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EXECUTIVE SUMMARY 
 
Land management practices have significant impacts on the condition of Australia’s 
land, water and biodiversity resources and the profitability and sustainability of 
agriculture. Identifying patterns in the adoption of land management practices, and 
changes in practices over time can assist in monitoring and measuring natural 
resource condition and trend, and progress towards agricultural sustainability.  
 
In this study we have investigated and developed semi-automated remote sensing 
classification techniques for a specific land management practice: contour banks. The 
semi-automated method applies image enhancement, segmentation and object-
oriented classification technology to high-resolution satellite imagery (SPOT 5). 
Three classification methods were trialled on a subset of imagery from the Condamine 
catchment to separate contour bank features from other landscape features on the 
basis of shape characteristics: an unsupervised k-means classification; a hybrid 
decision tree/expert system classification; and, an ensemble learning (multiple 
classification tree) approach. Mapping results suggest that the decision tree and 
classification tree methods outperform the unsupervised method. Furthermore, the 
ensemble learning method performed better than the hybrid decision tree/expert 
system. An advantage of the decision tree and classification tree approaches is that 
they can be automated for wider application across regions and through time. 
However, whilst the semi-automated techniques captured many of the contour banks, 
supplementary manual mapping was required to ensure a complete and accurate 
coverage of contour banks in cropping areas in Queensland.  
 
Despite some limitations, image segmentation and object-oriented classification has 
great potential for mapping of land management practices and natural resources, 
particularly as remotely sensed imagery becomes more affordable and is more readily 
available. Other land management practices which can potentially be mapped through 
this approach include strip cropping and controlled traffic farming. 
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1. INTRODUCTION 
 
Land management practices have significant impacts on the condition of Australia’s 
land, water and biodiversity resources and the profitability and sustainability of 
agriculture. There is also a strong linkage between changing patterns of land 
management practice and economic and social conditions in regional Australia. 
Improved land management practices have been identified by the National Land and 
Water Resources Audit as a major way forward for Australian agriculture to enhance 
on-farm productivity and off-farm natural resource benefits.  
 
Identifying patterns in the adoption of land management practices, and changes in 
practices over time can assist in monitoring and measuring natural resource condition 
and trend and progress towards agricultural sustainability. Generally, the available 
information on agricultural land management practices is insufficient for the above 
described purposes. Remotely sensed information can provide a range of indicators 
and products that can be utilized to identify patterns in land management practices and 
therefore assist monitoring and inventory of the condition and extent of natural 
resources. 
 
The purpose of this project is to use remotely sensed imagery to map selected land and 
crop management practices in Queensland, in particular contour banks. Spatial 
information on contour banks will improve soil erosion estimates and consequently 
water quality models which predict the quantity of sediments transported into our 
waterways. The information and techniques developed by this project will also provide a 
valuable baseline for future monitoring and further development of mapping techniques 
for other land management practices and natural resource applications. 
 
This project is very timely, as substantial investments have recently been made in 
Australia in the capture of high-resolution satellite imagery. The primary driver for 
this purchase in Queensland is property planning with the majority of funding 
provided by regional NRM groups. This high resolution imagery offers considerable 
potential for monitoring natural resource condition through direct measurements of 
specific indicators, such as vegetation crown cover or water body extent and 
inundation frequency, or indirectly by detecting and mapping changes in land use and 
management. However, this potential will not be realised without investing in the 
development of appropriate methods for mapping and monitoring. 
 
Many land management practices, including contour banks and controlled traffic 
farming (CTF), do not have spectral reflectance characteristics that allow them to be 
readily classified using traditional pixel-based classification methods. They vary 
greatly in their reflectance values both within scenes and between scenes. However, 
many land practices have other characteristics that make them distinct from other 
landscape features. These include spatial features such as size, shape, texture and 
relationships to surrounding features. Object-based classification enables greater 
utilisation of spectrally and spatially homogeneous regions within an image. Objects 
are defined as basic entities located within an image, where each pixel group is 
composed of similar digital values, and possesses an intrinsic size, shape, and 
geographic relationship with the real-world scene component it models (Hay et al., 
2001). 
 



Detecting and monitoring crop management practices in Queensland 

October 2008  - 5 - 

In this project, we used the Definiens® Professional version 5 and Definiens® 
Developer version 7 software suites to create image-object sets (segmentations) that 
include features that approximate the specific spectral and spatial properties of 
contour banks. We then applied and evaluated three different classification techniques 
to separate the contours from surrounding landscape feature objects.  
 
2. STUDY AREA 
 
Contour banks occur in most of the major arable river catchments in Queensland (Fig. 
1). These include the Condamine-Balonne, Moonie, and Border Rivers catchments of 
the Murray-Darling Basin drainage division, and the Fitzroy, Burdekin, Burnett, 
Barron, O’Connell and Pioneer catchments of the North-East Coast drainage division. 
Primary land uses in these catchments include production from natural environments 
(e.g. grazing) (88%), production from dryland agriculture (e.g. cropping) (6%) and 
nature conservation (4%) (Witte et al., 2006).  
 
3. METHODS 
 
3.1. Data 
 
SPOT 5 was acquired by the NRM Regional Bodies for the major cropping areas of 
Queensland. The imagery was acquired for property planning and natural resource 
management activities in Queensland for single image dates during 2004, 2005 and 
2006. The extent of the imagery is shown in Fig. 1. The SPOT 5 data were acquired 
orthorectified as three separate products: 10-m resolution multispectral 3 band (green, 
red, near infrared) or 4 band (green, red, near infrared, shortwave infrared); 2.5-m 
resolution greyscale panchromatic; 2.5-m resolution pan-sharpened multispectral 3 
band (green, red, near infrared). Some issues exist with this imagery for remote 
sensing applications: the imagery has been georectified by inconsistent methods and 
none of the imagery has been radiometrically or atmospherically corrected. As a result 
comparisons between images and across regions and over time can be difficult. 
 
Other supporting data available for this project includes Soil Conservation Act 1996 
notings and registered plans. The notings are a point location indicating that a soil 
conservation plan exists for a property or group of properties. Fig. 1 shows the density 
of notings in the catchments of Queensland. It provides an indication of where most 
contour banks occur in Queensland. Registered soil conservation plans are schematic 
diagrams of the layout of soil and land management works on a property or group of 
properties. They were originally created in hardcopy form but most have since been 
scanned to digital format (jpeg image). 
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Fig. 1 Map of Queensland showing major catchments, SPOT 5 image acquisitions and the density 
of Soil Conservation Act 1996 registered plan notings that indicate cropping areas of Queensland 
with contour banks. 
 
3.2. Manual mapping of contour banks and CTF 
 
Pan-sharpened 2.5-m colour SPOT 5 imagery provides sufficient resolution for visual 
interpretation of most contour banks and CTF practices. The additional spectral 
information obtained by merging the multispectral bands from the 10-m product with 
the 2.5-m resolution of the panchromatic product allows true colour images to be 
displayed in a Geographic Information System (GIS) at high resolution. 
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Contour banks and the approximate boundary of the land parcel (paddock) they occur 
in were interpreted from the pan-sharpened 2.5-m colour SPOT 5 imagery and 
digitised as line vector features in ArcGIS®. Ancillary information including aerial 
photography, survey notings and Soil Conservation Plans were used as supplementary 
data to assist interpretation. Metric classes relating to the approximate width of the 
bank, the data source and confidence in the location and interpretation of the bank 
were recorded (Table 1).  
 
