of a new generation (NVHSC 2005). If sexual reproduction is influenced by climatic factors, then the introduction of D. vitifoliae to some other regions of Australia may prompt more frequent occurrences of sexual reproduction. This could make dispersal by alates from imported grapes more of a concern.

Crawlers may be dispersed randomly by wind. King and Buchanan (1986) reported detection of crawlers in traps up to 20 m from the nearest vine. They also found that phylloxera migrated typically 15–27 m per year in vineyards with distances up to 103 m occurring. The patterns of spread were consistent with wind dispersal. Powell (2008b) states “Phylloxera do not crawl further than a few dozen meters”. However, windblown dispersal of crawlers of at least 61 m is possible (Hawthorne and Dennehy 1991).

Daktulosphaira vitifoliae feeds either on grape leaves or on roots; they do not feed in bunches. First instar nymphs can survive without food, but with access to water for seven
days at 25 °C under laboratory conditions (Kingston et al. 2009). Since the import of grapes is mostly expected to occur from winter to spring, environmental conditions in southern Australia may be suitable for crawler survival.

The evidence that infested fruit may go undetected until sold, moderated by the fact that *D.* *vitifoliae* do not feed in bunches but need to move to grapevines to complete their development, supports a likelihood estimate for distribution of ‘moderate’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *D. vitifoliae* will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: **LOW**.

4.8.2 Probability of establishment

The likelihood that *D. vitifoliae* will establish within Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: **HIGH**.

Supporting information for this assessment is provided below:

- *Vitis* species are the only recorded hosts of *D. vitifoliae* (Frolov and David'yan 2009; Li 2004). In its natural range east of the Rocky Mountains in the USA, *D. vitifoliae* attacks approximately half of the *Vitis* species examined, with the level of leaf infestation not equal across the different species attacked (Downie et al. 2000). *Vitis vinifera* was not a component of the flora found in the natural range of *D. vitifoliae* and has no resistance to this pest. Only *V. vinifera* grown on rootstocks derived from American species have been found to be tolerant or resistant to root feeding *D. vitifoliae*.

- Grapevines are widely and sporadically distributed throughout Australia. Domestic garden plantings, both in a maintained and abandoned condition, occur throughout Australia in all or most Australian towns and by many farm houses. Such plantings are not expected to be resistant to *D. vitifoliae*. Table grape production occurs in the Northern Territory and in all Australian states (Australian Table Grape Association 2008; DPIW Tasmania 1999), and the rootstocks that are used have been selected for vigour rather than resistance to infestation by *D. vitifoliae* (Thomas 2010). Extensive wine grape plantings are found across the south-eastern quarter of Australia and southwest of Western Australia (Kirigani Research Pty Ltd 2006). Trethowan and Powell (2007) report that more than 80% of these plantings use ungrafted non-resistant rootstock.

- *Daktulosphaira vitifoliae* appears to be able to survive under most of the climatic conditions where its host is present (CABI-EPPO 1997f). While it is native to North America it is now widely distributed in many countries in Asia, Africa, North and South America and Europe (CABI-EPPO 1997f).

- *Daktulosphaira vitifoliae* need living *Vitis* species to complete their life cycle. The dispersive stages for *D. vitifoliae* are the crawlers and winged adults, the most important of which under Australian conditions where *D. vitifoliae* is presently established are the crawlers (NVHSC 2005). Because an infestation of *D. vitifoliae* can eventually lead to the
death of the vine, *D. vitifoliae* will need to be capable of local movement to maintain establishment in a local area.

- *Daktulosphaira vitifoliae* is already established in small areas of Victoria and New South Wales in Australia (Loch and Slack 2007), where it is under official control (NVHSC 2005). In Australia, several generations per year develop each growing season (NVHSC 2008) and it is obligately or functionally parthenogenetic (Herbert et al.). *Daktulosphaira vitifoliae* can produce large number of offspring with up to 600 eggs being reported (CABI-EPPO 1997f; Skinkis et al. 2009). The eggs develop into nymphs that establish feeding sites (Powell 2008a).

The parthenogenetic reproduction rate and number of generations developing per growing season, a wide climatic tolerance and existing presence in limited areas of Australia, all support a likelihood estimate for establishment of ‘high’.

4.8.3 Probability of spread

The likelihood that *D. vitifoliae* will spread within Australia, based on a comparison of those factors in source and destination areas that affect the expansion of the geographic distribution of the pest, is: MODERATE.

Supporting information for this assessment is provided below:

- *Daktulosphaira vitifoliae* is already established in small areas of New South Wales and Victoria in Australia (Loch and Slack 2007), where it is under official control (NVHSC 2005). In Victoria it is in the Nagambie, Mooroopna, Upton, north-east Victoria (Rutherglen, King Valley, Milawa, Wangaratta and Bright), Whitebridge and Maroondah areas (PGIBSA 2009). In NSW it is in the Albury/Corowa and Greater Hume areas (excluding Culcairn and Holbrook), and the Sydney area (Loch and Slack 2007). This represents 2% of Australia’s total grape production area (Powell 2008b).

- The pest is found in most grape-growing areas of the world and appears to survive in all climates where grapevines are grown (CABI-EPPO 1997f). It is present in cold winter climate regions such as north China, Canada, and Austria, in hot arid regions of Africa such as Algeria and Morocco and in hot and humid regions such as Panama, Colombia and Venezuela (CABI-EPPO 1997f). Grapevines are grown in Australia from hot humid areas such as Darwin through warm and temperate areas of southern mainland Australia to cool temperate areas of the south eastern highlands and Tasmania (Australian Table Grape Association 2008; DPIW Tasmania 1999; Kiri-ganai Research Pty Ltd 2006). Grapes grown on *V. vinifera* rootstocks or *V. vinifera* hybrid rootstocks in any of these Australian production areas would be susceptible to damage.

- *Daktulosphaira vitifoliae* need *Vitis* species to complete their life cycle. Dispersal can occur naturally, including crawling of the insect from vine to vine, and by the wind or by human assisted means (NVHSC 2005).

- The dispersive stages for *D. vitifoliae* are the crawlers and winged adults, the most important of which are the crawlers (NVHSC 2005). Crawlers have been recorded being transported up to 61 m by wind (Hawthorne and Denneh 1991) and within vineyard spread of *D. vitifoliae* (presumably by crawlers) up to 103 m in a year has been recorded (King and Buchanan 1986). Dispersal of alates has been reported to be at least 48 m (Stevenson and Jubb, Jr. 1976), but based on the apparent absence of sexual reproduction in existing populations of *D. vitifoliae* in Australia (Umina et al. 2007) the alates appear to
have no functional role under Australian conditions where \(D. \ vitifoliae \) is established. Buchanan (1987) was unable to detect any evidence of natural spread between vineyards 2 km apart. The potential for \(D. \ vitifoliae \) to spread by natural means seems limited.

- \(Daktulosphaira \ vitifoliae \) can also be moved by people on grapevine cuttings, prunings, rootstocks, grapes, fresh juice, fresh must, soil, other equipment and tools (NVHSC 2005; Powell 2008b).

- The movement of commercial table grapes is not considered to be a significant risk for the spread of \(D. \ vitifoliae \) between Australian vineyards (NVHSC 2005) because sulphur pads are used to disinfest cartons of transported table grapes from infested areas (NVHSC 2004).

- Infestations may not be obvious unless the roots are inspected. Loch and Slack (2007) report that yellowing of vines may not occur until 2-3 years after infestation, delaying detection. However, genotypes of \(D. \ vitifoliae \) that have low virulence may not be as readily detected. Powell (2008b) indicates one infestation went undetected for 30 years. Mature storage roots of resistant rootstocks may not support infestations but populations of \(D. \ vitifoliae \) can occur on immature and feeder roots (Granett et al. 2005). Human assisted movement from these sources may go unnoticed.

- It is assumed that the strict quarantine restrictions that have been in place since 1917 (Umina et al. 2007) have largely confined the spread of \(D. \ vitifoliae \) in Australia. However, regardless of these measures, infrequent outbreaks in Australia outside of the quarantine zone still occur such as in Victoria’s Yarra Valley and Muchison in 2006 and at Macedon in 2008 (Powell 2008b). The Yarra Valley outbreak was 260 km from the nearest infestation (Powell 2008b) indicating a strong potential for spread for any populations established outside quarantine areas.

- Botha et al. (2007) report that more than half of existing land planted vines in Western Australia would be highly susceptible for the spread of \(D. \ vitifoliae \) based on soil types. Sandy soils seem to give some protection to vines from \(D. \ vitifoliae \) (Gale 2002; Granett et al. 2001).

The demonstrated potential for human assisted spread and the distribution of hosts in Australia, moderated by the limited natural dispersal mechanisms, support a likelihood estimate for spread of ‘moderate’.

4.8.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that \(D. \ vitifoliae \) will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: \textbf{LOW}.

4.8.5 Consequences

The consequences of the establishment of \(D. \ vitifoliae \) in Australia have been estimated according to the methods described in Table 2.3.
Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘E’, the overall consequences are estimated to be MODERATE.

Reasoning for these ratings is provided below:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Plant life or health</td>
<td>Impact score: E – Significant at the regional level. Daktulosphaira vitifoliae only causes direct harm to grapevines (Vitis spp.). Daktulosphaira vitifoliae can form galls on the roots and leaves of susceptible plants with root feeding allowing the entry of fungi into the roots leading to decline of the plants (Granett et al. 2001). Most infestations of D. vitifoliae render vineyards uneconomic. The presence of D. vitifoliae in previously uninfected areas will result in control measures that require the complete removal of infested vines and their replacement with grapevines grown on phylloxera tolerant-rootstock (PGIBSA 2003). This appears to not always be the case. Herbert et al. (Herbert et al.) indicates one infestation in the Rutherglen region of Australia on V. vinifera has been present for 40 years without presenting visible symptoms or causing yield loss. The reason for this is unknown. The type of D. vitifoliae clone present will also have an impact on the level of damage in a vineyard (Herbert et al.). However, the assumption used in this analysis is that plants in infested vineyards will need to be replaced with resistant rootstock. There were more than 173 000 ha of Australia planted to commercial grapes in 2007 (McGrath-Kerr Business Consultants Pty Ltd 2008). Most of these plantings are for wine grapes (ABS 2009b) with >10 500 ha growing table grapes (Australian Table Grape Association 2008). Approximately 80% of these wine grape plantings are on rootstock that is not resistant to D. vitifoliae (Trethowan and Powell 2007). Hathaway (2009) estimated a 12 year cumulative loss of income to be $75 000 for infested vineyards that are to be replanted over seven years commencing three years after an infestation was first detected and based on a 10 ha block size, 7t/ha yield, $1500/t selling price and management costs of $7000/ha. However, this estimate is approximate as selling price is variable. For example, the price per ton for grapes in South Australia in 2006 varied from as low as $89/t at McLaren Vale to $10 000/t in the Barossa Valley (Kiri-ganal Research Pty Ltd 2006). In 2007/08 the value of the Australian wine produced was $4.77 billion of which $2.1 billion was sold locally (ABS 2009b). Very few, if any, table and dried fruit grapevines are on resistant rootstock (Thomas 2010) and therefore most, if not all, of this production would be susceptible if D. vitifoliae were to spread to these production areas. Annual production of table grapes is about 120 000 t (Australian Table Grape Association 2008). In 2008/09 Australia exported 70 000 t of table grapes at prices of between $2.08/kg to $3.34/kg (ABS 2009a). Dried grape production was 56 139 t in 2008 and was as high as 135 412 t in 2005 (ABS 2009b). Fruit bearing vines in home gardens are also expected to be susceptible and would need to be replaced. Ornamental vines may have some resistance, but if so, then it is likely that their leaves will develop galls and the infestation may be detected.</td>
</tr>
<tr>
<td>Other aspects of the environment</td>
<td>Impact score: A – Indiscernible at the local level. There are no known direct consequences of this species on other aspects of the environment. It is assumed that infested plants will either die and/or be pulled out, and in commercial operations replanted with resistant rootstock (see below).</td>
</tr>
<tr>
<td>Indirect</td>
<td></td>
</tr>
<tr>
<td>Eradication, control etc.</td>
<td>Impact score: E – Significant at the regional level. There is no proven chemical method to eradicate D. vitifoliae on roots of ungrafted V. vinifera grapevines (Loch and Slack 2007), so additional pesticide applications would not be effective. Approximately 80% of Australia’s commercial wine grapevines are ungrafted V. vinifera and are susceptible to D. vitifoliae (Trethowan and Powell 2007) and very few, if any, table and dried fruit grapevines are on resistant rootstock (Thomas 2010). The only control measure is to replant infested vineyards with rootstock that is resistant to D. vitifoliae (PGIBSA 2003). The costs of this procedure per hectare for grafted plants alone appear to be around $7200 (Hathaway 2010) compared to between $2500 (QDEEDI-PIF 2009) to $3500 (Strahan 2006) for ungrafted plants. In addition there may be ground preparation costs and planting costs that may add a further $1875 per hectare (Strahan 2006). Mature storage roots of resistant rootstocks may not support infestations but populations of D. vitifoliae can occur on immature and feeder roots (Granett et al. 2005). This means other measures to control any spread of the infestation from these areas would also involve additional costs. These measures include procedures for moving grape material, transport of grapes and grape products, cleaning and disinfestation of vineyard machinery and hygiene procedures for personnel and visitors (NVHSC 2004).</td>
</tr>
</tbody>
</table>
Criterion | **Estimate and rationale**
--- | ---
Domestic trade | **Impact score:** D – Significant at the district level.
The presence of *D. vitifoliae* in commercial production areas results in movement restrictions of grapes and grape products out of infested areas (e.g. NSW Govt Plant Diseases Act 1924 Proclamation P176 (2006), and NSW Industry and Investment (2010). The restrictions may lead to a loss of markets. Such restrictions can include vineyard soil, cuttings, potted plants, unprocessed wine grapes or non-packaged table grapes (Loch and Slack 2007).
However, the movement of commercial table grapes is not considered to be a significant risk for the spread of *D. vitifoliae* between Australian vineyards (NVHSC 2005). This is due to the requirement in the national phylloxera management protocol for sulphur pads in cartons of transported table grapes (NVHSC 2004). Sulphur pads are known to control phylloxera in table grapes (APVMA 2009).

International trade | **Impact score:** C – Significant at the local level.
The presence of *D. vitifoliae* in wine grape areas and commercial dried fruit production areas would not have an impact on the export of these products other than loss of production.
The presence of *D. vitifoliae* in commercial table grape production areas could have impacts on the export of Australia’s table grapes to countries where this pest is not present. This pest is widely distributed in many countries in Asia, Africa, North and South America and Europe (CABI-EPPO 1997f).
In 2008/09 Australia exported 70 000 t of table grapes; of this 62 000 t went to eight countries: 25 701 t went to Hong Kong, 8842 t to Indonesia, 8287 t to Thailand, 5429 t to Singapore, 5213 t to Malaysia, 4271 t to Vietnam, 3009 t to the United Arab Emirates, and 1937 t to New Zealand (ABS 2009a). *Daktulosphaira vitifoliae* does not appear to be present in six of the major eight export destinations: Hong Kong, Thailand, Singapore, Malaysia, Vietnam or the United Arab Emirates (Botha et al. 2000; CABI-EPPO 1997f).
Sulphur pads are known to control phylloxera in table grapes (APVMA 2009) and is the method used in Australia (NVHSC 2005). While this control method is standard practice in Australia and should also be effective in export table grapes, there may be potential for some delay in getting such a method accepted outside of Australia when this pest is not present.

Environmental and non-commercial | **Impact score:** B – Minor significance at the local level.
Grapevines are grown in domestic gardens for both food and amenity value as shade or ornamental features. Infested grapevines would need to be removed and the garden may lose some of its amenity value.

4.8.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the estimate of consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

| Unrestricted risk estimate for *Daktulosphaira vitifoliae* |
|---|---
| Overall probability of entry, establishment and spread | Low
| Consequences | Moderate
| Unrestricted risk | Low

As indicated, the unrestricted risk estimate for *D. vitifoliae* of ‘low’ exceeds Australia’s ALOP. Therefore, specific risk management measures are required for this pest.
4.9 Soft scales

Parthenolecanium orientalis, *Parthenolecanium corni*^{EP, WA}

Parthenolecanium corni is not present in the state of Western Australia and is a pest of regional quarantine concern for that state.

The biology and taxonomy of these species is considered sufficiently similar to justify combining them into a single assessment. In this assessment, the term ‘scales’ is used to refer to these two species unless otherwise specified.

Parthenolecanium corni and *P. orientalis* belong to the scale insect family, Coccidae or soft scale insects. Soft scale insects are sessile, small and often inconspicuous and are covered with a wax secretion that covers adult females and immature males. There are three life stages; eggs, nymphs and adults. The life cycle of the female scale includes an egg stage, two nymphal stages and an adult stage. The male scale has one egg stage, four nymphal or instar stages and an adult stage which is winged (David'yan 2009). The first nymphal stage or instar is called a ‘crawler’ and has functional legs (David'yan 2009) and is the main dispersal stage. Crawlers may be dispersed by wind, animals and by human transport of infested material. Apart from the winged male, the other stages are mostly sedentary but once the crawlers settle and feed on leaf undersides, later instars may migrate to stems and branches on the host plant (CABI 2005).

Scales cause major problems in agricultural and ornamental ecosystems and are commonly transported on plant materials (CABI 2005). Due to their small size and habit of feeding in concealed areas, they are frequent invasive species causing billions of dollars (US) in damage annually in the USA (Miller et al. 2007). In the USA there are 42 introduced species of soft scales and 41 of them are pests (Miller et al. 2007). *Parthenolecanium* spp. soft scale nymphs produce honeydew as they feed. Sooty mould may grow on the honeydew, causing blackened areas on leaves and fruit. Ants may also be observed feeding on honeydew. When soft scales occur in abundance, they may stunt vine growth (David'yan 2009).

The main economic damage caused by soft scales is from the downgrading of fruit quality caused by sooty mould fungi growing on the honeydew produced by these insects.

Parthenolecanium corni and *P. orientalis* occur throughout China (AQSIQ 2007; Zhang 2005b). Both soft scale species have similar life cycles and both have the same number of nymphal instars and two generations a year in China (Zhang 2005b).

In spring, overwintering second instar *P. corni* nymphs emerge from grapevine leaves and cracks in grapevine branches and move to branches where they feed, producing lots of honeydew. They remain there for the rest of their life cycle. These nymphs pass through the third instar stage and mature into adults. Adult males are very small (1.7 mm long) with two wings and are rare (David'yan 2009). Adult females are small (3–6.5 mm long, 2.0–4.0 mm in width and 4.0 mm in height) and covered in a shiny brown leathery domed shell (University of California 2003). They are sessile and reproduce primarily parthenogenetically (without mating), laying 1000–3000 eggs beneath the female's body under her shell. The female then dies, leaving the eggs protected by her shell (University of California 2003).

The first generation eggs hatch at the beginning of summer (early June) and first instar nymphs or “crawlers” move out from under the shell onto grapevine shoots, leaves and fruit of the current season's growth to feed on sap. *Parthenolecanium corni* disperses as the first
instar or crawler by wind, animal vectors and movement of infested material by humans. Life stages are mostly sessile apart from the winged male (Zhang 2005b).

The nymphs pass through the instar stages and mature into second generation adults. The second generation adult females lay eggs in July. Second generation crawlers appear in early to mid-August and migrate to the undersides of leaves for feeding and also to young branches and fruit. The second generation nymphs migrate to cracks in grapevine trunks and branches in October to overwinter (Zhang 2005b).

Parthenolecanium orientalis also has one or two generations a year in China. In Shandong and Henan, it has two generations a year in locust trees and grapes, but one generation on peach trees (AQSIQ 2007). In grapes, the second generation nymphs overwinter in cracks on the stem and underside of branches, leaves and old skins (AQSIQ 2007). Nymphs start moving to branches to feed from middle to late March and develop into adults in late April. Over a period of about a month, adults lay a few hundred to a thousand eggs. These first generation eggs start hatching in the middle of May and peak in late May to early June.

First instar nymphs or crawlers appear from mid-May to early June and initially feed on the back of grape leaves. They move to the new branches and flower buds of grapevines in the middle of June. First generation adults emerge in the middle of July and lay second generation eggs. These eggs hatch from late July to early August and second generation nymphs initially feed on leaves before moving to branches to overwinter in September (Li 2004). Li (2004) reports that *P. orientalis* feeds on vines, grape bunches and berries.

Parthenolecanium orientalis attacks grapevine (*Vitis vinifera*) (Li 2004), currants (*Ribes* spp.), Chinese wisteria (*Wisteria chinensis*), plums, cherries, peaches, apricots and almonds (*Prunus* spp.) and willow (*Salix* spp.) (Ben-Dov 2010f). *Parthenolecanium corni* is highly polyphagous, attacking some 350 plant species placed in 40 families (Ben-Dov 2010e). Due to the recognised biological and economic importance of *P. corni*, it was used as the basis for this risk assessment.

The risk scenario of concern is that imported bunches of Chinese table grapes may contain feeding *P. orientalis* and *P. corni* adult females and nymphs.

Parthenolecanium corni was assessed in the existing import policy for table grapes from Chile (Biosecurity Australia 2005c). The assessment of *P. corni* and *P. orientalis* presented here builds on this previous assessment.

The probability of importation for *P. corni* was rated as ‘high’ and the probability of distribution was rated as ‘low’ in the assessment for table grapes from Chile (Biosecurity Australia 2005c). However, differences in horticultural practices, climatic conditions and the prevalence of the pests between the previous export area (Chile) and China make it necessary to re-assess the likelihood that scales *P. corni* will be imported into Australia with table grapes from China.

The probability of distribution for *P. corni* will not differ for the same commodity (table grapes) after arrival in Australia. The probability of establishment and of spread of *P. corni* in Australia, and the consequences will also be similar. Accordingly, there is no need to re-assess these components.
4.9.1 Reassessment of probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues respectively.

Reassessment of probability of importation

The likelihood that *P. corni* and *P. orientalis* will arrive in Australia with the importation of table grapes from China is: **HIGH**.

Supporting information for this assessment is provided below:

- *Parthenolecanium corni* and *P. orientalis* are found in many provinces of China, including the main table grape production provinces such as Xinjiang and Shandong (AQSIQ 2007; Li 2004; Zhang 2005b).

- Once the first instars or crawlers settle on a suitable host, grapevine in this case, subsequent nymphs and adults inside the scale covers are sessile and remain attached to their host. The small size of *P. corni* and *P. orientalis* adult females and nymphs, may make them difficult to detect, especially at low population levels. Therefore, table grape sorting, grading and packing processes may not remove them effectively from the export pathway.

- Nymphs initially feed on the undersides of leaves and new branches before moving to branches to overwinter in September. Nymphs and adults feed on grapevine leaves, bark of branches and sometimes fruit (David'yan 2009; AQSIQ 2007; Li 2004; Zhang 2005b). Scales are likely to be on table grapes during harvest time (Li 2004; Zhang 2005b).

- *Parthenolecanium corni* overwinter on grape branches as second instar nymphs (AQSIQ 2007; Li 2004; Zhang 2005b). They are likely to survive cold storage and transportation as *P. corni* have been intercepted on table grapes imported from Chile into New Zealand (MAF New Zealand 2005) and the USA has also intercepted them on grape imports from France and Chile (Gill 1988; Miller *et al.* 2007).

The small size, sessile nature of most life stages and cold tolerance, all support a likelihood estimate for importation of ‘high’.

4.9.2 Probability of distribution, establishment and of spread

As indicated above, the probability of distribution, of establishment and of spread for these scales would be the same as those assessed for table grapes from Chile (Biosecurity Australia 2005c). The ratings from the previous assessment are presented below:

- Probability of distribution: **LOW**
- Probability of establishment: **HIGH**
- Probability of spread: **MODERATE**

4.9.3 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.
The likelihood that *P. corni* and *P. orientalis* will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: **LOW**.

4.9.4 Consequences

The consequences of the establishment of *P. corni* in Australia have been estimated previously for Chilean table grapes (Biosecurity Australia 2005c). This estimate of impact scores is provided below expressed in the current scoring system (Table 2.3).

<table>
<thead>
<tr>
<th>Plant life or health</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other aspects of the environment</td>
<td>B</td>
</tr>
<tr>
<td>Eradication, control etc.</td>
<td>D</td>
</tr>
<tr>
<td>Domestic trade</td>
<td>C</td>
</tr>
<tr>
<td>International trade</td>
<td>C</td>
</tr>
<tr>
<td>Environment</td>
<td>B</td>
</tr>
</tbody>
</table>

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘D’, the overall consequences are estimated to be **LOW**.

4.9.5 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the estimate of consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Parthenolecanium orientalis and Parthenolecanium corni WA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
</tr>
<tr>
<td>Consequences</td>
</tr>
<tr>
<td>Unrestricted risk</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *P. orientalis* and *P. corni* of ‘very low’ achieves Australia’s ALOP. Therefore, specific risk management measures are not required for these pests.
4.10 Cottony grape scale

Pulvinaria vitis

Pulvinaria vitis, the cottony grape scale, belongs to the scale family Coccidae or soft scale insects. _Pulvinaria vitis_ is a pest of grapevine in Europe (Ben-Dov 2010k). It is a vector of the grapevine leaf-roll associated closterovirus (GLRaV-3) in Italy (Belli _et al._ 1994; Tosi 2007). This virus is present in Australia as well as in China (AQSIQ 2006; CABI 2009; DAWA 2006; Liu _et al._ 2006b).

In China, Yang _et al._ (2008) report that _P. vitis_ attacks table grapes (berry), walnuts, and other hosts. In other countries it occurs on _Malus_ sp. (apple), _Prunus_ spp., _Pyrus_ spp., and _Vitis_ spp, and also on other trees and shrubs (Ben-Dov 2010k).

The life stages of female soft scale includes egg, three nymphal instars and adult, while the male scale has egg, four nymphal instars (third instar as prepupa and fourth instar as pupa) and adult which is winged (Williams 1997).

Pulvinaria vitis may contain sexual and asexual races in the population and has a very high reproductive rate; each female can lay 1000 or more eggs every two to three weeks (Alford 2007). In Canada, Phillips (Phillips 1963) reported that _P. vitis_ has one generation a year on peach and overwintered females in an asexual population each laid an average of 4000 eggs over a relatively short period of time at 14 °C. In Romania _P. vitis_ overwinter as immature females (Duschin 1986).

Pulvinaria vitis has three generations a year in China (Yang _et al._ 2008) and one generation a year in Canada (Phillips 1963). Newly hatched nymphs of _P. vitis_ overwinter and nymphs feed on new shoots in April. Adults emerge and start to lay eggs in early May. The first generation occurs in early June and the nymphs feed on young shoots, leaves and fruits. Adult females lay eggs at the end of June with second generation nymphs appearing from late July to early August and feeding on leaves and fruits. The adult females lay eggs in September with the third generation nymphs appearing in mid–September and feeding on shoots. Overwintering starts in October (Yang _et al._ 2008).

The risk scenario of concern is that imported bunches of Chinese table grapes may contain _P. vitis_ adults, nymphs and eggs.

4.10.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues respectively.

Probability of importation

The likelihood that _P. vitis_ will arrive in Australia with the importation of table grapes from China is: HIGH.

Supporting information for this assessment is provided below:

- _Pulvinaria vitis_ is present in China (Inner Mongolia, Tibet and Xinjiang) (Tang 1991; Yang _et al._ 2008; Zhang and Wu 2007).
Most Chinese table grapes for export are likely to be sourced from Xinjiang (38.5% production area) (AQSIQ 2009b; AQSIQ 2006).

Pulvinaria vitis feeds, develops and reproduces on table grapes in China and the nymphs feed on young shoots, leaves and grape berries (Yang *et al.* 2008).

Pulvinaria vitis has three generations a year in China and the main periods of pest damage are in April, June and August (Yang *et al.* 2008).

Adult females of *P. vitis* are 5–7 mm long; eggs are laid in a white ovisac and are only 0.3 mm long; first instar nymphs (crawlers) are 0.5 mm long, typically appearing in swarms when newly hatched (Alford 2007).

White ovisacs occurring in low density could be mistaken for a stray bit of Styrofoam or other white material, which may be missed by a standard grading and packing process.

Pulvinaria vitis overwinters as an immature female in the gaps of grape branches (Yang *et al.* 2008) and they are likely to survive during storage and transport.

The ability to feed, develop and reproduce on table grapes and the small size and sessile nature of most life stages, all support a likelihood estimate for importation of ‘high’.

Probability of distribution

The likelihood that *P. vitis* will be distributed within Australia in a viable state as a result of the processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **LOW**.

Supporting information for this assessment is provided below:

- Table grapes are intended for human consumption and scale eggs, nymphs and adults may remain on the fruit during retail distribution. The unconsumed parts of the fruit, especially stalks of infested fruit, are likely to end up in fruit waste, which may further aid distribution of viable scales. Disposal of infested waste fruit is likely to be by commercial or domestic rubbish systems or discarded where the fruit is consumed. However, some fruit waste may be disposed of in the home garden which provides an opportunity for these pests to transfer to susceptible hosts in the vicinity.

- The commodity may be distributed throughout Australia for retail sale, as the intended use of the commodity is human consumption. Waste material would be generated.

- The natural dispersal mechanism that allows for the movement of scale species from discarded fruit waste to a suitable host is a significant limiting factor.

- Crawlers are the mobile stage and can also be dispersed by wind (Phillips 1963; Alford 2007). Crawlers may already present on the infested fruit or hatched from the eggs on the infested fruit. Other nymphal stages and adult females are sessile and not mobile. Adult males have one pair of wings and are able to fly but lack mouthparts and only live for a few hours to about a week (Marotta 1997). Overall, soft scales have a limited ability to disperse independently.

- In China, Yang *et al.* (2008) reports that *P. viitis* attacks table grapes (berry), walnuts, and other hosts. In other countries it occurs on *Malus* sp., *Prunus* sp., *Pyrus* sp., *Vitis* sp. and also on other trees and shrubs (Ben-Dov 2010k). These plants are widely available in Australia.
The presence of the crawlers which are the mobile stage and eggs which can hatch into crawlers on infested grapes, crawlers being dispersed by wind and wide availability of hosts, moderated by the sessile status of other life stages support a likelihood estimate for distribution of ‘low’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.4.

The likelihood that *P. vitis* will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: **LOW**.

4.10.2 Probability of establishment

The likelihood that *P. vitis* will establish within Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: **HIGH**.

Supporting information for this assessment is provided below:

- *Pulvinaria vitis* is capable of surviving and reproducing on a wide variety of host plants and it has more than 80 known hosts (Ben-Dov 2010k) including *Malus* sp. (apple), *Prunus* spp., *Pyrus* spp., *Vitis* spp. and many other trees and shrubs. These hosts are found throughout the southern parts of Australia.

- *Pulvinaria vitis* is a pest of grapevine in Europe (Ben-Dov 2010k) and China (Yang *et al.* 2008), it also occurs in North and South America and the Middle East (Ben-Dov 2010k) where climatic conditions are similar to areas within Australia.

- The potential establishment of *P. vitis* is supported by the knowledge that many other species of *Pulvinaria* are established in Australia (Qin and Gullan 1992).

- *Pulvinaria vitis* has a high reproductive rate and can reproduce sexually and parthenogenetically and each female can lay 1000 to 4000 eggs (Alford 2007; Phillips 1963). In China, *P. vitis* has three generations a year (Yang *et al.* 2008).

- Existing control programs (e.g. broad spectrum pesticide applications) may be effective to control soft scales on some hosts, but may not be effective on hosts where specific IPM programs are used. *Pulvinaria vitis* feeds on a wide range of host plants (Ben-Dov 2010k) including trees, shrubs and plants present as weeds in Australia that often may not be subjected to management involving insect pest control activities.

The availability of a wide range of host plants in Australia, the suitability of the climatic conditions and the high reproduction rate support a likelihood estimate for establishment of ‘high’.

4.10.3 Probability of spread

The likelihood that *P. vitis* will spread within Australia, based on a comparison of those factors in source and destination areas that affect the expansion of the geographic distribution of the pest, is: **MODERATE**.

Supporting information for this assessment is provided below:
Pulvinaria vitis has been reported from a variety of countries including North America (Canada, USA: California, Kansas, Massachusetts, New York), South America (Argentina, Brazil), Asia (China, Iran, Japan, Jordan, Kazakhstan & India), Oceania (New Zealand) and Europe (Italy, France, Denmark, Finland, Germany, Greece, Hungary, Netherlands, Poland, United Kingdom, Spain) (Ben-Dov 2010k; Sharma and Sharma 1993; Tang 1991; Zhang and Wu 2007). There are similar environments in Australia that would be suitable for its spread.

- The long distances between some of the main Australian commercial vineyards or orchards and production areas and natural barriers such as arid areas, may make it difficult for *P. vitis* to disperse unaided from one area to another.

- Adults and nymphs may be moved within and between orchards/vineyards with the movement of equipment and personnel. Wind-assisted aerial dispersal of crawlers is an important mechanism for spread within and between adjacent vineyards or orchards or through urban areas (Phillips 1963). Crawlers of armoured scales have been recorded to travel with wind assistance up to 2.8 km (Beardsley Jr and Gonzalez 1975).

- Some hosts of *P. vitis* are woody weeds (Ben-Dov 2010k) such as Cotoneaster, Crataegus and Salix in agricultural and urban bushland settings particularly in south-east Australia. Other hosts are widely planted fruit and ornamental trees and shrubs.

- *Pulvinaria vitis* can infest leaves, peduncles, pedicels and grape berries (Yang *et al.* 2008) and may be associated with nursery stock or amenity trees in addition to commercial crops. Movement of infested nursery stock or other plants would be an important mechanism for long distance spread.

- Existing interstate quarantine control on the movement of nursery stock and other plant material could reduce the rate of spread between states, but would be of limited use within states where control measures may not be applied.

- Soft scale populations are usually kept low by predators, either natural or introduced and spraying is rarely required (Smith *et al.* 1997). Suitable natural enemies may be present in Australia, but their potential impact is unknown.

The wide host range, suitable environment, wind-assisted dispersal of crawlers and the likelihood of being spread with nursery stock, moderated by the difficulty for long-distance dispersal unaided, support a likelihood estimate for spread of ‘moderate’.

4.10.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread.

The likelihood that *P. vitis* will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: **LOW**.

4.10.5 Consequences

The consequences of the establishment of *P. vitis* in Australia have been estimated according to the methods described in Table 2.3.
Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘D’, the overall consequences are estimated to be LOW.

Reasoning for these ratings is provided below:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
</tbody>
</table>
| Plant life or health | **Impact score:** D – Significant at the district level.
Pulvinaria vitis is recorded as being capable of causing direct damage to host plants and is a recognised agricultural pest requiring control measures (Duschin 1986; Miller et al. 2007; Phillips 1986; Yang et al. 2008). **Pulvinaria vitis** is rated as a pest of economic concern in Europe, United States and China, where it damages the leaves, twigs and the fruit (berry) of the host plant (Duschin 1986; Miller et al. 2007; Phillips 1963; Yang et al. 2008). Soft scales in large numbers may deplete nutrients from the host plant to such an extent as to cause severe damage resulting in very heavy production losses (Miller et al. 2007; Yang et al. 2008). Honeydew contamination of leaves and subsequent sooty mould growth can reduce photosynthesis (Alford 2007) which may have a detrimental effect on affected plants. **Pulvinaria vitis** has more than 80 known hosts (Ben-Dov 2010k) including *Malus* sp. (apple), *Prunus* spp., *Pyrus* spp., *Vitis* spp, and also other trees and shrubs. *Malus* sp. (apple), *Prunus* spp., *Pyrus* spp. and *Vitis* spp. are very important horticultural fruits in Australia. Fruit bearing trees and grapevines in home gardens are also expected to be susceptible and may need control measures applied or might need to be replaced. The full host list in Ben-Dov (Ben-Dov 2010k) suggest that this scale may attack important ornamental and amenity trees in southern parts of Australia. |
| Other aspects of the environment | **Impact score:** B – Minor significance at the local level.
Pulvinaria vitis may compete directly for resources with native scales and other species. |
| Indirect | |
| Eradication, control etc. | **Impact score:** D – Significant at the district level.
Indirect consequences of control or an eradication program as a result of the introduction of *P. vitis* may be: (i) an increase in the use of insecticides for control of the pest due to difficulties involved in estimating optimum times for application; (ii) disruption to IPM programs due to the increased need to use insecticides; (iii) additional applications of costly pesticides that may alter the economic viability of some crops; (iv) increases in control measures and impacts on existing production practices; (v) some of the reported natural enemies such as the parasitoids (Aphelinids, Encyrtids) and ladybird beetles (Coccinellids) (Chen et al. 2003) would be adversely affected by pesticides (vi) subsequent increases in costs of production to producers; (vii) increased costs for crop monitoring and consultative advice to producers. |
| Domestic trade | **Impact score:** C – Significant at the local level.
If *P. vitis* becomes established in Australia it is likely to result in some interstate trade restrictions on many commodities such as apples, peaches, nectarines, plums, pears and table grapes. This could lead to loss of markets or additional costs to manage the pest on the commodity. |
| International trade | **Impact score:** C – Significant at the local level.
The presence of *P. vitis* in commercial production areas on a wide range of horticultural commodities (e.g. apples, pears, nectarines, plums, peaches and table grapes) may limit access to overseas markets where the pest is not present. However, the pest is present in North America (Canada, USA: California, Kansas, Massachusetts, New York), South America (Argentina, Brazil), Asia (China, Iran, Japan, Jordan, Kazakhstan and India), Oceania (New Zealand), and Europe (Italy, France, Denmark, Finland, Germany, Greece, Hungary, Netherlands, Poland, United Kingdom, Spain) (Ben-Dov 2010k; Sharma and Sharma 1993; Tang 1991; Zhang and Wu 2007). Quarantine measures are available to mitigate soft scales and it is not expected that the pest would result in a complete loss of markets, other than increasing costs to treatment and inspection. |
| Environmental and non-commercial | **Impact score:** B – Minor significance at the local level.
Additional pesticide applications would be required to contain and/or eradicate the pest and control them on susceptible crops. However, this is unlikely to impact on the environment to any greater extent than already occurs from run-off into waterways from commercial crops due to control measures for other pests. With fruit crops, the honeydew produced by the scales can attract bees, flies and wasps which can be problematic for fruit pickers (Alford 2007). |
4.10.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the estimate of consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Pulvinaria vitis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
<td>Low</td>
</tr>
<tr>
<td>Consequences</td>
<td>Low</td>
</tr>
<tr>
<td>Unrestricted risk</td>
<td>Very low</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *P. vitis* of ‘very low’ achieves Australia’s ALOP. Therefore, specific risk management measures are not required for this pest.
4.11 Mealybugs

Pseudococcus comstocki^{EP}, **Pseudococcus maritimus**^{EP}, **Planococcus kraunhiae**^{EP}

The biology and taxonomy of these species is considered sufficiently similar to justify combining them into a single assessment. In this assessment, the term ‘mealybug’ is used to refer to these three species unless otherwise specified.

Pseudococcus comstocki (Comstock’s mealybug), **Ps. maritimus** (grapevine mealybug) and **Planococcus kraunhiae** (Japanese mealybug) belong to the Pseudococcidae or mealybug family. Mealybugs are small, oval, soft-bodied insects that are covered with a white, cottony or mealy wax secretion that is moisture repellent and protects them against desiccation (University of Minnesota 2007). Mealybugs are sucking insects that injure plants by extracting large quantities of sap. This weakens and stunts plants, causing leaf distortion, premature leaf drop, dieback and even plant death (University of Minnesota 2007). They may also cause indirect damage by injecting toxins or plant pathogens into host plants (e.g. grapevine leafroll virus, mealybug pineapple wilt (Pfeiffer and Schultz 1986b; Rohrbach *et al*. 1988)). Mealybugs detract from the appearance of the plant by contaminating bunches with egg sacs, nymphs and adults (Spangler and Agnello 1991). They may also deposit a waste product, ‘honeydew’ on the leaves and fruit as they feed. Honeydew may act as a substrate for sooty mould to grow (Spangler and Agnello 1991).

Pseudococcus comstocki and **Ps. maritimus** female and male mealybugs have different life cycles and life stages. Female mealybugs have three life stages: adult, egg and nymph. They develop from an egg through three nymphal (immature instar) stages before undergoing a final moult into the adult form (CABI 2009). Adult females are 3–4 mm long, slow-moving and oval-shaped. Male mealybugs have four life stages: egg, nymph cocoon and adult. They develop from eggs through first and second feeding instars, and third and fourth non-feeding instars in a cocoon, before moulting into tiny winged adults, which possess a pair of long wax terminal filament (University of Minnesota 2007).

Mealybugs generally prefer warm, humid, sheltered sites away from adverse environmental conditions and natural enemies. Mealybug nymphs and adult females are very small and are often not detected as they hide in crevices and in protected spaces in grape bunches. This makes them a potentially serious pest problem in grape-growing areas. Many mealybug species pose particularly serious problems to agriculture when introduced into new areas of the world where natural enemies are not present (Miller *et al*. 2002; Moore 2004).

In China, **P. comstocki** has three generations a year in grapes. Eggs overwinter in cracks in grapevine trunks and branches. Nymphs of each generation appear in mid and late May, mid and late July and late August, respectively. Adults and nymphs eat young parts of host plants (AQSIQ 2007).

Pseudococcus maritimus also has three generations a year, and the eggs overwinter underground in cotton-like cases near the roots of grapevines. In early spring, nymphs hatch and first attack the roots before moving above ground in late June. Adults and nymphs suck stalks, young branches, vines and young roots and cause deformity to the roots (AQSIQ 2007).
Although there are records of *Planococcus kraunhiae* in China (Narai and Murai 2002), there are no records of this pest attacking grapes in China but it has been reported on table grapes in Japan (Narai and Murai 2002). *Planococcus kraunhiae* has four life stages: adult, egg, nymphs and pupa (Narai and Murai 2002). No record of the life cycle on grapes could be found but in general the biology and taxonomy of mealybugs are similar. Due to the recognised biological and economic importance of *Pseudococcus comstocki*, it was used as the basis for this risk assessment.

The risk scenario of concern is that mealybug eggs, nymphs or adult females may be present in sheltered areas on imported bunches of Chinese grapes.

Pseudococcus comstocki was included and/or assessed in the existing import policy for pears from China (AQIS 1998b; Biosecurity Australia 2005a), Fuji apples from Japan (AQIS 1998a), pears from Korea (AQIS 1999), unshu mandarins from Japan (Biosecurity Australia 2009b) and apples from China (Biosecurity Australia 2010b).

Pseudococcus maritimus was included and/or assessed in the existing import policy for table grapes from California (AQIS 2000) and table grapes from Chile (Biosecurity Australia 2005c).

Planococcus kraunhiae was included and/or assessed in the existing import policy for unshu mandarins from Japan (Biosecurity Australia 2009b).

The assessment of *Ps. comstocki*, *Ps. maritimus* and *Planococcus kraunhiae* presented here builds on these previous assessments.

The probability of importation for both *Ps. comstocki* and *Pl. kraunhiae* was rated as ‘high’ in the assessment for unshu mandarins from Japan (Biosecurity Australia 2009b) and apples from China (Biosecurity Australia 2010b), and *Ps. maritimus* was rated as ‘high’ in the assessment for table grapes from Chile (Biosecurity Australia 2005c).

The probability of distribution for *Ps. comstocki* and *Pl. kraunhiae* was rated as ‘moderate’ in the assessment for unshu mandarin from Japan (Biosecurity Australia 2009b) and apples from China (Biosecurity Australia 2010b), and *Ps. maritimus* was rated as ‘high’ in the assessment for table grapes from Chile. However, differences in horticultural practices and climatic conditions between the previous export areas (Chile, Japan and Korea) and China make it necessary to reassess the likelihood that mealybugs will be imported into and distributed within Australia with table grapes from China.

The probability of establishment and of spread of mealybugs in Australia, and the consequences they may cause will be the same for any commodity in which these species are imported into Australia. Accordingly, there is no need to reassess these components.

4.11.1 Reassessment of probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues respectively.

Reassessment of probability of importation

The likelihood that *Ps. comstocki*, *Ps. maritimus* and *Pl. kraunhiae* will arrive in Australia with the importation of table grapes from China is: **HIGH**.

Supporting information for this assessment is provided below:
- *Pseudococcus comstocki* has been reported on table grapes in China and is present throughout the production areas and time of harvest (AQSIQ 2006; AQSIQ 2007; Li 2004; Zhang 2005b).

- *Planococcus kraunhiae* has been reported in China (Ben-Dov 2010g), however, its plant hosts are not recorded.

- *Planococcus kraunhiae* has been reported on table grapes in Korea, where it is found on leaves, branches and fruit of grapevines (NPQS 2007).

- Mealybugs are known to be associated with table grapes in many other grape-growing countries e.g. Australia (Furness and Charles 1994) and USA (University of California 1992).

- *Pseudococcus comstocki* and *Pl. kraunhiae* adult female mealybugs and nymphs (that is, immature male and female mealybugs) are small (1.4–3 mm), oval shaped, often inconspicuous, lack wings and have limited mobility (Spangler and Agnello 1991). Adult females and nymphs are covered in a white waxy substance that is moisture repellent and protects them against desiccation (Spangler and Agnello 1991).

- Once mealybugs find a suitable feeding site, they insert their stylets and suck plant sap from the fruit. This procedure anchors the mealybugs to the fruit, where they generally remain and are dislodged with difficulty (Williams 2004). Once feeding begins, they secrete a waxy mealy coating that helps to protect their bodies.

- Procedures carried out in the vineyard and at the packing house are directed towards maintaining a standard quality of fruit with regard to ripeness, blemishes, and visible splits, cracks, bruising or damage to the skin. Although all bunches are inspected, the procedures are not specifically directed towards detecting small arthropod pests in protected spaces. Therefore, mealybugs hiding on grape bunches may not be detected during routine visual quality inspection procedures in the vineyards and within packing houses in China. Fruit packed for export is therefore highly likely to contain them.

- *Pseudococcus comstocki* mealybugs overwinter on vine trunks and branches (Li 2004; Zhang 2005b) and would be likely to survive cold storage and transportation.

- No records could be found regarding overwintering sites for *Pl. kraunhiae* mealybugs on grapevines. It is unknown whether they would be likely to survive cold storage and transportation.

- There is a strong potential for viable mealybugs to be associated with grapes after storage and transportation, as live mealybugs have been intercepted on Chilean table grapes imported into New Zealand (MAF Biosecurity New Zealand 2009) and during pre-export inspection of Californian table grapes destined for Australia (APHIS 2003).

The association of mealybugs with fruit, the small size, sessile and cryptic nature of most life stages plus their previous interceptions on arrival all support a likelihood estimate for importation of ‘high’.

Reassessment of probability of distribution

The likelihood that *Ps. comstocki, Ps. maritimus* and *Pl. kraunhiae* will be distributed within Australia in a viable state as a result of the processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **MODERATE**.
Supporting information for this assessment is provided below:

- Table grapes are intended for human consumption and mealybug nymphs and adults may remain on the fruit during retail distribution. The unconsumed parts of the fruit, especially stalks of infested fruit, are likely to end up in fruit waste, which may further aid distribution of viable mealybugs. Disposal of infested waste fruit is likely to be by commercial or domestic rubbish systems or discarded where the fruit is consumed. However, some fruit waste may be disposed of in the home garden which provides an opportunity for these pests to transfer to susceptible hosts in the vicinity.

- These mealybugs are highly polyphagous, attacking up to 350 plant species placed in 40 families (Ben-Dov 2010g; Ben-Dov 2010i; Ben-Dov 2010j). They are sap-feeders on deciduous orchards, vines and ornamentals (Ben-Dov 2010g; Ben-Dov 2010i; Ben-Dov 2010j) that are cultivated and distributed throughout Australia (ANBG 2009).

- The ability of mealybugs to disperse naturally is limited as crawlers can move small distances on the host using their functional legs. Long range dispersal of adults or nymphs may occur through wind-assistance or on infested plant material (HortResearch 2010).

The association of mealybugs with fruit, their small size, sessile and cryptic nature of most life stages and their large number of host plants all support a likelihood estimate for distribution of ‘moderate’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *Ps. comstocki*, *Ps. maritimus* and *Pl. kraunhiae* will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: **MODERATE**.

4.11.2 Probability of establishment and spread

As indicated above, the probability of establishment and of spread for *Ps. comstocki*, *Ps. maritimus* and *Pl. kraunhiae* would be the same as those assessed for table grapes from Chile (Biosecurity Australia 2005c), unshu mandarin from Japan (Biosecurity Australia 2009b) and apples from China (Biosecurity Australia 2010b). The ratings from the previous assessment are presented below:

- Probability of establishment: **HIGH**
- Probability of spread: **HIGH**

4.11.3 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probability of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that *Ps. comstocki*, *Ps. maritimus* and *Pl. kraunhiae* will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: **MODERATE**.
4.11.4 Consequences

The consequences of the establishment of *Ps. comstocki*, *Ps. maritimus* and *Pl. kraunhiae* in Australia have been estimated previously for table grapes from Chile (Biosecurity Australia 2005c), unshu mandarin from Japan (Biosecurity Australia 2009b) and apples from China (Biosecurity Australia 2010b). This estimate of impact scores is provided below, expressed in the current scoring system (Table 2.3).

<table>
<thead>
<tr>
<th>Plant life or health</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other aspects of the environment</td>
<td>C</td>
</tr>
<tr>
<td>Eradication, control etc.</td>
<td>D</td>
</tr>
<tr>
<td>Domestic trade</td>
<td>D</td>
</tr>
<tr>
<td>International trade</td>
<td>D</td>
</tr>
<tr>
<td>Environment</td>
<td>B</td>
</tr>
</tbody>
</table>

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘D’, the overall consequences are estimated to be **LOW**.

4.11.5 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the estimate of consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Pseudococcus comstocki, Pseudococcus maritimus and Planococcus kraunhiae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
</tr>
<tr>
<td>Consequences</td>
</tr>
<tr>
<td>Unrestricted risk</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *Ps. comstocki*, *Ps. maritimus* and *Pl. kraunhiae* of ‘low’ exceeds Australia’s ALOP. Therefore, specific risk management measures are required for these pests.
4.12 Leafrollers

Archips micaceana, Archips podana, Eupoecilia ambiguella and Sparganothis pilleriana

The species listed above all belong to the Tortricidae or the leafroller family. Their biology is similar enough to justify considering them under a single risk assessment. In this assessment, the term ‘leafrollers’ will be used to refer to all four species unless specified otherwise. As the life histories of two of the species considered here (A. podana and E. ambiguella) have been studied in greater detail than the others, they will be used as the basis of this risk assessment.

The Tortricidae family is of great economic importance, as the larvae of many species cause major damage to horticultural crops, including pome and stone fruits, citrus fruits, grapes, ornamental crops, tea, coffee, cereals and cotton (Meijerman and Ulenberg 2000c). Leafroller moth larvae damage fruit of a wide range of economic species by chewing large holes that usually cause fruit rot (CABI 2009).

These leafrollers have four life stages: egg, larva, pupa and adult (CSIRO 1991).

Archips micaceana, also known as the leaf rolling moth, occurs in China in Guangxi Province and is considered an economic pest of longan and lychee (Zhou and Deng 2005; Zhou and Deng 2004). Outside China, A. micaceana is known to occur in South Vietnam, Myanmar, northern Thailand and India (Tuck 1990). In India, it is known to damage grapevines at Bangalore and Mysore (Puttarudriah et al. 1961), indicating A. micaceana is capable of persisting in climates suitable for grape production.

Archips micaceana lays its eggs in batches; its larvae feed on the epidermis of the leaves, the main stalks of the bunch and the berries themselves. Larvae create silken shelters which are also used as a pupation site (Puttarudriah et al. 1961).

Archips podana is also known as the large fruit tree tortrix. It is recorded throughout Europe, Asia Minor, most of northern Asia (including northern China), Japan, and the United States and Canada (Hill 1987; LaGasa et al. 2003). In Europe, A. podana is an abundant and damaging tortricid on fruit crops (LaGasa et al. 2003). Archips podana causes damages in Hungarian vineyards (Voigt 1971).

Archips podana is a polyphagous species and causes damage to many fruit-producing and forest trees (Ovsyannikova and Grichanov 2009a). Archips podana feeds on the flower buds and fruits of a number of host plants, including Cornus, Corylus, Cydonia oblonga, Fagus, Fraxinus, Juglans spp., Malus sp., Populus, Primula, Prunus spp., Punica granatum, Pyrus sp., Rhododendron, Ribes sp., Rosa, Rubus sp., Salix, Sorbus, Tilia, Trifolium sp., Vaccinium sp. and Vitis vinifera (Carter 1984; Hill 1987; LaGasa et al. 2003; Meijerman and Ulenberg 2000b; Ovsyannikova and Grichanov 2009a).
Archips podana has one generation per year in northern and central Europe, two generations per year in the south of the Republic of Belarus and Ukraine, and three generations per year in the Caucasus and Transcaucasia (CABI 2009; Meijerman and Ulenberg 2000b; Ovsyannikova and Grichanov 2009a). Archips podana can complete development at temperatures of 14–25 °C (Blommers et al. 2001).

The forewings of A. podana are reddish brown with strongly angular margins; its total wingspan is 20–26 mm. Eggs are laid on leaves in batches of about 50 and are covered in a protective waxy secretion. Egg masses may be extremely difficult to find because they closely match the colour of the substrate on which they are laid. They hatch in approximately 3 weeks. First instar larvae spin webs of silk beneath the leaves, near leaf veins, and begin feeding. Larvae overwinter during the third instar, but occasionally in the second instar if adult emergence and egg laying were earlier than usual. Overwintering larvae construct a silken shelter or hibernaculum underneath suitable structures on the host plant. They resume activity in late March or April and begin burrowing into opening flower buds shortly before entering the fourth instar. Fifth instar larvae attack flowers and often developing fruit. Larvae use silk to attach two or more leaves together to form a shelter, which is also used as a pupation site. Pupae emerge as adults in approximately 3 weeks (CABI 2009; Meijerman and Ulenberg 2000b; Ovsyannikova and Grichanov 2009a).

Eupoecilia ambiguella is commonly known as the European grapevine or grape berry moth and is a known pest of grapevines in a number of countries across the temperate zones of the Palearctic and Indo-Oriental regions, between western Europe and Russia to Japan and also the USA, Canada, Mexico and Colombia (Frolov 2009a; Meijerman and Ulenberg 2000c). They cause considerable losses in both quality and yield of grapevines in Germany (Ibrahim 2004).

The larvae of E. ambiguella attack a number of host plants, feeding on flower buds and fruits of buckthorn, Cornelian cherries, grapes, honeysuckle, ivy, lilac, maple, viburnum and other arboreous and fruticose plants (Frolov 2009a; INRA 1997). However, larvae seem rare on hosts other than grapes (Roehrich and Boller 1991). Although there are records of this pest in China (Frolov 2009a), there are no records of this pest attacking grapes in China, but it has been reported on table grapes in the former Union of Soviet Socialist Republics (Frolov 2009a) and Germany (Ibrahim 2004).

Eupoecilia ambiguella adults are relatively small, about 10 mm long with a wingspan of 14–18 mm and with a greyish-brown head with yellow scales and yellow-brown hairs. The body is yellow and covered with shiny black scales. Mature larvae are 14 mm long (Frolov 2009a).

There are two generations per year although a third generation is reported in Central Asia (Frolov 2009a). First generation or spring adult moths emerge from over-wintering pupae, between spring to early summer, depending on the region and the climate (Frolov 2009a; INRA 1997). Mating occurs between midnight until early morning (Meijerman and Ulenberg 2000c). First generation moths lay up to 100 eggs (Frolov 2009a) on grape buds in humid sheltered sites on the grapevine, at a rate of one egg per bud (INRA 1997). Eggs are laid in the afternoon and evening (Meijerman and Ulenberg 2000c) and are slightly elliptical, light yellow and measure 0.8 mm in length (INRA 1997). First generation larvae emerge from eggs after 6–13 days. Emergence is dependent on temperature (13 days at 15 °C, 6–7 days at 19–25 °C) (Frolov 2009a). Larvae are light grey turning dark red or pinkish with black heads and thoracic plate (INRA 1997). They move about on the grapevine for a few minutes before joining 2–3 flower buds together with silk threads to form a web in which they feed (INRA 1997). As the larvae feed on grape buds and flowers, webs can become dense, leading to the
complete destruction of the buds (Frolov 2009a). First generation larvae feed in the evening as well as early in the morning for 8–12 days (Ibrahim 2004; Meijerman and Ulenberg 2000c). Mature larvae pupate on the dried remains of the damaged buds or on leaves, sprouts or in leaf folds (Frolov 2009a). First generation larval development lasts 15–25 days from egg laying to pupation (Frolov 2009a).

Second generation or summer moths emerge after 14 days as pupae, 2–2.5 months after the first generation moths emerge (i.e. July–August) (INRA 1997). They mate between midnight and early morning then lay second generation eggs on immature grapes (INRA 1997; Meijerman and Ulenberg 2000c). The lifespan of adult moths is unknown. Emerging larvae gnaw round holes and bore into unripe berries, feeding on the grape pulp and immature seeds before the seeds harden (Frolov 2009a). One larva may damage 9–17 berries (Frolov 2009a). Damaged grapes dry up like raisins and may become mouldy in rainy weather (Frolov 2009a).

Second generation larval pupate in greyish or brownish cocoons spun under the old bark of the vine-stock or in stake-posts cracks between late summer and early autumn (INRA 1997). The development of E. ambiguella is strongly influenced by weather conditions and hot dry environments reduce percentage egg hatch (Frolov 2009a). Optimum conditions for insect development are 70–90% relative humidity and air temperatures of 18–25 °C (Frolov 2009a).

Sparganothis pilleriana is commonly known as the leaf rolling tortrix. It causes severe damage in vine growing areas across Europe (Louis et al. 2002); some 40% of Spanish grape production areas estimated to be infested by S. pilleriana (Cabezuelo 1980). Sparganothis pilleriana has a wide distribution extending from north-western Europe (Sweden) south to the Middle East (Iran and Iraq) and east through the Caucasus and central Asia (including China, the Korean Peninsula and Japan) to the Kamchatka peninsula (Russian Federation) and North and Central America (Frolov 2009b; Zhang 1994). It is a polyphagous species capable of developing on more than 100 species of cultivated and wild host plants from 30 families (Carter 1984; Frolov 2009b; INRA 2005; Meijerman and Ulenberg 2000d; Zhang 1994). Larvae are capable of causing economic damage by attacking grape leaves, inflorescences fresh shoots and berries. Entire grape bunches can be affected, reducing the amount of fruit produced (Louis et al. 2002; Schmidt-Tiedemann et al. 2001; Pykhova 1968; Picard 1913).

Adult S. pilleriana have a wingspan of 18–25 mm (Frolov 2009b; INRA 2005). Eggs of S. pilleriana are flat, oval, laid in batches of 5 to 175 (55 on the average), covered with foamy excretions of the female (Frolov 2009b). Larvae construct shelters from leaves webbed together with silk (Crouzat 1918). There are two generations per year (Frolov 2009b). For the second generation, first instar larvae usually do not eat after hatching, but overwinter in thin but dense silky cocoons inside bark crevices, on plant residues, or in the top 10 cm of surface soil. Time required for development depends largely on temperature, with eggs developing in 9–20 days, larvae (after overwintering) in 30–50 days, pupae in 10–15 days. The life span of the adult is up to 22 days; average fecundity is 200–250 eggs (with a maximum of 450) (Frolov 2009b).

The risk scenario of concern for these leafrollers is that larvae may be imported in table grapes.

4.12.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues respectively.
Probability of importation

The likelihood that *A. micaceana, A. podana, E. ambiguella* and *S. pilleriana* will arrive in Australia with the importation of table grapes from China is: **LOW**.

Supporting information for this assessment is provided below:

- *Archips micaceana* has been recorded in Guangxi which is not a major grape production area (Zhou and Deng 2006; Zhou and Deng 2004). However, its extralimital distribution (India) suggests it may occur in the nearby grape production provinces of Yunnan.

- *Archips podana* has been recorded in northern China (Carter 1984; Hill 1987), but its distribution at the provincial level is unknown. Similarly, the specific distribution of *S. pilleriana* in China is not specified in the literature (Carter 1984; Frolov 2009b; Li 2004; Zeng *et al.* 1984). Based on their extralimital distribution, both species are considered likely to occur in the more northern grape production provinces such as Xinjiang, Jilin and Liaoning.

- *Eupoecilia ambiguella* has been reported in the southern coastal province of Guangdong, the central province of Sichuan and eastern coastal provinces of Jiangsu and Zhejiang in China (CABI 2009; Frolov 2009a).

- While there are no records of *E. ambiguella* on grapes in China, this species has been reported on table grapes in central and western Europe (Frolov 2009a; Ibrahim 2004).

- Table grapes are mainly grown in the northern provinces of China and most Chinese table grapes for export are likely to be sourced from Xinjiang (38.5% production area) and Shandong (16.2% production area) (AQSIQ 2009b; AQSIQ 2006).

- As the third instar larvae of *A. podana* overwinter on the host plant, late second or early third instar larvae will be present at the time grapes are harvested in China. Although it is unknown whether larvae will be actively feeding or preparing a hibernacula at harvest, larvae engaged in either activity are likely to be associated with grape bunches (Meijerman and Ulenberg 2000b). *Archips micaceana* may behave in a similar manner.

- *Eupoecilia ambiguella* eggs hatch in 8–12 days. Larvae gnaw round holes and bore into unripe berries, feeding on the grape pulp and immature seeds before the seeds harden. One larva may damage 9–12 berries. Damaged grapes rot and dry up like raisins and may become mouldy in rainy weather (Frolov 2009a). Damaged grapes eventually fall from the grape bunch 3–5 days after infestation. Larvae move to damage another grape before the first damaged grape drops (Frolov 2009a; INRA 1997). Damaged grapes may be conspicuous due to their abnormal shape and larval entry holes, although those damaged by *E. ambiguella* fall off the bunch 3–5 days after initial infestation (Frolov 2009a). Grapes damaged by the other species are likely to be associated with frass and webbing (Frolov 2009b; Ovsyannikova and Grichanov 2009a; Puttarudriah *et al.* 1961).

- For *E. ambiguella*, second generation moths emerge in summer between July–August, they mate, then lay up to 100 eggs on immature grapes (Frolov 2009a). As grapes are harvested between August and October in China (AQSIQ 2008), eggs and newly emerged larvae of *E. ambiguella* may be associated with grape bunches.

