

Craig D.H. Sherman, Geordie Jennings and Adam D. Miller

School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia

© Commonwealth of Australia 2020

Ownership of intellectual property rights

Unless otherwise noted, copyright (and any other intellectual property rights) in this publication is owned by the Commonwealth of Australia (referred to as the Commonwealth).

Creative Commons licence

All material in this publication is licensed under a <u>Creative Commons Attribution 4.0 International Licence</u> except content supplied by third parties, logos and the Commonwealth Coat of Arms.

Inquiries about the licence and any use of this document should be emailed to <u>copyright@awe.gov.au</u>.

Cataloguing data

This publication (and any material sourced from it) should be attributed as: Sherman CDH, Jennings G & Miller AD 2020, *Assessment of reproductive propagule size for biofouling risk groups*, Department of Agriculture, Water and the Environment, Canberra, June. CC BY 4.0.

ISBN 978-1-76003-298-2

This publication is available at agriculture.gov.au/biosecurity/avm/vessels/marine-pest-biosecurity/biofouling

Department of Agriculture, Water and the Environment GPO Box 858 Canberra ACT 2601 Telephone 1800 900 090 Web <u>awe.gov.au</u>

The Australian Government acting through the Department of Agriculture, Water and the Environment has exercised due care and skill in preparing and compiling the information and data in this publication. Notwithstanding, the Department of Agriculture, Water and the Environment, its employees and advisers disclaim all liability, including liability for negligence and for any loss, damage, injury, expense or cost incurred by any person as a result of accessing, using or relying on any of the information or data in this publication to the maximum extent permitted by law.

Acknowledgements

The authors thank Sonia Gorgula, Timothy Carew, Bianca Brooks (Department of Agriculture, Water and the Environment) and Eugene Georgiades (Biosecurity New Zealand, Ministry for Primary Industries) for their feedback and input in preparing this report.

Contents

Summary	vi
Introduction	8
1. Amphipods and Isopods	10
2. Barnacles	11
3. Bivalves	12
4. Polychaetes	13
5. Bryozoa	15
6. Crabs	16
7. Echinoderms	17
8. Flatworms	18
9. Gastropods	19
10. Hydroids	21
11. Macroalgae	22
12. Ascidians	24
13. Asexual Reproduction	26
Appendix A	27
A1. Amphipods and Isopods	27
A2. Barnacles	37
A3. Bivalves	44
A4. Polychaetes	51
A5. Bryozoans	65
A6. Crabs	67
A7. Echinoderms	76
A8. Flatworms	92
A9. Gastropods	96
A10. Hydroids	115
A11. Macroalgae	117
A12. Ascidians	125
References	130

Tables

biofoulingviTable 2 Propagule sizes for key amphipod and isopod species10Table 3 Propagule sizes for key barnacle species11Table 4 Propagule sizes for key bivalve species13Table 5 Propagule larval sizes for key polychaete species14Table 6 Propagule sizes for key bryozoan species15Table 7 Propagule sizes for key crab species16Table 8 Propagule sizes for key echinoderm species17Table 9 Propagule sizes for key gastropods species20Table 10 Propagule sizes for key hydroid species21Table 12 Propagule sizes for key algae species22Table 13 Propagule sizes for key ascidian species25Table 14 Asexual propagule sizes of species from key taxa26	Table 1 The range of propagule sizes identified from a literature review for taxonomic risk groups which could generate an adult organism if released during in-water cleaning of	
Table 2 Propagule sizes for key amphipod and isopod species10Table 3 Propagule sizes for key barnacle species11Table 4 Propagule sizes for key bivalve species13Table 5 Propagule larval sizes for key polychaete species14Table 6 Propagule sizes for key bryozoan species15Table 7 Propagule sizes for key crab species16Table 8 Propagule sizes for key clinoderm species17Table 9 Propagule sizes for key flatworm species18Table 10 Propagule sizes for key astropods species20Table 11 Propagule sizes for key algae species21Table 12 Propagule sizes for key algae species22Table 13 Propagule sizes for key ascidian species25Table 14 Asexual propagule sizes of species from key taxa26	biofouling	vi
Table 3 Propagule sizes for key barnacle species11Table 4 Propagule sizes for key bivalve species13Table 5 Propagule larval sizes for key polychaete species14Table 6 Propagule sizes for key bryozoan species15Table 7 Propagule sizes for key crab species16Table 8 Propagule sizes for key echinoderm species17Table 9 Propagule sizes for key flatworm species18Table 10 Propagule sizes for key astropods species20Table 11 Propagule sizes for key algae species21Table 12 Propagule sizes for key algae species22Table 13 Propagule sizes for key ascidian species25Table 14 Asexual propagule sizes of species from key taxa26	Table 2 Propagule sizes for key amphipod and isopod species	10
Table 4 Propagule sizes for key bivalve species13Table 5 Propagule larval sizes for key polychaete species14Table 6 Propagule sizes for key bryozoan species15Table 7 Propagule sizes for key crab species16Table 8 Propagule sizes for key echinoderm species17Table 9 Propagule sizes for key flatworm species18Table 10 Propagule sizes for key gastropods species20Table 11 Propagule sizes for key algae species21Table 12 Propagule sizes for key algae species22Table 13 Propagule sizes for key ascidian species25Table 14 Asexual propagule sizes of species from key taxa26	Table 3 Propagule sizes for key barnacle species	11
Table 5 Propagule larval sizes for key polychaete species.14Table 6 Propagule sizes for key bryozoan species15Table 7 Propagule sizes for key crab species.16Table 8 Propagule sizes for key echinoderm species17Table 9 Propagule sizes for key flatworm species.18Table 10 Propagule sizes for key gastropods species20Table 11 Propagule sizes for key hydroid species.21Table 12 Propagule sizes for key algae species22Table 13 Propagule sizes for key ascidian species25Table 14 Asexual propagule sizes of species from key taxa26	Table 4 Propagule sizes for key bivalve species	13
Table 6 Propagule sizes for key bryozoan species15Table 7 Propagule sizes for key crab species16Table 8 Propagule sizes for key echinoderm species17Table 9 Propagule sizes for key flatworm species18Table 10 Propagule sizes for key gastropods species20Table 11 Propagule sizes for key hydroid species21Table 12 Propagule sizes for key algae species22Table 13 Propagule sizes for key ascidian species25Table 14 Asexual propagule sizes of species from key taxa26	Table 5 Propagule larval sizes for key polychaete species	14
Table 7 Propagule sizes for key crab species16Table 8 Propagule sizes for key echinoderm species17Table 9 Propagule sizes for key flatworm species18Table 10 Propagule sizes for key gastropods species20Table 11 Propagule sizes for key hydroid species21Table 12 Propagule sizes for key algae species22Table 13 Propagule sizes for key ascidian species25Table 14 Asexual propagule sizes of species from key taxa26	Table 6 Propagule sizes for key bryozoan species	15
Table 8 Propagule sizes for key echinoderm species17Table 9 Propagule sizes for key flatworm species18Table 10 Propagule sizes for key gastropods species20Table 11 Propagule sizes for key hydroid species21Table 12 Propagule sizes for key algae species22Table 13 Propagule sizes for key ascidian species25Table 14 Asexual propagule sizes of species from key taxa26	Table 7 Propagule sizes for key crab species	16
Table 9 Propagule sizes for key flatworm species18Table 10 Propagule sizes for key gastropods species20Table 11 Propagule sizes for key hydroid species21Table 12 Propagule sizes for key algae species22Table 13 Propagule sizes for key ascidian species25Table 14 Asexual propagule sizes of species from key taxa26	Table 8 Propagule sizes for key echinoderm species	17
Table 10 Propagule sizes for key gastropods species	Table 9 Propagule sizes for key flatworm species	18
Table 11 Propagule sizes for key hydroid species	Table 10 Propagule sizes for key gastropods species	20
Table 12 Propagule sizes for key algae species	Table 11 Propagule sizes for key hydroid species	21
Table 13 Propagule sizes for key ascidian species	Table 12 Propagule sizes for key algae species	22
Table 14 Asexual propagule sizes of species from key taxa 26	Table 13 Propagule sizes for key ascidian species	25
	Table 14 Asexual propagule sizes of species from key taxa	26

Table A1 Amphipod and Isopod propagule sizes identified from the literature search	. 27
Table A2 Barnacle propagule sizes identified from the literature search	. 37
Table A3 Bivalves propagule sizes identified from the literature search	. 45
Table A4 Polychaetes propagule sizes identified from the literature search	.51
Table A5 Bryozoan propagule sizes identified from the literature search	. 65
Table A6 Crab propagule sizes identified from the literature search	. 67
Table A7 Echinoderm propagule sizes identified from the literature search	. 77
Table A8 Flatworm propagule sizes identified from the literature search	. 93
Table A9 Gastropod propagule sizes identified from the literature search	. 96
Table A10 Hydroid propagule sizes identified from the literature search	115
Table A11 Macroalgae propagule sizes identified from the literature search	117
Table A12 Ascidian propagule sizes identified from the literature search	125

Figures

Figure 1. Summary of the range of female gamete and spore sizes for identified macrofouling	
risk groups	vii

Summary

The purpose of this literature review is to assess reproductive propagules sizes (female gametes, spores, embryos, larvae, juveniles and asexual propagules) of taxonomic risk groups which could generate an adult organism if released during in-water cleaning of biofouling. The Department of Agriculture, Water and the Environment (the department) engaged Deakin University to undertake this review, which will support the development of national policy settings for in-water cleaning of biofouling in Australia.

The review identified a wide range of propagule sizes across and within taxonomic risk groups. Female gamete and spore sizes are summarised in Figure 1. The amphipods, isopods, echinoderms, hydroids and ascidians generally appear to produce propagules > 50 μ m in size. For barnacles, polychaetes, bryozoans and crabs, a small number of species were identified as having propagule sizes < 50 μ m (Table 1). A relative large number of species with propagule sizes < 50 μ m were identified for bivalves, flatworms (Platyhelminthes) and macroalgae (Table 1).

Taxonomic group	Female gamete size range (µm)	Embryo/ larvae/ juvenile size range (µm)
Amphipods and Isopods	120 - 3,000	144.7 – 12,600
Barnacles	34 - 1500	82 – 2,550
Bivalves	20 - 300	47 – 95,000
Polychaetes	25 - 650	70 – 1,000
Bryozoans	35 - 350	100 - 400
Crabs	2.34 - 4,700	250 - 2,100
Echinoderms	50 - 4,400	210 - 2,000
Flatworms	6 - 480	125 – 280
Gastropods	40 - 2,250	40 - 10,400
Hydroids	80 - 700	264 - 800
Macroalgae	1.5 – 250	3 – 250
Ascidians	60 - 720	720 – 2,350

Table 1 The range of propagule sizes identified from a literature review for taxonomic risk groups which could generate an adult organism if released during in-water cleaning of biofouling

Figure 1 Summary of the range of female gamete and spore sizes for identified macrofouling risk groups

Amphipods & Isopods	A.C.			120 – 3,000 μm			
Barnacles		34 - 1,50	00 μm				
Bivalves		<mark>20 – 300 μm</mark>					
Polychaetes	Z	<mark>25 – 650 μm</mark>					
Bryozoans	***	<mark>35 – 350 μm</mark>					
Crabs	BA.			2.34 – 4,700 µ	ım		
Echinoderms	N.			50 – 4,400 μm			
Flatworms		6 – 480 μm					
Gastropods			40 - 2,	250 µm			
Hydroids	×4	80 – 700 μm					
Macroalgae	S. S.	<mark>1.5 – 250</mark>					
Ascidians	Ö	60 – 720 μm					
	c	500	1,000	1,500	2,000	2,500	5,000
			Female	e gamete and spor	re size range (μm)		

Introduction

The accumulation of biofouling organisms on the submerged surfaces of vessels and other mobile submerged infrastructure pose a biosecurity risk if species are moved outside their normal geographic range (Hewitt et al. 2011; McClary and Nelligan 2001). Biofouling is recognised as a major vector for the introduction and spread of non-indigenous marine species, including into and around Australia. Current management of biofouling on surfaces includes the use of antifouling coatings, regular dry-docking for land-based cleaning and the use of in-water cleaning technologies that aim to remove biofouling from the surface of vessels while still submerged in the water. However, in-water cleaning of biofouled surfaces can potentially lead to the release of attached individuals, propagules or gametes into the surrounding water column and risk species spread and proliferation (Morrisey 2013; Scianni and Georgiades 2019).

In 2013, the Australian and New Zealand governments jointly released the Australian and New Zealand Anti-Fouling and In-Water Cleaning Guidelines (the Guidelines), which were subsequently updated in 2015. The Guidelines address concerns in relation to in-water hull cleaning practices that have the potential to cause harm through the release of anti-fouling biocides and non-indigenous marine species. A review of the uptake and effectiveness of the Guidelines in 2018-19 identified a number of gaps in the national policy framework for in-water cleaning. It was recommended that the department should develop a national standard for inwater cleaning of biofouling that can be implemented across various levels of government in Australia.

Currently the Guidelines state 'When in-water cleaning involves the removal of macrofouling, methods should be used to ensure that unacceptable amounts of biological material are not released into the water column. In-water cleaning technologies should aim to, at least, capture debris greater than 50 μ m in diameter which will minimise the release of viable adult, juvenile and larval stages of macrofouling organisms.' In the development of a national in-water cleaning standard, the department is reviewing the rationale that formed the basis of the recommended 50 μ m capture limit. This report updates the information currently known about the minimum propagule and fragment viability sizes of macrofouling risk groups (Department of the Environment and New Zealand Ministry for Primary Industries 2015).

The purpose of this literature review is to assess the theoretical minimum viable propagule sizes (female gametes, spores, embryos, larvae, juveniles and asexual propagules) of macrofouling groups that include identified risk taxa that could generate an adult organism if released during in-water cleaning of biofouling. Male gametes were not considered in this review given their inability to develop into an adult organism.

Marine macrofouling risk groups that are examined in this report include:

- Amphipods and Isopods
- Barnacles
- Bivalves
- Polychaetes
- Bryozoans

- Crabs •
- Echinoderms •
- Flatworms •
- Gastropods •
- Hydroids •
- Macroalgae •
- Ascidians. •

1. Amphipods and Isopods

In most amphipods and isopods the sexes are separate, although some hermaphroditic species have been described (Ruppert et al. 2004). Most females brood their eggs in an external pouch (marsupium) and the larval stage is bypassed with hatchlings emerging as fully developed juveniles that are morphologically similar to adults (Hartnoll 1985; Poore and Bruce 2012; Thiel 1997).

The literature review identified 283 potential references, of which we were able to obtain relevant propagule size information from 137 references for a total of 170 species. This included 33 female gamete size estimates and 177 embryo/juvenile sizes estimates (Table A1). Egg size ranged from 120 – 3000 µm, while reported embryo/juvenile sizes ranged from 144.7 – 12,600 µm (Table A1).

The smallest identified female gamete size was for the isopod *Clypeoniscus hanseni*, with an egg diameter of 120 μ m (Sheader 1977a). The minimum identified embryo and juvenile sizes were for the isopod *Athelges takanoshimensis*, at 144.7 μ m for embryos and 262.1 μ m for juveniles (Cericola and Williams 2015) (Table 2). Other newly hatched juveniles found in the literature search were all > 1,000 μ m (Table A1).

The literature search identified the minimum propagule sizes of four species that have been identified as biofouling risk species (Hewitt et al. 2011; McClary and Nelligan 2001). These included *Ampelisca abdita* (juvenile: 390 µm), *Gammarus tigrinus* (embryo: 460 µm) (Steele 1972), *Limnoria lignorum* (egg: 400 µm) (McClary and Nelligan 2001) and *Sphaeroma serratum* (embryo: 1120 µm) (Charmantier and Charmantier-Daures 1994) (Table 2).

Species	Egg (µm)	Embryo/juvenile (µm)	References
Clypeoniscus hanseni	120	-	(Sheader 1977a)
Athelges takanoshimensis	-	144.7 ± 17.4	(Cericola and Williams 2015)
Ampelisca abdita	-	390	(Nelson 1978)
Gammarus tigrinus	-	460	(Steele 1972)
Limnoria lignorum	400	-	(McClary and Nelligan 2001)
Sphaeroma serratum	-	1120	(Charmantier and Charmantier- Daures 1994)

Table 2 Propagule sizes for key amphipod and isopod species

2. Barnacles

Barnacles are sessile marine organisms with most being simultaneous hermaphrodites, although some species are dioecious (Charnov 1987). Eggs develop outside the body, within the mantle cavity. Barnacles have two free swimming larval stages, the nauplius and cyprid (Høeg et al. 2003).

The literature review identified 114 potential references, of which we were able to obtain relevant propagule size information from 24 references for a total of 118 species. This included 70 female gamete size estimates and 91 larval size estimates (Table A2). Egg sizes ranged from 34 – 1,500 µm, while larval sizes ranged from 82 – 2,550 µm.

The smallest identified female gamete size was for *Thompsonia sp.* from the Great Barrier Reef region with a diameter of 34 μ m (Table 3) (1989). However, the account given is incomplete as there is no knowledge surrounding the maturation stage of the eggs measured. No other reports for *Thompsonia sp.* from the Great Barrier Reef were found in a further literature search, however it was found that other species of *Thompsonia* had recorded egg sizes of 69 μ m (*Thompsonia japonica*), 87 μ m (*Thompsonia reinhardi*) and 156 μ m (*Thompsonia littoralis*) (Poulin and Hamilton 1997) (Table 3). The next smallest egg sizes identified in the literature search were all > 50 μ m. *Sacculina carcini* had a reported egg diameter of 54 μ m and *Sylon hippolytes* had an egg size of 60 μ m (Barnes 1989). The smallest larval size was *Pollicipes polymerus* at 82 μ m (Barnes 1989), (Strathmann) (Table 3).

The literature search identified propagule sizes of two species that have been identified as biofouling risk species (Hewitt et al. 2011; McClary and Nelligan 2001). *Balanus eberneus* was identified as having a width of 160 μ m (for a stage 1 larvae) (Costlow Jr and Bookhout 1957). *Balanus improvises* was found to have an egg diameter of 163 μ m and a stage 1 naupilus width of 195 μ m (Barnes and Barnes 1965; Jones and Crisp 1954).

Species	Egg (µm)	Embryo/Larvae (µm)	References
Thompsonia sp.	34	-	(Barnes 1989)
Sacculina carcini	54 - 150	120	(Barnes 1989)
Sylon hippolytes	60	-	(Barnes 1989)
Balanus improvises	163	195	(Barnes and Barnes 1965; Jones and Crisp 1954)
Pollicipes polymerus	-	82	(Strathmann, Barnes 1989)
Balanus eberneus	-	160	(Costlow Jr and Bookhout 1957)

rubic o riopuguic sizes for key sumucic species

3. Bivalves

Bivalves display a range of reproductive modes. In most species the sexes are separate, although some are hermaphroditic (Ruppert et al. 2004). Many species show synchronous mass spawning with males and female releasing gametes into the water column where external fertilisation and development occurs. In some species females take up sperm from the water column and fertilisation is internal, the eggs are brooded and larvae/juveniles released (Wilbur et al. 2013; Andrade-Villagrán et al. 2016).

The literature review identified 397 potential references, of which we were able to obtain relevant propagule size information from 50 references for a total of 106 species. This included 120 female gamete size estimates and 35 embryo/juvenile size estimates (Table A3). Egg sizes ranged from 20 – 300 µm, while embryo/juvenile sizes ranged from 47 – 95,000 µm (Table A3).

The smallest identified female gamete size was $20 - 55 \mu m$ for the bathymodiolin mussel *Idas washingtonia* (Tyler et al. 2009). In another study, fully grown vitollogenic oocytes of *I. washingtonia*, had a mean diameter of $41.5 \pm 7.6 \mu m$ (Marylène Gaudron et al. 2012). *I. washingtonia are* protandric hermaphrodites, commonly found on organic substrata, especially sunken wood, woody plant material and whale bones at depths of 150 to > 3,500 m (Dell 1987; Bennett et al. 1994) (Table 4).

Other bivalve species found to have relatively small female gamete sizes include the deep water bivalve *Xylophaga depalmai* (egg: 40 μ m) (Knudsen 1961; Tyler et al. 2007), the brown mussel *Perna perna* (egg: 40 μ m) (Aarab et al. 2013). the quahog clam *Mercenaria mercenaria* (egg: 40 – 55 μ m (Keck et al. 1975), the freshwater zebra mussel *Dreissena polymorpha* (egg: 40 – 96 μ m) (Ackerman et al. 1994), the Pacific angelwing clam *Pholas orientalis* (egg: mean 43.0 ± 0.8 μ m) (Ronquillo and McKinley 2006), *Anomia simplex* (egg: 42 μ m) (Loosanoff and Engle 1941), *Perna viridis* and *P. indica* (egg: 45 – 50 μ m) (Appukuttan et al. 1988; Loosanoff and Davis 1963), the Asian date mussel *Musculista senhousia* (egg: 46.8 μ m) (Sgro et al. 2002), *Bankia setacea* (egg: 47 μ m) (Strathmann, 1987), *Marcia opima* (egg: 47.8 μ m) (Muthiah et al. 2002), *Ostrea rivularis* (egg: 49 – 53 μ m) (Zhou and Allen 2003), *Laternula elliptica* (egg: 49.3 μ m) (Kang et al. 2003), *Crassostrea virginica* (egg: 48 – 54 μ m) (Loosanoff and Davis 1963), and *Magallana gigas* (formerly *Crassostrea gigas*) (egg: 50 – 60 μ m) (Strathmann 1987; van der Veer et al. 2006).

Excluding *Idas washingtonia*, the minimum egg size range found in this literature search were largely consistent with the findings in a review by (Cardoso et al. 2006), which recorded egg diameters ranging from $40 - 120 \mu m$, and the minimum length of larvae at hatching $60 - 200 \mu m$ (Cardoso et al. 2006).

The smallest larvae identified from this literature search were for *A. simplex* at 47 μ m (Loosanoff and Davis 1963). *Crassostrea virginica* and *Arca transversa* both had minimum larval diameters of 55 μ m (Loosanoff and Davis 1963).