Table 1 Values and attributes for manual mapping  

Value Confidence Source Width (m) 
1 High Imagery 0-10 
2 Medium Registered plan/noting 10-20 
3 Low Other >20 

 
The line features delineating the land parcels containing contour banks were 
converted to polygon features. This enabled the area of land subject to contour bank 
cultivation practices, and other summary statistics, to be calculated for the catchments 
in which they occur. As the project nears completion, they will also provide a 
reference to test the efficacy of the semi-automated object-based techniques for 
mapping contour bank paddock boundaries. 
 
3.3. Semi-automated object-based mapping of contour banks and CTF 
 
3.3.1. Imagery 
 
Due to the limitations of the multispectral SPOT 5 data currently available (refer 
section 3.1) and following preliminary trials of the available SPOT 5 products for 
object-based analysis, the SPOT 5 2.5-m resolution panchromatic product was 
selected for use in this project. This was chosen over the pan-sharpened product as the 
primary focus for classification was spatial (e.g. size, shape) rather than spectral 
properties. Furthermore, pan-sharpening algorithms leave a ‘halo’ around image-
objects as a result of non-linear mixing in the coarser resolution multispectral imagery 
(Definiens 2007a). This can adversely affect image segmentations by the creation of 
objects that represent ‘halo’-affected areas, increasing the number uninformative 
objects, and significantly increasing processing time. Initial trial segmentations using 
both the panchromatic and pan-sharpened imagery showed that the additional spectral 
information contained in the pan-sharpened imagery did not yield objects that were 
more homogeneous or informative for the purpose of contour bank delineation. The 
SPOT 5 10-m resolution multispectral product was not considered for use as the 
resolution was not adequate for segmentation of objects that delineate contour banks 
that can be constructed with bank widths smaller than the resolution of the data. 
 
3.3.2. Image pre-processing 
 
3.3.2.1. Edge enhancement 
 
An edge enhancement technique was applied to the SPOT 5 panchromatic image to 
minimise spatial and spectral heterogeneity of objects in the image domain. This 
results in a minimisation of image region heterogeneity and therefore more defined 
image-objects result from image segmentation procedures. Edge enhancement aims to 
highlight areas of contrast in an image by highlighting changes in spatial frequency of 
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the data that correspond to edges (Fig. 2). This can lead to filtering and removal of 
unnecessary data while preserving the important structural properties in an image. In 
the SPOT 5 panchromatic imagery, contour banks generally have contrasting spatial 
properties to the surrounding landscape. Edge enhancement maximises this contrast. 
 

 
           (a)            (b) 

 
Fig. 2 (a) SPOT 5 panchromatic image from Condamine catchment showing contour banks; and 
(b) SPOT 5 panchromatic image with non-directional edge enhancement (Sobel) applied to 
enhance contour bank features 
 
A non-directional edge detection with the two-dimensional Sobel filter was applied to 
the SPOT 5 panchromatic image using the Non-directional Edge function in Erdas 
Imagine® (Leica Geosystems 2005). The resultant non-directional edge enhanced 
image (the NDE image) was included as an image layer in the segmentation 
procedures outlined in section 3.3.4. 
 
3.3.2.2. Image dicing 
 
Multiresolution image segmentation algorithms require considerable processing time 
and computer memory allocation. The greater the minimisation of heterogeneity in the 
image-object domain (i.e. the smaller the size and greater the number of objects that 
are required), the greater the processing time and computer system requirements. This 
can be a major limitation in applying object-based techniques to high resolution 
imagery over large geographic areas.  
 
To reduce processing time and to maximise the efficiency of the image segmentation 
procedures, the SPOT 5 panchromatic and NDE images were diced into eight equal 
parts (based on pixel width) using the Dice Image function in Erdas Imagine®. 
 
3.3.3. Image masks 
 
Cropping areas account for around 2% of the total area of Queensland (Witte et al., 
2006). To reduce processing time and to target the cropping areas of interest, two 
image mask layers were derived: a slope mask and a woody vegetation mask. A third 
layer, the contour banks paddock polygon layer (refer to section 3.3.3.3), replaced the 
slope mask and woody vegetation mask in the processing as the manual mapping 
progressed and the data became available. 
 
3.3.3.1. Slope mask 
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Contour banks are generally constructed on slopes exceeding 1–1.5% (~1°) 
(Department of Natural Resources and Water, 2004). A slope mask based on the 
Digital Elevation Model (SRTM-DEM) (approximate cell resolution 90-m) derived 
from the NASA Shuttle Radar Topography Mission, was created using a 1° threshold. 
This conservative threshold was used to ensure all slopes with the potential to have 
contour banks constructed on them were included in the image segmentation 
procedures. It was also intended to mask out significant areas of intensive agriculture 
(e.g. strip cropping, irrigation areas) on the alluvial flats and plains that do not have 
contour banks due to their small gradients. 
 
A slope image was derived from the SRTM-DEM using the Surface Slope function in 
Erdas Imagine® with degrees specified as the output units. The slope image was then 
reclassified to a two-class image as follows: 
 
[ <1° = 0; ≥1° = 1 ].  
 
A majority filter with four orthogonal neighbours and a majority replacement 
threshold setting was then applied using ArcGIS® to generalise the image and to 
remove isolated masked pixels within the areas of interest. 
 
3.3.3.2. Woody vegetation mask 
 
Given that contour banks are primarily within cleared, open cropping areas, a woody 
vegetation mask was created to eliminate wooded areas from the areas of interest. 
 
The woody vegetation mask was derived from the NRW State Land and Tree Study 
(SLATS) Foliage Projective Cover (FPC) product (Armston et al., 2004) using a 12% 
FPC threshold. This threshold is equivalent to a basal area of approximately 4.5 which 
is the lower threshold for open woodlands. The SLATS FPC product is an 
interpreted/derived product based on Landsat imagery and occasionally misclassifies 
areas of crops as woody vegetation, particularly at the lower thresholds. As a result 
some cropping areas were removed from the contour mapping process. However, it is 
likely that any contour banks occurring in these cropping areas were captured in the 
final manual editing component of the methodology.  
 
The SLATS FPC product was reclassified to produce a two-class FPC image mask 
(the FPC image) as follows:  
 
[ <12% FPC = 1; ≥12% FPC = 2 ]. 
 
3.3.3.3. Contour bank paddock layer 
 
The contour bank paddocks polygon layer generated in the manual mapping was used 
as a replacement for the slope mask and woody vegetation mask where the data had 
been captured and completed. The polygon layer was converted to a two-class raster 
(image) mask as follows: 
 
[contour bank paddock = 1; not contour bank paddock = 2] 
 
3.3.4. Image segmentation and image-object generalisation 
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The process tree in Definiens® Professional and Definiens®Developer was used for 
image segmentation. Multiresolution segmentation with a composition of 
homogeneity criterion of 0.9 for colour and 0.1 for shape, 0.5 for compactness and 
smoothness, and a scale parameter of 10 was applied to the pan and NDE image 
layers with weightings of 1 and 2, respectively. These parameters were chosen 
following heuristic analysis of various combinations of multiresolution segmentation 
parameters and following visualisation of the image-objects that best approximated 
contour bank features. The scale parameter of 10 resulted in a large number of objects 
and hence processing time, however larger scale parameters did not delineate contour 
banks in sufficient detail for classification and mapping purposes. The NDE image 
was weighted greater than the pan image because it was determined that for the 
purposes of delineating contour banks, the reduced spatial frequencies in the NDE 
image resulted in more homogeneous image-objects. The image layer masking was 
applied by inclusion of the slope and FPC images in the multiresolution segmentation 
process and setting the No Data value for these layers to 0 and 2, respectively. These 
layers were replaced with the contour bank paddock image mask where it was 
available at the time of processing and the No Data value set to 2 for this layer. 
 