- As some overwintering larvae of *S. pilleriana* seek shelter within residual plant materials (Frolov 2009b), it is feasible that a few larvae may construct shelters within grape bunches.
prior to them being harvested. Newly emerged, pre-overwintering larvae seeking a sheltering site may also become associated with grape bunches.

- During harvesting, processing, packing and inspection procedures, table grapes infested by these leafrollers may be identified and removed from the export pathway. Infested fruit may be visibly detected due to feeding damage and the presence of silk webbing and frass. However, eggs of *E. ambiguella* and early instar/hibernating larvae of *A. micaceana*, *A. podana* and *S. pilleriana*, may be less easily detected due to their size.

- Adult leafrollers are capable of flight. While *E. ambiguella* is mainly active at night through to early morning, some leafrollers may be active during daylight hours (Horak 1999). However, they are unlikely to remain on the fruit during picking, sorting and packing, but fly away.

- Leafroller larvae can survive cold conditions experienced during refrigerated transport, but survival rate decreases to around 6% after two weeks at less than 1 °C (Yokoyama and Miller 2000).

- Leafroller larvae have been detected several times on imported fresh apricots, avocados, cherries, nectarines, and peaches from New Zealand (DAFF 2003; DAFF 2006), indicating that they can survive cold storage and transport.

The known and potential distribution of leafrollers in China, their reduced ability to survive more than two weeks of cold storage and the conspicuous nature of fruit damage that may result in their removal from the pathway all support a likelihood estimate for importation of ‘low’.

Probability of distribution

The likelihood that *A. micaceana*, *A. podana*, *E. ambiguella* and *S. pilleriana* will be distributed within Australia in a viable state as a result of the processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: MODERATE.

Supporting information for this assessment is provided below:

- It has been determined under the probability of importation that any leafrollers arriving at Australia will be eggs (*E. ambiguella*), pre-overwintering first/second/third instar larvae (*Archips* spp.) or overwintering first instar larvae (*S. pilleriana*).

- Packed grapes for export from China will be stored at optimum temperature and relative humidity conditions to ensure quality is maintained (AQSIQ 2008; AQSIQ 2009c). Reported optimum conditions for grapes are 0–2 °C ±1 °C and 90–95% relative humidity.

- Packed grapes are usually not processed or handled again until they arrive at the retailers as grapes are easily damaged through rough handling and impacts due to their thin skins. Therefore, any pests in the packed grapes are unlikely to be detected during transportation and distribution to retailers.

- Depending on the length of time spent in cold storage, any leafrollers arriving at Australia from China may have experienced enough cold to facilitate their dormancy requirements. As with other insects that have multiple generations per year (Gordh and Headrick 2001), the leafrollers considered here may have facultative diapause requirements and respond...
quickly to the increasing day length and warmer temperatures of the Australian spring (Bureau of Meteorology 2009).

- Table grapes are intended for human consumption and leafrollers larvae may remain on the fruit and may enter into the pest risk area through distribution of fruit. The disposal of fruit waste (e.g. vegetative parts of the bunch and discarded berries) may further aid distribution of viable leafrollers as waste may be discarded into compost heaps or into domestic waste and end up in landfills. Some discarded grapes may be left close to suitable hosts.

- Leafroller larvae can survive cold conditions experienced during refrigerated transport, but survival rate decreases to around 6% after two weeks at less than 1 °C (Yokoyama and Miller 2000).

- *Eupoecilia ambiguella* has a wide host range and infests grapes and a number of commercial plants (lemons, plums), wild hosts: ivy, blackthorn (*Prunus spinosa*), yellow bedstraw (*Galium spp*), *Viburnum lantana*, privet (*Ligustrum spp*.), tin-laurel (*Viburnum tinus*), ash (*Fraxinus spp.*) and *Shizandra spp.* (Frolov 2009a; INRA 1997), facilitating its transfer to new areas. These plants are widely distributed throughout Australia, including in domestic and commercial environments and abandoned grapevines in temperate regions of Australia. They could occur near the transport pathway and/or end destination of imported table grapes (ANBG 2009; Baker *et al.* 1994).

- The larvae of *A. micaceana*, *A. podana* and *S. pilleriana* are also polyphagous. Their hosts include cereals, citrus, coffee, cotton, grapes, ornamental crops, pome and stone fruits and tea (Meijerman and Ulenberg 2000b; Meijerman and Ulenberg 2000d). These plants are widely distributed throughout Australia, including in domestic and commercial environments. They could occur near the transport pathway and/or end destination of imported table grapes.

- Adult leafrollers are capable of finding moths of the opposite sex via pheromones, often over comparatively long distances. However, the low densities of imported moths may act as an allee effect and reduce mating success, as is the case with other Lepidoptera using pheromones to facilitate mating (Tobin *et al.* 2009).

The association of eggs and larvae with grapes, their wide host range, ability to disperse, find a mate then a host for egg-laying, moderated by the possible impact of cold storage and need to complete their life cycle before mating, support a likelihood estimate for distribution of ‘moderate’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.4.

The likelihood that *A. micaceana*, *A. podana*, *E. ambiguella* and *S. pilleriana* will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: **LOW**.
4.12.2 Probability of establishment

The likelihood that *A. micaceana*, *A. podana*, *E. ambiguella* and *S. pilleriana* will establish within Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: **HIGH**.

Supporting information for this assessment is provided below:

- *Archips podana* is recorded throughout Asia (Burma, China, India, Thailand and Vietnam), Europe, and the United States and Canada (Alford 2007; Hill 1987; LaGasa et al. 2003; Puttarudriah et al. 1961; Tuck 1990). The climate of these areas ranges from cool temperate to tropical.

- *Eupoecilia ambiguella* is established in China and has a wide distribution in cool and warm temperate zones (and potentially subtropical) from Western Europe (e.g. Spain, United Kingdom) to Asia as far east as Korea and Japan (CABI 2009; Frolov 2009a; INRA 1997).

- *Sparganothis pilleriana* has a wide distribution extending from north-western Europe (Sweden) south to the Middle East (Iran and Iraq) and east through the Causcus and central Asia (including China, the Korean Peninsula and Japan) to the Kamchatka peninsula (Russian Federation) and North and Central America (Frolov 2009b; Zhang 1994). Climatic conditions experienced across this area range from cool to warm temperate.

- The net distributional range of all leafrollers considered here encompasses climatic zones ranging from cool temperate to subtropical and even tropical. This indicates the leafrollers considered here may be suited to climatic conditions throughout most of southern and south-eastern Australia, most likely in the coastal area extending from Brisbane, Queensland, south to Tasmania and west to Perth (Bureau of Meteorology 2009).

- The leafrollers considered here have an extremely broad host range—67 genera in 39 families. In addition to grapes, all species considered here are capable of using a variety of members from the Rosaceae (e.g. apples, pears, roses) and Fabaceae (pea family). Other significant hosts include *Citrus* spp. (citrus), *Robinia* spp. (locusts); *Ananas* (pineapple), *Arachis* (peanuts), *Coffea arabica* (coffee), *Glycine max* (soybean) and *Mangifera indica* (mango). *Archips micaceana* is also known to utilise *Eucalyptus*, which is ubiquitous in the Australian environment.

- The wide host range of these species will greatly aid their ability to establish in Australia.

- Known hosts likely to be suitable for all leafrollers considered here are widespread and relatively common within the Australian environment. They are known to occur in both natural and man-modified environments, usually as introduced species growing as horticultural crops, ornamentals or weeds. In addition, *E. ambiguella* is known to utilise native *Cissus* species, which are members of the grape family.

- All Tortricid leafrollers require both males and females for reproduction and rely on pheromones to find mates in the environment (Horak 1999). Mate finding is known to act as an allee effect in newly establishing populations of other Lepidoptera reliant on pheromones (Tobin et al. 2009), which may reduce their ability to successfully establish.
After mating, each *E. ambiguella* female locates a suitable host plant and lays up to 100 eggs individually either on buds and flowers for the first generation in the spring or immature fruit for the second generation in the summer (INRA 1997).

Leafrollers originating from table grapes from China will be establishing populations during the Australian spring, when deciduous hosts will be producing fresh foliage. Such foliage will likely be very suitable as larval food by establishing leafroller populations.

There are a range of Integrated Pest Management (IPM) programs in use for leafrollers in Australia, such as light brown apple moths (*Epiphyas postvittana*) associated with Australian table and wine grapes (Bailey *et al.* 1994; Baker *et al.* 1994). Although these programs will possibly affect any establishing leafrollers in commercial vineyard and orchard production areas, there are no control measures in place for abandoned grapevines, or in domestic areas or the natural environment.

The wide host range and extensive temperate distribution, ability to disperse to find a mate for sexual reproduction and egg-laying, support a likelihood estimate for establishment of ‘high’.

4.12.3 Probability of spread

The likelihood that *A. micaceana, A. podana, E. ambiguella* and *S. pilleriana* will spread within Australia, based on a comparison of those factors in source and destination areas that affect the expansion of the geographic distribution of the pest, is: **HIGH**.

Supporting information for this assessment is provided below:

- The net distributional range of all leafrollers considered here encompasses climatic zones ranging from cool temperate to subtropical and even tropical. This indicates the leafrollers considered here may be suited to climatic conditions throughout most of southern and south-eastern Australia, most likely in the coastal area extending from Brisbane, Queensland, south to Tasmania and west to Perth (Bureau of Meteorology 2009).

- All four leafrollers considered here are capable of producing multiple generations per year. As suitable climatic zones for these moths within Australia are likely to be milder than their native habitats, they are all likely to produce at least two generations annually in Australia. (Frolov 2009a). Multiple generations per year would aid their spread in Australia.

- Known hosts likely to be suitable for all leafrollers considered here are widespread and relatively common within the Australian environment. They are known to occur in both natural and man-modified environments, usually as introduced species growing as horticultural crops, ornamentals or weeds.

- Leafrollers are not known to be migratory, but the significance of the Tortricidae as a pest family (Meijerman and Ulenberg 2000c) indicates they are efficient at locating and using new resources. Accordingly, all four species considered here would be likely to progressively invade new areas and exploit suitable hosts.

- While Australian IPM would likely have some impact on the leafrollers considered here if they invade agricultural areas, they would be unlikely to face targeted predators or parasitoids in other areas.

- The potential for natural enemies in Australia to reduce the spread of these leafrollers is unknown.
An ability to adapt to a variety of climatic conditions, many of which occur in Australia, wide host range and the ability to disperse to find a mate for sexual reproduction and egg-laying, support a likelihood estimate for spread of ‘high’.

4.12.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread.

The likelihood that A. micaceana, A. podana, E. ambiguella and S. pilleriana will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: LOW.

4.12.5 Consequences

The consequences of the establishment of A. micaceana, A. podana, E. ambiguella and S. pilleriana in Australia have been estimated according to the methods described in Table 2.3.

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘E’, the overall consequences are estimated to be MODERATE.

Reasoning for these ratings is provided below:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Plant life or health</td>
<td>Impact score: E – Significant at the regional level. These leafrollers are capable of using plants in 67 genera and 37 families as host plants, including a range of genera grown in Australia commercially (e.g. Coffea, Fragaria, Malus, Mangifera, Medicago, Orchidaceae, Prunus, Pyrus, Rosa, Vitis), as ornamentals (Castanea, Cordyline, Corylus, Fagus, Orchidaceae, Robinia, Rosa), in the wild (Cissus, Eucalyptus, Orchidaceae) or as weeds (e.g. Plantago, Rubus, Trifolium) in the environment (see the above treatment of these moths for host references for each species). Damage caused by these moths would likely reduce the vigour and production of these host plants. Evidence for such a reduction is provided by S. pilleriana in Spain, where it can affect up to 40% of cultivated grapevines (Cabezuelo 1980). Similarly, introduced leafrollers affecting grapes in the United States increased the prevalence of other economic pests via disruption of long established IPM programs (Daane et al. 2005). Reduced crop vigour, decreased production volume, increased production costs and need to finance revised IPM measures in many crops (Daane et al. 2005) would reduce the income earned by primary producers as a direct result of these leafrollers. The cost of establishing new IPM to deal with any of the moths considered here, in addition to loss of interstate markets, may also reduce the viability of currently profitable crops (see eradication and control, below) (Waite 2010). Aside from industry effects, damage caused to the above mentioned ornamentals in Australian gardens would require additional pesticide use or other measures. In turn, this would increase the cost and effort of maintaining a garden. Native plants and weeds may be more seriously affected by any pest because they are generally not subject to management strategies for insect pests.</td>
</tr>
<tr>
<td>Direct Other aspects of the environment</td>
<td>Impact score: D – Significant at the district level. The ability of A. micaceana and E. ambiguella to use Eucalyptus and Cissus, respectively, may potentially allow them to become significant environmental pests. The ability of A. micaceana to use members of the Orchidaceae as a host may also allow them to damage native Orchidaceae, many of which are endangered and subject to both state and federal legislation (e.g. (Coates et al. 2002; DEWHA 2008a; DEWHA 2008b; Todd 2000)). As Eucalyptus and Cissus are widespread (Eucalyptus is ubiquitous) in the Australian environment, it would be extremely unlikely to mount an effective response against either moth if they enter the Australian environment. Eucalyptus and Cissus are host to a number of unique Australian Lepidoptera (e.g. Agarista agricola on Cissus spp. and Opodiphthera spp. on Eucalyptus; Common 1990), other insects (CSIRO 1991) and, in the case of Eucalyptus, the locally endangered Phascolarctos cinereus (koala) (National Parks and Wildlife Service 2003). Establishment of A. micaceana and E. ambiguella in Australia would result in the competition for resources on Eucalyptus and Cissus, with the native insect species such as Opodiphthera spp. and Agarista agricola, respectively.</td>
</tr>
<tr>
<td>Criterion</td>
<td>Estimate and rationale</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Indirect</td>
<td></td>
</tr>
</tbody>
</table>
| Eradication, control etc. | **Impact score:** E – Significant at the regional level.
Australia has a number of native Tortricid moths that are significant pests of temperate, subtropical and tropical fruit production (Ironsid 1981; Common 1990). Given this assessment considers it likely for all four Tortricids considered to successfully establish throughout the coastal belt of southern and eastern Australia, they may be capable of affecting any of their known hosts, including a range of horticultural crops, growing within this area.
As invasive Tortricids are known to require treatments incompatible with existing grape IPM programmes elsewhere (e.g. the USA), the establishment of any of the species considered here will require significant research in order to establish new IPM programs (Daane et al. 2005). Such research has historically involved introduction of biological control agents, development and deployment of chemical pheromone lures and development of cultural methods to discourage infestations (Papacek 2010), in addition to modification of existing IPM (Daane et al. 2005). Development or modification of IPM measures typically requires a protracted development period (measurable in years) and significant funding from state government and the private sector. For example, establishment of an IPM program for a native Tortricid (Cryptophlebia ombrodelta) took many years and incurred costs felt at the regional level, both due to ongoing losses from the pest itself and the cost to state government and state industry bodies in modifying IPM programs for lychees and macadamia, which included the introduction of a new biocontrol agent (Waite 2010). The impact score is appropriate for the moths considered here because (i) of their potential invasive reach and (ii) the fact that both industry and government are likely to respond to an invasive Tortricid in a similar manner to C. ombrodelta (Waite 2010). |
| Domestic trade | **Impact score:** D – Significant at the district level.
An incursion of any of the leafrollers considered here would likely result in inter-state and potentially intra-state trade restrictions on commercial fruit, including apples, citrus, plums, table and uncrushed wine grapes. These restrictions may lead to a loss of domestic markets. The financial cost to smaller industries in contributing to a new IPM program, in addition to loss of income via reduced yields and pesticide use, may also render them unviable at the district level (Waite 2010). |
| International trade | **Impact score:** D – Significant at the district level.
The presence of any of these leafrollers in any commercial crop would limit access to overseas markets lacking these pests. Given the native distribution of these pests, the majority of market loss would be to southeast Asia, Oceania and the Americas. |
| Environmental and non-commercial | **Impact score:** B – Minor significance at the local level.
Additional pesticide applications would be required to contain and/or eradicate these pests and control them on susceptible crops. However, this is unlikely to impact on the environment to any greater extent than already occurs from run-off into waterways from commercial crops due to control measures already in place for other pests.
Practical control measures, including biological control, to control these leafrollers in agricultural areas may secondarily affect the environment. Although some parasitoids (e.g. Trichogramma spp. wasps) are used in Australian vineyards to control other lepidopteran species (Baker et al. 1994), they may not be effective against the species considered here, either in cultivation or the broader environment. |

4.12.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the estimate of consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Archips micaceana, Archips podana, Eupoecilia ambiguella and Sparganothis pilleriana</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
<td>Low</td>
</tr>
<tr>
<td>Consequences</td>
<td>Moderate</td>
</tr>
<tr>
<td>Unrestricted risk</td>
<td>Low</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *A. micaceana*, *A. podana*, *E. ambiguella* and *S. pilleriana* of ‘low’ exceeds Australia’s ALOP. Therefore, specific risk management measures are required for this pest.
4.13 Grape plume moth

Nippoptilia vitis

Nippoptilia vitis, belongs to the Pterophoridae or plume moth family and is known as the grape plume moth (Li 2004). Most adult species of Pterophoridae have wings divided into narrow lobes that resemble feathers or "plumes" because of the long fringe scales along the lobe margins (Herbison-Evans *et al.* 2009).

Grapes (*Vitis vinifera*) are the only recorded hosts of *N. vitis* (Li 2004).

Nippoptilia vitis has four life stages: egg, larva, pupa and adult. *Nippoptilia vitis* adults are 9–10 mm long with a wingspan of 17–19 mm with a greyish-brown head with yellow scales and yellow-brown hairs. The body is yellow and covered with shiny black scales.

Nippoptilia vitis has two or three overlapping generations a year, depending on whether it is in northern (Jilin) (AQSIQ 2007; BAIRC 2007) or southern (Guizhou) (BAIRC 2007) China, respectively. In Guizhou, there are three generations of *N. vitis* and the mature larvae overwinter in leaf litter and infested branches (BAIRC 2007). Guizhou has a humid, sub-tropical monsoonal climate with warm winters, mild summers and unclear seasonal contrasts and a mean annual temperature of 14–16 °C (China Maps 2007).

Nippoptilia vitis overwinters as an adult (Li 2004; Zhang 2005b; AQSIQ 2007) in the north and as mature larvae in the south (Li 2004; BAIRC 2007). As most table grapes are grown in the northern part of China, the life cycle where *N. vitis* overwinters as an adult, is described below.

Nippoptilia vitis adults overwinter in grasses or cracks in the soil or in dead branches or leaf folds. Adult *N. vitis* can live from 2–12 days after overwintering, most of them live 3–4 days, they are active at night and lay eggs at night. (BAIRC 2007). Females lay 39–98 eggs with an average of 71 eggs (BAIRC 2007). Eggs are mainly laid on grape flowers and tendrils during early vine growth stage and then on pedicels and the base of fruit as the fruit develop. Each individual egg is laid and located separately. Eggs are ovoid, 0.8 mm in diameter, light yellow initially but turning brown before larval hatching (BAIRC 2007; Li 2004; Zhang 2005b). The full lifespan of this pest is unknown.

Larvae bore into the fruit from the stem end. They usually attack immature fruit but also cause damage to the grape leaves and stem (APHIS 2004a) and feed on the pulp and seeds of grapes, usually causing the young fruit to drop to the ground (AQSIQ 2007). Larvae produce frass while they bore into fruits and the frass forms curved lines on the fruit surface and also accumulates around the entry holes or on grape stalks (BAIRC 2007; Li 2004; Zhang 2005b).

Every larva can attack more than 10 grapes with the larva moving to a new grape before fruit drop of the previous infested grape. The entry holes are very small and hard to detect but the exit holes on the dropped fruits are bigger and visible. Some of the infested fruit shrink and dry and remain on the fruit bunch but most of the damaged fruit will fall to the ground after 3–5 days causing a decrease in yield. The mature larva is 9–12 mm long and yellow-green with a light yellow head with two black spots on the front and dark brown-yellow stripes on the sides of the body (Li 2004; Zhang 2005b).

The peak damage periods are early-mid July and mid-late August and the most severe damage occurs between late July and mid-August as during this period two generations overlap and
damage grapes at the same time (BAIRC 2007). Fruit drops start to occur from early-mid July. The damage is less severe after late-August and no more damage occurs after mid-September. Mature larvae pupate on the grape stems. Pupae are about 9 mm long, green initially but turning yellow-green then brown. In early-mid September, adults emerge and overwinter as adults. After adult emergence the pupal shell usually remains on the fruit bunch and is clearly visible after mid-September. Damaged grapes remaining on the bunch are conspicuous due to their abnormal shape and visible larval exit holes (Li 2004).

The risk scenario of concern for *N. vitis* is that first and second generation eggs, larvae and pupae, may be imported in table grapes.

4.13.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues respectively.

Probability of importation

The likelihood that *N. vitis* will arrive in Australia with the importation of table grapes from China is: **MODERATE**.

Supporting information for this assessment is provided below:

- *Nippoptilia vitis* has been reported on table grapes in Guangxi, Guizhou, Hebei, Henan, Jilin and Taiwan in China (AQSIQ 2006; Li 2004; Zhang 2005b).

- In the northern provinces, (e.g. Jilin), *N. vitis* overwinters as adults in grasses or cracks in the soil or in dead branches or leaf folds (Li 2004) and is unlikely to be present on grape bunches imported from the northern provinces. It is unknown whether the egg, larval and pupal stages are as cold tolerant as the adult stage. In the southern provinces (e.g. Guizhou), it was reported that *N. vitis* overwinter as mature larvae (Zheng *et al*. 1993). Guizhou has warm winters (Ministry of Culture 2003), suggesting that mature larvae may remain in harvested grape bunches but may not survive cold temperatures during cold storage and during transportation.

- In China, table grapes for export are harvested and exported usually between August and October each year depending on the cultivar and geographical location (AQSIQ 2008). Table grape varieties with different harvesting times show a variation in *N. vitis* damage. BAIRC (2007) reported that in vineyards which grow multiple varieties, 1.1% of fruit from early season varieties are damaged by *N. vitis* whilst up to 60% of fruit are damaged in late season varieties. However, in single variety vineyards serious damage can occur any time whether the variety being grown is harvested early or late (BAIRC 2007). It is unknown whether the vineyards discussed were commercial or not.

- Larvae of *N. vitis* can feed in grape bunches from early-July to mid-September (BAIRC 2007). The larvae bore into the young grape, mainly from the stem end but some enter around the calyx end. Frass is extruded from the infested grape. During its development, one larva can damage over 10 grapes. After larvae have fed, damaged grapes shrink and eventually fall from the grape bunch in 3–5 days (BAIRC 2007).

- Pupae of *N. vitis* may be present in the harvested grape bunches, as larvae tend to pupate on grape stalks within the grape bunch (Li 2004). Pupae are about 9 mm long, initially green but turning yellow-green then brown. (Li 2004; Zhang 2005b).
• Table grapes infested by *N. vitis* may be identified and removed from the export pathway during harvesting, processing and packing, due to their abnormal shape, the presence of frass, visible larval exit holes and the presence of the pupae attached to the stalks of grape bunches (Li 2004).

• Pupae may also survive the post-harvest processes and the cold temperature during storage and transportation, but no information appears to be available for pupal survival under these conditions.

The association of larvae and pupae with the fruit, moderated by conspicuous fruit damage that may result in removal of infested fruit, supports a likelihood estimate for importation of ‘moderate’.

Probability of distribution

The likelihood that *N. vitis* will be distributed within Australia in a viable state as a result of the processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **LOW**.

Supporting information for this assessment is provided below:

• Packed grapes are usually not processed or handled again until they arrive at the retailers as grapes are easily damaged through rough handling and impacts due to their thin skins (Mencarelli and Bellincontro 2005). Therefore, any pests or pathogens in the packed grapes are unlikely to be detected during transportation and distribution to retailers.

• The cold tolerance of *N. vitis* is unknown and it is unknown whether larvae inside table grapes would be able to survive cold storage before and during transportation and distribution as *N. vitis* adults overwinter in northern China. Late developing larvae and pupae may remain in the fruit and may survive storage, transportation and distribution via wholesale or retail trade and be associated with infested waste.

• Table grapes are intended for human consumption and *N. vitis* may remain on the fruit and may enter into the endangered area through distribution of fruit. The disposal of fruit waste (e.g. vegetative parts of the bunch and discarded berries) may further aid distribution of viable *N. vitis* as waste may be discarded into compost heaps or into domestic waste and end up in landfills. Some discarded grapes may end up close to grapevines.

• *Nippoptilia vitis* has a very restricted host range and only infests grapes (*Vitis vinifera*) (Zhang 2005b). However, grapevines are widely and sporadically distributed throughout Australia, including in domestic and commercial environments and abandoned grapevines in temperate regions of Australia. These grapevines could occur near the transport pathway and/or end destination of imported table grapes (ANBG 2009).

• Adult *N. vitis* have wingspans of almost 20 mm which enable them to fly to find a mate and also fly to suitable hosts to lay eggs (Li 2004). *Nippoptilia vitis* can enter the endangered area through flight of adults that would emerge from pupae developed from larvae. However, after overwintering, active adults can live from 2–12 days but most of them live 3–4 days (BAIRC 2007) and plume moths are poor fliers (OzAnimals 2009a).

The association of eggs, larvae and pupae with grapes, moderated by the grapevine being their only host and their poor flying ability supports a likelihood estimate for distribution of ‘low’.
Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *N. vitis* will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: **LOW**.

4.13.2 Probability of establishment

The likelihood that *N. vitis* will establish within Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: **LOW**.

Supporting information for this assessment is provided below:

- *Nippoptilia vitis* is established in China in the provinces of Guangxi, Guizhou, Hebei, Henan, Jilin and Taiwan (Li 2004; Zhang 2005b; BAIRC 2007; AQSIQ 2006; Zheng *et al.* 1993; Wu and Li 1998). It has also been recorded from Japan and Korea (BAIRC 2007). Climatic conditions in temperate parts of Australia are similar to those in these countries.

- *Nippoptilia vitis* has a very restricted host range. It was reported that this species only infests grapes (*Vitis vinifera* and other *Vitis* spp.) (Li 2004; Zhang 2005b). However, grapevines are widely and sporadically distributed throughout Australia, including in domestic and commercial environments and abandoned grapevines in temperate regions of Australia. Some of these areas are not very far away from residential areas.

- After overwintering, *N. vitis* adults can live from 2–12 days but most of them live 3–4 days (BAIRC 2007) and plume moths are poor fliers (OzAnimals 2009a). *Nippoptilia vitis* requires both males and females for reproduction so may need to locate a mate within a relatively short time frame.

- Each *N. vitis* female lays 39–98 eggs on flowers and tendrils at an early stage and then on stems and the base of fruit as fruit develop. After hatching, larvae bore into fruit (Li 2004).

- *Nippoptilia vitis* has two generations a year in Jilin in north China, overwintering as adults (Zheng *et al.* 1993). In Guizhou, in south-west China, *N. vitis* has three overlapping generations, and overwinters as mature larvae (BAIRC 2007).

- Natural enemies such as predators and parasitoids are reported as being associated with *N. vitis* (Wu and Li 1998) in Guizhou in China, but their effectiveness in Australia is difficult to assess.

- Integrated Pest Management (IPM) programs are practiced in the production of table grapes in Australia (Nicholas *et al.* 1994). Insecticides used against mealybugs, mites and light brown apple moth (*Epiphyas postvittana* (Walker)) in Australian commercial vineyards may have some impact on the establishment of this pest. An integrated approach using chemicals and vineyard management has been reported to be effective in controlling *N. vitis* in Jilin and Guizhou (Li 2004; Zhang 2005b; Zheng *et al.* 1993).

- However, there are no control measures in place for abandoned grapevines and in domestic environments.
The limited and sporadically distributed host range, a weak dispersal capacity and the need to find a mate for sexual reproduction in a short time frame, support a likelihood estimate for establishment of ‘low’.

4.13.3 Probability of spread

The likelihood that *N. vitis* will spread within Australia, based on a comparison of those factors in source and destination areas that affect the expansion of the geographic distribution of the pest, is: LOW.

Supporting information for this assessment is provided below:

- *Nippoptilia vitis* has been reported in both northern and southern China, north and south Korea and Japan (APHIS 2002), suggesting that climatic conditions in many parts of temperate Australia may be suitable for the survival and spread of this moth.
- Grapes, the only recorded host of *N. vitis*, are grown in many parts of Australia. Table grapes for human consumption and grapes for wine production may be distributed vast distances around the country, aiding the spread of these insects on infested fruit.
- Adult *N. vitis* have a 17–19 mm wingspan however they are considered weak fliers (OzAnimals 2009a) and although they can live from 2–12 days after overwintering, most of them live 3–4 days (BAIRC 2007) which may greatly limit their natural spread.

The limited and sporadically distributed host range, weak dispersal capacity and the short adult life span, support a likelihood estimate for spread of ‘low’.

4.13.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that *N. vitis* will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: VERY LOW.

4.13.5 Consequences

The consequences of the establishment of *N. vitis* in Australia have been estimated according to the methods described in Table 2.3.

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘D’, the overall consequences are estimated to be LOW.

Reasoning for these ratings is provided below:
4.13.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the estimate of consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Nippoptilia vitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
</tr>
<tr>
<td>Consequences</td>
</tr>
<tr>
<td>Unrestricted risk</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *N. vitis* of ‘negligible’ achieves Australia’s ALOP. Therefore, specific risk management measures are not required for this pest.
4.14 Apple heliodinid

Stathmopoda auriferella **EP**

Stathmopoda auriferella belongs to the family Oecophoridae and is commonly known as the apple heliodinid. This lepidopteran family includes other pest species of fruit, such as *Stathmopoda masinissa*, the persimmon fruit moth.

Stathmopoda auriferella has four life stages: egg, larva, pupa and adult. Adults are small, with an average wingspan of 12.3 mm. Eggs are about 0.12 mm. Mature larvae are 9.8 mm in length. Pupae are 5.9 mm long. This species appears to have two generations per year on kiwifruit in Korea (Park et al. 2001).

While *S. auriferella* has been found on table grapes (NPQS 2007; APHIS 2002), the biology of this species on table grapes has not been reported in detail. Therefore, available information of its biology on other fruits (e.g. kiwifruit) is used for the risk assessment.

The risk scenario of concern for *S. auriferella* is the potential for eggs to be laid on and larvae burrowing into grape bunches.

Stathmopoda auriferella was included and/or assessed in the review under existing import policy for citrus from Egypt (Biosecurity Australia 2002) and in the existing import policy for Fuji apples from Japan (AQIS 1998a) and unshu mandarin from Japan (Biosecurity Australia 2009b). The assessment of *S. auriferella* presented here builds on these previous assessments.

The probability of importation for *S. auriferella* was rated as ‘moderate’ and the probability of distribution was rated as ‘high’ in the assessment for unshu mandarin from Japan (Biosecurity Australia 2009b). However, differences in commodities, horticultural practices, climatic conditions and the prevalence of the pest between previous export areas (Egypt and Japan) and China make it necessary to reassess the likelihood that *S. auriferella* will be imported into and distributed within Australia with table grapes from China.

The probability of establishment and of spread of *S. auriferella* in Australia, and the consequences it may cause will be the same for any commodity in which the species is imported into Australia. Accordingly, there is no need to reassess these components.

4.14.1 Reassessment of probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues respectively.

Reassessment of probability of importation

The likelihood that *S. auriferella* will arrive in Australia with the importation of table grapes from China is: **LOW**.

Supporting information for this assessment is provided below:

- *Stathmopoda auriferella* is reported from China (Hiramatsu *et al.* 2001; Pathania *et al.* 2009; Shanghai Insect Science Network 2009).
- *Stathmopoda auriferella* is associated with fruit of table grapes in South Korea (NPQS 2007) and is identified as a quarantine pest for Korean table grapes to the USA (APHIS
2004a; APHIS 2002). It has not been reported on table grapes in China. This pest usually infests kiwifruit, stone fruit and apples (Biosecurity Australia 2002).

- **Stathmopoda auriferella** appears to have two generations per year on kiwifruit (Park *et al.* 1994). In Korea, adults occur from late May to mid-July and again from mid-August to early September, with peaks in early to mid-June and late August, respectively. Larvae are commonly found throughout July, whereas pupae start to appear in mid-July, and are commonly found in August (Park *et al.* 1994). No information is available on where they pupate.

- **Stathmopoda auriferella** larvae cause webbing of the flower buds and newly set fruit, often causing affected plant parts to drop from the grapevine.

- Larvae burrow into the green berries, which may split, shrivel, or fall off when damaged (APHIS 2004a).

- On kiwifruit, 70% of the damage by *S. auriferella* occurred on the fruit apex, and 11.1% on the fruit stalk which is on the fruit surface (Park *et al.* 1994). This may also be true for damage on table grapes.

- Packing house procedure would be able to eliminate the split and shrivelled fruit but may not remove the internally damaged fruit with larvae.

- Eggs are very small (0.10–0.13 mm) (Park *et al.* 1994), and they are unlikely to be detected on infested fruit. Data obtained from the related species *Stathmopoda masinissa* suggests that egg numbers laid per female are relatively small from 10–25 per female at different temperatures (Park *et al.* 2001).

- Adult moths are unlikely to stay on the fruit during picking, sorting and packing, in contrast to the egg and larval development stages.

The potential presence of eggs on and the association of larvae with fruit of table grapes, moderated by no report of *S. auriferella* from table grapes in China, support a likelihood estimate for importation of ‘low’.

Reassessment of probability of distribution

The likelihood that *S. auriferella* will be distributed within Australia in a viable state as a result of the processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **HIGH**.

Supporting information for this assessment is provided below:

- Fruit infested with eggs and larvae may be distributed throughout Australia for retail sale.

- Human consumption is the intended use for the commodity in Australia. Individual consumers will distribute small quantities of table grapes to a variety of urban, rural and wild environments, where infested fruit could be disposed of in close proximity to a suitable host.

- Commercial waste will also be discarded in Australia prior to retail sale for human consumption. *Stathmopoda auriferella* is able to survive and develop in table grapes and other organic material. Commercial waste material may contain *S. auriferella* and may be deposited near suitable hosts.
Adult moths are winged and good fliers. On average, adults live for 29.3 days at 20°C, 8.6 days at 25°C and 7 days at 30°C (Park et al. 2001).

As the cold tolerance of *S. auriferella* is unknown, it is possible that *S. auriferella* pupae may survive the post-harvest processes and the period of cold temperature during storage, transportation and distribution.

Stathmopoda auriferella has a wide host range, reported from at least 20 species host plants in 14 genera and 10 families, including commercial fruit producing species such as citrus, mango, avocado, peach, grapes (CABI 2009; Robinson et al. 2007; Yamazaki and Sugiura 2003).

The ability of the adult to fly and the wide host range support a likelihood estimate for distribution of ‘high’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *S. auriferella* will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: LOW.

4.14.2 Probability of establishment and spread

As indicated above, the probability of establishment and of spread for *S. auriferella* would be the same as those assessed for unshu mandarin from Japan (Biosecurity Australia 2009b). The ratings from the previous assessment are presented below:

Probability of establishment: HIGH

Probability of spread: HIGH

4.14.3 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that *S. auriferella* will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: LOW.

4.14.4 Consequences

The consequences of the establishment of *S. auriferella* in Australia have been estimated previously for unshu mandarin from Japan (Biosecurity Australia 2009b). This estimate of impact score is provided below.

Plant life or health C
Other aspects of the environment B
Eradication, control etc. C
Domestic trade D
Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘D’, the overall consequences are estimated to be LOW.

4.14.5 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the estimate of consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Stathmopoda auriferella</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
<td>Low</td>
</tr>
<tr>
<td>Consequences</td>
<td>Low</td>
</tr>
<tr>
<td>Unrestricted risk</td>
<td>Very low</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *S. auriferella* of ‘very low’ achieves Australia’s ALOP. Therefore, specific risk management measures are not required for this pest.
4.15 Thrips

Frankliniella occidentalis is not present in the Northern Territory and is a pest of regional quarantine concern for this territory.

The thrips considered in this pest risk assessment are *Frankliniella occidentalis* and *Rhipiphorothrips cruentatus*. They belong to the Thripidae family and are known as the western flower thrips (WFT) and grapevine thrips, respectively. The thrips species assessed here have been grouped together because of their related biology and taxonomy, and they are predicted to pose a similar risk. Unless explicitly stated, the term ‘thrips’ is used to refer to these two species and the information presented is considered as applicable to both species.

Frankliniella occidentalis is considered the most harmful thrips in viticulture (Roditakis and Roditakis 2007). *Frankliniella occidentalis* is also a vector of several tospoviruses, including tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV) (Morse and Hoddle 2006). Tospoviruses are persistently transmitted by *F. occidentalis*, i.e. once the thrips has acquired the virus, it remains infective for life. Tospoviruses are not passed on to the next generation. *Frankliniella occidentalis* nymphs are also known vectors of tobacco streak ilarvirus (TSV) (Roques 2006).

In India, *R. cruentatus* is a widespread and serious pest of vines in all major production areas (Kulkarni *et al.* 2007; NHB 2009; NRC 2009). There is no information available on its status as a vector.

Adult thrips are very small (less than 2 mm long), narrow-bodied insects with four narrow wings. They are commonly found feeding on leaves, stems, flowers and fruit of grapevines (Rahman and Bhardwaj 1937; Roditakis and Roditakis 2007; Roques 2006).

Adult thrips reproduce sexually and parthenogenetically and both types of reproduction occur simultaneously in the field (Kulkarni *et al.* 2007; Rahman and Bhardwaj 1937). Both species only produce males through parthenogenesis (Rahman and Bhardwaj 1937; Roques 2006).

Frankliniella occidentalis has four life stages: egg, nymph, pupa and adult (Roques 2006). Adult females lay between 20–40 eggs. Eggs are laid in leaves, flower tissue and fruits (Roques 2006). Eggs hatch into nymphs, which are found on leaves, buds, flowers and fruits. Thrips are present throughout the year and their life cycle and development is dependent on optimum temperature and relative humidity conditions (Mau and Martin Kessing 1993). The overall life cycle for *F. occidentalis* lasts from 44.1 days at 15 °C to 15 days at 30 °C (Roques 2006). Roditakis and Roditakis (2007) report that in the laboratory, *F. occidentalis* took 10 days to develop from nymph to adult on ripe grape berries at 25 °C.

Rahman and Bhardwaj (1937) reported the following life cycle for *R. cruentatus* in India. *Rhipiphorothrips cruentatus* also has four life stages: egg, nymph, pupa and adult. There are four immature stages, first instar nymphs, second instar nymphs, prepupa and pupa (Rahman and Bhardwaj 1937).

In India, *R. cruentatus* adults emerge from overwintering pupae in March. Two to ten days after emergence, adults mate then begin feeding. Males die two to seven days after mating. Females lay 15–50 eggs singly in slits on the underside of grapevine leaves at a rate of 2–6 eggs a day (Rahman and Bhardwaj 1937). Eggs hatch into nymphs, which are whitish-yellow
colour and without wings (Rahman and Bhardwaj 1937). Mature adults are dark brown in colour (Rahman and Bhardwaj 1937). All stages of *R. cruentatus* are present between March and October. The adults die off in November and from November to March only pupae are found overwintering in the soil. The grapevine thrips life cycle and development are dependent on optimum temperature and relative humidity conditions (Rahman and Bhardwaj 1937; Kulkarni *et al.* 2007). The overall life cycle for *R. cruentatus* lasts from 33 days at 15 °C to 14 days at 30 °C and there are five to eight generations per year (Rahman and Bhardwaj 1937).

Frankliniella occidentalis and *Rhipiphorothrips cruentatus* are important pest species due to the significant cosmetic damage they cause feeding on developing flowers, leaves and fruit of grapes and a number of commercial and wild host plants (Roditakis and Roditakis 2007). In general, thrips, are a minor problem on wine and raisin grapes, however, table grapes are susceptible to thrips damage (PlantPro 2005). Thrips mouthparts are used to rupture and suck sap from plant cells, causing silverying effect on leaves or corky layer on fruit that can reduce crop yield, productivity and marketability (Kulkarni *et al.* 2007; Mau and Martin Kessing 1993). They can also transmit pathogens while feeding (Roques 2006; Roditakis and Roditakis 2007).

The risk scenario of concern for thrips is the presence of eggs, nymphs and adults in table grape bunches.

Rhipiphorothrips cruentatus is absent from Australia. *Frankliniella occidentalis* is absent from the Northern Territory (DPINT 2008), and interstate restrictions on the movement of host material exist in Australia (DPIW Tasmania 2009; DPINT 2008).

Frankliniella occidentalis was assessed in the existing import policy for tomatoes from the Netherlands (Biosecurity Australia 2003), table grapes from Chile (Biosecurity Australia 2005c), oranges from Italy (Biosecurity Australia 2005b), stone fruit from New Zealand (Biosecurity Australia 2006c); unshu mandarin from Japan (Biosecurity Australia 2009b) and capsicum from Korea (Biosecurity Australia 2009a).

Rhipiphorothrips cruentatus was assessed in the existing import policy for mangoes from Taiwan (Biosecurity Australia 2006d).

The assessment of *F. occidentalis* and *R. cruentatus* presented here builds on these previous assessments.

The probability of importation for *F. occidentalis* was rated as ‘low’ in the assessment for table grapes from Chile (Biosecurity Australia 2005c), ‘moderate’ in the assessment for tomatoes from the Netherlands (Biosecurity Australia 2003) and ‘high’ in the assessments for oranges from Italy (Biosecurity Australia 2005b), stone fruit from New Zealand (Biosecurity Australia 2006c), unshu mandarin from Japan (Biosecurity Australia 2009b) and capsicum from Korea (Biosecurity Australia 2009a). The probability of importation for *R. cruentatus* was rated as ‘moderate’ in the assessment for mangoes from Taiwan (Biosecurity Australia 2006d).

The probability of distribution for *F. occidentalis* was rated as ‘moderate’ in the assessments for oranges from Italy (Biosecurity Australia 2005b), table grapes from Chile (Biosecurity Australia 2005c), stone fruit from New Zealand (Biosecurity Australia 2006c), unshu mandarin from Japan (Biosecurity Australia 2009b) and capsicum from Korea (Biosecurity Australia 2009a) and ‘high’ in the assessment for tomatoes from the Netherlands (Biosecurity Australia 2003).
Australia 2003). The probability of distribution for *R. cruentatus* was also rated as ‘moderate’ in the assessment for mangoes from Taiwan (Biosecurity Australia 2006d).

However, differences in commodities, horticultural practices, climatic conditions and prevalence of the pests between the previous export areas (Chile, Italy, Japan, Korea, New Zealand, the Netherlands and Taiwan) and China make it necessary to re-assess the likelihood that thrips will be imported into and distributed within Australia with table grapes from China.

The probability of establishment and of spread of thrips in Australia, and the consequences they may cause will be the same for any commodity in which these species are imported into Australia. Accordingly, there is no need to re-assess these components.

4.15.1 Reassessment of probability of entry

Reassessment of probability of importation

The likelihood that the *F. occidentalis* and *R. cruentatus* will arrive in Australia with the importation of table grapes from China is: **HIGH**.

Supporting information for this assessment is provided below:

- Both *F. occidentalis* and *R. cruentatus* are recorded in China (CABI 2009; Hong *et al.* 2007). *Frankliniella occidentalis* is only found in Beijing and Yunnan (Ren 2006; Wu *et al.* 2009). *Rhipiphorothrips cruentatus* is found in the southern provinces of Guangxi, Hainan and Guangdong (CABI 2009).

- *Frankliniella occidentalis* is associated with table grapes in Korea (NPQS 2007) and *Rhipiphorothrips cruentatus* is associated with table grapes in India (Rahman and Bhardwaj 1937; Kulkarni *et al.* 2007).

- Both thrips can scar berries with their feeding which may appear as silvering or corky scabs on the fruit, which renders certain varieties unmarketable (Kulkarni *et al.* 2007; Lopes *et al.* 2002; FICCI 2009). Table grapes with such symptoms may be detected during sorting and packing processes but at low levels of infestation may be difficult to detect.

- Nymph and adult thrips are very small (less than 2 mm) (CABI 2009; Kulkarni *et al.* 2007) and inconspicuous. Thrips prefer cryptic habitats i.e. small crevices and tightly closed plant parts. Adults and immature forms may hide within bunches (i.e. in crevices on grape stalks and stems).

- Female *F. occidentalis* and *R. cruentatus* thrips can produce 20–100 (Mau and Martin Kessing 1993) and 15–50 eggs (Rahman and Bhardwaj 1937), respectively. The eggs are very small and may be laid on, or inserted under the skin of fruit or leaves (Kulkarni *et al.* 2007; Mau and Martin Kessing 1993).

- Adults, eggs and nymphs may escape detection, particularly when present in low numbers.

- *Frankliniella occidentalis* is opportunistic, well adapted to surviving difficult conditions, and first instar nymphs are capable of tolerating temperatures below freezing over extended periods (McDonald *et al.* 1997). *Rhipiphorothrips cruentatus* appears to be less tolerant of cold, as adults do not appear to survive 4 °C for more than 5 hours (Rahman and Bhardwaj 1937).
However, thrips have been recorded on produce entering the Netherlands from 30 different countries over a thirteen-year period (1980-1993), and approximately 1000 thrips specimens are intercepted by USA border inspectors annually (Morse and Hoddle 2006). Therefore, thrips appear to be capable of surviving packing house procedures, cold storage and transport conditions.

The small size and cryptic nature of thrips, their cold tolerance and the association of several life stages with table grape bunches, all support a likelihood estimate for importation of ‘high’.

Reassessment of probability of distribution

The likelihood that *F. occidentalis* and *R. cruentatus* will be distributed within Australia in a viable state as a result of the processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **MODERATE**.

Supporting information for this assessment is provided below:

- Adults, eggs and nymphs may hide within bunches (for example, in crevices on the fruit stems) and therefore remain with the table grapes during distribution via wholesale or retail sale.
- The commodity may be distributed throughout Australia for retail sale. The intended use of the commodity is human consumption but waste material would be generated (e.g. vegetative parts of the bunch and discarded berries).
- These thrips could enter the environment directly from purchased fruit, from fruit at the point of sale, or through eggs that have hatched in discarded fruit or fruit waste before the fruit desiccates or decays.
- Both thrips species are poor fliers and are mainly dependent on wind-assisted flight for dispersal (CABI 2009; Mau and Martin Kessing 1993; Rahman and Bhardwaj 1937; Roques 2006). They can be dispersed long distances by strong winds but may only leap from leaf to leaf through natural dispersal (Rahman and Bhardwaj 1937). Thrips may also be dispersed on clothing, equipment, containers or planting material (Roques 2006).
- *Frankliniella occidentalis* is highly polyphagous with a broad host range of more than 500 species in 50 plant families including many cultivated crops and ornamentals (Mau and Martin Kessing 1993). *Rhipiphorothrips cruentatus* is also polyphagous but has a smaller host range which also include commercial fruit (CABI 2009). Many of these host plants are widely distributed in Australia, including the Northern Territory, allowing for the potential distribution of this pest.

The small size, cryptic behaviour, oviposition in protected plant parts, tendency to infiltrate tight spaces, wide host range, wind-assisted dispersive capacity of thrips, moderated by its weak directional flying ability, support a likelihood estimate for distribution of ‘moderate’.

Overall probability of entry

The overall probability of entry is determined by combining the probabilities of importation and of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *F. occidentalis* and *R. cruentatus* will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: **MODERATE**.
4.15.2 Probability of establishment and spread

As indicated above, the probability of establishment and of spread for *F. occidentalis* and *R. cruentatus* would be the same as those assessed tomatoes from the Netherlands (Biosecurity Australia 2003), table grapes from Chile (Biosecurity Australia 2005c), oranges from Italy (Biosecurity Australia 2005b), stone fruit from New Zealand (Biosecurity Australia 2006c); unshu mandarin from Japan (Biosecurity Australia 2009b), capsicum from Korea (Biosecurity Australia 2009a) and mangoes from Taiwan (Biosecurity Australia 2006d). The ratings from the previous assessments are presented below:

Probability of establishment: **HIGH**
Probability of spread: **HIGH**

4.15.3 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that *F. occidentalis* and *R. cruentatus* will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: **MODERATE**.

4.15.4 Consequences

The consequences of the establishment of *F. occidentalis* in Australia have been estimated previously for tomatoes from the Netherlands (Biosecurity Australia 2003), table grapes from Chile (Biosecurity Australia 2005c), oranges from Italy (Biosecurity Australia 2005b), stone fruit from New Zealand (Biosecurity Australia 2006c); unshu mandarin from Japan (Biosecurity Australia 2009b) and capsicum from Korea (Biosecurity Australia 2009a). This estimate of impact score is provided below expressed in the current system (Table 2.3).

Plant life or health	D
Other aspects of the environment	B
Eradication, control etc.	D
Domestic trade	D
International trade	D
Environment	B

The consequences of the establishment of *R. cruentatus* in Australia have been estimated previously for mangoes from Taiwan (Biosecurity Australia 2006d). This estimate of impact score is provided below expressed in the current system (Table 2.3).

Plant life or health	D
Other aspects of the environment	B
Eradication, control etc.	C
Domestic trade	C
International trade	D
Environment	B
Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘D’, the overall consequences for both thrips species are estimated to be: LOW.

4.15.5 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the outcome of overall consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Frankiniella occidentalis and Rhipiphorothrips cruentatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
</tr>
<tr>
<td>Consequences</td>
</tr>
<tr>
<td>Unrestricted risk</td>
</tr>
</tbody>
</table>

The unrestricted risk estimate for *F. occidentalis* and *R. cruentatus* of ‘low’ exceeds Australia's ALOP. Therefore, specific risk management measures are required for these pests.
4.16 Grape cluster black rot

Physalospora baccae

Grape cluster black rot, or axle blotch as it is also called, is an important fungal disease of grapes in China caused by *Physalospora baccae* (Li 2001; Zhang 2005b). There has been some debate about the nomenclature of the organism. The name *Physalospora baccae* Cavara is a *nomen dubium* of unknown application. It is not known if the grape pathogen to which this name is applied in Japan and Korea is the same as the original European pathogen. The grape pathogen should be designated as ‘*Physalospora baccae* sensu Asian authors’ (Harman 2009). ‘*Physalospora baccae* sensu Nishikado non Cavara’ is listed in the National Institute of Agrobiological Sciences Genbank Database of Plant Diseases in Japan. In China, *Physalospora baccae* Cavara has been considered to be a synonym of *Guignardia baccae* Cavara (Cav.) Jacz. (Tai 1979; Qi *et al.* 2007), which is not a valid name. *Guignardia baccae* (Cav.) Jacz. was included in the pest list provided by AQSIQ (2006). The pycnidial stage of the fungus is identical with *Macrophoma reniformis* (Viala & Ravaz) Cavara (Nishikado 1921).

Little information is formally published on *Physalospora baccae*, grape cluster black rot or axle blotch disease. A number of scientific publications, along with two Chinese websites that do not appear to be refereed (BAIKE 2009; NYZSW 2009), were used to develop this assessment.

Physalospora baccae infects grape berries, leaves, pedicels and peduncles (Zhang 2005b). Wind, rain and insects spread the conidia and ascospores in May and June with the peak disease period being from July to September when the weather is warm and humid. Fruit are likely to develop disease symptoms from when they start to ripen up until harvest.

The risk scenario of concern for *Physalospora baccae* is that the fungus will be present on or in the harvested grape bunches, infected bunches will be imported and the pathogen will establish in Australia.

4.16.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.

Probability of importation

The likelihood that *P. baccae* will arrive in Australia with the importation of table grapes from China is: **HIGH**.

Supporting information for this assessment is provided below:

- *Physalospora baccae* is present across the major grape growing regions of China (Li 2001) including the provinces: Liaoning, Hebei, Henan, Shandong, Anhui, Jiangsu and Zhejiang (AQSIQ 2009c). It generally only causes serious damage in areas with poor horticultural practices in seasons that are warm and wet (Zhang 2005b; BAIKE 2009; NYZSW 2009). Grapes may be sourced and exported from any region in China. Li (2001) ranked *P. baccae* as ninth out of eleven major diseases by incidence where the pathogen occurred.
Physalospora baccae overwinters as pycnidia and perithecia on infected peduncles, pedicels and fruit as well as on fallen leaves and trash within the vineyards. It can also overwinter as mycelia in the infected tissues and produce perithecia the next spring (BAIKE 2009; NYZSW 2009).

During periods of wet weather in spring when temperatures rise, overwintered pycnidia and perithecia of P. baccae release conidia and ascospores (BAIKE 2009; NYZSW 2009). Wind, rain and insects spread the conidia and ascospores to infect grape clusters in May and June (Zhang 2005b). Symptoms start to appear in July, with the peak disease period from July to September when the weather is warm and humid. Fruit are likely to develop disease from when they start to ripen until harvest.

The reported timing suggests a period of symptomless infection of two months or more, i.e. from May until July. No other information was found concerning symptomless infection, but it was considered that it might occur after July. Fungicide applications may delay and modify or mask symptom expression.

Infected pedicels develop light brown spots around the junction with the fruit (Zhang 2005b; NYZSW 2009). Pedicels dry and shrink when the brown spots encircle them and infections then spread to the fruit and peduncles.

After infection, peduncles develop brown spots that slowly turn black and enlarge and then the peduncles dry out (Zhang 2005b; NYZSW 2009).

Infected berries develop irregular brown spots that spread to cover the whole fruit (Zhang 2005b; NYZSW 2009). Infected berries then turn purple or black and dry out. Small black spots (pycnidia) develop on their surface. The infected mummified berries remain in the grape cluster on the vine and do not drop off.

The reported information suggests pycnidia may release conidia during summer and autumn, allowing spores to contaminate the surfaces of grape clusters.

During commercial harvesting procedures, pickers select and harvest bunches of normal fruit, discarding inferior, diseased, small and damaged bunches. Inferior berries are likely to be trimmed from bunches during harvest (AQSIQ 2008).

In the packing house during routine commercial post-harvest procedures, e.g. sorting, grading, packing and quality inspection and control, inferior or defective grape berries are likely to be removed from bunches before packing (AQSIQ 2008). This will not remove fruit with symptomless infection and is unlikely to remove all mummified fruit.

Pycnidia, perithecia and mycelia of the pathogen survive through winter in dead plant matter (Zhang 2005b; NYZSW 2009). Fruiting structures, spores and mycelia of the pathogen are likely to survive cold storage and transport.

The wide distribution of this pathogen in China, the potential for infected grape clusters to be symptomless and the likelihood that the pathogen will survive storage and transport, all support a likelihood estimate for importation of ‘high’.

Probability of distribution

The likelihood that P. baccae will be distributed within Australia in a viable state as a result of processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **MODERATE**.

132
Supporting information for this assessment is provided below:

- Pycnidia, perithecia and mycelia of *P. baccae* survive through winter in dead plant matter (Zhang 2005b; NYZSW 2009). Pycnidia, perithecia, spores and mycelia of the pathogen are likely to survive cold storage and transport.

- Imported fruit are intended for human consumption. Fruit will be distributed to many localities by wholesale and retail trade and by individual consumers. Grape clusters may be distributed to all states in unrestricted trade.

- Most fruit waste, berries, clusters and stalks, will be discarded into managed waste systems and will be disposed of in municipal tips. Consumers will discard small quantities of fruit waste in urban, rural and natural localities. Small amounts of fruit waste will be discarded in domestic compost.

- Fruit waste may be discarded near host plants.

- Spores may be spread by wind, rain or insects (NYZSW 2009) from discarded fruit waste to a host plant.

- *Physalospora baccae* is only known to infect *Vitis* spp. (Zhang 2005b; NYZSW 2009).

- Grapevines are sporadically but widely distributed throughout Australia. Domestic garden plantings, both maintained and abandoned, occur in all or most Australian towns and cities and by many farmhouses. Table grape production occurs in all Australian states and NT (DPIW Tasmania 1999; Australian Table Grape Association 2008). Extensive wine grape plantings are found across the south-eastern quarter of Australia and the southwest of WA (Kiri-ganai Research Pty Ltd 2006).

The likely survival of the pathogen through cold storage and transport, moderated by the limited host range, supports a likelihood estimate for distribution of ‘moderate’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *P. baccae* will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: MODERATE.

4.16.2 Probability of establishment

The likelihood that *P. baccae* will establish within Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: HIGH.

Supporting information for this assessment is provided below:

- *Physalospora baccae* is present across the major grape growing regions of China (Li 2001). It is also present in Japan and South Korea (Nishikado 1921; Shin et al. 1984). The climates of these regions vary considerably.

- Other *Physalospora* species are established in Australia (APPD 2009).

- *Physalospora baccae* is only known to infect *Vitis* spp. (Zhang 2005b; NYZSW 2009). Commonly grown *V. vinifera* cultivars are susceptible.
Grapevines are widely distributed throughout Australia, growing in domestic gardens in all cities and most towns. Table grapes are grown in all Australian states and territories (Australian Table Grape Association 2008; DPIW Tasmania 1999). Wine grapes are grown across the south-eastern quarter of Australia and the southwest of WA (Kiri-ganai Research Pty Ltd 2006).

Hot and wet weather promotes development of the fungus and infection of host tissues by spores (Zhang 2005b; NYZSW 2009).

Conidia germinate in 4 hrs at 24–28 °C and ascospores germinate in 5 hrs at 25 °C (BAIKE 2009; NYZSW 2009). Mycelia grow at a wide range of temperatures (5–40 °C) with the optimum being about 25 °C on artificial media (Liu et al. 2006a). An optimum temperature range of 24–28 °C is reported for symptom development on fruit.

Temperatures and humidity in areas of Australia where grapes are grown are likely to be suitable for *P. baccae* to become established.

Suitability of the Australian climate and spore dispersal by wind, rain and insects support a likelihood estimate for establishment of ‘high’.

4.16.3 Probability of spread

The likelihood that *Physalospora baccae* will spread within Australia, based on a comparison of factors in the source and destination areas that affect the expansion of the geographic distribution of the pest, is: **HIGH**.

Supporting information for this assessment is provided below:

- During periods of wet weather when temperatures rise in spring, overwintered pycnidia and perithecia of *Physalospora baccae* release conidia and ascospores (BAIKE 2009; NYZSW 2009).
- Wind, rain and insects spread the conidia and ascospores to infect grape clusters in spring and early summer.
- Australian grown grapes are distributed to many localities by wholesale and retail trade and by individual consumers. If infected, movement of Australian grape clusters and grapevines may contribute to spreading the pathogen.
- *Physalospora baccae* is only known to infect *Vitis* spp. (Zhang 2005b; NYZSW 2009). Commonly grown *V. vinifera* cultivars are susceptible.
- Table grapes are grown in all Australian states and territories (Australian Table Grape Association 2008; DPIW Tasmania 1999) and wine grapes are grown across the south-eastern quarter of Australia and the southwest of WA (Kiri-ganai Research Pty Ltd 2006). Grapevines are also grown in domestic gardens.
- *Physalospora baccae* is present across the major grape growing regions of China (Li 2001) indicating a capacity to spread.
- In China, *P. baccae* is controlled by vineyard sanitation and chemical sprays between flower drop and the young fruit stage (Zhang 2005b). Copper fungicides are reported to provide effective control of the fungus (BAIKE 2009; NYZSW 2009).
Existing disease control programs in Australian vineyards may reduce the ability of \(P. \) \(baccae \) to spread and initiate disease outbreaks, although there are currently no specific control recommendations or precautions in place (DAFWA 2009b; Quirk and Somers 2009).

Suitability of the Australian climate, spore dispersal by wind, rain and insects and the potential for distribution with infected grape clusters support a likelihood estimate for spread of ‘high’.

4.16.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that \(P. \) \(baccae \) will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: MODERATE.

4.16.5 Consequences

The consequences of the establishment of \(P. \) \(baccae \) in Australia have been estimated according to the methods described in Table 2.3.

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘E’, the overall consequences are estimated to be MODERATE.

Reasoning for these ratings is provided below:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>Impact score: E – Significant at the regional level.</td>
</tr>
<tr>
<td>Plant life or health</td>
<td>The Australian grape crop in the 2007/08 season was estimated to have a gross value of $1.693 billion (ABS 2009b). The value of Australian wine produced in the 2007/08 season was estimated to be $4.77 billion (ABS 2009b) of which $2.1 billion was sold locally. Annual production of table grapes is about 120,000 t (Australian Table Grape Association 2008). In 2008/9 Australia exported 70,000 t of table grapes at prices of between $2.08/kg to $3.34/kg (ABS 2009a). Dried grape production was 56,139 t in 2008 and was as high as 135,412 t in 2005 (ABS 2009b). Table grape production occurs in all Australian states and NT (DPIW Tasmania 1999; Australian Table Grape Association 2008). Extensive wine grape plantings are found across the south-eastern quarter of Australia and the southwest of WA (Kiri-ganai Research Pty Ltd 2006). Physalospora baccae infects grape berries, leaves, pedicels and peduncles (BAIKE 2009; NYZSW 2009). It also infects grapevine leaves when the disease is serious. It is reported that the pathogen only causes serious damage in areas with poor horticultural practices in seasons with appropriate temperatures and humidity. The incidence of disease is high in years with hot and humid weather in summer and early autumn in vineyards that are not well managed. High disease incidences, with a fruit infection rate of about 30% have been reported in vineyards in the provinces of Hunan, Fujian and Shanxi (Hu and Lin 1993; Gao et al. 1999) and up to 75% of fruit were infected in a vineyard in Jiangxi province (Li 1984). Vitis vinifera cultivars are more susceptible to disease than American grape cultivars (NYZSW 2009). Physalospora baccae was ranked ninth out of 11 major diseases in China based on incidence where they occurred (Li 2001). Estimates of yield losses were not found but may be consistent with incidence levels.</td>
</tr>
<tr>
<td>Other aspects of the environment</td>
<td>Impact score: A – Indiscernible at the local level. There are no known direct consequences of this fungus on other aspects of the environment.</td>
</tr>
</tbody>
</table>
4.16.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the outcome of overall consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Physalospora baccae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
</tr>
<tr>
<td>Consequences</td>
</tr>
<tr>
<td>Unrestricted risk</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *Physalospora baccae* of ‘moderate’ exceeds Australia’s ALOP. Therefore, specific risk management measures are required for this pest.
4.17 Black rot

Guignardia bidwellii

Black rot of grapevines is caused by the fungus *Guignardia bidwellii*, which has an almost cosmopolitan distribution except for Australasia, western North America and Scandinavia (Farr and Rossman 2009). *Guignardia bidwellii* causes an important disease of grapes affecting the foliage, petioles, shoots, tendrils, cluster stems and fruit, (Ullrich *et al.* 2009; University of Illinois 2001; Ellis 2008b) that causes substantial economic loss (Wilcox 2003; Ramsdell and Milholland 1988).