A number of bivalve species were identified as known biofouling risk species (Hewitt et al. 2011; McClary and Nelligan 2001). These include *Dreissena polymorpha, Crassostrea virginica, Perna perna, Musculista senhousia, Magallana gigas* (formerly *Crassostrea gigas*), and *Perna viridis*, which all had propagule sizes < 50 µm (Table 4). *Teredo navalis* was found to have an unfertilised egg diameter of 50 µm and a larvae width of 70 µm (Loosanoff and Davis 1963),

Department of Agriculture, Water and the Environment

Mytilopsis sallei was found to have an egg diameter of 64 μ m and larvae shell length of 87.3 μ m (He et al. 2016).

Species	Egg (µm)	Embryo/larvae (µm)	References
Idas washingtonia	20 - 55	-	(Tyler et al. 2009)
Perna perna	40	-	(Aarab et al. 2013)
Mercenaria mercenaria	40 - 60	-	(Keck et al. 1975)
Dreissena polymorpha	40 - 96	57 - 121	(Ackerman et al. 1994)
Xylophaga depalmai	40	-	(Tyler et al. 2007)
Anomia simplex	42-45	58 x 47	(Loosanoff and Engle 1941; Loosanoff and Davis 1963)
Pholas orientalis	43.0 ± 0.8	-	(Ronquillo and McKinley 2006)
Perna indica	45 - 50	52–55	(Loosanoff and Davis 1963)
Perna viridis		300	(Appukuttan et al. 1988; Alagarswami
	45 - 50		1980)
Musculista senhousia	46.8	-	(Sgro et al. 2002)
Bankia setacea	47	-	(Strathmann 1987)
Marcia opima	47.8	87 x 71	(Muthiah et al. 2002)
Ostrea rivularis	49 - 53	-	(Zhou and Allen 2003)
Laternula elliptica	49.3	-	(Kang et al. 2003)
Crassostrea virginica	48 - 54	68 x 55	(Loosanoff and Davis 1963)
Magallana gigas (formerly Crassostrea gigas)	50 - 60	-	(Strathmann 1987)
Teredo navalis	50	70	(Loosanoff and Davis 1963)
Mytilopsis sallei	64	87.3	(He et al. 2016)
Arca transversa	-	70 x 55	(Loosanoff and Davis 1963)

Table 4 Propagule sizes for key bivalve species

Note: For propagules that are not spherical, the longest by shortest length are given (where available).

4. Polychaetes

Reproduction in polychaetes is complex with both sexual and asexual modes. Most sexes are separate with external fertilisation but some species do copulate and have internal fertilisation (Ruppert et al. 2004). Larvae typically hatch as a trochophore larvae and development occurs in the plankton before settlement. Asexual reproduction usually occurs either by budding or fission (Ruppert et al. 2004).

The literature review identified propagule size information for 211 species including 232 female gamete sizes estimates and 24 embryo/larval size estimates (Table A4). Reported egg size ranged from 25 – 650 μ m, while embryo/larval sizes ranged from 70 – 1,000 μ m (Table A4).

The smallest identified female gamete size was for *Euzonus mucronata* that has lens shaped coelomic oocytes of $25 - 30 \ \mu\text{m}$ in thickness and $65 \ \mu\text{m}$ in diameter (Strathmann 1987). The next smallest egg size was $40 \ \mu\text{m}$ reported for *Amphisamytha galapegensis* (egg: $40 - 150 \ \mu\text{m}$) (Zottoli 1983), *Ophryotrocha mandibulata* (egg: $40-48 \ \mu\text{m}$) (Hilbig and Blake 1991), *Serpula vermicularis* ($40 - 200 \ \mu\text{m}$) (Strathmann 1987) and *Pectinaria gouldi* (egg: $43.7 \ \mu\text{m}$) (Pernet and Jaeckle 2004). The smallest reported larval size was 70 $\ \mu\text{m}$ for *Arenicola claparedii* (Okuda 1946), followed by 95 $\ \mu\text{m}$ for *Polydora giardia* (Day and Blake 1979) (Table 5).

The literature search identified the minimum egg size of three species that has been identified as biofouling risk species (Hewitt et al. 2011; McClary and Nelligan 2001). *Sabella spallanzanii* has a reported minimum egg size of 50 μ m (Lee et al. 2018), *Polydora nuchalis* has a reported egg size of 145 ± 60 μ m (Strathmann 1987), while *Polydora proboscidea* was identified to have an egg diameter of 100 μ m (Strathmann 2017).

Species	Egg (µm)	Embryo/larvae (µm)	References
Euzonus mucronata	25 x 65	-	(Strathmann 1987)
Amphisamytha galapegensis	40	-	(Zottoli 1983; Blake 1993)
Ophryotrocha mandibulata	40	-	(Hilbig and Blake 1991; Blake 1993)
Serpula vermicularis	40	-	(Strathmann 1987)
Pectinaria gouldi	43.7	-	(Pernet and Jaeckle 2004)
Sabella spallanzanii	50	-	(Lee et al. 2018)
Polydora proboscidea	100	-	(Strathmann 2017)
Polydora nuchalis	145 ± 60	-	(Strathmann 1987)
Arenicola claparedii	-	70	(Okuda 1946)
Polydora giardia	-	95	(Day and Blake 1979)

Table 5 Propagule larval sizes for key polychaete species

Note: For propagules that are not spherical, the longest by shortest length are given (where available).

5. Bryozoa

Most bryozoans are colony forming organisms with many able to reproduce both sexually and asexually (Ruppert et al. 2004). Colonies typically consist of hermaphroditic zooids, although zooids may be at different stages of development and be either male or female. Both external and internal fertilisation have been reported (Ruppert et al. 2004).

The literature review identified propagule size information for 22 species including 6 female gamete size estimates and 28 embryo/larval size estimates (Table A5). Reported egg sizes ranged from $35 - 350 \mu m$ and larval sizes ranged from $100 - 400 \mu m$ (Table A5). The smallest reported egg sizes were for *Bugula pacifica* (egg: $35 \mu m$) (Strathmann 1987), *Membranipora membranacea* (egg: $60 \mu m$) (Strathmann 1987) and *Electra pilosa* (egg: $60 \mu m$) (Ryland and Stebbing 1971) (Table 6). The smallest reported larval size was for *Crisia elongota* (larvae: 100 μm) (Strathmann 1987).

None of the species identified from the literature search were identified as known biofouling risk species (Hewitt et al. 2011; McClary and Nelligan 2001).

Species	Egg (µm)	Embryo/larvae (µm)	References
Bugula pacifica	35	200	(Strathmann 1987)
Membranipora membranacea	60	-	(Strathmann 1987)
Electra pilosa	60	-	(Ryland and Stebbing 1971)
Crisia elongata	-	100	(Strathmann 1987)

Table 6 Propagule sizes for key bryozoan species

6. Crabs

Most crab species are dioecious and sexually outcrossing. Males transfer the sperm to females who store it in a storage sac, called the spematheca, until needed to fertilise their eggs. After fertilisation the eggs are released onto the female's abdomen and stored in a spongy mass between the abdominal flap and the body. Eggs hatch into zoea larva which have a planktonic dispersal phase (Ruppert et al. 2004).

The literature review identified 82 references containing propagule size information for a total of 159 species. This included 166 female gamete sizes estimates and 29 larval size estimates (Table A6). Reported female gamete sizes ranged from $2.34 - 4,700 \mu m$, while larval sizes ranged from $250 - 2,100 \mu m$ (Table 7).

The smallest egg size was reported for the crab *llyoplax frater* (range $2.34 - 2.51 \mu$ m, mean 2.80 ± 0.26 µm) (Saher and Qureshi 2010). This is an unusually small reported egg size for this taxonomic group with the next smallest egg size estimate being 60 µm for *Metapenaeopsis dalei* (Choi et al. 2005). Further, the majority of egg size estimates were > 200 µm (Table A6). Given the unusual size range reported for *I. frater*, further validation of this size estimate is required.

The literature search identified the propagule sizes of four species that have been identified as biofouling risk species (Hewitt et al. 2011; McClary and Nelligan 2001). *Palaemon elegans* was identified to have an embryo diameter of 473 μ m (Anger et al. 2002), *Charybdis japonica* was found to have an egg diameter of 240 μ m (Fowler and McLay 2013), *Hemigrapsus takanoi* was found to have an egg size 281.4 ± 0.7 μ m (Yamasaki et al. 2008), *Carcinus maenas* was found to have a minimum egg diameter of 300 μ m (Hartnoll and Paul 1982) and *Eriocheir sinensis* was found to have an egg diameter of 354.4 μ m (Chang et al. 2017).

Species	Egg (µm)	Embryo/larvae (µm)	References
Ilyoplax frater	2.34 - 2.51	-	(Saher and Qureshi 2010)
Metapenaeopsis dalei	60	-	(Choi et al. 2005)
Charybdis japonica	240	-	(Fowler and McLay 2013)
Hemigrapsus takanoi	281.4 ± 0.7	-	(Yamasaki et al. 2008)
Carcinus maenas	300	-	(Hartnoll and Paul 1982)
Eriocheir sinensis	350	-	(Dittel and Epifanio 2009)
Palaemon elegans	473	-	(Anger et al. 2002)
Callinectes sapidus	-	250	(Hill et al. 1989)

Table 7 Propagule sizes for key crab species

7. Echinoderms

The Echinodermata are a diverse group of marine taxa including sea stars, brittle stars, sea urchins, sand dollars, sea cucumbers, and sea lilies (Ruppert et al. 2004). Most species are dioecious and reproduce via spawning and external fertilization, although some brooding species have been described (Ruppert et al. 2004). Many species can reproduce asexually through regeneration from fragments (Ruppert et al. 2004).

The literature review identified 71 relevant references containing propagule size information from a total of 193 species. This included 273 female gamete size estimates and 33 larval size estimates (Table A7). Female gamete sizes ranged from $50 - 4,400 \mu$ m, while larval sizes ranged from $210 - 2,000 \mu$ m (Table A7).

The class Holothuroidea has a large range of egg diameters, from 50 μ m (*Synaptula reciprocans*) to 4,400 μ m (*Psychropotes longicauda*), however 80% of the species have eggs with diameters less than 1,000 μ m (Sewell and Young 1997) (Table A7). The next minimum egg diameters were recorded in *Arbacia punctulata* (60 μ m) (Marshall and Keough 2003a), *Pseudostichopus mollis* (61 μ m) (Morgan and Neal 2012) and *Arbacia stellata* (65 μ m) (Emlet 1995) (Table 8). The minimum larval sizes identified were typically greater than > 200 μ m (Byrne and Cerra, 1996; Herrera et al., 1996) with the smallest (210 μ m) identified for *Patiriella parvivpara* (Byrne and Cerra 1996) (Table 8).

One species identified from the literature search was identified as a known biofouling risk species (Hewitt et al. 2011; McClary and Nelligan 2001). *Asterias amurensis* was found to have an egg diameter of 149 (SE =1.13) (Morris 2002) (Table 8).

Species	Egg (µm)	Embryo/larvae (µm)	References
Synaptula reciprocans	50	-	(Sewell and Young 1997)
Arbacia punctulata	60	-	(Marshall and Keough 2003a)
Pseudostichopus mollis	61 – 421	-	(Morgan and Neal 2012)
Arbacia stellata	65	-	(Emlet 1995)
Asterias amurensis	149 (SE =1.13)	-	(Morris 2002)
Patiriella parvivipara	-	210	(Byrne and Cerra 1996)
Leodia sexiesperforata	-	260	(Herrera et al. 1996)

Table 8 Propagule sizes for key echinoderm species

8. Flatworms

Flatworms comprise the phylum Platyhelminthes, consisting of approximately 20,000 species. They are a hermaphroditic group and capable of self-fertilisation, outcrossed sexual reproduction and asexual modes of reproduction (Ruppert et al. 2004).

The literature review identified propagule size information from a total of 66 species. This included 68 female gamete sizes estimates and 4 larval size estimates (Table A8). Female gametes ranged from $6 - 480 \mu m$, while larval size ranged from $125 - 280 \mu m$ in length.

We identified 30 species (53%) with female gamete sizes < 50 μ m (Table 9). Many of the egg sizes reported were asymmetrical, with at least one of the reported measures < 50 μ m. The minimum egg size identified was 6 x 20 μ m for *Sclerocollum saudii* (Al-Jahdali, 2010), followed by *Aphanurus stossichii* and *Aphanurus virgula* with minimum diameters of 9 μ m (Kostadinova et al. 2004)(Table 9).

None of the species identified from the literature search were identified as known biofouling risk species (Hewitt et al. 2011; McClary and Nelligan 2001).

Species	Egg (µm)	Embryo/larvae (µm)	References
Sclerocollum saudii	6 x 20	-	(Al-Jahdali 2010)
Aphanurus stossichii	9 – 13	-	(Kostadinova et al. 2004)
Aphanurus virgula	9 – 13	-	(Kostadinova et al. 2004)
Haploporus indicus	11 – 15	-	(Atopkin et al. 2019)
Sclerocollum rubrimaris	14 x 55	-	(Al-Jahdali 2010)
Haploporus pseudoindicus	15	-	(Atopkin et al. 2019)
Pseudohaploporus vietnamensis	15 – 19	-	(Atopkin et al. 2019)
Haploporus musculosaccus	17 – 23	-	(Atopkin et al. 2019)
Pseudopecoelus ibunami	17 – 40	-	(Estrada-García et al. 2018)
Haploporus spinosus	18 – 23	-	(Atopkin et al. 2019)
Haploporus magnisaccus	18 – 26	-	(Atopkin et al. 2019)
Haploporus mugilis	19 – 22	-	(Atopkin et al. 2019)
Pseudohaploporus planilizum	23 – 27	-	(Atopkin et al. 2019)
Haploporus benedeni	24 – 27	-	(Atopkin et al. 2019; Blasco-Costa et al. 2009)
Spirorchiidae gen. sp	25 – 30	-	(Lehnert et al. 2019)
Myzoxenus insolens	25 x 64	-	(Bray and Cribb 1998)
Multitestis pyriformis	26 x 57	-	(Bray and Cribb 1998)
Haploporus pacificus	27 – 31	-	(Atopkin et al. 2019)
Echeneidocoelium indicum	29 x 54	-	(Bray and Cribb 1998)
Lepocreadioides orientalis	29 x 69	-	(Bray and Cribb 1998)
Anantrum histocephalum	31 x 48	-	(Jensen and Heckmann 1977)
Bulbocirrus aulostomi	31 x 51	-	(Bray and Cribb 1998)

Table 9 Propagule sizes for key flatworm species

Species	Egg (µm)	Embryo/larvae (µm)	References
Clavogalea trachinoti	32 x 61	-	(Bray and Cribb 1998)
Pseudopisthogonoporus vitellosus	32 x 67	-	(Bray and Cribb 1998)
Bianium plicitum	34 x 66	-	(Bray and Cribb 1998)
Opechona austrobacillaris	35 x 70	-	(Bray and Cribb 1998)
Lepocreadium oyabitcha	38 x 70	-	(Bray and Cribb 1998)
Bianium spongiosum	40 x 60	-	(Bray and Cribb 1998)
Neowardula brayi	42 x 58	-	(Al-Jahdali 2010)
Anoplodium hymanae	45 – 97	-	(Shinn 1985)
Melloplana ferruginea	-	125	(Bolanos and Litvaitis 2009)
Maritigrella crozieri	-	134 – 200	(Bolanos and Litvaitis 2009)
Kaburakia excelsa	-	280	(Strathmann 1987)

Note: For propagules that are not spherical, the longest by shortest length are given (where available).

9. Gastropods

While most terrestrial gastropods are hermaphrodites, the majority of marine gastropods are dioecious. Many marine species have internal fertilisation although some do have external fertilisation (Ruppert et al. 2004). Self-fertilisation is possible for some hermaphroditic species and asexual reproduction through parthenogenesis has also been reported (Ruppert et al. 2004).

The literature review identified propagule size information for a total of 315 species from 72 references. This included 342 female gamete size estimates and 122 larval/juvenile size estimates (Table A9). Female gamete sizes ranged from 40 – 2,250 μ m, while size of larvae/juveniles ranged from 40 – 10,400 μ m (Table A9).

The smallest egg size was reported for *Placida viridis* (egg: 40 μm) (Schmekel et al. 1982), followed by *Elysia trisinuata* (egg: 46 μm) (Hamatani 1967), *Placida dendritica* (egg: 47 μm) (Strathmann, 1987; Clark, 1975) and *Hermaea bifida* (egg: 48 μm) (Schmekel et al. 1982) (Table 10). The smallest reported larvae/juvenile sizes were *Stramonita haemastoma haemastoma* (40 μm) (Lahbib et al. 2011), *Stramonita haemastoma canaliculata* (49.7 μm) (Roller and Stickle 1988), and *Doris immonda* (67.4 μm) (Goddard and Hermosillo 2008) (Table 10).

The literature search identified propagule sizes of two species that have been identified as biofouling risk species (Hewitt et al. 2011; McClary and Nelligan 2001). *Doridella steinbergae* was identified to have an oocyte size of 75 μ m (Strathmann 2017) and *Rapana venosa* was found to have a minimum mean veliger diameter of 310 μ m (Harding et al. 2013).

Species	Egg (µm)	Larvae/juvenile (µm)	References
Placida viridis	40 - 60	-	(Schmekel et al. 1982)
Elysia trisinuata	46	-	(Hamatani 1967)
Placida dendritica	47 - 67	-	(Strathmann 1987; Clark, 1975)
Hermaea bifida	48	-	(Schmekel et al. 1982)
Doridella steinbergae	75	-	(Strathmann 2017)
Stramonita haemastoma haemastoma	-	40 - 62	(Lahbib et al. 2011)
Stramonita haemastoma canaliculata	-	49.7 ± 8.3	(Roller and Stickle 1988)
Doris immonda	-	67.4 ± 1.2	(Goddard and Hermosillo 2008)
Rapana venosa	-	310	(Harding et al. 2013)

Table 10 Propagule sizes for key gastropods species

10. Hydroids

Hydrozoa are cnidarians and can occur as solitary polyps or as colonies. They often alternate between a benthic polyp stage and a free floating sexual medusa phase (Ruppert et al. 2004). Most species are dioecious with males and females releasing gametes into the water for external fertilisation. Larvae develop in the plankton before settling. Asexual reproduction can occur through budding of the polyp and through the asexual production of medusa (Ruppert et al. 2004).

The literature review identified propagule size information for 31 species from 8 references. This included 33 female gamete size estimates and 4 larval/medusa size estimates (Table A10). Female gamete size ranged from 80 – 700 μ m, while the medusae sizes were 260 – 800 μ m (Table 11). The smallest egg size was reported for *Sarsia turbulosa* (egg: 80 – 95 μ m) (Freeman and Miller 1982; Strathmann 1987), followed by *Gonoionemus vertens* (egg: 95 – 100 μ m) (Takeda et al. 2006) and *Polyorchis penicillatus* (egg: 100 μ m) (Strathmann 2017). The smallest reported medusa size was for *Tubularia crocea* (medusa: 260 μ m) (Walters and Wethey 1996) (Table 11).

The literature search identified the minimum egg size of one species that has been identified as a biofouling risk species (Hewitt et al. 2011; McClary and Nelligan 2001). *Sarsia tubulosa* was identified to have a minimum egg diameter of 80 μ m (Freeman and Miller 1982).

Species	Egg (µm)	Medusa size (µm)	References
Sarsia turbulosa	80 – 95	-	(Freeman and Miller 1982; Strathmann 1987)
Gonoionemus vertens	95 – 100	-	(Takeda et al. 2006)
Polyorchis penicillatus	100	-	(Strathmann 2017)
Tubularia crocea	-	260	(Walters and Wethey 1996)

Table 11 Propagule sizes for key hydroid species

11. Macroalgae

The literature review identified algal reproductive cell size information for 104 species (Table A11). This included 171 gamete/spore size estimates, ranging from $1.5 - 250 \mu m$ (Table A11).

The smallest algal reproductive cell size was reported *Penicillus pyriformis* (1.5 μ m) (Clifton and Clifton 1999) and *Halimeda incrassate* (1.5 μ m) (Clifton and Clifton 1999) (Table 12). A further 58 species were identified as having reproductive cells between 2 – 50 μ m (Table 12). The sizes reported here are similar to those reported in a review by Clayton (Clayton 1992), where algal reproductive cells were found to range from 2 – 250 μ m in diameter.

The literature search identified the minimum gamete size of one species that has been identified as a biofouling risk species (Hewitt et al. 2011; McClary and Nelligan 2001). *Codium fragile* was found to have a minimum female egg size of $10 - 13 \mu m$ (Miravalles et al. 2012; Prince and Trowbridge 2004).