A second process was added to the process tree to convert image-objects to polygons. 
This step was required to facilitate the image-object generalisation process and to 
create skeletons which describe the internal structure of image-objects. The Create 
Polygons function was used with a base threshold of 1.25 and the Remove Slivers 
function enabled. A third process was added to the process tree that applied a 
generalisation (merge) to the image-objects that did not correspond to contour bank 
features. Contour bank objects resulting from the image segmentation process are 
generally linear, narrow features. Image-objects were investigated for a general shape-
based threshold that could be used in combination with the Merge Region function to 
merge larger, non-linear, robust objects to reduce processing and assist classification 
by reducing the number of potentially conflicting objects in the dataset. The Merge 
Region function was used with a condition setting of Compactness (polygon) feature 
greater than or equal to 0.25. Compactness is a measure of linearity and width and is 
defined as the ratio of the area of a polygon to the area of a circle of the same 
perimeter and is given by the formula (Definiens 2007a). 
 

2

4
Perimeter

AreasCompactnes ××
=

π    

 
A fourth and final process was added to the process tree to export the image-objects 
for classification. The Export Vector Layer function was used with No Condition to 
export a line shapefile of the image-objects (based on the main line of the polygon 
image-objects). This function allows the user to export an attribute table with the 
shapefile that includes features and their values for each object. The user can select as 
many features as they care to. The features can then be used as variables in 
classification algorithms to classify the objects of interest. Shape-based features were 
chosen for classification in this project as they are relatively generic and consistent for 
objects irrespective of the way in which they were originally segmented. In addition, 
the limitations and inconsistencies in the image data meant that it would be difficult to 
develop a technique that included reflectance-based features as it could not be 
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consistently applied across a large geographic region. Thirty-six shape-based features 
(Table 2) were exported as attributes with the line shapefile. 
 
Table 2 Shape-based features (variables) exported with line shapefile from Definiens® 
Developer*.  

Shape  Feature (variable)  Alias 
Generic  area  Area 
  length  Length 
  width  Width 
  length/width  LengWidt 
  border length  BordLeng 
  asymmetry  Asymmetr 
  main direction  MainDire 
  density  Density 
  shape index  ShapInde 
  border index  BordInde 
  compactness  Compactn 
  roundness  Roundnes 
  elliptic fit  ElliFit 
  rectangular fit  RectFit 
  radius of smallest enclosing eclipse  RaSmEnEc 
  radius of largest enclosed eclipse  RaLaEnEc 
Based on polygons area (excluding inner polygons)  ArExclP 
  area (including inner polygons)  ArInclP 
  perimeter  PerimetP 
  compactness  CompactP 
  number of edges  NumEdgeP 
  std deviation of length of edges  StdLeEdP 
  average length of edges  AvLeEdP 
  length of longest edge  LeLoEdP 
  number of inner objects  NumInnOP 
Based on skeletons degree of skeleton branching  DegBrSk 
  length/width (only main line)  LenWidSk 
  length of main line (no cycles)  LenMaSk 
  width (only main line)  WidthSk 
  curvature/length (only main line)  CurvLeSk 
  std deviation curvature (only main line)  StdCurSk 
  number of segments  NumSegS 
  std deviation of area represented by segments  StArSeSk 
  length of main line (regarding cycles)  LeMaCySk 
  maximum branch length  MaxBrLSk 
  average branch length  AvBrLSk 

* For full explanation of variables refer to Definiens 2007a. 
 
The process tree was saved as a Definiens® process (.dcp) file to enable the technique 
to be applied as a semi-automated process on the image dataset.  
 
3.3.5. Image-object classification 
 
To assess the most appropriate technique for operational application, three different 
classification techniques were trialled initially on a shapefile generated from an 
image-object subset from the Condamine catchment (total area approximately 15,000-
ha; 20,106 image-objects). All three techniques used the exported line shapefile of 
image-objects with the attached attribute table containing the 36 shape-based features. 
The first technique was an unsupervised k-means classification. The other two 
techniques were based on different decision tree classification applications: the first, a 
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hybrid decision tree/expert knowledge system, and the second, an ensemble learning 
system. In the decision tree techniques, the response variable is the contour bank 
image-objects and the predictor variables are the shape-based features (attributes). 
 
3.3.5.1. k-means classification 
 
An unsupervised k-means classification was trialled to investigate class membership 
of contour bank image-objects compared with other image-objects in the dataset. 
FuzME, a fuzzy k-means with extragrades program (Minasny and McBratney, 2002) 
was used to derive several classifications with a different number of classes specified 
for each classification. The basic premise of k-means classification is to minimise the 
within-class sum square errors such that members of one class have stronger 
membership in that class than they do in another. In FuzME, the strength of the 
membership is given by the degree of fuzziness in the final solution, that is, the degree 
of overlap between groups. This is determined by the fuzzy exponent value which 
ranges from (1, ∞) where a value of 1 (or close to) results in a hard partition (Minasny 
and McBratney, 2002). 
 
The matrix operations applied in the k-means classification process become ill-
conditioned when variables have similar or equal values. To avoid this, only the 16 
generic shape variables were used in the k-means classification process (refer to Table 
2). Trials were run in FuzME for 5, 10, 15, 20, 30 and 50 classes using 300 iterations 
of the k-means algorithm, based on the Mahalanobis distance metric and a random 
start membership scatter value of 0.5. As contour banks are a categorical landscape 
feature, the fuzzy exponent was set at 1.01 to invoke a hard partition between classes 
in the results. FuzME output summaries were then examined to determine the 
optimum number of classes for the data. This was determined from the point at which 
the separate fuzzy validity value (S) is no further reduced by the addition of more 
classes. For the trial subset, this was determined to be about 17 to 18 classes. The 15-
class trial was therefore used for the final classification. 
 
The results of the 15-class classification were then attached to the line shapefile 
attribute table and the classes viewed in ArcGIS® to assess if any of the classes related 
mostly or wholly to contour banks. On initial inspection, it was obvious that the k-
means classification had low discriminatory power and that significant manual editing 
would be required to accurately map contour banks. A decision was made early in this 
project not to apply the k-means classification beyond the trial area except where it 
was utilised in the development of the training data set for the decision tree 
classification techniques (refer to section 3.3.5.2). 
 
3.3.5.2. Training data 
 
A training data set was required for the decision tree classifications. This enabled the 
trees to predict which variables best define image-objects that were either contour 
banks or not contour banks. Image-objects were selected from parts of the Condamine 
and Fitzroy River catchments. This data set was considered to be representative of the 
variation in shape-based variables of image-objects delineating contour banks (and 
non-contour bank) features across the cropping areas of Queensland. 
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First, the results of the 15-class k-means classification were examined in ArcGIS® 
together with the panchromatic image, to determine if any of the classes were 
representative of contour bank features. Those classes that did not contain contour 
bank features were removed from view to minimise the number of image-objects that 
were available for selection in the next step. Next, a sample of image-objects that 
corresponded to a contour bank, as interpreted from the panchromatic image, was 
collected and labelled as ‘contour’. Finally, all classes in the 15-class k-means 
classification were examined and a sample of image-objects that corresponded to 
landscape features that were not contour banks was collected and labelled as ‘not 
contour’. All labelled image-objects were then exported to a separate file, converted 
to integers (by multiplying by a factor of 1000 and rounding) and given variable 
aliases (see Table 2). The final training data set contained 2642 objects that were 
selected as ‘contour’ and 5000 objects were selected as ‘not contour’.  
 