Guignardia bidwellii overwinters in infected canes, tendrils, fallen leaves and in mummified fruit on the vine or on the ground (Ferrin and Ramsdell 1977; Kummuang *et al.* 1996a; Ellis 2008b; Hartman and Hershman 1999). Spring rains trigger the release of ascospores from pseudothecia, which are wind-borne and disperse moderate distances, and conidia from pycnidia, which are splash-dispersed short distances (centimetres to a metre). Mummified fruit on the ground release ascospores early and mummified fruit in the vine release spores up until the beginning of ripening of the new crop (Ferrin and Ramsdell 1977; Ferrin and Ramsdell 1978; Wilcox 2003).

Infection occurs when the spores land on young, immature tissues and these remain wet for a period of time (Spotts 1977). It can take one to five weeks for symptoms to appear after infection depending on the plant part, time of infection and climatic conditions (Spotts 1980; Wilcox 2003). Once the fungus has become established in susceptible tissues, the anamorph, *Phyllosticta ampelicida*, is formed and production of conidia commences (Hartman and Hershman 1999). Conidia are splash-dispersed (Ferrin and Ramsdell 1978; University of Illinois 2001). Conidia are released in large quantities and can cause rapid spread of the disease (Ferrin and Ramsdell 1978). This cycle of conidial production and infection of susceptible hosts continues for the rest of the season, except when the environment becomes limiting (Hartman and Hershman 1999).

On leaves, symptoms start as small, brown, circular lesions that produce pycnidia in a few days (Spotts 1980; Wilcox 2003). On petioles, symptoms are elongated black lesions. On shoots, symptoms are large black elliptical lesions. On fruit, symptoms initially show as small whitish dots (Eyres *et al.* 2006), which expand to encompass the whole berry and become light or chocolate brown. The berries then turn darker brown, produce pycnidia, then shrivel and turn into hard black mummified fruit (Wilcox 2003). The pycnidia, which are small, black fruiting bodies, appear as dots on the surface of infected tissue (Eyres *et al.* 2006).

Fruit is very susceptible to infection for the first 2 to 3 weeks after cap fall and berries of *V. vinifera* cultivars remain susceptible at a reduced level until 6 to 7 weeks after bloom (Wilcox 2003). Fruit generally starts showing symptoms about 2 weeks after it becomes infected but berries infected near the end of their period of susceptibility do not show symptoms until at least 3 weeks later and do not begin to rot until 4 to 5 weeks after the infection event (Wilcox 2003).

The risk scenario of concern for *G. bidwellii* is that low levels of berry infection, especially berries infected near the end of their period of susceptibility, may escape detection during picking and packing of grape bunches, resulting in the fungus being imported into Australia.
Guignardia bidwellii was included in the existing import policy for table grapes from California (AQIS 2000). No risk assessment was undertaken because California has pest free area status for this pathogen.

4.17.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.

Probability of importation

The likelihood that G. bidwellii will arrive in Australia with the importation of table grapes from China is: HIGH.

Supporting information for this assessment is provided below:

- Guignardia bidwellii has been reported from the table grape producing provinces of Henan, Jiangsu, Liaoning, Shandong, Sichuan and Xinjiang (AQSIQ 2007).

- Guignardia bidwellii is an important disease of grapes. In areas with warm, humid climates, it can cause severe crop loss (Wilcox 2003). In China, 38.5% of table grapes are grown in Xinjiang, which has a warm, dry climate that is not favourable for G. bidwellii (AQSIQ 2009b; AQSIQ 2006; FCC 1997). The percentage of grapes grown in China where the symptoms or crop loss would be severe is unknown.

- There is variability in the susceptibility of V. vinifera cultivars to G. bidwellii (University of Illinois 2001).

- There is variation in the pathogen and several forms have been described (AQIS 2000; Kummuang et al. 1996b; Luttrell 1946).

- All young green tissues of the vine are susceptible to infection by G. bidwellii and the fungus infects the cluster stems and berries (Ullrich et al. 2009; University of Illinois 2001; Ellis 2008b).

- Vitis vinifera wine grape cultivars ‘Riesling’ and ‘Chardonnay’ are highly susceptible for 4 to 5 weeks from mid-bloom (Hoffman et al. 2002) and then maintain a reduced level of susceptibility until 6 or 7 weeks after the flowers open, depending on the season. Age related resistance develops more quickly in warm seasons (Wilcox 2003).

- On the fruit, symptoms start as light brown, soft spots that rapidly enlarge to cover the entire berry. These symptoms are easily visible. Affected berries, covered with pycnidia, shrivel into black, wrinkled mummified fruit which either drop to the ground or remain in clusters (Hartman and Hershman 1999). Symptons take one to five weeks to appear after infection, depending on the plant part, time of infection and climatic conditions (Hoffman et al. 2002; Spotts 1980; Wilcox 2003).

- The proportion of berry infection in a vineyard ranged from 5–58% in the USA (Spotts 1980).

- During commercial harvesting procedures undertaken in the vineyard, pickers select and harvest only bunches of sound fruit. Inferior, diseased, small and damaged bunches are
unlikely to be selected for harvest. Inferior berries are likely to be trimmed from bunches during harvesting (AQSIQ 2008).

- In the packing house during routine commercial post-harvest procedures (e.g. sorting, grading, packing and quality inspection and control), most inferior or defective grapes are likely to be trimmed and removed from bunches of table grapes before packing (AQSIQ 2008). However, it is likely that some infected berries would escape detection in bunches, especially berries infected late in the period of susceptibility when infections develop more slowly.

The susceptibility of all commercial cultivars of *V. vinifera* to infection and the difficulty of removing all infected berries from within grape bunches support a likelihood estimate for importation of ‘high’.

Probability of distribution

The likelihood that *G. bidwellii* will be distributed within Australia in a viable state as a result of the processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **MODERATE**.

Supporting information for this assessment is provided below:

- *Guignardia bidwellii* lasts through the winter in fallen leaves and stem lesions and in mummified fruit on vines and on the ground (Hartman and Hershman 1999). Therefore, the pathogen could survive cold storage.

- Imported grapes are intended for human consumption. Fruit will be distributed to many localities by wholesale and retail trade and by individual consumers. Berries may be distributed to all states in unrestricted trade.

- Most fruit waste will be discarded into managed waste systems and will be disposed of in municipal tips. Consumers will discard small quantities of fruit waste in urban, rural and natural localities. Small amounts of fruit waste will be discarded in domestic compost.

- Fruit waste may be discarded near host plants.

- *Guignardia bidwellii* has a host range of *Ampelopsis* spp., *Cissus* spp., *Citrus* spp., *Parthenocissus* spp., *Psedera* spp., *Vitis* spp., *Arachis hypogaea* (peanut), *Asplenium nidus* (bird's nest fern), *Canthium umbellatum* (kaari), *Heptapleurum venulosum* and *Salvadora oleoides* (CABI 2009; Eyres et al. 2006; Farr and Rossman 2009). Some of these hosts are widely distributed in home gardens, nurseries and orchards in Australia.

- Waste fruit may contain mummified fruit, which may release ascospores and conidia if it rains. Ascospores are wind-borne and conidia are splash-dispersed (Ferrin and Ramsdell 1977; Ferrin and Ramsdell 1978; Wilcox 2003). Wind-borne ascospores can be dispersed considerable distances (Ellis 2008b).

- The fungus can cause infections of fruit and rachises (Spotts 1980; Wilcox 2003). The fungus is adapted to mummification of berries and desiccation (Wilcox 2003).

The ability of the fungus to survive cold storage and release spores from mummified fruit and the wide distribution in Australia of hosts, support a likelihood estimate for distribution of ‘moderate’.
Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *G. bidwellii* will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host, is: MODERATE.

4.17.2 Probability of establishment

The likelihood that *G. bidwellii* will establish within Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: MODERATE.

Supporting information for this assessment is provided below:

- *Guignardia bidwellii* is present in Argentina, Austria, Barbados, Brazil, Bulgaria, Canada, Chile, Cuba, Cyprus, El Salvador, Former Yugoslavia, France, Germany, Guyana, Haiti, India, Iran, Italy, Jamaica, Japan, Korea, Martinique, Mexico, Morocco, Mozambique, Pakistan, Panama, Philippines, Romania, Russian Federation, Slovakia, Sudan, Switzerland, Turkey, Ukraine, Virgin Islands (USA), Uruguay, USA and Venezuela (CABI 2009), indicating that it can establish across a wide range of environments.

- *Guignardia bidwellii* has a host range of *Ampelopsis* spp., *Cissus* spp., *Citrus* spp., *Parthenocissus* spp., *Psedera* spp., *Vitis* spp., *Arachis hypogaea* (peanut), *Asplenium nidus* (bird's nest fern), *Heptapleurum venulosum* and *Salvadora oleoides* (CABI 2009; Eyres *et al.* 2006; Farr and Rossman 2009). Some of these hosts are widely distributed in home gardens, nurseries and orchards in Australia.

- Infection takes place if plant surfaces stay wet long enough for ascospores or conidia to germinate and penetrate host tissues (Hartman and Hershman 1999; Schilder 2006). Free water is required for infection (Hoffman and Wilcox 2002).

- The optimum temperature for disease development is 27 °C (range is 10–32 °C). At this temperature, the period that the plant part is required to remain wet for infection is six hours (Schilder 2006; Spotts 1977). The period of wetness required for infection increases to 24 hours at 10 °C and 12 hours at 32 °C (Schilder 2006; Spotts 1977).

- Temperatures and humidity in high rainfall areas of Australia where grapes are grown are suitable for *G. bidwellii* to infect.

- Only young tissues are infected by *G. bidwellii*. Young leaves are highly susceptible to infection as they unfold but become resistant about the time they finish expanding, while berries of *V. vinifera* remain susceptible until 6–7 weeks after bloom (Wilcox 2003).

- After infection, symptoms generally take one to five weeks to develop (Hoffman *et al.* 2002; Spotts 1980; Wilcox 2003). Once the fungus has become established in susceptible tissues, conidial production commences (Hartman and Hershman 1999).

- The fungus is homothallic so that an infection by a single spore could result in both sexual and asexual reproduction (Jailloux 1992).

- The fungus survives through the winter in fallen leaves and stem lesions and in mummified fruit on vines and on the ground (Hartman and Hershman 1999).
Suitable temperatures and relative humidities for infection in some grape growing regions of Australia and the wide distribution of some hosts in Australia, moderated by the resistance of mature tissues, support a likelihood estimate for establishment of ‘moderate’.

4.17.3 Probability of spread

The likelihood that *G. bidwellii* will spread within Australia, based on a comparison of factors in source and destination areas that affect the expansion of the geographic distribution of the pest, is: **HIGH**.

Supporting information for this assessment is provided below:

- Some hosts of *Guignardia bidwellii* are widely distributed in home gardens, nurseries, vineyards and orchards in Australia. Favourable weather conditions for infection of hosts by *G. bidwellii* are present in parts of Australia with a warm, humid climate.

- Infected fruit, leaves and stems are likely to carry the fungus in the trade and transport of fruit and nursery stock (CABI 2009; Ullrich *et al.* 2009).

- On *Vitis* species, infections usually progress from leaves, petioles and canes to fruit (Ferrin and Ramsdell 1977; Kummuang *et al.* 1996a; Spotts 1980).

- The majority of ascospores from overwintering mummified fruit on the ground are discharged during the period when shoots are growing in spring. If mummified fruit are allowed to hang on the trellis, they can discharge ascospores and conidia throughout the growing season (Hartman and Hershman 1999).

- Spore production starts in the spring as temperatures increase and wet weather prevails (Hartman and Hershman 1999). Spring rain triggers the release of ascospores from pseudothecia, which are wind-borne and disperse moderate distances, and conidia from pycnidia, which are splash-dispersed short distances (centimetres to a metre) (Ferrin and Ramsdell 1977; Ferrin and Ramsdell 1978; University of Illinois 2001; Wilcox 2003). Ascospores are released after 0.3mm or more of rain (Ferrin and Ramsdell 1977). The cycle of conidial production and infection of susceptible hosts continues for the rest of the season, except when the environment becomes limiting (Hartman and Hershman 1999).

- A single ascospore or conidium can cause a leaf infection (Hartman and Hershman 1999; Jailloux 1992). Within each leaf lesion, many pycnidia may be formed, each producing numerous conidia. Each conidium has the potential to cause another secondary infection later in the season (Hartman and Hershman 1999).

The favourability of weather conditions for infection in some parts of Australia, the wide distribution of some hosts in Australia, the prolific production of conidia throughout the season and spread on infected fruit and nursery stock all support a likelihood estimate for spread of ‘high’.

4.17.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.
The likelihood that *G. bidwellii* will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: **LOW**.

4.17.5 Consequences

The consequences of the establishment of *G. bidwellii* in Australia have been estimated according to the methods described in Table 2.3.

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one criterion is ‘**F**’, the overall consequences are estimated to be **HIGH**.

Reasoning for these ratings is provided below:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Plant life or health</td>
<td>Impact score: F – Significant at the national level.</td>
</tr>
<tr>
<td></td>
<td>Guignardia bidwellii has a host range of Ampelopsis spp., Cissus spp., Citrus spp., Parthenocissus spp., Psedera spp., Vitis spp., Arachis hypogaea (peanut), Asplenium nidus (bird's nest fern), Canthium umbellatum (kaari), Heptapleurum venulosum and Salvadora oleoides (CABI 2009; Eyres et al. 2006; Farr and Rossman 2009). The main commercial crops that are hosts are grapes, citrus and peanuts. For citrus and peanuts, there are no records of this fungus causing any damage of economic significance. Guignardia bidwellii causes an important disease of grapes. In areas with warm, humid climates, it can cause severe crop loss (Wilcox 2003). In Europe, crop losses can be from 80–100% (Pezet and Jermini 1989). In the USA, crop losses can be from 70–100% in years that favour the disease (Ferrin and Ramsdell 1977). There is variability in the susceptibility of V. vinifera cultivars (University of Illinois 2001). There can be an unpleasant taste to the wine (CABI 2009) when healthy and infected grapes are used to produce it. Table grape production occurs in all Australian states and NT (DPIW Tasmania 1999; Australian Table Grape Association 2008). Extensive wine grape plantings are found across the south-eastern quarter of Australia and southwest of WA (Kiri-ganai Research Pty Ltd 2006). Annual production of table grapes is about 120 000 t (Australian Table Grape Association 2008). In 2008/9 Australia exported 70 000 t of table grapes at prices of between $2.08/kg to $3.34/kg (ABS 2009a). Dried grape production was 56 139 t in 2008 and was as high as 135 412 t in 2005 (ABS 2009b). In 2007/8 the value of the Australian wine produced was $4.77 billion of which $2.1 billion was sold locally (ABS 2009b). There are no records of this pathogen being able to infect native species in Australia but it is likely it will, given the wide host range on Vitaceae. Also, Asplenium nidus is a species complex that includes A. australasicum, which is an Australian native fern (Yatabe and Murakami 2003).</td>
</tr>
<tr>
<td></td>
<td>Impact score: D – Significant at the district level.</td>
</tr>
<tr>
<td></td>
<td>The presence of G. bidwellii in commercial production areas is likely to result in interstate trade restrictions on table grapes, potential loss of markets, and significant industry adjustment at the district level. The National Viticulture Industry Biosecurity Plan identifies G. bidwellii as a pest risk (PHA 2009).</td>
</tr>
<tr>
<td>Other aspects of the environment</td>
<td>Impact score: A – Indiscernible at the local level. There are no known direct consequences of this fungus on other aspects of the natural environment.</td>
</tr>
<tr>
<td>Indirect</td>
<td></td>
</tr>
<tr>
<td>Eradication, control etc.</td>
<td>Impact score: E – Significant at the regional level.</td>
</tr>
<tr>
<td></td>
<td>Control of G. bidwellii is frequently necessary to prevent crop losses. Programs to minimise the impact of G. bidwellii on host plants are likely to be costly and include cultural control, chemical control (Eyres et al. 2006), early warning systems and Integrated Pest Management (IPM) (CABI 2009). The cultural practices include maintaining an open canopy, weeding under vines, removal of mummified fruit and cultivation before bud-break to bury the fallen mummified fruit (CABI 2009; Eyres et al. 2006). Preventative sprays are applied between bud-burst and when the berries have 5% sugar. The chemicals that are effective are sodium bicarbonate, sodium ethylphosphite, mancozeb, captan, dichlofluanid, folpet, maneb, propineb and zineb (CABI 2009). The chemicals that are effective to use after infection are triadimefon, fenarimol, myclobutanil, hexaconizole and difenoconazole (CABI 2009). Asoxystrobin can be used to prevent or cure an infection of G. bidwellii (CABI 2009). Existing pest management programs may have to be changed due to possible increases in the use of fungicides.</td>
</tr>
<tr>
<td>Domestic trade</td>
<td></td>
</tr>
</tbody>
</table>
4.17.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the outcome of overall consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Guignardia bidwellii</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
<td>Low</td>
</tr>
<tr>
<td>Consequences</td>
<td>High</td>
</tr>
<tr>
<td>Unrestricted risk</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *G. bidwellii* of ‘moderate’ exceeds Australia’s ALOP. Therefore, specific risk management measures are required for this pest.
4.18 Spike stalk brown spot

Alternaria viticola

Alternaria viticola is a newly emerged and quickly spreading pathogen in China, causing a disease known as ‘spike stalk brown spot’ of grapes (Ma *et al.* 2004). It is also known as brown blotch (Wang 2009), or grape rachis blotch (Zhao 2002; Zhu *et al.* 2006). Little information is available on the organism and the disease it causes. This assessment is mainly based on a small number of scientific publications that mention the organism, publications and general knowledge of other *Alternaria* spp., a book of extension advice on pests and diseases control for table grapes in China (Zhang 2005b) and a commercial Chinese source that is not refereed (Grapevinewine 2003).

Alternaria viticola overwinters on cane surfaces, tendrils and in bud scale pieces as conidia (Ma *et al.* 2004). It can also overwinter on diseased debris (Grapevinewine 2003). Spores are spread by wind and rain (Erkara *et al.* 2008; Ma *et al.* 2004).

Alternaria viticola infects young, tender rachises and stalks of bunches, with no symptoms seen in old inflorescences (AQSIQ 2007). Young stalks and berries are infected from early May to early/mid June (Ma *et al.* 2004; Qi *et al.* 2007). The optimum temperature for germination of conidia is 25–27 °C (Ma *et al.* 2004). *Alternaria viticola* causes more serious disease when there is early spring rainfall (Zhang 2005b) and a mild, humid spring (Li 2004). Mild and wet spring weather conditions promote infection and development of the fungus (Grapevinewine 2003).

Alternaria viticola affects stems, inflorescences and berries and in these plant parts the disease development and symptoms are distinct. Infection of the stalks starts with the peduncle and spreads to the pedicels (Li 2004). Symptoms are expressed 3–5 days after infection (Grapevinewine 2003). The infected stalks go brown and dry out causing the flower buds and young fruit on the infected inflorescences to shrink, dry out and drop off (Grapevinewine 2003; Li 2004; Zhang 2005b). When the young fruits reach soybean size, the stalks become resistant to new infection (Grapevinewine 2003; Zhang 2005b). The fungus infects repeatedly on pedicels and berries within a bunch (Zhang 2005b).

Alternaria viticola also infects berries of bunches with healthy stalks. Infected berries develop dark brown or black spots up to 2 mm in diameter on the skin. These spots which probably consist of mycelium or scar tissue expand as the berries grow and then fall off when the berries reach half size. The berries apparently continue to develop normally (Zhang 2005b). However, fruit that have lost their spots are potentially infected but appear normal, i.e. asymptomatic/symptomless.

The risk scenario of concern for *Alternaria viticola* is that the fungus will be present in grape bunches.

4.18.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.
Probability of importation

The likelihood that *A. viticola* will arrive in Australia with the importation of table grapes from China is: **HIGH**.

Supporting information for this assessment is provided below:

- *Alternaria viticola* is present in grape growing regions of China including Anhui, Beijing, Hebei, Henan, Hunan, Liaoning, Shandong, Shanghai and Xinjiang (Grapevinewine 2003; Ma *et al.* 2004; Zhang 2005b; Qi *et al.* 2007; Wang 2009; Zhu *et al.* 2006).

- *Alternaria viticola* was reported to infect 30–50% of vines in southeast Shandong, when not effectively controlled. Incidence may be reduced to 5% in areas with control measures including application of lime sulphur (calcium polysulfide) and Bordeaux mixture at sprouting and Shajunbao 300 (40% carbendazim) prior to flowering (Liu *et al.* 1996; Zhu *et al.* 2006; Ma *et al.* 2004).

- The pathogen infects young fruit, rachises, stalks and leaves (AQSIQ 2007; Grapevinewine 2003) from early May to early/mid June (Ma *et al.* 2004; Qi *et al.* 2007; Zhang 2005b).

- Conidia are spread by wind and rain and can survive long periods on fruit surfaces (Ma *et al.* 2004).

- On berries, the symptoms are brown spots that are superficial and fall off as the berries reach half size (Grapevinewine 2003). The fruit apparently grows normally once the spots fall off (Zhang 2005b). However, fruit that have lost their spots are potentially infected but appear normal. Symptomless infection of fruit appears to be likely.

- Infected stalks turn brown and dry out. The flower buds and young fruits on inflorescences with infected stalks shrink, dry out and drop off (Li 2004; Zhang 2005b). Therefore if bunches have infected stems, the fruit may fail to develop and they may not be picked for export.

- Infected symptomless berries, both immature and mature, may be present in a fruit cluster.

- During commercial harvesting and packing house procedures, inferior or defective bunches and berries may be removed from the export pathway (AQSIQ 2008). A small proportion of inferior or defective berries may escape detection and not be removed.

- Conidial infection mainly occurs from early May to early/mid June (Qi *et al.* 2007). However, the spores may exist on asymptomatic grapes.

- There are differences in disease resistance between cultivars (Zhang 2005b). Red Globe is the most sensitive cultivar (Zhang 2005b), and Red Globe is a commonly grown cultivar for international trade (AQSIQ 2009c).

- The pathogen may be present as asymptomatic endophytic infections as it occurs with other species of *Alternaria* (Cota *et al.* 2008; Guo *et al.* 2004).

- *Alternaria viticola* overwinters as hyphae or conidia (Ma *et al.* 2004; Zhang 2005b) so it is probable that this fungus will survive storage and transport to Australia.

The wide distribution of the fungus in China, its capacity to survive cold conditions and the likelihood of symptomless infection and spores on fruit surfaces, all support a likelihood estimate for importation of ‘high’.
Probability of distribution

The likelihood that *A. viticola* will be distributed within Australia in a viable state as a result of processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **MODERATE**.

Supporting information for this assessment is provided below:

- Imported berries are intended for human consumption. Fruit will be distributed to many localities by wholesale and retail trade and by individual consumers. Berries may be distributed to all states in unrestricted trade.

- Most fruit waste will be discarded into managed waste systems and will be disposed of in municipal tips. Consumers will discard small quantities of fruit waste in urban, rural and natural localities. Small amounts of fruit waste will be discarded in domestic compost.

- Conidia on discarded fruit or from infected fruit and stalk waste may be spread to hosts by wind or rain (Erkara *et al.* 2008; Ma *et al.* 2004).

- *Alternaria viticola* has only been reported infecting *Vitis* spp. including some hybrid grapes (Ma *et al.* 2004; Zhang 2005b). *Vitis* species are grown commercially and in residential gardens in all states and territories (Australian Table Grape Association 2008).

- *Alternaria viticola* overwinters as hyphae or conidia (Ma *et al.* 2004; Zhang 2005b) so it is probable that this fungus will survive transport and storage in Australia.

- *Alternaria viticola* is also saprophytic (Zhang 2005b; Grapevinewine 2003), so it could survive on dying bunches that are distributed in Australia.

- *Vitis* spp. do not propagate naturally in the Australia environment. They only grow in vineyards and domestic gardens where their propagation has been advanced by cultivation.

The capacity of the fungus to survive storage and transport and the spread of spores by wind and rain, moderated by the limited host range, support a likelihood estimate for distribution of ‘moderate’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *A. viticola* will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: **MODERATE**.

4.18.2 Probability of establishment

The likelihood that *A. viticola* will establish within Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: **HIGH**.

Supporting information for this assessment is provided below:

- *Alternaria viticola* has only been reported infecting *Vitis* spp. including some hybrid grapes (Ma *et al.* 2004; Zhang 2005b). *Vitis* species are grown commercially and in residential gardens in all states and territories (Australian Table Grape Association 2008).
The optimum temperature for conidiospore germination is 25–27 °C (Ma et al. 2004). *Alternaria viticola* causes more serious disease when there is early spring rainfall (Zhang 2005b) and a mild, humid spring (Li 2004).

In general, *Alternaria* spp. spores require free water or high humidity (Ferreira and Boley 1991; Hatzipapas et al. 2002; Wharton and Kirk 2007) and temperatures between 1 °C and 40 °C (optimum 23 °C and 35 °C) to germinate (Ferreira and Boley 1991; Kucharek 2000; Stewart-Wade et al. 1998; Uchida 2009; Funk and Gilbert 2009; Wharton and Kirk 2007).

Alternaria viticola is present in grape growing regions of China including Anhui, Beijing, Hebei, Henan, Hunan, Liaoning, Shandong, Shanghai and Xinjiang (Grapevinewine 2003; Ma et al. 2004; Zhang 2005b; Qi et al. 2007; Wang 2009; Zhu et al. 2006). This suggests that this fungus can established under a wide range of climatic environments. Environments with climates similar to these regions exist in various parts of Australia suggesting that *A. viticola* has the potential to establish in Australia.

Many other *Alternaria* species are already present and established in Australia (APPD 2009).

The presence of many other *Alternaria* spp. in Australia and the suitability of the Australian climate support a likelihood estimate for establishment of ‘high’.

4.18.3 Probability of spread

The likelihood that *A. viticola* will spread within Australia, based on a comparison of factors in the source and destination areas that affect the expansion of the geographic distribution of the pest, is: **HIGH**.

Supporting information for this assessment is provided below:

- Infected fruit may be distributed throughout Australia for human consumption, which may contribute to spreading the fungus.
- *Alternaria viticola* has only been reported infecting *Vitis* spp. including some hybrid grapes (Ma et al. 2004; Zhang 2005b). *Vitis* species are grown commercially and in residential gardens in all states and territories (Australian Table Grape Association 2008).
- Conidia on discarded fruit or from infected fruit and stalk waste may be spread to hosts by wind or rain (Erkara et al. 2008; Ma et al. 2004).
- *Alternaria viticola* is present in grape growing regions of China including Anhui, Beijing, Hebei, Henan, Liaoning, Shandong, Shanghai and Xinjiang (Grapevinewine 2003; Ma et al. 2004; Zhang 2005b; Qi et al. 2007; Wang 2009; Zhu et al. 2006). *Alternaria viticola* has spread quickly in some areas of China. This suggests that this fungus can establish and spread under a wide range of climatic environments. Environments with climates similar to these regions exist in various parts of Australia suggesting that *A. viticola* has the potential to spread in Australia.
- Many other *Alternaria* species are already present, established and spread in Australia (APPD 2009).
- In China, *Alternaria viticola* is controlled by vineyard sanitation and chemical sprays between flower bud formation and the young fruit stage (Liu et al. 1996; Zhu et al. 2006;
Ma et al. 2004). Existing control programs in Australian vineyards may reduce the ability for this fungus to spread (Nicholas et al. 1994). Residential gardens may not be sprayed. Suitability of the Australian climate, spore dispersal by wind and distribution with infected fruit all support a likelihood estimate for spread of ‘high’.

4.18.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that *A. viticola* will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: **MODERATE**.

4.18.5 Consequences

The consequences of the establishment of *A. viticola* in Australia have been estimated according to the methods described in Table 2.3.

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘E’, the overall consequences are estimated to be **MODERATE**.

Reasoning for these ratings is provided below:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Plant life or health</td>
<td>Impact score: E – Significant at the regional level. Alternaria viticola can cause serious drop off of flowers and young fruit. Grape production has been seriously damaged in some areas of China. Alternaria viticola spread quickly in Hami in Xinjiang, up to 10-30% of vines were infected, leading to a yield reduction of 30–40% (Ma et al. 2004). It was also reported to cause 30–50% yield reduction in vineyards in southeast Shandong (Zhu et al. 2006). However, incidence may be reduced to 5% in areas with control measures (Liu et al. 1996; Zhu et al. 2006; Ma et al. 2004). Alternaria viticola causes disease on Vitis species (Ma et al. 2004; Zhang 2005b), affecting table grape and wine grape production. Table grape production occurs in all Australian states and NT (DPIW Tasmania 1999; Australian Table Grape Association 2008). Extensive wine grape plantings are found across the south-eastern quarter of Australia and southwest of WA (Kiri-ganai Research Pty Ltd 2006). Annual production of table grapes is about 120 000 t (Australian Table Grape Association 2008). In 2008/9 Australia exported 70 000 t of table grapes at prices of between $2.08/kg to $3.34/kg (ABS 2009a). Dried grape production was 56 139 t in 2008 and was as high as 135 412 t in 2005 (ABS 2009b). In 2007/8 the value of the Australian wine produced was $4.77 billion of which $2.1 billion was sold locally (ABS 2009b).</td>
</tr>
<tr>
<td>Other aspects of the environment</td>
<td>Impact score: A – Indiscernible at the local level. There are no known direct consequences of this fungus on the natural environment.</td>
</tr>
<tr>
<td>Indirect</td>
<td></td>
</tr>
<tr>
<td>Eradication, control etc.</td>
<td>Impact score: D – Significance at the district level. If A. viticola was introduced to Australia it is unlikely eradication would be attempted as it is likely that spores would have been widely dispersed prior to detection of the incursion. Little information on control is available. Control of A. viticola would probably involve additional fungicide applications, which would disrupt the existing IDM program and have a cost associated with it. Australian vineyards are already managed with cultural methods such as vineyard sanitary measures that would help control this fungus (Nicholas et al. 1994). An outbreak of A. viticola may require additional sprays at the flowering stage of growth (Ma et al. 2004; Zhang 2005b; Zhu et al. 2006). Incidence may be reduced to 5% in areas with control measures including application of lime sulphur (calcium polysulfide) and Bordeaux mixture at sprouting and Shajunbao 300 (40% carbendazim) prior to flowering (Liu et al. 1996; Zhu et al. 2006; Ma et al. 2004).</td>
</tr>
</tbody>
</table>
Criterion | Estimate and rationale
---|---
Domestic trade | **Impact score:** D – Significant at the district level.
There would be trade restrictions applied by states where this fungus is not present. Yield reduction would reduce the amount of fruit available for domestic supply from states/territories with this fungus.

International trade | **Impact score:** D – Significant at the district level.
The presence of *A. viticola* in commercial production areas of grapes may limit access to overseas markets which are free from this pest. *Alternaria viticola* has only been reported in China. Yield reduction may reduce the amount and quality of fruit exported.

Environmental and non-commercial | **Impact score:** B – Minor significance at the local level.
Additional fungicide applications or other control measures would be required to control this disease on susceptible hosts and these may have minor impact on the environment.

4.18.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the outcome of overall consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Alternaria viticola</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
<td>Moderate</td>
</tr>
<tr>
<td>Consequences</td>
<td>Moderate</td>
</tr>
<tr>
<td>Unrestricted risk</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *A. viticola* of ‘moderate’ exceeds Australia’s ALOP. Therefore, specific risk management measures are required for this pest.
4.19 Brown rot

Monilinia fructigena

Brown rot, caused by the fungus *M. fructigena*, is common in pome and stone fruit. Grapevine has been reported as a minor host of this pathogen (CABI 2009) but information on the biology of *M. fructigena* on grapevine has not been found. There is no report of *M. fructigena* causing harm to grapes in China (AQSIQ 2007). The information used in the following risk assessment is based on the biology of *M. fructigena* on pome and stone fruit.

Monilinia fructigena is a pathogen favoured by moist conditions (rain, fog and other factors that increase humidity), especially at the beginning of the host’s growth period. This fungus overwinters mainly in or on infected mummified fruit, either attached to the tree or on the ground (Byrde and Willets 1977). Mycelia can survive long periods of adverse environmental conditions within mummified fruits, twigs, cankers and other infected tissues. In spring or early summer when temperature, day length, moisture conditions and relative humidity are suitable for sporulation, sporodochia are formed on the surface of mummified fruit and other infected tissues and bear chains of conidia (Jones 1990). The conidia of *M. fructigena* are dry airborne spores, transported by wind, water or insects to young fruit (Batra 1979; Jones 1990). Initial infection can be via wounds caused by any number of causes or on sound fruit and subsequent spread by contact between adjacent fruit is possible (Byrde and Willets 1977). Any infected tissue in which the moisture content is sufficient for sporulation may serve as a source of inoculum for secondary infection (Batra 1979).

There are only a few records of the development fruiting bodies (apothecia) of *M. fructigena*, which are produced in spring on mummified fruit that have overwintered on the ground (Byrde and Willets 1977). The liberation of ascospores from apothecia normally coincides with the emergence of young shoots and blossoms of plants. Thus a new cycle of infection is started that coincides with early spring growth of host plants (Batra 1979).

The risk scenario of concern for *M. fructigena* is the presence of latent infections and/or spores on bunches of grapes and spread to susceptible host plants.

Monilinia fructigena was included in the existing import policy for pears from China (AQIS 1998b; Biosecurity Australia 2005a), Fuji apples from Japan (AQIS 1998a) and apples from China (Biosecurity Australia 2010b). The assessment of *M. fructigena* presented here builds on these existing policies.

The probability of importation for *M. fructigena* was rated as ‘high’ in the assessment for apples from China (Biosecurity Australia 2010b).

The probability of distribution for *M. fructigena* was rated as ‘high’ in the assessment for apples from China (Biosecurity Australia 2010b).

However, differences in commodity and horticultural practices for apples and table grapes from China make it necessary to reassess the likelihood that brown rot will be imported into and distributed within Australia with table grapes from China.

The probability of establishment and spread of brown rot in Australia, and the consequences it may cause will be the same for any commodity in which this species is imported into Australia. Accordingly, there is no need to reassess these components.
4.19.1 Reassessment of probability of entry

Reassessment of probability of importation

The likelihood that *M. fructigena* will arrive in Australia with the importation of table grapes from China is: **LOW**.

Supporting information for this assessment is provided below:

- *Monilinia fructigena* is recorded on grapes in China (Farr and Rossman 2009). It is present in Anhui, Henan, Hubei, Hunan, Jiangsu, Liaoning, Shaanxi, Shandong, Shanxi, Sichuan, Yunnan and Zhejiang, which are grape growing provinces (CABI 2009).

- Grapevine has been reported as a minor host of *M. fructigena* (CABI 2009) but information on its biology on grapevine has not been found.

- Lack of published information on losses caused by *M. fructigena* on grapevine and advice that there is no report of *M. fructigena* causing harm to grapes in China (AQSIQ 2007) support a low likelihood that table grapes exported to Australia would be infected by this pathogen.

- Conidia are produced on infected blossoms and twigs and infect fruit as it matures (Jones 1990). Warm temperatures and wet conditions favour spore germination and infections (CABI 2009).

- Many insects, including wasps, beetles and flies, may facilitate infection by causing injuries or by transporting spores to susceptible tissue (CABI 2009).

- Visible symptoms on infected grapes are raised light brown pustules. Fruit with old infections form dark, wrinkled, mummified berries (APHIS 2004a). Grape bunches showing disease symptoms may be removed from the export pathway.

- Apparently healthy fruit can be contaminated with conidia in the field or during processes in the packing house (Ma 2006).

- *Monilinia fructigena* has the ability to cause latent infections (Byrde and Willets 1977).

The ability of the fungus to cause latent infection and for conidia to contaminate grape berries, moderated by the minor host status of grapevine and the absence of reports of damage to grapevine in China, support a likelihood estimate for importation of ‘low’.

Reassessment of probability of distribution

The likelihood that *M. fructigena* will be distributed within Australia in a viable state as a result of the processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **HIGH**.

Supporting information for this assessment is provided below:

- *Monilinia fructigena* has a wide range of hosts, including apple, apricot, hazel, nectarine, peach, pear, plum and quince (Byrde and Willets 1977; Farr and Rossman 2009), and various minor hosts, including fig, grapes, guava, persimmons, strawberry and tomato (CABI 2009). These plants are common in parks, home gardens, nurseries, along roadsides and in commercial orchards in Australia (Australian Nurseries Online 2009; Horticulture Australia Limited 2009).
- *Monilinia fructigena* has the ability to cause latent infection in fruit, developing during storage and transport, or as the fruit senesces (Byrde and Willets 1977). The infected fruit may be distributed to various areas during retail distribution.

- Imported grapes are intended for human consumption. Fruit will be distributed to many localities by wholesale and retail trade and by individual consumers. Berries may be distributed to all states in unrestricted trade.

- Most fruit waste will be discarded into managed waste systems and will be disposed of in municipal tips. Consumers will discard small quantities of fruit waste in urban, rural and natural localities. Small amounts of fruit waste will be discarded in domestic compost.

- Fruit waste may be discarded near host plants.

- Mycelia are able to survive long periods of adverse environmental conditions within mummified fruit. When conditions become favourable (after a dormant period), spores are produced on infected tissues (Jones 1990).

- Spores are disseminated by air currents and water splash (Byrde and Willets 1977) and may be dispersed from fruit waste to host plants.

The range of hosts that are widely available in Australia, the ability of infected berries to produce spores and the potential transfer of spores from the fruit waste to a host by wind and water droplets all support a likelihood estimate for distribution of ‘high’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *M. fructigena* will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: **LOW**.

4.19.2 Probability of establishment and spread

As indicated above, the probability of establishment and spread for *M. fructigena* would be the same as those for apples from China (Biosecurity Australia 2010b). The ratings from the previous assessment are presented below:

- Probability of establishment: **HIGH**
- Probability of spread: **HIGH**

4.19.3 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules for combining qualitative likelihood shown in Table 2.2.

The likelihood that *M. fructigena* will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: **LOW**.
4.19.4 Consequences

The consequences of the establishment of *M. fructigena* in Australia have been estimated previously for apples from China (Biosecurity Australia 2010b). This estimate of impact score is provided below:

<table>
<thead>
<tr>
<th>Plant life or health</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other aspects of the environment</td>
<td>B</td>
</tr>
<tr>
<td>Eradication, control etc.</td>
<td>E</td>
</tr>
<tr>
<td>Domestic trade</td>
<td>E</td>
</tr>
<tr>
<td>International trade</td>
<td>E</td>
</tr>
<tr>
<td>Environment</td>
<td>B</td>
</tr>
</tbody>
</table>

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘E’, the overall consequences for both thrips species are estimated to be: MODERATE.

4.19.5 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the outcome of overall consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Monilinia fructigena</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
</tr>
<tr>
<td>Consequences</td>
</tr>
<tr>
<td>Unrestricted risk</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *M. fructigena* of ‘low’ exceeds Australia’s ALOP. Therefore, specific risk management measures are required for this pest.
4.20 Grapevine leaf rust

Phakopsora euvitis

The pathogen which is responsible for grapevine leaf rust in Asia is *Phakopsora euvitis* and not *P. ampelopsidis* nor *P. vitis* which are restricted to other host plants (EPPO 2002).

Before 2000, records in the literature identified the grape leaf fungus present in Asia as *Phakopsora ampelopsidis*. Work by Ono (2000), in Japan, based on morphological characteristics, identified three populations differing in life cycle and host specificity as three separate species. The species occurring on grapes was described as *Phakopsora euvitis*. Further work by Chatasiri and Ono (2008) using molecular phylogenetic analyses on material collected from Australia, East Timor and Japan, confirm the distinctiveness of the three species recognised by Ono (2000). The samples of *Phakopsora euvitis* collected from East Timor and Australia (where an incursion has been eradicated) are genetically distinct from the Japanese collections and may represent a separate species (Chatasiri and Ono 2008). It is not known if the rust present on grapes in China has been subjected to comparative molecular analyses with samples from Japan. Therefore, for the purpose of the pest risk assessment presented here it is assumed that all records of grape leaf rust in east Asia are of *Phakopsora euvitis* including the earlier literature on *Phakopsora ampelopsidis* and *Phakopsora vitis* when reported on a grape (*Vitis* spp.) host.

Phakopsora euvitis is heteroecious and macrocyclic. Basidiospores are formed from teliospores in overwintered *Vitis* spp. leaves and infect *Meliosma myriantha* or *M. cuneifolia* (family Sabiaceae), the alternate host (Weinert *et al.* 2003; Ono 2000). Pycnidia and aecia are formed on *M. myriantha* leaves following infection (Ono 2000). These alternate hosts are widely present in China (USDA 2009b) but do not appear to be present in Australia (Australian National Botanic Gardens and Australian National Herbarium 2008). *Phakopsora euvitis* can persist as the uredinial stage on *Vitis* spp. (Daly and Hennessy 2006).

Spores of *P. euvitis* can easily be transported by wind. Mycelium may persist in grapevine shoots during winter and then urediniospores formed on these shoots become the primary infection source (EPPO 2002; Weinert *et al.* 2003). Uredospores require water for germination and germinate at temperatures of 8–32 °C, with an optimum of 24 °C. Teliospores germinate between 10 °C and 30 °C, with an optimum range between 15 °C and 25 °C. High humidity at night is necessary for development of epidemics (Leu 1988).

Phakopsora euvitis usually infects leaves (Ono 2000) and also infects fruits, stems (APHIS 2002) and occasionally rachises (Leu 1988). The symptoms are yellowish to pale brownish spots or irregular shaped lesions, with masses of yellowish orange urediniospores on the abaxial surface of the lesion. The telia are crust-like and orange-brown, becoming dark brown or almost blackish. Heavy infection is common and can cause early senescence and leaf drop (CABI 2009). The USDA (APHIS 2002) also considered *P. euvitis* on the fresh fruit pathway for table grapes from Korea.

The risk scenario for *P. euvitis* is that the fungus and/or urediniospores will be present in grape bunches.
4.20.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.

Probability of importation

The likelihood that *P. euvitis* will arrive in Australia with the importation of table grapes from China is: **MODERATE**.

Supporting information for this assessment is provided below:

- *Phakopsora euvitis* is present in Anhui, Fujian, Guangdong, Guangxi, Guizhou, Hong Kong, Hunan, Jiangxi and Sichuan in southern China and Gansu, Jiangsu, Shaanxi and Shandong in northern China. These are grape growing provinces (EPPO 2002).

- Leaves are infected between June and November (Kuo 2009). The pathogen occasionally infects rachises and fruit (APHIS 2002; Leu 1988) and may be present in harvested bunches.

- Harvested grapes might also be contaminated by urediniospores.

- The ability to overwinter in temperate regions (Chatasiri and Ono 2008; Weinert *et al.* 2003; Ono 2000) may indicate this fungus could survive being transported at low temperatures.

The wide distribution of this fungus in China, the possibility that this fungus will survive storage and transport and that urediniospores may be a contaminant, moderated by the fact that the fungus only occasionally infects rachises and fruit, support a likelihood estimate for importation of ‘moderate’.

Probability of distribution

The likelihood that *P. euvitis* will be distributed within Australia in a viable state as a result of processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **MODERATE**.

Supporting information for this assessment is provided below:

- Table grapes are being imported for human consumption and will be distributed throughout Australia.

- Urediniospores and teliospores may survive transport and storage because they are the stage in which this fungus overwinters (Leu 1988). Teliospore inoculum is not significant as the alternate hosts do not appear to be present in Australia.

- Mycelium in the grapes and rachis is likely to survive storage and continue to produce spores once the bunch comes out of cold storage (EPPO 2002).

- Urediniospores exposed to sunlight for four hours showed reduced viability (near zero) when germinated 24 and 48 hours later (Daly and Tran-Nguyen 2008).

- Infected table grapes and waste material (stalks) would be discarded in compost heaps or into domestic waste or where grapes are consumed and end up in landfills. In landfills, the waste may be covered, which would reduce the risk of distributing the fungus.
The natural host range is *Vitis* spp. and *Meliosma myriantha* and *M. cuneifolia* (Ono 2000). *Vitis vinifera* is grown commercially in all states (Australian Table Grape Association 2008) and as well as in backyard gardens (NTG 2007). Other species of *Vitis* are present in Australia (Australian National Botanic Gardens and Australian National Herbarium 2008; Hnatiuk 1990). The two species of *Meliosma* do not appear to be present in Australia (Australian National Botanic Gardens and Australian National Herbarium 2008).

Australian, East Timor and Japanese isolates have been shown capable of infecting native *Ampelocissus* spp. that are found in northern Australia (Daly et al. 2005; Chatasiri and Ono 2008; Daly and Hennessy 2006).

Table grapes from China will be imported between August and October (AQSIQ 2008). Therefore, table grapes will be imported when grapevines in Australia will have leaves susceptible to infection.

The possibility of infected waste materials being distributed close to the hosts and the fact this fungus would survive storage and transport, moderated by the limited distribution of other hosts within Australia, support a likelihood estimate for distribution of ‘moderate’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *P. euvitis* will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: **LOW**.

4.20.2 Probability of establishment

The likelihood that *P. euvitis* will establish within Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: **MODERATE**.

Supporting information for this assessment is provided below:

- The natural host range is *Vitis* spp. and *Meliosma myriantha* and *M. cuneifolia* (Ono 2000). *Vitis vinifera* is grown commercially in all states (Australian Table Grape Association 2008) and as well as in backyard gardens (NTG 2007). Other species of *Vitis* are present in Australia (Australian National Botanic Gardens and Australian National Herbarium 2008; Hnatiuk 1990). The two species of *Meliosma* do not appear to be present in Australia (Australian National Botanic Gardens and Australian National Herbarium 2008).

- *Phakopsora euvitis* also infects *Ampelocissus* spp. but may not persist on these deciduous hosts in Australia because the spores do not survive on fallen leaves for very long (Daly and Hennessy 2006). However, on grapevines, which are also deciduous, the pathogen may persist as mycelium in vine buds (Weinert et al. 2003).

- *Phakopsora euvitis* can establish and maintain a population through reproduction as only the uredinial stage (Daly and Hennessy 2006).

- Spores of *P. euvitis* are dispersed by wind (Deacon 2005; EPPO 2002) and may be spread on clothing on humans (Weinert et al. 2003), rain, animals or insects. Rust pathogens are
well known for their ability for long range dispersal (Agrios 1997; Nagarajan and Singh 1990).

- Temperatures between 8 °C and 32 °C (optimum 24 °C) and free water are required for urediniospore germination. Temperatures between 10 °C and 30 °C (optimum 15–25 °C) are required for teliospore germination (Leu 1988). However, since the alternate host Meliosma myriantha does not appear to be present in Australia reproduction would be by urediniospores.

- In the Northern Territory, the time between spore germination and production of urediniospores was six days (Daly and Hennessy 2006). There is a potentially rapid population increase at the initial infection site.

- Phakopsora euvitis is distributed in tropical, sub-tropical and temperate regions in east and southeast Asia, USA and Timor (Chatasiri and Ono 2008; Weinert et al. 2003). The grape growing states in Australia where it would be most likely to establish due to similar climate conditions are northern New South Wales, Northern Territory, Queensland and Western Australia.

Suitability of the Australian climate, spore dispersal by wind and extensive planting of species of *Vitis* all support a likelihood estimate for establishment of ‘moderate’.

4.20.3 Probability of spread

The likelihood that *P. euvitis* will spread within Australia, based on a comparison of factors in the source and destination areas that affect the expansion of the geographic distribution of the pest is: **HIGH**.

Supporting information for this assessment is provided below:

- This fungus would find areas within Australia with a climate suitable for spread.

- The natural host range is *Vitis* spp. and *Meliosma myriantha* and *M. cuneifolia* (Ono 2000). *Vitis vinifera* is grown commercially in all states (Australian Table Grape Association 2008) and as well as in backyard gardens (NTG 2007). Other species of *Vitis* are present in Australia (Australian National Botanic Gardens and Australian National Herbarium 2008; Hnatiuk 1990). The two species of *Meliosma* do not appear to be present in Australia (Australian National Botanic Gardens and Australian National Herbarium 2008).

- *Ampelocissus* spp. have been demonstrated as indigenous hosts. This might lead to them being considered as a pathway via which spread into commercial grape growing areas of Australia is possible (Daly et al. 2005). These species are distributed in Western Australia, Northern Territory and Queensland (Coleman 2008a) and die back to a tuber in the dry season (Daly and Hennessy 2006).

- In the Northern Territory, the time between spore germination and production of urediniospores was six days (Daly and Hennessy 2006). There is a potentially rapid capability to spread.

- Spores of *P. euvitis* are dispersed by wind (Deacon 2005; EPPO 2002) and may be spread on clothing on humans (Weinert et al. 2003), rain, animals and insects. Rust pathogens are well known for their ability for long range dispersal (Agrios 1997; Nagarajan and Singh 1990).
Infected fruit may be distributed throughout Australia for human consumption, which will contribute to spreading the fungus.

Sale of infected nursery stock could facilitate spread of *P. euvitis*.

Suitability of the Australian climate, spore dispersal by wind and distribution with infected fruit and nursery stock all support a likelihood estimate for spread of ‘high’.

4.20.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that *P. euvitis* will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: **LOW**.

4.20.5 Consequences

The consequences of the establishment of *P. euvitis* in Australia have been estimated according to the methods described in Table 2.3.

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘E’, the overall consequences are estimated to be **MODERATE**.

Reasoning for these ratings is provided below:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
</tbody>
</table>
| Plant life or health | **Impact score** E – Significant at the regional level.
Phakopsora euvitis can cause a serious grapevine disease (EPPO 2002). Heavy infections are common and cause early senescence and leaf drop. The disease can cause poor shoot growth, reduction of fruit quality and yield loss (CABI 2009; EPPO 2002).
Native species of Vitaceae may be infected and their presence in plant communities may be reduced. Natural infection of a species of *Ampelocissus* was reported by Daly & Hennessy (2006) before the incursion in the Northern Territory was eradicated.
Infection in ornamental varieties would reduce the aesthetic appeal provided by such plantings. |
| Other aspects of the environment | **Impact score** A – Indiscernible at the local level.
There are no known direct consequences of *P. euvitis* on other aspects of the environments. |
| **Indirect** | |
| Eradication, control etc. | **Impact score** D – Significant at the district level.
Phakopsora euvitis, should it establish in Australia, would be devastating to Australia’s wine and table grape industry.
An outbreak of *P. euvitis* occurred in 2001 in Darwin, Northern Territory, Australia. All infected host plants were destroyed because no fungicide was 100% effective (Moore and Daly 2009). The eradication program cost $2.3 million (NTG 2006). Increased fungicide use will affect the environment, increase production costs and compromise biodynamic and organic grape growers. |
| Domestic trade | **Impact score** D – Significant at the district level.
There would be trade restrictions applied by states that do not have this fungus. The wine, table grape and processing industries may be affected. |
| International trade | **Impact score** D – Significant at the district level.
The presence of *P. euvitis* in commercial production areas of grapes may limit access to overseas markets which are free from this pest, such as New Zealand and Europe (CABI 2009). Yield reduction would reduce the amount of fruit exported. |
<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental and non-commercial</td>
<td>Impact score: B – Minor significance at the local level. Additional fungicide applications or other control measures would be required to control this disease on susceptible hosts and these may have minor impact on the environment.</td>
</tr>
</tbody>
</table>

4.20.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the outcome of overall consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Phakopsora euvitis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
<td>Low</td>
</tr>
<tr>
<td>Consequences</td>
<td>Moderate</td>
</tr>
<tr>
<td>Unrestricted risk</td>
<td>Low</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *P. euvitis* of ‘low’ exceeds Australia’s ALOP. Therefore, specific risk management measures are required for this pest.
4.21 Phomopsis cane and leaf spot

Phomopsis viticola^{EP, WA}

Phomopsis viticola is not present in the state of Western Australia and is a pest of regional quarantine concern for that state.

Phomopsis cane and leaf spot, or dead arm, is caused by the fungus Phomopsis viticola and is an important disease in several viticultural regions of the world (Nair et al. 1994), especially where rain following bud break keeps grapevines wet for several days (Hewitt and Pearson 1988). Phomopsis viticola is established in New South Wales, Queensland, South Australia, Tasmania and Victoria (Mostert et al. 2001; APPD 2009) but is not known to be present in Western Australia. The fungus overwinters in infected canes and rachises on the vine (Ellis and Erincik 2005). Pycnidium germination and conidia production require at least 10 hours of wet with relatively low temperatures (Rawnsley and Wicks 2002). A further 8–10 hours of very high relative humidity or surface wetness is required for infection to occur (Emmett et al. 1992).

Phomopsis viticola infects leaves, young shoots, rachises, petioles and fruit (Hewitt and Pearson 1988). Grapevines are susceptible throughout the growing season. After infection of juvenile fruit, symptoms do not appear until the fruit matures. On the fruit, the early symptoms are browning and shrivelling (Ellis and Erincik 2005). On rachises, the symptoms are chlorotic spots with dark centres (Hewitt and Pearson 1988). These spots enlarge to form dark brown streaks and blotches that turn black (Hewitt and Pearson 1988). Rachises may become brittle from numerous infections and break, resulting in loss of fruit (Hewitt and Pearson 1988). Pycnidia are subepidermal. Yellowish spore masses are exuded and then the berries shrivel and mummify (Gubler and Leavitt 1992). Phomopsis viticola conidia are splash dispersed and usually spread only short distances, i.e. within a vine or adjacent vines. Long distance spread is usually by movement of infected or contaminated propagation material (Hewitt and Pearson 1988).

Úrbez-Torres et al. (2009) report that P. viticola is capable of infecting mature wood to cause ‘cankers’. However, yield losses in Australia are very low, mainly due to unfavourable environmental conditions that prevent disease progression on bunches (Rawnsley 2004).

The risk scenario of concern for P. viticola is the presence of the fungus on mature bunches of grapes.

Phomopsis viticola was included and/or assessed in the existing import policy for table grapes from Chile (Biosecurity Australia 2005c) and table grapes from California (AQIS 2000). The assessment of P. viticola presented here builds on the previous assessments.

In the assessment for table grapes from Chile, the probabilities of importation and distribution for P. viticola were rated as ‘low’ and ‘very low’ respectively (Biosecurity Australia 2005c). The ratings depended on the rare occurrence of P. viticola in Chile and on the expected export of the grapes from November to April, during which Australian grapevines were considered less susceptible to infection by the pathogen. However, differences between Chile and China in the prevalence of the pathogen and in harvesting and exporting times make it necessary to reassess the likelihood that P. viticola will be imported into Australia and distributed within Western Australia with table grapes.
The probabilities of establishment and spread of *P. viticola* after arrival in Australia would be similar for table grapes shipped from Chile and China, as would the consequences if the pathogen were to spread. Accordingly, there is no need to reassess those components.

There is a complex of species of *Phomopsis* on *Vitis* (Merrin *et al.* 1995; Mostert *et al.* 2000). The *Phomopsis* species on *Vitis* in China have not been studied using molecular methods. It may be that when they are, reassessment may be required as the species in China may be the *Phomopsis* taxon present in Western Australia (*Diaporthe australafricana*).

4.21.1 Reassessment of probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.

Reassessment of probability of importation

The likelihood that *P. viticola* will arrive in Western Australia with the importation of table grapes from China is: **HIGH**.

Supporting information for this assessment is provided below:

- *Phomopsis viticola* has been reported from China in all grape production areas and causes significant damage in some areas (Zhang 2005b). Li (2001) ranked *P. viticola* as seventh out of eleven major diseases by incidence where the pathogen occurred.

- *Phomopsis viticola* forms splash-dispersed conidia that infect leaves, young shoots, rachises, petioles and fruit (Hewitt and Pearson 1988). The teleomorph is not known.

- Infection is favoured by 20–30 hour wet periods during flowering (Rawnsley and Wicks 2002).

- Berry infection, either direct or via infected rachis tissues (Erincik *et al.* 2002) can occur throughout the growing season, but most fruit infections occur early in the season (Erincik *et al.* 2001). Once present inside green tissues of the berry, the fungus becomes latent (Erincik *et al.* 2002) and infected berries remain without symptoms until the fruit is mature (Ellis and Erincik 2005).

- Visual symptoms first appear close to harvest when infected berries turn brown and shrivel (Ellis and Erincik 2005), and black pycnidia are produced through the skin (Gubler and Leavitt 1992). These pycnidia exude yellowish spore masses before the berries finally shrivel and become mummified (Gubler and Leavitt 1992). Infected berries may abscise from the pedicel, leaving a dry scar (Hewitt and Pearson 1988).

- Recently infected rachises and fruit may not display symptoms and may be packaged for export.

- *Phomopsis viticola* has been intercepted using visual inspection on table grapes exported from South Africa (Raudoniene and Lugauskas 2005).

Infected rachises and berries remaining without symptoms until they mature, the ability and susceptibility of the berries for infection throughout the growing season and interception on grapes exported from South Africa all support a likelihood estimate for importation of ‘high’.
Reassessment of probability of distribution

The likelihood that *P. viticola* will be distributed within Western Australia in a viable state as a result of processing, sale or disposal of table grapes from China and subsequent transfer to a susceptible part of a host is: **LOW**

- *Phomopsis viticola* will survive transport in cold storage. The pathogen occurs in regions with cold winters and overwinters as mycelium and conidiomata in canes, spurs, dormant buds, bark and mummified fruit (Pscheidt and Pearson 1991; Ellis and Erincik 2005).

- Grapes will be distributed to many localities by wholesale and retail trade and by individual consumers. Grapes may be distributed to all states in unrestricted trade.

- Most fruit waste, berries, clusters and stalks, will be discarded into managed waste systems and will be disposed of in municipal tips, reducing the risk of distribution of a pathogen to a host. Consumers will discard small quantities of fruit waste in urban, rural and natural localities. Small amounts of fruit waste will be discarded in domestic compost.

- Fruit waste may be discarded near host plants.

- Grapevines are sporadically but widely distributed in WA (DAWA 2005). Domestic garden plantings, both maintained and abandoned, occur in Perth and in most West Australian towns and by many farmhouses. Table grape production occurs in WA (Australian Table Grape Association 2008; DPIW Tasmania 1999). Extensive wine grape plantings are found in the southwest of WA (Kiri-ganai Research Pty Ltd 2006).

- In addition to *Vitis vinifera* (Eurasian grapevine), *P. viticola* infects *Vitis rupestris* (North American grapevine); *Vitis aestivalis* (summer grape); *Vitis labrusca* (fox grape); *Vitis rotundifolia* (Muscadine grape) and *Parthenocissus quinquefolia* (Virginia creeper) (Galet and Morton 1988; Uecker 1988). There is a report of *P. viticola* being isolated from *Vaccinium* spp. but not being pathogenic (Espinoza et al. 2008).

- The pathogen is likely to remain inactive until conditions become suitable for its development (Ellis and Erincik 2005).

- China will export table grapes from August to October (AQSIQ 2008), which is during spring in Australia, when there is moderate rainfall in parts of WA (Bureau of Meteorology 2010).

- Host plants are likely to be susceptible in WA from August to October. Most *P. viticola* infections of grapevines occur in spring (Ellis and Erincik 2005).

- In spring, mature conidiomata erupt from infected tissue and during rain, water-borne alpha-conidia are exuded. Alpha-conidia are mainly dispersed by water-splash and they are only moved short distances. It is reported that the disease spreads locally in vineyards, remaining close to the source of the inoculum (Hewitt and Pearson 1988). However, conidia may also be blown in water droplets or spread by insects onto young vine foliage or flower-bunches (Emmett et al. 1992).

- Under Australian field conditions, at least 10 hours of rain are required for conidium production from conidiomata, and after conidium dispersal, a further 8–10 hours or more of very high relative humidity or surface wetness are required for infection (Emmett et al. 1992).
The likely survival of *P. viticola* during transport and the susceptibility of host plants in the Australian spring, moderated by the likely limits on water-splash transmission of conidia, support a likelihood estimate for distribution of ‘low’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *P. viticola* will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host in Western Australia is: **LOW**.

4.21.2 Probability of establishment and of spread

As indicated above, the probability of establishment and of spread for *P. viticola* would be the same as those assessed for table grapes from Chile (Biosecurity Australia 2005c). The ratings from the previous assessments are presented below:

- Probability of establishment: **HIGH**
- Probability of spread: **MODERATE**

4.21.3 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that *P. viticola* will enter Western Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Western Australia and subsequently spread within Western Australia is: **LOW**.

4.21.4 Consequences

The consequences of the establishment of *P. viticola* in Western Australia have been estimated previously for table grapes from Chile (Biosecurity Australia 2005c). This estimate of impact scores is provided below expressed in the current scoring system (Table 2.3).

- Plant life or health: **C**
- Other aspects of the environment: **A**
- Eradication, control etc.: **D**
- Domestic trade: **B**
- International trade: **B**
- Environment: **B**

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘**D**’, the overall consequences are estimated to be **LOW**.
4.21.5 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the outcome of overall consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Phomopsis viticola</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
<td>Low</td>
</tr>
<tr>
<td>Consequences</td>
<td>Low</td>
</tr>
<tr>
<td>Unrestricted risk</td>
<td>Very low</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *P. viticola* of ‘very low’ achieves Australia’s ALOP. Therefore, specific risk management measures are not required for this pest.
4.22 Grapevine yellow speckle viroids

Grapevine yellow speckle viroid-1\(^{WA}\), Grapevine yellow speckle viroid-2\(^{WA}\) and Grapevine yellow speckle viroid-3\(^{WA}\)

Grapevine yellow speckle viroid-1 (GYSVd-1), Grapevine yellow speckle viroid-2 (GYSVd-2) and Grapevine yellow speckle viroid-3 (GYSVd-3) are not present in the state of Western Australia and are pests of regional quarantine concern for that state.

The three viroids belong to the Apscaviroid genus and Pospiviroidae family (Little and Rezaian 2003). The biology and taxonomy of the three species is considered sufficiently similar to justify combining them into a single assessment. In this assessment the term ‘grapevine yellow speckle viroids’ is used to refer to these three species, unless otherwise specified.

It was recently proposed that GYSVd-3 is a new species of Apscaviroid based on sequence analysis (Jiang et al. 2009a), even though phylogenetic analysis indicates GYSVd-3 is closely related to GYSVd-1. A viroid isolated in Australia and identified as grapevine yellow speckle viroid is placed with GYSVd-3 isolates from China in phylogenetic analyses, suggesting the presence of GYSVd-3 in Australia (Genbank accession code AF059712; (Benson et al. 2008)).