Species	Propagule (µm)	References
Halimeda incrassata	1.5	(Clifton and Clifton 1999)
Penicillus pyriformis	1.5	(Clifton and Clifton 1999)
Caulerpa cupressoide	2.3	(Clifton and Clifton 1999)
Caulerpa mexicana	2.3	(Clifton and Clifton 1999)
Halimeda simulans	2.3	(Clifton and Clifton 1999)
Udotea abbottiorum	2.3	(Clifton and Clifton 1999)
Rhipcephalus phoenix	2.3	(Clifton and Clifton 1999)
Udotea caribaea	2.3	(Clifton and Clifton 1999)
Penicillus dumetosus	2.3	(Clifton and Clifton 1999)
Udotea cyathiformis	2.3	(Clifton and Clifton 1999)
Penicillus capitatus	2.3	(Clifton and Clifton 1999)
Penicillus lamouroxii	2.3	(Clifton and Clifton 1999)
Halimeda discoidea	2.3	(Clifton and Clifton 1999)
Halimeda monile	2.3	(Clifton and Clifton 1999)
Caulerpa serrulata	2.3	(Clifton and Clifton 1999)
Halimeda tuna	2.3	(Clifton and Clifton 1999)
Halimeda goreaui	2.3	(Clifton and Clifton 1999)
Caulerpa sertularioides	2.3	(Clifton and Clifton 1999)
Caulerpa racemosa	2.3	(Clifton and Clifton 1999)
Udotea flabellum	2.3	(Clifton and Clifton 1999)
Halimeda opuntia	2.3	(Clifton and Clifton 1999)
Prasiola stipitata	2.4	(Cole and Akintobi 1963)
Scytosiphon lomentaria	3	(Clayton 1978; Clayton 1980)
Bryopsis hypnoides	4	(Burr and West 1970)

Table 12 Propagule sizes for key algae species

Species	Propagule (µm)	References
Laminariales various spp.	4	(Henry and Cole 1982; Clayton 1990)
Ectocarpus siliculosus	4	(Baker and Evans 1973; Müller 1977)
Cladophora vagabunda	4	(Hoek 1978)
Sphacelaria rigidula	4	(Van Reine 1982)
Ulva rigida	4	(Phillips 1988)
Laurencia papillosa	5	(Ngan and Price 1979)
Halimeda inerassata	8	(Meinesz 1980)
Chondrococcus hornemanni	10	(Ngan and Price 1979)
Hypnea cervicornis	10	(Ngan and Price 1979)
Coelothrix indica	10	(Ngan and Price 1979)
Codium fragile	10	(Miravalles et al. 2012)
Bangia fuscopurpurea	11	(Okuda and Neushul 1981)
Enteromorpha intestinalis	11	(Evans et al. 1970)
Graciliaria edulis	11	(Ngan and Price 1979)
Hypnea pannosa	12.5	(Ngan and Price 1979)
Hypnea boergeseni	12.5	(Ngan and Price 1979)
Solierla mollis	12.5	(Ngan and Price 1979)
Codium fragile	13.3	(Prince and Trowbridge 2004)
Grateloupia divaricata	13.5	(Ngan and Price 1979)
Hypnea esperi	13.5	(Ngan and Price 1979)
Gracilaria crassa	15	(Ngan and Price 1979)
Solierla robusta	15	(Ngan and Price 1979)
Sarconema filiforme	15	(Ngan and Price 1979)
Gracilaria verrucosa	15	(Destombe et al. 1992)
Gelidiopsis variabilis	15	(Ngan and Price 1979)
Chondrus verrucosus	15.1	(Bellgrove et al. 2019)
Ceramium sp.	16	(Ngan and Price 1979)
Graciliaria rhodotricha	16	(Ngan and Price 1979)
Gigantina canaliculata	17	(Okuda and Neushul 1981)
Gelidium crinale	17.2	(Ngan and Price 1979)
Gelidium corneum	17.5	(Ngan and Price 1979)
Gracilia textorii	17.5	(Ngan and Price 1979)
Gigantina canaliculata	18	(Ryland and Stebbing 1971)
Gigartina leptorhynchos	18.4	(Okuda and Neushul 1981)
Gelidium heteroplatos	18.5	(Ngan and Price 1979)
Gelidium pusillum	18.5	(Ngan and Price 1979)
Hypnea valentiae	20	(Ngan and Price 1979)
Gracilia verrucosa	20	(Ngan and Price 1979)
Articulated corrallines	20	(Chihara 1973)

Department of Agriculture, Water and the Environment 23

Species	Propagule (µm)	References
Gracilaria edulis	22	(Ngan and Price 1979)
Caulacanths ustulatus	22.5	(Ngan and Price 1979)
Gracilaria edulis	23	(Ngan and Price 1979)
Gracilaria sjoestedti	23	(Okuda and Neushul 1981)
Champia parvula	25	(Ngan and Price 1979)
Antithamnion kylinii	25.4	(Okuda and Neushul 1981)
Laurencia perforate	26	(Ngan and Price 1979)
Laurencia succisa	26	(Ngan and Price 1979)
Gelidium coulterii	26.5	(Okuda and Neushul 1981)
Ceramium fastigiatum	27.5	(Ngan and Price 1979)
Centroceras clavulatum	27.5	(Ngan and Price 1979)
Neoagardhiella baileyi	28	(Okuda and Neushul 1981)
Zygnema sp.	29	(Poulíčková et al. 2007)
Bostrychia tenella	30	(Ngan and Price 1979)
Pedobesia clavaeformis	30	(MacRaild and Womersley 1974)
Caloglossa bombayensis	30	(Ngan and Price 1979)
Caloglossa leprieurii	30	(Ngan and Price 1979)
Acrocystis nana	31	(Ngan and Price 1979)
Ceramium californicum	31.5	(Okuda and Neushul 1981)
Tolypiocladia glomerulata	32.5	(Ngan and Price 1979)
Ceramium fastigiatum	33	(Ngan and Price 1979)
Polysiphonia coacta	33.5	(Ngan and Price 1979)
Laurencia majuscula	35	(Ngan and Price 1979)
Laurencia obtusa	35	(Ngan and Price 1979)
Polysiphonia subtilissima	35	(Ngan and Price 1979)
Catenella nipae	35	(Ngan and Price 1979)
Eucheuma uncinatum	39.5	(Okuda and Neushul 1981)
Acanthophora spicifera	40	(Ngan and Price 1979)
Centoceras clavulatum	40.8	(Okuda and Neushul 1981)
Laurencia nidifica	41	(Ngan and Price 1979)
Acanthophora muscoides	42.5	(Ngan and Price 1979)
Bostrychia radicans	42.5	(Ngan and Price 1979)
Laurencia pygmaea	42.5	(Ngan and Price 1979)
Laurencia tenera	43.5	(Ngan and Price 1979)
Chondria sp	45	(Ngan and Price 1979)
Bostrychia binderi	46	(Ngan and Price 1979)

Note: Only the measurement of the shortest axis of the smallest propagule is reported in this table, see Table A11 for more measurement details.

12. Ascidians

Ascidians are sessile organisms which can reproduce either sexually or asexually by budding. When sexually reproducing, embryos develop in the atrium and are released as either tadpoles, or small juveniles (Strathmann 1987). Larval settlement occurs between 30 minutes – 12 hours after release (Strathmann 1987).

The literature review identified 248 potential references, of which we were able to obtain relevant propagule size information for 53 species from 41 references (Table A12). This included 58 female gamete size estimates and 17 larval size estimates. Egg sizes ranged from 60 – 720 μ m, while reported tadpole/juvenile size ranged from 720 – 2,350 μ m (Table 13).

The smallest identified female gamete sizes were for *Botryllus schlosseri* (stage 3 oocyte: 60 μ m) (Stewart-Savage et al. 1999), *Dendrodoa grossularia* (egg: 60 μ m) (Millar 1954) and *Molgula oculate* (egg: 80 μ m) (Jeffery and Swalla 1992; Berrill 1945; Swalla and Jeffery 1990). The minimum identified tadpole/juvenile sizes was a width of 220 μ m for one day old *Molgula manhattensis* (Bullard and Whitlatch 2004) (Table 13).

The literature search identified propagule sizes of four species that have been identified as biofouling risk species (Hewitt et al. 2011; McClary and Nelligan 2001). The four identified biofouling risk species included *Botrylloides violaceus* (unfertilised egg 80 µm) (Carver et al. 2006), *Didemnum sp.*, (larvae width 930 µm) (Bullard and Whitlatch 2004), *Molgula manhattensis* (larvae width 200 µm) (Bullard and Whitlatch 2004) and *Styela clava* (ripe ova size 150 µm (McClary et al. 2008) and juvenile width 290 µm) (Bullard and Whitlatch 2004) (Table 13).

Species	Egg (µm)	Embryo/larvae (µm)	References
Botryllus schlosseri	60 - 100	-	(Stewart-Savage et al. 1999)
Dendrodoa grossularia	60	-	(Millar 1954)
Molgula oculata	80	-	(Jeffery and Swalla 1992; Berrill 1945; Swalla and Jeffery 1990)
Botrylloides violaceus	80	-	(Carver et al. 2006)
Styela clava	150	200	(McClary et al. 2008; Bullard and Whitlatch 2004)
Molgula manhattensis	-	200	(Bullard and Whitlatch 2004)
Styela canopus	-	600 - 900	(Huang et al. 2003)
Didemnum sp.	_	930	(Bullard and Whitlatch 2004)

Table 13 Propagule sizes for key ascidian species

13. Asexual Reproduction

Most of the taxonomic risk groups covered in this review contain species that have the potential to reproduce asexually (Hughes 2002; Allen et al. 2018). The forms of asexual reproduction are diverse and include the fission, fragmentation or the budding of somatic tissue, parthenogenesis (development of an individual from an unfertilised egg), and polyembryony (the splitting of one sexually produced embryo into many independent individuals during development) (Hughes 2002; Craig et al. 1997).

The literature review identified 664 potential references, of which we were able to obtain relevant asexual propagule sizes for only six species from six references. The smallest reported size identified in this review was 200 µm for clones of the cypris larval stage of the barnacle *Loxothylacus panopaei*, which are formed through polyembryony (Allen et al. 2015)(Table 14). None of the species identified from the literature search were identified as known biofouling risk species (Hewitt et al. 2011; McClary and Nelligan 2001), however, the ascidian *Botryllus schlosseri* is regarded as invasive in some parts of the world (Fofonoff et al. 2018).

While there are few direct estimates of asexual propagules sizes for most taxonomic groups reviewed in this study, the theoretical minimum sizes for asexual propagules derived from somatic tissue (e.g. fragments, budding) would equal the smallest somatic cell size for that species. However, it is likely that viable asexual propagules derived from somatic tissue are likely to be multicellular and therefore much larger than this theoretical minimum.

For asexual propagules derived from unfertilised eggs (parthenogenesis), or the splitting of developing embryos (polyembryony), the theoretical smallest size should be equal to the egg size estimates for species. However, it remains possible that the splitting of developing embryos during polyembryony, may generate clonal propagules smaller than the original egg size.

Risk group	Species	Propagule (µm)	Comment	References
Echinoderms	Ophidiaster granifer	600-650	Egg diameter	(Yamaguchi and Lucas 1984)
Ascidians	Botryllus schlosseri	344.2 ± 35.5	Size of stage 8 bud	(Gasparini et al. 2015)
Hydrozoa	Moerisia lyonsi	1000-4000	Medusae diameter	(Purcell et al. 1999)
Polychaetes	Pygospio elegans	1570 ± 100	Size of tail fragment produce by asexual fission	(McCurdy 2001)
Echinoderms	Echinarachnius parma	200-400	Size of larvae derived from single embryos and from twinned embryos	(Allen et al. 2015)
Barnacles	Loxothylacus panopaei	200	Clones at cypris larval stage	(Craig et al. 1997)

Table 14 Asexual	propagule	sizes of	species	from k	ey taxa
------------------	-----------	----------	---------	--------	---------

Appendix A

A1. Amphipods and Isopods

Literature search: To identify literature on propagule and female gamete size a systematic literature search was undertaken using the <u>Web of Science</u> database. For amphipods and isopods five searches were performed using the following search criteria:

Web of Science: TOPIC: (amphipod) AND TOPIC: (egg size) AND ALL FIELDS: (diameter) Results: 4

Web of Science: TITLE: (amphipod*) AND TOPIC: (hatching size) AND ALL FIELDS: (marine) Results: 14

Web of Science: TITLE: (isopod*) AND TOPIC: (embryo) AND ALL FIELDS: (marine) Results: 21

Web of Science: TITLE: (amphipod*) AND TOPIC: (embryo) AND ALL FIELDS: (marine) Results: 44

Web of Science: TITLE: (amphipod*) AND TOPIC: (juvenile length)) Results: 96

Additional articles were also sourced from citations and reference lists of articles produced in the Web of Science database searches.

Species	Egg (µm)	Larval (µm)	Comments	References
Acanthohaustorius millsi	-	780	Embryo diameter	(Sameoto 1969; Van Dolah and Bird, 1980)
Alicella gigantea	-	9,110	Embryo diameter	(Barnard and Ingram, 1986)
Allomelita pellucida	-	480	Embryo diameter	(Legueux, 1926)
Ampelisca abdita	-	430	Embryo diameter	(Mills, 1967)
Ampelisca abdita	-	390	Embryo diameter	(Nelson, 1978)
Ampelisca araucana	-	450	Embryo diameter	(Carrasco and Arcos, 1984)

Species	Egg (µm)	Larval (µm)	Comments	References
Ampelisca brevicorni	-	480	Embryo diameter	(Kaim-Malka, 1969)
Ampelisca diadema	-	490	Embryo diameter	(Ivanov, 1961)
Ampelisca macrocephala	-	680	Embryo diameter	(Kanneworff, 1965)
Ampelisca tenuicornis	-	370	Embryo diameter	(Sheader, 1977b)
Ampelisca vadorum	-	560	Embryo diameter	(Mills, 1967)
Ampelisca vadorum	-	510	Embryo diameter	(Van Dolah and Bird, 1980)
Amphiporeia lawrenciana	-	830	Embryo diameter	(Downer and Steele, 1979)
Amphiporeia virginiana	-	270	Embryo diameter	(Van Dolah and Bird, 1980)
Ampithoe lacertosa	-	460	Embryo diameter	(Heller, 1968)
Ampithoe longimana	-	380	Embryo diameter	(Nelson, 1978)
Ampithoe ramond	-	310	Embryo diameter	(Gilat, 1962)
Ampithoe valida	-	420	Embryo diameter	(Barrett, 1966)
Anonyx nugax	-	1,300	Embryo diameter	(Kuznetsov, 1964, MacGinitie, 1955)
Anonyx sarsi	-	1,020	Embryo diameter	(Sainte-Marie et al., 1990)
Apherusa glacialis	180-230	-	Egg diameter	(Poltermann et al., 2000)
Asellus aquaticus	300-400	-	Egg diameter	(Steel, 1961, Andersson, 1969)
Athelges takanoshimensis	-	144.7 ± 17.4	Mean egg diameter	(Cericola and Williams, 2015)
Athelges takanoshimensis	-	262.1 ± 12.7	Larvae width	(Cericola and Williams, 2015)
Atyloella magellanica	-	670	Embryo diameter	(Thurston, 1974)
Atylus guttatus	-	400	Embryo diameter	(Ivanov, 1961)

Department of Agriculture, Water and the Environment 28

Species	Egg (µm)	Larval (µm)	Comments	References
Bathyporeia pelagic	-	1,300	Hatched juvenile length	(Fish, 1975)
Bathyporeia pelagica	-	420	Embryo diameter	(Fish, 1975)
Bathyporeia pilosa	-	1,400	Length of newly hatched juveniles	(Fish, 1975)
Bathyporeia pilosa	-	440	Embryo diameter	(Fish, 1975)
Bovallia gigantea	-	1,340	Embryo diameter	(Thurston, 1974)
Bruzelia tuberculata	-	850	Embryo diameter	(Stephensen, 1923)
Caecosphaeroma burgundum	750	-	Egg diameter	(Daum, 1954)
Calliopius laeviusculus	-	450	Embryo diameter	(Steele and Steele, 1973)
Calliopius laeviusculus	-	580	Embryo diameter	(Steele and Steele, 1973)
Caprella arimotoi	-	1,100–1,500	Body length of first instar young *	(Aoki, 1999)
Caprella danilevskii	-	370	Late stage embryo	(Takeuchi and Hirano, 1992)
Caprella danilevskii	-	1,600-1,800	Body length of first instar young *	(Aoki, 1999)
Caprella decipiens	-	1,200-1,400	Body length of first instar young *	(Aoki, 1999)
Caprella glabra	-	1,200-1,400	Body length of first instar young *	(Aoki, 1999)
Caprella monoceros	-	1,000-1,200	Body length of first instar young *	(Aoki, 1999)
Caprella mutica	-	300-330	Early stage embryo width	(Nakajima and Takeuchi, 2008)
Caprella mutica	-	2,800 (SE ± 100)	Minimum mean juvenile length	(Willis et al., 2009)
Caprella mutica	150	300 x 380	Small oocyte size, minimum embryo dimensions	(Nakajima and Takeuchi, 2008, Matthews, 2008)
Caprella okadai	-	1,700-1,800	Body length of first instar young *	(Aoki, 1999)
Caprella okadai	-	280 (SD ± 20)	Width of early stage embryo	(Takeuchi and Hirano, 1992)
Caprella penantis	-	1,000-1,200	Body length of first instar young *	(Aoki, 1999)

Department of Agriculture, Water and the Environment 29

Species	Egg (µm)	Larval (µm)	Comments	References
Caprella scaura	-	1,100-1,300	Body length of first instar young *	(Aoki, 1999)
Caprella subinermis	-	1,550–1,800	Body length of first instar young *	(Aoki, 1999)
Casco bigelowi	-	2,700	Length of smallest juvenile in mothers burrow	(Thiel, 1998)
Casco bigelowi	-	3,600	Juvenile in mother's burrow	(Thiel et al., 1997)
Casco bigelowi	-	620	Embryo diameter	(Wildish, 1982)
Ceratoserolis trilobitoides	3,000	-	Egg diameter	(Wägele, 1987)
Chaetogammarus marinus	-	670	Stage 3 embryo length	(Lawrence and Poulter, 2001)
Cheirimedon femoratus	-	670	Embryo diameter	(Bregazzi, 1972)
Chelura terebrans	-	450	Embryo diameter	(Kühne and Becker, 1964)
Clypeoniscus hanseni	120-126	-	Egg diameter	(Sheader, 1977a)
Corophium acherusicum	-	310	Embryo diameter	(Walter, 1980)
Corophium bonnellii	-	360	Embryo diameter	(Moore, 1978)
Corophium insidiosum	-	280	Embryo diameter	(Sheader, 1978)
Corophium insidiosum	-	360	Embryo diameter	(Nair and Anger, 1979)
Cyathura carinata	480	-	Egg diameter	(Wägele, 1979)
Cyathura polita	-	2,700 (SD ± 250)	Body length of juveniles released from marsupium	(Mercer et al., 2007)
Cyathura polita	-	2,060 (SD ± 160)	Embryos hatched from vitelline membrane	(Mercer et al., 2007)
Cymadusa compta	-	370	Embryo diameter	(Nelson, 1978)
Cymadusa filosa	-	390	Embryo diameter	(Gilat, 1962)
Cyphocaris challengeri	470 (SD ± 60)	1,500 (SD ± 1100)	Egg diameter (shortest), juvenile body length	(Yamada and Ikeda, 2000)
Diogidias littoralis	_	350	Embryo diameter	(Fenwick, 1985)
Dulichia spinosissima	_	520	Embryo diameter	(MacGinitie, 1955)
Dynamene bidentata	500	-	Egg diameter	(Holdich, 1968, Naylor and Quénisset, 1964)

Species	Egg (µm)	Larval (µm)	Comments	References
Dynamene bidentata	500	-	Egg diameter	(Naylor and Quénisset, 1964)
Dynoides daguilarensis	-	1,800	Juvenile body length	(Li, 2000)
Dyopedos monacanthus	-	580	Smallest juvenile length on mother's whip	(Thiel, 1997)
Elasmopus levis	-	400	Embryo diameter	(Nelson, 1978)
Eohaustorius sencillus	-	390	Embryo diameter	(Slattery, 1985)
Epimeria monodon	-	1,270	Embryo diameter	(Thurston, 1974)
Euonyx chelatus	-	680	Embryo diameter	(Comely and Ansell, 1988)
Eurydice pulchra	600	-	Egg diameter	(Fish, 1970)
Eurydice pulchra	600	-	Egg diameter	(Jones, 1970)
Eurymera monticulosa	-	750	Embryo diameter	(Thurston, 1974)
Eurythenes gryllus	-	2,300	Embryo diameter	(Ingram and Hessler, 1987)
Excirolana braziliensis	-	800-1,200	Mean stage 1 embryo	(Martínez and Defeo, 2006)
Gammaracanthus loricatus	-	850	Embryo diameter	(Steele and Steele, 1975)
Gammarellus angulosus	-	650	Embryo diameter	(Steele and Steele, 1972a)
Gammarellus homari	-	1,000	Embryo diameter	(Kuznetsov, 1964, Steele, 1972)
Gammaropsis inaequistylis	-	230	Embryo diameter	(Steele et al., 1986)
Gammaropsis megalops	-	450	Embryo diameter	(MacGinitie, 1955)
Gammarus	350-720	-	Egg diameter	(Steele and Steele, 1975)
Gammarus crinicornis	-	440	Embryo diameter	(Dumay, 1972)
Gammarus duebeni	-	610	Embryo diameter	(Hynes, 1954, Hynes, 1955)

Species	Egg (µm)	Larval (µm)	Comments	References
Gammarus duebeni	-	650	Embryo diameter	(Hynes, 1954, Hynes, 1955)
Gammarus duebeni	-	560	Embryo diameter	(Steele and Steele, 1969)
Gammarus fasciatus	-	460	Embryo diameter	(Clemens, 1950)
Gammarus finmarchicus	-	500	Embryo diameter	(Steele and Steele, 1975)
Gammarus lawrencianus	-	410	Embryo diameter	(Steele and Steele, 1975)
Gammarus locusta	-	430	Embryo diameter	(Spooner, 1947)
Gammarus mucronatus	-	360	Embryo diameter	(Steele and Steele, 1975)
Gammarus mucronatus	-	280	Embryo diameter	(Van Dolah and Bird, 1980)
Gammarus mucronatus	-	430	Embryo diameter	(LaFrance and Ruber, 1985)
Gammarus mucronatus	-	420	Embryo diameter	(Fredette and Diaz, 1986)
Gammarus obtusatus	-	550	Embryo diameter	(Sheader and Chia, 1970)
Gammarus obtusatus	-	610	Embryo diameter	(Steele and Steele, 1970)
Gammarus obtusatus	-	650	Embryo diameter	(Steele and Steele, 1970)
Gammarus oceanicus	-	550	Embryo diameter	(Steele and Steele, 1972b)
Gammarus palustri	-	410	Embryo diameter	(Van Dolah et al., 1975)
Gammarus salinus	-	310	Embryo diameter	(Kolding and Fenchel, 1981)
Gammarus setosus	-	690	Embryo diameter	(Steele and Steele, 1970)