3.3.5.3. Hybrid decision tree/expert system classification 
 
A hybrid decision tree/expert system classification technique (Keith and Bedward, 
1999) was trialled to create a set of decision rules comprised of a series of quantitative 
statements about the shape-based variables, connected by conjunctions, that describe 
(classify) the distribution of image-objects that are either contour banks or not contour 
banks. Keith and Bedward (1999) comment that some of the benefits of this technique 
include that it is explicit and repeatable and is free from statistical constraints and 
assumptions about the structure of the data. They state that the major benefit of the 
technique is that it allows for intervention by experts in an explicit manner through 
the choice and design of decision rules, therefore providing a framework for the 
incorporation of non-formal expert knowledge into the classification. 
 
Interactive modelling software (ALBERO) (Bedward, 1998) was used to develop a set 
of generic decision rules with the assumption that they could be applied to image-
objects from different regions provided that they had been generated from consistent 
image segmentation procedures. ALBERO generates decision rules in the form of a 
tree by statistical induction and facilitates expert intervention at various stages of 
model development (Keith and Bedward 1999). At each node in the decision tree 
ALBERO uses chi-square probability (with a user-specified critical value) as a 
measure of informativeness of the significance of the predictor variables to 
discriminate the response variable classes. ALBERO then nominates appropriate 
thresholds for discrimination (Bedward, 1998; Keith and Bedward, 1999). The 
predictors and thresholds can then be examined and investigated by the user and the 
most appropriate split chosen for that node. Further explicit expert intervention is 
accommodated by facilitating exploration of alternative tree structures, forcing non-
significant splits, and by permitting definition of data-free terminal nodes (Keith and 
Bedward, 1999). 
 
A decision tree model of image-objects was developed using the training data set 
described above. The default critical value of 0.05 was used to define significant 
predictors at each node. Successive splits were chosen by examining significant 
predictors and selecting the shape-based variable that best resulted in the separation of 
‘contour’ from ‘not contour’. Decisions were made on the basis of meaningful shape-
based features and by investigation of the characteristics and distribution of image-
objects in a landscape context. This was done by visual interpretation in ArcGIS® or 
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by feature calculation and investigation in Definiens® Professional and Definiens® 

Developer. Upper level splits were mainly based on general shape characteristics such 
as Asymmetr, WidthSk and Compactn (Table 2) while lower level splits were based on 
a range of variables including more specific features such CurvLeSk and NumSegSk. 
In some cases the tree structure was adjusted or a non-significant split was forced. 
Nodes were added to the decision tree until all image-objects in the training data had 
been assigned to a terminal node as either ‘contour’, ‘not contour’ or ‘undefined’. 
 
ALBERO can export rules in three alternative formats: C/C++ IF-ELSE statements; 
C/C++ IF statements; ArcGRID® CON statements. To enable automated application 
of the rule set to the line shapefiles across regions, the rules were exported as C/C++ 
IF statements and then converted to the Python programming language (Python 
Software Foundation, 2007) using a purpose-designed script, c2py.py (Koders, 2007). 
Additional programming combined the rules with the Add Field and Calculate Field 
scripting functions in ArcGIS®. The result is the addition of a field to the attribute 
table of the line shapefile that attributes each individual object with either ‘contour’ or 
‘not contour’ as defined by the rule set. 
 
3.3.5.4. Ensemble learning classification 
 
An ensemble learning classification technique was trialled to obtain predictive values 
of the probability that an image-object is a contour bank based on the shape-based 
predictor variables in the training data. The same training data can be used to predict 
across many data sets therefore providing a consistent prediction of contour banks 
across regions. This assumes that the data sets contain the same variables and have 
been created using standard image segmentation procedures, a difficult exercise, as 
will be discussed later. 
 
The randomForest library was developed for the R statistical software package 
(Development Core Team, 2007) and provides an R interface to the Fortran programs 
originally written by Breiman and Cutler (Breiman, 2001; Liaw and Wiener, 2002). 
Random forests are essentially multiple classification trees with nodal splits defined 
by the best among a subset of predictors randomly chosen at each node. New data is 
predicted by aggregating the predictions, based on majority votes, of the ntree trees in 
the forest (Liaw and Wiener, 2002). The use of majority votes in the prediction rule 
results in a categorical prediction of the response. If majority votes is not used, a 
probability estimate of the response is provided that can be thresholded to achieve a 
classification outcome. This more flexible approach can have benefits for choosing a 
classification outcome and can compensate for imbalance between classes in the 
training data. This is the approach we used here. 
 
Using the training data, a random forest classification was constructed with ntree = 
750. Prediction in a new area was achieved by segmenting an area of interest to create 
a shapefile with the same attributes as for the training data.  The attributes of this 
shapefile were read into R in dbf format.  The random forest object with all variables 
was then used to predict the class (contour/not contour) for this new data set. Each 
line feature in the shapefile is thus given a probability that it is a contour. The 
classification of line features is then assessed by assigning probability thresholds in 
ArcGIS®. 
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3.3.6. Editing of classified image-objects 
 
The classification processes are aimed at predicting which objects in the image-object 
data set are contour banks. This assumes that the image-objects adequately delineate 
contour bank features and that the objects share common shape-based characteristics. 
A further assumption is made for the decision tree techniques that these shape-based 
characteristics are represented in the training data. The processing parameters used for 
the image-object segmentation (refer to section 3.3.4) result in contour bank features 
that are rarely delineated by a single image-object. More commonly, they are 
represented by more than one, often discontinuous image-object (Fig. 3a). These 
generally have a similar narrow, linear shape to the single object contour banks. To 
simplify multiple classified image-objects that are delineating single contour banks, a 
5–m buffer is applied to the image-objects in ArcGIS® using the Buffer function with 
the Dissolve All option (Fig. 3b). The resulting shapefile is then exploded into single 
part features using the Multipart To Single Part function. 
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(a) 

 

 
(b) 
 

Fig. 3 Segmentation results – image-objects (a) multiple, discontinuous image-objects delineate 
contour bank (b) result of buffering multiple image-objects to delineate contour bank. Imagery: 
SPOT 5 panchromatic 2.5-m resolution 
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4. RESULTS 
 
4.1. Manual mapping 
 
The location of contour banks (paddocks) has been mapped for the Condamine, upper 
Burnett and Fitzroy catchments by manual interpretation (Fig. 4). Contour bank 
features have been manually mapped for around half of each of these catchments with 
the remainder being supplemented by the semi-automated mapping products. Fig. 5 is 
an example of the product. 
 
Table 3 presents the results for the manual mapping in the areas assessed to date. As it 
is a much larger catchment than the Condamine and upper Burnett combined, the 
Fitzroy has had a much greater area assessed. The Fitzroy has almost twice as much 
area subject to contour bank agricultural practices. This reflects the larger scale at 
which these practices are adopted in the Fitzroy. However, the Condamine and upper 
Burnett have a slightly higher density for contour banks per hectare due to generally 
greater slopes and smaller, more intensively managed areas subject to contour bank 
practices. 
 