GYSVd-1 and GYSVd-2 were shown to cause grapevine yellow speckle disease when present either individually or in combination. Sequence variants of GYSVd-1 might be responsible for the disease (Szychowski et al. 1998). However, there is no published evidence of a significant adverse effect due to grapevine yellow speckle disease; many infected clones still seem to give acceptable yields and quality and show no signs of degeneration (Krake et al. 1999a).

The grapevine yellow speckle viroids are only known to infect grapevine (Little and Rezaian 2003; Martelli 1993b). The viroids are disseminated by vegetative propagation and transmitted by grafting. A low rate of natural spread in vineyards has been reported and probably involves mechanical transmission by surface contaminated tools (Krake et al. 1999b). Transmission of GYSVd-1 and GYSVd-2 in grape seeds has been shown (Wah and Symons 1999). It is believed that GYSVd-3, being closely related to GYSVd-1, would also be seed-transmitted.

The risk scenario of concern is the import of fruit infected with one of the viroids, germination of some seed, seed-transmission of the viroid, survival of infected seedlings, and the transmission of the viroid to grapevines in WA.

4.22.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.

Probability of importation

The likelihood that grapevine yellow speckle viroids will arrive in Western Australia with the importation of table grapes from China is: **HIGH**.

Supporting information for this assessment is provided below:
Final IRA report: table grapes from China

Pest risk assessments: Grapevine yellow speckle viroids

- GYSVd-1 and GYSVd-2 are present in China and in Xinjiang (Li et al. 2007; Jiang et al. 2009a; Jiang et al. 2009c), where 38.5% of grapes are grown (AQSIQ 2006; AQSIQ 2009). GYSVd-3 is also present in Xinjiang and Beijing (Jiang et al. 2009a).

- GYSVd-1 and GYSVd-2 were reported in 29 out of 70 grapevine tested in China (Li et al. 2007). GYSVd-1 appears to be more common than GYSVd-2 in cultivated grapevine in China, as only three samples out of 89 grapevine samples tested positive for GYSVd-2 (Li et al. 2007; Jiang et al. 2009c). GYSVd-3 has so far only been isolated in China (Jiang et al. 2009a), Japan, Italy and Australia (Benson et al. 2008).

- GYSVd-1 and GYSVd-2 are only known to infect grapevine (Koltunow et al. 1989). GYSVd-1 and GYSVd-2 may be distributed worldwide (Martelli 1993b; CIHEAM 2006) although Jiang et al. (2009c) states that GYSVd-2 is only present in China and Australia.

- A survey conducted from 2002–2005 to identify viroids affecting grapevine in China tested seven wild plants from Liaoning, 58 varieties from a nursery in Beijing, two from Xinjiang and three from Hebei detected grapevine yellow speckle viroids in 29 samples (41% of samples) (Li et al. 2006).

- Leaves of some infected cultivars develop yellowish-green speckling along the veins but other infected cultivars may be asymptomatic (Little and Rezaian 2003; Koltunow et al. 1989). Leaves may develop small yellowish flecks scattered along the major and minor veins on the leaf and this may result in a vein banding pattern. Symptoms appear in midsummer, usually on a limited number of mature leaves and persist. Symptoms are variable and depend on the cultivar, the age of the plant and the climatic conditions. Most infected vines show no symptoms or an erratic expression pattern from one season to the next, with very few leaves affected (Little and Rezaian 2003; Koltunow et al. 1989). No report of symptoms on fruit was found.

- In Australia, when symptoms occur early, the speckles on leaves bleach and by late summer they appear white. Speckles that develop mid-season are a paler yellow and those that develop during late summer tend to be light green (Little and Rezaian 2003). A similar pattern of expression is likely in China.

- There is no published evidence of a significant adverse effect due to grapevine yellow speckle disease; many vines are infected but still seem to give acceptable yields and quality with no signs of degeneration (Krake et al. 1999a).

- Some infected vines may be removed from production in China.

- Fruit from infected vines that are asymptomatic may be harvested and exported. Normal grapes carrying grapevine yellow speckle viroid infected seed might be imported to Western Australia.

The presence of grapevine yellow speckle viroids in the commercial vineyards in China combined with the possibility that fruit from infected but asymptomatic vines could be exported support a likelihood estimate for importation of ‘high’.

Probability of distribution

The likelihood that grapevine yellow speckle viroids will be distributed within Western Australia in a viable state as a result of processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **MODERATE**.
Supporting information for this assessment is provided below:

- Imported grapes are intended for human consumption. Fruit will be distributed to many localities by wholesale and retail trade and by individual consumers. Grape bunches may be distributed to all states in unrestricted trade including WA.
- Wholesalers and retailers will dispose of unsaleable or spoilt fruit that may be infected and this waste will be sent to municipal tips.
- Individual consumers will discard small quantities of fruit waste in urban, rural and natural localities. Small amounts of fruit waste will be discarded in domestic compost. A proportion of this waste may be infected with grapevine yellow speckle viroids.
- With seeded grapes the seeds are usually not consumed and will be discarded. A number of these seeds may be discarded into the environment in grape growing regions and a proportion of these seeds may be infected with grapevine yellow speckle viroids.
- Seeds from imported table grapes will be discarded in environments in southern Australia where table grapes can grow. These environments may include poorly managed compost heaps and uncontained open areas such as roadsides, including open areas in grape growing regions.
- Grapevines are currently the only known natural hosts of the grapevine yellow speckle viroids (Little and Rezaian 2003; Martelli 1993b).

The distribution of fruit in the supply chain and by consumers moderated by the disposal of the majority of fruit waste in managed waste systems, supports a risk rating for distribution of ‘moderate’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that grapevine yellow speckle viroids will enter Western Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: MODERATE.

4.22.2 Probability of establishment

The likelihood that grapevine yellow speckle viroids will establish within Western Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: LOW.

Supporting information for this assessment is provided below:

- Grapevine yellow speckle viroids might establish in WA from infected imported fruit if seed in fruit waste germinates, seed transmission occurs and seedlings, infected with the viroids, survive.
- It is likely that some but not all table grapes from China will contain seeds. Some varieties will be seedless.
- The proportion of grapevine seed that germinates depends on the cultivar, seed maturity, storage, stratification and planting conditions (Doijode 2001). Most grapevine seed is
dormant and will not germinate unless it has been stratified. Night-time temperatures below 6 °C during winter may be sufficient for stratification (Ellis et al. 1985; Doijode 2001). Seed of some cultivars will not germinate without stratification, other cultivars have very low germination rates when not stratified, but germination rates of up to 33% from seed from fresh untreated berries of some cultivars has been reported (Forlani and Coppola 1977; Scott and Ink 1950; Singh 1961).

- Cold storage of imported table grapes during transport may stratify the seed and improve germination rates. Night-time temperatures in WA (Bureau of Meteorology 2010) may be low enough for stratification of grape seeds to occur naturally.

- A small proportion of grapevine seed from fruit waste may germinate. Successful germination will depend on local conditions.

- In Europe, volunteer grapevines grow as weeds in small numbers. Most of these weedy vines are probably rootstocks that have escaped vegetatively, but some may have grown from seed (Arrigo and Arnold 2007; Ocete et al. 2008; Zohary 1996), suggesting seedlings sometimes survive in unmanaged environments.

- *Vitis vinifera* is not a common weed in Australia (Office of the Gene Technology Regulator 2003). There are reports of *V. vinifera* growing as a weed on roadsides and in disturbed areas in NSW, Vic. and WA (Richardson et al. 2006). Vines have been found near established vineyards and water-courses (Conn 2010). *Vitis vinifera* has been recorded as naturalised in WA and on the North Coast and North Western Slopes of NSW (Conn 2010). Reports indicating the origins of the naturalised plants were not found. They may have propagated vegetatively from cultivated vines or may have grown from seed and, if they grew from seed, it is possible the seed was from rootstocks or scion cultivars, and it may have been bird dispersed from locally cultivated vines rather than coming from fruit waste.

- Few, if any, grapevine seedlings are likely to survive on agricultural land and in unmanaged localities. Seedling survival will depend on local conditions including rainfall. Grapevines are normally cultivated vegetatively, being propagated from cuttings by grafting onto rootstock or, less commonly, on their own roots (Zohary 1996). Seed is not used to establish vineyards because vines propagated from seed are likely to produce inferior berries; they are unlikely to be true to type after genetic segregation (Zohary 1996). This aspect of grapevine propagation is likely to deter most members of the public from growing grapevines from seed from imported fruit, as will the relatively long time taken to grow a productive vine from seed (Olmo 1976) and the ready availability of grafted vines.

- GYSVd-1 and GYSVd-2 were detected in seedlings of Emperor table grapes grown from seeds collected in Australia and transmission of viroids via grape seeds was shown by Wah and Symons (1999).

- Grapevines are currently the only known natural hosts of the grapevine yellow speckle viroids (Little and Rezaian 2003; Martelli 1993b).

- Vines may grow from seeds discarded as a result of consuming imported table grapes.

- Vineyard workers might contaminate vineyard equipment if they consume imported fruit while working, although this is unlikely. Mechanical transmission by normal pruning occurs at a very low frequency (Krake et al. 1999a).
Natural spread of yellow speckle disease in the vineyard has been documented (Krake et al. 1999a).

The report of grapevine yellow speckle viroids being transmitted by seed, moderated by the combined likely low rates of germination and seedling survival, supports a likelihood estimate for establishment of ‘low’.

4.22.3 Probability of spread

The likelihood that grapevine yellow speckle viroids will spread within Western Australia, based on a comparison of factors in the source and destination areas that affect the expansion of the geographic distribution of the pests is: LOW.

Supporting information for this assessment is provided below:

- Grapevine yellow speckle viroids might spread if an infected seedling grows near a potential host plant and if there is a transmission pathway. Infected grapevine seedlings might emerge near host plants from fruit waste discarded in the vicinity.

- Grapevine yellow speckle viroids are transmitted by grafting and distributed in infected propagating material (CIHEAM 2006). Fruit growers will not use volunteer seedlings for grafting or budding.

- Slow natural spread in vineyards has been documented, probably as a result of mechanical transmission from contaminated tools at a low efficiency (Krake et al. 1999b). It is unlikely that a viroid would be transmitted from a seedling or volunteer vine by mechanical transmission, unless an infected seedling grows in or near a vineyard and vineyard equipment is used on the volunteer.

- Transmission of GYSVd-1 and GYSVd-2 via grape seeds was demonstrated by Wah and Symons (1999). It is believed that GYSVd-3 being so closely related to GYSVd-1 would also be seed-transmitted. Seed transmission might lead to spread.

- No vector is known although slow natural spread has been reported (CIHEAM 2006; Krake et al. 1999a).

- *Vitis* species are the only hosts of grapevine yellow speckle viroids (Little and Rezaian 2003; Martelli 1993b). All *Vitis* species, hybrids and cultivars appear to be susceptible to these viroids. In the great majority of grapevine germplasm infection is latent (CIHEAM 2006). GYSVd-1 and GYSVd-2 did not infect herbaceous hosts under laboratory conditions (Little and Rezaian 2003).

- *Vitis vinifera* is grown commercially in several regions of WA (Australian Table Grape Association 2008; Robinson 1999), as well as in residential gardens in the state.

- Grapevine yellow speckle viroids can be controlled by removing infected vines from vineyards, avoiding spread to neighbouring vines and by propagating nursery stock from viroid-free indexed material.

The limited host range of the viroids and limited opportunities for transmission from any volunteer vines to cultivated vines, support a likelihood estimate for spread of ‘low’.
4.22.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that grapevine yellow speckle viroids will enter Western Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Western Australia is: VERY LOW.

4.22.5 Consequences

The consequences of the establishment of grapevine yellow speckle viroids in Australia have been estimated according to the methods described in Table 2.3.

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘D’, the overall consequences are estimated to be LOW.

Reasoning for these ratings is provided below:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Plant life or health</td>
<td>Impact score C – Significant at the local level.</td>
</tr>
<tr>
<td></td>
<td>In 2008, there were just over 13 000 ha of grapes grown in WA (ABS 2009b). Most of the plantings were for wine grapes (ABS 2009b). In 2008, just over 82 000 t of grapes were produced for winemaking in WA, 179 t were produced for drying and 4 045 t were produced for table grapes (ABS 2009b). GYSVd-1 and GYSVd-2 cause grapevine yellow speckle disease and may show symptoms on grapevines depending on cultivar, climatic conditions and viroid sequence. When symptoms occur they generally affect a small number of the leaves (Koltunow et al. 1989; Little and Rezaian 2003). There are no reports confirming that grapevine yellow speckle disease has significant consequences on grapes in Australia (Little and Rezaian 2003). Many clones or cultivars are infected by GYSVd-1 and GYSVd-2 but still seem to give acceptable yields and quality of fruit without signs of degeneration (Krake et al. 1999a). There is a single report of the effect of viroid infection on own-rooted vines and shoot cultured vines inoculated with a mixture of three viroids: yellow speckle viroids (GYSVd-1 and GYSVd-2) and Hop stunt viroid. Mixed infection with three viroids did not affect the yield components but the grape juice was lower in titratable acidity and slightly higher in pH. Viroid infected vines had lower vegetative growth as indicated by the average weight of shoots (Wolpert et al. 1996). As the three viroids were present in the inoculated plants, it is difficult to ascertain which viroid or viroids are responsible for these effects. Hop stunt viroid-infected grapevines show no disease symptoms (Little and Rezaian 2003). Vein-banding disease of grapevine is common in Europe and California and is now known to be caused by the combination of GYSVd-1 or GYSVd-2 and grapevine fanleaf virus (GFLV) infection (Szychowski et al. 1995). Multiple infection of GYSVd-1 or GYSVd-2 with GFLV causes a more severe vein banding disease (Little and Rezaian 2003). Vein-banding disease has a detrimental effect on the yield of certain varieties. Grapevine fanleaf virus is assessed separately in this IRA.</td>
</tr>
<tr>
<td>Other aspects of the environment</td>
<td>Impact score A – Indiscernible at local level.</td>
</tr>
<tr>
<td></td>
<td>The only known natural hosts reported are Vitis species (Little and Rezaian 2003; Martelli 1993b). There are no known native species of Vitis in Australia (Gillings and Ophe-Keller 1995).</td>
</tr>
<tr>
<td>Indirect</td>
<td></td>
</tr>
<tr>
<td>Eradication, control etc.</td>
<td>Impact score D – Significant at the district level.</td>
</tr>
<tr>
<td></td>
<td>If an exotic viroid was to become established, viroid containment and eradication control measures may be employed. Infected plants may be culled from vineyards, vines may be destroyed and viroid-free indexed material may need to be re-planted.</td>
</tr>
<tr>
<td>Domestic trade</td>
<td>Impact score A – Indiscernible at local level.</td>
</tr>
<tr>
<td></td>
<td>The grapevine yellow speckle viroids are all known to be present in Australia and it is unlikely that domestic trade would be restricted if a foreign isolate of one of the viroids was introduced.</td>
</tr>
</tbody>
</table>
Final IRA report: table grapes from China

Pest risk assessments: Grapevine yellow speckle viroids

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>International trade</td>
<td>Impact score: B – Minor significance at the local level. The viroids are probably present in most or all major grape producing countries (CIHEAM 2006). Trade restrictions would only be imposed by countries demonstrating viroid absence.</td>
</tr>
<tr>
<td>Environmental and non-commercial</td>
<td>Impact score: A – Indiscernible at the local level. Control activities for grapevine yellow speckle viroids are not likely to impact on the environment.</td>
</tr>
</tbody>
</table>

4.22.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the outcome of overall consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Grapevine yellow speckle viroids</th>
<th>Overall probability of entry, establishment and spread</th>
<th>Very low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequences</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Unrestricted risk</td>
<td>Negligible</td>
<td></td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for grapevine yellow speckle viroids of ‘negligible’ achieves Australia’s ALOP. Therefore, specific risk management measures are not required for this pest.
4.23 Grapevine fanleaf virus

Grapevine fanleaf virus \(^{WA}\)

Grapevine fanleaf virus (GFLV) is not present in the state of Western Australia and is a pest of regional quarantine concern for that state.

It is a member of the *Nepovirus* genus, *Comoviridae* family (Brunt *et al.* 1996a). It causes disease in most cultivars of *Vitis vinifera* and some hybrids and other *Vitis* spp. (Andret-Link *et al.* 2004; Brunt *et al.* 1996a; Martelli *et al.* 2001b; Varadi *et al.* 2007).

The virus is transmitted and disseminated by several mechanisms. It is transmitted through soil between grapevines by the root-feeding ectoparasitic dagger nematode *Xiphinema index*, and possibly also by *X. italicae* and *X. vuittenezi*. It is transmitted by grafting and is probably commonly introduced to vineyards and disseminated in infected scionwood and rootstocks (Andret-Link *et al.* 2004; CABI 2009; Habili *et al.* 2001; Martelli *et al.* 2001b; Murant 1981). It may be maintained in soil contaminated with viruliferous nematodes or roots (Martelli *et al.* 2001b; Murant 1981). The virus is probably seed transmitted in grapevine under certain conditions; it has been detected in endosperm and there is at least one report of seed transmission (Cory and Hewitt 1968; Martelli *et al.* 2001b; Mink 1993). *Xiphinema index*, *X. italicae* and *X. vuittenezi* have not been detected in WA (APPD 2009; Lantzke 2004; Walker 2004; Walker and Stirling 2008).

Severe symptoms occur, although not exclusively, when GFLV co-infects with grapevine yellow speckles viroid 1 or 2 (GYSVd-1, GYSVd-2) (Szychowski *et al.* 1995; Little and Rezaian 2003). GYSV-1 and GYSVd-2 are present in China and might be transmitted in grape seed; they are also present in Australia, but not in WA.

The risk scenario of concern is the import of fruit infected with GFLV, germination of some seed, perhaps disseminated in fruit waste, seed-transmission of the virus, survival of infected seedlings, and the transmission of GFLV from the seedlings to grapevines in WA.

4.23.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.

Probability of importation

The likelihood that *Grapevine fanleaf virus* will arrive in Western Australia with the importation of table grapes from China is: **HIGH**.

Supporting information for this assessment is provided below:

- Grapevine fanleaf virus is present in Fujian, Hebei, Shandong and Sichuan (CABI 2009; Liu *et al.* 2004). A survey of 48 grapevine stem samples from Sichuan province indicated it was present in 10.4% (5) of vine stems (Liu *et al.* 2004). Shandong produces 16.2% of grapes grown in China (AQSIQ 2006; AQSIQ 2009b).

- The leaves of infected vines may become chlorotic and the canes and leaves may grow abnormally (Martelli *et al.* 2001b; Stansbury *et al.* 2000).

- Some infected vines may be removed from production in China.
Infected vines may have fewer grape bunches, bunches may be smaller and berries may ripen irregularly or fail to develop (Martelli et al. 2001b; Stansbury et al. 2000).

Some infected fruit and bunches showing symptoms may be culled during harvesting, grading and packing.

Infections of GFLV of some cultivars and under certain conditions are asymptomatic (CIHEAM 2006; Lunden et al. 2008; Murant 1981). Symptoms may become indistinct or may disappear by midsummer (Martelli et al. 2001b; Murant 1981). Some cultivars are tolerant or resistant (CIHEAM 2006). Fruit of infected vines may be unaffected by infection.

Grapevine fanleaf virus has been found in the endosperm of grape seed (Cory and Hewitt 1968; Martelli et al. 2001b; Mink 1993).

Normal grapes carrying GFLV infected seed might be imported into Western Australia.

The wide distribution of the virus in China and the likelihood that some normal fruit will carry the virus, support a risk rating for importation of ‘high’.

Probability of distribution

The likelihood that *Grapevine fanleaf virus* will be distributed within Western Australia in a viable state as a result of processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **MODERATE**.

Supporting information for this assessment is provided below:

- If table grapes are imported, they will be distributed through the domestic supply chain and sold to the public for consumption. In unrestricted trade, imported table grapes are likely to be sold in WA.

- Most fruit waste will be discarded into managed waste systems and will be disposed of in municipal tips. Consumers will discard small quantities of fruit waste in urban, rural and natural localities. Many localities will not be suitable for grape seed germination. Some fruit waste will be discarded in domestic compost and other environments suitable for germination.

The distribution of fruit in the supply chain and by consumers, moderated by the disposal of the majority of fruit waste in managed waste systems, supports a risk rating for distribution of ‘moderate’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that *Grapevine fanleaf virus* will enter Western Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: **MODERATE**.
4.23.2 Probability of establishment

The likelihood that *Grapevine fanleaf virus* will establish within Western Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: LOW.

Supporting information for this assessment is provided below:

- Grapevine fanleaf virus might establish in WA from infected imported fruit if seed in fruit waste germinates, seed transmission occurs and seedlings, infected with the virus, survive.
- It is likely that some but not all table grapes from China will contain seed. Some varieties will be seedless.
- The proportion of grapevine seed that germinates depends on the cultivar, seed maturity, storage, stratification and planting conditions (Doijode 2001). Most grapevine seed is dormant and will not germinate unless it has been stratified. Night-time temperatures below 6 °C during winter may be sufficient for stratification (Ellis et al. 1985; Doijode 2001). Seed of some cultivars will not germinate without stratification, other cultivars have very low germination rates when not stratified, but germination rates of up to 33% from seed from fresh untreated berries of some cultivars has been reported (Forlani and Coppola 1977; Scott and Ink 1950; Singh 1961).
- Cold storage of imported table grapes during transport may stratify the seed and improve germination rates. Night-time temperatures in WA (Bureau of Meteorology 2010) may be low enough for stratification of grape seeds to occur naturally.
- A small proportion of grapevine seed from fruit waste may germinate. Successful germination will depend on local conditions.
- In Europe, volunteer grapevines grow as weeds in small numbers. Most of these weedy vines are probably rootstocks that have escaped vegetatively, but some may have grown from seed (Arrigo and Arnold 2007; Ocate et al. 2008; Zohary 1996), suggesting seedlings sometimes survive in unmanaged environments.
- *Vitis vinifera* is not a common weed in Australia (Office of the Gene Technology Regulator 2003). There are reports of *V. vinifera* growing as a weed on roadsides and in disturbed areas in NSW, Vic. and WA (Richardson et al. 2006). Vines have been found near established vineyards and water-courses (Conn 2010). *Vitis vinifera* has been recorded as naturalised in WA and on the North Coast and North Western Slopes of NSW (Conn 2010). Naturalised vines may have propagated vegetatively from cultivated vines or may have grown from seed and, if they grew from seed, it is possible the seed was from rootstocks or scion cultivars.
- Few, if any, grapevine seedlings are likely to survive on agricultural land and in unmanaged localities. Seedling survival will depend on local conditions including rainfall.
- Grapevines are normally cultivated vegetatively, being propagated from cuttings by grafting onto rootstocks or, less commonly, on their own roots (Zohary 1996). Seed is not used to establish vineyards because vines propagated from seed are likely to produce inferior berries; they are unlikely to be true to type after genetic segregation (Zohary 1996). This aspect of grapevine propagation is likely to deter most members of the public from growing grapevines from seed from imported fruit, as will the relatively long time...
taken to grow a productive vine from seed (Olmo 1976) and the ready availability of
grafted vines.

- Transmission of GFLV through grapevine seed to the emerging seedlings has been
 reported (Martelli et al. 2001b). A report of the transmission rate was not found. Rates of
 nepovirus transmission through seed vary and may be as high as 100% but are usually
 lower (Albrechtsen 2006; Mink 1993). The capacity to be seed transmitted is known to
 vary among strains of other virus species, and to vary between cultivars of the same plant
 species (Albrechtsen 2006); this may also be true of GFLV and Vitis species. Some strains
 of GFLV are probably seed transmitted in some grapevine cultivars.

- If seedlings grow from GFLV-infected seed, they may be infected with the virus. Plants
 grown from infected seed sometimes do not show symptoms even though they are
 infected.

The combined likely low rates of germination and seedling survival support a likelihood
estimate for establishment of ‘low’.

4.23.3 Probability of spread

The likelihood that Grapevine fanleaf virus will spread within Western Australia, based on a
comparison of factors in the source and destination areas that affect the expansion of the
geographic distribution of the pests is: VERY LOW.

Supporting information for this assessment is provided below:

- Grapevine fanleaf virus might spread if it is transmitted from an infected seedling or vine
to other host plant by pollen transmission or if it is transmitted by grafting.

- Infected grapevine seedlings might emerge near host plants from fruit waste discarded in
 the vicinity.

- Grapevine fanleaf virus is transmitted through the soil between hosts by the dagger
 nematode, Xiphinema index (Martelli et al. 2001b). The dagger nematodes X. italicae and
 X. vuittenezi may also transmit the virus (Andret-Link et al. 2004; Cohn et al. 1970).

- However, Xiphinema index, X. italicae and X. vuittenezi were not detected in a survey of
 WA vineyards and have not been reported in the state (APPD 2009; Lantzke 2004; Walker
 2004; Walker and Stirling 2008).

- Therefore, transmission of GFLV by nematodes is very unlikely to occur in WA as
 suitable nematode species are probably not present.

- Vitis vinifera is grown commercially in several regions of WA (Australian Table Grape
 Association 2008; Robinson 1999), as well as in residential gardens in the state.

- Grapevine fanleaf virus occurs in one region of Victoria and rarely in South Australia
 (Habili et al. 2001). The spread of the virus is probably limited by measures on other
 grape pests.

- A number of nepoviruses have been shown to be pollen transmitted (Brunt et al. 1996a;
 Mink 1993). GFLV has been detected in the pollen of infected grapevines (Cory and
 Hewitt 1968), but transmission of the virus through pollen to seed has not been
 established. It is possible that GFLV, or some strain of the virus, is transmitted through
pollen, like other nepoviruses. Evidence of the role of nepovirus pollen transmission in the field is inconclusive (Mink 1993).

- Grapevine fanleaf virus is transmitted by grafting and can be disseminated with infected propagation material (Andret-Link et al. 2004; Martelli et al. 2001b). A grapevine that has grown as a volunteer from seed from imported fruit is unlikely to be used for grafting. Grafts from GFLV infected grapevines are less likely to take (CIHEAM 2006; Martelli et al. 2001b).

- Grapevine fanleaf virus has spread in several grapevine growing regions in other countries.

The possible growth of an infected grapevine near other host species, moderated by the lack of vector nematodes in WA and the small chance of transmission by another mechanism, supports a likelihood estimate for spread of ‘very low’.

4.23.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that *Grapevine fanleaf virus* will enter Western Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Western Australia and subsequently spread within Western Australia is: **VERY LOW**.

4.23.5 Consequences

The consequences of the establishment of *Grapevine fanleaf virus* in Western Australia have been estimated according to the methods described in Table 2.3.

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘E’, the overall consequences are estimated to be **MODERATE**.

Reasoning for these ratings is provided below:
Criterion | Estimate and rationale

Direct

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
</table>
| **Plant life or health** | **Impact score**: E – Significant at the regional level.
In 2008, there were just over 13 000 ha of grapes grown in WA (ABS 2009b). Most of the plantings were for wine grapes (ABS 2009b). In 2008, just over 82 000 t of grapes were produced for winemaking in WA, 179 t were produced for drying and 4 045 t were produced for table grapes (ABS 2009b).
Grapevine fanleaf virus causes disease in *V. vinifera* and some hybrids and other cultivated *Vitis* spp. (Andret-Link et al. 2004; Brunt et al. 1996a; Martelli et al. 2001b; Varadi et al. 2007). Infection causes a range of symptoms; the leaves of infected vines may be deformed or discoloured and canes may grow abnormally (Martelli et al. 2001b; Stansbury et al. 2000). Infection reduces the number and size of grape bunches and reduces the sugar content and acidity of fruit (Habili et al. 2001; Martelli et al. 2001b). Yield losses from 5% to 80% or more have been reported and probably vary depending on the virus strain, the susceptibility of the grapevine cultivar and environmental factors (Andret-Link et al. 2004; Martelli et al. 2001b). Grapevines may suffer decline, and the lifespan of infected grapevines may be halved from 30–40 years to 15–20 years (Andret-Link et al. 2004; Stansbury et al. 2000). Grafts and cuttings of some grapevine cultivars are less likely to take, if infected with the virus (Martelli et al. 2001b).
Vein-banding symptoms have been associated in some cultivars with co-infections of GFLV and grapevine yellow speckle viroid-1 (GYSVd-1) (Szychowski et al. 1995; Little and Rezaian 2003). Szychowski et al. (1995) report that vein banding disease may result in up to 80% fruit loss in sensitive varieties. The Thompson seedless cultivar is known to express this disease (Woodham and Alexander 1966). |
| | **Indirect**
Eradication, control etc. | **Impact score**: D – Significant at the district level.
Virus control measures in the field are limited and eradication may not be possible unless an outbreak is detected at an early stage. Extensive surveys may be required to determine the extent of an outbreak. Infected vines may be removed and replaced. Cultivation of virus-free plants (CABI 2009) and weed control (Martelli et al. 2001b) may reduce the spread of the virus. In eastern Australia, the virus is being contained by measures on other grape pests (Habili et al. 2001). Local virus spread is difficult to attain when a nematode vector is not present. |
| Domestic trade | **Impact score**: B – Minor significance at the local level.
Grapevine fanleaf virus is already present in NSW (APPD 2009), Vic. (Habili et al. 2001) and SA (Habili et al. 2001; Stansbury et al. 2000). Spread of the virus has been limited because of the absence of nematode vectors and control measures on other pests. Restrictions may apply to intrastate trade. |
| International trade | **Impact score**: A – Indiscernible at the local level.
This virus is found in most grape producing countries. Trade restrictions might be imposed by countries free of the virus. |
| Environmental and non-commercial | **Impact score**: A – Indiscernible at the local level.
No report was found that could indicate an effect. |
4.23.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the outcome of overall consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Grapevine fanleaf virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
</tr>
<tr>
<td>Consequences</td>
</tr>
<tr>
<td>Unrestricted risk</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *Grapevine fanleaf virus* of ‘very low’ achieves Australia’s ALOP. Therefore, specific risk management measures are not required for this pest.
4.24 Tomato ringspot virus

Tomato ringspot virus

Tomato ringspot virus (ToRSV) is a member of the Nepovirus genus, Comoviridae family. In parts of the USA, the virus causes significant disease in a wide range of cultivated plants including Malus pumila (apple), Prunus spp. (almond, apricot, nectarine, peach, plum, prune and sweet cherry), Rubus spp. (blackberry and raspberry), and Vitis spp. (grapes) (Brunt et al. 1996b; CABI-EPPO 1997e; Kim and Choi 1990). The virus has been reported in China infecting Chinese cabbage (Brassica chinensis) in Zhejiang Province (Zhang and Huang 1990).

The virus was reported more than two decades ago in Pentas lanceolata (Egyptian starflower) in South Australia (SA) (Chu et al. 1983). The infected plants were removed and it has not been detected since that time in SA (Cartwright 2009), suggesting it has not spread and is probably now absent from Australia.

Tomato ringspot virus is probably transmitted and disseminated by several mechanisms. It is transmitted through soil between host plants by root-feeding ectoparasitic dagger nematodes of the Xiphinema americanum group. It is transmitted by grafting and might be introduced to orchards and vineyards in infected scionwood (Brunt et al. 1996b; Stace-Smith 1984). It may be maintained in soil contaminated with viruliferous nematodes or remnant roots (Murant 1981; Pinkerton et al. 2008). Tomato ringspot virus is also transmitted through seed of several plant species including the common dandelion (Taraxacum officinale) and grapevine (V. vinifera) (Uyemoto 1975). Common dandelion is a reservoir host in the USA (Powell et al. 1984).

The risk scenario of concern is the import of fruit infected with ToRSV, germination of some seed, perhaps disseminated in fruit waste, seed-transmission of the virus, survival of infected seedlings, and the transmission of ToRSV to other host plants in Australia.

4.24.1 Probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.

Probability of importation

The likelihood that Tomato ringspot virus will arrive in Australia with the importation of table grapes from China is: LOW.

Supporting information for this assessment is provided below:

- Tomato ringspot virus has been reported in Chinese cabbage (Brassica chinensis) in Zhejiang Province (Zhang and Huang 1990). No information was found on the incidence or distribution of ToRSV in China.

- Tomato ringspot virus sensu lato and some strains of the virus have wide host ranges and infect common weed species as well as cultivated plants in North America (Brunt et al. 1996b; CABI 2009; Powell et al. 1984).

- Common dandelion (Taraxacum officinale) is a reservoir host of ToRSV in USA (Powell et al. 1984). Common dandelion grows in China.
In addition to Chinese cabbage, ToRSV may infect other plant species in China. The virus could be transmitted to grapevine from other host species. *Xiphinema* spp. are common in China (Peng *et al.* 2008) and could include species that are vectors of ToRSV.

Two strains of ToRSV found in the USA, the yellow vein and decline strains, infect grapevine systemically (Gilmer and Uyemoto 1972; Gooding Jr 1963). Some ToRSV strains may not infect grapevine systemically. No information was found on the presence in China of grapevine-infecting strains of the virus.

The leaves of infected grapevines may be small and develop ringspot and chlorotic mottling and the canes may grow abnormally (Dias 1977; Gilmer and Uyemoto 1972). Infected vines may produce small grape bunches and the berries may develop unevenly and be small; some vines may produce no fruit (Dias 1977; Gilmer and Uyemoto 1972).

Infected vines may be removed from production in China. Infected fruit and bunches showing symptoms may be culled during harvesting, grading and packing.

Infected grapevines in the USA were symptomless, or nearly so, in the first year, and were difficult to identify (Gonsalves 1988). Fruit of infected vines may appear normal. Symptoms varied in intensity throughout the year. In Maryland USA, infected vines showed no obvious foliage symptoms, although fruit bunches were affected (Gonsalves 1988).

At least one strain of ToRSV is transmitted at a low rate through the seed of infected grapevine (Uyemoto 1975).

Normal looking grapes carrying ToRSV infected seed might be imported into Australia. The possible asymptomatic infection of grapevine and production of normal looking grapes carrying the virus, moderated by lack of reports about the presence of grapevine-infecting strains in China, support a risk rating for importation of ‘low’.

Probability of distribution

The likelihood that *Tomato ringspot virus* will be distributed within Australia in a viable state as a result of processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: **MEDIUM**.

Supporting information for this assessment is provided below:

- Tomato ringspot virus is systemically distributed in all host tissues.
- If table grapes are imported, they will be distributed through the domestic supply chain and sold to the public for consumption. In unrestricted trade, imported table grapes are likely to be sold in WA.
- Most fruit waste will be discarded into managed waste systems and will be disposed of in municipal tips. Consumers will discard small quantities of fruit waste in urban, rural and natural localities. Many localities will not be suitable for grape seed germination. Some fruit waste will be discarded in domestic compost and other environments suitable for germination.

The distribution of fruit in the supply chain and by consumers supports a risk rating for distribution of ‘moderate’.
Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that Tomato ringspot virus will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: LOW.

4.24.2 Probability of establishment

The likelihood that Tomato ringspot virus will establish within Australia, based on a comparison of factors in the source and destination areas that affect pest survival and reproduction, is: LOW.

Supporting information for this assessment is provided below:

- Tomato ringspot virus has been found in many countries including Argentina, Belarus, Canada, Chile, China, Croatia, Egypt, Finland, France, Germany, Greece, Iran, Ireland, Italy, Japan, Jordan, Korea, Lithuania, Mexico, New Zealand, Oman, Pakistan, Peru, Russian Federation, Serbia and Montenegro, Puerto Rico, Slovakia, Slovenia, Taiwan, Togo, Tunisia, Turkey, UK, USA, Venezuela (CABI 2009; CABI-EPPO 1997e). The widespread occurrence of the virus suggests it will establish in many environments through the exchange of propagation material. However, establishment in the European Union has been limited with little impact on fruit trees or grapevines (CABI-EPPO 1997e).

- Tomato ringspot virus might establish in Australia from infected imported fruit if seed in fruit waste germinates, seed transmission occurs and seedlings, infected with the virus, survive.

- It is likely that some, but not all, table grapes from China will contain seed. Some varieties will be seedless.

- The proportion of grapevine seed that germinates depends on the cultivar, seed maturity, storage, stratification and planting conditions (Doijode 2001). Most grapevine seed is dormant and will not germinate unless it has been stratified. Night-time temperatures below 6 °C during winter may be sufficient for stratification (Ellis et al. 1985; Doijode 2001). Seed of some cultivars will not germinate without stratification, other cultivars have very low germination rates when not stratified, but germination rates of up to 33% from seed from fresh untreated berries of some cultivars has been reported (Forlani and Coppola 1977; Scott and Ink 1950; Singh 1961).

- Cold storage of imported table grapes during transport may stratify the seed and improve germination rates. Night-time temperatures in most temperate regions of Australia (Bureau of Meteorology 2010) may be low enough for stratification of grape seeds to occur naturally.

- A small proportion of grapevine seed from fruit waste may germinate. Successful germination will depend on local conditions.

- In Europe, volunteer grapevines grow as weeds in small numbers. Most of these weedy vines are probably rootstocks that have escaped vegetatively, but some may have grown from seed (Arrigo and Arnold 2007; Ocete et al. 2008; Zohary 1996), suggesting seedlings sometimes survive in unmanaged environments.
- *Vitis vinifera* is not commonly encountered as a weed in Australia (Office of the Gene Technology Regulator 2003). There are reports of *V. vinifera* growing as a weed on roadsides and in disturbed areas in NSW, Vic. and WA (Richardson et al. 2006). Vines have been found near established vineyards and water-courses (Conn 2010). *Vitis vinifera* has been recorded as naturalised in WA and on the North Coast and North Western Slopes of NSW (Conn 2010). Reports indicating the origins of the naturalised plants were not found. They may have propagated vegetatively from cultivated vines or may have grown from seed and, if they grew from seed, it is possible the seed was from rootstocks or scion cultivars.

- Few, if any, grapevine seedlings are likely to survive on agricultural land and in unmanaged localities. Seedling survival will depend on local conditions including rainfall.

- Grapevines are normally cultivated vegetatively, being propagated from cuttings by grafting onto rootstock or, less commonly, on their own roots (Zohary 1996). Seed is not used to establish vineyards because vines propagated from seed are likely to produce inferior berries; they are unlikely to be true to type after genetic segregation (Zohary 1996). This aspect of grapevine propagation is likely to deter members of the public from growing grapevines from seed from imported fruit, as will the relatively long time taken to grow a productive vine from seed (Olmo 1976) and the ready availability of grafted vines.

- Transmission of ToRSV through grapevine seed to the emerging seedlings has been reported at a rate of about 10% (Uyemoto 1975). Rates of nepovirus transmission through seed vary and may be as high as 100% but are usually lower (Albrechtsen 2006; Mink 1993). The capacity to be seed transmitted is known to vary among strains of other virus species, and to vary between cultivars of the same plant species (Albrechtsen 2006); this may also be true of ToRSV and *Vitis* species. Some strains of ToRSV are probably seed transmitted in some grapevine cultivars.

- If seedlings grow from ToRSV-infected seed, they may be infected with the virus. Plants grown from infected seed sometimes do not show symptoms even though they are infected.

The combined likely low rates of germination and seedling survival support a likelihood estimate for establishment of ‘low’.

4.24.3 Probability of spread

The likelihood that *Tomato ringspot virus* will spread within Australia, based on a comparison of factors in the source and destination areas that affect the expansion of the geographic distribution of the pests is: **MODERATE**.

Supporting information for this assessment is provided below:

- Tomato ringspot virus might spread if it is transmitted from an infected seedling or vine to other host plants by nematode vectors.

- Tomato ringspot virus is transmitted through soil between host plants by root-feeding ectoparasitic dagger nematodes of the *Xiphinema americanum* group, including *X. americanum sensu stricto*, *X. rivesi* and *X. californicum* (Brown et al. 1993; Bitterlin and Gonsalves 1987; Harris et al. 2002; Adaskaveg et al. 2009). Several other species in the group might transmit the virus (Brown et al. 1993).
Nematodes of the *X. americanum* group are commonly found in NSW, Qld, Vic., SA and WA (APPD 2009; CABI 2009). The classification and virus-transmission capabilities of Australian members of the group are uncertain. *X. rivesi* was probably found in soil from WA vineyards, but the identification has not been confirmed (Lantzke 2004).

There is no clear and comprehensive taxonomy of species and strains within the *X. americanum* group: there are different views on species assignments and the number of species, and specimens that have been given different species names have been found to be very closely related and difficult to distinguish (Lazarova et al. 2006; Lantzke 2004).

Nematodes move through soil relatively slowly. Transmission of ToRSV in an uncultivated raspberry field was estimated to be 70 cm per year on average over 7 years (Pinkerton et al. 2008). A higher estimate of 2 m per year has been made (CABI-EPPO 1997e).

Nematodes carrying ToRSV might be moved by cultivation or perhaps by flood irrigation (Gubler et al. 2009).

Tomato ringspot virus has been found naturally infecting a range of cultivated plants including *Fragaria* spp. (strawberries), *Gladiolus* spp., *Malus* pumila (apple), *Nicotiana tabacum* (tobacco), *Pelargonium*, *Prunus* spp. (almond, apricot, nectarine, peach, plum, prune and sweet cherry), *Rubus* spp. (blackberry and raspberry), *Ribes* spp. (gooseberry and red currant), *Solanum lycopersicum* (tomato) and *Vitis* spp. (grapes) (Brunt et al. 1996b; CABI-EPPO 1997e; Kim and Choi 1990). The virus has also been found naturally infecting a range of common weeds and pasture plants in the USA (Powell et al. 1984) including red and white clover (*Trifolium pratense* and *T. repens*), common dandelion (*Taraxacum officinale*), and *Plantago lanceolata* and *P. major* (Powell et al. 1984). All of these host species grow in Australia and some of them are widely distributed.

The natural infection of several different plant species suggests that the vector nematodes transmit ToRSV between different species in the field.

Tomato ringspot virus has been shown in experiments to have a wide host range, infecting 285 plant species in 159 genera of 55 botanical families (Edwardson 1997).

It is possible that if an infected seedling grows from seed in imported grapes, it will grow near other plant species to which ToRSV could be transmitted by nematodes of the *X. americanum* group, if they are also present.

Infections of weeds and cultivated plants in domestic gardens or commercial crops may not be detected.

Tomato ringspot virus is transmitted through seeds of common dandelion, grapevine (*V. vinifera*), raspberry, soybean (*Glycine max*), strawberry, tobacco and tomato (Uyemoto 1975; Mountain et al. 1983; CABI-EPPO 1997e). Tomato ringspot virus may be spread in seeds of common dandelion or another host species. Dandelion seed is dispersed long distances by the wind.

Tomato ringspot virus is transmitted through pollen to seed in *Pelargonium* (Scarborough and Smith 1977). A report of pollen transmission in grapevine was not supported by all reviewers (Brunt et al. 1996b; Stace-Smith 1984). Several nepoviruses have been shown to be pollen transmitted but evidence of the role of nepovirus pollen transmission in the field is inconclusive (Brunt et al. 1996b; Mink 1993). The virus might be spread in pollen if *Pelargonium* is infected.
Tomato ringspot virus is transmitted by grafting and is disseminated with infected propagation material (Brunt et al. 1996b; Stace-Smith 1984). A grapevine that has grown as a volunteer from seed from imported fruit is unlikely to be used for grafting.

Tomato ringspot virus was found in Pentas lanceolata (Egyptian starflower) in South Australia (Chu et al. 1983). The infected plants were removed and it has not been detected since that time in SA (Cartwright 2009), suggesting it did not spread. It is possible that it did not spread because nematodes that could transmit the virus were not present or because the hosts were removed.

The possibilities of transmission by dagger nematodes or spread in seed or pollen, moderated by uncertainty about the presence of nematode vectors and lack of evidence of spread of the virus from infected plants in SA, supports a likelihood estimate for spread of ‘moderate’.

4.24.4 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that Tomato ringspot virus will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: VERY LOW.

4.24.5 Consequences

The consequences of the establishment of Tomato ringspot virus in Australia have been estimated according to the methods described in Table 2.3.

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘E’, the overall consequences are estimated to be MODERATE.

Reasoning for these ratings is provided below:
Plants life or health

Impact score: E – Significant at the regional level.

The virus causes most economic impact in North America with highest disease levels thought to correlate with the presence of nematode vectors in great numbers (CABI 2009; CABI-EPPO 1997e).

Spread has been limited in Europe, where no fruit tree infections were confirmed (CABI-EPPO 1997e). The absence of nematode vectors, low vector numbers, or fewer infections in weed species, might explain the lower economic impact in Europe.

Different strains of the virus are found in different crop plant species and produce distinct symptoms (Stewart et al. 2007). It is possible that a strain infecting grapevine may not infect other economically important hosts or may not induce severe disease in those hosts.

There were more than 173 000 ha of Australia planted to commercial grapes in 2007 (McGrath-Kerr Business Consultants Pty Ltd 2008). Most of these plantings are for wine grapes (ABS 2009b) with more than 10 500 ha growing table grapes (Australian Table Grape Association 2008). In 2007/08 the value of the Australian wine produced was $4.77 billion of which $2.1 billion was sold locally (ABS 2009b). Annual production of table grapes is about 120 000 t (Australian Table Grape Association 2008). In 2008/09 Australia exported 70 000 t of table grapes at prices of between $2.08/kg to $3.34/kg (ABS 2009a). Dried grape production was 56 139 t in 2008 and was as high as 135 412 t in 2005 (ABS 2009b). The Australian apple and stone fruit crops are estimated to be worth more than $348 million and $254 million per annum respectively (Horticulture Australia Limited 2004). Apples and stone fruit are grown in all states and territories of Australia (APAL 2010; Summerfruit Australia 2009). The annual Australian production in 2003/4 for *Rubus* and *Ribes* spp. was 800 tonnes, worth approximately $10 million (ARGA 2005).

Tomato ringspot virus causes a range of symptoms in grapevines including vine stunting and ringspots, and mottling on leaves (Coates 2003; Ramsdell 1994; Yang et al. 1986). Infected vines lose vigour and will often die in winter (Ramsdell 1994). Fruit clusters are smaller and many berries abort (CABI-EPPO 1997e). Phloem in the bark may be thickened, spongy and pitted (Uyemoto 1975). In parts of the USA, infection has reduced grape fruit yield and quality, reduced yields for wine production, and led to the early replacement of vines (Coates 2003; Stewart et al. 2007). In California, ToRSV reduced the fruit yield but vines grew vigorously (Martelli 1993a).

Tomato ringspot virus causes the diseases known as apple union necrosis and decline (AUND) of apple and *Prunus* stem pitting (PSP) of *Prunus* spp. (Mountain et al. 1983; Stace-Smith 1984). Both diseases are economically important in parts of the USA (Powell et al. 1984). AUND only affects grafted trees and only certain cultivars (Yoder and Biggs 2009). Trees with AUND or PSP produce smaller fruit, their growth is reduced and trees may die or break at the graft union (Podleckis and Welliver 2010; Yoder and Biggs 2009). Some strains of ToRSV do not induce PSP of *Prunus* spp. but still affect tree growth and fruit production with fruit being small and malformed (CABI-EPPO 1997e). Tomato ringspot virus-infected cherry trees yielded 53% less fruit than healthy trees (Ramsdell et al. 1992).

Tomato ringspot virus causes serious raspberry crop losses in some fields in the USA (CABI 2009). Canes are stunted, fruit are smaller, yields are reduced by 10 to 80% and some raspberry plants are killed. Tomatoes infected with the virus suffer systemic mottling and necrosis (CABI 2009; Stace-Smith 1984). Tomato ringspot virus causes mosaic or ringspot symptoms in *Pelargonium*, *Hydrangea* and stunt or stub head in *Gladiolus* (CABI-EPPO 1997e).

Other aspects of the environment

Impact score: A – Indiscernable at local level.

Tomato ringspot virus naturally infects a range of common weeds including common dandelion (*Taraxacum officinale*), and *Plantago lanceolata* and *P. major* (Powell et al. 1984). These weeds are widely distributed in Australia and infection may reduce the weed burden within some ecosystems.

Indirect

Eradication, control etc.

Impact score: D – Significant at the district level.

Eradication and control in the field is difficult and may not be possible if weeds are infected and vector nematodes are present (CABI 2009). Surveys may be required to determine the extent of an outbreak. Infected plants are likely to be removed. The virus may be maintained in certain weeds and nematodes may spread it to new plantings months or years after plants have been removed. Nematicides might be used. Cultivation of virus-free plants and weed control may reduce the spread of the virus (CABI 2009).

Domestic trade

Impact score: C – Significant at the local level.

States may consider restricting trade in propagation material, and possibly some fruit, from localities where the virus is detected.

International trade

Impact score: C – Significant at the local level.

If ToRSV became established in Australia additional restrictions might be introduced on the international trade of nursery stock and propagation material, and possibly some fruit, that might lead to the loss of markets and some industry adjustment.
4.24.6 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the outcome of overall consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimate and rationale</th>
</tr>
</thead>
</table>
| Environmental and non-commercial | Impact score: B – Significant at the local level.
The application of nematicides to the soil may affect the environment. |

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Tomato ringspot virus</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
<td>Very low</td>
</tr>
<tr>
<td>Consequences</td>
<td>Moderate</td>
</tr>
<tr>
<td>Unrestricted risk</td>
<td>Very low</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for *Tomato ringspot virus* of ‘very low’ achieves Australia’s ALOP. Therefore, specific risk management measures are not required for this pest.
4.25 Tobacco necrosis viruses

The taxonomy of ‘tobacco necrosis virus’ (TNV) has been revised. *Tobacco necrosis virus* A (TNV-A) and *Tobacco necrosis virus* D (TNV-D) have been recognised as distinct species in the Necrovirus genus (Meulewaeter et al. 1990; Coutts et al. 1991), as have *Chenopodium necrosis virus* (ChNV) and *Olive mild mosaic virus* (OMMV), which were previously considered TNV isolates (Tomlinson et al. 1983; Cardoso et al. 2005). TNV isolates from Nebraska and Toyama (TNV-NE and TNV-Toyama) represent another species in the genus, as yet not officially recognised (Zhang et al. 1993; Saeki et al. 2001) and molecular sequence data indicates some other necroviruses called ‘tobacco necrosis virus’ are also distinct species (NCBI 2009).

Necroviruses are transmitted through soil. ChNV, TNV-A and TNV-D are transmitted by the root-infecting chytrid fungus *Olpidium brassicae* (Wor.) Dang (Rochon et al. 2004) and at least one TNV strain is transmitted by the related chytrid *Olpidium virulentus* (Sasaya and Koganezawa 2006). Virus particles released from roots and other plant matter are acquired in soil water by fungal zoospores and transmitted when the spores infect the roots of a suitable host. TNV particles are stable and relatively long lived. Transmission probably only occurs when there is sufficient soil water for *Olpidium* zoospore activity (Uyemoto 1981; Spence 2001). TNVs cause sporadic disease in some vegetable crops, strawberry, tulip and soybean. A necrovirus serologically related to TNV-D has been detected in grapevine (Cesati and Van Regenmortel 1969). TNVs have been reported in Qld and Vic. (Finlay and Teakle 1969; Teakle 1988) but it is not known if the species or strain that infects grapevine is present in Australia. TNV was thought to be ubiquitous and have a world-wide distribution (Uyemoto 1981; Brunt and Teakle 1996), but this status has not been reviewed since the taxonomic revision of the viruses. A satellite virus replicates with some strains of TNV.

The risk scenario of concern for TNV is where the particles of a foreign TNV species or strain are released from fruit waste, acquired in soil by a vector and transmitted to suitable host plants. TNVs may enter Australia in hyacinth (*Hyacinthus* sp.), lily (*Lilium* sp.) and tulip (*Tulipa* sp.) bulbs imported for planting under current conditions (AQIS 2009a). It is not known if the necrovirus species infecting monocots also infect grapevine.

Tobacco necrosis viruses were assessed in the existing import policy for apples from China (Biosecurity Australia 2010b) and stone fruit from the USA (Biosecurity Australia 2010c). The assessment of Tobacco necrosis viruses presented here builds on these previous assessments.

The probability of importation for Tobacco necrosis viruses was rated as ‘moderate’ in the assessments for apples from China and stone fruit from the USA. The probability of distribution for Tobacco necrosis viruses was rated as ‘moderate’ in the assessments for apples from China and stone fruit from the USA. However, differences in commodities, horticultural practices, climatic conditions and prevalence of the pests between the previous export areas (China and the USA) and China make it necessary to re-assess the likelihood that Tobacco necrosis viruses will be imported into and distributed within Australia with table grapes from China.

The probability of establishment and of spread of Tobacco necrosis viruses in Australia, and the consequences they may cause will be the same for any commodity in which these species are imported into Australia. Accordingly, there is no need to re-assess these components.
4.25.1 Reassessment of probability of entry

The probability of entry is considered in two parts, the probability of importation and the probability of distribution, which consider pre-border and post-border issues, respectively.

Reassessment of probability of importation

The likelihood that Tobacco necrosis viruses will arrive in Australia with the importation of table grapes from China is: MODERATE.

Supporting information for this assessment is provided below:

- TNVs are probably widely prevalent in China. TNVs have been isolated from melon in Xinjiang and soybean in Jiangsu (Huang et al. 1984; Xi et al. 2008). TNVs have also been isolated from mulberry, potato and tobacco growing in China (Xi et al. 2008).

- A strain of TNV was found naturally infecting several grapevine cultivars in South Africa (Cesati and Van Regenmortel 1969). The taxonomy, incidence and global distribution of the grapevine-infecting TNV is not known.

- Grapevines are systemically infected (Cesati and Van Regenmortel 1969) and the virus is likely to be in berries.

- Some TNV species and strains may not infect grapevine systemically and may not be in berries. Detectable systemic infection only occurs with certain combinations of host species and TNV species or strain (Uyemoto 1981; Brunt and Teakle 1996).

- No record was found indicating that infected grapevine showed symptoms.

The prevalence of TNVs in China and the likelihood of systemic infection of grapevine, combined with the uncertainty about the incidence and distribution of infections, support a likelihood estimate for importation of ‘moderate’.

Reassessment of probability of distribution

The likelihood that Tobacco necrosis viruses will be distributed within Australia in a viable state as a result of processing, sale or disposal of table grapes from China and subsequently transfer to a susceptible part of a host is: MODERATE.

Supporting information for this assessment is provided below:

- Imported berries are intended for human consumption. Fruit will be distributed to many localities by wholesale and retail trade and by individual consumers. Berries may be distributed to all states in unrestricted trade.

- Most fruit waste will be discarded into managed waste systems and will be disposed of in municipal tips. Consumers will discard small quantities of fruit waste in urban, rural and natural localities. Small amounts of fruit waste will be discarded in domestic compost.

- Fruit waste may be discarded near host plants.

- TNV particles are likely to be present in low concentrations in infected fruit and their distribution in fruit tissue may be erratic (Uyemoto and Gilmer 1972).

- TNV particles are moderately to highly stable and survive for long periods in plant debris. TNV particles survive in soil containing infected roots for up to 130 days (18.5 weeks) and remain viable in vitro at 20 °C for one to eight weeks, depending on the strain, and up
to several years in vitro at -20 °C (Brunt and Teakle 1996; Gibbs and Harrison 1976; Kassanis 1970; Nemeth 1986; Smith et al. 1969).

- TNV particles tolerate temperatures as high as 95 °C (Brunt and Teakle 1996), so the temperatures achieved by composting and soil pasteurization may not eliminate the viruses.

- Virus particles are released from roots and plant debris (CABI 2009).

- TNVs are transmitted by the zoospores of the chytrid fungi *Olpidium brassicae* and *Olpidium virulentus* (Rochon et al. 2004; Sasaya and Koganezawa 2006). The chytrids probably occur throughout Australia. *Olpidium brassicae* has been recorded in NSW and WA (APPD 2009). *Olpidium virulentus* has been recorded in WA (Maccarone et al. 2008).

- *Olpidium brassicae* is an efficient vector of TNV-D and can acquire particles from very dilute solutions and transmit the virus to susceptible hosts in short time periods (Kassanis and MacFarlane 1964). If infected fruit waste is discarded in areas where *Olpidium* zoospores are active, then zoospores may acquire particles and transmit the virus.

- Species of *Olpidium* form resting spores through sexual reproduction (Spence 2001; Herrera-Vasquez et al. 2009). Resting spores resist desiccation, are long lived and may be distributed in dust, soil and roots. They germinate to produce zoospores.

- Zoospores need water to germinate and move and they are only active when there is sufficient soil moisture (Spence 2001). During drought and dry weather, zoospores are unlikely to be active in some areas because of dry conditions.

- Only certain *Olpidium brassicae* biotypes will transmit particular TNV strains (Uyemoto 1981). Some isolates of *Olpidium brassicae* will parasitize a wide range of host plants whereas others are more specific (Campbell 1996).

- TNV strains typically have wide experimental host ranges (Uyemoto 1981). TNVs have been found collectively to naturally infect apple (*Malus pumila*), apricot (*Prunus armeniaca*), adzuki bean (*Vigna angularis*), beetroot (*Beta vulgaris*), cabbage (*Brassica oleracea*), carrot (*Daucus carota*), citrus (*Citrus spp.*), common bean (*Phaseolus vulgaris*), crab apple (*Malus sylvestris*), cucumber (*Cucumis sativus*), European pear (*Pyrus communis*), grapevine (*Vitis vinifera*), hyacinth (*Hyacinthus sp.*), lettuce (*Lactuca sativa*), lily (*Lilium sp.*), melon (*Cucumis melo*), mulberry (*Morus sp.*), olive (*Olea europaea*), passionfruit (*Passiflora edulis*), pea (*Pisum sativum*), plum (*Prunus domestica*), potato (*Solanum tuberosum*), sour cherry (*Prunus cerasus*), soybean (*Glycine max*), strawberry (*Fragaria × ananassa*), tomato (*Solanum lycopersicum*) tulip (*Tulipa gesneriana*) and zucchini (*Cucurbita pepo*) (Kassanis 1970; Brunt and Teakle 1996; Pham et al. 2007b; Pham et al. 2007a; Xi et al. 2008; CABI 2009; Zitikaite and Staniulis 2009). Commercial crops of some of these plants are grown in every Australian state and territory and others are grown commercially in several states (Horticulture Australia Limited 2004; Strawberries Australia 2009). Many of the plants are grown in domestic gardens and tulip is grown as an ornamental in Tas., Vic. and parts of NSW.

- TNVs are also found in some wild plants, weeds and forest trees including birch (*Betula spp.*), European ash (*Fraxinus excelsior*), European beech (*Fagus sylvatica*), Norway spruce (*Picea abies*), pedunculate oak (*Quercus robur*), poplar (*Populus spp.*) and potato
weed (*Galinsoga parviflora*) (Hibben *et al.* 1979; Teakle 1988; Nienhaus and Castello 1989; Bos 1999)

- It is unlikely that the TNV that infects grapevine will also infect all of the species recorded as hosts of TNVs collectively. The host ranges of many strains and the newly recognised necrovirus species are largely unknown. The TNVs were considered to be a single species when most host range studies were done (Brunt and Teakle 1996).

The presence of efficient vectors in Australia, moderated by the likely low concentration of TNV particles in berry flesh and the chance that infected fruit waste will be discarded near a plant host while vector chytrids are active, support a likelihood estimate for distribution of ‘moderate’.

Overall probability of entry

The overall probability of entry is determined by combining the probability of importation with the probability of distribution using the matrix of rules shown in Table 2.2.

The likelihood that Tobacco necrosis viruses will enter Australia as a result of trade in table grapes from China and be distributed in a viable state to a susceptible host is: **LOW**.

4.25.2 Probability of establishment and spread

As indicated above, the probability of establishment and of spread for Tobacco necrosis viruses would be the same as those assessed for apples from China (Biosecurity Australia 2010b) and stone fruit from the USA (Biosecurity Australia 2010c). The ratings from the previous assessments are presented below:

- Probability of establishment: **HIGH**.
- Probability of spread: **HIGH**.

4.25.3 Overall probability of entry, establishment and spread

The overall probability of entry, establishment and spread is determined by combining the probabilities of entry, of establishment and of spread using the matrix of rules shown in Table 2.2.

The likelihood that Tobacco necrosis viruses will enter Australia as a result of trade in table grapes from China, be distributed in a viable state to a susceptible host, establish in Australia and subsequently spread within Australia is: **LOW**.

4.25.4 Consequences

The consequences of the establishment of Tobacco necrosis viruses in Australia has been estimated previously for apples from China (Biosecurity Australia 2010b) and stone fruit from the USA (Biosecurity Australia 2010c). This estimate of impact score is provided below.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant life or health</td>
<td>C</td>
</tr>
<tr>
<td>Other aspects of the environment</td>
<td>A</td>
</tr>
<tr>
<td>Eradication, control etc.</td>
<td>C</td>
</tr>
<tr>
<td>Domestic trade</td>
<td>C</td>
</tr>
</tbody>
</table>
International trade C
Environment A

Based on the decision rules described in Table 2.4, that is, where the consequences of a pest with respect to one or more criteria are ‘C’, the overall consequences for Tobacco necrosis viruses are estimated to be: VERY LOW.

4.25.5 Unrestricted risk estimate

Unrestricted risk is the result of combining the probability of entry, establishment and spread with the outcome of overall consequences. Probabilities and consequences are combined using the risk estimation matrix shown in Table 2.5.

<table>
<thead>
<tr>
<th>Unrestricted risk estimate for Tobacco necrosis viruses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall probability of entry, establishment and spread</td>
</tr>
<tr>
<td>Consequences</td>
</tr>
<tr>
<td>Unrestricted risk</td>
</tr>
</tbody>
</table>

As indicated, the unrestricted risk estimate for Tobacco necrosis viruses of ‘negligible’ achieves Australia’s ALOP. Therefore, specific risk management measures are not required for this pest.
4.26 Sanitary pests

Latrodectus tredecimguttatus

Latrodectus mactans

Latrodectus tredecimguttatus (European black widow spider) and L. mactans (black widow spider) are not plant pests and therefore are not subject to phytosanitary action. Therefore, the methodology described in this IRA for plant pests was not used for this particular risk assessment.

These spiders are considered to be potentially associated with table grapes imported from China (see Appendix A2). Latrodectus tredecimguttatus is recorded in Xinjiang, Yunnan, Inner Mongolia and Gansu provinces (Chief Medical Network 2006). In Xinjiang, a region that produces table grapes for export (Li 2008; AQSIQ 2006), it is widely distributed and has been recorded from more than 20 cities and counties (Chief Medical Network 2006; Yan et al. 2007; Yang et al. 2007). Latrodectus mactans is present in Hainan and Sichuan (Li 2008), which are not major table grape production areas. These venomous spiders are recognised as having an impact on human health and potential impacts on the environment. Applications to import these species into Australia (i.e. an importer who actively wanted to bring specimens into Australia) would, if approved, require an Import Permit and containment of the specimens in a high security quarantine facility (AQIS 2009b).