Species	Egg (µm)	Larval (µm)	Comments	References
Gammarus stoerensis	-	440	Embryo diameter	(Steele and Steele, 1975)
Gammarus subtypicus	-	370	Embryo diameter	(Dumay, 1972)
Gammarus tigrinus	-	460	Embryo diameter	(Steele and Steele, 1972a)
Gammarus wilkitzkii	600-800	-	Egg diameter	(Poltermann et al., 2000)
Gammarus wilkitzkii	-	730	Embryo diameter	(Barnard, 1959, Steele and Steele, 1975)
Gammarus zaddachi	-	530	Embryo diameter	(Barnard, 1959)
Gitanopsis squamosa	-	400	Embryo diameter	(Thurston, 1974)
Glyptonotus antarcticus	3,000	-	Egg diameter	(White, 1970)
Haploops fundiensis	-	430	Embryo diameter	(Wildish, 1982)
Haploops tenuis	-	590	Embryo diameter	(Kanneworff, 1966)
Haploops tubicola	-	750	Embryo diameter	(Kanneworff, 1966)
Hippomedon kergueleni	-	740	Embryo diameter	(Bregazzi, 1972, Bregazzi, 1973)
Hippomedon propinquus	-	550	Embryo diameter	(Stephensen, 1923)
Hippomedon propinquus	-	580	Embryo diameter	(Lamarche and Brunel, 1987)
Hippomedon whero	-	390	Embryo diameter	(Fenwick, 1985)
Hirondellea gigas	-	720	Embryo diameter	(Hessler et al., 1978)
Hyalella azteca	-	350	Embryo diameter	(Strong Jr, 1972)
Hyalella azteca	-	290	Embryo diameter	(Strong Jr, 1972)
Hyalella azteca	-	280	Embryo diameter	(Strong Jr, 1972)
Idotea baltica	488	-	Egg diameter	(Strong, 1978)
Idotea emarginata	700	-	Egg diameter	(Naylor, 1955)
Idotea neglecta	525	-	Egg diameter	(Kjennerud, 1950)

Department of Agriculture, Water and the Environment 33

Species	Egg (µm)	Larval (µm)	Comments	References
Idotea pelagica	500-580	-	Egg diameter	(Sheader, 1977a)
Jera albifrons	260	-	Egg diameter	(Forsman, 1944)
Lembos websteri	-	390	Embryo diameter	(Nelson, 1978)
Lepidepecreum cingulatum	-	440	Embryo diameter	(Thurston, 1974)
Leptocheirus pinguis	-	2000-10,000	Juveniles in burrow	(Thiel et al., 1997)
Leptocheirus pinguis	-	470	Embryo diameter	(Wildish, 1980)
Leucothoe ``spongicola''	-	1,200	Minimum body length found in sponges	(Thiel, 2000)
Leucothoe "ascidicola"	-	1,310	Minimum size found in zooids	(Thiel, 2000)
Leucothoe spinicarpa	-	660	Embryo diameter	(Thurston, 1974)
Limnoria chilensis	-	800	Minimum juvenile body length in burrow	(Thiel, 2003)
Limnoria lignorum	400	-	Egg diameter	(Henderson, 1924)
Limnoria lignorum	400	-	Egg diameter	(Sømme, 1940)
Melita appendiculata	-	360	Embryo diameter	(Nelson, 1978)
Melita celericula	-	320	Embryo diameter	(Croker, 1971)
Melita formosa	-	700	Embryo diameter	(MacGinitie, 1955)
Melita nitida	-	300	Embryo diameter	(Van Dolah and Bird, 1980)
Melita palmata	-	450	Embryo diameter	(Ivanov, 1961)
Metaleptamphopus pectinatus	-	430	Embryo diameter	(Thurston, 1974)
Metambasia faeroensis	-	400	Embryo diameter	(Stephensen, 1923)
Metopa glacialis	400	-	Egg diameter	(Tandberg et al., 2010)
Metopelloides micropalpa	-	490	Mean embryo diameter	(Sainte-Marie, 1991)
Monoculodes edwardsi	-	280	Embryo diameter	(Van Dolah et al., 1975)
Monoporeia affinis	-	1,450-1,550	Newly hatched juvenile	(Sundelin and Eriksson, 1998)
Neohaustorius schmitzi	-	450	Embryo diameter	(Van Dolah and Bird, 1980)

Species	Egg (µm)	Larval (µm)	Comments	References
Oediceros saginatus	_	940	Mean embryo diameter	(Sainte-Marie, 1991)
Onisimus caricus	1,680	-	Egg size	(Tandberg et al., 2010)
Onisimus litoralis	-	880	Embryo diameter	(Sainte-Marie et al., 1990)
Orchestia cavimana	-	620	Embryo diameter	(Wildish, 1979)
Orchestia gammarellus	-	730	Embryo diameter	(Wildish, 1979)
Orchestia mediterranea	-	650	Embryo diameter	(Wildish, 1979)
Orchestia platensis	-	620	Embryo diameter	(Nagata, 1966)
Orchestia platensis	-	580	Embryo diameter	(Morino, 1978)
Orchestia roffensis	-	560	Embryo diameter	(Wildish, 1979)
Orchomene plebs	-	830	Embryo diameter	(Rakusa-Suszczewski, 1982)
Orchomenella minuta	-	520	Embryo diameter	(Sainte-Marie et al., 1990)
Orchomenella pinguis	-	510	Embryo diameter	(Sainte-Marie et al., 1990)
Paragnathia formica	200-300	1,000	Egg diameter range, prehatching juvenile length	(Manship et al., 2011)
Paraharpinia rotundifrons	-	540	Embryo diameter	(Thurston, 1974)
Paramoera walkeri	-	2,100-2,700	Juvenile 0–2 weeks since emergence	(Brown et al., 2015)
Paramoera walkeri	-	550	Embryo diameter	(Rakusa-Suszczewski, 1982)
Parhyalella basrensis	-	390	Embryo diameter	(Ali and Salman, 1986)
Parhyalella pietschmanni	-	390	Embryo diameter	(Steele, 1973)
Patuki roperi	-	480	Embryo diameter	(Fenwick, 1985)
Pectenogammarus planicrurus	332 (SE 2.15)	-	Width of stage 1 egg	(Bella and Fish, 1996)
Photis reinhardi	-	500	Embryo diameter	(MacGinitie, 1955)
Pontogeneia antarctica	-	650	Embryo diameter	(Thurston, 1974)
Pontogeneia inermis	-	570	Mean embryo diameter	(Sainte-Marie, 1991)

Department of Agriculture, Water and the Environment 35

Species	Egg (µm)	Larval (µm)	Comments	References
Pontogeniella brevicornis	-	670	Embryo diameter	(Thurston, 1974)
Pontoporeia affinis	-	530	Embryo diameter	(Mathisen, 1953)
Pontoporeia femorata	-	450	Embryo diameter	(Steele et al., 1978)
Pontoporeia femorata	-	410	Embryo diameter	(Wildish and Peer, 1981)
Pontoporeia sp.	-	610	Mean embryo diameter	(Sainte-Marie, 1991)
Primno abyssalis	450 ± 10	1,250	Egg diameter, juvenile body length	(Yamada et al., 2002)
Primno abyssalis	480 ± 20	1,300	Egg diameter, juvenile body*	(Ikeda, 1995)
Proasellus cavaticus	300	-	Egg diameter	(Henry, 1976)
Proboscinotus loquax	-	500	Embryo diameter	(Hughes, 1982)
Prostebbingia gracilis	-	440	Embryo diameter	(Thurston, 1974)
Protophoxus australis	-	450	Embryo diameter	(Fenwick, 1985)
Psammonyx terranovae	-	1,070	Embryo diameter	(Sainte-Marie et al., 1990)
Quadrivisio lutzi	350 ± 80	-	Egg diameter	(Medeiros and Weber, 2016)
Quadrivisio lutzi	-	350	Embryo diameter	(Stephensen, 1933)
Rhepoxynius abronius	-	420	Embryo diameter	(Slattery, 1985)
Rhepoxynius fatigans	-	410	Embryo diameter	(Slattery, 1985)
Seborgia minima	-	250	Embryo diameter	(Bousfield, 1970)
Serolis polita	1,500	-	Egg diameter*	(Luxmoore, 1982)
Sphaeroma hookeri	500	-	Egg diameter	(Jensen, 1956)
Sphaeroma hookeri	500	-	Egg diameter	(Kinne, 1954)
Sphaeroma serratum	-	1,120 ± 80	Early embryo	(Charmantier and Charmantier-Daures, 1994)
Species	Egg (µm)	Larval (µm)	Comments	References
----------------------------	----------	-------------	---	--
Sphaeroma serratum	-	1,390 ± 30	Stage 1 juvenile	(Charmantier and Charmantier-Daures, 1994)
Sphaeroma serratum	-	1,920 ± 130	Total body length of stage 1 juveniles	(Kittlein, 1991)
Sphaeroma terebrans	-	2,000-3,000	Juvenile body length in mothers burrows	(Thiel, 1999)
Stegocephalina ingolf	-	600	Embryo diameter	(Stephensen, 1944)
Stegocephalus inflatus	-	1,370	Embryo diameter	(Steele, 1967)
Stegocephalus inflatus	-	1,660	Embryo diameter	(Steele, 1967)
Synchelidium trioostegitum	-	1,610	Juvenile body length	(Yu and Suh, 2006)
Talitrus saltator	-	850	Embryo diameter	(Williams, 1978)

Note: Smallest value was recorded when available, * indicates that size was an approximate value.

A2. Barnacles

Literature search: To identify literature on propagule and female gamete size a systematic literature search was undertaken using the <u>Web of Science</u> database. For barnacles two searches were performed using the following search criteria:

Web of Science: TOPIC: (barnacle) AND TOPIC: (egg size) NOT TOPIC: (goose) Results: 67

Web of Science: TOPIC: (cirripedia) AND ALL FIELDS: (egg size) Results: 35

Additional articles were also sourced from citations and reference lists of articles produced in the Web of Science database searches.

Table A2 Barnacle propagule sizes identified from the literature search

Species	Egg (µm)	Larval (µm)	Comments	References
Arcoscalpellum michelottianum	1,000–1,200	1,340, 1,200	Egg size, cyprid, nauplius	(Buhl-Mortensen and Høeg, 2006)
Ascoscalpellum chiliense	500	-	Egg size	(Buhl-Mortensen and Høeg, 2006)

Species	Egg (µm)	Larval (µm)	Comments	References
Ascoscalpellum micrum	500	-	Egg size	(Buhl-Mortensen and Høeg, 2006)
Ascoscalpellum sergi	580	-	Egg size	(Buhl-Mortensen and Høeg, 2006)
Balanus alatus	240	-	Egg size	(Barnes, 1989)
Balanus aligola	-	98 x 180	Stage 1 nauplius dimensions	(Sandison and Day, 1954, Barnes, 1989)
Balanus amphitrite	-	140 x 260	Stage 1 nauplius dimensions	(Geraci and Romairone, 1986, Barnes, 1989)
Balanus amphitrite albicosatus	-	140 x 240	Stage 1 nauplius dimensions	(Barnes, 1989)
Balanus amphitrite amphitrite	-	120 x 180	Stage 1 nauplius dimensions	(Barnes, 1989)
Balanus amphitrite cirratus	-	220	Stage 1 nauplius dimensions	(Barnes, 1989)
Balanus amphitrite communis	-	180	Stage 1 nauplius dimensions	(Barnes, 1989)
Balanus amphitrite denticulata	90 x 150	140-200	Egg dimensions, Stage 1 nauplius dimensions	(Barnes, 1989)
Balanus amphitrite hawaiiensis	-	100 x 190	Stage 1 nauplius dimensions	(Barnes, 1989)
Balanus austrobalanus flosculus	160 x 280	140 x 330	Egg dimensions, Stage 1 nauplius dimensions	(Barnes, 1989)
Balanus balanoides	-	340	Length of naupilar stage 1	(Pyefinch, 1948)
Balanus balanoides	160 x 305	34 x 189	Egg size, Stage 1 nauplius dimensions	(Barnes, 1989)
Balanus balanus	168 x 307	210 x 370	Egg dimensions, Stage 1 nauplius dimensions	(Barnes, 1989)
Balanus calceolus	170	-	Egg size	(Barnes, 1989)
Balanus crenatus	-	280	Length of naupilar stage 1	(Pyefinch, 1948)
Balanus crenatus	120 x 190	124 x 263	Egg dimensions, Stage 1 nauplius dimensions	(Barnes, 1989)
Balanus eberneus	-	800	Larvae length at 6 days	(Grave, 1933)
Balanus eburneus	-	160-180	Width of stage 1 larvae	(Costlow Jr and Bookhout, 1957)
Balanus glandula	125 x 220	153 x 244	Egg dimensions, Stage 1 nauplius dimensions	(Barnes, 1989)

Species	Egg (µm)	Larval (µm)	Comments	References
Balanus improvisus	163	195	Egg size, naunilus width stage 1	(Jones and Crisp, 1954, Barnes and Barnes, 1965)
Balanus kondakovi		135 x 200	Stage 1 naunlius dimensions	(Barnes, 1989)
Balanus meaabalanus nsittacus	70-100	140 x 290	Egg size range. Stage 1 naunlius dimensions	(Barnes, 1989)
Balanus nubilis	-	157 x 266	Stage 1 nauplius dimensions	(Strathmann)
Balanus perforatus	115 x 221	130 x 279	Egg size range. Stage 1 nauplius dimensions	(Barnes, 1989)
Balanus reticulatus		143 x 256	Stage 1 nauplius dimensions	(Barnes, 1989)
Balanus rostratus	120-150	_	Ova dimensions	(Barnes, 1989)
Balanus sp.	-	356.7	Cyprid morphology	(Walters and Wethey, 1996)
Balanus terebratus	150 x 250	-	Egg dimensions	(Barnes, 1989)
Balanus trigonus	-	210-230	Carapace length of stage 1 larvae	(Barker, 1976)
Balanus trigonus	90 x 170	100 x 210	Egg size range, Stage 1 nauplius dimensions	(Barnes, 1989)
Balanus variegatus	_	200	Stage 1 nauplius dimensions	(Barnes, 1989)
Balanus vestitus	-	170, 300	Carapace width, and total length of stage I nauplii	(Foster, 1967)
Balanus vestitus	-	200 x 550	Stage 1 nauplius dimensions	(Barnes, 1989)
Bocquetia rosea	-	88.9 ± 1	Cyprid size	(Barnes, 1989)
Calantica pollicipedoides	340	-	Egg size	(Buhl-Mortensen and Høeg, 2006)
Catherinum perlongum	-	460	Nauplius larval size	(Buhl-Mortensen and Høeg, 2006)
Chamaesipho brunnea	-	120, 270	Carapace width, and total length of stage 1 nauplii	(Foster, 1967)
Chamaesipho brunnea	-	190-210	Carapace length of stage 1 larvae	(Barker, 1976)
Chamaesipho columna	-	100, 230	Carapace width, and total length of stage 1 nauplii	(Foster, 1967)
Chamaesipho columna	-	200-230	Carapace length of stage 1 larvae	(Barker, 1976)
Chthamalus anisopoma	82 x 163	-	Egg dimensions	(Barnes, 1989)
Chthamalus challengeri	80 x 110	-	Egg dimensions	(Barnes, 1989)

Species	Egg (µm)	Larval (µm)	Comments	References
Chthamalus dalli	-	138 (SE ± 3)	Stage 1 larvae width	(Miller et al., 1989)
Chthamalus dentatus	90 x 166	100 x 140	Egg dimensions, Stage 1 nauplius dimensions	(Barnes, 1989)
Chthamalus depressus	-	149 x 200	Stage 1 nauplius dimensions	(Barnes, 1989)
Chthamalus fissus	-	124 (SE ± 5)	Stage 1 larvae width	(Miller et al., 1989)
Chthamalus malayensis	_	239 ± 12	Naupliar length stage 1	(Yan and Chan, 2001)
Chthamalus montagui	_	99 (SD ± 9)	Mean width of naupliar stage 1	(Burrows et al., 1999)
Chthamalus montagui	74.9-90.5	-	Measurements of eggs from newly laid to a few cells	(O'Riordan et al., 1995)
Chthamalus montagui	74.9-111.2	_	Egg width	(Yan et al., 2006)
Chthamalus montagui	-	99 (SD ± 9)	Mean width of naupliar stage 1	(Burrows et al., 1999)
Chthamalus montagui	74.9-90.5	-	Measurements of eggs from newly laid to a few cells	(O'Riordan et al., 1995)
Chthamalus montagui	74.9–111.2	-	Egg width	(Yan et al., 2006)
Chthamalus stellatus	78.3-123.6	_	Egg width	(Yan et al., 2006)
Chthamalus stellatus	79.9–93.7	-	Measurements of eggs from newly laid to a few cells	(O'Riordan et al., 1995)
Chthamalus stellatus	-	99 (SD ± 5)	Width of Naupliar stage 1	(Burrows et al., 1999)
Chthamalus stellatus	78.3-123.6	-	Egg width	(Yan et al., 2006)
Chthamalus stellatus	79.9–93.7	-	Measurements of eggs from newly laid to a few cells	(O'Riordan et al., 1995)
Chthamalus stellatus	-	99 (SD ± 5)	Width of Naupliar stage 1	(Burrows et al., 1999)
Chthamalus withersi	-	205	Stage 1 nauplius	(Barnes, 1989)
Chthamalus malayensis	100-160	-	Egg width stage 1–4	(Yan et al., 2006)

Species	Egg (µm)	Larval (µm)	Comments	References
Clistosaccus paguri	165	90 x 184	Ova diameter, Embryo released as cyprid from mantle cavity of adult	(Barnes, 1989)
Compressoscalpellum compressum	800	-	Egg size	(Buhl-Mortensen and Høeg, 2006)
Compressoscalpellum faurei	-	750	Cypris larva size	(Buhl-Mortensen and Høeg, 2006)
Drepanorchis neglecta	-	140	Cyprid	(Barnes, 1989)
Drepanorchis villosa	100	-	Egg size	(Barnes, 1989)
Eliminius modestus	-	250	Length of stage 1 nauplii	(Foster, 1967)
Eliminius modestus	-	210-230	Carapace width of stage 1 larvae	(Barker, 1976)
Eliminius plicatus	-	350	Stage 1 nauplii length	(Foster, 1967)
Eliminius plicatus	-	300-320	Carapace width of stage 1 larvae	(Barker, 1976)
Elminius covertus	-	140 x 230	Stage 1 nauplius dimensions	(Barnes, 1989)
Elminius kingii	175 x 250	140 x 250	Egg dimensions, Stage 1 nauplius dimensions	(Barnes, 1989)
Heterosccus ruginosus	108 x 135	200	Egg dimensions, stage 1 nauplii length	(Barnes, 1989)
Hexaminius popeiana	-	110 x 200	Stage 1 nauplius dimensions	(Barnes, 1989)
Lernaeodiscus cornutus	94	-	Egg size	(Barnes, 1989)
Lernaeodiscus cornutus	94	-	Egg size	(Barnes, 1989)
Lernaeodiscus galatheae	-	130	Small cyprid	(Barnes, 1989)
Lernaeodiscus porcellanae	126 x 160	-	Egg dimensions	(Barnes, 1989)
Litoscalpellum regina	-	1,250	Cypris larva size	(Buhl-Mortensen and Høeg, 2006)
Octolasmis mulleri	-	790-850	Length of stage 2 larvae	(Lang, 1976)
Octomeris angulosa	133 x 212	100 x 180	Egg dimensions, Stage 1 nauplius dimensions	(Barnes, 1989)
Ornatoscalpellum gibberum	1,090-1,500	-	Egg size range	(Buhl-Mortensen and Høeg, 2006)
Ornatoscalpellum ornatum	800	-	Egg size	(Buhl-Mortensen and Høeg, 2006)

Species	Egg (µm)	Larval (µm)	Comments	References
Ornatoscalpellum stroemii	500-600	100	Egg size range, cyprid larvae size	(Buhl-Mortensen and Høeg, 2006)
Peltogaster sulcatus	-	250	Stage 1 nauplius size	(Barnes, 1989)
Peltogasterella gracilis	110-170	220-275	Range of egg size, range for nauplius stage 1	(Barnes, 1989)
Peltogasterella gracilis	140-150	-	Egg diameter	(Newman and Abbott, 1980)
Peltogasterella socialis	-	207-247	Nauplius size range	(Barnes, 1989)
Peltogasterella subterminalis	-	126-148	Nauplius size range	(Barnes, 1989)
Pilsbryiscalpellum capense	-	700	Cypris larva size	(Buhl-Mortensen and Høeg, 2006)
Pilsbryiscalpellum subalatum	-	800	Cypris larva size	(Buhl-Mortensen and Høeg, 2006)
Pollicipes polymerus	-	82 x 173	Dimensions of N1 larvae	(Strathmann)
Sacculina carcini	54-180	120 x 165	Range of egg width, nauplius dimensions	(Barnes, 1989)
Sacculina micracantha	134	-	Egg size	(Barnes, 1989)
Sacculina papposa	100	-	Egg size	(Barnes, 1989)
Sacculina rotundata	100	135 x 215	Egg size, stage 1 nauplius size	(Barnes, 1989)
Sacculina setosa	100	-	Egg size	(Barnes, 1989)
Sacculina sulcata	110	-	Egg size	(Barnes, 1989)
Scalpellum uncinatum	1,000	-	Egg size	(Buhl-Mortensen and Høeg, 2006)
Semibalanus balanoides	-	220	Stage 1 larvae minimum length	(Bassindale, 1936, Drouin et al., 2002)
Semibalanus cariosus	-	157 x 266	Dimensions of N1 larvae	(Strathmann)
Semibalanus hesperius	-	129 x 265	Dimensions of N1 larvae	(Strathmann)
Septodiscus flabellum	129 x 182	-	Egg dimensions	(Barnes, 1989)
Septosaccus cuenoti	125 x 170	135 x 190	Egg size, stage 1 larvae size	(Barnes, 1989)

Species	Egg (µm)	Larval (µm)	Comments	References
Smilium hypocrites	200	-	Egg size	(Buhl-Mortensen and Høeg, 2006)
Solidobalanus hesperius hesperius	-	85 x 177	Stage 1 nauplius dimensions	(Barnes, 1989)
Sylon hippolytes	60	-	Ova size	(Barnes, 1989)
Sylon schneideri	60	-	Ova size	(Barnes, 1989)
Tarasovium brevicaulis	400	-	Egg size	(Buhl-Mortensen and Høeg, 2006)
Tarasovium eumitos	900	-	Egg size	(Buhl-Mortensen and Høeg, 2006)
Tarasovium natalense	600	-	Egg size	(Buhl-Mortensen and Høeg, 2006)
Tarasovium valvulifer	500	750	Egg size, cypris larva size	(Buhl-Mortensen and Høeg, 2006)
Teloscalpellum retrieveri	500	-	Egg size	(Buhl-Mortensen and Høeg, 2006)
Teloscalpellum ventricosum	-	1,330	Cypris larva size	(Buhl-Mortensen and Høeg, 2006)
Tetraclita divisa	840	620	Egg size, Stage 1 nauplius	(Barnes, 1989)
Tetraclita japonica	-	181	Stage 1 larvae width	(Chan, 2003)
Tetraclita karande	-	240	Stage 1 larvae length	(Chan, 2003)
Tetraclita pacifica	387 x 527	-	Egg dimensions	(Barnes, 1989)
Tetraclita purpurascens	-	330	Stage 1 nauplii length	(Foster, 1967)
Tetraclita purpurascens	-	290-310	Carapace length of stage 1 larvae	(Barker, 1976)
Tetraclita serrata	-	154 x 274	Stage 1 nauplius dimensions	(Barnes, 1989)
Tetraclita squamosa	-	190	Stage 1 larvae width	(Chan, 2003)
Tetraclita squamosa rubescens	195 x 340	229 x 498	Egg dimensions, Stage 1 nauplius dimensions	(Barnes, 1989)
Tetraclita squamosa rufotincta	-	336 x 509	Stage 1 nauplius dimensions	(Chan, 2003)
Thompsonia cubensis	85	-	Egg size	(Barnes, 1989)

Species	Egg (µm)	Larval (µm)	Comments	References
Thompsonia sp.	34	200	Egg diameter, cyprid size	(Barnes, 1989)
Thoracica (Superorder)	107–1,500 (SE 21)	375–2,550 (SE 19)	Egg size range from 170 species of Superorder Thoracica	(Ewers-Saucedo and Pappalardo, 2019)
Trianguloscalpellum balanoides	420	-	Egg size	(Buhl-Mortensen and Høeg, 2006)
Trianguloscalpellum compactum	800	1030	Cypris larva size	(Buhl-Mortensen and Høeg, 2006)
Trianguloscalpellum darwinii	1,500	-	Egg size	(Buhl-Mortensen and Høeg, 2006)
Trianguloscalpellum regium regium	1,030	-	Egg size	(Buhl-Mortensen and Høeg, 2006)
Trianguloscalpellum sessile	470	-	Egg size	(Buhl-Mortensen and Høeg, 2006)
Triangulus galatheae	-	100 x 257	Nauplius size	(Barnes, 1989)
Trypetesa lateralis	250	500	Egg diameter longest axis, hatching length	(Newman and Abbott, 1980)
Verruca stroemia	-	270	Length of naupilar stage 1	(Pyefinch, 1948, Bassindale, 1936)
Weltnerium convexum	780	-	Egg size	(Buhl-Mortensen and Høeg, 2006)

Note: Smallest value was recorded when available, * indicates that size was an approximate value.