Table 3 Results to date for manual mapping of contour bank locations in the Condamine, upper 
Burnett and Fitzroy catchments. 

Statistic Condamine/upper 
Burnett 

Fitzroy 

Total area assessed (km2) 49,100 159,300 
Area of contour bank practices (paddocks) (ha) 334,563 604,354 
Area of contour bank practices (paddocks) with 
contour bank features mapped to date (ha) 

44,369 211,184 

No. contour bank features mapped to date 2766 9423 
Average density of contour banks (No./ha) 0.06 0.04 

 
Most of the contour banks were able to be interpreted with confidence from the pan-
sharpened SPOT 5 imagery. Those that were delineated with less confidence are 
generally older, eroded and poorly maintained, or under-utilised banks, or those that 
may be confused with tracks, fence lines or natural drainage lines. Field verification 
and ancillary data (e.g. stereoscopic interpretation of aerial photography) will be used 
to confirm these features. The majority of the contour banks mapped are likely to be 
narrow-based design with approximately 90% being categorised in the 0–10-m range. 
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Fig. 4 Area assessed to date and location of contour banks (shown in black) in the Condamine, 
upper Burnett and Fitzroy catchments using the manual mapping technique. 
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(a) 

 

 
(b) 

 
Fig. 5 Example of manual mapping from Condamine catchment (a) contour banks paddocks are 
delineated (b) contour banks paddocks and contour banks are delineated. Imagery: SPOT 5 pan-
sharpened 2.5-m resolution 
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4.2. Semi-automated object-based mapping 
 
The semi-automated mapping and classification techniques have been trialled on a 
15,000-ha subset of data from the Condamine catchments (refer to section 3.3.5). 
Further, operational application of the decision tree classification techniques has been 
implemented for the Condamine and Fitzroy River catchment areas. Results suggest 
that for the purposes of mapping contour banks the combination of image-object 
segmentation procedures and a classification technique could be used to map the 
majority of contour banks in cropping areas of Queensland. The decision tree 
classifiers outperform the k-means classification which is to be expected as they are 
supervised techniques and contour banks are a specific landscape feature with defined 
shape characteristics. To date, no formal testing of the completeness and accuracy of 
outputs has been conducted. As the project progresses and further areas are mapped, a 
more detailed account of results and statistical testing of the outputs will be 
conducted. 
 
4.2.1. Image-object segmentation 
 
4.2.1.1. Image-object segmentation - trial area 
 
The initial segmentation of the trial area subset image created 58,413 image-objects. 
Generalisation (refer to section 3.3.4) reduced this to a final total of 20,106 image-
objects. The final segmentation is shown in Fig. 6. On inspection, the segmentation 
appears to delineating the majority of contour bank features with varying success. 
Some contour banks have not been delineated due to masking but these are relatively 
few and were mapped by manual techniques. 
 

 
 

Fig. 6 SPOT 5 panchromatic image with segmentation results (20,106 image-objects) shown. 
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4.2.1.2. Image-object segmentation – operational application 
 
Using the process outlined in section 3.3.4, a total area of 31,329-km2 (~64% of total 
area assessed) and 22,948-km2 (~14% of total area assessed) has been processed in 
the Condamine/upper Burnett and Fitzroy catchments, respectively (Fig. 7) (Table 6). 
For the Condamine/upper Burnett catchments this resulted in a total of 2,555,111 
image-objects, and for the Fitzroy, 273,663 image-objects (Table 6).  
 

 
 

Fig. 7 Areas processed to date (shown in black) in the Condamine, upper Burnett and Fitzroy 
catchments. 
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4.2.2. k-means classification 
 
Results of the 15-class k-means classification for the trial area subset image are shown 
in Fig. 8. 
 

 
 

Fig. 8 SPOT 5 panchromatic image with results of 15 class fuzzy classification. Each colour 
represents a separate class.  
 
Visual inspection of the classification shows that 3 or 4 of the 15 classes corresponded 
to most features that delineate contour banks. These classes also contained other 
landscape features that corresponded to other linear features such as road and riparian 
corridors and some areas of strip cropping that had not been masked out. The results 
of the fuzzy membership classification are likely to be comprised of classes that do 
not clearly discriminate between certain landscape features, including contour banks. 
It is expected that significant manual editing and interpretation would be required to 
separate the contour banks from other features. Due to these issues and as previously 
mentioned in section 3.3.5.1, the k-means classification was not considered further for 
operational application. 
 
4.2.3. Hybrid decision tree/expert system classification 
 
4.2.3.1. Trial area application 
 
Based on the training data, a hierarchical set of 166 decision rules was developed 
iteratively to model, on the basis of shape characteristics, the distribution of image-
object features that corresponded to contour banks in the image subset.  
 
Asymmetr was the most frequently used shape variable in the decision tree (Table 4). 
Other frequently used variables included Compactn, BordInde and WidthSk. Seven 
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variables were not used. Table 5 provides some examples of the decision rules used in 
the classification. 
 
Table 4 Number of times variables were used in the decision rules 

Feature (variable) Alias  No. of times used 
area Area  0 
length Length  19 
width Width  0 
length/width LengWidt  23 
border length BordLeng  96 
asymmetry Asymmetr  334 
main direction MainDire  114 
density Density  39 
shape index ShapInde  13 
border index BordInde  174 
compactness Compactn  203 
roundness Roundnes  154 
elliptic fit ElliFit  19 
rectangular fit RectFit  29 
radius of smallest enclosing eclipse RaSmEnEc  39 
radius of largest enclosed eclipse RaLaEnEc  76 
area (excluding inner polygons) ArExclP  0 
area (including inner polygons) ArInclP  0 
perimeter PerimetP  23 
compactness CompactP  8 
number of edges NumEdgeP  0 
std deviation of length of edges StdLeEdP  6 
average length of edges AvLeEdP  8 
length of longest edge LeLoEdP  20 
number of inner objects NumInnOP  0 
degree of skeleton branching DegBrSk  26 
length/width (only main line) LenWidSk  5 
length of main line (no cycles) LenMaSk  5 
width (only main line) WidthSk  190 
curvature/length (only main line) CurvLeSk  25 
std deviation curvature (only main line) StdCurSk  44 
number of segments NumSegS  72 
std deviation of area represented by segments StArSeSk  6 
length of main line (regarding cycles) LeMaCySk  0 
maximum branch length MaxBrLSk  7 
average branch length AvBrLSk  28 

 
Table 5 Example decision rules 
 
IF Asymmetr > 885 AND 

WidthSk <= 15595 AND 
 Compactn > 3225 AND 
 Roundnes <= 2335 AND 
 Asymmetr > 945 AND 
 StdCurSk <= 415  AND 
 MainDire <= 80820 AND 
 Asymmetr <= 985 AND 
 WidthSk > 9035 AND 
 WidthSk <= 10685 
THEN class = 'contour' 
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IF  Asymmetr > 885 AND 
 WidthSk <= 15595 AND 
 Compactn > 3225 AND 
 Roundnes <= 2335 AND 
 Asymmetr > 945 AND 
 StdCurSk <= 415 AND 
 MainDire <= 80820 AND 
 Asymmetr <= 985 AND 
 WidthSk > 9035 AND 
 WidthSk > 10685 
THEN class = 'not_contour' 
 
One thousand and sixty five image-objects were classified as contour banks. Nineteen 
thousand and forty one were classified as not contour banks. The results for the trial 
area are shown in Fig. 9. 
 