Latrodectus tredecimguttatus is found in arid and semi arid climates from southern Europe to western China (Duma 2006). It is found in open field and grassy vegetation more than forests or bushy terrain (Duma 2006). In Xinjiang, L. tredecimguttatus is reported from natural hillsides, farmland and orchards (Chief Medical Network 2006). In Kazakhstan in Central Asia, it is widespread in pastures (Tarabaev 1991). Densities of L. tredecimguttatus fluctuate considerably depending on environmental conditions. Under good conditions, spider densities of 1/m² of pasture in Kazakhstan (Tarabaev 1990; Tarabaev 1991) and 3-4/m² in Uzbekistan (Krasnonos et al. 1989) have been reported.

In Almeria, Spain between 1984 and 1994, almost all persons admitted to hospital having been bitten by this spider were undertaking agricultural work, mostly in greenhouses (Díez García et al. 1996). In northern Iran, bites from L. tredecimguttatus are common, producing sickness and the occasional death, with 56 cases admitted to a hospital in Mashhad between September 2005-2006 (Afshari et al. 2009). People sleeping in tents, such as nomadic pastoralists in Uzbekistan and Kazakhstan, are reported as being frequently bitten (Krasnonos et al. 1989; Tarabaev 1991). In Xinjiang, the majority of people bitten are farmers and pastoralists (Chief Medical Network 2006). The impact of spider bites on farm animals appears to be considerable at times. Media reports indicate that farmers in western Kazakhstan have lost Bactrian camels to bites of L. tredecimguttatus (BBC 2004). Horses and camels are reported as being very susceptible to bites from this spider (Kungrad.com 2006). Nomadic pastoralists in Kazakhstan have in the past left rich pasture due to the threat to themselves and their livestock caused by high densities of this spider (Tarabaev 1991).

AQSIQ (2009c) has advised that L. tredecimguttatus has been reported from the wild in Hami and Quitai in Xinjiang but has never been detected in vineyards. AQSIQ confirmed this information during a bilateral meeting held in March 2010 and in their submission of comments to the draft IRA report (AQSIQ 2010). AQSIQ has advised that these spiders are
unlikely to be found in the packed grapes for export due to vineyard management practices and the harvesting and packing procedures in place, as described in Chapter 3.

Latrodectus tredecimguttatus thrives in dry and semi arid areas with a Mediterranean or temperate continental climate. Large parts of southern and central Australia have a climate similar to regions from where this spider is found. *Latrodectus tredecimguttatus* appears to thrive in pastureland and is thus a threat to cattle, horses, other domestic animals and native herbivores, especially in drier regions of Australia. It is also a potential risk to workers in horticulture and to human communities especially in inland Australia. In addition it may pose a threat to recreational activities, such as camping, given its ground living habit.

A comprehensive assessment of the association of spiders (including *Latrodectus* spp.) with table grapes, risk mitigation measures and impact on human health is provided in a series of documents produced by the New Zealand Ministry of Agriculture and Forestry and Ministry of Health and taken into consideration in the assessment of *Latrodectus mactans* in the import risk analysis for table grapes from Chile (Biosecurity Australia 2005c).

Even though there is limited potential for these spiders to be associated with table grapes from China, when the demonstrated ability of other *Latrodectus* species to survive in Australia and the risks identified to human health are taken into consideration it is concluded that the unrestricted sanitary risk associated with these species is not acceptable. Therefore, specific risk management measures are required for these sanitary pests.
4.27 Pest risk assessment conclusions

Key to Table 4.2 (next page)

- Genus species \(^{EP}\) pests for which policy already exists. The outcomes of previous assessments and/or reassessments in this IRA are presented in Table 4.2
- Genus species \(^{state/territory}\) state/territory in which regional quarantine pests have been identified

Likelihoods for entry, establishment and spread

- **N** negligible
- **EL** extremely low
- **VL** very low
- **L** low
- **M** moderate
- **H** high
- **P[EES]** overall probability of entry, establishment and spread

Assessment of consequences from pest entry, establishment and spread

- **PLH** plant life or health
- **OE** other aspects of the environment
- **EC** eradication control etc.
- **DT** domestic trade
- **IT** international trade
- **ENC** environmental and non-commercial
- **A-G** consequence impact scores are detailed in section 2.2.3
- **URE** unrestricted risk estimate. This is expressed on an ascending scale from negligible to extreme.
Table 4.2 Summary of unrestricted risk estimates for quarantine pests associated with table grapes from China

<table>
<thead>
<tr>
<th>Pest name</th>
<th>Likelihood of Entry</th>
<th>Likelihood of Establishment</th>
<th>Likelihood of Spread</th>
<th>Likelihood of P[EES]</th>
<th>Consequences</th>
<th>PLH</th>
<th>OE</th>
<th>EC</th>
<th>DT</th>
<th>IT</th>
<th>ENC</th>
<th>URE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spider mite (Thomisiformes: Tetranychidae)</td>
<td></td>
</tr>
<tr>
<td>Tetranychus kanzawai WA</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>L</td>
<td>E</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>M</td>
</tr>
<tr>
<td>Ladybird (Coleoptera: Rhynchitidae)</td>
<td></td>
</tr>
<tr>
<td>Harmonia axyridis</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>E</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>D</td>
<td>E</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Weevil (Coleoptera: Rhynchitidae)</td>
<td></td>
</tr>
<tr>
<td>Merhynchites sp.</td>
<td>L</td>
<td>L</td>
<td>VL</td>
<td>VL</td>
<td>L</td>
<td>E</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>L</td>
</tr>
<tr>
<td>Beetles (Coleoptera: Scarabaeidae)</td>
<td></td>
</tr>
<tr>
<td>Popillia japonica</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Popillia mutans EP</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Popillia quadriguttata EP</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Fruit fly (Diptera: Tephritidae)</td>
<td></td>
</tr>
<tr>
<td>Bactrocera dorsalis EP</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td>E</td>
<td>C</td>
<td>F</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>Midge (Diptera: Cecidomyiidae)</td>
<td></td>
</tr>
<tr>
<td>Cecidomyia sp.</td>
<td>VL</td>
<td>L</td>
<td>VL</td>
<td>L</td>
<td>L</td>
<td>V</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>L</td>
</tr>
<tr>
<td>Whitefly (Hemiptera: Aleroydidae)</td>
<td></td>
</tr>
<tr>
<td>Aleurolobus taeonabe</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>E</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>M</td>
</tr>
<tr>
<td>Phylloxera (Hemiptera: Phylloxeridae)</td>
<td></td>
</tr>
<tr>
<td>Daktulosphaira vitifoliae</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td>M</td>
<td>E</td>
<td>A</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>M</td>
</tr>
<tr>
<td>Pest name</td>
<td>Likelihood of</td>
<td>Consequences</td>
<td>URE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Entry</td>
<td>Establishment</td>
<td>Spread</td>
<td>P[EES]</td>
<td>direct</td>
<td>indirect</td>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>importation</td>
<td>distribution</td>
<td>Overall</td>
<td></td>
<td>PLH</td>
<td>OE</td>
<td>EC</td>
<td>DT</td>
<td>IT</td>
<td>ENC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft scales (Hemiptera: Coccidiae)</td>
<td></td>
</tr>
<tr>
<td>Parthenolecanium corni<sup>EP, WA</sup></td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Parthenolecanium orientalis</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Pulvinaria vitis</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Mealybugs (Hemiptera: Pseudococcidae)</td>
<td></td>
</tr>
<tr>
<td>Planococcus kraunhiae<sup>EP</sup></td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>L</td>
</tr>
<tr>
<td>Pseudococcus comstocki<sup>EP</sup></td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>L</td>
</tr>
<tr>
<td>Pseudococcus maritimus<sup>EP</sup></td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>L</td>
</tr>
<tr>
<td>Moths (Lepidoptera: Tortricidae)</td>
<td></td>
</tr>
<tr>
<td>Archips micaceana</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>E</td>
<td>D</td>
<td>E</td>
<td>D</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>Archips podana</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>E</td>
<td>D</td>
<td>E</td>
<td>D</td>
<td>B</td>
<td>M</td>
</tr>
<tr>
<td>Eupœcilia ambiguelia</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>E</td>
<td>D</td>
<td>E</td>
<td>D</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>Sparganothis pilleriana</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>E</td>
<td>D</td>
<td>E</td>
<td>D</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>Nippoptilia vitis</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>VL</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Stathmopoda auriferella<sup>EP</sup></td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>(Thysanoptera: Thripidae)</td>
<td></td>
</tr>
<tr>
<td>Frankliniella occidentalis<sup>EP, NT</sup></td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>Rhipiphorothrips cruentatus<sup>EP</sup></td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
</tr>
<tr>
<td>Physalospora baccae</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>E</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>Guignardia bidwellii</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>L</td>
<td>F</td>
<td>A</td>
<td>E</td>
<td>D</td>
<td>D</td>
<td>B</td>
</tr>
</tbody>
</table>
Pest Risk Assessments

<table>
<thead>
<tr>
<th>Pest name</th>
<th>Likelihood of</th>
<th>Consequences</th>
<th>URE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entry</td>
<td>Establishment</td>
<td>Spread</td>
</tr>
<tr>
<td></td>
<td>importation</td>
<td>distribution</td>
<td>Overall</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternaria viticola</td>
<td>H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Monilinia fructigena</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>Phakopsora euvitis</td>
<td>M</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>Phomopsis viticola</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Virions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grapevine yellow speckle viroid-1</td>
<td>H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Grapevine yellow speckle viroid-2</td>
<td>H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Grapevine yellow speckle viroid-3</td>
<td>H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Viruses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grapevine fanleaf virus</td>
<td>H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Tomato ringspot virus</td>
<td>L</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>Tobacco necrosis virus</td>
<td>M</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>Sanitary pests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latrodectus mactans</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Latrodectus tredecimguttatus</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- URE: Unacceptable Risk Evaluation
- PLH: Plant Health
- OE: Economic
- EC: Economic
- DT: Direct
- IT: Indirect
- ENC: Encroachment
- VL: Very Lethal
- N: Not
- Not acceptable
5 Pest risk management

This chapter provides information on the management of quarantine pests identified with an unrestricted risk exceeding Australia’s appropriate level of protection (ALOP). The recommended phytosanitary measures are described below.

5.1 Pest risk management measures and phytosanitary procedures

Pest risk management evaluates and selects options for measures to reduce the risk of entry, establishment or spread of quarantine pests for Australia where they have been assessed to have an unrestricted risk above Australia’s ALOP. In calculating the unrestricted risk, existing commercial production practices in China have already been considered, as have post-harvest procedures and packing of fruit.

In addition to China’s existing commercial production practices for the production of table grapes and minimum border procedures in Australia, specific pest risk management measures, including operational systems, are proposed to achieve Australia’s ALOP.

In this section, Biosecurity Australia has identified risk management measures that may be applied to consignments of table grapes sourced from China. Finalisation of the quarantine conditions may be undertaken with input from AQIS and the Australian states and territories as appropriate.

China has proposed the following general framework for the management of pests and procedures for production of table grapes for export to Australia (AQSIQ 2006; AQSIQ 2008; AQSIQ 2009c):

- **Registration**: Table grapes for export to Australia must originate from vineyards and packing houses registered with the General Administration for Quality Supervision, Inspection and Quarantine of the People’s Republic of China (AQSIQ) by the regional China Entry-Exit Inspection and Quarantine Bureau (CIQ).

- **Personnel training**: CIQ will supervise the training in sanitation and the monitoring, identification and control of pests of personnel working in registered vineyards and packing houses. Each registered vineyard has detailed pest monitoring, prevention and control guidelines and CIQ is responsible for instructing and overseeing the implementation of these guidelines.

- **Pest control and monitoring**: Quarantine pests of concern to Australia are to be monitored and controlled in export vineyards. The general pest control measures are: (i) vineyard sanitation measures including deep tillage and cultivation of mulch crop between vines; (ii) monitoring and surveillance (iii) integrated pest management measures including cultivation, pest trapping, biological control and application of chemical control measures and fruit bagging.

- **Fruit fly monitoring**: AQSIQ will use the established national fruit fly trapping system in China to monitor for fruit flies of quarantine concern.

- **Pre-harvest auditing and supervision**: Before fruit is harvested, CIQ will periodically examine the records for pest monitoring, pest control, spraying, fertilising and fruit bagging. Ten to 20 days before harvesting, AQSIQ will send technicians to undertake vineyard inspections to ensure the effectiveness of field control measures.
• **Packing house management:** A sanitation program is to be carried out in packing houses to ensure they are kept clean. Windows and doors are to be insect-proof. The waste fruit is to be collected regularly for disinfection treatment. The processing line is specifically used to grade export fruit. Fruit for export to different countries and for the domestic market are prohibited from being processed in the same packing house at the same time.

• **Labelling:** New and clean cartons must be used for packing fruit. Plant derived packing materials must not be used. For the convenience of tracing the origin of any problem, all the cartons must be labelled with ‘For Australia’, with the registration number of vineyards and packing house, the lot number, the number of cartons in each lot, and the date.

• **Storage and transport:** The storage facilities should be clean and hygienic. Fruit for different export markets should be stored separately. The packing houses are to ensure that the relevant records are kept up to date.

• **Pre-export inspection and certification:** CIQ will conduct the on-site phytosanitary inspection and, if the lot meets the requirements, issue the Phytosanitary Certificate.

Biosecurity Australia has considered the components of China’s proposed general framework. Biosecurity Australia has also visited table grape production areas in China and observed and collected information related to the framework proposed by China for registration and management of vineyards and packing houses, pest management including fruit fly monitoring and storage and transport. There are general requirements to be fulfilled for table grape vineyards and packing houses and storage facilities to be eligible to register for export to any country and specific requirements to comply with the import conditions agreed between China and the importing country.

The requirements for vineyard registration include: a minimum size of 100 mu (about 6.7 ha); good water quality; service of a plant protection officer to monitor and control pests; and capacity for implementing quality management and complying with the conditions of export protocols.

Requirements for packing houses include: good general hygiene; adequate functioning and maintenance of machinery; cold storage capacity; and capability for personnel training in quarantine and food safety issues.

The registration applications received are assessed and accepted after an initial and a final verification to confirm all the requirements are fulfilled. Fruit sourced from specific vineyards and packing houses can be traced back through segregation and labelling. Training of plant protection officers and growers in the identification and management of pests and diseases, including fruit flies and relevant food safety issues, forms an important component in the export program.

The pest risk management measures recommended by Biosecurity Australia are based on the mandatory requirement for China to adhere to existing commercial practices (refer to Chapter 3).

The recommended pest risk management measures will apply to all the table grape production areas from which China intends to export table grapes to Australia. Nominated areas or provinces have to be visited by Australia and their pest status verified before the commencement of trade from that area.
5.1.1 Pest risk management for pests

The pest risk analysis identified the quarantine pests listed in Table 5.1 as having an unrestricted risk above Australia’s ALOP.

Table 5.1 Phytosanitary and sanitary measures recommended for quarantine pests for table grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Common name</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthropods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bactrocera dorsalis</td>
<td>Oriental fruit fly</td>
<td>Area freedom* OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cold disinfestation</td>
</tr>
<tr>
<td>Harmonia axyridis</td>
<td>Harlequin ladybird</td>
<td>Systems approach:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vineyard and packing management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Visual inspection and remedial action**</td>
</tr>
<tr>
<td>Popilia japonica</td>
<td>Scarab beetles</td>
<td></td>
</tr>
<tr>
<td>Popilia mutans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Popilia quadriguttata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetranychus kanzawai</td>
<td>Kanzawa spider mite</td>
<td></td>
</tr>
<tr>
<td>Aleurolobus taeonabe</td>
<td>Grape whitefly</td>
<td></td>
</tr>
<tr>
<td>Planococcus kraunhiae</td>
<td>Mealybugs</td>
<td>Systems approach:</td>
</tr>
<tr>
<td>Pseudococcus comstocki</td>
<td></td>
<td>• Vineyard control and surveillance</td>
</tr>
<tr>
<td>Pseudococcus maritimus</td>
<td></td>
<td>• Fruit bagging</td>
</tr>
<tr>
<td>Archips micacea</td>
<td>Tortricid moths</td>
<td>• Visual inspection and remedial action**</td>
</tr>
<tr>
<td>Archips podana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eupoecilia ambiguaella</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparganothis pilleriana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhipiphlorothrips cruentatus</td>
<td>Thrips</td>
<td></td>
</tr>
<tr>
<td>Phakopsora euvitis</td>
<td>Grapevine leaf rust</td>
<td></td>
</tr>
<tr>
<td>Pathogens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physalospora baccae</td>
<td>Grape cluster black rot</td>
<td>Area freedom* OR</td>
</tr>
<tr>
<td>Guignardia bidwellii</td>
<td>Black rot</td>
<td></td>
</tr>
<tr>
<td>Alternaria viticola</td>
<td>Spike stalk brown spot</td>
<td></td>
</tr>
<tr>
<td>Monilinia fructigena</td>
<td>Brown rot</td>
<td>Area freedom* OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systems approach:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vineyard control and surveillance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fruit bagging</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Visual inspection and remedial action**</td>
</tr>
</tbody>
</table>
This IRA builds on the existing policies for the import of table grapes from California (AQIS 2000), table grapes from Chile (Biosecurity Australia 2005c), and pears and apples from China (Biosecurity Australia 2005a; Biosecurity Australia 2010b), which include many of the pests identified in Table 5.1.

Considerable trade in table grapes from California has taken place since 2002. The policy for table grapes from California was reviewed and extended in 2006 (Biosecurity Australia 2006a) and 2009 (AQIS 2009a). No table grapes have been imported under the policy for table grapes from Chile.

Equivalent management measures have been considered for the same or similar pests and recommended in this IRA. Thus, the management options recommended are consistent with these existing policies. They include:

- area freedom or cold disinfestation for Oriental fruit fly
- a systems approach for kanzawa spider mite, grape whitefly, mealybugs, tortricid moths and thrips; and for harlequin ladybird and scarab beetles
- area freedom or sulphur pad treatment for phylloxera
- area freedom for grape cluster black rot, black rot and spike stalk brown spot
- area freedom or a systems approach for brown rot and grapevine leaf rust
- area freedom or a systems approach for black widow spiders.

Consideration of alternative measures

Consistent with the principle of equivalence detailed in ISPM 11: *Pest risk analysis for quarantine pests including analysis of environmental risks and living modified organisms* (FAO 2004), Biosecurity Australia will consider any alternative measure proposed by AQSIQ, providing that it achieves an equivalent level of quarantine protection. Evaluation of such measures or treatments will require a technical submission from AQSIQ that details the proposed treatment and includes data from suitable treatment trials.

Management for Bactrocera dorsalis

Bactrocera dorsalis (Oriental fruit fly) was assessed to have an unrestricted risk estimate that exceeds Australia’s ALOP. Measures are therefore required to manage this risk. Biosecurity
Australia proposes the options of area freedom or cold disinfestation as management measures.

Area freedom
Area freedom is a measure that might be applied to manage the risk posed by Oriental fruit fly. The requirements for establishing pest free areas or pest free places of production are set out in ISPM 4: *Establishment of pest free areas* (FAO 1996) and ISPM 10: *Requirements for the establishment of pest free places of production and pest free production sites* (FAO 1999) and more specifically in ISPM 26: *Establishment of pest free areas for fruit flies (Tephritidae)* (FAO 2006).

Current requirements for the import of pears from the provinces of Hebei, Shaanxi, Shandong and Xinjiang in northern China (Biosecurity Australia 2005a) include monitoring and trapping of fruit flies in export vineyards and packing houses. Monitoring and trapping of fruit flies in the specific table grape export vineyards and packing houses of northern China (as for current pear export) would be required.

Biosecurity Australia is currently considering China’s request for recognition of northern China for area freedom for Oriental fruit fly and other economically significant fruit flies based on China’s National Fruit Flies Trapping Network. If area freedom for Oriental fruit fly and other economically significant fruit flies is accepted by Biosecurity Australia for northern China, China’s existing National Fruit Flies Trapping Network would be required to be maintained in all areas including production areas where table grapes are to be sourced for export to Australia. However, additional monitoring and trapping of fruit flies in the specific export vineyards and packing houses may not be required.

Under either of the two area freedom situations (i.e. monitoring and trapping of export vineyards or based on the National Fruit Flies Trapping Network), AQSIQ would be required to notify the Australian Government Department of Agriculture, Fisheries and Forestry (DAFF) of the detection of any fruit fly species (Tephritidae) of economic importance in the regions within 48 hours. DAFF would then assess the species and number of individual flies detected and the circumstances of the detection, before advising AQSIQ of the action to be taken. If fruit flies are detected at pre-clearance inspection, trade would stop immediately, pending the outcome of an investigation.

Cold disinfestation
Cold disinfestation efficacy trial data for *B. dorsalis* on table grapes has not been provided by China. However, treatment regimes consistent with the USDA Treatment Manual (USDA 2010b) for *B. dorsalis* on a range of commodities and those stipulated by MAF Biosecurity New Zealand (MAF Biosecurity New Zealand 2009) for disinfestation of *B. dorsalis* in table grapes imported from China could be used for treatment of table grapes sourced from regions south of 32 °N latitude (Figure 3.1) where *B. dorsalis* may be present and can survive, for example in Yunnan province, in southern China. Biosecurity Australia proposes the following treatment regime:

- 0.99 °C or below for 17 days or
- 1.38 °C or below for 20 days

The objective of each of these measures is to reduce the survival of Oriental fruit fly thus reducing the likelihood of importation to at least ‘extremely low’. The restricted risk would then be reduced to at least ‘very low’, which would achieve Australia’s ALOP.
Other potential mitigation measures

Measures for Oriental fruit fly could also include alternative cold disinfection, fumigation, chemical or irradiation treatments, subject to the provision and acceptance of suitable efficacy data.

AQSIQ has proposed 0.99 °C for 15 days or 1.38 °C for 18 days as being their current treatment schedule but is yet to provide efficacy data (AQSIQ 2010).

Management for *Harmonia axyridis*, *Popillia japonica*, *Popillia mutans* and *Popillia quadriguttata*

The ladybird, *Harmonia axyridis* (harlequin ladybird); and the scarab beetles, *Popillia japonica* (Japanese beetle), *Popillia mutans* (scarab beetle), *Popillia quadriguttata* (Chinese rose beetle) were assessed to have an unrestricted risk estimate that exceeds Australia’s ALOP. Measures are therefore required to manage these risks.

Biosecurity Australia proposes the following systems approach based on vineyard and packing management, and pre-export visual inspection and remedial action to reduce the risks associated with these arthropod pests to meet Australia’s ALOP.

Systems approach

Vineyard and packing management

Registered growers must implement a vineyard and packing management regime that will ensure that table grapes for export to Australia are free from harlequin ladybird and scarab beetles. Vineyard monitoring must be conducted at a frequency appropriate to the vine growth stage and the life stage of these pests until the completion of harvest. Particular attention must be paid during the interval from bag removal until harvest.

Fruit must be sorted and inspected for any contaminating harlequin ladybird or scarab beetles during the harvesting and processing stage. Those grape bunches suspected of being infested with these pests must be examined closely, and if any live adults or juvenile or eggs are detected the fruit will be removed from the export pathway or subject to remedial action.

The objective of vineyard and packing management as an element of the systems approach is to maintain awareness of the status of these pests in the vineyard to reduce their numbers to a low level, and to detect and remove any pests prior to completion of packing.

Visual inspection and remedial action

The objective of visual inspection as components of this systems approach is to ensure that any consignments of table grapes from China infested with these pests are identified and subjected to appropriate remedial action. The remedial action will reduce the risk associated with ladybirds and scarab beetles to a very low level to meet Australia’s ALOP.

Adult ladybirds and scarab beetles are external pests, 5-8 mm and 8-11 mm long respectively, that can be detected by trained quarantine inspectors using optical enhancement where necessary. The iridescent green, black and copper of scarab beetles and the light orange to red elytra with black spots of the harlequin ladybird also aid in their detection. Therefore, the standard 600 unit quarantine inspection undertaken by AQIS would be effective in identifying consignments infested with these pests.

Remedial action, if required, could include any treatment known to be effective against the target pests. Currently, standard methyl bromide fumigation rates for external pests are
recognised. However, Biosecurity Australia would also consider any other treatment that AQSIQ proposes, if it provides an equivalent level of protection.

The consignment would not be released from quarantine until the remedial action has been undertaken.

The objective of all these measures (a systems approach) is to reduce the likelihood of importation for these pests to at least ‘very low’. The restricted risk would then be reduced to at least ‘very low’, which would achieve Australia’s ALOP.

Management for Tetranychus kanzawai, Aleurolobus taeonabe, Pseudococcus comstocki, Planococcus krauhiaceae, Pseudococcus maritimus, Archips micaceana, Archips podana, Eupoecilia ambiguella, Sparganothis pilleriana, Frankliniella occidentalis and Rhipiphorothrips cruentatus

The mite, Tetranychus kanzawai (kanzawa spider mite); the whitefly, Aleurolobus taeonabe (grape whitefly); mealybugs, Pseudococcus comstocki (Comstock’s mealybug), Planococcus krauhiaceae (Japanese mealybug) and Pseudococcus maritimus (grapevine mealybug); tortricid moths, Archips micaceana (leaf rolling moth), Archips podana (large fruit-tree tortrix), Eupoecilia ambiguella (European grape berry moth), Sparganothis pilleriana (leaf rolling tortrix); and thrips, Frankliniella occidentalis (western flower thrips) and Rhipiphorothrips cruentatus (grapevine thrips) were assessed to have an unrestricted risk estimate that exceeds Australia’s ALOP. Measures are therefore required to manage these risks.

Biosecurity Australia proposes the following systems approach based on vineyard control and surveillance, fruit bagging and pre-export visual inspection and remedial action to reduce the risks associated with these arthropod pests to meet Australia’s ALOP.

Systems approach

Vineyard control and surveillance

Registered growers would implement a vineyard control program (i.e. good agricultural practice/integrated pest management (IPM) programs for export table grapes). Programs would be approved by AQSIQ, and incorporate field sanitation and appropriate pesticide applications for the management of quarantine arthropod pests.

AQSIQ/CIQ would be responsible for ensuring that the export table grape growers are aware of pests of quarantine concern to Australia and that the export vineyards are subject to field sanitation and control measures. Registered growers would be required to keep records of control measures for auditing. Details of the arthropod pest control program would need to be provided to DAFF by AQSIQ before trade commences.

Monitoring and surveillance for pests that require vineyard management measures must be conducted regularly by AQSIQ/CIQ in vineyards registered for export to Australia to verify the effectiveness of the measures. ASQIQ/CIQ will maintain annual survey results using a standardised reporting form. These will be made available to DAFF if requested.

The objective of vineyard control and surveillance as an element of the systems approach is to reduce the number of pests in the vineyard to a low level.

Fruit bagging

AQSIQ has indicated that table grapes produced in China for export have the bunches enclosed in a bag for a period of the grape fruit development and maturation (AQSIQ 2008;
Fruit bagging has been shown in China to be effective in providing some protection to the developing table grapes from the sun, dust, wind, rain, hail; reducing damage by birds and arthropod pests (AQSIQ 2008; AQSIQ 2009c); and reducing chemical residues.

The bagging practices in China for table grapes appear to vary greatly, according to the grape cultivar, the climatic conditions and the geographic location of the vineyards. For example, Red Globe grapes grown in Xinjiang are usually bagged in early to mid August and the bags are removed from early to mid September (10–15 days before harvesting) (AQSIQ 2008; AQSIQ 2009c). In this situation, the grapes are only covered by the bags for one month of their development. Earlier season cultivars in Xinjiang may be bagged from 15–20 June when the berries are 8–10 mm and removed from 10–15 August, 10–15 days before harvest in late August. In Hebei, Red Globe grapes are bagged in mid-June when the berries are the size of a soybean or peanut and removed ten days before harvest, which occurs in the last week of August or the first week of September. In these two situations the grape bunches are protected by the bags for about two months. These table grape bagging practices differ from those of pear and apple production, where the bag is put on the developing fruitlet when it reaches 2.5 cm and only removed in the packing house after harvest with pears, and 2–4 weeks before harvest with apples to allow the fruit to colour.

Biosecurity Australia requires fruit bagging of the developing and maturing grape bunches for a minimum of two months as part of the systems approach for the arthropod pests listed above. The developing grape bunches must be bagged when the berries are approximately 8–10 mm in diameter, which for some regions and varieties would occur in mid-June. The bags must remain intact on the bunches until mid-August for the grapes harvested in late August. Pest control measures, including pesticide sprays, must be applied at the appropriate time to manage each of the quarantine pests prior to bagging to ensure that the vineyards in general, and the developing fruit in particular, are free from these pests.

AQSIQ has advised that the bags are removed 10–15 days before harvesting. Variations in this practice occur in different provinces but this advice indicates the maximum length of time that the table grapes would be exposed after bag removal is 15 days. AQSIQ (2008; 2009c) states that table grapes can be harvested from August to October depending on the cultivars and region. This means that the bags would be removed from early August to early October. It is possible that pests, if present in the vineyard at this time, could infest the exposed physiologically mature fruit in the period between removal of the bags and the harvesting of the fruit.

Prior to the removal of bags, AQSIQ/CIQ must ensure that the level of pests in registered export vineyards is reduced so that the risk of fruit being infested after the removal of bags is minimised. This may be achieved through monitoring and inspecting the vineyards before removing the bags, and maintaining the pest status during the period from when the bags are removed and the fruit is harvested. AQSIQ/CIQ would develop the monitoring and inspection procedures to demonstrate effective management of these pests is achieved during this period. These procedures must be documented and provided to DAFF for approval before trade commences. The results of monitoring and inspection, along with the recorded dates of initial bagging of the grape bunches and removal of bags, must also be made available to DAFF for auditing purposes.

The objective of fruit bagging as an element of the systems approach is to minimise access to the developing grape bunch through the protection or physical barrier offered by the bags. Biosecurity Australia acknowledges that there is no data to support the effect the bags have on the identified target arthropod pests of table grapes. However, the bagging and the associated
practices as outlined, together with the vineyard surveillance and control, are considered to further reduce the potential for the pests to be found on the fruit bunch when presented for visual inspection.

Visual inspection and remedial action

The objective of visual inspection as a component of this systems approach is to ensure that any consignments of table grapes from China infested with these pests are identified and subjected to appropriate remedial action. The remedial action will reduce the risk associated with mites, whiteflies, mealybugs, tortricid moths and thrips to a very low level to meet Australia’s ALOP.

Mites, whiteflies, mealybugs, tortricid moths and thrips are external pests and can be detected by trained quarantine inspectors using optical enhancement where necessary. Therefore, the standard 600 unit quarantine inspection undertaken by AQIS would be effective in identifying consignments infested with these pests.

Remedial action, if required, could include any treatment known to be effective against the target pests. Currently, standard methyl bromide fumigation rates for external pests are recognised. However, Biosecurity Australia would also consider any other treatment that AQSIQ proposes, if it provides an equivalent level of protection.

The consignment would not be released from quarantine until the remedial action has been undertaken.

The objective of all these measures (a systems approach) is to reduce the likelihood of importation for these pests to at least ‘very low’. The restricted risk would then be reduced to at least ‘very low’, which would achieve Australia’s ALOP.

Management for Daktulosphaira vitifoliae

Daktulosphaira vitifoliae (phylloxera) was assessed to have an unrestricted risk estimate that exceeds Australia’s ALOP. Measures are therefore required to manage this risk. Biosecurity Australia has considered that visual inspection of fruit alone may not be an appropriate risk management measure for *D. vitifoliae* because signs of infestation may not be visible. Options recommended are area freedom or treatment with sulphur pads.

Area freedom

Area freedom is a measure that might be applied to manage the risk posed by *D. vitifoliae*. The requirements for establishing pest free areas or pest free places of production are set out in ISPM 4: *Establishment of pest free areas* (FAO 1996) and ISPM 10: *Requirements for the establishment of pest free places of production and pest free production sites* (FAO 1999). *Daktulosphaira vitifoliae* is recorded from Liaoning, Shaanxi and Shandong (AQSIQ 2009b; CABI 2009) and it is under official control and a quarantine pest for China for table grapes from other countries (including Australia) (AQSIQ 2009a). Table grapes may be able to be sourced from identified and verified phylloxera-free production areas.

Sulphur pad treatment

Biosecurity Australia requires that commercial sulphur pads with proven efficacy against *D. vitifoliae* must be packed inside the plastic liner in all cartons of table grapes for export to manage the risk posed by this pest. The sulphur pads must be a registered product containing a minimum of 970g/kg anhydrous sodium metabisulphite used at the rate specified on the label (PIRSA 2010).
The objective of these risk management measures is to reduce the survival of *D. vitifoliae* associated with packed table grapes and packaging and the likelihood of introduction to at least ‘very low’. The restricted risk would then be reduced to at least ‘very low’, which would achieve Australia’s ALOP.

Other potential measures for arthropod pests

Other potential mitigation measures for arthropod pests could include area freedom (pest free areas or pest free places of production or pest free production sites), areas of low pest prevalence, treatments using heat, cold, chemical sprays, fumigants or irradiation, or a combination of these measures.

However, development of final import conditions will be dependent on AQSIQ providing additional scientific information supporting the establishment of pest free areas, pest free production sites or areas of low pest prevalence, or efficacy of treatments against the arthropod pests that reduce the level of risk in line with Australia’s ALOP.

The use of ionising treatments, such as gamma rays and x-rays for quarantine purposes is recognised as a potential mitigation measure for all arthropod pests. The ISPM 18: *Guidelines for the use of irradiation as a phytosanitary measure* (FAO 2003) outlines a number of issues for consideration in accepting irradiation as a phytosanitary measures.

The arthropod pests identified in this IRA report include: a fruit fly, *Bactrocera dorsalis* (Oriental fruit fly); phylloxera, *Daktulosphaira vitifoliae* (grapevine phylloxera); a mite, *Tetranychus kanzawai* (kanzawa spider mite); a ladybird, *Harmonia axyridis* (harlequin ladybird); a whitefly, *Aleurolobus taenabe* (grape whitefly); three scarab beetles, *Popillia japonica* (Japanese beetle), *Popillia mutans* (scarab beetle) and *Popillia quadriguttata* (Chinese rose beetle); three mealybugs, *Pseudococcus comstocki* (Comstock’s mealybug), *Planococcus kraunhiae* (Japanese mealybug) and *Pseudococcus maritimus* (grapevine mealybug); four tortricid moths, *Archips micaceana* (leaf rolling moth), *Archips podana* (large fruit-tree tortrix), *Eupoecilia ambiguella* (European grape berry moth) and *Sparganothis pilleriana* (leaf rolling tortrix); and two thrips, *Frankliniella occidentalis* (western flower thrips) and *Rhipiphorothrips cruentatus* (grapevine thrips). In addition there are sanitary pests – two spiders, *Latrodectus mactans* (black widow spider) and *Latrodectus tredecimguttatus* (European black widow spider), considered at the end of section 5.1.1.

FAO (2003) provides an estimated minimum absorbed dose for certain responses for selected pest groups including fruit flies, spider mites, whiteflies, scarab beetles, tortricid moths and thrips but not ladybirds, mealybugs, phylloxera or spiders. The minimum absorbed doses for ladybirds, mealybugs and phylloxera, and the lethal dose for spiders, would need to be confirmed and/or determined before irradiation is accepted as the treatment against these species.

Currently, irradiated grapes are not permitted to be sold in Australia due to regulations managed by the Food Standards Australia New Zealand (FSANZ). However, application may be made to FSANZ by any interested stakeholder to change the Australia New Zealand Food Standards Code to allow grapes or additional fruits treated with irradiation for phytosanitary purposes to be sold in Australia. Information on these applications can be viewed at the FSANZ web site.
Management for *Physalospora baccae*, *Guignardia bidwellii* and *Alternaria viticola*

Physalospora baccae (grape cluster black rot), *Guignardia bidwellii* (black rot) and *Alternaria viticola* (spike stalk brown spot) were assessed to have an unrestricted risk estimate that does not achieve Australia’s ALOP. Measures are therefore required to manage this risk.

Visual inspection of fruit alone is not considered to be an appropriate management option for these pathogens as external signs of infection are not always present and there may be late developing infections or latent infections. Visual inspection of fruit cannot detect symptomless infection. If *P. baccae*, *G. bidwellii* and *A. viticola* were present in the export vineyard, developing grapes could be infected prior to the bagging of the grape bunch and infected fruit would develop symptoms before the removal of the bags and the disease symptoms would become evident. However, maturing fruit exposed to infection in the vineyard in the 10–15 days after the removal of the bags before harvest may remain symptomless by harvest yet could be infected and develop during storage or could harbour latent infection.

Biosecurity Australia proposes area freedom with the options of pest free areas or pest free places of production (vineyard freedom) as management measures.

Area freedom

Pest free areas

A pest free area, as described in ISPM 4: *Requirements for the establishment of pest free areas* (FAO 1996) and ISPM 10: *Requirements for the establishment of pest free places of production and pest free production sites* (FAO 1999), would require systems to be put in place by AQSIQ to establish, maintain and verify that *P. baccae*, *G. bidwellii* and *A. viticola* do not occur within that area. Freedom from these pathogens in an area would reduce the overall likelihood of importation to ‘very low’. The restricted risk would then be reduced to at least ‘very low’, which achieves Australia’s ALOP.

Physalospora baccae, *G. bidwellii* and *A. viticola* occur throughout China (AQSIQ 2007; CABI 2009; Grapevinewine 2003; Ma et al. 2004; Zhang 2005b), including the major table grape production areas. No pest free areas for these pathogens have been identified by China. Establishment and maintenance of pest free areas may not be technically feasible.

A measure to manage the risk is to source table grapes from export vineyards free of the disease; that is to establish pest free places of production as outlined in ISPM No.10: *Requirements for the establishment of pest free places of production and pest free production sites* (FAO 1999). Biosecurity Australia proposes pest free places of production (vineyard freedom) as a suitable measure to reduce the risk associated with these pathogens to an acceptable level.

Pest free places of production (vineyard freedom)

Table grapes for export to Australia would need to be sourced from export vineyards free of the disease. This measure would require systems to be put in place for the establishment, maintenance and verification of vineyard freedom from *P. baccae*, *G. bidwellii* and *A. viticola* under the supervision of CIQ and responsibility of AQSIQ and be supported by the appropriate documentation. These documents should be made available to Biosecurity Australia if requested.

The inspection and monitoring of vines in the export vineyard at appropriate times to detect evidence of the pathogen must be undertaken and supported by appropriate documentation.
The inspection method, including details of the timing and size of the sampling to be undertaken for each vineyard, appropriate for the pathogen and disease would be developed by AQSIQ and subject to approval by DAFF. Results of the inspections would be subsequently made available to DAFF for auditing purposes.

If *P. baccae*, *G. bidwellii* and *A. viticola* are detected in any export vineyard, fruit from that export vineyard will not be eligible for the export program to Australia.

To prevent any potential contamination from the processing of table grapes destined to domestic or other export markets, processing equipment in packing houses must be suitably cleaned prior to the commencement of processing and packing fruit for export to Australia.

If grape cluster black rot, black rot or spike stalk brown spot are detected on fruit for export at pre-export inspection or detected on export fruit in Australia then the fruit will be rejected and registration of the vineyard/s would be suspended, pending the outcome of an investigation.

The objective of this measure is to reduce the likelihood of importation for *P. baccae* and *A. viticola* to at least ‘very low’ and the one for *G. bidwellii* to at least ‘extremely low’. The restricted risk would then be reduced to ‘very low’, which achieves Australia’s ALOP.

Management for Monilinia fructigena and Phakopsora euvitis

Monilinia fructigena (brown rot) and *Phakopsora euvitis* (grapevine leaf rust) were assessed to have an unrestricted risk estimate that does not achieve Australia’s ALOP. Measures are therefore required to manage this risk.

Visual inspection of fruit alone is not considered to be an appropriate management option for these pathogens as external signs of infection are not always present. Inspection of fruit cannot detect symptomless infection. Biosecurity Australia proposes area freedom (pest free areas, pest free places of production (vineyard freedom) as discussed above, or a systems approach based on vineyard control and surveillance, fruit bagging and pre-export visual inspection and remedial action to reduce the risk associated with these pathogens to an acceptable level.

Area freedom

Pest free areas

Monilinia fructigena and *P. euvitis* occur in grape production areas sporadically throughout China (AQSIQ 2007; CABI 2009; Zhang 2005b; EPPO 2002). No pest free areas have been identified by China for brown rot and grapevine leaf rust caused by these pathogens. Establishment and maintenance of pest free areas may not be technically feasible.

Pest free places of production (vineyard freedom)

A second option to manage the risk is to source table grapes from export vineyards free of these diseases, that is to establish pest free places of production, as outlined in ISPM No.10: *Requirements for the establishment of pest free places of production and pest free production sites* (FAO 1999). These could be a pest free place of production (vineyard freedom) for which freedom from *M. fructigena* and *P. euvitis* symptoms is established, maintained and verified by CIQ.

This measure would require the place of production, under the supervision of CIQ and responsibility of AQSIQ, to establish, maintain and verify freedom from *M. fructigena* and
P. euvitis supported by the appropriate documentation. These documents should be made available to Biosecurity Australia if requested.

Systems approach

As a third option, Biosecurity Australia proposes the following systems approach based on vineyard control and surveillance, and fruit bagging, in addition to pre-export visual inspection and remedial action to reduce the risk associated with these pathogens to an acceptable level.

Vineyard control and surveillance

Registered growers must implement a vineyard control program (i.e. acceptable agricultural practice and integrated disease management (IDM) program for export table grapes). Programs must be approved by AQSIQ, and incorporate field sanitation and appropriate fungicide applications for the management of pathogens of quarantine concern to Australia.

AQSIQ/CIQ is responsible for ensuring that export table grape growers are aware of diseases of quarantine concern to Australia, field sanitation and control measures. Registered growers must keep records of control measures for auditing purposes. Details of the pathogen control program must be provided by AQSIQ to DAFF for approval before trade commences.

Vineyard control and surveillance for these pathogens and the diseases they cause must include:

- Vineyard sanitation/hygiene: the removal and destruction of infected plant parts, weed control and pruning
- Monitoring/detection surveys for M. fructigena and P. euvitis to verify the effectiveness of the vineyard control measures:
 - Regular surveys of vineyards registered for export by accredited personnel are required to ensure that they are free from symptoms of the diseases caused by these pathogens. AQSIQ/CIQ is required to maintain annual survey results for the regular surveys, using a standard reporting format
 - Inspection of all export vineyards and adjacent properties by AQSIQ/CIQ after removal of the bags and prior to harvest, to ensure that the grapevines and bunches are free from symptoms of the diseases caused by these pathogens. The inspection method appropriate for these diseases, including details of the timing and size of the sampling to be undertaken for each vineyard, must be developed by AQSIQ. Results of the final vineyard inspections must subsequently be required to be made available to DAFF for auditing purposes.

Fruit bagging

AQSIQ has indicated that table grapes produced in China for export are bagged for a period of fruit development and maturing (AQSIQ 2008; AQSIQ 2009c). Fruit bagging has been shown in China to be effective in providing some protection to the developing table grapes from the sun, dust, wind, rain and hail; reducing damage from disease (AQSIQ 2008; AQSIQ 2009c); and reducing chemical residues.

The bagging practices in China for table grapes appear to vary greatly, according to the grape cultivar, the climatic conditions and the geographic location of the vineyards and are not in place for the full duration of the development and maturation of the grape bunches, as
discussed earlier in the chapter in relation to the recommended systems approach for arthropod pests.

Biosecurity Australia requires fruit bagging of the developing and maturing grape bunches for a minimum of two months as part of the systems approach for *M. fructigena* and *P. euvitis*. The developing grape bunches must be bagged when the berries are approximately 8-10 mm in diameter, which for some regions and varieties must occur in mid-June. The bags must remain intact on the bunches until mid-August for grapes harvested in late August. Disease control measures, including fungicide sprays, need to be applied at the appropriate time to manage each of the quarantine pathogens prior to bagging to ensure that the vineyards in general, and the developing fruit in particular, are free from these pathogens.

AQSIQ has advised that the bags are removed 10–15 days before harvesting. Variations in these practices occur in different provinces but this advice indicates the maximum length of time that the table grapes would be exposed after bag removal is 15 days. AQSIQ (2008; 2009c) states that table grapes can be harvested from August to October depending on the cultivars and region. This means that the bags would be removed starting from early August to early October. It is possible that spores of *M. fructigena* and *P. euvitis* may infect the exposed maturing fruit during the period between the removal of the bags and harvesting the fruit (Byrde and Willets 1977) if the pathogens were present in the vineyard.

Prior to the removal of bags AQSIQ/CIQ must ensure that the level of pests in registered export vineyards is reduced so that the risk of fruit being infected after the removal of bags is minimised, especially for *P. euvitis*. This may be achieved through monitoring and inspecting the vineyards before removing the bags and maintaining the health status of the vineyard until the fruit is harvested. AQSIQ/CIQ must develop the monitoring and inspection procedures to demonstrate effective management of these pests is achieved during this period. These procedures must be documented and provided to DAFF for approval before trade commences. The results of monitoring and inspection along with the recorded dates of initial bagging of fruit and removal of bags, must also be made available to DAFF for auditing purposes.

Visual inspection and remedial action

The objective of visual inspection as a component of this systems approach is to ensure that any consignments of table grapes from China infected with these pathogens are identified and subjected to appropriate remedial action. The remedial action will reduce the risk associated with brown rot and grapevine leaf rust to a very low level.

Remedial action, if required, would include the removal of the consignment from the export pathway. Biosecurity Australia would also consider any treatment that AQSIQ proposes, if it provides an equivalent level of protection.

The objective of all these measures (a systems approach) is to reduce the likelihood of importation for these pests to at least ‘very low’. The restricted risk would then be reduced to at least ‘very low’, which would achieve Australia’s ALOP.

Other potential measures for pathogens

Consistent with the principle of equivalence detailed in ISPM 11: *Pest risk analysis for quarantine pests including analysis of environmental risks and living modified organisms* (FAO 2004), Biosecurity Australia will consider any alternative measure recommended by AQSIQ, providing that it achieves an equivalent level of quarantine protection. Evaluation of such measures or treatments will require a technical submission from AQSIQ that details the recommended measure or treatment and includes data from suitable treatment trials.
Management for sanitary pests

The spiders *Latrodectus mactans* (black widow spider) and *L. tredecimguttatus* (European black widow spider) are not plant pests and therefore phytosanitary measures cannot be applied against them. However, these spiders have been assessed to have an unacceptable unrestricted sanitary risk and sanitary measures are therefore required to manage that risk.

AQSIQ has advised that these spiders are not present in vineyards and have only been recorded in the wild in Hami and Quitai in Xinjiang (AQSIQ 2010). Unlike table grapes imported from the USA that are field packed, table grapes from China will be processed in packing houses (as described in Chapter 3). AQSIQ has suggested a system of management to ensure that the grapes for export to Australia will be free from contaminants, including these sanitary pests (AQSIQ 2010).

Area freedom

Area freedom is a measure that might be applied to manage the risk posed by *L. mactans* and *L. tredecimguttatus*. The requirements for establishing pest free areas or pest free places of production are set out in ISPM 4: *Establishment of pest free areas* (FAO 1996) and ISPM 10: *Requirements for the establishment of pest free places of production and pest free production sites* (FAO 1999). China has not yet identified pest free areas for these spiders. However, the distribution and habitats of the spiders indicate that table grapes may be able to be sourced from production areas or vineyards free of these sanitary pests.

Systems approach

Vineyard and packing management

Registered growers must implement a vineyard and packing management regime that will ensure table grapes for export to Australia are free from these sanitary pests. Vineyard monitoring must be conducted at a frequency appropriate to the vine growth stage and the life stage of the spiders until the completion of harvest. Particular attention must be paid in the interval from bag removal to harvest.

Fruit must be sorted and inspected for spiders during the harvesting and processing stage. Those grape bunches suspected of being infested with spiders must be examined closely, and if any live adults or juvenile spiders or eggs are detected the fruit will be removed from the export pathway or subject to remedial action before presentation for pre-clearance inspection.

Visual inspection and remedial action

The objective of visual inspection as a component of this systems approach is to ensure that any consignments of table grapes from China infested with these sanitary pests are identified and subjected to appropriate remedial action. The remedial action will reduce the risk associated with these spiders.

Spiders are external pests and can be detected by trained quarantine inspectors. Therefore, the standard 600 unit quarantine inspection undertaken by CIQ/AQIS during pre-clearance or pre-export CIQ inspection and on arrival inspection by AQIS would be effective in identifying consignments infested with these pests.

If these spiders are detected, remedial action will be required and this action could include any treatment known to be effective against the target pests.
If these spiders are detected during pre-export inspection or after arrival in Australia, the consignment would not be released from quarantine until the remedial action has been undertaken. Also, the reason for the infestation must be investigated by AQSIQ and DAFF must be informed. Depending on the outcome of the investigation, mandatory treatment may be required for all subsequently exported table grapes from that vineyard, packing facility, region or for the entire export trade.

Methyl bromide fumigation as a stand-alone treatment at the standard dosage of 32 g/m³ for 2 hours at 21 °C is reported as not effective in killing *Latrodectus mactans* spiders and eggs, and it was suggested that a higher methyl bromide dosage (at least 80 g/m³) would be needed to kill this spider (Biosecurity Australia 2005c).

Treatment by pre-export fumigation with a mixture of sulphur dioxide (SO₂) and carbon dioxide (CO₂), SO₂/CO₂, is considered an appropriate treatment to reduce the risk of the spiders in fruit sourced from areas where these pests may be present. The efficacy of the SO₂/CO₂ treatment against *L. mactans* (black widow spider) is reported as 92 % under best conditions and 87–99 % depending on the packaging used (MAF Biosecurity New Zealand 2002). This treatment combination currently applies to table grapes imported into Australia from California (AQIS 2009a) for the treatment of *L. mactans*. There have been no rejections of Californian table grapes in Australia due to interceptions of live spiders following pre-shipment fumigation.

Efficacy of the treatment against all stages of *L. tredecimguttatus*, including juveniles and egg sacs, is not known (MAF Biosecurity New Zealand 2002). China would need to provide Biosecurity Australia with a technical submission on the measures or treatments that details the recommended treatment with SO₂/CO₂ or alternative fumigants or measures, and include efficacy data from suitable treatment trials.

If shown to be effective against both spiders, it is recommended that all shipments where sanitary pests are detected undergo commercial pre-export fumigation with SO₂/CO₂. Under the recommended fumigation arrangement, the table grapes would be treated as follows:

- Fumigation with SO₂/CO₂ would be carried out with a mixture of 1% SO₂ and 6% CO₂ for a minimum of 30 minutes delivered using forced air at a fruit pulp temperature of 16 °C or greater.
- The loading ratio should not exceed 30% of the chamber volume. Fruit is not to be fumigated if the grape pulp temperature is less than 16 °C.

Biosecurity Australia would also consider any other remedial treatment that AQSIQ proposes, if it provides an equivalent level of protection.

The objective of this remedial treatment is to reduce the survival of *L. mactans* and *L. tredecimguttatus* spiders associated with packed table grapes or packaging to an acceptable level.

5.1.2 Operational systems for maintenance and verification of phytosanitary status

A system of operational procedures is necessary to maintain and verify the phytosanitary status of table grapes from China. This is to ensure that the recommended risk management measures have been met and are maintained.
It is recommended that China’s AQSIQ or other relevant agency such as CIQ nominated by AQSIQ, prepare a documented work plan for approval by Biosecurity Australia/AQIS that describes the phytosanitary procedures for the pests of quarantine concern for Australia and the various responsibilities of all parties involved in meeting this requirement.

Details of the operational system, or equivalent, will be determined by agreement between Biosecurity Australia and AQSIQ.

Provisions for traceability

Registration of export vineyards
The objectives of this recommended procedure are to ensure that:

- table grapes are sourced from AQSIQ-registered export vineyards producing export quality fruit, as the pest risk assessments are based on existing commercial production practices
- export vineyards from which table grapes are sourced can be identified so investigation and corrective action can be targeted rather than applying it to all contributing export vineyards in the event that live pests are regularly intercepted during pre-clearance inspection.

Registration of packing houses and treatment facilities and auditing of procedures
The objectives of this recommended procedure are to ensure that:

- table grapes are sourced only from AQSIQ-registered packing houses, processing export quality fruit, as the pest risk assessments are based on existing commercial packing activities
- reference to the packing house and the vineyard source (by name or a number code) are clearly stated on cartons destined for export of table grapes to Australia for trace back and auditing purposes.

It is recommended that AQSIQ registers the packing houses before commencement of harvest each season. The list of registered packing houses must be kept by AQSIQ and provided to AQIS prior to exports commencing, with updates provided if packing houses are added or removed from the list.

Registration of packing houses and treatment facilities in the initial export season would include an audit program conducted jointly by AQIS and AQSIQ before exports commence. After the initial approval, AQSIQ would be required to audit facilities at the beginning of each season to ensure that packing houses and treatment facilities are suitably equipped to carry out the specified phytosanitary tasks and treatments. Records of AQSIQ audits would be made available to AQIS on request.

Packing houses will be required to identify individual vineyards with a unique identifying system and identify fruit from individual vineyards by marking cartons or pallets (i.e. one vineyard per pallet) with a unique vineyard number or identification provided by AQSIQ.

Where table grapes undergo cold disinfestation or fumigation prior to export, this process could only be undertaken in facilities that have been registered with and audited by AQSIQ for that purpose. AQSIQ would be required to register all treatment facilities before export activity commences.
Packaging and labelling
The objectives of this recommended procedure are to ensure that:

- table grapes recommended for export to Australia are not contaminated by quarantine pests or regulated articles (e.g. trash, soil and weed seeds)
- unprocessed packing material (which may vector pests not identified as being on the pathway) is not imported with table grapes
- all wood material used in packaging of the commodity complies with AQIS conditions (see AQIS publication ‘Cargo Containers: Quarantine aspects and procedures’)
- secure packaging is used if consignments are not transported in sealed containers directly to Australia
- the packaged table grapes are labelled with the vineyard registration number for the purposes of trace back to registered vineyards
- the pre-cleared status of table grapes is clearly identified.

Specific conditions for storage and movement
The objectives of this recommended procedure are to ensure that:

- product for export to Australia that has been treated and/or inspected are kept secure and segregated at all times from any fruit for domestic or other markets, untreated/non pre-cleared product, to prevent product mixing or cross-contamination
- the quarantine integrity of the commodity during storage and transport is maintained.

Freedom from trash
All table grapes for export must be free from pests of quarantine concern to Australia and other regulated articles. Regulated articles are defined as any items other than the grape bunch. This may include leaf material, woody plant material, weeds, weed seeds, or any other contaminant, often referred as to as ‘trash’. Freedom from trash will be confirmed by the inspection procedures. AQSIQ/CIQ must provide details of how inspection for trash will occur before trade commences.

Pre-export phytosanitary inspection and certification
The objectives of this recommended procedure are to ensure that:

- all consignments are inspected by CIQ in accordance with official procedures for all visually detectable quarantine pests and other regulated articles (including soil, animal and plant debris) at a standard 600 unit sampling rate per lot whereby one unit is one bunch of table grapes
- an international phytosanitary certificate (IPC) is issued for each consignment upon completion of pre-export inspection and treatment to verify that the relevant measures have been undertaken offshore
- each IPC includes:
 - a description of the consignment (including vineyard number and packing house details)
and

– an additional declaration that ‘The fruit in this consignment has been produced in the People’s Republic of China in accordance with the conditions governing entry of table grapes to Australia and inspected and found free of quarantine pests and regulated articles’.

Requirement for pre-clearance

The objectives of the recommended requirement for pre-clearance are to ensure that:

- the recommended quarantine measures, including vineyard control and surveillance, product identification, AQIS inspection requirements, product security and documentation are met

- all lots are inspected by AQIS and CIQ in accordance with official procedures for all visually detectable quarantine pests and other regulated articles (including soil, animal and plant debris) at a standard 600 unit sampling rate per lot whereby one unit is one bunch of table grapes

- the detection of live quarantine pests will result in the rejection of the inspection lot and remedial action may be required.

Under pre-clearance arrangements, AQIS officers will be involved in vineyard inspections for pests of quarantine concern to Australia, in the direct verification of packing house procedures, treatments and in joint fruit inspection. It will further include their involvement in auditing of other arrangements including registration procedures, existing commercial practice, traceability, and handling of export fruit in a secure manner.

The pre-clearance arrangement is to be used at least for initial trade. Subsequently, subject to a review of the trade and agreement by DAFF and AQSIQ on a region by region basis, pre-clearance of lots in China may not be mandatory in the future and in this case AQIS will conduct the quarantine inspection on arrival in Australia.

Pre-clearance and on-arrival phytosanitary inspection by AQIS

A phytosanitary inspection of lots covered by each phytosanitary certificate issued by AQSIQ will be undertaken by AQIS either in the country of origin (mandatory or voluntary) as a pre-clearance, or on arrival of the consignment in Australia, as determined by DAFF. The inspection will be conducted using the standard AQIS inspection protocol for table grapes, using optical enhancement where necessary.

Action for non-compliance

The objectives of the recommended requirements for remedial action(s) for non-compliance are to ensure that:

- any quarantine risk is addressed by remedial action, as appropriate

- non-compliance with import requirements is addressed, as appropriate.

The detection of live quarantine pests or regulated articles during an inspection will result in the failure of the inspection lots during pre-clearance inspection and the entire consignment during on arrival inspection.
Where inspection lots are found to be non-compliant with Australian requirements, remedial action must be taken. The remedial actions for consignments (subject to pre-clearance or on-arrival inspection) where quarantine pests are detected will depend on the type of pest and the mitigation measure that the risk assessment has determined for that specific pest.

Remedial actions could include:

- withdrawing the consignment from export (if quarantine pests are detected during pre-clearance inspection)
- export of the consignment (if quarantine pests are detected during on-arrival inspection)
- destruction of the consignment (if quarantine pests are detected during on-arrival inspection)

or

- treatment of the consignment and re-inspection to ensure that the pest risk has been addressed (if quarantine pests are detected during either pre-clearance or on-arrival inspection).

Separate to the corrective measures mentioned above, there may be other breach actions necessary depending on the specific pest intercepted and the risk management strategy put in place against that pest in the protocol.

If product continually fails inspection, Biosecurity Australia/AQIS reserves the right to suspend the export program and conduct an audit of the risk management systems in China. The program will recommence only after Biosecurity Australia/AQIS (in consultation with the relevant state departments if required) is satisfied that appropriate corrective action has been taken.

Verification of documents and inspection on arrival where pre-clearance is not used

The objectives of this recommended procedure are to ensure that:

- consignments that have not been inspected under pre-clearance arrangements undergo appropriate quarantine inspection on arrival in Australia.

As recommended in the section ‘Requirement for pre-clearance’, it is recommended that the pre-clearance arrangement is to be used at least for initial trade. However, it is possible that this requirement may change and not be mandatory in the future. This section sets out the provisions that would apply to shipments that do not undergo pre-clearance.

AQIS will undertake a documentation-compliance examination for consignment verification purposes, followed by inspection, before release from quarantine.

5.2 Responsibility of competent authority

The General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (AQSIQ) together with China’s Ministry of Agriculture, is the designated NPPO under the International Plant Protection Convention (IPPC).

The NPPO’s responsibilities include:

- inspecting plants and plant products moving in international trade
• issuing certificates relating to phytosanitary condition and origin of consignments of plants and plant products
• ensuring that all relevant agencies participating in this program meet the recommended service and certification standards and recommended work plan procedures
• ensuring that administrative processes are established to meet the requirements of the program.

5.2.1 Use of accredited personnel
Operational components and the development of risk management procedures may be delegated by AQSIQ to an accredited agent under an agency arrangement as appropriate. This delegation must be approved by AQIS and will be subject to the requirements of the pre-clearance system. AQSIQ is responsible for auditing all delegated risk management procedures.

Vineyard inspections must be undertaken by AQSIQ or persons accredited by AQSIQ. Accredited persons must be assessed and audited as being competent in the recognition of disease symptoms of concern in the field. Accredited persons may include AQSIQ officers, CIQ officers, agency staff, entomologists, plant pathologists, commercial crop monitors/scouts, or other accredited persons. The accrediting authority must provide AQSIQ with the documented criteria upon which accreditation is based and this must be available for audit by AQSIQ and AQIS. AQIS will audit these systems before commencement of trade.

5.3 Review of processes

5.3.1 Audit of protocol
The objectives of the recommended requirement for audit and verification are to ensure that:
• an effective approved documented system is in operation for the vineyard, the packing house and during transport.

The phytosanitary system for table grape export production, certification of export vineyards, pre-export inspection and certification is subject to audit by AQIS. Audits may be conducted at the discretion of AQIS at any time during the entire production cycle and as a component of any pre-clearance arrangement.

AQIS vineyard audits will measure compliance with vineyard registration and identification, pest/disease management including maintenance of vineyard control and crop monitoring, records, the administration and verification of area freedom status of the export areas for Oriental fruit fly, grape cluster black rot, black rot and spike stalk brown spot, and any other relevant pests, if accepted by Australia.

AQIS packing house audits of participants involved in pre-clearance arrangements will include the verification of compliance with packing house responsibilities, traceability, labelling, segregation and product security, and the AQSIQ/CIQ certification processes.

Prior to the first season of trade, a representative from Biosecurity Australia and AQIS will visit areas in China that produce table grapes for export to Australia. They will audit the implementation of agreed import conditions and measures including registration, operational procedures and treatment facilities.
5.3.2 Review of policy

Biosecurity Australia reserves the right to review the import policy after the first year of trade or when there is reason to believe that the pest and phytosanitary status in China has changed. The pre-clearance arrangement requirement may be reviewed after initial substantial trade.

AQSIQ must inform Biosecurity Australia/AQIS immediately on detection in China of any new pests of table grapes that are of potential quarantine concern to Australia. For example, should area freedom from economically significant fruit flies be recognised for the areas exporting table grapes to Australia, AQSIQ must immediately advise Biosecurity Australia and AQIS if any economically significant fruit flies are detected in the exporting provinces.

5.4 Uncategorised pests

If an organism is detected on table grapes, either in China or on-arrival in Australia, that has not been categorised, it will require assessment by Biosecurity Australia to determine its quarantine status and if phytosanitary action is required. Assessment is also required if the detected species was categorised as not likely to be on the import pathway. If the detected species was categorised as on the pathway but assessed as having an unrestricted risk that achieves Australia’s ALOP due to the rating for likelihood of importation, then it would require reassessment. The detection of any pests of quarantine concern not already identified in the analysis may result in remedial action and/or temporary suspension of trade while a review is conducted to ensure that existing measures continue to provide the appropriate level of protection for Australia.
Appendixes
Appendix A1 Initiation and categorisation for quarantine pests of table grapes from China

Initiation (columns 1 – 3) identifies the pests of commodity that have the potential to be on table grapes produced in China using commercial production and packing procedures.