A3. Bivalves

Literature search: To identify literature on propagule and female gamete size a systematic literature search was undertaken using the <u>Scopus</u> and the <u>Web of Science</u> databases. For bivalves three searches were performed using the following search criteria:

Scopus (TITLE-ABS-KEY (ascidiacea) AND TITLE-ABS- KEY (viable AND propagule AND size) OR TITLE-ABS-KEY ('egg AND size') OR ALL (diameter) OR TITLE-ABS-KEY 78 results

Web of Science: TOPIC: (decapod) AND TOPIC: (egg size) refined by: TOPIC: (diameter) Results: 56

Web of Science: You searched for: TOPIC: (bivalv) AND TOPIC: (egg size) Results: 197

Additional articles were also sourced from citations and reference lists of articles produced in the Web of Science database searches.

Species	Egg (µm)	Larval (µm)	Comments	References
Abra tenuis	140	_	Mature oocyte diameter	(Gibbs, 1984)
Adula californiensis	70-80	-	Oocyte diameter	(Strathmann, 1987)
Aequipecten irradians	55-65	-	Egg diameter range	(Loosanoff and Davis, 1963, Sastry, 1966)
Aequipecten opercularis	63, 68	-	Mean egg diameter	(Jørgensen, 1946, Sasaki, 1979)
Anadara concinna	52.9 (SD ± 1.0)	-	Mean egg diameter (longest)	(Moran, 2004)
Anadara nux	53.6 (SD ± 5.5)	-	Mean egg diameter (longest)	(Moran, 2004)
Anomia simplex	42-45	47 x 58	Egg diameter range, smallest larvae with formed shell	(Loosanoff and Davis, 1963)
Arca imbricata	74.1 (SD ± 5.7)	-	Mean egg diameter (longest)	(Moran, 2004)
Arca mutabilis	61.4 (SD ± 2.1)	-	Mean egg diameter (longest)	(Moran, 2004)
Arca pacifica	69.7 (SD ± 6.1)	-	Mean egg diameter (longest)	(Moran, 2004)
Arca transversa	52	55	Mean egg diameter *, width of smallest straight hinge larvae	(Loosanoff and Davis, 1963)
Arca zebra	77.0 (SD ± 4.5)	-	Mean egg diameter (longest)	(Moran, 2004)
Arcopsis adamsi	65.7 (SD ± 2.0)	-	Mean egg diameter (longest)	(Moran, 2004)
Arcopsis solida	65.7 (SD ± 1.80	-	Mean egg diameter (longest)	(Moran, 2004)
Aulacomya maoriana	55	-	Egg diameter	(Ackerman et al., 1994)
Bankia indica	45	-	Egg diameter	(Ackerman et al., 1994)
Bankia setacea	47	-	Oocyte diameter	(Strathmann, 1987)
Barbatia bailyi	216.8 (SD ± 5.9)	-	Mean egg diameter (longest)	(Moran, 2004)

Table A3 Bivalves propagule sizes identified from the literature search

Species	Egg (µm)	Larval (µm)	Comments	References
Barbatia cancellaria	116.5 (SD ± 3.5)	-	Mean egg diameter (longest)	(Moran, 2004)
Barbatia candida	61.5 (SD ± 2.2)	-	Mean egg diameter (longest)	(Moran, 2004)
Barbatia domingensis	74.9 (SD ± 0.8)	-	Mean egg diameter (longest)	(Moran, 2004)
Barbatia gradata	69.5 (SD ± 2.9)	-	Mean egg diameter (longest)	(Moran, 2004)
Barbatia illota	64.8 (SD ± 1.5)	-	Mean egg diameter (longest)	(Moran, 2004)
Barbatia reeveana	55.9 (SD ± 1.1)	-	Mean egg diameter (longest)	(Moran, 2004)
Barbatia tenera	67.5 (SD ± 0.4)	-	Mean egg diameter (longest)	(Moran, 2004)
Bittium eschrichtii	220	-	Oocyte diameter	(Strathmann, 1987)
Brachidontes granulata	66.3	73	Egg diameter, Trocophore height	(Ackerman et al., 1994)
Cardium exiguum	64	-	Egg diameter	(Lovén, 1850)
Cardium fasciatum	80	-	Egg size	(Jørgensen, 1946)
Cardium pinnulatum	-	80 x 90	Larvae dimensions	(Sullivan, 1948)
Cerastoderma edule	77	-	Egg diameter	(Honkoop and Van der Meer, 1998)
Cerastoderma edule	77.5	-	Egg diameter	(Honkoop et al., 1999)
Chlamys asperrimus	62	-	Mean egg diameter	(Rose and Dix, 1984)
Chlamys hastata	71-74	-	Oocyte	(Strathmann, 1987)
Clinocardium nuttallii	80	-	Oocyte	(Strathmann, 1987)
Crassostrea	50	-	Average egg size *	(Powell et al., 2011)
Crassostrea glomerata	40	-	Egg diameter	(Ackerman et al., 1994)
Crassostrea iredalei	48	-	Egg diameter	(Ackerman et al., 1994)
Crassostrea virginica	45–62	55 x 68	Egg diameter range, smallest larvae	(Loosanoff and Davis, 1963)
Crassotrea gigas	50-60	-	Oocyte diameter	(Strathmann, 1987)

Species	Egg (µm)	Larval (µm)	Comments	References
Cyprina Islandica	80-95	-	Egg diameter range	(Loosanoff, 1953)
Dreissena polymorpha	68-100	230-240	Egg diameter range, larvae at predeviliger stage	(Stoeckel et al., 2004)
Dreissena polymorpha	40-96	57–121	Egg diameter, trocophore height	(Ackerman et al.)
Ensis directus	64-73	80	Egg diameter range, length of smallest larvae	(Loosanoff and Davis, 1963)
Equichlamys bifrons	119.6 (SE ± 0.38)	150-181	Egg diameter, 3–day old veliger range	(Dix, 1976)
Gari californica	70	-	Oocyte diameter	(Strathmann, 1987)
Idas washingtonia	20-55	-	Ripe primary oocytes	(Tyler et al., 2009)
Katelysia scalarina	69 ± 2	110 ± 1.3	Mean egg diameter, mean veliger shell length	(Kent et al., 1998)
Laevicardium mortoni	60-65	90	Egg diameter range, shell-bearing veliger length	(Loosanoff and Davis, 1963)
Lasaea subviridis	300	-	Oocyte diameter	(Strathmann, 1987)
Laternula elliptica	49.3	-	Mean oocytes in spawning ovaries	(Kang et al., 2003)
Laternula elliptica	156.6	-	Diameter of fully developed eggs	(Kang et al., 2003)
Littorinacea keena	89	137	Oocyte diameter	(Strathmann, 1987)
Littorinacea plena	96	169	Oocyte diameter, larvae size	(Strathmann, 1987)
Littorinacea scutulata	100	155	Oocyte diameter	(Strathmann, 1987)
Littorinacea sitkana	175	-	Oocyte diameter	(Strathmann, 1987)
Lyonsia bracteata	120	-	Oocyte diameter	(Strathmann, 1987)
Macoma balthica	97	-	Oocyte	(Strathmann, 1987)
Macoma balthica	107	-	Egg diameter	(Honkoop and Van der Meer, 1998)
Macoma balthica	100-110	-	Mean egg diameter	(Honkoop and Van der Meer, 1997)
Macoma balthica	107.8 (SE ± 1.2)	-	Mean egg diameter	(Honkoop et al., 1999)

Species	Egg (µm)	Larval (µm)	Comments	References
Macoma balthica	-	228-287	Size of primary settlers	(Philippart et al., 2003)
Macoma mitchelli	59	-	Egg diameter	(Ackerman et al., 1994)
Mactra solidissima	56	63-65	Approximate egg diameter, larvae width	(Loosanoff and Davis, 1963)
Marcia opima	47.8 (SD ± 5.1)	71 x 87	Fertilised egg diameter, straight hinged larvae dimensions	(Muthiah et al., 2002)
Mercenaria campechiensis	70–115	-	Egg diameter range	(Kraeuter and Castagna, 2001)
Mercenaria campechiensis texana	83-95	-	Egg diameter range	(Kraeuter and Castagna, 2001)
Mercenaria mercena	60	-	Egg diameter	(Ackerman et al., 1994)
Mercenaria mercenaria	70-73	64 x 86	Egg diameter range, smallest larvae measurements	(Loosanoff and Davis, 1963)
Mercenaria mercenaria	70-87	-	Egg diameter range	(Kraeuter and Castagna, 2001)
Mercenaria mercenaria	50-60	-	Mature oocyte diameter	(Keck et al., 1975)
Modiolarca subpicta	56	-	Egg diameter *	(Morton and Dinesen, 2011)
Modiolarca subpicta	60	-	Egg diameter *	(Morton and Dinesen, 2011)
Modiolarca subpicta	-	95	Initial larval shell *	(Morton and Dinesen, 2011)
Modiolus capax	70	100	Egg diameter, Trocophore height	(Ackerman et al., 1994)
Modiolus modiolus	78-90	-	Oocyte	(Strathmann, 1987)
Modiolus modiolus	-	85 x 100	Larvae dimensions	(Jørgensen, 1946)
Mulina lateralis	50	_	Egg diameter	(Ackerman et al., 1994)

Species	Egg (µm)	Larval (µm)	Comments	References
Musculista senhousia	46.8-50.1	-	Range of mean oocyte diameters	(Sgro et al., 2002)
Mya arenaria	62.5	-	Average egg diameter	(Belding, 1931)
Mya arenaria	75	-	Oocyte diameter	(Strathmann, 1987)
Mya arenaria	68-73	71 x 86	Egg diameter range, smallest larvae dimensions	(Loosanoff and Davis, 1963)
Mya arenaria	70-80	-	Egg size range	(Battle, 1932)
Mysella tumida	95	-	Oocyte diameter	(Strathmann, 1987)
Mysella tumida	95	-	Oocyte size	(Strathmann, 1987)
Mytilimeria nuttallii	120	-	Oocyte diameter	(Strathmann, 1987)
Mytilopsis sallei	64	87.3 ± 8.2	Oocyte diameter, veliger shell length	(He et al., 2016)
Mytilus californianus	60	-	Oocyte diameter	(Strathmann, 1987)
Mytilus edulis	72	-	Egg diameter	(Honkoop and Van der Meer, 1998)
Mytilus edulis	73.2	-	Egg diameter	(Honkoop et al., 1999)
Mytilus edulis	60	-	Oocyte diameter	(Strathmann, 1987)
Mytilus edulis x trossulus	40	-	-	(Toro et al., 2002)
Mytilus trossulus	40	-	-	(Toro et al., 2002)
Mytilus viridis	50	_	Egg diameter	(Ackerman et al., 1994)
Nitidiscala tincta	-	70-250	Veliger shell length	(Strathmann, 1987)
Noetia ponderosa	65	-	Egg diameter	(Ackerman et al., 1994)
Ostrea lurida	100-110	149 x 160	Egg diameter range, smallest larvae measurements	(Loosanoff and Davis, 1963)
Ostrea lurida	100-110	-	Oocyte diameter	(Strathmann, 1987)
Ostrea rivularis	49-53	-	Egg diameter	(Zhou and Allen, 2003)

Species	Egg (µm)	Larval (µm)	Comments	References
Pandora inaequivalvis	105	_	Egg diameter	(Ackerman et al., 1994)
Panope abrupta	80	-	Oocyte diameter	(Strathmann, 1987)
Patinopecten yessoensis	55	-	Egg diameter	(Sanders, 1973)
Pecten maximus	70	90	Size of trocophore embryo	(Gruffydd and Beaumont, 1972)
Pecten maximus	66.13 (SD ± 1.52)	-	Egg diameter	(Paulet et al., 1988)
Pecten meridionalis	71.1 (SD ± 2.4)	76 x 93	Egg diameter, smallest straight hinge veliger	(Dix and Sjardin, 1975)
Pecten opercularis	68	-	Egg diameter	(Fullarton, 1890)
Perna indica	55	260 x 300	Ripe ovum, early pediveliger larval stage	(Alagarswami, 1980)
Perna indica	45-50	52–55	Egg diameter, larvae width	(Appukuttan et al., 1988)
Perna perna	40-60	-	Oocyte diameter	(Aarab et al., 2013)
Perna viridis	45-50	300	Spawned egg diameter, prediveliger shell length	(Alagarswami, 1980)
Petaloconchus compactus	104-110	-	Oocyte diameter	(Strathmann, 1987)
Petricola pholadiformis	51–58	65 x 79	Egg diameter range, smallest larvae measurements	(Loosanoff and Davis, 1963)
Pholas orientalis	43.0 ± 0.8	-	Egg diameter (self fertilise)	(Ronquillo and McKinley, 2006)
Pitar morrhuana	49	-	Egg diameter	(Ackerman et al., 1994)
Placuna placenta	56 (SD ± 5)	84 (SD ± 18)	Spawned egg diameter, veliger shell length	(Madrones-Ladja, 1997)
Pododesmus cepio	65	-	Oocyte diameter	(Strathmann, 1987)
Solemya reidi	270	-	Oocyte diameter	(Strathmann, 1987)
Spisula solidissima similis	58.5	-	Egg diameter	(Walker and O'Beirn, 1996)

Species	Egg (µm)	Larval (µm)	Comments	References
Tapes semidecusata	60-75	70 x 95	Egg diameter range, smallest larvae measurements	(Loosanoff and Davis, 1963)
Teredo navalis	50-60	70 x 80	Unfertilised egg diameter range, smallest larvae measurements	(Loosanoff and Davis, 1963)
Transennella tantilla	250	-	Oocyte diameter	(Strathmann, 1987)
Tresus capax	60-70	-	Oocyte diamter	(Strathmann, 1987)
Various bivalve species	40	-	The range between minimum and maximum egg diameter between bivalve species	(Cardoso et al., 2006)
Various bivalve species	-	60-200	Minimum length at hatchling across various bivalve species	(Cardoso et al., 2006)
Various bivalve species	-	-	Lowest observed length at settlement	(Cardoso et al., 2006)
Xylophaga depalmai	40	-	Egg diameter	(Tyler et al., 2007)
Yolida spp.	120-150	-	Oocyte diameter	(Strathmann, 1987)

Note: Smallest value was recorded when available, * indicates that size was an approximate value.

A4. Polychaetes

Literature search: To identify literature on propagule and female gamete size a systematic literature search was undertaken using the <u>Web of Science</u> database. For polychaetes two searches were performed using the following search criteria:

Web of science: (TOPIC: (polychaete) AND TOPIC: (egg size) Results: 190

Web of science: TOPIC: (polychaete) AND TOPIC: (reproduction) Refined by: TOPIC: (egg size) Results: 55

Additional articles were also sourced from citations and reference lists of articles produced in the Web of Science database searches.

Table A4 Polychaetes propagule sizes identified from the literature search

Species	Egg (µm)	Larval (µm)	Comments	References
Abarenicola pacifica	160-190	-	Oocyte diameter	(Strathmann, 1987)
Abarenicola vagabunda	45x 145	-	Oocyte diameter	(Strathmann, 1987)

Species	Egg (µm)	Larval (µm)	Comments	References
Ampharetidae family	220 (SD ± 68)	-	Egg diameter	(McHugh and Fong, 2002)
Amphiglena mediterranea	-	-	Hermaphroditic	(McEuen et al., 1983)
Amphisamytha galapagensis	240	-	Maximum egg size	(McHugh and Tunnicliffel, 1994)
Amphisamytha galapegensis	40-150	-	Egg diameter	(Zottoli, 1983, Blake, 1993)
Anaitides mucosa	113.4 ± 5.4	-	Egg diameter	(Sach, 1975)
Arctonoe vittata	75-90	-	Egg diameter	(Britayev, 1991)
Arenicola claparedii	200-220	70 x 320	Fertilised egg size, larvae dimensions	(Okuda, 1946)
Arenicola marina	190	-	Egg diameter	(Newell, 1948)
Arenicola marina	180	-	Diameter of spawning oocytes	(Meijer, 1979)
Arenicola marina	190	-	Egg diameter	(Newell, 1948)
Armandia brevis	50	-	Oocyte diameter	(Strathmann, 1987)
Arnecolidae family	185 (SD ± 5)	-	Egg diameter	(McHugh and Fong, 2002)
Aurospio dibranchiata	70-98	-	Egg diameter	(Blake, 1993)
Australonuphis parateres	260-280	-	Mature oocyte diameter	(Paxton, 1979)
Australonuphis teres	256-260	-	Mature oocyte diameter	(Paxton, 1979)
Axiothella mucosa	212.4	-	Egg diameter	(Pernet and Jaeckle, 2004)
Axiothella mucosa	195-200	-	Width of unfertilised egg	(Bookhout and Horn, 1949)
Axiothella rubrocincta	220-385	-	Maximum oocyte diameters	(Wilson, 1983)
Axiothella rubrocinta	230	-	Oocyte diameter	(Strathmann, 1987)
Axiothella rubrocinta	385	-	Oocyte diameter	(Strathmann, 1987)
Axiothella serrata	240	-	Maximum oocyte diameter	(Read, 1984)
Branchiomma cingulata	-	-	Hermaphroditic	(McEuen et al., 1983)

Species	Egg (µm)	Larval (µm)	Comments	References
Branchiomma nigromaculata	135	-	Egg size	(McEuen et al., 1983)
Capitella capitella	95	-	Egg diameter	(Warren, 1976, Tsutsumi and Kikuchi, 1984)
Capitella capitella	250	-	Minimum egg diameter	(Reish, 1974, Tsutsumi and Kikuchi, 1984)
Capitella capitella	-	240-270	Embryo width	(Wu, 1964, Tsutsumi and Kikuchi, 1984)
Capitella capitella	233.3-266.8	-	Range of mean egg diameters	(Yamamoto, 1980, Tsutsumi and Kikuchi, 1984)
Capitella capitella	256 (SD ± 7.3)	-	Egg size	(Tsutsumi and Kikuchi, 1984)
Capitella capitella	75-80	-	Egg size	(Foret, 1974, Tsutsumi and Kikuchi, 1984)
Capitella capitella	95	-	Egg diameter	(Warren, 1976, Tsutsumi and Kikuchi, 1984)
Capitella capitella	250	-	Minimum egg diameter	(Reish, 1974, Tsutsumi and Kikuchi, 1984)
Capitella capitella	-	240-270	Embryo width	(Wu, 1964, Tsutsumi and Kikuchi, 1984)
Capitella capitella	233.3-266.8	-	Range of mean egg diameters	(Yamamoto, 1980, Tsutsumi and Kikuchi, 1984)
Capitella capitella	256 (SD ± 7.3)	-	Egg size	(Tsutsumi and Kikuchi, 1984)
Capitella capitella	75-80	-	Egg size	(Foret, 1974, Tsutsumi and Kikuchi, 1984)

Species	Egg (µm)	Larval (µm)	Comments	References
Capitella sp	50-260	-	Egg diameter	(Eckelbarger and Grassle, 1983)
Capitella sp I	180 x 260	-	Egg diameter	(Eckelbarger, 1986)
Capitella sp Ia	75	-	Egg diameter	(Eckelbarger, 1986)
Capitella sp II	190	-	Egg diameter	(Eckelbarger, 1986)
Capitella sp III	50	-	Egg diameter	(Eckelbarger, 1986)
Capitella sp IIIa	250	-	Egg diameter	(Eckelbarger, 1986)
Capitella sp.	220	440	Egg size, larvae size at release	(Levin, 1984)
Capitella sp.	94.10 (SD ± 15.69)	-	Egg diameter of subtidal species	(Qian and Chia, 1991)
Ceratonereis costae	200	-	Egg diameter	(Mazurkiewicz, 1975, Durchon, 1956)
Chaetopteridae family	107 (SD ± 8)	-	Egg diameter	(McHugh and Fong, 2002)
Chaetopterus sp.	94.7	-	Egg diameter	(Pernet and Jaeckle, 2004)
Chone echaudata	200	-	Egg size	(McEuen et al., 1983)
Chone teres	200	100 x 200	Egg diameter, prototroch width	(Okuda, 1946)
Circeis armoricana	95 x 140	-	Egg size	(Kupriyanova and Nishi)
Circeis cf. armoricana A	95 x 140	-	Egg size	(Kupriyanova and Nishi)
Cirratulidae family	155 (SD ± 40)	-	Egg diameter	(McHugh and Fong, 2002)
Cirratulus cirratus	100	100 x 110	Fertilised egg diameter, larvae dimensions	(Okuda, 1946)
Cirratulus cirratus	140-150	-	Egg diameter	(Olive, 1970, Stephenson, 1950)
Cirratulus cirratus	300	-	Egg diameter	(Olive, 1970)
Cirratulus cirratus	110-120	-	Egg diameter	(Olive, 1970)