 
 
Fig. 9 SPOT 5 panchromatic image with results of hybrid decision tree/expert system 
classification. 
 
Compared with the manual mapping which could be assumed to be a reference data 
set, the method appears to be accurate where contour banks have been mapped, 
although there is still significant omission error. Application of the decision rules to 
other areas in the Condamine and Fitzroy catchments suggest that the rules may be 
applied generically across other image-objects segmented using the same procedure. 
The results are presented in the following section. 
 
4.2.3.2. Operational application 
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Operational application of the 166 decision rules to the 2,828,774 image-objects 
generated for the Condamine, upper Burnett and Fitzroy catchments (refer to section 
4.2.1.2, Table 6) resulted in 37,813 being classified as contour bank features. As for 
the trial area, the method is accurate where contour banks are mapped but there 
remains significant omission error, particularly compared with the ensemble learning 
technique (refer to section 4.2.5). GIS-based buffering processes (refer to section 
3.3.6) reduced the number of features to 29,827. 
 
4.2.4. Ensemble learning classification 
 
4.2.4.1. Trial area application 
 
The randomForest predictions were provided for all image-objects in the subset image 
based on the training data. The out-of-bag (OOB) estimate of error for ntree = 750 was 
approximately 4.8%. An examination of variable importance suggests that the 
variables MainDire, Density and RaSmEnEc (Table 2) are useful for prediction of 
contours. A reduced model, using just these three variables produced an OOB 
estimate of error of 5.1%, suggesting that the addition of more variables results in 
only a minor increase in accuracy. 
 
A number of predictive (probability) thresholds were investigated for the trial area. 
Fig. 10 shows the results of the application of three predictive threshold values 
applied to the image-objects. It was expected that a predictive threshold value that 
reflected the ratio of contour bank features to non-contour bank features in the 
training data would provide the best prediction of contour bank image-objects. At a 
predictive threshold of 0.5 (Fig. 10a), 204 image-objects were classified as contour 
banks. Visual inspection suggests that the majority of image-object features classified 
using this threshold are contour banks, but there is a large omission rate. A smaller 
threshold of 0.3 (Fig. 10b) classifies a greater number of features as contour banks 
(1588 image-objects) and these also seem to be accurate although there remains some 
omission. A threshold value of 0.2 (Fig. 10c) classifies 6657 image-objects with 
minimal omission but there also appears to be a number of commission errors. 
Therefore, for the operational application of the technique, the choice of a threshold 
will be defined by the balance between omission and commission and how much 
manual mapping and editing is required to amend the output. 
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(a) 

 
 
 
 

 
(b)  
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(c)  

 
Fig. 10 Random forest classification of the trial area subset image with three different predictive 
thresholds: (a) threshold value 0.5; (b) threshold value 0.3; and, (c) threshold value 0.2. Imagery: 
SPOT 5 panchromatic 2.5-m resolution. 
 
4.2.4.2. Operational application 
 
Using the training data (refer to section 3.3.5.2) for prediction of contour banks with 
the 2,828,774 image-objects generated for the Condamine, upper Burnett and Fitzroy 
catchments (refer to section 4.2.1.2, Table 6), 216,601 were classified as contour bank 
features at a predictive threshold value of 0.7. Post-processing (refer to section 3.3.6) 
reduced this to 89,620 features. The higher, more conservative predictive threshold 
value was chosen as it minimised commission error at minor expense to omission 
error, thus reducing the need for manual editing. The advantage of the technique is 
that the user can adjust this predictive threshold until a satisfactory output is achieved. 
In reality, this may vary from processed image to processed image and is a function of 
both the number of objects generated, the variables used for prediction, and the 
balance or ratio of the training data. 
 
4.2.5. Comparison of decision tree classification techniques 
 
Table 6 below provides a comparison of the results for the two classification 
techniques for the combined areas of the Condamine, upper Burnett and Fitzroy 
catchments. Fig. 11 shows the results for each technique for the same location in the 
Fitzroy catchment and compares them with outputs from the manual mapping.  
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Table 6 Comparison of results for the hybrid decision tree/expert systems and ensemble learning 
classification techniques for the areas processed to date 

Statistic Hybrid decision tree/expert system ensemble learning* 
No. objects (total) 2,828,774 2,828,774 
No. objects predicted 37,813 216,601 
No. features after buffer** 29,827 89,620 

*predictive threshold value = 0.7 
**refer to section 3.3.6 
 
At a predictive threshold of 0.7, the ensemble learning technique predicts almost six 
times more objects as contour banks than the hybrid decision tree/expert system. Fig. 
11 also shows that the objects that are predicted by the ensemble learning technique 
map contour banks with reasonable accuracy and minimal commission error. The 
hybrid decision tree/expert system technique also maps contour banks with reasonable 
accuracy and low commission error, but it also has significant error of omission. This 
is due to the strict conditions for class membership imposed by the ruleset for this 
technique. It also highlights the advantage of the ensemble learning technique as it 
allows greater flexibility through the selection of predictive thresholds and is robust 
against overfitting. Greater flexibility could also be built into the hybrid decision 
tree/expert system technique, but this requires the decision tree to be dismantled and 
recreated using a different hierarchy of rules. This takes some time, but as the project 
progresses to completion, we may construct alternative trees that are less conservative 
to allow further comparison of the techniques. Regardless of the technique chosen for 
classification, manual editing is still required to achieve a complete and accurate 
coverage of contour banks features. 
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Fig. 11 Example output from mapping and classification techniques (a) Pan-sharpened SPOT 5 
imagery showing contour banks in the Fitzroy catchment (b) Contour banks delineated by 
manual mapping (c) contour banks predicted by the hybrid decision tree/expert system 
classification (d) contour banks predicted by the hybrid decision tree/expert system classification 
and buffered by 5-m (e) contour banks predicted by the ensemble learning technique (f) contour 
banks predicted by the ensemble learning technique and buffered by 5-m. 
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5. DISCUSSION 
 
Results from this project suggest that semi-automated object-based classification 
methods using high-resolution remotely sensed imagery have significant potential for 
mapping land management practices in Australian landscapes. For contour banks in 
Queensland, classification based on shape characteristics of image-objects derived 
from image segmentation procedures has been demonstrated using three different 
approaches. Of the three approaches, the decision tree methods yielded the best 
results, particularly the ensemble learning technique, based on visual verification.  
 
5.1. Image Segmentation 
 
The accuracy of the final mapping products derived from the semi-automated 
mapping are a direct function of the initial image-object segmentation procedures 
applied. Many factors influence the outcome of an image segmentation including the 
type, area, resolution and weighting of the input imagery, the homogeneity criterion 
used and even the segmentation algorithm selected. A procedure employed for one 
image may not yield similar results for another. This has significant implications for 
the consistent application of any classification method that relies on image 
segmentation procedures. These factors can also significantly influence processing 
time and therefore further affect the application of any selected method over a large 
region.  
 