Pest categorisation (columns 4 - 7) identifies which of the pests with the potential to be on table grapes are quarantine pests for Australia and require pest risk assessment.

The steps in the initiation and categorisation processes are considered sequentially, with the assessment terminating at the first ‘No’ for columns 3, 5 or 6 or ‘Yes’ for column 4.

Details of the method used in this IRA are given in Section 2: Method for pest risk analysis.

Note: Species in **bold text** are additional to those included in the pest categorisation of the draft IRA report (Biosecurity Australia 2010a).

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOMAIN BACTERIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class Alphaproteobacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Rhizobiales (Agrobacterium, Rhizobium)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| *Rhizobium radiobacter* (Beijerinck & van Delden) Young et al. 2001
As *Agrobacterium tumefaciens* Conn in AQSIO (2006)
[Rhizobiales: Rhizobiaceae]
Crown gall | Yes (AQSIO 2006) | No
Causes crown gall disease (Bradbury 1986; Ellis 2008a). | Not assessed | Not assessed | Not assessed | No |
| *Rhizobium vitis* (Ophe1 & Kerr 1990)
Young et al. 2001
[Rhizobiales: Rhizobiaceae]
Crown gall of grapevine | Yes (CABI 2009) | No
This bacteria is found in the soil, roots and near the base of the vine (Nicholas et al. 1994). | Not assessed | Not assessed | Not assessed | No |
| **Class Gammaproteobacteria** | | | | | | |
| **Order Enterobacteriaceae (Xanthomonas, Xylella)** | | | | | | |
| *Pantoea aggiiomerans* (Beijerinck 1888)
Gavin et al. 1989
Synonym: *Erwinia herbicola* (Lohnis 1911) Dye 1964
[Enterobacteriales: Enterobacteriaceae]
Bacterial grapevine blight | Yes (CABI 2009) | Yes
Detected on mature grape skins (MacFarlane 1947). | Yes
ACT, Qld (CABI 2009); NSW, Vic., WA (APPD 2009) | Not assessed | Not assessed | No |

This pest categorisation table does not represent a comprehensive list of all the pests associated with the entire plant of an imported commodity. Reference to soilborne nematodes, soilborne pathogens, wood borer pests, root pests or pathogens, and secondary pests have not been listed or have been deleted from the table, as they are not directly related to the export pathway of table grapes and would be addressed by Australia’s current approach to contaminating pests.
Final IRA report: table grapes from China

Appendix A1

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Pseudomonadales (Pseudomonas)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas syringae pv. syringae van Hall 1902 [Pseudomonadales: Pseudomonadaceae] Bacterial canker</td>
<td>Yes (CABI 2009)</td>
<td>Yes May cause blossom blight by infection of stalks and/or cause lesions on fruit (Bradbury 1987).</td>
<td>Yes NSW, Qld, Tas., Vic. (APPD 2009); WA (Shivas 1989)</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Pseudomonas viridiflava (Burkholder 1930) Dowson 1939 [Pseudomonadales: Pseudomonadaceae] Bacterial leaf blight of tomato</td>
<td>Yes (CABI 2009); Hunan on kiwifruit (Hu et al. 1998); Yunnan on other plants (Zhang et al. 1999) Recorded on grapes in New Zealand (Wilkie et al. 1973)</td>
<td>Yes Infects panicles at fruit set, causing them to turn brown and die. Then they dry out, turn black and drop off (Wilkie et al. 1973).</td>
<td>Yes Qld, Vic., WA (APPD 2009)</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Class Mollicutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidatus Phytoplasma vitis [Acholeplasmatales: Acholeplasmataceae] Grapevine flavescence doree</td>
<td>Yes (AQSIQ 2006)</td>
<td></td>
<td></td>
<td>No</td>
<td>Only known insect vector is Scaphoideus titanus, a leafhopper that occurs in Europe (Bianco et al. 2001). Grafts transmit this phytoplasma. Not seed transmissible (CABI 2009). Only spread internationally by infected propagation material and active or passive spread of the vector (Steffek et al. 2007). No records of S. titanus in China or Australia.</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Class Oomycetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix A1

Final IRA report: table grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOMAIN EUKARYA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANIMALIA (Animal Kingdom)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class: Arachnida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Trombidiformes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acarus telarius (Linnaeus 1758)</td>
<td>Yes (Zhang 2005b)</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>As Tetranychus telarius (Linnaeus) in Zhang (2005b)</td>
<td></td>
<td>Acarus telarius feeds only on leaves (Zhang 2005b).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Trombidiformes: Tetranychidae] Two-spotted spider mite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Trombidiformes: Tenuipalpidae] Citrus flat mite, grape bunch mite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colomerus vitis (Pagenstecher, 1857) strain a</td>
<td>Yes (AQSIQ 2006; CEIA-CAES 2005; Li 2004; Zhang 2005b)</td>
<td>No Colomerus vitis strain a forms galls on upper surfaces of leaves (University of California 1992).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Trombidiformes: Eriophyidae] Grape erineum mite, grapeleaf blister mite, grape erinose mite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colomerus vitis (Pagenstecher, 1857) strain b</td>
<td>Yes (AQSIQ 2006; CEIA-CAES 2005; Li 2004; Zhang 2005b)</td>
<td>No Colomerus vitis strain b attacks buds only, it does not form galls (University of California 1992).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Trombidiformes: Eriophyidae] Grape bud mite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligonychus punicae (Hirst, 1926)</td>
<td>Yes (Kuang 1983)</td>
<td>No Oligonychus punicae feeds on leaves (Vasquez et al. 2008).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Trombidiformes: Tetranychidae] Ash flower gall mite, avocado brown mite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyphagotarsonemus latus (Banks, 1904)</td>
<td>Yes (AQSIQ 2006; Li 2004; Zhang 2005b)</td>
<td>No Polyphagotarsonemus latus feeds on leaves (AQSIQ 2006; Li 2004; Zhang 2005b).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Trombidiformes: Tarsonemidae] Broad mite, potato broad mite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Final IRA report: table grapes from China

Appendix A1

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| Tetranychus kanzawai Kishida, 1927
Synonym: Tetranychus hydrangeae
[Trombidiiformes: Tetranychidae]
Kanzawa spider mite | Yes (Migeon and Dorkeld 2006; Takafuji and Hinomoto 2008) | Yes
Tetranychus kanzawai mites and webbing are often found on the under surfaces of the leaves, but can occasionally attack and breed on grape berries (Ashihara 1996; CABI 2009; Ho and Chen 1994). | Yes
Queensland, NSW (CSIRO and DAFF 2004d; Navajas et al. 2001)
Absent from WA (Poole 2008). | Yes
Tetranychus kanzawai has been introduced to, and has established in Queensland. Some areas where it is currently established are likely to have a similar climate to other parts of Australia. | Yes
Tetranychus kanzawai is a significant polyphagous pest subject to quarantine measures in many parts of the world (Navajas et al. 2001). | Yes (WA) |
| Class: Insecta
Order Coleoptera | | | | | | |
| Acrothorium gaschkevitschii
(Motschulsky, 1860)
[Coleoptera: Chrysomelidae]
Shining leaf beetle | Yes (AQSIO 2006; Li 2004; Zhang 2005b) | No
This species feeds on buds, leaves and flowers of grapevines (AQSIO 2006; Zhang 2005b). | Not assessed | Not assessed | Not assessed | No |
| Adoretus sinicus Burmeister, 1855
As Adoretus tenuimaculatus Waterh [sic] in AQSIO (2006)
[Coleoptera: Scarabaeidae]
Chinese rose beetle, flower beetle, brown chestnut chafer | Yes (AQSIO 2006; Li 2004; Zhang 2005b) | No
Larvae feed on roots of grapevines and adults feed on leaves, buds, young shoots, flowers and fruit of grapevines (AQSIO 2006; Zhang 2005b).
Adults feed only at night and shelter under leaf litter or loose bark away from their hosts during the day. They are not likely to be associated with the host at time of harvest. | Not assessed | Not assessed | Not assessed | No |
| Anomala corpulenta Motschulsky, 1854
[Coleoptera: Scarabaeidae]
Copper green chafer | Yes (AQSIO 2006; Li 2004; Zhang 2005b) | No
Larvae feed on roots and adults feed on leaves, buds, young shoots, flowers and fruit (Zhang 2005b).
This species is likely to be removed from the pathway during harvesting as adults fly off fruit once disturbed. Post-harvest processing of fruit is also likely to see remaining individuals removed from the pathway. | Not assessed | Not assessed | Not assessed | No |
<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| *Anoplophora glabripennis* Motschulsky, 1853 [Coleoptera: Cerambycidae] Asian long-horned beetle | Yes
(Shang *et al.* 2000) | No
Anoplophora glabripennis adults do some maturation feeding on the leaves, stems and bark of many woody plant species. They are large beetles likely to be disturbed during harvest (CABI-EPPO 1999).
Anoplophora glabripennis is unlikely to enter the pathway at any stage of development. | Not assessed | Not assessed | Not assessed | No |
| *Anoplistes halodendri* Koziolvi
(Semenov & Znojdo 1934)
[Coleoptera: Cerambycidae]
Red-lined Asian long-horned beetle | Yes
South Guizhou (*Luo* *et al.* 2005) | No
Anoplistes halodendri has wood-boring larvae in grapes (*Luo* *et al.* 2005). This species is unlikely to be on the pathway. | Not assessed | Not assessed | Not assessed | No |
| *Aulacophora femoralis chinensis* Weise, 1923
As *Aulacophora femoralia chinensis* in *Li* (2004)
[Coleoptera: Chrysomelidae]
Cucurbit leaf beetle, orange brown galerucid | Yes
(*Li* 2004) | No
Adults feed on the leaves of grapes, pears, apples and leaf vegetables while the larvae live in the soil and feed on young plant roots (*Li* 2004). | Not assessed | Not assessed | Not assessed | No |
| *Bromius obscurus* (Linnaeus, 1758)
[Coleoptera: Chrysomelidae]
Western grape rootworm, leaf beetle | Yes
(AQSIQ 2006; *Zhang* 2005b) | No
Feeds on leaves, shoots and young fruit of grapevines (AQSIQ 2006; *Zhang* 2005b). It is unlikely to be feeding on grapes at harvest time. | Not assessed | Not assessed | Not assessed | No |
| *Byctiscus lacunipennis* (Jekel, 1860)
[Coleoptera: Rynchitidae]
Grape leaf roller weevil | Yes
(AQSIQ 2006; *Zhang* 2005b) | No
This species eats leaves of grapevines (AQSIQ 2006; *Zhang* 2005b). | Not assessed | Not assessed | Not assessed | No |
| *Ceresium sinicum* ornatica Pic, 1907
[Coleoptera: Cerambycidae]
Longhorn beetle | Yes
South Guizhou (*Luo* *et al.* 2005) | No
Larvae of this species attack woody parts of grapevines as internal feeders (*Luo* *et al.* 2005). | Not assessed | Not assessed | Not assessed | No |
<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophorus quatuordecimmaculatus (Chevrolat, 1863)</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>As Chlorophorus quatuordecimmaculata (Chevrolat, 1863) in Luo et al. (2005) [Coleoptera: Cerambycidae] Fourteen spot tiger long-horned beetle</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Coccinella transversalis Fabricius, 1781 [Coleoptera: Coccinellidae] Transverse ladybird</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Dryocoetiops coffeae (Eggers, 1923) [Coleoptera: Curculionidae: Scolytinae] Bark beetle</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Egiona viticola Luo [Coleoptera: Curculionidae] Big eyed weevil</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Gametis jucunda (Faldermann, 1835) As Oxycetonia jucunda Faldermann, 1835 in Zhang (2005b) [Coleoptera: Scarabaeidae: Cetoniinae] Citrus flower chafer, smaller green flower chafer</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
</tbody>
</table>
Appendix A1: Final IRA report: table grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonia axyridis (Pallas, 1773)</td>
<td>Yes</td>
<td>Yes</td>
<td>No (Walker 2008)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>[Coleoptera: Coccinellidae]</td>
<td></td>
<td>Adults of H. axyridis can attack ripe fruit and aggregate in clusters during harvest and wine processing. This insect cannot directly damage, or penetrate grape skins. Harmonia axyridis only feed on berries that have been previously damaged by other insects, birds, diseases, or “splitting” (Galvan et al. 2006; Kenis et al. 2008; Kovach 2004; Missouri State University 2005).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harlequin ladybird</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hayashicylts acutivittis (Kraatz, 1879)</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Synonym: Rhaphuma acutivittis Kraatz, 1879</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Coleoptera: Cerambycidae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holotrichia diomphalia (Bates, 1888)</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Coleoptera: Scarabaeidae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeastern larger black chafer, Korean black chafer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holotrichia oblita (Faldermann, 1835)</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Coleoptera: Scarabaeidae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North China larger black chafer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pest</td>
<td>Present in China</td>
<td>Potential to be on pathway</td>
<td>Present within Australia</td>
<td>Potential for establishment and spread</td>
<td>Potential for economic consequences</td>
<td>Pest risk assessment required</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>---------------------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Hypothenemus javanus (Eggers, 1908) As Hypothenemus javanus in Luo et al. (2005) [Coleoptera: Curculionidae: Scolytinae] Bark beetle</td>
<td>Yes South Guizhou (Luo et al. 2005)</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Hypothenemus erectus Leconte, 1876 [Coleoptera: Curculionidae: Scolytinae] Bark beetle</td>
<td>Yes South Guizhou (Luo et al. 2005)</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Hypothenemus eruditus Westwood, 1836 [Coleoptera: Curculionidae: Scolytinae] Bark beetle</td>
<td>Yes South Guizhou (Luo et al. 2005).</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Maladera orientalis (Motschulsky, 1857) As Serica orientalis Motschulsky, 1857 in Zhang (2005b) [Coleoptera: Scarabaeidae] Smaller velvety chafer</td>
<td>Yes (Li 2004; Zhang 2005b)</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Merhynchites sp. [Coleoptera: Rhynchitidae] Grape berry weevil</td>
<td>Yes (AQSIQ 2006; AQS 2009b; Li 2004; Zhang 2005b)</td>
<td>Yes Adults and larva damage the fruit and seeds of grape (Vitis vinifera) (AQSIQ 2006; AQS 2009b) and Amur grapes (Vitis amurensis) (AQSIQ 2009b; Li 2004). Adults feed on the skin and pulp of grapes and lay their eggs in grape seeds, which are then eaten by the larvae (AQSIQ 2006; AQS 2009b; Li 2004; Zhang 2005b).</td>
<td>No record found (Zimmerman 1994)</td>
<td>Yes The only known hosts of this yet unnamed species are grapes (Vitis spp.) (AQSIQ 2006; AQS 2009b; Li 2004). This host is widely but sporadically distributed throughout Australia as a horticultural crop and amenity plantings.</td>
<td>Yes Adults and larvae feed directly on the grape berries, eating both the flesh (adults) and seeds (larvae). The feeding activities of Merhynchites sp. render grapes unfit for human consumption and unmarketable (AQSIQ 2009b).</td>
<td>Yes</td>
</tr>
<tr>
<td>Oides decempunctata (Bilberg, 1808) [Coleoptera: Chrysomelidae] Grape leaf beetle</td>
<td>Yes (AQSIQ 2006; CEIA-CAES 2005; Li 2004; Zhang 2005b)</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
</tbody>
</table>
Final IRA report: table grapes from China

Appendix A1

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oides tarsata (Baly, 1881)</td>
<td>Yes (AQSIQ 2006)</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Coleoptera: Chrysomelidae] Grape yellow leaf beetle</td>
<td></td>
<td>This species is recorded feeding on grapevine leaves (AQSIQ 2006).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phymatodes albicinctus Bates, 1873</td>
<td>Yes South Guizhou (Luo et al. 2005)</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Coleoptera: Cerambycidae] Whitebanded longicorn beetle</td>
<td></td>
<td>Larvae of this species feed internally on woody parts of the grapevine (Luo et al. 2005).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phymatodes mediofasciatus Pic, 1933</td>
<td>Yes South Guizhou (Luo et al. 2005)</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Coleoptera: Cerambycidae] Longicorn beetle</td>
<td></td>
<td>Larvae of P. mediofasciatus are internal feeders that attack vine stems 4-8 mm thick. No life stage of this species is likely to be present on the pathway.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Popillia japonica Newman, 1838</td>
<td>Yes Northern China (EPPO 2006a)</td>
<td>Yes Popillia japonica is recorded to feed on the foliage and fruit of grapes (Pfeiffer and Schultz 1986a).</td>
<td>No verified records found. The APPD (2009) records of P. japonica from NSW represent quarantine interceptions.</td>
<td>Yes Popillia japonica has been accidentally introduced into the USA where it is now widespread (Fleming 1972). The ability of P. japonica larvae to feed on grass roots while the adults feed on foliage and fruit (Pfeiffer and Schultz 1986a) makes it ideally suited to exploiting Australian urban and agricultural areas, especially home gardens with lawns.</td>
<td>Yes Popillia japonica inflicts millions of dollars damage through lost production and control costs to the USA each year (CABI 2009; Reding and Krause 2005). Agricultural crops damaged by P. japonica include apples (Malus spp.), stonefruits (Prunus spp.), berries (Rubus spp.) and grapes (Vitis spp.). Home gardens and lawns are also badly affected by adults and larvae, respectively (CABI 2009).</td>
<td>Yes</td>
</tr>
<tr>
<td>Pest</td>
<td>Present in China</td>
<td>Potential to be on pathway</td>
<td>Present within Australia</td>
<td>Potential for establishment and spread</td>
<td>Potential for economic consequences</td>
<td>Pest risk assessment required</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Popillia mutans Newman, 1838</td>
<td>Yes (Li 2004)</td>
<td>Yes</td>
<td>No records found</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Synonym: Mimadoretus mutans (Newman, 1838)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Coleoptera: Scarabaeidae] Scarab beetle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The overall biology of Popillia beetles is similar. Adults attack foliage and fruit (Pfeiffer and Schultz 1986a), while larvae feed on roots of grasses. This combination of features has allowed the closely allied P. japonica to become established and widespread through large areas of North America.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Popillia quadriguttata (Fabricius, 1787)</td>
<td>Yes (AQSIQ 2006; Li 2004; Zhang 2005b)</td>
<td>Yes Larvae feed on roots of grapevines while adults feed on leaves, flowers and fruit of grapes (AQSIQ 2006; Zhang 2005b).</td>
<td>No records found</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>[Coleoptera: Scarabaeidae] Chinese rose beetle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The overall biology of Popillia beetles is similar. Adults attack foliage and fruits (Pfeiffer and Schultz 1986a), while larvae feed on roots of grasses. This combination of features has allowed the closely allied P. japonica to become established and widespread through large areas of North America (CABI 2009).</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protaetia brevitarsis Lewis, 1879</td>
<td>Yes (AQSIQ 2006; Li 2004; Zhang 2005b)</td>
<td>No Larvae feed on roots of grapevines while adults feed on leaves (AQSIQ 2006), buds, leaves, flowers and fruit of grapes (Zhang 2005b). Adults of Protaetia brevitarsis chew one the surface of the fruit (Fig 2-38) (Zhang 2005b), thus will be unlikely to stay with the fruit when disturbed during harvesting</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>As Potosia brevitarsis (Lewis, 1879) in AQSIQ (2006).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Coleoptera: Scarabaeidae] Flower beetle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pest</td>
<td>Present in China</td>
<td>Potential to be on pathway</td>
<td>Present within Australia</td>
<td>Potential for establishment and spread</td>
<td>Potential for economic consequences</td>
<td>Pest risk assessment required</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td>---------------------------------------</td>
<td>----------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Proagopertha lucidula (Faldermann, 1835) [Coleoptera: Scarabaeidae] Lucidula chafer, apple fairy chafer</td>
<td>Yes (Li 2004; Zhang 2005b)</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Proagopertha lucidula (Faldermann, 1835) [Coleoptera: Scarabaeidae] Lucidula chafer, apple fairy chafer</td>
<td>Yes (Li 2004; Zhang 2005b)</td>
<td>No Larvae feed on the roots of grapevines while adults feed on the buds, leaves, flowers or fruit of grapes (AQSIO 2007; Zhang 2005b). Adults fly off fruit, once disturbed, so this species is likely to be removed from the pathway during harvesting and processing of fruit.</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Scolodonta lewisii Baly, 1874 As Scolodonta lewisii Baly in AQSIO (2006) [Coleoptera: Chrysomelidae]</td>
<td>Yes (AQSIO 2006; Li 2004; Zhang 2005b)</td>
<td>No This species is recorded eating leaves of grapevines (AQSIO 2006). Larvae live in the soil where they feed on the young roots of grapevines causing very minor damage (Li 2004).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Scolodonta lewisii Baly, 1874 As Scolodonta lewisii Baly in AQSIO (2006) [Coleoptera: Chrysomelidae]</td>
<td>Yes (AQSIO 2006; Li 2004; Zhang 2005b)</td>
<td>No Adults and larvae bore into the roots, stems and branches of grapevines (AQSIO 2006; Zhang 2005b). Bostrichid beetles are wood-boring specialists unlikely to be associated with grape berries (Lawrence and Britton 1994).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Sinoxyylon sp. [Coleoptera: Bostrichidae] Auger beetles</td>
<td>Yes (AQSIO 2006; Zhang 2005b)</td>
<td>No Stenygrinum quadrinotatum larvae attack woody parts of grape plants as an internal borer (Luo et al. 2005).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Sinoxyylon viticinus L. Hang [Coleoptera: Bostrichidae] Grape bostrichid</td>
<td>Yes A serious pest of grapevines in the southern part of Guizhou province, China (Luo et al. 2005).</td>
<td>No Bostrichid beetles are wood-boring specialists unlikely to be associated with grape berries (Lawrence and Britton 1994).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Stenygrinum quadrinotatum Bates, 1873 As Stenygrinum quadrinotatum in Luo et al. (2005) [Coleoptera: Cerambycidae] Longhorn beetle</td>
<td>Yes South Guizhou (Luo et al. 2005)</td>
<td>No Stenygrinum quadrinotatum larvae attack woody parts of grape plants as an internal borer (Luo et al. 2005).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
</tbody>
</table>
Final IRA report: table grapes from China

Appendix A1

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xyleborus cristatus Schedl, 1953</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>As Xyleborus cristatus Schedl in Luo et al. (2005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Coleoptera: Curculionidae: Scolytinae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodborer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scolytine beetles are associated with woody plant products (Luo et al. 2005). They are unlikely to be on the pathway.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylotrechus pyrrhodorus Bates, 1873</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Coleoptera: Cerambycidae] Grape borer, grape tiger longicorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Guizhou (Luo et al. 2005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larvae bore into the roots, stems (AOSIQ 2006) and branches of grape vines (Zhang 2005b). Eggs are laid in cracks in bark on stem (Public Health 2009).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylotrechus robusticollis (Pic, 1936)</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Coleoptera: Cerambycidae] Longicorn beetle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Guizhou (Luo et al. 2005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larvae of this species attack woody parts of grape vines as internal feeders (Luo et al. 2005).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Diptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bactrocera dorsalis (Hendel, 1912)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[Diptera: Tephritidae] Oriental fruit fly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan (Hsu and Feng 2006), southern China (Podleckis 2003)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bactrocera dorsalis has significant potential to become established and spread through areas of Australia. This is best shown by an incursion of the closely allied papaya fruit fly (B. papayae Drew and Hancock, 1994) in north Queensland during the mid-1990s.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bactrocera dorsalis can utilise more than 150 fruit species (Waite 2009). It is considered one of the five most important pests of agriculture in South East Asia (Waterhouse 1993). Females oviposit into the fruit of hosts, eggs hatch inside the fruit and the larvae consume the fruit pulp (CABI 2009).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Final IRA report: table grapes from China

Appendix A1

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| Cecidomyia sp.
[Diptera: Cecidomyiidae]
Grape midge | Yes
(AQSIQ 2006; AQSIQ 2009b; Li 2004; Zhang 2005b) | Yes
Larvae are internal feeders on grape berries (AQSIQ 2007; AQSIQ 2009b; Li 2004; Zhang 2005b). | No record found
Species of this genus occur in Australia (Bugledich 1999). | Yes
The known host range of *Cecidomyia* sp. is restricted to *Vitis vinifera* (Li 2004). Although *Cecidomyia* sp. has limited dispersal range and one or two generations per year, other *Cecidomyiid* midges have successfully spread through agricultural systems elsewhere, notably apple leaf curling midge (*Dasineura* malii Kieffer, 1904) (Biosecurity Australia 2006b). | Yes
Larvae of *Cecidomyia* sp. are internal feeders of grape berries, filling them with frass and causing them to enlarge. Affected berries are inedible and unmarketable (Li 2004). | Yes |

Biosecurity Australia is currently conducting a pest-initiated pest risk analysis for *Drosophila suzukii*

| Order Hemiptera | | | | | | |
|----------------|------------------|---------------------------|--------------------------|-----------------------------------|-----------------------------|
| Aleurolobus taeonabe (Kuwana, 1911)
As Aleyrodes taeonabo Kuwana, 1911 in Li (2004)
[Hemiptera: Aleyrodidae]
Whitefly | Yes
(Li 2004) | Yes
Adults and nymphs suck plant juice from the leaves and grape berries, reducing yield and quality, often damaging mature grapes (Li 2004). | No
(DEWHA 2009a) | Yes
Several of Australia’s major whitefly pests including the glasshouse whitefly (*Trialeurodes vaporianum*) are introduced species native to the palaearctic region. | Yes
Aleurolobus taeonabe feeds on leaves and fruits, reducing crop yield and quality. When populations are high, honeydew produced by their feeding activities may promote the growth of sooty moulds, which reduce fruit marketability (Blodgett 1992; Pfeiffer and Schultz 1986b). | Yes |

| Apolygus lucorum (Meyer-Dür, 1843)
As Lygus lucorum Meyer Dūr in AQSIQ (2006)
[Hemiptera: Miridae]
Small green plant bug, green leaf bug | Yes
(AQSIQ 2006; Li 2004; Zhang 2005b) | No
Adults and nymphs suck sap from leaves, flowers and young shoots of grapevines (Zhang 2005b). | Not assessed | Not assessed | Not assessed | No |
Pest Risk Assessment for Table Grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| Arboridia apicalis (Nawa, 1913)
Synonym: Zygina apicalis Nawa, 1913; Erythroneura apicalis Nawa, 1913 (also refer to Erythroneura sp.)
[Hemiptera; Cicadellidae]
Grape leafhopper | Yes
(AQSIQ 2006; Li 2004; Zhang 2005b) | No
This species attacks grape, peach, apple, pear and cherry. Adults and nymphs suck sap from the underside of leaves (Li 2004). | Not assessed | Not assessed | Not assessed | No |
| Daktulosphaira vitifoliae (Fitch, 1855)
As Viteus vitifolii (Fitch, 1855) in AQSIQ (2006); As Phylloxera vitifolii (Fitch) in Li (2004)
[Hemiptera; Phylloxeridae]
Grapevine phylloxera | Yes
(AQSIQ 2006)
Liaoning, Shaanxi and Shandong (AQSIQ 2009b; Li 2004; Zhang 2005b) | Yes
Daktulosphaira vitifoliae is a serious but localised pest of grapevines in China. It feeds directly on and damages the roots and undersides of grape leaves (Li 2004). It may be present as a contaminant on grape bunches. | Yes
Under official control in Victoria (APPD 2009) and NSW (Botha et al. 2000). Not present in WA (Poole 2008). | Yes
Daktulosphaira vitifoliae is already established in small areas of Australia, where it is under official control (NVHSC 2005). In Australia, several generations per year develop in each growing season (NVHSC 2008). Phylloxera has limited natural spread (Hawthorne and Dennehy 1991; King and Buchanan 1986; Stevenson and Jubb, Jr. 1976). Phylloxera can be spread by human activities, notably movement of grapevine nursery stock, foliage, fruits and related products including soil associated with infested roots (e.g. carried on footwear or vehicle tyres). Harvesting machinery, other equipment and tools are also implicated with their spread (NVHSC 2005). | Yes
Daktulosphaira vitifoliae only causes direct harm to grapevines (Vitis spp.). The only reliable control measure for D. vitifoliae is the complete removal of infested vines and their replacement with grapevines grown on resistant rootstock. This measure has a devastating effect on grape production albeit temporary. | Yes |
Final IRA report: table grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| *Dolycoris baccarum* (Linnaeus, 1758)
[Hemiptera: Pentatomidae]
Berry bug, sloe shield bug | Yes
(Li 2004; Zhang 2005b) | No
Nymphs and adults suck sap from young buds, leaves, young shoots and fruit of grapevines (Zhang 2005b). However, they are not likely to be carried by fruit (AQSIQ 2007) because Pentatomid bugs characteristically drop from their hosts when disturbed, or fly off (Alcock 1971).
Harvest and existing processing measures will likely remove most pentatomid bugs from the pathway. | Not assessed | Not assessed | Not assessed | No |
| *Eulecanium giganteum* (Shinji, 1935)
Synonym: *Lecanium gigantea* Shinji, 1935
[Hemiptera: Coccidae] | Yes
Hunan, Inner Mongolia, Shaanxi, Shaanxi, Ningxia, Xinjiang and Yunnan (Ben-Dov 2010b; Tang 1991; Tao et al. 2002; Yang et al. 2008; Wang and Wang 2009) | No
Yang et al. (2008) reports that *Eulecanium giganteum* attacks apple, peach, apricot and table grape but only feeds on twigs, branches and leaves of host plant. | No records found | Not assessed | Not assessed | No |
| *Empoasca fabae* (Harris, 1841)
Synonym: *Empoasca mali* (Baron, 1853)
[Hemiptera: Cicadellidae]
Potato leafhopper | Yes
Recorded as a pest of grapevines in USA and Canada (Bostanian et al. 2003; Integrated Pest Management Center 2007; Isaacs and van Timmeren 2009; Lenz et al. 2009). | No
Empoasca fabae can cause significant injury to vineyards, causing leaf cupping, reduced shoot growth, and leaf yellowing (Integrated Pest Management Center 2007; Isaacs 2007; Isaacs and van Timmeren 2009). This pest is not likely to be carried by fruit (AQSIQ 2007) because Cicadellid or leafhoppers characteristically drop from their hosts when disturbed, or fly off.
Adults are very active, jumping or flying when disturbed. The immature forms, or nymphs run forward, backward or sideways when disturbed (Isaacs 2007). | No record found | Not assessed | Not assessed | No |
Pest Risk Assessment Table

| Pest Name: Erthesina fullo (Thunberg, 1783)
As. Erthesina ful in Zhang (2005b) and as Erthesina ful in AQIS (1998b) and BA (2005c)
[Hemiptera: Pentatomidae]
Yellow-spotted stink bug, Hong Kong shield bug | Present in China | Potential to be on pathway | Present within Australia | Potential for establishment and spread | Potential for economic consequences | Pest risk assessment required |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes (Li 2004; Zhang 2005b)</td>
<td>No Adults suck sap from stem, leaves and fruit of grapevines (Zhang 2005b). However, they are not likely to be carried by fruit (AQSIQ 2007) because Pentatomid bugs characteristically drop from their hosts when disturbed, or fly off (Alcock 1971). Harvest and existing processing measures will likely remove most pentatomid bugs from the pathway.</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

| Pest Name: Erythroneura sp.
Including Erythroneura apicalis (Nawa, 1913) listed by Li (Li 2001)
[Hemiptera: Cicadellidae]
Leafhopper | Present in China | Potential to be on pathway | Present within Australia | Potential for establishment and spread | Potential for economic consequences | Pest risk assessment required |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes (Li 2004)</td>
<td>No Li (2004) reports that an unidentified Erythroneura species sucks the plant juice from the underside of grape leaves resulting in leaf drop. Li (Li 2001) also lists E. apicalis as a known pest of grapes in China.</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

| Pest Name: Halyomorpha halys (Stål, 1855)
[Hemiptera: Pentatomidae]
Brown marmorated stink bug | Present in China | Potential to be on pathway | Present within Australia | Potential for establishment and spread | Potential for economic consequences | Pest risk assessment required |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes (Li 2004; Zhang 2005b)</td>
<td>No In grapes, H. halys adults suck sap from the fruit of grapes and the nymphs feed on leaves, stems and fruit of grapes (AQSIQ 2007; Zhang 2005b). Pentatomid bugs are not likely to be carried by fruit (AQSIQ 2007) because they characteristically drop from their hosts when disturbed, or fly off (Alcock 1971). Harvest and existing processing measures will likely remove most pentatomid bugs from the pathway.</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

| Pest Name: Icerya purchasi (Maskell, 1876)
[Hemiptera: Margarodidae]
Cottony cushion scale, fluted scale | Present in China | Potential to be on pathway | Present within Australia | Potential for establishment and spread | Potential for economic consequences | Pest risk assessment required |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes (CABI 2009) No host information of I. purchasi on grapes in China. Yes In Korea, this species is found on leaves, branches and fruit of grapevines (NPQS 2007).</td>
<td>Yes (DEWHA 2009a) Present in WA (Poole 2008).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Pest</td>
<td>Present in China</td>
<td>Potential to be on pathway</td>
<td>Present within Australia</td>
<td>Potential for establishment and spread</td>
<td>Potential for economic consequences</td>
<td>Pest risk assessment required</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Lycorma delicatula (White, 1845)</td>
<td>Yes (AQSIQ 2006; CEIA-CAES 2005; Li 2004; Zhang 2005b)</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Hemiptera: Fulgoridae] Planthopper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maconellicoccus hirsutus (Green, 1908)</td>
<td>Yes (CABI 2009; CABI-EPPO 2004)</td>
<td>Yes</td>
<td>Yes</td>
<td>ACT, Qld, SA, WA (DEWHA 2009a)</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Hemiptera: Pseudococcidae] Pink hibiscus mealybug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nysius ericae (Schilling, 1829)</td>
<td>Yes (Zhang 2005b)</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Hemiptera: Lygaeidae] Dusky bug, grey bug, chinche gris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pest Risk Assessment Table

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parlatoria oleae (Clovée, 1880)</td>
<td>Yes Anhui, Fujian, Guangdong, Guangxi, Guizhou, Jiangsu, Jianxi, Sichuan, Shaanxi, Xinjiang, Yunnan, Zhejiang (AQSIQ 2007; AQSIQ 2004; Ben-Dov 2010d; Chen 2003; DOA 2007; Yang et al. 2008)</td>
<td>No Parlatoria oleae is the major pest of fragrant pear, pear and apple in Xinjiang, China, where it appears to be the local dominant species of Diaspididae (AQSIQ 2004; Yang et al. 2008); Ben-Dov (2010d) reports that grape is a host. Parlatoria oleae occurs on the bark, leaves and fruits of its host. Initially, the scale aggregates on the mid-ribs of the leaves, on the stems and at the blossom end of the fruits (Watson 2005b). There is no available information to indicate that it attacks grape bunches.</td>
<td>Yes NSW, Qld (Ben-Dov 2010d) Not in WA (Poole 2008).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Parthenolecanium corni (Bouché, 1844)</td>
<td>[Hemiptera: Coccidae] Plum scale, peach scale, European fruit lecanium scale</td>
<td>Yes (AQSIQ 2006; Zhang 2005b)</td>
<td>Yes This species sucks sap from branches, leaves and fruit of grapevines (Zhang 2005b).</td>
<td>Yes Tas. (APPD 2009), NSW and Vic. (Snare 2006). Absent in WA (Poole 2008).</td>
<td>Yes This pest is widely distributed in temperate and subtropical regions (Ben-Dov 2010e).</td>
<td>Yes (WA)</td>
</tr>
<tr>
<td>Parthenolecanium orientalis Borchsenius, 1957</td>
<td>[Hemiptera: Coccidae] Scale insect</td>
<td>Yes (Li 2004)</td>
<td>Yes Adults damage the leaves, stems and fruit of grape (Li 2004).</td>
<td>No (Ben-Dov 2010f)</td>
<td>Yes Parthenolecanium orientalis reproduces parthenogenetically (female only), allowing it to quickly exploit new resources. Its wide host range ability to tolerate a range of climatic conditions indicates it is likely to establish and spread through new areas.</td>
<td>Yes This species is polyphagous and known to cause economic damage to many agricultural and amenity plants including: currants (Ribes sp.); Wisteria (Wisteria chinensis); stonefruit (Prunus sp.) and willow (Salix sp.) (Ben-Dov 2010f); and grape (Vitis vinifera) (Li 2004).</td>
</tr>
<tr>
<td>Pinnaspis strachani (Cooley, 1899)</td>
<td>[Hemiptera: Coccidae] Hibiscus snow scale</td>
<td>Yes (CABI 2009; Watson 2006)</td>
<td>Yes Pinnaspis strachani is a sedentary insect found on both upper and lower leaf surfaces, fruits and stems of its host plants (CABI 2009; Tenbrink et al. 2007).</td>
<td>Yes (DEWHA 2009a) Present in WA (Poole 2008).</td>
<td>Not assessed</td>
<td>Not assessed</td>
</tr>
</tbody>
</table>
Final IRA report: table grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| *Plautia stali* Scott 1874
[Hemiptera: Pentatomidae]
Brown-winged green bug | Yes
(CABI 2009; Liu and Zheng 1994) | No | Not assessed | Not assessed | Not assessed | No |
| **Pentatomid bugs are not likely to be carried by fruit** (AQSIQ 2007) because they characteristically drop from their hosts when disturbed, or fly off (Alcock 1971). Harvest and existing processing measures will likely remove most pentatomid bugs from the pathway. |
| *Planococcus kraunhiae* (Kuwana, 1902)
[Hemiptera: Pseudococcidae]
Japanese mealybug | Yes
No host information of *P. kraunhiae* on grapes in China (Ben-Dov 2010g) | Yes
In Korea, *P. kraunhiae* is found on leaves, branches and fruit of grapevines (NPQS 2007). | No
(Ben-Dov 2010g) | Yes
Planococcus kraunhiae is a polyphagous species known to feed on *Citrus*, *Diospyros kaki* (persimmon), *Magnolia grandiflora* and *Portulaca* (CABI 2009). Climatic conditions in parts of Australia may be suitable for its establishment and spread. | Yes
Planococcus kraunhiae is a sap sucking insect that reduces productivity and quality and promotes the growth of sooty mould through production of honeydew (CABI 2009). Although the mouth parts of mealybugs rarely penetrate beyond the fruit epidermis, their feeding activities can also cause fruit spotting and distortion (CABI 2009). | Yes |
Final IRA report: table grapes from China

Appendix A1

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudaulacaspis pentagona</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>(Targioni-Tozzetti)</td>
<td></td>
<td>Yang et al. (2008) reports that Pseudaulacaspis pentagona attacks peach, apricot, plum and cherry but only feeds on twigs, branches and leaves of the host plants. However Ben-Dov (2010h) reported that grapes (Vitis vinifera and Vitis sp.) are hosts. There is no available information to indicate that it attacks grape bunches.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synonym: Diaspis pentagona</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Targioni-Tozzetti, 1886</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Hemiptera: Diaspidae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White peach scale, white scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudococcus comstocki</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(Kuwana, 1902)</td>
<td>(Li 2004; Zhang 2005b)</td>
<td>This species is listed by both Li (2004) and Zhang (2005b) as a pest of table grapes in China.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Hemiptera: Pseudococcidae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comstock’s mealybug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pest</td>
<td>Present in China</td>
<td>Potential to be on pathway</td>
<td>Present within Australia</td>
<td>Potential for establishment and spread</td>
<td>Potential for economic consequences</td>
<td>Pest risk assessment required</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Pseudococcus maritimus (Ehrhorn, 1900)</td>
<td>Yes</td>
<td>Yes</td>
<td>No verified records found.</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>[Hemiptera: Pseudococcidae] Grapevine mealybug</td>
<td>(AQSIQ 2006; Li 2004; Zhang 2005b)</td>
<td>Early stages damage the young roots of grapevines before moving up onto the vine to damage shoots, stems and fruit (Zhang 2005b).</td>
<td></td>
<td>Literature records for P. maritimus in Australia are misidentifications of other mealybug species including P. affinis, P. calceolariae and P. longispinus (Williams 1985), although Williams and Granara de Willink (Williams and Granara de Willink 1992) contradicts this by stating P. maritimus is common in Australia and the USA. However, Gimpel Jr and Miller (Gimpel Jr and Miller 1996) correctly states that there is no correct records of P. maritimus outside the New World.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulvinaria vitis (Linnaeus, 1758)</td>
<td>Yes</td>
<td>Yes</td>
<td>No records found (BenDov 2010k; CABI 2009)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Synonym: Coccus betuae Linnaeus, 1758</td>
<td>Inner Mongolia, Xinjiang, Xizang (Tang 1991; Yang et al. 2006; Zhang and Wu 2007).</td>
<td>Yang et al. (2008) reports that Pulvinaria vitis attacks table grapes, walnuts and other hosts in China and the nymphs feed on young shoots, leaves and fruits of grapes.</td>
<td></td>
<td>Many hosts are present in Australia such as apricot, walnut, almond, grape, apple, pear, peach, cherry, plum, and quince. Many parts of Australia have a similar climate to the native countries of Pulvinaria vitis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Hemiptera: Coccidae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final IRA report: table grapes from China
Appendix A1

Final IRA report: table grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| **Quadraspidiotus perniciosus** (Comstock, 1881)
Synonym: *Diaspidiotus perniciosus* (Comstock)
[Hemiptera: Diaspidae] | Yes
Widespread (Ben-Dov 2010a; EPPO 1981; Watson 2005a) | No | Yes | Not assessed | Not assessed | No |
| **Riptortus pedestris** (Fabricius, 1775)
[Hemiptera: Alydidae]
Bean bug, pod bug | Yes | No | Not assessed | Not assessed | Not assessed | No |
| **Trialeurodes vaporariorum** (Westwood, 1856)
[Hemiptera: Aleyrodidae]
Grape whitefly, greenhouse whitefly | Yes | No | Not assessed | Not assessed | Not assessed | No |

Order Hymenoptera

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| **Ceratina dentipes** Friese, 1914
As *C. dentipes* Wu in Luo et al. (2005)
[Hymenoptera: Apidae]
Carpenter bee | Yes
South Guizhou (Luo et al. 2005) | No | Not assessed | Not assessed | Not assessed | No |
| **Ceratina viticola** Sinich
[Hymenoptera: Apidae]
Small carpenter bee | Yes
South Guizhou (Luo et al. 2005) | No | Not assessed | Not assessed | Not assessed | No |
Final IRA report: table grapes from China

Appendix A1

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>

Order Lepidoptera

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acosmeryx castanea Rothschild and Jordan, 1903 [Lepidoptera: Sphingidae] Hawk moth</td>
<td>Yes Yunnan, Xinjiang, Jiangxi (Pittaway and Kitching 2006).</td>
<td>No</td>
<td>Although recorded from Vitis sp. (Pittaway and Kitching 2006). Sphingids generally feed only on foliage (Common 1990).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Acosmeryx naga (Moore, 1858) As A. naga in Zhang (2005b) [Lepidoptera: Sphingidae] Hawk moth</td>
<td>Yes (Zhang 2005b)</td>
<td>No</td>
<td>Larvae feed on leaves of Vitaceae (Vitis and Ampelopsis spp.) (Pittaway and Kitching 2006).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Acosmeryx sericeus (Walker, 1856) [Lepidoptera: Sphingidae] Hawk moth</td>
<td>Yes Yunnan (Pittaway and Kitching 2006)</td>
<td>No</td>
<td>Although recorded from Vitis vinifera (Pittaway and Kitching 2006). Sphingids generally feed only on foliage (Common 1990).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
</tbody>
</table>
Appendix A1

Final IRA report: table grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acosmeryx shervillii Boisduval, 1875 [Lepidoptera: Sphingidae] Hawk moth</td>
<td>Yes (Pittaway and Kitching 2006)</td>
<td>No (Although recorded from grapes (Pittaway and Kitching 2006), Sphingids generally feed only on foliage (Common 1990).)</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Actias ningpoana Felder, 1862 Synonym: Actias selene ningpoana (Felder, 1862) [Lepidoptera: Saturniidae] Moon moth</td>
<td>Yes (Zhang 2005b)</td>
<td>No (The larvae of this species feed on leaves of grapevine (Zhang 2005b).)</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Adoxophyes privatana (Walker, 1863) [Lepidoptera: Tortricidae] Leafroller moth, tortrix moth</td>
<td>Yes (Meijerman and Ulenberg 2000a)</td>
<td>No (Although recorded from grapes (Vitis spp.) (Robinson et al. 2008), there are no records of the species affecting commercial grapes in China despite causing widespread damage to Citrus crops (Meijerman and Ulenberg 2000a).)</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Amphipyra pyramidea (Linnaeus, 1758) [Lepidoptera: Noctuidae] Copper underwing</td>
<td>Yes (Zhang 2005b; Li 2004; AQSIQ 2006)</td>
<td>No (Although recorded from grapes (Pittaway and Kitching 2006), sphingids generally feed only on foliage (Common 1990).)</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Amphelopha rubiginosa Bremer & Grey, 1853 [Lepidoptera: Sphingidae] Grape hornworm</td>
<td>Yes (Zhang 2005b; Li 2004; AQSIQ 2006)</td>
<td>No (The larvae of this species feed on leaves of grapevine (Zhang 2005b).)</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Amphelopha khasiana Rothschild, 1895 [Lepidoptera: Sphingidae] Hawk moth</td>
<td>Yes (Pittaway and Kitching 2006)</td>
<td>No (Although recorded from grapes (Pittaway and Kitching 2006), sphingids generally feed only on foliage (Common 1990).)</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
</tbody>
</table>
Appendix A1

Final IRA report: table grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| *Anomis mesogona* (Walker, 1858)
[Lepidoptera: Noctuidae]
Fruit piercing moth | Yes
(Hong Kong Lepidopterists' Society Limited 2004) | No
Anomis mesogona is a fruit piercing moth, whose adults pierce and suck juice from fleshy fruits at night. They are large, wary moths who shelter in foliage away from fruit during daylight hours. They are unlikely to enter the pathway for this reason (USDA 2002). | Not assessed | Not assessed | Not assessed | No |
| *Aporia crataegi* (Linneaus, 1758)
[Lepidoptera: Pieridae]
Black-veined white moth | Yes
(Grichanov and Ovsyannikova 2009a) | No
Larvae of *A. crataegi* are recorded to feed on foliage of many fruiting plants including grapes (*Vitis* spp.) (Grichanov and Ovsyannikova 2009a; Robinson *et al.* 2008). | Not assessed | Not assessed | Not assessed | No |
| *Archips micaceana* (Walker, 1863)
Synonyms: *Archips micaceanus*; *Cacoecia micaceana*; *Tortrix micaceana*
[Lepidoptera: Tortricidae]
Leaf rolling moth, bell moth | Yes
(Tuck 1990; Zhou and Deng 2006; Zhou and Deng 2005; Zhou and Deng 2004)
On table grapes (Puttarudriah *et al.* 1961; Zhang 1994) | No
Table grapes are a host of *Archips micaceana* (*Puttarudriah et al.* 1961; Zhang 1994).
Archips micaceana caused damage to grapevines at Bangalore and Mysore in India. The larvae fed under thin webbing on the epidermis of the leaves, the main stalks of the bunch and the berries themselves and pupated within the webbing (*Puttarudriah et al.* 1961). | No
(Nielsen *et al.* 1996) | Yes
Archips micaceana larvae feed on a wide range of plants including eucalyptus, grapes, lychee, citrus, mango, soybean, tea, pineapple, strawberry and groundnut which are present in Australia. Many parts of Australia have a similar climate to the native countries of *A. micaceana*.
Archips micaceana has caused damage to grapevines at Bangalore and Mysore in India (*Puttarudriah et al.* 1961). This leafroller is polyphagous and causes considerable damage to eucalyptus seedlings (Maddison 1993). | Yes | No |
Final IRA report: table grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| *Archips podana* (Scopoli, 1758)
Synonyms: *Archips podanus; Tortrix podana, Cacoecia podana*
[Lepidoptera: Tortricidae]
Large fruit tree tortrix, fruit-tree tortrix | Yes
(Carter 1984; Hill 1987)
On table grapes (Carter 1984; Hill 1987; LaGasa et al. 2003; Meijerman and Ulenberg 2000b; Ovsyannikova and Grichanov 2009a; Voigt 1971) | Yes
Larvae of *Archips podana* feed directly on grapes, spoiling bunches with webbing and frass. Although severe infestations are obvious and would not enter the pathway due to existing measures, individual larvae hidden within a grape bunch may pass undetected (Carter 1984). | No
(Nielsen et al. 1996) | Yes
Archips podana is highly polyphagous and its larvae feed on flower buds and fruits of a number of host plants including, *Vitis* sp., *Malus* sp., *Pyrus* sp., *Cydondia oblonga*, *Prunus* spp., *Ribes* sp., *Rubus* sp., *Vaccinium* sp., *Ribus* sp., *Juglans* spp., *Funic granatum*, *Trifolium* sp., *Cornus*, *Corylus*, *Fagus*, *Praxinus*, *Populus*, *Primula*, *Rosa*, *Rhododendron*, *Salix*, *Sorbus*, *Tilia*, *Trifolium*, and others ornamental trees (Carter 1984; Hill 1987; LaGasa et al. 2003; Meijerman and Ulenberg 2000b; Ovsyannikova and Grichanov 2009a). Many known hosts are widely grown in urban and agricultural areas of Australia. This may allow it to become established in temperate parts of Australia. It has been accidentally introduced to the United States (LaGasa et al. 2003). | Yes
Archips podana is considered one of the most abundant and damaging tortricid species occurring on fruit crops in Europe and Asia (Carter 1984; LaGasa et al. 2003; Ovsyannikova and Grichanov 2009a). This leafroller is polyphagous, damaging the majority of orchard plants and forest species of deciduous forests (Ovsyannikova and Grichanov 2009a). | Yes |
<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| *Argyrotaenia ljungiana* (Thunberg, 1797)
Synonym: *Argyrotaenia pulchellana* (Haworth, 1811)
[Lepidoptera: Tortricidae]
Grape tortrix, grey-barred twist | No
Unsubstantiated reference only; probably absent. Although *A. ljungiana* is listed as occurring in China by an internet resource (Ovsyannikova and Grichanov 2009a), no references were cited to substantiate this record. An extensive literature search also found no further records of *A. ljungiana* being present in China, so the species is not considered further. This assessment will be revised if *A. ljungiana* is subsequently reported in China and/or detected at the Australian quarantine interception point in trade from China. | Not assessed | Not assessed | Not assessed | Not assessed | No |
| *Artena dotata* (Fabricius, 1794)
As *Lagoptera dotata* Fabricius in (Li 2004).
[Lepidoptera: Noctuidae]
Fruit-piercing moth | Yes
(Li 2004)
Adults feed on ripe grapes at night by piercing them and sucking their juices. They are not associated with grapes during daylight hours (Li 2004) and would not enter the pathway for this reason. | No | Not assessed | Not assessed | Not assessed | No |
| *Calyptra lata* (Butler, 1881)
As *Oraesia lata* (Butler, 1881) in AQSIQ (2006)
[Lepidoptera: Noctuidae]
Fruit-piercing moth, larger oraesia | Yes
(AQSIQ 2006)
Species of Calyptra are known as fruit piercing moths (Common 1990). In a study by Zaspel (2007) species of *Calyptra* including *C. lata* were collected at a site that contained *Vitis amurensis* plants. It is likely that *Calyptra* spp. would be disturbed and fly off during harvest and would not enter the pathway. | No | Not assessed | Not assessed | Not assessed | No |
<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calyptra thalictri (Borkhusen, 1790) [Lepidoptera: Noctuidae] Fruit-piercing moth</td>
<td>Yes (Savela 2009) No record found of C. thalictri on grapes in China.</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Catocala actaeae Felde, 1874 [Lepidoptera: Noctuidae] White-mark hind winged noctuid</td>
<td>Yes (KISTI 2005) No host information of C. actaeae on grapes in China.</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Cechenena lineosa (Walker, 1856) [Lepidoptera: Sphingidae] Hawk moth</td>
<td>Yes Yunnan and southern Xinjiang Uygur Autonomous Region (Pittaway and Kitching 2006)</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Cechenena minor (Butler, 1875) [Lepidoptera: Sphingidae] Hawk moth</td>
<td>Yes Shaanxi, Yunnan (Pittaway and Kitching 2006)</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Clania variegata (Snellen, 1879) As Cryptothelea variegata Snellen, 1879; Eumeta variegata (Snellen, 1879); Clania layardi (Moore); Clania sikkima (Moore) in Zhang (2005b). [Lepidoptera: Psychidae] Paulownia bagworm, giant bagworm, large bagworm</td>
<td>Yes (Zhang 2005b)</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Pest</td>
<td>Present in China</td>
<td>Potential to be on pathway</td>
<td>Present within Australia</td>
<td>Potential for establishment and spread</td>
<td>Potential for economic consequences</td>
<td>Pest risk assessment required</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>-------------------------</td>
<td>--</td>
<td>----------------------------------</td>
<td>-------------------------------</td>
</tr>
</tbody>
</table>
| Cossus cossus Linneaus, 1758
[Lepidoptera: Cossidae]
Goat moth | Yes (Grichanov 2009) | No
Cossid moth larvae feed internally on woody parts of plants (Grichanov 2009) and are not associated with fruits. They are unlikely to enter the pathway. | Not assessed | Not assessed | Not assessed | No |
| Conogethes punctiferalis (Guenée, 1854)
As Dichocrocis punctiferalis in AQSIQ (2006)
[Lepidoptera: Pyralidae]
Yellow peach moth | Yes (AQSIQ 2006; Li 2004; Zhang 2005b) | Yes
Larvae bore into fruit and web the grapes together (Gour and Sriramulu 1992). | Not assessed | Not assessed | Not assessed | No |
| Dasychira feminula
[Lepidoptera: Lymantriidae]
Tussock moth | Yes
Yunnan (Hong Kong Lepidopterists' Society Limited 2004) | No
Although D. feminula is recorded using Vitis as a host (Robinson et al. 2008), Lymantrid moths are foliage feeders as larvae with non-feeding adults (Common 1990). | Not assessed | Not assessed | Not assessed | No |
| Dasychira tenebrosa Walker
[Lepidoptera: Lymantriidae]
Tussock moth | Yes (Matsumura 1933) | No
Although D. tenebrosa is recorded using Vitis as a host (Robinson et al 2008), Lymantrid moths are foliage feeders as larvae with non-feeding adults (Common 1990). | Not assessed | Not assessed | Not assessed | No |
| Deilephila elpenor (Linneaus, 1758)
[Lepidoptera: Sphingidae]
Elephant hawk moth | Yes (Pittaway and Kitching 2006). | No
Although recorded from grapes (Pittaway and Kitching 2006), Sphingids generally feed only on foliage (Common 1990). | Not assessed | Not assessed | Not assessed | No |
| Diaphania indica (Saunders, 1851)
Synonym: Palipta indica
[Lepidoptera: Pyralidae]
Cotton caterpillar | Yes (CABI 2009)
No record found of D. indica on grapes in China. | Yes
In Korea, this species is found on leaves and fruit of grapevines (NPQS 2007). | Not assessed | Not assessed | Not assessed | No |
<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elibia dolichus (Westwood, 1847) [Lepidoptera: Sphingidae] Hawk moth</td>
<td>Yes Southern China (Pittaway and Kitching 2006). Although listed as occurring in Henan and Guangdong by Pittaway (2006), its contiguous distribution across Nepal and India indicates it is likely to occur in neighbouring Yunnan and the Xinjiang Uygur Autonomous Region.</td>
<td>No Sphingids generally feed only on foliage (Common 1990).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Endocyta exscrens (Butler, 1877) As Phassus exeresens Butler in Li (2004). [Lepidoptera: Hepialidae] Japanese swift moth</td>
<td>Yes (Li 2004; Zhang 2005b)</td>
<td>No The larvae of this species bores into the stems and branches of grapevines (Zhang 2005b).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Eudocima fullonia (Linnaeus, 1767) As Ophideres fullonica; Othreis fullonia (Linnaeus) in AOSIQ (2006) [Lepidoptera: Noctuidae] Fruit-piercing moth, fruit sucking moth, orange piercing moth</td>
<td>Yes (AOSIQ 2006; Li 2004; Zhang 2005b)</td>
<td>No Adult Eudocima species feed on overripe or fermenting fruit at night, but shelter elsewhere during the day (Common 1990; Reddy et al. 2007). They will not be associated with grapes during harvest and will not enter the pathway.</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Eudocima tyrannus (Guenée, 1852) As Adris tyrannus (Guenée, 1852) in AOSIQ (2006) [Lepidoptera: Noctuidae] Noctuid moth, akebia leaf-like moth</td>
<td>Yes (AOSIQ 2006; Li 2004; Zhang 2005b)</td>
<td>No Adult Eudocima species feed on overripe or fermenting fruit at night, but shelter elsewhere during the day (Common 1990; Reddy et al. 2007). They will not be associated with grapes during harvest and will not enter the pathway.</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Pest</td>
<td>Present in China</td>
<td>Potential to be on pathway</td>
<td>Present within Australia</td>
<td>Potential for establishment and spread</td>
<td>Potential for economic consequences</td>
<td>Pest risk assessment required</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Eupoecilia ambiguella (Hübner, 1796)</td>
<td>Yes</td>
<td>Yes Eupoecilia ambiguella larvae bore into the grapes (Marcelin 1985). Larvae from the second generation have the greatest potential to affect crop yield (Frolov 2009a).</td>
<td>No</td>
<td>Yes Eupoecilia ambiguella larvae feed on a wide range of plants including genera present in Australia (e.g. Cissus) (Brown et al. 2008a). This species has a wide distribution (Frolov 2009a), suggesting it is tolerant of a range of climatic conditions likely to occur in Australia.</td>
<td>Yes Eupoecilia ambiguella larvae are polyphagous. First generation larvae eat floral structures, densely covering them with a web, while second generation larvae attack the grapes themselves. These larvae gnaw round holes to enter and feed internally on berries, eating away pulp and unripe seeds before they harden. One larva is able to damage 9-12 berries (Frolov 2009a).</td>
<td>Yes</td>
</tr>
<tr>
<td>Grape berry moth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geina periscelidactylus Fitch, 1854</td>
<td>Yes</td>
<td>No The larva of this moth webs together newly developing leaves. It does not injure the shoot, feeding only on the leaves (Douglas and Cowles 2006).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Grape plume moth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicoverpa armigera (Hübner, 1805)</td>
<td>Yes</td>
<td>Yes Larvae attack grape berries, causing cork-like deformities (de Villiers 2006).</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>As Heliothis armigera in Zhang (2005b)</td>
<td>Yes (Zhang 2005b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn earworm, cotton bollworm, tobacco budworm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herpetogramma luctuosalis (Guenée, 1854).</td>
<td>Yes (Li 2004)</td>
<td>No The larvae feed on grape leaves by rolling the leaves into a cylinder and feeding on them from the inside. Wild and cultivated grapes are the only known hosts (Li 2004).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>As Sylepta luctuosalis Guenée, 1854 in Li (2004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Lepidoptera: Pyralidae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hippotion celerio (Linnaeus, 1758)</td>
<td>Yes</td>
<td>No Larvae of H. celerio generally feed on foliage (Common 1990).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Grapevine hawk moth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pest</td>
<td>Present in China</td>
<td>Potential to be on pathway</td>
<td>Present within Australia</td>
<td>Potential for establishment and spread</td>
<td>Potential for economic consequences</td>
<td>Pest risk assessment required</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Hyphantria cunea (Drury 1770) [Lepidoptera: Arctiidae] Mulberry moth, fall webworm</td>
<td>Yes (CABI 2009; Warren and Tadic 1970)</td>
<td>No Hyphantria cunea larvae feed on foliage only (Grichanov and Ovsyannikova 2009b; FAO 2007a).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Ischyja manlia (Cramer, 1776) [Lepidoptera: Noctuidae] Fruit-piercing moth</td>
<td>Yes (Holloway 2009)</td>
<td>No This species is a nocturnal fruit-piercing moth (Walker 2007), whose adults shelter in foliage during the day (Li 2004) and will not be associated with grapes at harvest.</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Loepa katinka (Westwood, 1847) [Lepidoptera: Saturniidae] Golden emperor moth</td>
<td>Yes Hebei, Yunnan, Xinjiang (Ades and Kendrick 2004)</td>
<td>No Saturniid moths feed only as larvae, which are foliage specialists (Common 1990).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Mamestra brassicae (Linnaeus, 1758) [Lepidoptera: Noctuidae] Cabbage moth</td>
<td>Yes (CABI 2009; CABI-EPPO 2001)</td>
<td>No Larvae feed only on foliage of grapevines (Ovsyannikova and Grichanov 2009b).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Marumba gaschkwitschii (Bremer & Grey, 1852) [Lepidoptera: Sphingidae] Peach horn worm</td>
<td>Yes (Zhang 2005b)</td>
<td>No Larvae feed only on foliage (Zhang 2005b).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Mocis undata (Fabricius, 1775) [Lepidoptera: Noctuidae] Fruit-piercing moth</td>
<td>Yes (Li 2004)</td>
<td>Adults are nocturnal fruit piercers, feeding on grapes and other fruiting plants. They will not be on the pathway at harvest (Li 2004). The larvae of this species attack the foliage of a range of plants, but do not feed on grapes (Robinson et al. 2008).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
</tbody>
</table>
Final IRA report: table grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nippoptilia vitis (Sasaki, 1913)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No (Nielsen et al. 1996)</td>
<td>Yes Nippoptilia vitis causes a significant decline in grape yield and fruit quality (BAIRC 2007).</td>
<td>Yes</td>
</tr>
<tr>
<td>As Stenoptilia vitis Sasaki in Li (2004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Lepidoptera: Pterophoridae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grape plume moth, small grape plume moth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nokona regalis (Butler, 1878)</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>As Paranthrene regalis (Butler 1878) in AOSIQ (2006)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Lepidoptera: Sesidae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grape clearwing moth, gunworm, vine tree borer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ochyrotica concursa (Walsingham, 1891)</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Lepidoptera: Pterophoridae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plume moth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odites ricinella (Stainton, 1859)</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Lepidoptera: Oecophoridae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oecophorid moth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oraesia emarginata (Fabricius, 1794)</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Lepidoptera: Noctuidae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit-piercing moth, small oraesia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oraesia excavata (Butler, 1878)</td>
<td>Yes</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Lepidoptera: Noctuidae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit-piercing moth, reddish oraesia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pest</td>
<td>Present in China</td>
<td>Potential to be on pathway</td>
<td>Present within Australia</td>
<td>Potential for establishment and spread</td>
<td>Potential for economic consequences</td>
<td>Pest risk assessment required</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Orgyia postica (Lepidoptera: Lymantriidae)</td>
<td>Yes Yunnan (CABI 2009)</td>
<td>No Orgyia postica feeds on leaves (CABI 2009).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Pergesa acteos (Cramer, 1779) (Lepidoptera: Sphingidae)</td>
<td>Yes Shaanxi, Yunnan, Xinjiang (Pittaway and Kitching 2006)</td>
<td>No Although recorded from grapevines (Pittaway and Kitching 2006), Sphingids generally feed only on foliage (Common 1990).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Peridroma saucia (Hübner, 1808) (Lepidoptera: Arctiidae)</td>
<td>Yes (CABI 2009; Kuang 1985)</td>
<td>No Peridroma saucia larvae feed on buds on grapevines (MAF Biosecurity New Zealand 2009; University of California 2008a).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Rhagastis castor aurifera (Butler, 1875) (Lepidoptera: Sphingidae)</td>
<td>Yes Yunnan and Xinjiang Uygur Autonomous Region (Pittaway and Kitching 2006)</td>
<td>No Although recorded from grapevines (Pittaway and Kitching 2006), Sphingids generally feed only on foliage (Common 1990).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Rhagastis confusa Rothschild and Jordan, 1903 (Lepidoptera: Sphingidae)</td>
<td>Yes Yunnan (Pittaway and Kitching 2006)</td>
<td>No Although recorded from grapevines (Pittaway and Kitching 2006), Sphingids generally feed only on foliage (Common 1990).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Rhagastis mongoliana (Butler, 1876) (Lepidoptera: Sphingidae)</td>
<td>Yes (Zhang 2005b)</td>
<td>No Larvae feed on leaves of grapevines (Zhang 2005b).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Sarbancissa subflava (Moore, 1877) as Seudyra subflava Moore, 1877 in AQSIQ (2006) (Lepidoptera: Noctuidae)</td>
<td>Yes (AQSIQ 2006; Li 2004; Zhang 2005b)</td>
<td>No The larvae feed on young shoots and leaves of grapevines (Zhang 2005b).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Sarbancissa transiens (Walker, 1855) Synonym: Creatonotatus transiens (Walker) (Lepidoptera: Noctuidae)</td>
<td>Yes Shandong, Shaanxi, Yunnan, Xinjiang (Ades and Kendrick 2004)</td>
<td>No Larvae of the similar S. subflava feed on young shoots and leaves of grapevines (Zhang 2005b). Although the biology of S. transiens is not recorded, it is expected to be similar.</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
</tbody>
</table>
Final IRA report: table grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serrodes campana Guenée 1852</td>
<td>Yes (KISTI 2005)</td>
<td>Yes This species is a fruit piercing moth (NPQS 2007). As with other fruit-piercing Noctuid moths, adults shelter in foliage during the day and will not be associated with grapes at harvest.</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Yes</td>
</tr>
<tr>
<td>Fruit-piercing moth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synonyms: Oenophthira campana Denis & Schiffermüller; Tortrix campana Denis & Schiffermüller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf-rolling tortrix, grape berry moth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparganothis pilleriana (Denis & Schiffermüller, 1775)</td>
<td>Yes (Carter 1984; CABI 2009; Frolov 2009b; Li 2004; Zeng et al. 1984)</td>
<td>Yes The larvae of Sparganothis pilleriana may cause substantial economic damage by feeding on shoot tips, leaves, inflorescences, young grapes and grape bunches, also causing reduction in fruiting (Louis et al. 2002; Picard 1913; Pykhova 1968; Schmidt-Tiedemann et al. 2001). Infested and rolled leaves afford shelter to the insects before they attack the fruit (berry) (Crouzat 1918).</td>
<td>No (APPD 2009; Nielsen et al. 1996)</td>
<td>Yes Many of the hosts including grape, apple, pear, plum, apricot, cherry, strawberry, tea, citrus, clover, alfalfa, maize, soy-bean, potato, sunflower, beet, pine, eucalyptus, oak, rose, are present in Australia and many parts of Australia have a similar climate to the native countries of S. pilleriana</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Leaf-rolling tortrix, grape berry moth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synonyms: Oenophthira campana Denis & Schiffermüller; Tortrix campana Denis & Schiffermüller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf-rolling tortrix, grape berry moth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphecodina caudata (Bremer & Grey, 1853)</td>
<td>Yes (Zhang 2005b)</td>
<td>No The larvae feed only on leaves of grapevines (Zhang 2005b).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Leaf-rolling tortrix, grape berry moth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spirama retorta (Clerck, 1764)</td>
<td>Yes (Li 2004)</td>
<td>No Adults are nocturnal fruit piercers, sucking the juices of grape, apple, pear and citrus, causing fruit rot (Li 2004). As with other fruit-piercing Noctuid moths, adults shelter in foliage during the day and will not be associated with grapes at harvest.</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Leaf-rolling tortrix, grape berry moth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf-rolling tortrix, grape berry moth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spodoptera exigua (Hübner, 1808)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf-rolling tortrix, grape berry moth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pest</td>
<td>Present in China</td>
<td>Potential to be on pathway</td>
<td>Present within Australia</td>
<td>Potential for establishment and spread</td>
<td>Potential for economic consequences</td>
<td>Pest risk assessment required</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>------------------------------------</td>
<td>-------------------------------</td>
</tr>
</tbody>
</table>
| Spodoptera litura Fabricius, 1775
[Lepidoptera: Noctuidae]
Cluster caterpillar, oriental leafworm moth | Yes
(CABI 2009) | Yes
Larvae attack *Vitis vinifera* and may graze on fruit as external feeders (CABI 2009). | Yes
(Nielsen *et al.* 1996) | Not assessed | Not assessed | No |
| Stathmopoda auriferella (Walker, 1864)
[Lepidoptera: Oecophoridae]
Apple heliodinid | Yes
(Hiramatsu *et al.* 2001).
No record found of *S. auriferella* affecting grapes in China.
In Korea, this pest is found on grapes (NPQS 2007). | Yes
Found on the fruit of grapes (APHIS 2002; NPQS 2007).
USDA report that in Korea, *S. auriferella* larvae web together flower buds and newly set fruit, often causing affected plant parts to drop from the vine. Larvae also burrow into the green berries, which may split, shrivel, or fall off when damaged (APHIS 2004a). | No
(Nielsen *et al.* 1996) | Yes
Stathmopoda auriferella has a wide range of hosts including table grapes, *Acacia*, kiwifruit, mandarin, navel orange, coffee, sunflower, lac scale, fuji apple, mango, avocado, chir pine, peach, nectarine, pomegranate and sorghum (CABI 2009; Robinson *et al.* 2007; Yamazaki and Sugiuira 2003).
It has been reported from Japan, Korea as well as China (Park *et al.* 1994; Shanghai Insect Science Network 2009; Yamazaki and Sugiuira 2003).
This wide geographic range suggests that climatic conditions in parts of Australia would be suitable for its establishment and spread. | Yes
Stathmopoda auriferella larvae damage the leaves, buds and fruit of a range of agricultural crops *Citrus, Mangifera, Vitis and Prunus* spp. (CABI 2009; Yamazaki and Sugiuira 2003). They also feed on important ecological species such as *Acacia* (Robinson *et al.* 2007). | Yes |
| Theretra alecto (Linneaus, 1758)
[Lepidoptera: Sphingidae]
Hawk moth | Yes
Yunnan, Xinjiang (Pittaway and Kitching 2006) | No
Although recorded from grapevines (Pittaway and Kitching 2006), Sphingids generally feed only on foliage (Common 1990). | Not assessed | Not assessed | Not assessed | No |
| Theretra boisduvalii (Bugnion, 1839)
[Lepidoptera: Sphingidae]
Hawk moth | Yes
Yunnan (Pittaway and Kitching 2006) | No
Although recorded from grapevines (Pittaway and Kitching 2006), Sphingids generally feed only on foliage (Common 1990). | Not assessed | Not assessed | Not assessed | No |
| Theretra clotho (Drury, 1773)
[Lepidoptera: Sphingidae]
Hawk moth | Yes
Shandong, Shaanxi, Yunnan, Xinjiang (Pittaway and Kitching 2006) | No
Although recorded from grapevines (Pittaway and Kitching 2006), Sphingids generally feed only on foliage (Common 1990). | Not assessed | Not assessed | Not assessed | No |
<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| Theretra japonica (Boisduval, 1869)
[Lepidoptera: Sphingidae]
Hawk moth | Yes
(AQSIQ 2006; Li 2004; Zhang 2005b) | No
The larvae feed on grapevine leaves (Zhang 2005b). | Not assessed | Not assessed | Not assessed | No |
| Theretra oldenlandiae (Fabricius, 1775)
[Lepidoptera: Sphingidae]
Hawk moth | Yes
Hebei, Shanxi, Shaanxi, Henan, Yunnan, Xinjiang (Pittaway and Kitching 2006) | No
Although recorded from grapevines (Pittaway and Kitching 2006). Sphingids generally feed only on foliage (Common 1990). | Not assessed | Not assessed | Not assessed | No |
| Theretra pallicosta (Walker, 1856)
[Lepidoptera: Sphingidae]
Hawk moth | Yes
Shaanxi, Yunnan (Pittaway and Kitching 2006) | No
Although recorded from grapevines (Pittaway and Kitching 2006). Sphingids generally feed only on foliage (Common 1990). | Not assessed | Not assessed | Not assessed | No |
| Thinopteryx crocoptera Kollar,
[Lepidoptera: Geometridae]
Colourful looper moth | Yes
(Barlow 1982) | No
Geometrid larvae are foliage feeders. This species pupates in folded leaves of the host (Barlow 1982). | Not assessed | Not assessed | Not assessed | No |
| Thyas juno (Dalman, 1823)
As Lagoptera juno Dalman in (Li 2004).
[Lepidoptera: Noctuidae]
Rose of Sharon leaflike moth, fruit-piercing moth | Yes
(Li 2004) | No
A nocturnal fruit-piercing moth, whose adults suck the juice of fruit and shelter in foliage during the day. Larvae feed on the leaves of grape, apple, pear and walnut and are not found on fruit (Li 2004). | Not assessed | Not assessed | Not assessed | No |
| Trichosea champa
[Lepidoptera: Pantharidae] | Yes
Larvae feed on foliage of their host plants (Wu 1977). | Not assessed | Not assessed | Not assessed | No |
| Xestia c-nigrum (Linnaeus, 1758)
[Lepidoptera: Arctiidae]
Spotted cutworm | Yes
(CABI-EPPO 1979; CABI 2009) | No
Larvae feed on foliage close to ground level at night and shelter in litter on the ground during the day (Pfeiffer 2009; TFREC 2008). They are unlikely to be associated with the fruit at harvest (day-time) (MAF Biosecurity New Zealand 2009; TFREC 2008). | Not assessed | Not assessed | Not assessed | No |
Final IRA report: table grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeuzera pyrina (Linnaeus, 1761) [Lepidoptera: Cossidae] Leopard moth, wood leopard moth, apple stem borer</td>
<td>Yes (Li 2004)</td>
<td>No The larvae tunnel inside the stems and branches of grapevines where they feed on the phloem and xylem. They are not associated with grape berries (Li 2004).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
</tbody>
</table>