Species	Egg (µm)	Larval (µm)	Comments	References
Cossura longocirrata	60-70	_	Egg diameter	(Blake, 1993)
Crucigera irregularis	90	-	Oocyte diameter	(Strathmann, 1987)
Crucigera zygophora	70	_	Oocyte diameter	(Strathmann, 1987)
Diopatra variabilis	600	-	Egg diameter	(Richards, 1967, Krishnan, 1936)
Dipolydora commensalis	120	_	Egg diameter *	(Hatfield, 1965)
Dodecaeria fewkesi	100	_	Oocyte diameter	(Strathmann, 1987)
Dorvilleidae family	164 (SD ± 120)	-	Egg diameter	(McHugh and Fong, 2002)
Eteone longa	100	_	Minimum oocyte diameter	(Emlet et al., 1987)
Euchome bansei	60	-	Mean egg width	(Blake, 1993, Ruff and Brown, 1989)
Euchone analis	150	-	Egg size	(McEuen et al., 1983)
Eudistylia vancouveri	182	-	Egg size	(McEuen et al., 1983)
Eunice pennata	160	-	Egg diameter *	(Richards, 1967, Allen, 1957)
Eunice valens	310	-	Oocyte diameter	(Strathmann, 1987)
Eunicidae family	219 (SD ± 57)	-	Egg diameter	(McHugh and Fong, 2002)
Euratella salmacidis	-	-	Hemaphroditic	(McEuen et al., 1983)
Euzonus mucronata	25 x 65	-	Oocyte diameter	(Strathmann, 1987)
Exogone lourei	100	400-500	Egg size, larvae size at release	(Levin, 1984)
Fabricia limnicola	300	1,000	Egg size, larvae size at release	(Levin, 1984)
Fabricia sabella	210	-	Egg size	(McEuen et al., 1983)
Fabricia sp.	140	-	Egg size	(McEuen et al., 1983)
Ficopomatus enigmaticus	60	-	Egg size	(Kupriyanova and Nishi)

Species	Egg (µm)	Larval (µm)	Comments	References
Ficopomatus miamiensis	46-50	-	Egg size	(Kupriyanova and Nishi)
Filograna/Salmacina complex	180-200	-	Egg size	(Kupriyanova and Nishi))
Galeolaria caespitosa	53	-	Eggs this size or greater were fertilizable, Released eggs varied from 26–68, only eggs ≥53 were fertilised	(Kupriyanova, 2006)
Galeolaria caespitosa	80	-	Egg diameter	(Marshall and Keough, 2003a)
Galeolaria hystrix	65-68	-	Fertilised egg diameter	(Nelson et al., 2017)
Glyceridae family	170	-	Egg diameter	(McHugh and Fong, 2002)
Goniadidae family	100	-	Egg diameter	(McHugh and Fong, 2002)
Haploscoloplos kerguelensis	200	140 x 250	Fertilised egg size, larvae dimensions	(Okuda, 1946)
Harmothoe extenuata	95	-	Oocyte diameter	(Strathmann, 1987)
Harmothoe imbricata	136	-	Oocyte diameter	(Strathmann, 1987)
Hesionidae family	108	-	Egg diameter	(McHugh and Fong, 2002)
Hydroides dianthus	-	60-70	Prototroch diameter	(Scheltema et al., 1981)
Hydroides elegans	44.78 (SE ± 0.15)	-	Egg diameter	(Miles, 2006)
Hydroides ezoensis	50 x 55	-	Egg dimensions	(Miura and Kajihara, 1981)
Hydroides fusicola	67	-	Egg size	(Kupriyanova and Nishi)
Hydroides hexagonis	67-72	-	Mature egg diameter	(Grave, 1933)
Hydroides sanctaecrucis	52.2	-	Egg diameter	(Pernet and Jaeckle, 2004)
Idanthyrus armantus	70	-	Oocyte diameter	(Strathmann, 1987)

Species	Egg (µm)	Larval (µm)	Comments	References
Janua pagenstecheri	120-150	_	Egg size	(Kupriyanova and Nishi)
Kinbergonuphis simoni	351.9	-	Egg diameter	(Pernet and Jaeckle, 2004)
Laeonereis culveri	135-162	-	Egg diameter	(Mazurkiewicz, 1975)
Lanassa nuda	170	100 x 280	Fertilised egg size, larvae dimensions	(Okuda, 1946)
Lepidonotus cementarium	120	-	Oocyte diameter	(Strathmann, 1987)
Lumbriconereis latreilli	300	-	Fertilised egg diameter	(Okuda, 1946)
Lumbrineridae family	270 (SD ± 119)	-	Egg diameter	(McHugh and Fong, 2002)
Lumbrineris bassi	250	-	Egg diameter	(Richards, 1967, Hartman, 1944)
Lumbrineris fragilis	176-216	-	Mature egg diameter range	(Valderhaug, 1985)
Lumbrineris latreilli	200	-	Egg diameter	(Richards, 1967, Hartman, 1944)
Lumbrineris pallida	200	-	Egg diameter	(Hartman, 1944)
Manayunkia aestuarina	-	-	Hemaphroditic	(McEuen et al., 1983)
Marphysa borradailei	170	-	Egg diameter in early development	(Richards, 1967, Pillai, 1958)
Marphysa gravelyi	200	-	Egg diameter	(Richards, 1967, Southern, 1921)
Megalomma vesiculosum	150	-	Egg size	(McEuen et al., 1983)
Melinna cristata	240-400	-	Oocyte diameter range	(Hutchings, 1973)
Melinna palmata	200-350	-	Mature oocyte diameter range	(Guillou and Hily, 1983)
Mesochaetopterus taylori	115	-	Oocyte diameter	(Strathmann, 1987)
Microprotula ovicellata	80	-	Egg size	(Kupriyanova and Nishi)

Species	Egg (µm)	Larval (µm)	Comments	References
Nainereis laevigata	250	200 x 300	Fertilised egg size, larvae dimensions	(Okuda, 1946)
Naineris laevigata	240	-	Eggdiameter	(Giangrande and Petraroli, 1991)
Neanthes sp.	280	-	Spawned egg diameter	(Okuda, 1946)
Neodexiospira cf. brasiliensis	95-99	-	Egg size range	(Kupriyanova and Nishi)
Neodexiospira foraminosa	80	-	Egg size	(Kupriyanova and Nishi))
Nephtyidae family	145 (SD ± 33)	-	Egg diameter	(McHugh and Fong, 2002)
Nereidae family	226 (SD ± 88)	-	Egg diameter	(McHugh and Fong, 2002)
Nereis arenaceodentata	420-520	-	Egg diameter range	(Mazurkiewicz, 1975, Reish, 1957)
Nereis diversicolor	200-275	-	Mature oocyte diameter range	(Dales, 1950)
Nereis fucata	200-250	-	Egg diameter	(Mazurkiewicz, 1975, Brown-Gilpin, 1959)
Nereis grubei	162-380	-	Mature oocyte diameter	(Mazurkiewicz, 1975, Reish, 1954)
Nereis grubei	162-380	-	Egg diameter	(Schroeder, 1968)
Nereis irrorata	210	-	Egg diameter	(Mazurkiewicz, 1975)
Nereis limnicola	170	-	Oocyte diameter	(Strathmann, 1987)
Nereis pelagica	180	-	Egg diameter	(Mazurkiewicz, 1975, Wilson, 1932)
Nereis pelagica	160-180	-	Oocyte diameter	(Strathmann, 1987)
Nereis procera	140-150	-	Oocyte diameter	(Strathmann, 1987)
Nereis succinea	140-150	-	Egg diameter	(Mazurkiewicz, 1975, Banse, 1954)
Nereis vexillosa	200	-	Oocyte diameter	(Strathmann, 1987)

Species	Egg (µm)	Larval (µm)	Comments	References
Nereis vexillosa	250	322	Egg diameter, larvae length	(Roe, 1975)
Nereis vexillosa	200	_	Oocyte diameter	(Strathmann, 1987)
Nereis virens	170-180	-	Egg diameter	(Mazurkiewicz, 1975, Bass and Brafield, 1972)
Nicon aestuariensis	150	-	Egg diameter	(Mazurkiewicz, 1975, Estcourt, 1966)
Onuphidae family	291 (SD ± 122)	-	Egg diameter	(McHugh and Fong, 2002)
Onuphis iridescens	250	_	Oocyte diameter	(Strathmann, 1987)
Onuphis taeniata	220-240	-	Mature oocyte diameter	(Paxton, 1979)
Opheliidae family	139 (SD ± 51)	-	Egg diameter	(McHugh and Fong, 2002)
Ophiodromus pugettensis	80	_	Oocyte diameter	(Strathmann, 1987)
Ophiodromus pugettensis	85.1	-	Egg diameter	(Pernet and Jaeckle, 2004)
Ophryotrocha diadema	180	-	Egg diameter	(Sella, 1990, Åkesson, 1976)
Ophryotrocha labidion	55.7-73.0	-	Egg diameter	(Hilbig and Blake, 1991, Blake, 1993)
Ophryotrocha mandibulata	40-48	-	Egg diameter	(Hilbig and Blake, 1991, Blake, 1993)
Ophryotrocha paralabidion	56.5	-	Egg diameter	(Hilbig and Blake, 1991, Blake, 1993)
Ophryotrocha vivipara	-	200-250	Embryos in different stages of development	(Richards, 1967, Banse et al., 1963)
Orbinidae sp.	150-250	-	Oocyte diameter	(Strathmann, 1987)
Orbiniidae family	237 (SD ± 72)	-	Egg diameter	(McHugh and Fong, 2002)
Owenia fusiformis	80-130	-	Fully grown oocyte diameter	(Gentil et al., 1990)

Species	Egg (µm)	Larval (µm)	Comments	References
P. (Boccardia) proboscidea	100	-	Oocyte diameter	(Strathmann, 1987)
P. (Polydora) commensalis	100-120	-	Oocyte diameter	(Strathmann, 1987)
P. (Pseudopolydora) kempi japonica	100	-	Oocyte diameter	(Strathmann, 1987)
Paralvinella palmiformis	260	-	Egg diameter	(McHugh, 1989, Blake, 1993)
Paralvinella pandorae	215	-	Mean egg diameter	(Blake, 1993)
Paraprionospio sp.	110	200	Width of mature oocytes, width of earliest recruits st	(Yokoyama, 1990)
Paraprotis dendrova	80	-	Egg size	(Kupriyanova and Nishi)
Paraprotula apomatoides	-	90	Approximate trocophore diameter	(Kupriyanova and Nishi)
Pectinaria gouldi	43.7	-	Egg diameter	(Pernet and Jaeckle, 2004)
Pectinaria koreni	60-65	-	Mature ova diameter	(Nicolaidou, 1983)
Pectinariidae	60-80	-	Oocyte diameter	(Strathmann, 1987)
Pectinariidae family	67 (SD ± 8)	-	Egg diameter	(McHugh and Fong, 2002)
Perinereis cultrifera	250-400	-	Egg diameter	(Mazurkiewicz, 1975)
Pholoe anoculata	141 (SD ± 18.5)	-	Egg diameter	(Blake, 1993)
Phragmatopoma lapidosa	84.6	-	Egg diameter	(Pernet and Jaeckle, 2004)
Phragmatopoma lapidosa	89.5 (SD ± 4.3)	-	Egg diameter	(McCarthy et al., 2003)
Phragmatopoma lapidosa	97-103	-	Spawned oocyte diameter range	(Eckelbarger, 1976)
Phragmatopoma lapidosa	84.6	-	Egg diameter	(Pernet and Jaeckle, 2004)
Phragmatopoma lapidosa	89.5 (SD ± 4.3)	-	Egg diameter	(McCarthy et al., 2003)

Species	Egg (µm)	Larval (µm)	Comments	References
Phragmatopoma lapidosa	97-103	_	Spawned oocyte diameter range	(Eckelbarger, 1976)
Phyllodoce williamsi	85-90	-	Oocyte diameter	(Strathmann, 1987)
Phyllodocidae family	110 (SD ± 15)	-	Egg diameter	(McHugh and Fong, 2002)
Platynereis bicanaliculata	132	-	Egg diameter	(Roe, 1975)
Platynereis bicanaliculata	132-165	-	Oocyte diameter	(Strathmann, 1987)
Platynereis bicanaliculata	149	-	Egg diameter	(Pernet and Jaeckle, 2004)
Platynereis dumerilii	175	-	Egg diameter	(Mazurkiewicz, 1975)
Platynereis massiliensis	250	-	Egg diameter	(Mazurkiewicz, 1975, Hauenschild, 1951)
Poecilochaetus serpens	200	-	Oocyte diameter	(Allen, 1905, Rouse and Pleijel, 2001)
Polydora commensalis	120	-	Egg diameter	(Blake, 1969)
Polydora commensalis	100-120	-	Oocyte diameter	(Strathmann, 1987)
Polydora giardi	80	95 x 120	Mature oocyte diameter, early asetigerous larvae dimensions	(Day and Blake, 1979)
Polydora ligni	70	280	Egg size, larvae size at release	(Levin, 1984)
Polydora nuchalis	120	180	Egg diameter *, larvae length	(Woodwick, 1960)
Polydora proboscidea	100	-	Oocyte diameter	(Strathmann, 1987)
Polydora variegata	130-140	-	Peak distribution of oocytes in August	(Sato-Okoshi et al., 1990)
Polydora variegata	150	229.6	Long-axis diameter of fertilised egg, length of one-steiger larvae	(Sato-Okoshi et al., 1990)
Polynoidae	120 (SD ± 27)	-	Egg diameter	(McHugh and Fong, 2002)
Pomatoceros terranovae	60	-	Egg size	(Kupriyanova and Nishi)

Species	Egg (µm)	Larval (µm)	Comments	References
Pomatoceros triqueter	60-80	-	Egg size	(Kupriyanova and Nishi)
Pomatoleios kraussii	60-65	-	Egg size	(Kupriyanova and Nishi)
Potamethus elongatus	110-150	-	Egg size	(McEuen et al., 1983)
Potamilla myriops	140	-	Fertilised egg size	(Okuda, 1946)
Potamilla neglecta	200	-	Egg size	(McEuen et al., 1983)
Protodrilidae	105 (SD ± 87)	-	Egg diameter	(McHugh and Fong, 2002)
Protula palliata	80	-	Egg size	(Kupriyanova and Nishi)
Protula sp.	86.3	-	Egg diameter	(Pernet and Jaeckle, 2004)
Protula sp. I	85	-	Egg size	(Kupriyanova and Nishi)
Protula sp. II	86	-	Egg size	(Kupriyanova and Nishi)
Psammodrilis balanoglossoides	110	-	Egg diameter	(Swedmark, 1958, Rouse and Pleijel, 2001)
Psammodrilius aedificator	290-310	-	Egg diameter	(Kristensen and Nørrevang, 1982, Rouse and Pleijel, 2001)
Psammodrilius fauveli	110	_	Found in Rouse and Pleijel (2001)	(Swedmark, 1958, Rouse and Pleijel, 2001)
Psedopolydora kempi japonica	100	-	Oocyte diameter	(Strathmann, 1987)
Pseudochitinopom a occidentalis	60	-	Egg size	(Kupriyanova and Nishi)
Pseudopolydora paucibranchiata	80	200	Egg size, larvae size at release	(Levin, 1984)

Species	Egg (µm)	Larval (µm)	Comments	References
Rhodopsis pusilla	78-90	_	Egg size	(Kupriyanova and Nishi)
Rhynchospio arenincola	-	175	Larvae size at release	(Levin, 1984)
Romanchella pustulata	100-160	-	Egg size	(Kupriyanova and Nishi))
Sabella media	200	-	Newly fertilised eggs	(McEuen et al., 1983)
Sabella media	200	-	Oocyte	(Strathmann, 1987)
Sabella microphthalma	250	-	Egg size	(McEuen et al., 1983)
Sabella spallanzanii	151 ± 45	-	Mean egg size	(Giangrande et al., 2010)
Sabella spallanzanii	160	-	Minimum egg size at maturation in Port Phillip Bay	(Currie et al., 2000)
Sabella spallanzanii	250	-	Minimum egg size at maturation in the Ionian Sea	(Giangrande et al., 2000)
Sabella spallanzanii	50	-	Minimum egg size at maturation in Gulf St Vincent	(Lee et al., 2018)
Sabellaria cementarium	60	-	Oocyte diameter	(Strathmann, 1987)
Sabellaria cementarium	68.8	-	Egg diameter	(Pernet and Jaeckle, 2004)
Sabellidae	158 (SD ± 55)	-	Egg diameter	(McHugh and Fong, 2002)
Sabillariidae	100	-	Egg diameter	(McHugh and Fong, 2002)
Salmacina dysteri	120-150	-	Egg size	(Kupriyanova and Nishi)
Scalibregma infatum	130-160	-	Egg diameter	(Blake, 1993)
Schiobranchia insignis	180-200	-	Oocyte diameter	(Strathmann, 1987)
Schizobranchia insignis	155.5	-	Egg diameter	(Pernet and Jaeckle, 2004)
Schizobranchia insignis	194	-	Egg size	(McEuen et al., 1983)

Species	Egg (µm)	Larval (µm)	Comments	References
Serpula columbiana	69.1	-	Egg diameter	(Pernet and Jaeckle, 2004)
Serpula vermicularis	40 x 60	-	Oocyte dimensions	(Strathmann, 1987)
Serpulidae	85	-	Egg diameter	(McHugh and Fong, 2002)
Serpulids	40-200	-	Egg size range	(Kupriyanova and Nishi)
Sigalionidae	130 (SD ± 57)	-	Egg diameter	(McHugh and Fong, 2002)
Spionidae	145 (SD ± 60)	-	Egg diameter	(McHugh and Fong, 2002)
Spirobranchus corniculatus	80	-	Egg size	(Smith, 1984, Selim et al., 2005)
Spirobranchus polycerus	65	-	Egg size	(Marsden, 1992, Selim et al., 2005)
Spirobranchus tetraceros	78	-	Diameter of ripe ova	(Selim et al., 2005)
Spirorbidae	99	-	Oocyte diameter	(Strathmann, 1987)
Spirorbids	80-230	-	Egg size	(Kupriyanova and Nishi)
Spirorbis corallinae	100-150	-	Egg size	(Kupriyanova and Nishi)
Spirorbis infundibulum	125-128	-	Egg size	(Kupriyanova and Nishi)
Spirorbis inornatus	150-230	-	Egg size	(Kupriyanova and Nishi)
Spirorbis rupestris	110-180	-	Egg size	(Kupriyanova and Nishi)
Spirorbis spirillum	140	150	Fertilised egg size, larvae size	(Okuda, 1946)
Spirorbis tridentatus	110-180	-	Egg size	(Kupriyanova and Nishi)

Species	Egg (µm)	Larval (µm)	Comments	References
Spriobranchus giganteus	83	-	Egg diameter	(Allen, 1957, Selim et al., 2005)
Sternaspis fossor	170	-	Oocyte diameter	(Strathmann, 1987)
Streblospio benedicti	70-200	200-650	Mature egg diameter, larval size at release	(Eckelbarger)
Streblospio benedicti	100	550	Egg size, larvae size at release	(Levin, 1984)
Trochochaeta carica	405-650	-	Egg diameter range	(Buzhinskaja and Jørgensen, 1997, Rouse and Pleijel, 2001)
Trochochaeta multisetosa	250	-	Maximum egg diameter	(Hannerz, 1956, Rouse and Pleijel, 2001)

Note: Smallest value was recorded when available, * indicates that size was an approximate value.

A5. Bryozoans

Literature search: To identify literature on propagule and female gamete size a systematic literature search was undertaken using the <u>Web of Science</u> database. For Bryozoans three searches were performed using the following search criteria:

Web of science: (bryozoa*) AND TOPIC: (egg size) results: 40

Web of science: (bryozoa*) AND TOPIC: (egg size) AND ALL FIELDS: (diameter) Results: 0

Additional articles were also sourced from citations and reference lists of articles produced in the Web of Science database searches.