SPOT 5 panchromatic and edge-enhanced panchromatic imagery were selected for 
this project as they had the appropriate spatial resolution for the segmentation of small 
landscape features such as contours and, have reduced spectral influence on the image 
segmentation. Using this imagery, image-objects are created on the basis of contrast, 
shape and texture differences rather than spectral characteristics. However, the 
relatively high resolution (2.5m) and use of a small scale parameter in the 
segmentation algorithm had significant computer memory requirements, and hence 
processing time and capability. This is mainly a function of the memory allocation of 
the 32 bit Windows operating system for software. For example, a test was conducted 
using a multiresolution segmentation of a complete SPOT 5 panchromatic image in 
Definiens® Professional 5 LDH (large data handling version). With a scale parameter 
of 50, the process took approximately 36 hours. Later versions (i.e. Definiens® 
Developer) have improvements that have resulted in increased processing capability 
and alternative ways of dealing with large data sets (e.g. tiling and stitching 
functions). In addition, the development of a 64 bit version in the near future, should 
greatly increase processing capability. For other landscape and land management 
features, medium resolution, multispectral imagery and larger scale parameters may 
be adequate. This would reduce processing time and memory requirements and can 
still provide accurate delineation of image-objects for classification. It is important to 
note that multispectral SPOT 5 imagery was available for this project. However, the 
lower spatial resolution (10m) limits its potential for identifying and mapping small 
landscape features such as contour banks. Currently, appropriate radiometric 
corrections have not been developed for this imagery which limits the value of the 
spectral information for pixel and also object-based classification. The appropriate 
radiometric corrections are particularly important for large-scale operational projects, 
such as this one, which require automated methods to be applied to a large number of 
images and potentially, through time. 



Detecting and monitoring crop management practices in Queensland 

October 2008  - 31 - 

 
Clearly, the selection of imagery and scale of segmentation would depend on the 
application. Definiens (2007a) recommend that a user should always aim to produce 
objects of the largest scale possible which still distinguishes different image regions 
for the given purpose. Another limitation of the software is the difficulty to 
investigate and statistically compare image-object features (e.g. shape-based features, 
reflectance features, texture features), and to determine which are the most 
appropriate for classification. As for the processing, improvements in more recent 
versions of the software have provided functions that can assist with these 
comparisons. However, these comparisons can still be very time consuming and in 
some cases, subjective. This is one of the main reasons for the investigation of 
classification techniques external to the software in this project. Automation remains 
the key limitation of the software for application across regions and repeatability 
through time. Semi-automation of the procedures is possible in Definiens® Developer 
but complete automation of a procedure is not possible, even when combined with 
external classification techniques. According to Definiens (2007b), the Enterprise 
version of the software is able to assist scientists, analysts and informaticians to 
extract information in fully automated and semi-automated modes. However, the 
Enterprise version is a complete integrated system and requires significant adaptation 
of hardware and large establishment expenses. Despite these limitations, image 
segmentation processes using Definiens® Developer remain a very powerful tool for 
mapping and classifying landscape features, particularly when compared with 
traditional pixel-based approaches (for example see Grounds, 2008). Other image 
segmentation packages are available, many of them developed for medical imaging 
applications. Testing of these packages is beyond the scope of this project however 
NRW’s Remote Sensing Centre plans to investigate the application of some of them 
in the near future.  
 
5.2. Object-based classification 
 
5.2.1. k-means classification 
 
The k-means classification was unable to provide classes with clear distinction for 
mapping contour banks. It was, however, useful for further generalising the image-
object data for the purposes of creating training datasets. While this classification 
technique was not particularly successful or suitable for contour bank mapping it still 
has some distinct advantages that could make it particularly useful for classifying 
image-object data for natural resource applications where class distinction is less 
defined. By increasing the fuzzy exponent to values greater than 1.01, the relations 
between class memberships can be better understood. This is particularly useful for 
applications such as soil and vegetation mapping as it presents spatial variability as 
gradual instead of abrupt, disjointed classes that are poorly fit to reality (Minasny and 
McBratney, 2002). To apply this concept to image-objects derived from segmentation 
procedures, one would have to assume that the image-objects occur on a continuum. 
This assumption is somewhat counterintuitive to the principles of image segmentation 
which aims to produce objects with ‘hard’ boundaries based on homogeneous image 
regions. Larger segmentation parameters could be chosen that deliberately include a 
degree of fuzziness in the image-objects (through larger, more heterogeneous image-
objects), and any number of continuous or categorical image layers could be included. 
Another advantage of k-means classification is that it may help to inform omission 
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and commission errors for individual classes. By examining class memberships, it is 
possible to gain an understanding of which classes share strong relationships and 
therefore which features may be confused between classes. This may be useful for an 
application such as contour bank classification based on image-object features as it 
may help to determine which landscape features are confused with contour banks. The 
information can then assist decision tree development, particularly those that 
incorporate non-formal expert knowledge such as hybrid decision tree/expert system 
classifications. 
 
5.2.2. Hybrid decision tree/expert systems classification 
 
The hybrid decision tree/expert systems classification developed for the subset image 
was quite successful at classifying image-objects that corresponded to contour banks. 
In addition, the ruleset derived from the classification was automated for application 
across a wider region where image-objects have been derived using standard 
procedures. The main advantage of this approach is that the rules can be easily 
manipulated for wider application and the incorporation of expert knowledge helps 
the model to reflect the reality. However, as is the case for any supervised 
classification, the resultant model is only as good as the training data provided. In this 
project the training data was limited and should be expanded to ensure that the 
variability in shape-based features of contour banks is represented. Despite this, the 
ruleset developed for the image subset suggests that the variation of shape-based 
features of image-objects corresponding to contour banks can be explained mostly by 
a small number of feature types. This suggests that fewer, well chosen variables, 
possibly some other than shape-based features, may provide a better classification 
than a large number of variables that include uninformative feature types. This could 
also potentially decrease processing time in Definiens® Developer as fewer feature 
types would need to be exported. It may also assist for easier incorporation of expert 
knowledge as many shape-based and other features derived in Definiens® Developer 
are based on complex algorithms that are not readily visualised or conceptualised. In 
addition, the imbalance between contour features and not contour features in the 
training data may lead to overfitting of the contour classification. Keith and Bedward 
(1999) also highlight a further limitation of standard decision trees in that they utilise 
fewer and fewer samples as more variables are fitted leading to inadequate sampling 
of the multidimensional feature space. This is the reason for trialling the ensemble 
learning approach in this project as it utilises the best of several trees derived from 
random subsets (‘bootstraps’) of the training data. It therefore does not effectively 
diminish the multidimensional feature space as variables are progressively fitted in the 
way that a single decision tree does. For this project, it is planned that as more image-
object data is produced, the training data set will be expanded and a rule set based on 
a sample of a larger, more representative region will be developed, applied and 
compared with the ensemble learning approach. 
 
5.2.3. Ensemble learning classification 
 
Depending on the threshold value used for prediction of contour banks, the random 
forest ensemble learning classification appears to outperform the other two 
classification techniques. As is the case with the hybrid decision tree/expert system 
classification, its predictive capability is limited by the training data. Although 
arguable, an advantage of the random forest approach is the objectivity and strength 
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of the prediction as it is based on multiple trees rather than one single tree, 
independent of significant user intervention. While it may not directly allow for expert 
knowledge incorporation as the hybrid decision tree/expert system approach does, the 
random forest approach is robust against overfitting and extra information such as 
error estimates and variable importance can be obtained (Liaw and Wiener, 2002). For 
these reasons it may also be possible to incorporate a larger number of variables other 
than shape-based variables, but as discussed, many of these image-object variables are 
reliant on imagery that has been geometrically and radiometrically corrected. 
 