Order Thysanoptera

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frankliniella occidentalis Pergande, 1895 [Thysanoptera: Thripidae] Western flower thrips</td>
<td>Yes Found on grapes (MAF Biosecurity New Zealand 2009)</td>
<td>Yes Frankliniella occidentalis are commonly found feeding on leaves, stems, flowers and fruit of grape plants. Female thrips can lay up to 100 eggs which hatch into larvae or nymphs. Nymphs are similar to adults but without wings; after feeding they pupate in the soil. Thrips are present throughout the year (Kulkarni et al. 2007).</td>
<td>Yes (DEWHA 2009a; DPIW Tasmania 2010) Not recorded in NT (NTG 2009)</td>
<td>Yes Frankliniella occidentalis is a highly polyphagous species with a wide host range. It has already established and spread in most areas of Australia.</td>
<td>Yes Adult thrips attack most parts of their host plants as adults and larvae and lay their eggs directly into plant tissues. Their feeding activities can stress plants and reduce crop yields, as well as scarring fruit and flowers to render them unmarketable. They also vector tospoviruses, which also contribute to reduction of crop yield and production of unmarketable produce and can also cause entire crop losses (CABI 2009).</td>
<td>Yes (NT)</td>
</tr>
<tr>
<td>Rhipiphorothrips cruentatus Hood, 1919 [Thysanoptera: Thripidae] Grapevine thrips, rose thrips</td>
<td>Yes (CABI 2009; Zhang 2007)</td>
<td>Yes Rhipiphorothrips cruentatus usually feed on the lower surface of leaves, often in groups. They can also attack blossoms and developing berries, which develop a corky layer and become brown (Kulkarni et al. 2007).</td>
<td>No (DEWHA 2009a)</td>
<td>Yes Rhipiphorothrips cruentatus is a polyphagous species attacking a number of commercial host plants including cashew nut, sugarapple, mango and guava (CABI 2009).</td>
<td>Yes Rhipiphorothrips cruentatus is a polyphagous species feeding on the fruit, stems, leaves of ornamentals, shrubs and tree crops (DEWHA 2009a).</td>
<td>Yes</td>
</tr>
<tr>
<td>Scirtothrips dorsalis Hood, 1919 [Thysanoptera: Thripidae] Castor thrips, chili thrips, strawberry thrips</td>
<td>Yes (Zhang 2005b)</td>
<td>No Like R. cruentatus, S. dorsalis usually feed on the lower surface of leaves, often in groups. They can also attack blossoms and developing berries, which develop a corky layer and become brown (Kulkarni et al. 2007).</td>
<td>Yes QLD, NT, NSW (CSIRO and DAFF 2004c), including WA (Poole 2008).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
</tbody>
</table>
Appendix A1

Final IRA report: table grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| *Thrips tabaci* Lindemann, 1889
[Thysanoptera: Thripidae]
Onion thrips | Yes
(AQSIQ 2006; Li 2004; Zhang 2005b) | Yes
Adults and larvae feed on young berries (Lewis 1997). They also feed on mature fruit, causing damaged fruit to develop a visible red ring (Roditakis and Roditakis 2007). | Yes
NSW, NT, Qld, SA, Tas., Vic., WA (APPD 2009) | Not assessed | Not assessed | No |
| **Order Orthoptera** | | | | | | |
| *Oecanthus indicus* Saussure, 1878
[Orthoptera: Gryllidae]
Singing tree cricket | Yes
(AQSIQ 2006; Li 2004; Zhang 2005b) | No
This species lays its eggs into mature branches of grapevines, sometimes causing stem breakage (Zhang 2005b). | Not assessed | Not assessed | Not assessed | No |
| **DOMAIN FUNGI** | | | | | | |
| **Class Agaricomycetes** | | | | | | |
| **Order Acaricales** | | | | | | |
| *Armillaria tabescens* (Scop. ex Fr.)
Emel
[Acaricales: Marasmiaceae]
Armillaria root rot | Yes
(CIQSA 2001a) | No
Infects roots (Drake 1990; Li 2004). | Not assessed | Not assessed | Not assessed | No |
| **Order Ceratobasidiales** | | | | | | |
| *Rhizoctonia solani* Kühn
Teleomorph: *Thanatephorus cucumeris*
(Frank) Donk
[Ceratobasidiales: Ceratobasidiaceae] | Yes
(CABI 2009; Farr and Rossman 2009) | No
Rhizoctonia solani is soil-borne. Although *T. cucumeris* is capable of growing on aerial parts of the plant including fruit (Olsen 1999), there are no reports of this occurring in grapes. | Not assessed | Not assessed | Not assessed | No |
| **Order Poriales** | | | | | | |
| *Sclerotium rolfsii* Sacc.
Teleomorph: *Athelia rolfsii* (Curzi) C.C. Tu & Kimbr.
As *Pellicularia rolfsii* West in AQSIQ (2006)
[Poriales: Atheliaceae]
Sclerotium stem rot | Yes
(AQSIQ 2006) | No
Infects stems near the ground (Li 2004). | Not assessed | Not assessed | Not assessed | No |
Class Ascomycetes

Order Amphisphaeriales

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| Physalospora baccae sensu Nishikado non Cavara
As Guignardia baccae (Cav.) Trcz. in AQSIQ (2006).
[Amphisphaeriales: Hyponectriaceae]
Grapevine black rot | Yes
Across major grape production regions (AQSIQ 2006; NYZSW 2009; Qi et al. 2007) | Yes
Physalospora baccae mainly infects peduncles, pedicels and fruits of grapes (BAIKE 2009; NYZSW 2009). During May and June, conidia and ascospores spread to grape clusters by wind and rain and insects (NYZSW 2009). Symptoms start to appear in July. The peak infection period is from July to September when the weather is warm and humid. Infections are most likely to occur from the onset of ripening to harvest (BAIKE 2009; NYZSW 2009).
Physalospora baccae was assessed as on the pathway by USDA for the import of table grapes from South Korea (APHIS 2002). | No records | Yes
Physalospora baccae is present across the major grape growing regions of China (BAIKE 2009; Liu et al. 2006a; NYZSW 2009). It is also present in east Europe, Japan, Portugal, South Korea and Spain (Bensaude 1926; Berro Aguilera 1926; Nishikado 1921; Shin et al. 1984; Vekesciaghin 1933). This suggests that this fungus can establish and spread under a wide range of climatic environments. Many other Physalospora species are already present and established in Australia (APPD 2009). | Yes
Physalospora baccae mainly infects peduncles, pedicels and fruit of grapes (BAIKE 2009; NYZSW 2009). The disease incidence is high in some years with hot and humid weather from July to September and in vineyards which are not well managed. For example, up to 75% of fruit was infected in a vineyard in Jiangxi province (Li 1984). High disease incidences (about 30% fruit infection rates) were also reported in vineyards in the provinces of Hunan, Fujian and Shanxi (Gao et al. 1999; Hu and Lin 1993). | Yes |

Order Diaporthales

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| Greeneria uvicola (Berkley & M.A. Curtis) Punithalingam
[Diaporthales: Not assigned]
Bitter rot | No
Misreported as being in the southern part of Jiangsu in China (in English abstract). However, the Chinese text does not mention G. uvicola as being present in China (Yan et al. 1998). AQSIQ has confirmed that this pest is not in China and it is a quarantine pest for China (AQSIQ 2010). | Not assessed | Not assessed | Not assessed | Not assessed | No |

Order Dothideales

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| Asperisporium vitiphyllum (Speschnew) Deighton
[Dothideales: Not Assigned] | Yes
Aksu, Xinjiang (AQSIQ 2009b; Zhuang 2005) | Yes
Infects fruit (APHIS 2005b). | No records | Yes
Spores are airborne (Waisel et al. 1997). | No
No evidence for economic significance (APHIS 2005b). | No |
Pest risk assessment required

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Hypocreales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Phyllachorales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colletotrichum acutatum Simmonds ex Simmonds [Phyllachorales: Phyllachoraceae]</td>
<td>Yes (Zhang et al. 2008)</td>
<td>Yes (Whitelaw-Weckert et al. 2007).</td>
<td>Yes</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Order unassigned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phragmocoelpha stemphylioides (Corda) S.J. Hughes var. baccata Taxus [Not Assigned: Not Assigned]</td>
<td>Yes Liupan Mountain, Ningxia (AQSIIQ 2009b; Zhuang 2005)</td>
<td>No AQSIIQ (2009c) advises that the pathogen only infects leaves.</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Class Dothideomycetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Acrospermales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrospermum viticola ikata [Acrospermales: Acrospermacaeae]</td>
<td>Yes (AQSIIQ 2006; Farr and Rossman 2009)</td>
<td>No (AQSIIQ 2006; Li 2004).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Botryosphaeria dothidea (Moug.: Fr.) Ces. & De Not. Anamorph: Fusicoccum aesculi Corda [Botryosphaeriales: Botryosphaeriaceae]</td>
<td>Yes (Farr and Rossman 2009)</td>
<td>Yes Causes spots and cankers on shoots and round, sunken lesions on berries as they mature (Van Niekerk et al. 2000).</td>
<td>Yes</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Botryosphaeria stevensii Shoemaker Anamorph: Diplodia mutila (Fr.: Fr.) Mont. [Botryosphaeriales: Botryosphaeriaceae]</td>
<td>Yes (Farr and Rossman 2009)</td>
<td>Yes Causes spots and cankers on shoots and can infect fruit (Van Niekerk et al. 2000).</td>
<td>Yes</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
</tbody>
</table>
Final IRA report: table grapes from China

Appendix A1

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guignardia bidwellii (Ellis) Viala & Ravaz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Anamorph: Phyllosticta ampelicida (Engelm.) Van der Aa</td>
<td>Yes Henan, Jiangsu, Liaoning, Shandong, Sichuan and Xinjiang (AQSIQ 2006; AQSIQ 2007)</td>
<td>Yes Infests fruit (AQSIQ 2006; AQSIQ 2007; CABI 2009; Farr and Rossman 2009), as well as leaves, stalks and new branches (AQSIQ 2007; Farr and Rossman 2009). Affected fruit show puce stains and grow soft, then shrink to dark fruits with many black dots (AQSIQ 2007).</td>
<td>No records</td>
<td>Yes Guignardia bidwellii overwinters in mummies, either in the vine or on the ground. Ascospores are airborne and disperse moderate distances and conidia are splash dispersed only short distances (Wilcox 2003).</td>
<td>Yes All young green tissues of the vine are susceptible to infection by G. bidwellii. Infection of the fruit is by far the most serious phase of the disease and may result in substantial economic loss. Flowers do not become infected while the bud caps remain attached, but are extremely susceptible for the first two to three weeks after the bud cap falls off. Vitis vinifera cultivars maintain a reduced level of susceptibility until 6 or 7 weeks after the flowers open (Wilcox 2003).</td>
<td>Yes</td>
</tr>
<tr>
<td>Lasiodiplodia theobromae (Pat.) Griffon & Maubl.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teleomorph: Botryosphaeria rhodina (Berk. & Curtis) Arx</td>
<td>Yes (Li 2004)</td>
<td>Yes Grapes can be infected at bloom and maturity. When infected at bloom, there is a latency period before symptoms manifest (Hewitt 1974).</td>
<td>Yes NT, Qld, WA (APPD 2009)</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Botryosphaeriales: Botryosphaeriaceae] Lasiodiplodia cane dieback</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Capnodiales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cercospora truncata Ellis & Everh.</td>
<td>Yes Shaanxi (Zhuang 2005)</td>
<td>Yes Affects leaves (AQSIQ 2009b; Farr and Rossman 2009).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Capnodiales: Mycosphaerellaceae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladosporium cladosporoides (Fresen.) GA de Vries</td>
<td>Yes (Liang and Zeng 1980)</td>
<td>Yes Infests fruit (Briceño and Latorre 2007)</td>
<td>Yes ACT, NSW, NT, Qld, SA, Tas., Vic., WA (APPD 2009); WA (DAWA 2006)</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Capnodiales: Davidiellaceae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladosporium herbarum (Pers.: Fr.) Link</td>
<td>Yes (Li 2004)</td>
<td>Yes Infests fruit after injury causing rot (University of California 1992).</td>
<td>Yes NSW, Qld, SA, Tas. Vic., WA (APPD 2009)</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Capnodiales: Mycosphaerellaceae] Cladosporium rot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

264
<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Septoria ampelina Berk. & M. A. Curtis [Capnodiales: Mycosphaerellaceae] Septoria leaf spot</td>
<td>Yes (Li 2004)</td>
<td>No Infects leaves (Li 2004)</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Order Myriangiales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elsinoë ampelina Shear Anamorph: Sphaeloma ampelini de Bary [Myriangiales: Elsinoaceae] Grape anthracnose</td>
<td>Yes (CABI 2009; Farr and Rossman 2009); Guangdong, Hong Kong (Zhuang 2001)</td>
<td>Yes Infected berries have round, sunken and initially brown spots that enlarge to form ‘bird’s eye spots’ of 2-7 mm (Emmett et al. 1994a). These are dark purple-black and have thin, red edging and sometimes grey centres.</td>
<td>Yes NSW, NT, Qld, Tas., Vic., WA (APPD 2009)</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Order Pleosporales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternaria alternata (Fr. Fr.) Keissl [Pleosporales: Pleosporaceae] Alternaria leaf blight, brown spot</td>
<td>Yes (Li 2004)</td>
<td>Yes Infects young and mature berries. It is commonly a post harvest rot (Swart et al. 1995).</td>
<td>Yes ACT, NSW, NT, Qld, SA, Tas., Vic., WA (APPD 2009)</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
</tbody>
</table>
Final IRA report: table grapes from China

Appendix A1

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>
| *Alternaria viticola* Brunaud
[pleosporales: Pleosporaceae]
Spike stalk brown spot | Yes
Anhui, Beijing, Hebei, Henan, Hunan, Liaoning (Zhang 2005b); Hebei, Henan, Hunan, Liaoning, Shandong and Shanghai (Grapevinewine 2003); Liaoning, Shandong, Hunan (AQSIQ 2007); Hebei, Henan, Liaoning, Shandong (Li 2004) and Xinjiang (Ma et al. 2004). | Yes
Infests young fruit (AQSIQ 2006; Li 2004). Mainly attacks young, tender rachises, peduncles and pedicels of grape fruit with no symptoms seen in old inflorescences (AQSIQ 2007). No major symptoms on fruits (AQSIQ 2007). AQSIQ (2007) claimed that this pathogen is not on the pathway. | No records | Yes
Alternaria viticola is present in Anhui, Beijing (Zhang 2005b), Hebei, Henan, Hunan, Liaoning (Grapevinewine 2003; Zhang 2005b), Shandong, Shanghai (Grapevinewine 2003) and Xinjiang (Ma et al 2004). This suggests that this fungus can establish under a wide range of climatic environments. Environments with climates similar to these regions exist in various parts of Australia suggesting that *A. viticola* has the potential to establish in Australia. Many other *Alternaria* species are already present and established in Australia (APPD 2009). | Yes
Alternaria viticola can cause serious drop off of flowers and young fruit, leading to a yield reduction of 30–40% (Ma et al. 2004). *Alternaria viticola* causes disease on *Vitis* species (Ma et al. 2004; Zhang 2005b), which may affect table grape and wine industries. | Yes |
| *Stemphylium botryosum* Wallr.
Teleomorph: *Pleospora tarda* E. G. Simmons
[pleosporales: Pleosporaceae]
Stemphylium rot | Yes
(Farr and Rossman 2009) | Yes
Listed as a berry rot or raisin mould (Pearson 1993). | Yes
NSW, SA, Tas., Vic., WA (APPD 2009) | Not assessed | Not assessed | No |
| **Class Eurotiomycetes** | | | | | | |
| **Order Eurotiales** | | | | | | |
| *Aspergillus niger* Tiegh.
[Eurotiales: Trichocomaceae] | Yes
(Farr and Rossman 2009) | Yes
Infests berries as a post harvest rot (Perrone et al. 2006). | Yes
ACT, NSW, NT, Qld, SA, Vic., WA (APPD 2009) | Not assessed | Not assessed | No |
| **Class Leotimycetes** | | | | | | |
| **Order Erysiphales** | | | | | | |
| *Erysiphe necator* Schwein.
Anamorph: *Oidium tuckeri* Berk.
As *Uncinula necator* (Schw) Burr in AQSIQ (2006)
[Erysiphales: Erysiphaceae]
Grapevine powdery mildew | Yes
(AQSIQ 2006; Farr and Rossman 2009) | Yes
Infests fruit with visible symptoms. These include an ash-grey growth, web-like patterns and splitting (Emmett et al. 1994b). | Yes
NSW, NT, Qld, SA, Tas. Vic., WA (APPD 2009) | Not assessed | Not assessed | No |
Final IRA report: table grapes from China

Appendix A1

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Helotiales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| *Botrytis cinerea* Pers.: Fr.
Teleomorph: *Botryotinia fuckeliana* (de Bary) Whetzel
[Helotiales: Sclerotiniaceae]
Grey mould rot | Yes (AQSIQ 2006; Farr and Rossman 2009) Gansu, Ningxia (Zhuang 2005) | Yes
Symptoms are berries with ‘slippery skin’ and bunches of grapes with grey mouldy growth (Nicholas *et al.* 1994). | Yes
ACT, NSW, Qld, SA, Tas., Vic., WA (APPD 2009) | Not assessed | Not assessed | No |
| *Hinomyces moricola* (I. Hino) Narumi & Y. Harada
Teleomorph: *Grovesinia pyramidalis* M.H. Cline, J.L. Crane & S.P. Cline
[Helotiales: Sclerotiniaceae]
Zonate leaf spot | Yes
Taiwan (Li 2004) | No
Infects leaves (Li 2004). | Not assessed | Not assessed | Not assessed | No |
| *Monilinia fructicola* (G. Winter) Honey
Anamorph: *Monilia fructicola* L. R. Batra
[Helotiales: Sclerotiniaceae]
Brown rot | Yes (CABI 2009) | Yes
Attacks young flowers and they drop off (Ma and Sheng 1995). Also infects fruit (Visarathanonth *et al.* 1988). | Yes
ACT, NSW, Qld, SA, Tas., Vic., WA (APPD 2009) | Not assessed | Not assessed | No |
| *Monilinia fructigena* Honey
Anamorph: *Monilia fructigena* Schumach.
[Helotiales: Sclerotiniaceae]
Brown rot | Yes
Anhui, Henan, Hubei, Hunan, Jiangsu, Liaoning, Shaanxi, Shandong, Shanxi, Sichuan, Yunnan, Taiwan and Zhejiang (AQSIQ 2007; Farr and Rossman 2009) | Yes
Causes raised light brown pustules on the fruit that often expand enclosing the fruit to form a dark, wrinkled, hard mumified fruit (APHIS 2004a). Grape is not a main host. No report of harm to grapes in China (AQSIQ 2007). AQSIQ (2007) suggested that it is not on pathway. | No records | Brown rot disease caused by *M. fructigena* is common in pome and stone fruit. Grapevine is a minor host of this pathogen (CABI 2009). The spores of this fungus can be spread from one orchard to another through air (Jones 1990; Ma 2006). | Yes |
Final IRA report: table grapes from China

Appendix A1

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Puccinimycetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Helicobasidiales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicobasidium mompa Tanaka [Helicobasidiales: Helicobasidiaceae] Violet root rot of apple</td>
<td>Yes (AQSIQ 2006)</td>
<td>No</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Order Pucciniales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phakopsora ampelopsidis Diet. & P. Syd. [Pucciniales: Phakopsoraceae] Ampelopsis rust fungus</td>
<td>Yes Fujian, Guangdong, Guangxi, Jiansu, Sichuan, Yunnan (Li 2001; AQSIQ 2006)</td>
<td>No This species does not infect Vitis spp. (Ono 2000).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Pest</td>
<td>Present in China</td>
<td>Potential to be on pathway</td>
<td>Present within Australia</td>
<td>Potential for establishment and spread</td>
<td>Potential for economic consequences</td>
<td>Pest risk assessment required</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Class Sordariomycetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Diaporthales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phomopsis viticola (Sacc.) Sacc.</td>
<td>Yes Hebei, Liaoning, Shandong (AQSIQ 2007; CABI 2009; Zhang 2005b)</td>
<td>Yes</td>
<td>Infections of grape bunches (berries, pedicels and peduncles) throughout the growing season but most infections appear to occur early in the growing season (Ellis and Erincik 2005). Berry infection is favoured by long (20-30 hr) wet periods at flowering (Emmett et al. 1994c). Symptoms appear at cut sites, grafting places and branches. Mainly affects grapes vines which are more than two years old with newly grown vines not affected (AQSIQ 2007). AQSIQ (2007) could find no reports of harm to grape berries and suggested that it is not on pathway.</td>
<td>Yes (Merrin et al. 1995); NSW, Qld, SA, Vic., WA (APPD 2009); Tas. (Mostert et al. 2001)</td>
<td>Phomopsis viticola is established in temperate climatic regions throughout the viticultural world and has been reported in Africa, Asia, Australia (except Western Australia), Europe and North America (Hewitt and Pearson 1988). Some areas of Western Australia have a suitable temperate climate.</td>
<td>Phomopsis viticola is a serious pathogen of grapes in several viticultural regions of the world (Hewitt and Pearson 1988). Berry infection, either direct or via infected rachis tissues (Erincik et al. 2001) can occur throughout the growing season but most fruit infections probably occur early in the season (Erincik et al. 2001). Once inside green tissues of the berry, the fungus becomes latent (Erincik et al. 2002) and infected berries remain without symptoms until late in the season when the fruit matures (Ellis and Erincik 2005). Phomopsis viticola was ranked seventh out of 11 major diseases in China based on incidence where they occurred (Li 2001).</td>
</tr>
<tr>
<td>Phomopsis cane and leaf spot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilidiella diplodiella (Sperg.) Crous & Van Niekerk</td>
<td>Yes (AQSIQ 2006); Guangdong (Zhuang 2001)</td>
<td>Yes</td>
<td>Infections young and mature fruit, causing purple-brown spots, yellowing and then browning and drying out of the fruit (Lauber and Schuepp 1968).</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>As Coniothyrium diplodiella (Sperg.) Sacc in AQSIQ (2006)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Diaporthales: Valsaceae]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grapevine white rot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium solani (Mart.) Sacc.</td>
<td>Yes (AQSIQ 2006)</td>
<td>Yes</td>
<td>Infects roots (Lele et al. 1978) and shoots, attacking the xylem vessels (Atia et al. 2003). Therefore, it may be present in stems of the bunch.</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
</tbody>
</table>
Final IRA report: table grapes from China

Appendix A1

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichothecium roseum (Pers.) Link [Hypocreales: Not Assigned]</td>
<td>Yes (Farr and Rossman 2009)</td>
<td>Yes</td>
<td>Infects mature fruit (Blancard et al. 2006).</td>
<td>Yes ACT, NSW, Qld, SA, Vic., WA (APPD 2009)</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Pink mould rot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glomerella cingulata (Stoneman.) Spauld. & H. Schrenk**</td>
<td>Yes (AQSIQ 2006)</td>
<td>Yes</td>
<td>Symptoms, circular brown spots, appear as berries ripen (Kummuang et al. 1996b).</td>
<td>Yes ACT, NSW, NT, Qld, SA, Tas., Vic., WA (APPD 2009)</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Anamorph: Colletotrichum gloeosporioides (Penz.) Penz. & Sacc.**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Phyllachorales: Glomerellaceae]** Anthracnose**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verticillium wilt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Xylariales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pestalotiopsis uvicola (Speg.) Bissett [Xylariales: Amphisphaeriaceae]**</td>
<td>Yes Henan, Jiangsu, Liaoning, Shandong and Shanxi (Zhang 2005b).</td>
<td>Yes</td>
<td>Infects canes, berries, flowers and leaves. Berries are infected more readily at later stages of development than at earlier stages (Sergeeva et al. 2005).</td>
<td>Yes NSW, Qld, WA (APPD 2009); NSW (Sergeeva et al. 2005)</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>White root rot of trees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class Zygomycetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Mucorales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White root rot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

270
Appendix A1

Final IRA report: table grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
</table>

VIROIDS

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian grapevine viroid [Pospiviroidae: Aspca viroid]</td>
<td>Yes (Jiang et al. 2009b)</td>
<td>Yes Infects systemically; present in fruit and seed (Albrechtsen 2006; Little and Rezaian 2003; Singh et al. 2003).</td>
<td>Yes (Habili 2009)</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>Grapevine yellow speckle viroid-1 [Pospiviroidae: Aspca viroid]</td>
<td>Yes Xinjiang (Li et al. 2007)</td>
<td>Yes Infects systemically; present in fruit and seed (Albrechtsen 2006; Li et al. 2006; Little and Rezaian 2003; Singh et al. 2003).</td>
<td>Yes (Koltunow et al. 1989) Not recorded in WA (DAWA 2006). The movement of fruit into WA from eastern states, where grapevine yellow speckle viroid-1 occurs, is regulated.</td>
<td>Yes Transmitted by grafting, abrasion and through seed (Albrechtsen 2006; Li et al. 2006; Singh et al. 2003).</td>
<td>Yes</td>
<td>Yes (WA)</td>
</tr>
</tbody>
</table>

Grapevine yellow speckle viroid-1 is one of the causative agents of *Grapevine yellow speckle disease*, individually or in combination with *Grapevine yellow speckle viroid 2* (Koltunow et al. 1989). There is no published evidence of significant adverse effects due to *Grapevine yellow speckle disease*, with many infected clones having acceptable yield and quality and not causing degeneration (Krake et al. 1999a). *Grapevine viroids* are not known to cause noticeable economic effects on winegrape production (Randles 2003). No record of economic losses caused by viroids in table grapes found. However, mixed infection of *GYSVd-1* or *GYSVd-2* and *Grapevine fanleaf virus* causes vein banding that has detrimental effect on the yield of certain varieties (Szychowski et al. 1995).
<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grapevine yellow speckle viroid-2
[Pospiviroidae: Aspcaviroid]</td>
<td>Yes (Li et al. 2007)</td>
<td>Yes infects systemically; present in fruit and seed (Albrechtsen 2006; Li et al. 2006; Little and Rezaian 2003; Singh et al. 2003).</td>
<td>Yes (Koltunow et al. 1989)
Not recorded in WA (DAWA 2006).
The movement of fruit into WA from eastern states, where grapevine yellow speckle viroid-2 occurs, is regulated.</td>
<td>Yes Transmitted by grafting, abrasion and through seed (Albrechtsen 2006; Little and Rezaian 2003).</td>
<td>Yes Grapevine yellow speckle viroid 2 is one of the causative agents of Grapevine yellow speckle disease, individually or in combination with Grapevine yellow speckle viroid 1 (Koltunow et al. 1989). There is no published evidence of significant adverse effects due to Grapevine yellow speckle disease, with many infected clones having acceptable yield and quality and not causing degeneration (Krake et al. 1999a). Grapevine viroids are not known to cause noticeable economic effect on winegrape production (Randles 2003). No record of economic losses caused by viroids in table grapes found. However, mixed infection of GYSVd-1 or GYSVd-2 and Grapevine fanleaf virus causes vein banding that has detrimental effect on the yield of certain varieties (Szychowski et al. 1995).</td>
<td>Yes (WA)</td>
</tr>
<tr>
<td>Grapevine yellow speckle viroid-3
(Chinese grapevine viroid)
[Pospiviroidae: Aspcaviroid]</td>
<td>Yes Xinjiang, Beijing (Jiang et al. 2009a).</td>
<td>Yes infects systemically, so probably present in grape berries (Jiang et al. 2009a).</td>
<td>Yes (Genbank accession code AF059712; (Benson et al. 2008)).
Not recorded in WA (DAWA 2006).
The movement of fruit into WA from eastern states, where grapevine yellow speckle viroid-3 occurs, is regulated.</td>
<td>Yes Transmitted by grafting and abrasion. Seed transmission not reported (Jiang et al. 2009a), but considered possible.</td>
<td>Yes Recently characterised viroid, closely related to GYSVd-1 (Jiang et al. 2009a).</td>
<td>Yes (WA)</td>
</tr>
</tbody>
</table>
Final IRA report: table grapes from China

Appendix A1

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hop stunt viroid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Pospiviroidae: Hostuviroid]</td>
<td>Yes Xinjiang (Li et al. 2006)</td>
<td>Yes Infects systemically; present in fruit and seed (Albrechtsen 2006; Li et al. 2006; Little and Rezaian 2003; Singh et al. 2003).</td>
<td>Yes SA, Vic. (Koltunow et al. 1988) Not recorded in WA (DAWA 2006). The movement of fruit into WA from eastern states where hop stunt viroid occurs is regulated.</td>
<td>Yes Transmitted by grafting, abrasion and through seed (Albrechtsen 2006; Little and Rezaian 2003; Singh et al. 2003).</td>
<td>No No symptoms of disease observed when Hop stunt viroid infects grapevine (Little and Rezaian 2003). Grapevine viroids are not known to cause noticeable economic effects on winegrape production (Randles 2003). No record of economic losses caused by Hop stunt viroid in table grapes found. A single study on Cabernet Sauvignon vines inoculated with a mixture of GYSVd-1, GYSVd-2 and Hop stunt viroid resulted in grape juice with lower titrable acidity and slightly higher pH and no effect on vegetative growth (Wolpert et al. 1996). As the inoculation was done concomitantly with the three viroids it is not possible to determine which viroid/viroids is responsible for the effect. Given that HSVd does not cause any disease symptoms it is likely that the other two viroids are responsible for this effect.</td>
<td>No</td>
</tr>
</tbody>
</table>
Final IRA report: table grapes from China

Appendix A1

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus exocortis viroid [Pospiviroidae: Pospiviroid]</td>
<td>Yes (CABI 2009)</td>
<td>Yes Infected systemically; present in fruit and seed (Albrechtsen 2006; Little and Rezaian 2003; Singh et al. 2003).</td>
<td>Yes NSW, Qld, SA (ICTvDb Management 2002)</td>
<td>Yes Transmitted by grafting, abrasion and through seed (Albrechtsen 2006; Little and Rezaian 2003; Singh et al. 2003).</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

DOMAIN VIRUSES

<table>
<thead>
<tr>
<th>Positive Sense Single-Stranded DNA</th>
</tr>
</thead>
</table>

| Alfalfa mosaic virus [Bromoviridae: Alfamovirus] | Yes Neimenggu, Shaanxi, Zhejiang (CABI 2009) | Yes Infected systemically; probably present in fruit (Van Vloten-Doting and Gibbs 1996). | Yes NSW, Qld (APPD 2009); NSW, Qld, SA, Tas., Vic., WA (ICTvDb Management 2002) | Not assessed | Not assessed | No |

| Cucumber mosaic virus [Bromoviridae: Cucumovirus] | Yes (CABI 2009) | Yes Infected all parts of the plant (University of California 1992). | Yes NSW, Qld, SA, Tas., Vic., WA (CABI 2009; APPD 2009) | Not assessed | Not assessed | No |

| Broad bean wilt virus 2 [Comoviridae: Fabavirus] | Yes (CABI 2009; Zhou 2002) | Yes Recorded in grapevine (CIHEAM 2006). Probably infects systemically. | Yes NSW (Schwinghamer et al. 2007). May be present in Qld (APPD 2009) but the records could be of broad bean wilt virus 1. | No At least one strain is transmitted in seed of Vicia faba (Zhou 2002) but no record of seed transmission in Vitis spp. was found. Transmitted in a non-persistent manner by aphids, including Myzus persicae, Aphis craccivora and Acrithosiphon pisum. No records of acquisition from infected berries. | Not assessed | No |

274
<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grapevine fanleaf virus</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Transmitted occasionally through seed</td>
<td>Grapevine fanleaf virus is the most serious virus disease of grapevines</td>
<td>Yes (WA)</td>
</tr>
<tr>
<td>Synonym: Grapevine yellow mosaic virus</td>
<td>(AQSIQ 2006; Fujian, Hebei, Shandong, Sichuan (CABI 2009; Liu et al. 2004))</td>
<td>Infests systemically; present in fruit and seed. Associated with the endosperm of grape seeds (Habili et al. 2001).</td>
<td>NSW (APPD 2009); SA (Stansbury et al. 2000; Habili et al. 2001); Vic. (Habili et al. 2001). Not recorded in WA (DAWA 2006).</td>
<td>Yes (Martelli et al. 2001b). Also transmitted by a nematode vector (Xiphinema index) and by grafting (CABI 2009; Habili et al. 2001).</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>[Comoviridae: Nepovirus]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tobacco ringspot virus</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NSD Qld, SA, WA (CABI-EPPO 1997d)</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Comoviridae: Nepovirus]</td>
<td>(CABI 2009)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomato ringspot virus</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Seed transmitted by grapevines occasionally (Uyemoto 1975). Also transmitted by nematodes (Xiphinema spp.) and by grafting (Stace-Smith 1984).</td>
<td>Tomato ringspot virus causes disease in Gladiolus spp., Malus pumila (apple), Pelargonium, Prunus spp. (almond, apricot, nectarine, peach, plum, prune and sweet cherry), Rubus spp. (blackberry and raspberry), Solanum lycopersicum (tomato) and Vitis spp. (grapes) (Brunt et al. 1996b; CABI 2009; Kim and Choi 1990). Most of these species are commercially produced in Australia (Horticulture Australia Limited 2009).</td>
<td>Yes</td>
</tr>
<tr>
<td>Ringspot of tomato</td>
<td>Zhejiang (CABI 2009)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grapevine leafroll associated virus 2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Closteroviridae: Closterovirus]</td>
<td>(AQSIQ 2006; Liu et al. 2006b)</td>
<td>Infests systemically; probably present in fruit (CABI 2009).</td>
<td>SA, NSW, Vic. (CABI 2009); WA (DAWA 2006)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grapevine leafroll associated virus 3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Closteroviridae: Ampelovirus]</td>
<td>(AQSIQ 2006; Liu et al. 2006b)</td>
<td>Infests systemically; probably present in fruit (CABI 2009).</td>
<td>SA, NSW, Vic. (Habili and Symons 2000); WA (DAWA 2006)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pest</td>
<td>Present in China</td>
<td>Potential to be on pathway</td>
<td>Present within Australia</td>
<td>Potential for establishment and spread</td>
<td>Potential for economic consequences</td>
<td>Pest risk assessment required</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>-----------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Grapevine leafroll associated virus 7</td>
<td>Yes (Benson et al. 2008)</td>
<td>Yes Infects systemically; probably present in fruit (CIHEAM 2006).</td>
<td>No records</td>
<td>Yes The virus is graft transmissible (CIHEAM 2006). The mechanism of natural transmission is not known. Other viruses from the Closteroviridae are transmitted by mealybugs, scales, whiteflies and aphids (CIHEAM 2006). Grapevine leafroll-associated virus 7 may also be transmitted by one or more of these insect vectors. Unlikely to be transported from infected fruit to a suitable host.</td>
<td>No The virus has been detected in vines with symptoms and in asymptomatic vines (Morales and Monis 2007). It causes mild leafroll symptoms (Choueiri et al. 1996). No report has been found indicating yield losses associated with infection.</td>
<td>No</td>
</tr>
<tr>
<td>[Closteroviridae: unassigned]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grapevine rupestris stem pitting-</td>
<td>Yes (Ribeiro et al. 2004)</td>
<td>Yes Infects systemically; probably present in fruit (Petrovic et al. 2003; CIHEAM 2006).</td>
<td>Yes (Habili and Symons 2000)</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>associated virus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Flexiviridae: Foveavirus]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grapevine virus A</td>
<td>Yes (AQSIQ 2006)</td>
<td>Yes Infects systemically; probably present in fruit (CIHEAM 2006).</td>
<td>Yes Vic. (APPD 2009); SA (Habili and Symons 2000) Not recorded in WA (DAWA 2006). The movement of fruit into WA from eastern states where Grapevine virus A occurs is regulated.</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>As Grapevine stempitting virus and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grapevine corky bark virus in AQSIQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2006)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Flexiviridae: Vitivirus]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pest</td>
<td>Present in China</td>
<td>Potential to be on pathway</td>
<td>Present within Australia</td>
<td>Potential for establishment and spread</td>
<td>Potential for economic consequences</td>
<td>Pest risk assessment required</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>------------------------------------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>
| **Grapevine virus B**
[Flexiviridae: Vitivirus] | Yes
Sichuan (Liu et al. 2004) | Yes
Infects systemically (Martelli 1997); probably present in fruit. | Yes
Vic. (Habili 2009)
Not recorded in WA (DAWA 2006). The movement of fruit into WA from eastern states, where *Grapevine virus B* occurs, is regulated. | No
Not seed transmitted; transmitted by grafting; transmitted by the mealy bugs *Planococcus ficus*, *Pseudococcus longispinus* and *Ps. affinis* (CIHEAM 2006). Unlikely to be co-transported with a vector insect or to be transmitted from imported fruit to a suitable host plant. | Yes
TNVs cause rusty root disease of carrot, Augusta disease of tulip, stipple streak disease of common bean, necrosis diseases of cabbage, cucumber, soybean and zucchini and ABC disease of potato (Smith et al. 1988; Uyemoto 1981; Xi et al. 2008; Zitikaite and Staniulis 2009). | Yes |
| Tobacco necrosis viruses
[Tombusviridae: Necrovirus] | Yes
Xinjiang and Jiangsu in several crop species (Huang et al. 1984; Xi et al. 2008) | Yes
Causes necrosis of leaves and stems (Brunt and Teakle 1996). Virus particles released from plant debris and acquired in soil by zoospores of chytrid fungi (*Olpidium* spp.) may be transmitted to suitable hosts (Spence 2001; Uyemoto 1981; CABI 2009). Necroviruses may also be transmitted in soil water without a vector (Lommel et al. 2005). | Yes
Viruses likely to be strains of TNVs A and D have been recorded in Vic. and Qld (Finlay and Teakle 1969; Teakle 1988). TNV Nebraska isolate has not been recorded in Australia, nor have other TNVs that have since been renamed or have not yet been formally classified (Cardoso et al. 2005; NCBI 2009; Tomlinson et al. 1983; Zhang et al. 1993). | Yes
TNVs are established in Australia (Teakle 1988). TNVs infect vegetable crop plants, ornamental plants and tree species (Brunt and Teakle 1996; CABI 2009; Zitikaite and Staniulis 2009) and many of these hosts occur in Australia. TNVs are transmitted by *Olpidium* spp. (Rochon et al. 2004; Sasaya and Koganezawa 2006) and these vectors occur in Australia (Maccarone et al. 2008; McDougall 2006). | Yes
TNVs cause rusty root disease of carrot, Augusta disease of tulip, stipple streak disease of common bean, necrosis diseases of cabbage, cucumber, soybean and zucchini and ABC disease of potato (Smith et al. 1988; Uyemoto 1981; Xi et al. 2008; Zitikaite and Staniulis 2009). | Yes |
| **Grapevine fleck virus**
[Tymoviridae: Maculavirus] | Yes
(AQSIQ 2006) | Yes
Infects systemically. Present in fruit (Emmett and Hamilton 1994). | Yes
Vic. (APPD 2009)
Not recorded in WA (DAWA 2006). The movement of fruit into WA from eastern states, where *Grapevine fleck virus* occurs, is regulated. | No
Not seed transmitted (CIHEAM 2006). Transmitted by grafting; no known arthropod vector (CIHEAM 2006). | No
Not assessed | No |
Final IRA report: table grapes from China

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential for establishment and spread</th>
<th>Potential for economic consequences</th>
<th>Pest risk assessment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomato spotted wilt virus</td>
<td>Yes (CABI 2009)</td>
<td>Yes</td>
<td>Yes</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>No</td>
</tr>
<tr>
<td>[Bunyaviridae: Tospovirus]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tomato spotted wilt virus infects all parts of the plant. (University of California 1992).
Appendix A2 Sanitary pests

<table>
<thead>
<tr>
<th>Pest</th>
<th>Present in China</th>
<th>Potential to be on pathway</th>
<th>Present within Australia</th>
<th>Potential sanitary risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOMAIN EUKARYA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANIMALIA (Animal Kingdom)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class: Arachnida</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Araneae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| *Latrodectus mactans* Urquhart, 1890
[Araneae: Theridiidae]
Black widow spider | Yes
Henan, Sichuan
(Li 2008)
No information found on this species being found in natural and agricultural environments in China. Provinces above are not listed as producing grapes for export. | Yes
A spider was discovered in a box of Californian grapes by a greengrocer in Northern Ireland, was subsequently identified as an adult female of *L. mactans* (Ross 1988).
In NZ *L. mactans* has been found in table grapes imported from California on multiple occasions (Ministry of Health 2002). | No records found | Yes
Latrodectus mactans is a well known venomous spider (Ministry of Health 2002). |
| *Latrodectus tredecimguttatus* Rossi 1790
[Araneae: Theridiidae]
European black widow spider, karakurt | Yes
Xinjiang Uygur Autonomous Region, Yunnan, Inner Mongolia, Gansu (Chief Medical Network 2006; Yang et al. 2007).
Widespread in Xinjiang in more than 20 cities and counties (Chief Medical Network 2006).
AQSIQ (2009c; 2010) has advised that this spider has been reported from fields in Hami and Quitai in Xinjiang but not associated with vineyards. | Yes
A spider of this species recently found in a pack of seedless grapes (country of origin not specified) bought in a supermarket in the UK (Fresh Plaza 2008).
Recorded as a significant hazard for farmers and field workers in orchards and vineyards in Europe (Mullen and Vetter 2009).
In Xinjiang known from natural hillsides, farmland and orchards (Chief Medical Network 2006). | No records found | Yes
Latrodectus tredecimguttatus is a venomous spider, bites from which can place affected individuals in hospital (Clinical Toxinology Resources 2007b; Díez García et al. 1996).
Found from southern Europe south-west and central Asia to western and northern China (Duma 2006). In Central Asia it is a pest of pasture land and high densities can occur. Bites from this spider are reported to kill livestock such as cattle and camels (BBC 2004; Tarabaev 1991).
In Xinjiang it is known to bite animals and people, especially farm workers (Chief Medical Network 2006; Yan et al. 2007). |
Appendix B Additional quarantine and sanitary pest data

<table>
<thead>
<tr>
<th>Quarantine pest</th>
<th>Synonyms</th>
<th>Common name(s)</th>
<th>Main hosts</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonia axyridis (Pallas, 1773)</td>
<td>None</td>
<td>Harlequin ladybird, Multicoloured Asian lady beetle</td>
<td>Predator of soft bodied insects (e.g. aphids, scales) (Koch 2003; Brown et al. 2008b) in a wide range of arboreal (broadleaf and conifer) and herbaceous habitats (Ker and Carter 2004; Koch et al. 2006). Cucurbita moschata (pumpkin), Malus domestica (apple), Pyrus communis (pear), Prunus domestica (plum), Prunus persica (peach), Rubus (raspberry) and Vitis vinifera (grape) (EPPO 2009; Koch and Galvan 2006)</td>
<td>Presence in Australia: No record found Presence in China: Yes, from the northeast to the Himalayas (Koch 2003; Komai and Chino 1969; Su et al. 2009) Presence elsewhere: Argentina, Austria, Belarus, Belgium, Brazil, Canada, Czech Republic, Denmark, France, Germany, Greece, Hungary, Italy, Japan, Jersey, Korea, Luxemburg, Mexico, Netherlands, Norway, Poland, Portugal, Romania, and eastern Russia (Siberia), Serbia, Slovakia, Spain, Sweden, Switzerland, Ukraine, United Kingdom and USA (Brown et al. 2008b; de Almeida and da Silva 2002; EPPO 2009; Koch et al. 2006; Koch 2003; Komai and Chino 1969; Roy and Roy 2008; Su et al. 2009).</td>
</tr>
</tbody>
</table>

Additional information provided in the text includes the presence of various pests across different regions and their hosts, as well as distribution information. This data is crucial for understanding the potential risks associated with quarantine and sanitary pests. The table above provides a structured overview of various pests, their common names, synonyms, main hosts, distribution, and presence in specific regions.
Quarantine pest **Popillia mutans** (Newman, 1838)^EP

Synonyms
Popillia indigonacea Motschulsky, 1854

Common name(s)
Scarab beetle, tumble-bug

Main hosts
Diospyros kaki (sweet persimmon) (Lee et al. 2002)

Distribution
Presence in China: Yes (Li 2004), all provinces, including Taiwan (Löbl and Smetana 2006).

Quarantine pest **Popillia quadriguttata** (Fabricius, 1787)^EP

Synonyms
Trichus biguttatus Fabricius, 1794
Popillia chinensis Frivaldszky, 1890
P. uchidai Niijima & Kinoshita, 1923
P. bogdsanowi Ballion, 1871
P. trivaldskyi Kraatz, 1892
P. purpurascens Kraatz, 1892
P. sordida Kraatz, 1892
P. straminipennis Kraatz, 1892
P. quadriguttata (Lee et al. 2007)

Common name(s)
Chinese rose beetle, white grub

Main hosts
Acalypha australis (Asian acalypha);
Arachis hypogaea (peanut);
Artemisia princeps var. *orientalis*;
Camellia sinensis var. *sinensis* (Chinese tea);
Corylus heterophylla (Siberian hazelnut);
Crataegus pinnatifida (Chinese hawthorn);
Dimocarpus longan (longan);
Diospyros kaki (Japanese persimmon);
Glycine max (soybean);
Hibiscus syriacus (rose of Sharon);
Ilex crenata (box-leaf holly, Japanese holly);
Ipomoea batatas (sweet potato);
Ligustrum obtusifolium (border privet);
Liriodendron tulipifera (tulip tree);
Litchi chinensis (lychee);
Malus spp.;
Oenothera odorata (fragrant evening primrose);
Populus simonii (Chinese poplar);
Prunus spp.;
Pteridium aquilinum (bracken fern);
Punica granatum (pomegranate);
Pyrus spp.;
Quercus sp.;
Sakura;
Solanum spp., including *S. tuberosum*;
Sorghum vulgare (sorghum);
Tilia mandshurica (Manchurian linden);
Ulmus spp.;
Vitis coignetiae (crimson gloryvine);
Zanthoxylum spp.

Distribution
Presence in Australia: No record found
Presence in China: No record found
Presence elsewhere: Korea (Kim 2001; Ku et al. 1999), Taiwan and Vietnam (Kim 2001) and Russian Federation (Löbl and Smetana 2006).
Distribution

Main hosts
- **C. reticulata** (mandarin orange), **Coffea arabica** (arabica coffee), **Cucumis melo** (melon), **C. sativus** (cucumber), **Dimocarpus longan** (longan), **Ficus racemosa** (cluster fig), **Litchi chinensis** (lychee), **Malus pumila** (apple), **Mangifera foetida** (bitchang mango), **M. indica** (mango), **Manilkara zapota** (sapodilla), **Mimusops elengi** (Asian bulietwood), **Momordica charantia** (bitter gourd), **Muntingia calabura** (Jamaican cherry), **Musa sp.** (banana), **Nephelium lappaceum** (rambutan), **Persea americana** (avocado), **Prunus armeniaca** (apricot), **P. avium** (peach), **P. cerasus** (sour cherry), **P. domestica** (plum, prune), **P. mume** (Japanese apricot), **P. persica** (peach), **Psidium guajava** (guava), **Punica granatum** (pomegranate), **Pyrus communis** (pear), **Syzygium aqueum** (water apple), **S. aromaticum** (clove), **S. cumini** (jambolan), **S. jambos** (rose apple), **S. malaccense** (Malay apple), **S. samarangense** (wax apple), **Terminalia catappa** (Indian almond), **Ziziphus jujuba** (jujube), **Ziziphus mauritiana** (Chinese date) (Allwood et al. 1999; Tsuruta et al. 1997), **Vitis vinifera** (grapevine) (Chu and Tung 1996).

Quarantine pest

Cecidomyia sp.

- **Synonyms**: Retinodiplosis sp. (CABI 2009)
- **Common name(s)**: Grape midge
- **Main hosts**: *Vitis vinifera* (grape) (Li et al. 2004).

Distribution

- Presence in Australia: No record found
- Presence in China: The northernmost border of *B. dorsalis* distribution is 30°N (± 2) degrees north latitude in China (Drew and Hancock 1994; Wu 2005).

Quarantine pest

Aleurolobus taeonabe (Kuwana, 1911)

- **Synonyms**: *Aleyrodes taeonabe* (Kuwana), *Aleyrodes taonaboe* (Kuwana) (Li 2004), *Aleurolobus taonabae* (Martin and Mound 2007), *Aleurolobus chinensis* Takahashi 1936 (Lucid 2007; Martin and Mound 2007)
- **Common name(s)**: Grape whitefly
- **Main hosts**: *Vitis vinifera* (grape), *Crataegus* spp., hawthorn (Li 2004), *Mallotus japonicus*, *Ternstroemia japonica* (Takahashi 1954). There are no reports of other host plants.

Distribution

- Presence in Australia: No record found (DEWHA 2009a).
- Presence in China: Hebei, Shaanxi, Shandong (Li 2004) and Taiwan (Dubey and Ko 2009).
- Note: AQSIQ (2007) states that *Aleyrodes taeonabe* Kuwana is not recorded in China due to nomenclature difference. Presence elsewhere: Japan and India (Dubey and Ko 2009).

Quarantine pest

Daktulosphaira vitifoliae (Fitch, 1855)

- **Synonyms**: *Daktulosphaira vitifoliae* (Fitch), *Phylloxera vastatrix* Planchon, *Phylloxera vitifoliae* (Fitch)
- **Common name(s)**: Grapevine phylloxera, vine louse
- **Main hosts**: The principal economic hosts are *Vitis* spp.

Distribution

- Presence in Australia: NSW, Vic. (CABI 2009)
- Presence in China: Liaoning, Shandong and Taiwan (AQSIQ 2009b; CABI 2009).
- Presence elsewhere: Algeria, Argentina, Armenia, Austria, Azerbaijan, Bermuda, Bolivia, Bosnia and Herzegovina, Brazil, Bulgaria, Canada, Colombia, Croatia, Czech Republic, EU, France, Georgia, Germany, Greece (but not Crete), Hungary, India, Israel, Italy, Japan, Jordan, Korea Democratic People’s Republic, Korea Republic, Lebanon, Luxembourg, Macedonia, Malta, Mexico, Moldova, Morocco, New Zealand, Panama, Peru, Portugal, Romania, Russia (southern), Slovakia, Slovenia, South Africa, Spain, Switzerland, Syria, Turkey, Tunisia, UK, Ukraine, Uruguay, USA, Venezuela, Yugoslavia, Zimbabwe.
Quarantine pest

Parthenolecanium corni (Bouché, 1844)^{EP, WA}

Synonyms

Common name(s)

- European fruit lecanium, brown scale, peach scale

Main hosts

Distribution

- Presence in Australia: Yes (except WA) (*CSIRO* and *DAFF* 2004a).
- Presence elsewhere: Afghanistan, Albania, Algeria, Argentina, Armenia, Austria, Azerbaijan, Belgium, Brazil, Bulgaria, Canada, Chile, Czech Republic, Denmark, Egypt, Finland, France, Georgia (Republic), Germany, Greece, Hungary, India, Iran, Italy, Japan, Kazakhstan, Korea (North), Korea (South), Kyrgyzstan, Latvia, Lebanon, Libya, Lithuania, Luxembourg, Malta, Mexico, Moldova, Mongolia, Netherlands, New Zealand, Norway, Pakistan, Peru, Poland, Portugal, Romania, Russian Federation, Serbia/Montenegro, Slovakia, Spain, Sweden, Switzerland, Syria, Tajikistan, Turkey, Turkmenistan, Ukraine, United Kingdom, USA, Uzbekistan, Yugoslavia (*CABI* 2009).