Table A5 Bryozoan propagule sizes identified from the literature search

Species	Egg (µm)	Larval (µm)	Comments	References
Bowerbankia gracilis	-	200	Width of one day old juvenile	(Bullard and Whitlatch, 2004)
Bowerbankia grasilis	160	150 x 200	Egg diameter, larvae dimensions	(Strathmann, 1987)

Species	Egg (µm)	Larval (µm)	Comments	References
Bugula flabellata	-	170-190	Larvae size	(Shanks, 2001)
Bugula neritina	-	200	Larvae width	(Lynch, 1947)
Bugula neritina	-	290	Size of 1 day old juvenile	(Bullard and Whitlatch, 2004)
Bugula neritina	-	166.67 (SE 3.12)	Coronate diameter	(Walters and Wethey, 1996)
Bugula pacifica	35	200	Egg diameter, larvae dimensions	(Strathmann, 1987)
Bugula pacifica	-	110-120	Larvae diameter	(Shanks, 2001)
Bugula simplex	-	170	Width of one day old juvenile	(Bullard and Whitlatch, 2004)
Celleporella hyalina	_	300	Larvae length *	(Atkinson et al., 2006)
Conopeum reticulum	-	180-200	Cyphonautes height	(Shanks, 2001)
Crisia cribraria	-	350	Zooid length	(Ryland and Hayward, 1991)
Crisia elongata	-	100	Larvae diameter	(Strathmann, 1987)
Crisia sp.	-	320	Zooid length	(Ryland and Hayward, 1991)
Cryptosula pallasiana	-	240	Total length of larvae	(Bullard and Whitlatch, 2004)
Electra crustulenta	-	120-170	Larvae height	(Shanks, 2001)
Electra crustulenta	-	200	Total length of larvae	(Bullard and Whitlatch, 2004)
Electra pilosa	60	-	Length of ovoid egg	(Ryland and Stebbing, 1971)
Electra pilosa	-	400-500	Fully developed larvae width and height	(Ryland and Stebbing, 1971)
Electra pilosa	-	130	Larvae height	(Atkins, 1955)
Electra pilosa	-	390	Width of one day old juvenile	(Bullard and Whitlatch, 2004)

Species	Egg (µm)	Larval (µm)	Comments	References
Hippiodiplosia insculpta	-	330-350	Larvae diameter	(Shanks, 2001)
Membranipora membranacea	-	290	Width of one day old juvenile	(Bullard and Whitlatch, 2004)
Membranipora membranacea	60	750	Egg diameter, larvae length	(Strathmann, 1987)
Pentapora fascialis	-	380.57 (SD ± 41.59)	Smallest mean zooid width	(Lombardi et al., 2006)
Schizoporella errata	-	400	Width of one day old juvenile	(Bullard and Whitlatch, 2004)
Schizoporella unicornis	350	-	Egg diameter	(Strathmann, 1987)
Schizoprella errata	-	207.69 (SE 6.28)	Coronate morphology	(Walters and Wethey, 1996)
Stenolaemata	-	100	Larvae width	(Shanks, 2001)
Tricellaria occidentalis	135-140	-	Larvae diameter	(Shanks, 2001)
Watersipora subtorquata	-	167 (SE ± 5)	Mean size of delayed settlers	(Marshall and Keough, 2003b)

Note: Smallest value was recorded when available, * indicates that size was an approximate value.

A6. Crabs

Literature search: To identify literature on propagule and female gamete size a systematic literature search was undertaken using the <u>Web of Science</u> database. For crabs one search was performed using the following search criteria:

Web of Science: TOPIC: (decapod*) AND TOPIC: (egg size) refined by: TOPIC: (diameter) Results: 56

Additional articles were also sourced from citations and reference lists of articles produced in the Web of Science database searches.

Table A6 Crab propagule sizes identified from the literature search

Species	Egg (µm)	Larval (µm)	Comments	References
Acanthephyra acanthitelsonis	640 x 920	-	Egg dimensions	(Herring, 1974)

Species	Egg (µm)	Larval (µm)	Comments	References
Acanthephyra acutifrons	720 x 800	-	Egg dimensions	(Herring, 1974)
Acanthephyra curtirostris	620 x 900	-	Egg dimensions	(Herring, 1974)
Acanthephyra pelagica	680 x 1000	-	Egg dimensions	(Herring, 1974)
Acanthephyra purpurea	560 x 820	-	Egg dimensions	(Herring, 1974)
Amarinus lacustris	650-800	-	Egg diameter	(Lucas, 1980)
Amarinus latinasus	300	-	Egg diameter	(Lucas, 1980)
Amarinus paralacustris	350	-	Egg diameter	(Lucas, 1980)
Aratus pisonii	-	690	Zoea stage 1 total length	(Cuesta et al., 1999)
Armases augustipes	-	780	Zoea stage 1 total length	(Cuesta et al., 1999)
Armases cinereum	-	660	Zoea stage 1 total length	(Cuesta et al., 1999)
Armases miersii	-	470 ± 10	Zoea 1 carapace width	(Cuesta et al., 1999)
Armases miersii	510-610	-	Egg size	(Schuh and Diesel, 1995b)
Armases ricordi	-	720	Zoea stage 1 total length	(Cuesta et al., 1999)
Armases rubrides	-	630	Zoea stage 1 total length	(Cuesta et al., 1999)
Atya scabra	373 (SD ± 9)	-	Smaller diameter embryonic egg stage 1	(Anger et al., 2002)
Callinectes sapidus	225-275	-	Blastula stage – prior to hatch	(Amsler and George, 1984)
Callinectes sapidus	255-300	-	Embryo diameter range	(Jacobs et al., 2003)
Callinectes sapidus	250	250	Egg size, larvae stage 1 width	(Hill et al., 1989)
Cancer borealis	305	1200	Egg diameter, zoea length	(Shields et al., 1991)
Cancer gracilis	-	1200	Zoea length	(Shields et al., 1991)
Cancer irroratus	-	1500	Zoea length	(Shields et al., 1991)
Cancer magister	400-440	2500	Egg diameter, zoea length	(Shields et al., 1991)
Cancer pagurus	450-500	1800	Egg diameter, zoea length	(Shields et al., 1991)
Cancer productus	-	1800	Zoea length	(Shields et al., 1991)

Species	Egg (µm)	Larval (µm)	Comments	References
Cancer setosus	450	-	Egg diameter	(Shields et al., 1991)
Carcer antennarius	-	1300	Zoea length	(Shields et al., 1991)
Carcer anthonyi	265-300	-	Egg diameter	(Shields et al., 1991)
Carcinus maenas	300-330	_	Egg diameter	(Hartnoll and Paul, 1982)
Cervimunida johni	480-750	-	Egg size	(Flores et al., 2017)
Charybdis japonica	240-330	-	Egg diameter range	(Fowler and McLay, 2013)
Chasmagnathus granulata	270-370	-	Mean egg size range	(Gimenez and Anger, 2001)
Chasmagnathus granulata	-	1,140-1,360	Mean carapace width stage 1 juvenile	(Giménez and Anger, 2003)
Cherax quadricarinatus	730 –2550	-	Large oocytes diameter range	(Sagi et al., 1996)
Chorocaris chacei	122.0 (SD ± 26.0)	-	Mean vitellogenic oocyte size	(Llodra et al., 2000)
Clibanarius antillensi	375 (SD ± 9)	-	Egg size	(Turra and Leite, 2001)
Clibanarius sclopetarius	482 (SD ± 23)	-	Egg size	(Turra and Leite, 2001)
Clibanarius vittatus	441 (SD ± 21)	-	Egg size	(Turra and Leite, 2001)
Cryptolithodes sitchensis	1035	-	Egg size	(Zaklan, 2002)
Cryptolithodes sitchensis	803 (SD ± 54)	-	Mean egg diameter	(Thatje and Hall, 2016)
Cryptolithodes typicus	835	-	Mean egg size	(Thatje and Hall)
Cyclograpsus lavauxi	250-300	-	Egg diameter	(Taylor and Leelapiyanart, 2001)
Diogenes pugilator	350 ± 30	-	Mean egg size	(Manjón-Cabeza and Raso, 2000)
Elamena gordonae	350	-	Egg diameter range	(Lucas, 1980)

Species	Egg (µm)	Larval (µm)	Comments	References
Elamenopsis kempi	520-600	-	Egg diameter	(Abele, 1972)
Emerita asiatica.	242.50 (SD ± 12.99)	-	Oocyte diameter	(Subramoniam and Gunamalai, 2003)
Emerita talpoida	-	460	Maximum carapace width	(Rees, 1959)
Ephyrina bifida	3520 x 4700	-	Egg dimensions	(Herring, 1974)
Ephyrina hoskynii	3120 x 4000	-	Egg dimensions	(Herring, 1974)
Erimacrus isenbeckii	800 ± 10	-	Egg diameter	(Nagao et al., 1999)
Eriocheir sinensis	354.4 ± 8.1	-	Egg diameter	(Chang et al., 2017)
Eriocheir sinensis	350-380	-	Egg diameter range	(Dittel and Epifanio, 2009)
Eurypanopeus depressus	300	-	Mean egg diameter	(McDonald, 1982)
Glyphocrangon investigatoris	1,000-3,340	-	Embryo diameter	(Benjamin et al., 2019)
Halicarcinus afecundus	700	-	Egg diameter	(Lucas, 1980)
Halicarcinus bedfordi	300	-	Egg diameter	(Lucas, 1980)
Halicarcinus hondai	230	-	Egg diameter	(Lucas, 1980)
Halicarcinus nuytsi	330	-	Egg diameter	(Lucas, 1980)
Hapalogaster cavicauda	775	-	Mean egg size	(Zaklan, 2002)
Hapalogaster cavicauda	633 (SD ± 41)	-	Mean egg diameter	(Thatje and Hall, 2016)
Hapalogaster dentata	970	-	Mean egg diameter	(Goshima et al., 1995)
Hemigrapsus takanoi	281.4 +/- 0.7	-	Egg diameter	(Yamasaki et al., 2008)
Hemigraspsus nudus	380	600	-	(Strathmann, 1987)
Hemigraspsus oregonensis	330	350	-	(Strathmann, 1987)
Heterocarpus ensifer	400 x 540	-	Egg dimensions	(Herring, 1974)
Heterocarpus grimaldii	520 x 640	-	Egg dimensions	(Herring, 1974)

Species	Egg (µm)	Larval (µm)	Comments	References
Heterozius rotundifrons	700-800	_	Fertilised egg diameter	(Taylor and Leelapiyanart, 2001)
Hyas lyratus	-	1100	-	(Strathmann, 1987)
Hymenodora gracilis	1920 x 2160	-	Egg dimensions	(Herring, 1974)
Hymenosoma hodgkini	350	-	Egg diameter	(Lucas, 1980)
Hymenosomatids with free larval stages	250-450	-	Egg diameter	(Lucas, 1980)
Ilyoplax frater	2.80 (SD ± 0.26)	-	Typical inhabitants of subtidal and intertidal mud flats of mangrove forests	(Saher and Qureshi, 2010)
Latreillia australinsis	400	-	Ripe egg diameter	(Williamson, 1965)
Linuparus trigonus	960-1,120	-	Egg size range	(Haddy et al., 2003)
Lithodes aequispinus	2,295	-	Mean egg size	(Hiramoto and Sato, 1970)
Lithodes aequispinus	2,300	-	Mean egg size	(Thatje and Hall)
Lithodes aequispinus	2,400	-	Mean length of external eggs	(Jewett et al., 1985)
Lithodes couesi	2,300	-	Mean egg size	(Somerton, 1985)
Lithodes ferox	1,970	-	Mean egg size	(Abelló and Macpherson, 1991)
Lithodes maja	2,000	-	Mean egg size	(MacDonald et al., 1957)
Lithodes mendagnai	2,252 (SD ± 140)	-	Mean egg diameter	(Thatje and Hall, 2016)
Lithodes santolla	1,935	-	Mean egg diameter	(Guzmán and Campodónico, 1972)
Lithodes santolla	2,100	2000	Maximum egg diameter, zoeal hatching size	(Vinuesa, 1987)
Lithodes santolla	1,537–1,984	-	Egg diameter range	(Militelli et al., 2019)
Lithodes tropicalis	2,364 (SD ± 94)	-	Mean egg diameter	(Thatje and Hall, 2016)
Lithodes turkayi	1,700	-	Mean egg size	(Lovrich, 1993)

Species	Egg (µm)	Larval (µm)	Comments	References
Lithodes turritus	2,131 (SD ± 116)	-	Mean egg diameter	(Thatje and Hall, 2016)
Lophopanopeus bellus bellus	330	500	-	(Strathmann, 1987)
Lophopanopeus bellus diegensis	-	450	-	(Strathmann, 1987)
Lyreidus tridentatus	470-500	-	Egg diameter before laying	(Williamson, 1965)
Macrobrachium acanthurus	573 (SD ± 19)	-	Smaller diameter embryonic egg stage 2	(Anger et al., 2002)
Macrobrachium carcinus	532 (SD ± 13)	-	Smaller diameter embryonic egg stage 1	(Anger et al., 2002)
Macrobrachium olfersii	512 (SD ± 12)	-	Smaller diameter embryonic egg stage 1	(Anger et al., 2002)
Matuta lunaris	274 ± 3.19	-	Mean egg size	(Perez, 1990)
Meningodora miccylus	720 x 940	-	Egg dimensions	(Herring, 1974)
Meningodora vesca	620 x 840	-	Egg dimensions	(Herring, 1974)
Metapenaeopsis dalei	60-200	-	Maturing oocytes range	(Choi et al., 2005)
Mirocaris fortunata	249.9 (SD ± 89.5)	-	Mean vitellogenic oocyte size	(Llodra et al., 2000)
Mithraculus forceps	560 ± 60	-	Mean egg diameter	(Cobo and Okamori, 2008)
Munida gregaria	530 (SD ± 22.5)	-	Mean egg diameter	(Dellatorre and González-Pisani, 2011)
Munida subrugosa	360-900	-	Oocytes in secondary vitellogenesis	(Tapella et al., 2002)
Munida subrugosa	690 (SD ± 60)	-	Average egg diameter	(Tapella et al., 2002)
Munidopsis platirostris	740-820	-	Early embryo diameter	(Williams et al., 2019)
Nematocarcinus cursor	420 x 540	-	Egg dimensions	(Herring, 1974)
Nematocarcinus exilis	500 x 640	-	Egg dimensions	(Herring, 1974)
Neorhynchoplax chipolini	430 ± 20	-	Egg size	(Hsueh, 2018)
Neptunus pelagicus	360-375	1250	Egg diameter, larvae length	(Raghu Prasad and Tampi, 1953)
Notostomus auriculatus	640 x 980	-	Egg dimensions	(Herring, 1974)
Species	Egg (µm)	Larval (µm)	Comments	References
-----------------------------	------------------	-------------	--	-----------------------------------
Notostomus elegans	760 x 760	-	Egg dimensions	(Herring, 1974)
Oedignathus inermis	1175	-	Mean egg size	(Zaklan, 2002)
Oplophorus spinosus	3,210 (SD ± 190)	-	Outer egg diameter	(Sudnik, 2018)
Orconectes limosus	1,405–2,150	-	Egg diameter range	(Kozák et al., 2006)
Oregonia gracilis	500	1150	-	(Strathmann, 1987)
Ovalipes cathams	317	-	Mean egg size	(Haddon, 1994)
Ovalipes catharus	300-388	-	Mean egg size range	(Haddon, 1994)
Palaemon adspersus	552 (SD ± 14)	-	Smaller diameter embryonic egg stage 1	(Anger et al., 2002)
Palaemon elegans	473 (SD ± 4)	-	Smaller diameter embryonic egg stage 1	(Anger et al., 2002)
Palaemon northropi	479 (SD ± 15)	-	Smaller diameter embryonic egg stage 1	(Anger et al., 2002)
Palaemon pandaliformis	631 (SD ± 32)	-	Smaller diameter embryonic egg stage 1	(Anger et al., 2002)
Pandalus montagui	639 (SD ± 6)	-	Smaller diameter embryonic egg stage 3	(Anger et al., 2002)
Panopeus herbstii	310	-	Mean egg diameter	(McDonald)
Paralithodes brevipes	972 (SD ± 56)	-	Mean egg diameter	(Thatje and Hall, 2016)
Paralithodes californiensis	1,750	-	Mean egg size	(Zaklan, 2002)
Paralithodes californiensis	1,860 (SD ± 96)	-	Mean egg diameter	(Thatje and Hall, 2016)
Paralithodes camtschaticus	780	-	Mean egg size	(Marukawa, 1933)
Paralithodes camtschaticus	950	-	Mean egg size	(Marukawa, Thatje and Hall)
Paralithodes camtschaticus	853 (SD ± 76)	-	Mean egg diameter	(Thatje and Hall, 2016)
Paralithodes platypus	1,180	-	Mean egg size	(Somerton)
Paralithodes platypus	1,200	-	Mean egg size	(Somerton and MacIntosh, 1985)
Paralithodes rathbuni	1,668 (SD ± 100)	-	Mean egg diameter	(Thatje and Hall, 2016)

Species	Egg (µm)	Larval (µm)	Comments	References
Paralomis aculeate	2,076 (SD ± 127)	-	Mean egg diameter	(Thatje and Hall, 2016)
Paralomis africana	1,834 (SD ± 78)	-	Mean egg diameter	(Thatje and Hall, 2016)
Paralomis anamerae	2,276 (SD ± 131)	-	Mean egg diameter	(Thatje and Hall, 2016)
Paralomis cristata	2,360 (SD ± 142)	-	Mean egg diameter	(Thatje and Hall, 2016)
Paralomis cristulata	1,883 (SD ± 131)	-	Mean egg diameter	(Thatje and Hall, 2016)
Paralomis elongata	1,950 (SD ± 155)	-	Mean egg diameter	(Thatje and Hall, 2016)
Paralomis Formosa	2,047 (SD ± 136)	-	Mean egg diameter	(Thatje and Hall, 2016)
Paralomis granulosa	1,900	2100	Maximum egg diameter, zoeal hatching size	(Lovrich and Vinuesa, 1999)
Paralomis granulosa	2,100	-	Mean egg size	(Vinuesa, 1987)
Paralomis granulosa	1,788 (SD ± 84)	-	Mean egg diameter	(Thatje and Hall, 2016)
Paralomis grossmani	1,862 (SD ± 99)	-	Mean egg diameter	(Thatje and Hall, 2016)
Paralomis inca	1,806 (SD ± 100)	-	Mean egg diameter	(Thatje and Hall, 2016)
Paralomis longipes	2,000	-	Egg diameter	(Faxon, 1893)
Paralomis mendagnai	1,882 (SD ± 43)	-	Mean egg diameter	(Thatje and Hall, 2016)
Paralomis seagranti	2,500	-	Egg diameter	(Eldredge and LG, 1976)
Paralomis spinosissima	2,000	-	Mean egg diameter	(Otto, 1993)
Parapasiphaea sulcatifrons	2560 x 4000	-	Egg dimensions	(Herring, 1974)

Species	Egg (µm)	Larval (µm)	Comments	References
Pasiphaea hoplocerca	1600 x 2240	-	Egg dimensions	(Herring, 1974)
Pasiphaea multidentata	1760 x 2520	-	Egg dimensions	(Herring, 1974)
Pinnotheres taylori	350	500	-	(Strathmann, 1987)
Plesionika edwardsi	340 x 440	-	Egg dimensions	(Herring, 1974)
Pleuroncodes monodon	370-520	-	Egg size	(Flores et al., 2017)
Polyonyx gibbesi	-	1,200	Carapace width of zoea stage 1	(Gore, 1968)
Pontophilus talismani	520 x 740	-	Egg dimensions	(Herring, 1974)
Portunus sanguinolentus	253.8 (SD ± 3.19)	-	Diameter of external eggs at stage 1	(Wimalasiri and Dissanayake, 2016)
Portunus sanguinolentus	340	-	Newly spawned egg diameter	(Samuel and Soundarapandian)
Potimirim potimirim	372 (SD ± 26)	-	Smaller diameter embryonic egg stage 2	(Anger et al., 2002)
Procambarus clarkii	1,900 (SE ± 20)	-	Newly extruded egg diameter	(Noblitt et al., 1995)
Procambarus zonangulus	2,400 (SE ± 40)	-	Newly extruded egg diameter	(Noblitt et al., 1995)
Pseudocarcinus gigas	-	1,650 ± 130	Zoea stage 1 carapace width	(Gardner and Quintana, 1998)
Ranina ranina	600	-	Minor–axis egg diameter	(Ichikawa et al., 2004)
Ranina ranina	620	-	Egg diameter	(Krajangdara and Watanabe, 2005)
Rhinolithodes wossnessenskii	1,125	-	Mean egg size	(Zaklan, 2002)
Rhinolithodes wossnessenskii	908 (SD ± 48)	-	Mean egg diameter	(Thatje and Hall, 2016)
Rimicaris exoculata	166.9 (SD ± 48.7)	-	Mean vitellogenic oocyte size	(Llodra et al., 2000)
Scylla serrata	285-414	-	Egg diameter range from extrusion to hatch	(Churchill, 2003)
Scyllarides delfosi	600-640	-	Egg diameter range	(Lima et al., 2018)
Sesarma cuaracoense	580 ± 20	-	Mean egg diameter after spawning	(Schuh and Diesel, 1995a)

Species	Egg (µm)	Larval (µm)	Comments	References
Sesarma quadratum	225	-	Diameter at zoea release	(Syama and Anilkumar, 2011)
Sesarmidae rectum	500.5 (SD ± 3.7)	-	Egg diameter	(Anger and Moreira, 2004)
Systellaspis braueri	3120 x 4640	-	Egg dimensions	(Herring, 1974)
Systellaspis cristata	2720 x 4120	-	Egg dimensions	(Herring, 1974)
Systellaspis debilis	1880 x 3400	-	Egg dimensions	(Herring, 1974)
Telmessus cheiragonus	660-770	-	Egg diameter range	(Nagao and Munehara, 2007)
Trachysalambria curvirostris	230-340	-	Egg diameter range	(Cha et al., 2004)
Tumidotheres moseri	-	530 ± 10	Carapace width of zoea stage 1	(Bolaños et al., 2004)
Uca annulipes	240	-	Egg diameter	(Thurman, 1985)
Uca rapax	260	-	Egg diameter	(Thurman, 1985)
Uca rapax	200 - 280	-	Egg diameter range	(Costa and Soares- Gomes, 2009)
Uca triangularis	240	-	Egg diameter	(Thurman, 1985)
Upogebia edulis	1,000	-	Freshly laid egg size	(Chan and Shy, 1996)

Note: Smallest value was recorded when available, * indicates that size was an approximate value,* indicates species and propagule sizes recorded in the report by Georgiades (2012) that we were not access.

A7. Echinoderms

Literature search: To identify literature on propagule and female gamete size a systematic literature search was undertaken using the <u>Web of Science</u> database. For echinoderms one search was performed using the following search criteria:

Web of Science: TOPIC: (echinoderm*) AND TOPIC: (egg size) Results: 205

Additional articles were also sourced from citations and reference lists of articles produced in the Web of Science database searches.