Prediction from the random forest classifier was through a predictive threshold rather 
than majority vote (Liaw and Wiener, 2002). This provides the opportunity of 
adjusting the threshold to balance omission and commission errors. It was found that a 
threshold of 0.7 for the random forest resulted in a classification with six times as 
many image-objects labelled as contour banks than the hybrid decision tree/expert 
systems classification with only slightly greater commission error. At this stage, 
assessment of error was qualitative and based on visual assessment, but future 
accuracy assessments will allow us to quantify these errors.  
  
The ability to adjust the threshold is important, since the classification that is most 
efficient for manual editing is not necessarily the one with the lowest overall error 
rate. It may, for example, be more efficient to knowingly under-predict and manually 
add missed contours than to spend time removing many objects incorrectly labeled as 
contours. For this reason, and for consistency in application across large geographic 
regions, a conservative threshold was chosen here that minimised commission error at 
minor expense to omission. 
 
5.3. Application of techniques for mapping land management practices 
 
The techniques used for this project have been developed with two main objectives. 
The first is to improve our ability to map contour banks using remote sensing data and 
to be able to apply the technique over regions and potentially over time. The second is 
to investigate the applicability of object-based techniques for mapping land 
management practices. 
 
Some issues still remain that influence the achievement of both objectives. 
Radiometric and geometric corrections and consistency in segmentation results 
remain the primary issues for standard application of any object based classification 
of remotely sensed imagery. The other major limitation is the processing time and 
large data handling capability of image segmentation methods and software. For 
contour banks, this has been somewhat overcome by developing techniques that 
divide imagery into smaller files, and are based on single band, greyscale, shape-
based analysis. The classification then reasonably assumes that contour banks have a 
relatively consistent shape across the landscape. This may not be a valid assumption 
for other land management applications where spectral or textural characteristics may 
provide more information than shape. The advantage of combining the image-object 
segmentation with the classification techniques trialled in this project is that the 
approaches are relatively objective, efficient in terms of time and effort, and are 
applicable to any number or type of variables or classes. This means that, given 
imagery of appropriate spectral and spatial resolution for the mapping objective, the 
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techniques could be readily adapted to many other land management practices across 
Australia in a relatively standard manner. 
 
Other classification techniques may also provide satisfactory results, although these 
have not been explored in detail for this project. Hierarchical classification in the 
Definiens® Developer software enables the user to define rules with either fuzzy or 
hard membership thresholds as well as the ability to use multi-level (i.e. multi-scale) 
relationships between image-objects created and classified at different levels of detail. 
This may be of particular benefit classifying the paddocks that contain contour banks 
and for CTF practices. Other classification techniques could be adapted. Some which 
have been used elsewhere for image-object classification include neural networks, and 
hierarchical and non-hierarchical clustering techniques. 
 
For this project, the ensemble learning approaches, supplemented by manual mapping 
were used. Further statistical comparisons will be made of the accuracy and efficiency 
of the techniques and final dataset.  
 
6. CONCLUSION 
 
Of the three classification techniques compared in this study, the ensemble learning 
technique captured the majority of contour banks and did not classify many features 
incorrectly as contour banks. An advantage of the ensemble learning technique is the 
ability to use a probability threshold that enables the operator to further control 
omission and commission errors. However, considerable manual edits were still 
required to ensure the linework accurately represented the length and shape of the 
contour banks as seen on the SPOT 5 imagery. This was due to the way in which 
contour banks were represented by the objects derived from the image segmentation 
processes. 
 
Despite some limitations, image-object segmentation and classification is an exciting 
new field of learning. It has great potential for mapping selected land management 
practices and landscape features with unique shapes, texture or patterns, particularly 
as remotely sensed imagery becomes more readily available. For example, the high 
resolution SPOT 5 imagery used in this project is now available for many areas in 
Australia. The advent of new, objective, multidimensional data exploration and 
classification techniques can further assist the development of standard mapping and 
classification methods using object-based information. The results suggest that the 
methods may be readily applied over large regions and a variety of landscapes. 
 
ACKNOWLEDGEMENTS 
 
The Bureau of Rural Sciences and Australian Government are acknowledged for 
project support and funding through the Natural Heritage Trust II. Many thanks to 
Maeli Cooper, Kim Sedgwick, Grant Ross, Sel Counter and Rebecca Trevithick for 
their patience and significant contributions to the manual mapping. Thanks to 
Matthew Pringle, Alisa Eustace, Simone Grounds, Tim Danaher, Peter Scarth, Jo 
Kitchen and Barry Stone from the Department of Natural Resources and Water for 
advice and/or comments on the report. Thanks also to John Jensen for providing 
notings data. The NRM regional groups are also acknowledged for their contributions 
of SPOT 5 imagery. 



Detecting and monitoring crop management practices in Queensland 

October 2008  - 35 - 

 
REFERENCES 
 
Armston, J.D., Danaher, T.J., and Collett, L.J. 2004. A regression approach for 

mapping woody Foliage Projective Cover in Queensland with Landsat data. In: 
Proceedings of the 12th Australasian Remote Sensing and Photogrammetry 
Conference, Fremantle, Australia, Oct 2004. 

 
Bedward, M. 1998. Albero – A free graphical decision tree modelling package. 

http://members.ozemail.com.au/%7Embedward/albero/albero/albero/ 
 
Breiman, L., 2001. Random Forests. Machine Learning, 45: 5–32. 
 
Definiens., 2007a. Developer 7 Reference Book version 7.0.1.867. Definiens AG 

Germany. 
 
Definiens. 2007b. Definiens enterprise intelligence suite. Definiens, Munich, 

Germany. http://www.definiens.com 
 
Department of Natural Resources and Water. 2004. Soil Conservation Measures – 

Design manual for Queensland – Chapter 9 – Contour banks. Queensland 
Government, Brisbane. 
http://www.nrw.qld.gov.au/land/management/pdf/c9scdm.pdf/ 

 
Development Core Team. 2007. R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0, URL http://www.R-project.org. 

 
Hay, G.J., Dube, M.P. and Bouchard, A. 2001. A multiscale framework for landscape 

analysis: Object specific analysis and upscaling. Landscape Ecology, 16(6): 471-
490. 

 
Grounds, S.F. 2008. Pineapples, pixels and objects – a comparison of remote sensing 

classification techniques for land use mapping. Unpublished report. 
 
Keith, D.A. and Bedward, M. 1999. Native vegetation of the South East Forests 

region, Eden, New South Wales. Cunninghamia, 6(1): 1-60. 
 
Koders 2007.c2py.py. 

http://www.koders.com/python/fid8B059967492F102BB5A58EB5A615F50D
2FB4AF54.aspx?s=data+aware/ 

 
Leica Geosystems (2005). ERDAS Field GuideTM. Geospatial Imaging, LLC, Norcross, 

Georgia. 
 
Liaw, A. and Wiener, M. 2002. Classification and regression by randomForest. R 

News, 2(3): 18-22. 
 



Detecting and monitoring crop management practices in Queensland 

October 2008  - 36 - 

Minasny, B., McBratney, A.B. 2002. FuzME version 3.0, Australian Centre for 
Precision Agriculture, The University of Sydney, Australia. 
http://www.usyd.edu.au/su/agric/acpa/ 

 
Python Software Foundation. 2007. Python Programming Language. 

http://www.python.org/ 
 
Witte, C., van den Berg, D., Rowland, T., O’Donnell, T., Denham, R., Pitt, G. and 

Simpson, J. 2006. “Mapping Land Use – Technical Report on the 1999 Land Use 
data for Queensland”. The State of Queensland, Department of Natural Resources 
and Water, Brisbane. 