Quarantine pest

Plannococcus kraunhiae (*Kuwana*, 1902)^E

Synonyms

- *Dactylopius kraunhiae* *Kuwana*, 1902
- *Planococcus siakwansensis* *Borchsenius*, 1962
- *Dactylopius krounhiae* *Kuwana*, 1917
- *Planococcus kraunhiae* *Ferris*, 1950
- *Pseudococcus kraunhiae* *Ferris*, 1950

Common name(s)

- Japanese mealybug

Main hosts

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Presence in Australia: No record found (APPD 2009; DEWHA 2009a). Presence in China: Beijing, Fujian, Guangdong, Hong Kong, Hunan, Inner Mongolia, Xizang, Zhejiang (CABI 2009). Presence elsewhere: Afghanistan, Argentina, Armenia, Azerbaijan, Brazil, Canada, Canary Islands, Columbia, Federated States of Micronesia, Indonesia, Iran, Italy, Japan, Kampuchea, Kazakhstan, Kyrgyzstan, Madeira Islands, Malaysia, Mexico, Moldova, Northern Mariana Islands, Russia, Saint Helena, South Korea, Sri Lanka, Tajikistan, Turkmenistan, USA, Uzbekistan, Vietnam (Ben-Dov 2010i).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarantine pest</td>
<td>Pseudococcus comstocki (Kuwana, 1902)EP</td>
</tr>
<tr>
<td>Synonyms</td>
<td>Dactylopius comstocki/Kuwana, 1902</td>
</tr>
<tr>
<td>Common name(s)</td>
<td>Comstock’s mealybug</td>
</tr>
<tr>
<td>Main hosts</td>
<td>Acer, Aesculus spp. (horse chestnut), Aglaia odorata (Chinese perfume tree), Ailanthus japonica (Japanese alder), Amaryllis vittata, Artemisia, Buxus microphylla (littleleaf boxwood), Camellia japonica (camellia), Castanea (chestnut), Catalpa (northern catalpa), Celtis wildeanowiana (enoki), Cinnamomum camphorae (camphor tree), Citrus (citrus), Crassula tetragona (miniature pine tree), Cydonia oblonga (quince), Cydonia sinensis (Chinese quince), Deutrizia parviflora typical (gaura), Dieffenbachia picta (dumb cane), Erythrina indica (rainbow eucalyptus), Euonymus alatus (winged euonymus), Fatsia japonica (Japanese aralia), Ficus carica (fig), Fiwa japonica, Forsythia koreana (forstythia), Gardenia jasminoides (gardenia), Ginkgo biloba (ginkgo), Hydrangea (hydrangea), Ilex cornuta (Chinese holly), Ilex crenata microphylla (Korean gern), Kraelunga, Lagerstroemia indica (crepe myrtle), Ligustrum bota angustifolium, Lonicera (honeysuckle), Loranthus (mistletoe), Malus pumila (paradise apple), Malus sylvestris (crab apple), Masukia japonica (Japanese euonymus), Monstera deliciosa (monstera), Morus alba (white mulberry), Morus kagayamae (mulberry), Musa (bananas), Nephelium lappaceum (rambutan), Opuntia dilleni (prickly pear), Orix japonica (Japanese orixa), Pandanus (screwpines), Persica vulgaris (peach), Pison thunbergiana (Japanese black pine), Populus (poplar), Prunus mume (Japanese apricot), Punica granatum (pomegranate), Pyrus communis (European pear), Pyrus serotina culta (black cherry), Rhhamnus (buckthorn), Rhododendron mucronulatum (Korean Rhododendron), Sasamorpha (bamboo), Taxus (yew), Torreya nucifera (Japanese torreya), Trema orientalis (nalita), Viburnum awabucki (acacia confuse), Zinnia elegans (zinnia) (Ben-Dov 2010i).</td>
</tr>
<tr>
<td>Quarantine pest</td>
<td>Pseudococcus maritimus (Ehrhorn, 1900)EP</td>
</tr>
<tr>
<td>Synonyms</td>
<td>Dactylopius maritimus Ehrhorn, 1900 Pseudococcus bakeri Essig, 1910 Pseudococcus omnivera Hollinger, 1917</td>
</tr>
<tr>
<td>Common name(s)</td>
<td>Grape mealybug, Baker’s mealybug, ocean mealybug</td>
</tr>
<tr>
<td>Main hosts</td>
<td>More than 80 hosts in more than 40 families, including Citrus, Malus, Prunus, Pyrus, Vitis spp. For a comprehensive list see (Ben-Dov 2010i).</td>
</tr>
<tr>
<td>Quarantine pest</td>
<td>Pulvinaria vitis (Linnaeus, 1758)</td>
</tr>
<tr>
<td>Synonyms</td>
<td>Pulvinaria betulae Signoret, 1873; Coccus betulae Linnaeus, 1758; Pulvinaria populi Signoret, 1873. For a full list of synonyms see (Ben-Dov 2010k).</td>
</tr>
<tr>
<td>Common name(s)</td>
<td>Cottonty grape scale, cottonty vine scale</td>
</tr>
<tr>
<td>Main hosts</td>
<td>Yang et al. (2008) reports Pulvinaria vitis attacks table grapes, walnuts and other hosts in China. In other countries it occurs on Malus sp., Prunus spp., Pyrus spp., Vitis spp, and also other trees and shrubs (2010k). For a full host list see (Ben-Dov 2010k).</td>
</tr>
<tr>
<td>Distribution</td>
<td>Presence in Australia: No record found (Ben-Dov 2010k; CABI 2009). Presence in China: Inner Mongolia, Xinjiang, Xizang (Tang 1991; Yang et al. 2008; Zhang and Wu 2007). Presence elsewhere: Algeria, Argentina, Armenia, Brazil, Canada, Denmark, Finland, France, Germany, Greece, Hungary, India, Iran, Israel, Italy, Japan, Jordan, Kazakhstan, New Zealand, Netherlands, Poland, Romania, Spain, Turkey, UK, USA (Kansas, Massachusetts, New York) (Ben-Dov 2010k; CABI 2009).</td>
</tr>
<tr>
<td>Quarantine pest</td>
<td>Archips micaceana (Walker, 1863)</td>
</tr>
<tr>
<td>Synonyms</td>
<td>Cacoecia micaceana Walker, 1863</td>
</tr>
<tr>
<td>Common name(s)</td>
<td>Leaf rolling moth, bell moth</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Main hosts</td>
<td>Anagyrus luteoventralis (Müller, 1764)</td>
</tr>
<tr>
<td>Common name(s)</td>
<td>Large fruit tree tortrix, fruit-tree tortrix</td>
</tr>
<tr>
<td>Distribution</td>
<td>Presence in Australia: No record found. Presence in China: Yes (Zhao and Deng 2006; Zhou and Deng 2005; Zhou and Deng 2004). Presence elsewhere: Armenia, Austria, Azerbaijan, Belgium, Bulgaria, Czechoslovakia, Denmark, England, Finland, France, Georgia, Germany, Hungary, India, Italy, Japan, Kazakhstan, Kyrgyzstan, Latvia, Luxembourg, Moldova, Montenegro, Norway, Pakistan, Poland, Portugal, Romania, Russia, Serbia, Spain, Switzerland, Ukraine and Uzbekistan.</td>
</tr>
<tr>
<td>Quarantine pest</td>
<td>Euproctis chrysorrhoea (Denis & Schiffermüller, 1775)</td>
</tr>
<tr>
<td>Synonyms</td>
<td>Clytia ambiguaella Hübner, 1796</td>
</tr>
<tr>
<td>Quarantine pest</td>
<td>Eutoxoa ambiguella (Walker, 1863)</td>
</tr>
<tr>
<td>Synonyms</td>
<td>Coccus pseudoheros Hübner, 1879</td>
</tr>
<tr>
<td>Common name(s)</td>
<td>Large blackberry tortrix</td>
</tr>
<tr>
<td>Distribution</td>
<td>Presence in Australia: No record found. Presence in China: Yes (Zhao and Deng 2006; Zhou and Deng 2005; Zhou and Deng 2004). Presence elsewhere: Armenia, Austria, Azerbaijan, Belgium, Bulgaria, Czechoslovakia, Denmark, England, Finland, France, Georgia, Germany, Hungary, India, Italy, Japan, Kazakhstan, Kyrgyzstan, Latvia, Luxembourg, Moldova, Montenegro, Norway, Pakistan, Poland, Portugal, Romania, Russia, Serbia, Spain, Switzerland, Ukraine and Uzbekistan.</td>
</tr>
<tr>
<td>Quarantine pest</td>
<td>Euproctis similis (Stainton, 1839)</td>
</tr>
<tr>
<td>Synonyms</td>
<td>Clytia ambiguaella Hübner, 1796</td>
</tr>
<tr>
<td>Common name(s)</td>
<td>Large fruit tree tortrix, fruit-tree tortrix</td>
</tr>
<tr>
<td>Distribution</td>
<td>Present in Australia: No record found. Presence in China: Yes (Zhao and Deng 2006; Zhou and Deng 2005; Zhou and Deng 2004). Presence elsewhere: Armenia, Austria, Azerbaijan, Belgium, Bulgaria, Czechoslovakia, Denmark, England, Finland, France, Georgia, Germany, Hungary, India, Italy, Japan, Kazakhstan, Kyrgyzstan, Latvia, Luxembourg, Moldova, Montenegro, Norway, Pakistan, Poland, Portugal, Romania, Russia, Serbia, Spain, Switzerland, Ukraine and Uzbekistan.</td>
</tr>
<tr>
<td>Quarantine pest</td>
<td>Euproctis similis (Stainton, 1839)</td>
</tr>
<tr>
<td>Synonyms</td>
<td>Clytia ambiguaella Hübner, 1796</td>
</tr>
<tr>
<td>Common name(s)</td>
<td>Large fruit tree tortrix, fruit-tree tortrix</td>
</tr>
<tr>
<td>Distribution</td>
<td>Present in Australia: No record found. Presence in China: Yes (Zhao and Deng 2006; Zhou and Deng 2005; Zhou and Deng 2004). Presence elsewhere: Armenia, Austria, Azerbaijan, Belgium, Bulgaria, Czechoslovakia, Denmark, England, Finland, France, Georgia, Germany, Hungary, India, Italy, Japan, Kazakhstan, Kyrgyzstan, Latvia, Luxembourg, Moldova, Montenegro, Norway, Pakistan, Poland, Portugal, Romania, Russia, Serbia, Spain, Switzerland, Ukraine and Uzbekistan.</td>
</tr>
</tbody>
</table>
Common name(s) | Leaf rolling tortrix, grape berry moth
---|---
Main hosts | Abies sachalinensis, Beta vulgaris (beet), Camellia (tea), Castanea, Centaurea, Citrus, Clematis, Crataegus, Diaporom smilacium, Eucalyptus sp., Fragaria (strawberry), Glycine max (soy bean), Helianthus annuus (sunflower), Humulus, Iris, Limonium vulgare, Lespedeza thunbergia, Malus (apple), Malus pumila, Medicago sativa (alfalfa), Narcissus, Oryzium, Phaseolus vulgaris (green bean), Pinus spp. (pine), Plantago, Pteridium aquilinum, Prunus spp (plum, apricot, cherry), Pyrus (pear), Quercus sp., Robinia, Rosa sp. (rose), Sambucus nigra, Solanum tuberosum (potato), Stachys, Salix repens, Trifolium sp. (clover), Vitis vinifera (grapes), Wisteria brachybotrys and Zea mays (maize) (Carter 1984; Frolov 2009b; INRA 2005; Meijerman and Ulenberg 2000d; Zhang 1994).

Distribution | Presence in Australia: No record found.
Presence elsewhere: Middle and southern areas of the European part of the former USSR, North Caucasus, Transcaucasia, Ural, Kazakhstan, the south of Siberia, Amur Region, Primorski Territory, southern Kurl Islands, Kamchatka. It is also distributed throughout Western Europe (northward to Sweden), North Africa, Asia Minor, Iran, Iraq, Mongolia, Korea, Japan, North and Central America (Frolov 2009b; Zhang 1994).

Quarantine pest | **Stathmopoda auriferella** (Walker, 1864)

Synonyms | Gelechia auriferella Walker, 1864
Stathmopoda adulatrix Meyrick, 1917
Stathmopoda theoris Meyrick, 1906

Common name(s) | Apple heliodinid
Main hosts | The larvae feed on the fruit, flowers and leaves of Citrus unshiu Marcow (unshu mandarin) in Japan (MAFF 2008). Other hosts include: Acacia nilotica (babul) (Robinson et al. 2007), Actinidia delicosa (kiwifruit) (Yamazaki and Sugira 2003), Albizia altilissima (Sonoran desert) (Robinson et al. 2007), Citrus reticulata (mamarin) (Yamazaki and Sugira 2003), Citrus sinensis (navel orange) (CABI 2009), Cocos nucifera (coconut palm), Coffea canephora (coffee), Coffea liberica (liberica coffee), Helianthus annuus (sunflower) (Yamazaki and Sugira 2003), Kerria communis (lax scale) (Robinson et al. 2007), Malus pumila var. domestica (fuji apple) (MAFF 2008), Mangifera indica (mango) (CABI 2008); Persea spp. (avocado) (Yamazaki and Sugira 2003), Nephelium ophiodes, Pinus roxburghi (chir pine), Prunus salicina, Prunus persica (peach), Prunus persica var. nucipersica (nectarine), Punica granatum (pomegranate) (Yamazaki and Sugira 2003), Sorghum bicolor bicolor (sorghum), T sindia sp. (Robinson et al. 2007), Vitis vinifera (table grape) (Yamazaki and Sugira 2003).

Distribution | Presence in Australia: No record found (Nielsen et al. 1996).
Presence in China: Shanghai and Zhejiang (Hiramatsu 2001; Shanghai Insect Science Network 2009).
Presence elsewhere: Egypt (Badr et al. 1983) ; Greece (Nel and Nel 2003); India (Robinson et al. 2007); Indonesia, Japan (Osaka City, Honshu) (Yamazaki and Sugira 2003); Korea (Republic of) (Park et al. 1994); Malaysia, Pakistan, Philippines, Seychelles, Sri Lanka, Thailand (Robinson et al. 2007).

Quarantine pest | **Frankliniella occidentalis** (Pergande, 1895)

Synonyms | *Euthrips helianti* Moulton, 1911
Euthrips tritici californicus Moulton, 1911
Frankliniella chrysanthemi/Kurosawa, 1941
Frankliniella canadensis Morgan, 1925
Frankliniella claripennis Morgan, 1925
Frankliniella conspicua Moulton, 1936
Frankliniella dahliae Moulton, 1948
Frankliniella dianthi Moulton, 1948
Frankliniella nubila Treherne, 1924
Frankliniella occidentalis brunnescens Priesner, 1932
Frankliniella occidentalis dubia Priesner, 1932
Frankliniella syringae Moulton, 1948
Frankliniella trehernei Morgan, 1925
Frankliniella tritici maculata Priesner, 1925
Frankliniella tritici moultoni Hood, 1914
Frankliniella umbrosa Moulton, 1948
Frankliniella venusta Moulton, 1936

Common name(s) | Western flower thrips
Beta vulgaris (beetroot), Beta vulgaris var. saccharifera (sugar beet), Brassica oleracea var. capitata (cabbage), Capsicum annuum (capsicum), Carthamus tinctorius (safflower), Chrysanthemum morifolium (chrysanthemum), Citrus x paradisi (grapefruit), Cucumis melo (melon), Cucumis sativus (cucumber), Cucurbita maxima (giant pumpkin), Cucurbita pepo (ornamental gourd), Cyclamen, Dahlia, Daucus carota (carrot), Dianthus caryophyllus (carnation), Euphorbia pulcherrima (poinsettia), Ficus carica (fig), Fragaria ananassa (strawberry), Fuchsia, Geranium (cranesbills), Gerbera jamesonii (African daisy), Gladiolus hybrids (sword lily), Gossypium (cotton), Gypsophila (baby's breath), Hibiscus (rose mallow), Impatiens (balsam), Kalanchoe, Lactuca sativa (lettuce), Lathyris odoratus (sweet pea), Leucaena leucocephala (leucaena), Limonium sinuatum (sea pink), Lianthus, Solanum lycopersicum (tomato), Malus domestica (apple), Medicago sativa (lucerne), Orchidaceae (orchids), Petrosilinum crispum (parsley), Phaseolus vulgaris (common bean), Pisum sativum (pea), Prunus armeniaca (apricot), Prunus domestica (plum), Prunus persica (peach), Prunus persica var. nucipersica (nectarine), Pursaria tridentata (bitterbrush), Raphanus raphanistrum (wild radish), Rhododendron (Azalea), Rosa (roses), Saintpaulia ionantha (African violet), Salvia (sage), Secale cereale (rye), Sinapis arvensis (wild mustard), Sinningia speciosa (gloxinia), Solanum melongena (aubergine), Sonchus (Sowthistle), Syzygium jambos (rose apple), Triticum (cereals), Triticum aestivum (wheat), Vitis vinifera (grapevine) (CABI 2009).

Distribution

Presence in Australia: NSW, Qld, SA, WA, Tas., Vic. (CABI 2009; DEWHA 2009a)

Presence in China: Beijing, Yunnan (Ren 2006; Wu et al. 2009)

Presence elsewhere: Albania, Algeria, Argentina, Austria, Belgium, Brazil, Bulgaria, Canada, Chile, Colombia, Costa Rica, Croatia, Cyprus, Czech Republic, Denmark, Dominican Republic, Ecuador, Estonia, Finland, France, Germany, Greece, Guatemala, Hungary, Ireland, Israel, Japan, Kenya, Korea (Republic), Kuwait, Lithuania, Macedonia, Malaysia, Malta, Martinique, Mexico, Morocco, Netherlands, New Zealand, Norway, Peru, Poland, Portugal, Puerto Rico, Romania, Russia, Serbia/Montenegro, Slovakia, Slovenia, South Africa, Spain, Sri Lanka, Swaziland, Sweden, Switzerland, United Kingdom, USA, Turkey, Uruguay, Venezuela, Zimbabwe (CABI 2009).

Quarantine pest

Rhipiphorothrips cruentatus Heed, 1919™

Synonyms

Rhipiphorothrips karna Ramakrishna 1928

Common name(s)

Grapevine thrips, rose thrips

Main hosts

Anacardiaceae (cashew nut), Annona squamosa (sugar apple), Mangifera indica (mango), Psidium guajava (guava), Punica granatum (pomegranate), Rosa rugosa (Rugosa rose), Syzygium cumini (black plum), Syzygium samarangense (water apple), *Terminalia catappa* (Singapore almond), *Vitis vinifera* (grapevine) (CABI 2009).

Distribution

Presence in Australia: No record found (DEWHA 2009a).

Presence in China: Guangdong, Hainan (CABI 2009).

Presence elsewhere: Afghanistan, Bangladesh, India, Oman, Myanmar, Pakistan, Sri Lanka and Thailand (CABI 2009).

Quarantine pest

Physalospora baccae sensu Nishikado non Cavara

Synonyms

There has been some debate about the taxonomy of *Physalospora baccae*. The name *Physalospora baccae Cavara* is a nomen dubium of unknown application. There is therefore no way of establishing that the grape pathogen to which this name is applied in Japan and Korea is the same as the original European pathogen. The grape pathogen should be designated as *Phyllosticta ampelicida* for Asian authors’ (Harman 2009). Japanese usage appears to be based on studies such as Nishikado (1921), which applied old and outdated taxonomic concepts. However, *Physalospora baccae sensu Nishikado non Cavara* has been listed in NIAS Genebank as the current name for *Physalospora baccae* recorded in Japan. In China, *Physalospora baccae* Cavara has been known as a synonym of *Guignardia baccae* (Cav.) Trcz. (Qi et al. 2007), which itself is not a valid name. *Guignardia baccae* (Cav.) Trcz was included in the pest list provided by AGSIQ (2006).

Common name(s)

Grape cluster black rot

Main hosts

Host range is *Vitis* spp. (NYZSW 2009; Zhang 2005b).

Distribution

Presence in Australia: No record found (APPD 2009).

Presence in China: *Physalospora baccae* is present across the major grape growing regions of China (NYZSW 2009; Zhang 2005b).

Presence elsewhere: Besarabia, Japan, Portugal, South Korea, Spain (Bensaude 1926; Berro Aguilera 1928; Nishikado 1921; Shin et al. 1984; Vekesciaghin 1933).

Quarantine pest

Guignardia bidwellii (Ellis) Viala & Ravaz

Synonyms

Common name(s)

Black rot
Main hosts

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Quarantine pest</th>
<th>Synonyms</th>
<th>Common name(s)</th>
<th>Main hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence elsewhere: Argentina, Austria, Barbados, Brazil, Bulgaria, Canada, Chile, Cuba, Cyprus, El Salvador, Former Yugoslavia, France, Germany, Guyana, Haiti, India, Iran, Italy, Jamaica, Japan, Korea, Martinique, Mexico, Morocco, Mozambique, Pakistan, Panama, Philippines, Romania, Russian Federation, Slovakia, Sudan, Switzerland, Turkey, Ukraine, Virgin Islands (USA), Uruguay, USA and Venezuela (CABI 2009).</td>
<td>Monilinia fructigena (Aderh. & Ruhaul) Honey EP</td>
<td></td>
<td></td>
<td>Presence in Australia: No record found (APPD 2009).</td>
</tr>
<tr>
<td>Presence in China: Anhui, Henan, Hebei, Hunan, Jiangsu, Shaanxi, Shandong, Shanxi, Sichuan, Yunnan and Zhejiang provinces and Taiwan (AQSIQ 2005; CIFIQA 2001a; CIFIQA 2001b; Ma 2006; AQSIQ 2007).</td>
<td>Phakopsora euvitis Y. Ono</td>
<td></td>
<td></td>
<td>Presence in Australia: In 2001, P. euvitis was reported in Australia in NT but has been eradicated (DAFF 2009).</td>
</tr>
<tr>
<td>Presence elsewhere: Afghanistan, Armenia, Austria, Azerbaijan, Belarus, Belgium, Bulgaria, Chile, Croatia, Cyprus, Czech Republic, Denmark, Egypt, Finland, France, Georgia, Germany, Greece, Hungary, India, Iran, Ireland, Israel, Italy, Japan, Latvia, Lebanon, Lithuania, Luxembourg, Moldova, Montenegro, Morocco, Nepal, North Korea, Norway, Netherlands, Poland, Portugal, Romania, Russia, Serbia, Slovakia, Slovenia, South Korea, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom, Uruguay, Uzbekistan, Yuzovia (CABI 2009).</td>
<td></td>
<td></td>
<td></td>
<td>Presence in China: Anhui, Gansu, Guangdong, Guangxi, Guizhou, Hong Kong, Hunan, Jiangsu, Jiangxi, Shaanxi, Shandong, Sichuan and Taiwan (AQSIQ 2009b).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Presence elsewhere: Bangladesh, Barbados, Brazil, Colombia, Costa Rica, Cuba, Democratic People’s Republic of Korea, Guatemala, India, Indonesia, Jamaica, Japan, Korea, Malaysia, Myanmar, Nepal,</td>
</tr>
<tr>
<td>Quarantine pest</td>
<td>Phomopsis viticola (Sacc.)<sup>EP,WA</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synonyms</td>
<td>Phoma viticola Sac., Phoma flaccida Viala & Ravaz, Cryptosporella viticola Shear, Diaporthethe viticola Nitschke, Fusiforme viticola Reddick, Diplodia viticola Desm. (CABI 2009).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common name(s)</td>
<td>Phomopsis cane and leaf spot, Phomopsis cane and leaf blight, grapevine black knot, grapevine necrosis, grapevine dead arm (CABI 2009).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main hosts</td>
<td>Ampelopisis quiquefolia, Parthenocissus quinquefolia (Virginia creeper), Vitis aestivalis (summer grape), Vitis labrusca (fox grape), Vitis rotundifolia (Muscadine grape), Vitis rupestris (North American grapevine) and Vitis vinifera (Eurasian grapevine) (CABI 2009). There is a report of P. viticola being isolated from blueberries (Vaccinium spp.) but no symptoms were associated with the pathogen on blueberries (Espinoza et al. 2008).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td>Presence in Australia: NSW, Vic. and SA but not in WA (Merrin et al. 1995); Qld (APPD 2009); Tas. (Mostert et al. 2001). Presence in China: Liaoning, Shandong and Hunan provinces (AQSIQ 2007); present in all grape production areas (Zhang 2005b). Presence elsewhere: Austria, Belgium, Bosnia/Herzegovina, Brazil, Brunei Darussalam, Bulgaria, Canada, Chile, Croatia, Egypt, France, Georgia, Germany, Greece, Hungary, India, Italy, Japan, Kenya, Macedonia, Mexico, Moldova, Netherlands, New Zealand, Poland, Portugal, Romania, Russian Federation, Serbia/Montenegro, Slovenia, South Africa, Spain, Switzerland, Turkey, Ukraine, United Kingdom, USA, Venezuela, Yugoslavia, Zimbabwe (CABI 2009; Hewitt and Pearson 1988).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarantine pest</th>
<th>Grapevine yellow speckle viroid<sup>-</sup><sup>WA</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Grapevine viroid-1 (GVd-1), Grapevine viroid-1 (GV-1) (Little and Rezaian 2003)</td>
</tr>
<tr>
<td>Common name(s)</td>
<td>Grapevine yellow speckle disease</td>
</tr>
<tr>
<td>Main hosts</td>
<td>Vitis vinifera (CIHEAM 2006)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarantine pest</th>
<th>Grapevine yellow speckle viroid<sup>-</sup><sup>2</sup><sup>WA</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Grapevine viroid-2 (GV-2), Grapevine viroid-1B (GV-1B) (Little and Rezaian 2003)</td>
</tr>
<tr>
<td>Common name(s)</td>
<td>Grapevine yellow speckle disease</td>
</tr>
<tr>
<td>Main hosts</td>
<td>Vitis vinifera (CIHEAM 2006)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarantine pest</th>
<th>Grapevine yellow speckle viroid<sup>-</sup><sup>3</sup><sup>WA</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Chinese grapevine viroid (CGVd)</td>
</tr>
<tr>
<td>Common name(s)</td>
<td>Chinese grapevine viroid</td>
</tr>
<tr>
<td>Main hosts</td>
<td>Vitis vinifera (Jiang et al. 2009a)</td>
</tr>
<tr>
<td>Distribution</td>
<td>Presence in Australia: Yes (Genbank accession code AF059712; [Benson et al. 2008]) but not in WA (DAWA 2006). Presence in China: Xinjiang and Beijing (Jiang et al. 2009a). Presence elsewhere: No records found. Jiang et al. (2009a) suggest that this viroid may be closely related to GYSVd-1 ‘type 2’ and ‘type 3’ previously identified in Germany and Italy.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarantine pest</th>
<th>Grapevine fanleaf virus<sup>WA</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Grapevine veinbanding virus, Grapevine yellow mosaic virus, Grapevine fanleaf nepovirus, Grapevine arricciamento virus, Grapevine court noue virus, Grapevine infectious degeneration virus, Grapevine Reisigrankheit virus, Grapevine roncet virus, Grapevine urticado virus (CABI 2009)</td>
</tr>
<tr>
<td>Common name(s)</td>
<td>Grapevine court-noue virus, grapevine yellow mosaic, grapevine vein banding, grapevine arricciamento virus</td>
</tr>
<tr>
<td>Main hosts</td>
<td>Aristolochia clematis (birthwort), Cynodon dactylon (Bermuda/couch grass), Sonchus oleraceus (common sowthistle), Vitis spp. (izadpanah et al. 2003; Martelli et al. 2001b; Stansbury et al. 2000).</td>
</tr>
<tr>
<td>Distribution</td>
<td>Presence in Australia: NSW (APPD 2009); SA (Stansbury et al. 2000; Habili et al. 2001); Vic. (Habili et al. 2000).</td>
</tr>
</tbody>
</table>
Final IRA report: table grapes from China

Appendix B

<table>
<thead>
<tr>
<th>Quarantine pest</th>
<th>Tomato ringspot virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Tobacco ringspot No. 2 Nicotiana virus 13 Peach yellow bud mosaic virus (strain) Blackberry (Himalaya) mosaic virus Winter peach mosaic virus Grape yellow vein virus (strain) (CABI-EPPO 1997e)</td>
</tr>
<tr>
<td>Common name(s)</td>
<td>Ringspot and mosaic (in various hosts), Eola rasp leaf (in cherries), yellow bud mosaic (in peaches), yellow vein (in grapes), stunt or stub head (in Gladiolus), decline, crumby berry and yellow blotch curl (in raspberries), chlorosis (in Pelargonium) (English), Tomatenringfleckenkrankheit (German) (CABI-EPPO 1997e)</td>
</tr>
<tr>
<td>Main hosts</td>
<td>Cornus sp. (dogwood), Cucumis sativus (cucumber), Euonymus spp., Fragaria x ananassa (strawberry), Fraxinus americana (ash), Gladiolus sp., Glycine max (soybean), Hydrangea sp., Lotus corniculatus (birdsfoot-trifol), Malus domestica (apple), Nicotiana tabacum (tobacco), Orchidaceae, Pelargonium sp., Pentas lanceolata (Egyptian starflower), Phaseolus vulgaris (common bean), Prunus spp., Ribes nigrum (black currant), Ribes rubrum (red current), Ribes uva-crispa (gooseberry), Rubus sp. (blackberry), Rubus idaeus (raspberry), Sambucus canadensis (elderberry), Solanum lycopersicum (tomato), Solanum tuberosum (potato), Vaccinium corymbosum (blueberry), Vigna unguiculata (cowpea), Vitis vinifera (grapevine) (Chu et al. 1983; Stace-Smith 1984; Sherf and MacNab 1986; Brown et al. 1993; CABI-EPPO 1997e; EPPO 2005; Adaskaveg et al. 2009; Gubler et al. 2009) and weeds, including Chenopodium berlandieri (lambsquarters), Cichorium intybus (chicory), Euphorbia spp. (spurge), Malva parviflora (little mallow), Medicago lupulina (black medic), Picris echioides (bristly oxtongue), Plantago spp. (plaintain), Prunella vulgaris (healall), Rumex acetosella (sheep sorrel), Stellaria spp. (common chickweed), Taraxacum officinale (dandelion), Trifolium repens (white clover), Verbascum spp. (mullein) and Verbascum blattaria (moth mullein) (Gubler et al. 2009; Powell et al. 1984; Tuttle and Gotlieb 1985)</td>
</tr>
<tr>
<td>Distribution</td>
<td>Presence in Australia: Recorded in SA (Chu et al. 1983; Cook and Dubé 1989), but there are no further records, the infected plants no longer exist, and the virus is believed to be absent. Presence in China: Zhejiang (CABI 2009). Presence elsewhere: Argentina, Belarus, Canada, Chile, Croatia, Egypt, Finland, France, Germany, Greece, Iran, Ireland, Italy, Japan, Jordan, Korea, Lithuania, Mexico, New Zealand, Oman, Pakistan, Peru, Russian Federation, Serbia and Montenegro, Puerto Rico, Slovakia, Slovenia, Taiwan, Togo, Tunisia, Turkey, UK, USA, Venezuela (CABI 2009; CABI-EPPO 1997e).</td>
</tr>
<tr>
<td>Quarantine pest</td>
<td>Tobacco necrosis viruses</td>
</tr>
<tr>
<td>Synonyms</td>
<td>(The names below are used for distinct necrovirus species that have been called ‘tobacco necrosis virus’) Chenopodium necrosis virus, Olive mild mosaic virus, Tobacco necrosis virus A, Tobacco necrosis virus D, Tobacco necrosis virus Nebraska isolate</td>
</tr>
<tr>
<td>Common name(s)</td>
<td>Tobacco necrosis virus</td>
</tr>
<tr>
<td>Main hosts</td>
<td>Brassica oleracea (cabbage), Chenopodium quinoa (quinoa), Cucumis sativus (cucumber), Cucurbita pepo (zucchini), Daucus carota (carrot), Fragaria x ananassa (strawberry), Glycine max (soybean), Malus pumila (apple), Nicotiana tabacum (tobacco), Lactuca sativa (lettuce), Olea europaea (olive), Phaseolus vulgaris (common bean), Solanum tuberosum (potato), Tulipa sp. (tulip) (other hosts are infected but remain symptomless) (Kassanis 1970; Brunt and Teakle 1996; CABI 2009; Zitikaite and Staniulis 2009).</td>
</tr>
<tr>
<td>Distribution</td>
<td>Presence in Australia: Qld and Vic. (Finlay and Teakle 1969; Teakle 1988). Presence in China: Probably widespread but species and strain distributions are unknown; recorded in Jiangsu and Xinjiang (Huang et al. 1984; Xi et al. 2008). Presence elsewhere: (probably worldwide but species and strain distributions are largely unknown) Belgium, Brazil, Canada, Czechoslovakia (former), Denmark, Finland, France, Germany, Hungary, India, Italy, Japan, Latvia, Netherlands, New Zealand, Norway, Romania, Russia, South Africa, Spain, Sweden, Switzerland, Turkey, United Kingdom (CABI 2009).</td>
</tr>
<tr>
<td>Sanitary pest</td>
<td>Latrodectus mactans (Fabricius, 1775)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Synonyms</td>
<td>Aranea mactans Fabricius, 1775</td>
</tr>
<tr>
<td></td>
<td>Meta schuchii C. L. Koch, 1836</td>
</tr>
<tr>
<td></td>
<td>Latrodectus insularis Dahl, 1902</td>
</tr>
<tr>
<td></td>
<td>Latrodectus insularis lunulifer Dahl, 1902</td>
</tr>
<tr>
<td></td>
<td>Latrodectus sagitifer Dahl, 1902</td>
</tr>
<tr>
<td></td>
<td>Latrodectus hahli Dahl, 1902</td>
</tr>
<tr>
<td></td>
<td>Latrodectus luzonicus Dahl, 1902</td>
</tr>
<tr>
<td></td>
<td>Latrodectus albomaculatus Franganillo, 1930</td>
</tr>
<tr>
<td></td>
<td>Latrodectus agoyangyang Plantilla & Mabalay, 1935</td>
</tr>
<tr>
<td></td>
<td>Latrodectus mactans mexicanus Gonzalez, 1954</td>
</tr>
<tr>
<td>Common name(s)</td>
<td>Black widow spider, southern black widow</td>
</tr>
<tr>
<td>Main hosts</td>
<td>Insectivore; Insects (flies, mosquitoes, locusts, grasshoppers, beetles and caterpillars) and also wood lice, diplopods, chilopods and other arachnids (McCorkle 2002).</td>
</tr>
<tr>
<td></td>
<td>Latrodectus mactans is not a phytosanitary pest associated with table grapes. It may be a sanitary issue for imported table grapes as spiders may be found in and around vineyards as they prey on insect pests that are found associated with grapes (Furness 1994). This might have implications on humans and animals as although L. mactans is not aggressive to humans, the female's venom can have serious consequences for the very young or elderly (McCorkle 2002).</td>
</tr>
<tr>
<td>Distribution</td>
<td>Presence in Australia: No record found (APPD 2009).</td>
</tr>
<tr>
<td></td>
<td>Presence elsewhere: Canada, Chile, Mexico, the West Indies and USA (Schenone and Correa 1985; McCorkle 2002; Clinical Toxinology Resources 2007a).</td>
</tr>
<tr>
<td>Sanitary pest</td>
<td>Latrodectus tredecimguttatus (Rossi, 1790)</td>
</tr>
<tr>
<td>Synonyms</td>
<td>Latrodectus 13decimguttatus Walckenaer 1805</td>
</tr>
<tr>
<td></td>
<td>Latrodectus argus Audouin 1826</td>
</tr>
<tr>
<td></td>
<td>Latrodectus erebus Audouin 1826</td>
</tr>
<tr>
<td></td>
<td>Latrodectus hispidus C. L. Koch 1837</td>
</tr>
<tr>
<td></td>
<td>Latrodectus 5-guttatus Krynicki 1837</td>
</tr>
<tr>
<td></td>
<td>Latrodectus quinguttatus</td>
</tr>
<tr>
<td></td>
<td>Latrodectus malmigratus Walckenaer 1837</td>
</tr>
<tr>
<td></td>
<td>Latrodectus martius Walckenaer 1837</td>
</tr>
<tr>
<td></td>
<td>Latrodectus oculatus Walckenaer 1837</td>
</tr>
<tr>
<td></td>
<td>Latrodectus venator Walckenaer 1837</td>
</tr>
<tr>
<td></td>
<td>Latrodectus 13-guttatus C. L. Koch 1837</td>
</tr>
<tr>
<td></td>
<td>Latrodectus conglobatus C. L. Koch 1837</td>
</tr>
<tr>
<td></td>
<td>Latrodectus lugubris Motschulsky 1849</td>
</tr>
<tr>
<td></td>
<td>Latrodectus tredecimguttatus lugubris Thorell 1875</td>
</tr>
<tr>
<td></td>
<td>Latrodectus mactans (Fabricius, 1775)</td>
</tr>
<tr>
<td></td>
<td>Latrodectus mactans tredecimguttatus Fuhn 1966</td>
</tr>
<tr>
<td>Common name(s)</td>
<td>European black widow spider, Mediterranean black widow or steppe spider</td>
</tr>
<tr>
<td>Main hosts</td>
<td>Latrodectus tredecimguttatus is not a phytosanitary pest associated with table grapes. However, it may be a sanitary issue for imported table grapes, which might have implications on human and animals. This species primarily lives in steppes and other grasslands, and can be a significant problem in areas where grain is harvested by hand.</td>
</tr>
<tr>
<td>Distribution</td>
<td>Presence in Australia: No record found (APPD 2009).</td>
</tr>
<tr>
<td></td>
<td>Presence in China: Indigenous to some areas of the Xinjiang (Yang et al. 2007).</td>
</tr>
<tr>
<td></td>
<td>Presence elsewhere: It is commonly found throughout the Mediterranean region, ranging from Spain to southwest and central Asia, hence the name (Duma 2006).</td>
</tr>
</tbody>
</table>
Appendix C Biosecurity framework

Australia’s biosecurity policies

The objective of Australia’s biosecurity policies and risk management measures is the prevention or control of the entry, establishment or spread of pests and diseases that could cause significant harm to people, animals, plants and other aspects of the environment.

Australia has diverse native flora and fauna and a large agricultural sector, and is relatively free from the more significant pests and diseases present in other countries. Therefore, successive Australian Governments have maintained a conservative, but not a zero-risk, approach to the management of biosecurity risks. This approach is consistent with the World Trade Organization’s (WTO’s) Agreement on the Application of Sanitary and Phytosanitary Measures (SPS Agreement).

The SPS Agreement defines the concept of an ‘appropriate level of protection’ (ALOP) as the level of protection deemed appropriate by a WTO Member establishing a sanitary or phytosanitary measure to protect human, animal or plant life or health within its territory. Among a number of obligations, a WTO Member should take into account the objective of minimising negative trade effects in setting its ALOP.

Like many other countries, Australia expresses its ALOP in qualitative terms. Australia’s ALOP, which reflects community expectations through Australian Government policy, is currently expressed as providing a high level of sanitary and phytosanitary protection, aimed at reducing risk to a very low level, but not to zero.

Consistent with the SPS Agreement, in conducting risk analyses Australia takes into account as relevant economic factors:

- the potential damage in terms of loss of production or sales in the event of the entry, establishment or spread of a pest or disease in the territory of Australia
- the costs of control or eradication of a pest or disease
- and the relative cost-effectiveness of alternative approaches to limiting risks.

Roles and responsibilities within Australia’s quarantine system

Australia protects its human, animal and plant life or health through a comprehensive quarantine system that covers the quarantine continuum, from pre-border to border and post-border activities.

Pre-border, Australia participates in international standard-setting bodies, undertakes risk analyses, develops offshore quarantine arrangements where appropriate, and engages with our neighbours to counter the spread of exotic pests and diseases.

At the border, Australia screens vessels (including aircraft), people and goods entering the country to detect potential threats to Australian human, animal and plant health.

The Australian Government also undertakes targeted measures at the immediate post-border level within Australia. This includes national co-ordination of emergency responses to pest and disease incursions. The movement of goods of quarantine concern within Australia’s

6 The Australian Government Department of Health and Ageing is responsible for human health aspects of quarantine.
border is the responsibility of relevant state and territory authorities, which undertake inter- and intra-state quarantine operations that reflect regional differences in pest and disease status, as a part of their wider plant and animal health responsibilities.

Roles and responsibilities within the Department

The Australian Government Department of Agriculture, Fisheries and Forestry is responsible for the Australian Government’s animal and plant biosecurity policy development and the establishment of risk management measures. The Secretary of the Department is appointed as the Director of Animal and Plant Quarantine under the *Quarantine Act 1908* (the Act).

The Biosecurity Services Group (BSG) within the Department takes the lead in biosecurity and quarantine policy development and implementation of risk management measures across the biosecurity continuum, and:

- through Biosecurity Australia, conducts risk analyses, including IRAs, and develops recommendations for biosecurity policy as well as providing quarantine advice to the Director of Animal and Plant Quarantine
- through the Australian Quarantine and Inspection Service (AQIS), develops operational procedures, makes a range of quarantine decisions under the Act (including import permit decisions under delegation from the Director of Animal and Plant Quarantine) and delivers quarantine services and
- coordinates pest and disease preparedness, emergency responses and liaison on inter- and intra-state quarantine arrangements for the Australian Government, in conjunction with Australia’s state and territory governments.

Roles and responsibilities of other government agencies

State and territory governments play a vital role in the quarantine continuum. The BSG works in partnership with state and territory governments to address regional differences in pest and disease status and risk within Australia, and develops appropriate sanitary and phytosanitary measures to account for those differences. Australia’s partnership approach to quarantine is supported by a formal Memorandum of Understanding that provides for consultation between the Australian Government and the state and territory governments.

Depending on the nature of the good being imported or proposed for importation, Biosecurity Australia may consult other Australian Government authorities or agencies in developing its recommendations and providing advice.

As well as a Director of Animal and Plant Quarantine, the Act provides for a Director of Human Quarantine. The Australian Government Department of Health and Ageing is responsible for human health aspects of quarantine and Australia’s Chief Medical Officer within that Department holds the position of Director of Human Quarantine. Biosecurity Australia may, where appropriate, consult with that Department on relevant matters that may have implications for human health.

The Act also requires the Director of Animal and Plant Quarantine, before making certain decisions, to request advice from the Environment Minister and to take the advice into account when making those decisions. The Australian Government Department of the Environment, Water, Heritage and the Arts (DEWHA) is responsible under the *Environment Protection and Biodiversity Conservation Act 1999* for assessing the environmental impact.
associated with proposals to import live species. Anyone proposing to import such material should contact DEWHA directly for further information.

When undertaking risk analyses, Biosecurity Australia consults with DEWHA about environmental issues and may use or refer to DEWHA’s assessment.

Australian quarantine legislation

The Australian quarantine system is supported by Commonwealth, state and territory quarantine laws. Under the Australian Constitution, the Commonwealth Government does not have exclusive power to make laws in relation to quarantine, and as a result, Commonwealth and state quarantine laws can co-exist.

Commonwealth quarantine laws are contained in the *Quarantine Act 1908* and subordinate legislation including the Quarantine Regulations 2000, the Quarantine Proclamation 1998, the Quarantine (Cocos Islands) Proclamation 2004 and the Quarantine (Christmas Island) Proclamation 2004.

The quarantine proclamations identify goods, which cannot be imported, into Australia, the Cocos Islands and or Christmas Island unless the Director of Animal and Plant Quarantine or delegate grants an import permit or unless they comply with other conditions specified in the proclamations. Section 70 of the Quarantine Proclamation 1998, section 34 of the Quarantine (Cocos Islands) Proclamation 2004 and section 34 of the Quarantine (Christmas Island) Proclamation 2004 specify the things a Director of Animal and Plant Quarantine must take into account when deciding whether to grant a permit.

In particular, a Director of Animal and Plant Quarantine (or delegate):

- must consider the level of quarantine risk if the permit were granted, and
- must consider whether, if the permit were granted, the imposition of conditions would be necessary to limit the level of quarantine risk to one that is acceptably low, and
- for a permit to import a seed of a plant that was produced by genetic manipulation – must take into account any risk assessment prepared, and any decision made, in relation to the seed under the Gene Technology Act, and
- may take into account anything else that he or she knows is relevant.

The level of quarantine risk is defined in section 5D of the *Quarantine Act 1908*. The definition is as follows:

> reference in this Act to a level of quarantine risk is a reference to:

(a) the probability of:

 (i) a disease or pest being introduced, established or spread in Australia, the Cocos Islands or Christmas Island; and

 (ii) the disease or pest causing harm to human beings, animals, plants, other aspects of the environment, or economic activities; and

(b) the probable extent of the harm.

The Quarantine Regulations 2000 were amended in 2007 to regulate keys steps of the import risk analysis process. The Regulations:
define both a standard and an expanded IRA,

- identify certain steps, which must be included in each type of IRA,

- specify time limits for certain steps and overall timeframes for the completion of IRAs (up to 24 months for a standard IRA and up to 30 months for an expanded IRA),

- specify publication requirements,

- make provision for termination of an IRA, and

- allow for a partially completed risk analysis to be completed as an IRA under the Regulations.

The Regulations are available at www.comlaw.gov.au.

International agreements and standards

The process set out in the *Import Risk Analysis Handbook 2007 (update 2009)* is consistent with Australia’s international obligations under the SPS Agreement. It also takes into account relevant international standards on risk assessment developed under the International Plant Protection Convention (IPPC) and by the World Organisation for Animal Health (OIE).

Australia bases its national risk management measures on international standards where they exist and when they achieve Australia’s ALOP. Otherwise, Australia exercises its right under the SPS Agreement to apply science-based sanitary and phytosanitary measures that are not more trade restrictive than required to achieve Australia’s ALOP.

Notification obligations

Under the transparency provisions of the SPS Agreement, WTO Members are required, among other things, to notify other members of proposed sanitary or phytosanitary regulations, or changes to existing regulations, that are not substantially the same as the content of an international standard and that may have a significant effect on trade of other WTO Members.

Risk analysis

Within Australia’s quarantine framework, the Australian Government uses risk analyses to assist it in considering the level of quarantine risk that may be associated with the importation or proposed importation of animals, plants or other goods.

In conducting a risk analysis, Biosecurity Australia:

- identifies the pests and diseases of quarantine concern that may be carried by the good

- assesses the likelihood that an identified pest or disease or pest would enter, establish or spread

- assesses the probable extent of the harm that would result.

If the assessed level of quarantine risk exceeds Australia’s ALOP, Biosecurity Australia will consider whether there are any risk management measures that will reduce quarantine risk to achieve the ALOP. If there are no risk management measures that reduce the risk to that level, trade will not be allowed.
Risk analyses may be carried out by Biosecurity Australia’s specialists, but may also involve relevant experts from state and territory agencies, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), universities and industry to access the technical expertise needed for a particular analysis.

Risk analyses are conducted across a spectrum of scientific complexity and available scientific information. An IRA is a type of risk analysis with key steps regulated under the Quarantine Regulations 2000. Biosecurity Australia’s assessment of risk may also take the form of a non-regulated analysis of existing policy or technical advice to AQIS. Further information on the types of risk analysis is provided in the *Import Risk Analysis Handbook 2007 (update 2009).*
Glossary

<table>
<thead>
<tr>
<th>Term or abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional declaration</td>
<td>A statement that is required by an importing country to be entered on a phytosanitary certificate and which provides specific additional information on a consignment in relation to regulated pests (FAO 2009).</td>
</tr>
<tr>
<td>Appropriate level of protection (ALOP)</td>
<td>The level of protection deemed appropriate by the Member establishing a sanitary or phytosanitary measure to protect human, animal or plant life or health within its territory (WTO 1995).</td>
</tr>
<tr>
<td>Area</td>
<td>An officially defined country, part of a country or all or parts of several countries (FAO 2009).</td>
</tr>
<tr>
<td>Area of low pest prevalence</td>
<td>An area, whether all of a country, part of a country, or all parts of several countries, as identified by the competent authorities, in which a specific pest occurs at low levels and which is subject to effective surveillance, control or eradication measures (FAO 2009).</td>
</tr>
<tr>
<td>Biosecurity Australia</td>
<td>The unit, within the Biosecurity Services Group, responsible for recommendations for the development of Australia’s biosecurity policy.</td>
</tr>
<tr>
<td>Biosecurity Services Group (BSG)</td>
<td>The group responsible for the delivery of biosecurity policy and quarantine services within the Department of Agriculture, Fisheries and Forestry.</td>
</tr>
<tr>
<td>Certificate</td>
<td>An official document which attests to the phytosanitary status of any consignment affected by phytosanitary regulations (FAO 2009).</td>
</tr>
<tr>
<td>Consignment</td>
<td>A quantity of plants, plant products and/or other articles being moved from one country to another and covered, when required, by a single phytosanitary certificate (a consignment may be composed of one or more commodities or lots) (FAO 2009).</td>
</tr>
<tr>
<td>Control (of a pest)</td>
<td>Suppression, containment or eradication of a pest population (FAO 2009).</td>
</tr>
<tr>
<td>Endangered area</td>
<td>An area where ecological factors favour the establishment of a pest whose presence in the area will result in economically important loss (FAO 2009).</td>
</tr>
<tr>
<td>Entry (of a pest)</td>
<td>Movement of a pest into an area where it is not yet present, or present but not widely distributed and being officially controlled (FAO 2009).</td>
</tr>
<tr>
<td>Establishment</td>
<td>Perpetuation, for the foreseeable future, of a pest within an area after entry (FAO 2009).</td>
</tr>
<tr>
<td>Fresh</td>
<td>Living; not dried, deep-frozen or otherwise conserved (FAO 2009).</td>
</tr>
<tr>
<td>Host range</td>
<td>Species capable, under natural conditions, of sustaining a specific pest or other organism (FAO 2009).</td>
</tr>
<tr>
<td>Import permit</td>
<td>Official document authorising importation of a commodity in accordance with specified phytosanitary import requirements (FAO 2009).</td>
</tr>
<tr>
<td>Import risk analysis</td>
<td>An administrative process through which quarantine policy is developed or reviewed, incorporating risk assessment, risk management and risk communication.</td>
</tr>
<tr>
<td>Infestation (of a commodity)</td>
<td>Official document authorising importation of a commodity in accordance with specified phytosanitary import requirements (FAO 2009).</td>
</tr>
<tr>
<td>Inspection</td>
<td>Official visual examination of plants, plant products or other regulated articles to determine if pests are present and/or to determine compliance with phytosanitary regulations (FAO 2009).</td>
</tr>
<tr>
<td>Intended use</td>
<td>Declared purpose for which plants, plant products, or other regulated articles are imported, produced, or used (FAO 2009).</td>
</tr>
<tr>
<td>Interception (of a pest)</td>
<td>The detection of a pest during inspection or testing of an imported consignment (FAO 2009).</td>
</tr>
<tr>
<td>International Standard for Phytosanitary Measures (ISPM)</td>
<td>An international standard adopted by the Conference of the Food and Agriculture Organization, the Interim Commission on phytosanitary measures or the Commission on phytosanitary measures, established under the IPCC (FAO 2009).</td>
</tr>
<tr>
<td>Introduction</td>
<td>The entry of a pest resulting in its establishment (FAO 2009)</td>
</tr>
<tr>
<td>Lot</td>
<td>A number of units of a single commodity, identifiable by its homogeneity of composition, origin etc., forming part of a consignment (FAO 2009).</td>
</tr>
<tr>
<td>National Plant Protection Organization (NPPO)</td>
<td>Official service established by a government to discharge the functions specified by the IPPC (FAO 2009).</td>
</tr>
<tr>
<td>Official control</td>
<td>The active enforcement of mandatory phytosanitary regulations and the application of mandatory phytosanitary procedures with the objective of eradication or containment of quarantine pests or for the management of regulated non-quarantine pests (FAO 2009).</td>
</tr>
<tr>
<td>Term or abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Pathway</td>
<td>Any means that allows the entry or spread of a pest (FAO 2009).</td>
</tr>
<tr>
<td>Pest</td>
<td>Any species, strain or biotype of plant, animal, or pathogenic agent injurious to plants or plant products (FAO 2009).</td>
</tr>
<tr>
<td>Pest categorisation</td>
<td>The process for determining whether a pest has or has not the characteristics of a quarantine pest or those of a regulated non-quarantine pest (FAO 2009).</td>
</tr>
<tr>
<td>Pest free area (PFA)</td>
<td>An area in which a specific pest does not occur as demonstrated by scientific evidence and in which, where appropriate, this condition is being officially maintained (FAO 2009).</td>
</tr>
<tr>
<td>Pest free place of production</td>
<td>Place of production in which a specific pest does not occur as demonstrated by scientific evidence and in which, where appropriate, this condition is being officially maintained for a defined period (FAO 2009).</td>
</tr>
<tr>
<td>Pest free production site</td>
<td>A defined portion of a place of production in which a specific pest does not occur as demonstrated by scientific evidence and in which, where appropriate, this condition is being officially maintained for a defined period and that is managed as a separate unit in the same way as a pest free place of production (FAO 2009).</td>
</tr>
<tr>
<td>Pest risk analysis (PRA)</td>
<td>The process of evaluating biological or other scientific and economic evidence to determine whether an organism is a pest, whether it should be regulated, and the strength of any phytosanitary measures to be taken against it (FAO 2009).</td>
</tr>
<tr>
<td>Pest risk assessment (for quarantine pests)</td>
<td>Evaluation of the probability of the introduction and spread of a pest and of the associated potential economic consequences (FAO 2009).</td>
</tr>
<tr>
<td>Pest risk management (for quarantine pests)</td>
<td>Evaluation and selection of options to reduce the risk of introduction and spread of a pest (FAO 2009).</td>
</tr>
<tr>
<td>Phytosanitary certificate</td>
<td>Certificate patterned after the model certificates of the IPPC (FAO 2009).</td>
</tr>
<tr>
<td>Phytosanitary measure</td>
<td>Any legislation, regulation or official procedure having the purpose to prevent the introduction and/or spread of quarantine pests, or to limit the economic impact of regulated non-quarantine pests (FAO 2009).</td>
</tr>
<tr>
<td>Phytosanitary regulation</td>
<td>Official rule to prevent the introduction and/or spread of quarantine pests, or to limit the economic impact of regulated non-quarantine pests, including establishment of procedures for phytosanitary certification (FAO 2009).</td>
</tr>
<tr>
<td>Polyphagous</td>
<td>Feeding on a relatively large number of hosts from different genera.</td>
</tr>
<tr>
<td>PRA area</td>
<td>Area in relation to which a pest risk analysis is conducted (FAO 2009).</td>
</tr>
<tr>
<td>Quarantine pest</td>
<td>A pest of potential economic importance to the area endangered thereby and not yet present there, or present but not widely distributed and being officially controlled (FAO 2009).</td>
</tr>
<tr>
<td>Regulated article</td>
<td>Any plant, plant product, storage place, packing, conveyance, container, soil and any other organism, object or material capable of harbouring or spreading pests, deemed to require phytosanitary measures, particularly where international transportation is involved (FAO 2009).</td>
</tr>
<tr>
<td>Restricted risk</td>
<td>Risk estimate with phytosanitary measure(s) applied.</td>
</tr>
<tr>
<td>Spread</td>
<td>Expansion of the geographical distribution of a pest within an area (FAO 2009).</td>
</tr>
<tr>
<td>Stakeholders</td>
<td>Government agencies, individuals, community or industry groups or organizations, whether in Australia or overseas, including the proponent/applicant for a specific proposal, who have an interest in the policy issues.</td>
</tr>
<tr>
<td>Systems approach(es)</td>
<td>The integration of different risk management measures, at least two of which act independently, and which cumulatively achieve the appropriate level of protection against regulated pests (FAO 2009).</td>
</tr>
<tr>
<td>Unrestricted risk</td>
<td>Unrestricted risk estimates apply in the absence of risk mitigation measures.</td>
</tr>
</tbody>
</table>
References

APHIS (2005a) *Litchi chinensis* (lychee or litchi), *Dimocarpus longan* (longan), *Mangifera indica* (mango), *Garcinia mangostana* L. (mangosteen), *Nephelium lappaceum* L. (rambutan), and *Ananas comosus* (pineapple) fruit from Thailand. United States Department of Agriculture, Raleigh.

AQIS (1998a) *Final import risk analysis of the importation of fruit of Fuji apple (Malus pumila Miller var. domestica Schneider) from Aomori prefecture in Japan*. Australian Quarantine and Inspection Service, Canberra.

AQIS (1998b) *Final import risk analysis of the importation of fruit of Ya pear (Pyrus bretschneideri Redh.) from the People’s Republic of China (Hebei and Shandong Provinces)*. Australian Quarantine and Inspection Service, Canberra.

AQSIQ (2009a) *Analysis report on risks of pests contained in table grapes imported from Australia (draft), received on 13 July 2009*. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Beijing.

AQSIQ (2009c) Various information and advice provided by China's General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ), the regional and local China
Entry-Exit Inspection and Quarantine Bureaux (CIQs) and the CIQ Association during and in association with Biosecurity Australia's table grape verification visit to Hebei Province and Xingjiang Uygur Autonomous Region, 14-21 September 2009. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Beijing.

Berro Aguilera JM (1926) Report of the experiments and investigations carried out at the Plant Pathology Station, Almeria, during the year 1925, on Ceratitis capitata and other diseases of the Ohanes grape. Plant Pathology Station, Almeria.

Biosecurity Australia (2002) *Citrus imports from the Arab Republic of Egypt: a review under existing import conditions for citrus from Israel*. Department of Agriculture, Fisheries and Forestry, Canberra.

Biosecurity Australia (2005a) *Final extension of policy for the importation of pears from the People's Republic of China*. Department of Agriculture, Fisheries and Forestry, Canberra.

Biosecurity Australia (2005b) *Final report: extension of existing policy for sweet oranges from Italy*. Department of Agriculture, Fisheries and Forestry, Canberra.

Biosecurity Australia (2005c) *Final report: import risk analysis for table grapes from Chile*. Department of Agriculture, Fisheries and Forestry, Canberra.

Biosecurity Australia (2006a) *Biosecurity Australia policy memorandum 2006/32: revised conditions for the importation of Californian table grapes*. Department of Agriculture, Fisheries and Forestry, Canberra.
Biosecurity Australia (2006b) Final import risk analysis report for apples from New Zealand: part a, b and c. Biosecurity Australia, Department of Agriculture, Fisheries and Forestry, Canberra.

Biosecurity Australia (2006c) Final pest risk analysis for stone fruit from New Zealand into Western Australia. Biosecurity Australia, Department of Agriculture, Fisheries and Forestry, Canberra.

Biosecurity Australia (2006d) Policy for the importation of fresh mangoes (Mangifera indica L.) from Taiwan. Biosecurity Australia, Department of Agriculture, Fisheries and Forestry, Canberra.

Biosecurity Australia (2008) Final import risk analysis report for fresh mango fruit from India. Biosecurity Australia, Department of Agriculture, Fisheries and Forestry, Canberra.

Biosecurity Australia (2009a) Final import risk analysis for fresh greenhouse-grown capsicum (Paprika) fruit from the Republic of Korea. Department of Agriculture, Fisheries and Forestry, Canberra.

Biosecurity Australia (2009b) Final import risk analysis report for fresh unshu mandarin fruit from Shizuoka prefecture in Japan. Department of Agriculture, Fisheries and Forestry, Canberra.

Biosecurity Australia (2010b) Final import risk analysis report for fresh apple fruit from the People's Republic of China. Biosecurity Australia, Department of Agriculture, Fisheries and Forestry, Canberra.

Biosecurity Australia (2010c) Final import risk analysis report for fresh stone fruit from California, Idaho, Oregon and Washington. Biosecurity Australia, Department of Agriculture, Fisheries and Forestry, Canberra.

CIQSA (2001a) *Report on exportation of apple from P.R. China to Australia (Shandong province) received between 5-9 March 2001*. State Administration for Entry-Exit Inspection and Quarantine of People's Republic of China, Beijing.

Daly A, Tran-Nguyen L (2008) Grapevine leaf rust-incursion risk analysis and improvement of PCR diagnostics (project 1d); final report to Grape and Wine Research and Development Corporation. Department of Regional Development, Primary Industry, Fisheries and Resources, Victoria.

DAWA (2005) Submission to the revised draft IRA for the importation of fresh table grapes from Chile. Department of Agriculture, Western Australia.

Ibrahim RAEA (2004) *Biological control of grape berry moths Eupoecilia ambiguella Hb. and Lobesia botrana Schiff. (Lepidoptera : Tortricidae) by using egg parasitoids of genus...*

Luo L, Wen Y, Wu Z (2005) *Description and damage review on 17 pests of grape wine borers in South Guizhou.* South Guizhou Province State Plant Protection Station, China.

MAF New Zealand (2005) *Interception records for table grapes from Chile to New Zealand up to 2005.* Ministry of Agriculture and Forestry, Wellington.

http://animaldiversity.ummz.umich.edu/site/accounts/information/Latrodectus_mactans.html

NVHSC (2005) Pest risk analysis for the establishment of a new infestation of phylloxera in Australia as a result of harvest processes. National Vine Health Steering Committee, South Australia.

Poole MC (2008) An annotated catalogue of insect and allied species of economic significance or of potential export quarantine concern for Western Australian primary and related industries. Department of Agriculture and Food, Western Australia.

Shih C (1979) The influences of age of female Tetranychus kanzawai on sex ratio and life cycle of its progeny. Recent advances in acarology 1: 511–517.

Thomas K (2010) Phylloxera information received from K. Powell and K. Leamon (DPI Victoria) (personal communication). Biosecurity Australia, Department of Agriculture, Fisheries and Forestry, Canberra.

USDA (2009a) Fresh deciduous fruit (apples, pears, and grapes) and apple juice concentrate: world markets and trade. United States Department of Agriculture, United States of America.

Vekesciaghin BV (1933) *Agencies injurious to the vine and their control (according to observations in Bessarabia from 1931 to 1932)*. Tipografia Banch Centrale Cooperative, Chinasau.

Waterhouse DF (1993) *The major arthropod pests and weeds of Agriculture in southeast Asia: distribution, importance and origin*. The Australian Centre for International Agricultural Research, Canberra.

Wharton PS, Kirk W (2007) *Early blight*. MSU extension bulletin E-2991, Department of Plant Pathology, Michigan State University, Michigan.

Williams DJ (1985) *Australian mealybugs*. British Museum (Natural History), Chichester.