Species	Egg (µm)	Larval (µm)	Comments	References
Abatus cavernosus	1400	-	Mean egg size	(Gil et al., 2009)
Abatus cordatus	1,340 (SD ± 40)	-	Mean egg diameter	(Lawrence et al., 1984)
Abatus nimrodi	1,400	2,000	Average egg diameter, juvenile size	(Schinner and McClintock, 1993)
Abatus shackletoni	1,000	1,600	Average egg diameter, juvenile size	(Schinner and McClintock, 1993)
Acodontaster hodgsoni	547	-	Egg diameter	(McEdward and Miner, 2006)
Allocentrotus fragilis	110-115	-	Egg diameter	(Strathmann, 1987)
Amphiodia occidentalis	90-106	-	Egg diameter	(Strathmann, 1987)
Amphipholis squamata	110-130	-	Egg diameter	(Strathmann, 1987)
Amphipneustes lorioli	550-1,971	1,500–1,760	Vitellogenic – mature oocyte range, Stage 1 embryo diameter	(Galley et al., 2005)
Anasterias minuta	1,810 ± 270	-	Stage 1 mean diameter, includes eggs and early embryos	(Gil et al., 2011)
Anasterias perrieri	1750	-	_	(McEdward and Morgan, 2001)
Anasterias rupicola	1370	-	-	(McEdward and Morgan, 2001)
Anthocidaris crassispina	90	-	Egg size	(Emlet, 1995, Onoda, 1931)
Aquilonastra batheri	433	-	Egg diameter	(Byrne, 2006)
Aquilonastra burtoni	550	-	Egg diameter	(Byrne, 2006)
Aquilonastra coronata japonica	422	-	Egg diameter	(Byrne, 2006)
Aquilonastra minor	437	-	Egg diameter	(Byrne, 2006)
Aquilonastra scobinata	450	-	Egg diameter	(Byrne, 2006)
Arbacia lixula	76.6 (SD ± 3.1)	-	Mean egg diameter	(George et al., 1997)

Table A7 Echinoderm propagule sizes identified from the literature search

Species	Egg (µm)	Larval (µm)	Comments	References
Arbacia lixula	77	-	Mean egg diameter	(George et al., 1990, Emlet, 1995, McEdward and Miner, 2006)
Arbacia punctulata	60	-	Egg diameter *	(Marshall and Keough, 2003a)
Arbacia punctulata	74	-	Egg diameter	(Villinski et al., 2002)
Arbacia punctulata	73.8 (SE ± 0.6)	-	Egg diameter	(Whitehill and Moran, 2012)
Arbacia punctulata	74	460	Egg size, metamorph size	(Harvey, 1956, Emlet et al., 1987)
Arbacia punctulata	75	-	Egg diameter	(McEdward and Miner, 2006)
Arbacia punctulata	75	-	Egg diameter	(McEdward and Miner, 2006)
Arbacia stellata	65	-	Egg diameter	(Emlet, 1995)
Arbacia stellata	66.78 (SD 3.68)	-	Mean measurement of the longest axis	(Lessios, 1990)
Archaeopneustes histrix	134	-	Egg diameter	(McEdward and Miner, 2006)
Archaster angulatus	284 (SE ± 8.8)	-	Mean size of mature eggs	(Keesing et al., 2011)
Archaster typicus	180-200	-	Diameter of spawned eggs	(Keesing et al., 2011)
Aresoma fenecstratum	1250	-	Egg size	(Emlet et al., 1987, Thomas et al., 2001)
Aspidodiadema jacobyi	97	-	Egg diameter	(McEdward and Miner, 2006)
Asterias amurensis	149 (SE 1.13)	-	Egg diameter	(Morris, 2002)
Asterias forbesi	133	-	Egg diameter	(McEdward and Miner, 2006)
Asterias vulgaris	530	-	Egg diameter	(Pechenik, 1999)
Asterina batheri	800	-	Egg size	(Pechenik, 1999)

Species	Egg (µm)	Larval (µm)	Comments	References
Asterina gibbosa	500	-	Egg diameter	(Byrne, 2006)
Asterina minor	700	-	Egg size	(Pechenik, 1999)
Asterina phylactica	500	-	Egg diameter	(Byrne, 2006)
Asterina pseudoexigua pacifica	900	-	Egg size	(Pechenik, 1999)
Asterina stellifera	150	-	Egg diameter	(Byrne, 2006)
Astropyga magnifica	104.04 (1.45)	-	Egg diameter (longest axis)	(Lessios, 1990)
Astropyga pulvinata	89.47 (SD 4.20)	-	Egg diameter (longest axis)	(Lessios, 1990)
Australostichopus mollis	160	-	Egg size	(Peters-Didier and Sewell, 2017)
Boltenia villosa	160	-	Egg size	(Bates, 2002)
Brisaster latifrons	330-355	-	Egg diameter	(Strathmann, 1987)
Brisaster latifrons	357.4 ± 21.7	-	Egg diameter	(Zigler et al., 2008)
Brisaster latifrons	365	420	Egg size, metamorph size	(Zigler and Raff, 2013, Hart, 1996)
Brisaster latifrons	330-355	-	Egg diameter	(Strathmann, 1987)
Cassidulus mitis	367 (SD ± 26)	-	Egg diameter	(Contins and Ventura, 2011)
Clarkcoma canaliculata	266 (SE ± 2.6)	-	Egg diameter	(Falkner et al., 2013, Falkner et al., 2015)
Clarkcoma pulchra	290 ± 3.4	-	Mean egg diameter	(Falkner et al., 2013, Falkner et al., 2015)
Clypeaster japonicus	110-120	-	Egg diameter range	(Mohri and Hamaguchi, 1990)
Clypeaster rosaceus	265.7 (SE 0.35)	-	Mean egg diameter	(Allen et al., 2006)
Clypeaster rosaceus	274 (SD ± 4.38)	_	Mean egg diameter	(Miner et al., 2002)

Species	Egg (µm)	Larval (µm)	Comments	References
Clypeaster rosaceus	280	340	Egg size, metamorph size	(Herrera et al., 1996, Falkner et al., 2013, Falkner et al., 2015, Sewell and Young, 1997, Zigler and Raff, 2013, Reitzel and Miner, 2007)
Clypeaster rosaceus	283.4 (SD ± 8.9)	-	Egg diameter	(Zigler et al., 2008)
Clypeaster rosaceus	321.05 (SD 18.43)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Clypeaster subdepressus	150	340	Egg size, metamorph size	(Herrera et al., 1996)
Clypeaster subdepressus	155.5 (SD ± 4.0)	-	Egg diameter	(Zigler et al., 2008)
Clypeaster subdepressus	162.06 (SD 8.82)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Cnemidocarpa finmarkiensis	150-160	-	Egg size	(Bates, 2002)
Coelopleurus floridanus	115	-	Egg diameter	(McEdward and Miner, 2006)
Colobocentrotus atratus	73	-	Egg diameter	(McEdward, 1986)
Crossaster papposus	750-800	-	Egg diameter	(Strathmann, 1987)
Crossaster papposus	796	-	Egg diameter	(Strathmann et al., 2002)
Cryptoasterina hystera	440	-	Egg diameter	(Byrne, 2006)
Cryptoasterina pacifica	400	-	Egg diameter	(Byrne, 2006)
Cryptoasterina pentagona	413	-	Egg diameter	(Byrne, 2006)
Cucumaria miniata	493	-	Egg diameter	(McEdward and Miner, 2006)
Dendraster excentricus	114-120	360	Egg size, metamorph size	(Emlet et al., 1987)
Dendraster excentricus	119	-	Egg diameter	(McEdward and Miner, 2006)
Dendraster excentricus	125	-	Egg diameter	(McEdward and Herrera, 1999)
Dendraster excentricus	127	-	Egg diameter	(McEdward, 1986)

Species	Egg (µm)	Larval (µm)	Comments	References
Dendraster excentricus	110-125	-	Egg diameter	(Strathmann, 1987)
Dermasterias imbricata	200	-	Egg diameter	(Strathmann, 1987)
Diadema antillarium	73	-	Egg size	(Emlet et al., 1987, Thomas et al., 2001)
Diadema antillarium	68	515	Egg size, metamorph size	(Eckert, 1998)
Diadema antillarium	68.11 (SD 3.09)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Diadema antillarium	73	-	Egg size	(Emlet et al., 1987, Thomas et al., 2001)
Diadema mexicanum	67	-	Egg diameter	(Emlet, 1995)
Diadema mexicanum	69.54 (SD 2.63)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Diplasterias brucei	2800	-	-	(McEdward and Morgan, 2001)
Diplasterias meridionalis	2790	-	-	(McEdward and Morgan, 2001)
Echinarachnius parma	145	375	Egg size, metamorph size	(Harvey, 1956, Emlet et al., 1987)
Echinaster sp. 1	720	-	Egg diameter	(McEdward and Miner, 2006)
Echinaster sp. 2	765	-	Egg diameter	(McEdward and Miner, 2006)
Echinaster spinulosus	834	-	Egg diameter	(McEdward and Miner, 2006)
Echinolampas crassa	220	320-380	Egg size, metamorph size	(Emlet et al., 1987, Clark, 1923)
Echinometra lucunter	82	380	Egg size, metamorph size	(Emlet et al., 1987, Thomas et al., 2001, Emlet, 1995, Cameron, 1986)
Echinometra lucunter	88.93 (SD 8.59)	-	Mean egg diameter (longest axis)	(Lessios, 1990)

Species	Egg (µm)	Larval (µm)	Comments	References
Echinometra lucunter	106	-	Egg diameter	(McEdward and Miner, 2006)
Echinometra mathaei	75-80	-	Egg diameter	(Kominami and Takata, 2003)
Echinometra vanbrunti	70	360	Egg size, metamorph size	(Emlet, 1995, Emlet et al., 1987)
Echinometra vanbrunti	72.4 (SD 8.53)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Echinometra viridis	91	-	Egg size	(Emlet, 1995, Emlet et al., 1987)
Echinometra viridis	93.65 (SD 5.24)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Encope aberrans	190	280	Egg size, metamorph size	(Herrera et al., 1996)
Encope aberrans	189	-	Egg diameter	(McEdward and Miner, 2006)
Encope michelini	170	305	Egg size, metamorph size	(Herrera et al., 1996)
Encope michelini	212	-	Egg diameter	(McEdward and Miner, 2006)
Encope stokesii	119.65 (SD 7.44)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Eucidaris metularia	90	-	Egg diameter	(Emlet et al., 1987, Thomas et al., 2001)
Eucidaris thouarsi	86	-	Egg diameter	(Emlet et al., 1987, Thomas et al., 2001)
Eucidaris thouarsi	86	-	Egg diameter	(Emlet, 1995, Emlet, 1988)
Eucidaris thouarsi	91.06 (SD 7.47)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Eucidaris tribuloides	86	380	Egg diameter, metamorph size	(Emlet et al., 1987, Villinski et al., 2002)
Eucidaris tribuloides	94.79 (SD 4.49)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Evasterias troschelii	150	-	Egg diameter	(Strathmann, 1987)
Evasterias troschelii	162	-	Egg diameter	(Strathmann et al., 2002)

Species	Egg (µm)	Larval (µm)	Comments	References
Evechinus chloroticus	87	_	Egg diameter	(Sewell, 2005)
Florometra serretissima	241	-	Egg diameter	(McEdward and Miner, 2006)
Gorgonocephalus eucnemis	200	-	Egg diameter	(Strathmann, 1987)
Heliocidaris erythrogramma	380	-	Median egg size for population	(Marshall and Bolton, 2007)
Heliocidaris erythrogramma	400	-	Egg diameter	(Emlet et al., 1987, Thomas et al., 2001)
Heliocidaris erythrogramma	430	-	Egg diameter	(Villinski et al., 2002)
Heliocidaris tuberculata	90	-	Egg diameter	(Villinski et al., 2002, Byrne and Sewell, 2019, Prowse et al., 2017)
Heliocidaris tuberculata	95	-	Egg diameter	(McEdward and Miner, 2006, Emlet et al., 1987, Thomas et al., 2001)
Hemicentrotus pulcherrimus	95	-	Egg diameter *	(Kominami and Takata, 2003)
Hemicentrotus pulcherrimus	95-105	-	Egg diameter range	(Mohri and Hamaguchi, 1990)
Henricia leviuscula	1236	-	Egg diameter	(McEdward and Miner, 2006)
Henricia leviuscula	1342	-	Egg diameter	(Strathmann et al., 2002)
Henricia sp	1,087	-	Egg diameter	(Strathmann et al., 2002)
Henricia sp.	700-1,000	-	Egg diameter	(Strathmann, 1987)
Henricia spp.	940-1,500	-	Egg diameter	(Strathmann, 1987)
Heterocentrotus mamillatus	100	302	Egg size, metamorph size	(Mortensen, 1938, Emlet, 1995, McEdward, 1986)

Species	Egg (µm)	Larval (µm)	Comments	References
Hippasteria spinosa	1,200	_	Egg diameter	(Strathmann, 1987)
Holopneustes inflatus	500	-	Egg diameter	(Emlet et al., 1987, Thomas et al., 2001)
Holopneustes purpurascens	610	-	Egg diameter	(Byrne and Sewell, 2019)
Holopneustes purpurascens	580	-	Egg diameter	(Villinski et al., 2002)
Isostichopus fuscus	104	-	Maximum size of mature oocyte	(Herrero-Pérezrul et al., 1999)
Isostichopus fuscus	153.4 ± 24.6	-	Mean mature oocyte diameter	(Toral-Granda and Martínez, 2007)
Laganum depressum	100	310	Egg size, metamorph size	(Mortensen, 1938, Emlet, 1995)
Leodia sexiesperforata	180	-	Egg size	(Reitzel et al., 2005)
Leodia sexiesperforata	208	260	Egg size, metamorph size	(Herrera et al., 1996)
Leptasterias aequalis	900	-	Egg size	(Bingham et al., 2004)
Leptasterias epichlora	976.9 ± 110.9	-	Mean egg diameter	(George, 1994)
Leptasterias hexactis	995	-	Egg diameter	(Strathmann et al., 2002)
Leptasterias hexactis	800-1,100	-	Egg diameter	(Strathmann, 1987)
Luidia clathrata	166	-	Egg diameter	(McEdward and Miner, 2006)
Luidia foliolata	152	-	Egg diameter	(Strathmann et al., 2002)
Luidia foliolata	165	-	Egg diameter	(Strathmann, 1987)
Lytechinus variegatus	102.15 9 (SD 8.52)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Lytechinus variegatus	104	-	Egg diameter	(McEdward and Miner, 2006)

Species	Egg (µm)	Larval (µm)	Comments	References
Lytechinus variegatus	110	485, 410	Egg size, metamorph size	(Emlet et al., 1987, McEdward and Herrera, 1999, Mazur and Miller, 1971)
Lytechinus williamsi	110.34 (SD 8.71)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Macrophiothrix koehleri	147	-	Mean egg diameter	(Podolsky and McAlister, 2005)
Macrophiothrix longipeda	155	-	Mean egg diameter	(Podolsky and McAlister, 2005)
Macrophiothrix lorioli	166	-	Mean egg diameter	(Podolsky and McAlister, 2005)
Macrophiothrix rhabdota	230	-	Mean egg diameter	(Podolsky and McAlister, 2005)
Mediaster aequalis	940-1200	-	Egg diameter	(Strathmann, 1987)
Mediaster aequalis	951	-	Egg diameter	(McEdward and Miner, 2006)
Mellita quinquiesperforata	110	350	Egg size, metamorph size	(Herrera et al., 1996, Emlet et al., 1987)
Mellita quinquiesperforata	137.91 (SD 8.47)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Mellita sexiesperforata	237.16 (SD 17.81)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Mellita tenuis	100	-	Egg size	(Reitzel et al., 2005)
Meridiastra atyphoida	400	-	Egg diameter	(Byrne, 2006)
Meridiastra calcar	415 (SE ± 3.18)	-	Egg diameter	(Prowse et al., 2008)
Meridiastra gunnii	431 (SE ± 3.85)	-	Egg diameter	(Prowse et al., 2008)
Meridiastra mortenseni	239 (SE ± 4.19)	_	Egg diameter	(Prowse et al., 2008)
Meridiastra occidens	400	-	Egg diameter	(Byrne, 2006)
Meridiastra oriens	399 (SE ± 5.14)	-	Egg diameter	(Prowse et al., 2008)
Mespilia globulus	80	-	Egg diameter	(Emlet et al., 1987, Thomas et al., 2001)

Species	Egg (µm)	Larval (µm)	Comments	References
Mespilia globulus	80	377	Egg diameter, metamorph size	(Emlet, 1995, Emlet et al., 1987)
Molgula pacifica	160-180	-	Egg size	(Bates, 2002)
Odontaster validus	169	-	Egg diameter	(McEdward and Miner, 2006)
Ophiactis resiliens	83 (SE ± 0.3)	-	Mean egg diameter	(Falkner et al., 2015)
Ophiarachnella ramsayi	84 (SE ± 0.3)	-	Mean egg diameter	(Falkner et al., 2015)
Ophiarthrum elegans	381 (SE ± 4.0)	-	Mean egg diameter	(Falkner et al., 2015)
Ophiocoma alexandri	71.0 (SE ± 0.4)	-	Mean egg diameter	(Whitehill and Moran, 2012)
Ophiocoma dentata	71 (SE ± 0.7)	-	Mean egg diameter	(Falkner et al., 2013, Falkner et al., 2015)
Ophiocoma endeani	353 (SE ± 2.0)	-	Mean egg diameter	(Falkner et al., 2013, Falkner et al., 2015)
Ophioderma wahlbergii	250 (SD ± 100)	-	Mean oocyte diameter	(Landschoff and Griffiths, 2015)
Ophionereis fasciata	90-110 (SE 1.2)	-	Egg diameter	(Falkner et al., 2015)
Ophionereis schayeri	248 (SE ± 1.4)	-	Mean egg diameter	(Falkner et al., 2015)
Ophiopholis aculeata	105	-	Egg diameter	(Strathmann, 1987)
Ophiopteris antipodum	110 (SE ± 0.7)	-	Mean egg diameter	(Falkner et al., 2015)
Ophiothrix caespitosa	100-110	-	Egg diameter	(Selvakumaraswamy and Byrne, 2000)
Ophiothrix spongicola	122-131 (SE 0.4)	-	Egg diameter	(Selvakumaraswamy and Byrne, 2000)
Ophiura sarsi	100-110	-	Egg diameter	(Strathmann, 1987)
Oreaster occidentalis	144.83 (SD 6.23)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Oreaster reticulatus	197.28 (SD 33.69)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Oreaster reticulatus	224.4 (SD 5.97)	_	Mean egg size	(Metaxas et al., 2008)
Orphnurgus dorisae	500	-	Egg diameter	(Pawson, 2002)

Species	Egg (µm)	Larval (µm)	Comments	References
Orthasterias koehleri	148	-	Egg diameter	(Strathmann et al., 2002)
Orthasterias koehleri	150-180	_	Egg diameter	(Strathmann, 1987)
Paracentrotus lividus	90-100	315	Egg diameter, metamorph size	(Emlet, 1995)
Paracentrotus lividus	92	-	Egg diameter	(McEdward and Miner, 2006)
Paracentrotus lividus	92 (SD ± 7.8)	_	Mean egg diameter	(George et al., 1997)
Parapanthia aucklandensis	400	-	Egg diameter	(Byrne, 2006)
Parapanthia grandis	800	-	Egg diameter	(Byrne, 2006)
Parastichopus californicus	189	-	Egg diameter	(McEdward and Miner, 2006)
Parvulastra exigua	384 (SE ± 2.69)	-	Egg diameter	(Prowse et al., 2008)
Patirella calcar	517	-	Egg size	(Pechenik, 1999)
Patirella parvivipara	1,000	-	Egg size	(Pechenik, 1999)
Patirella regularis	410	-	Egg size	(Pechenik, 1999)
Patirella vivipara	1,500	-	Egg size	(Pechenik, 1999)
Patiria chilensis	160	-	Egg diameter	(Byrne, 2006)
Patiria miniata	173–197	-	Egg diameter	(Strathmann, 1987)
Patiriella brevispina	420	-	Egg diameter	(Villinski et al., 2002)
Patiriella calcar	415	746.9	Oocyte diameter, brachiolaria larva length	(Villinski et al., 2002, Byrne et al., 1999, Byrne and Cerra, 1996, Byrne, 1991)
Patiriella exigua	390 (SE 4.3)	690 (SE 14.6)	Oocyte diameter, brachiolaria larva length	(Villinski et al., 2002, Byrne et al., 1999, Byrne and Cerra, 1996, Byrne, 1991)

Species	Egg (µm)	Larval (µm)	Comments	References
Patiriella gunnii	400	490	Egg diameter, larvae size	(Villinski et al., 2002, Byrne et al., 1999, Byrne and Cerra, 1996, Byrne, 1991)
Patiriella parvivipara	135	207 (SE 11.9)	Oocyte diameter, brachiolaria larva length	(Byrne and Cerra, 1996)
Patiriella parvivipara	150	-	Egg diameter	(Byrne et al., 1999)
Patiriella pseudoexigua	440	-	Egg diameter	(Byrne et al., 1999)
Patiriella pseudoexigua	440	-	Egg diameter	(Byrne et al., 1999)
Patiriella regularis	150 (SE 0.8)	1,430 (SE 3.9)	Oocyte diameter, brachiolaria larva length	(Villinski et al., 2002, Byrne et al., 1999, Byrne and Cerra, 1996, Byrne, 1991)
Patiriella regularis	165 (SE ± 2.18)	-	Egg diameter	(Prowse et al., 2008)
Patiriella vivipara	135	-	Egg diameter	(Byrne et al., 1999)
Patiriella vivipara	148 (SE 0.7)	270 (SE 8.1)	Oocyte diameter, brachiolaria larva length	(Byrne and Cerra, 1996)
Perknaster fuscus	1,192	-	Egg diameter	(McEdward and Miner, 2006)
Phyllacanthus imperialis	500	-	Egg diameter	(Emlet et al., 1987, Thomas et al., 2001)
Phyllacanthus parvispinus	500	-	Egg diameter	(Emlet et al., 1987, Thomas et al., 2001)
Pisaster brevispinus	160-170	-	Egg diameter	(Strathmann, 1987)
Pisaster ochraceus	150-160	-	Egg diameter	(Strathmann, 1987)
Pisaster ochraceus	178	-	Egg diameter	(Strathmann et al., 2002)
Pisaster ochraceus	151.2 (SD ± 10.8)	-	Mean egg diameter	(George, 1999)
Pisaster ochraceus	154	-	Egg diameter	(McEdward and Miner, 2006)

Species	Egg (µm)	Larval (µm)	Comments	References
Plagiobrissus grantis	106.70 (SD 9.10)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Prionocidaris baculosa	150	-	Egg diameter	(Emlet et al., 1987, Thomas et al., 2001)
Prionocidaris bispinosa	150	-	Egg diameter	(Mortensen, 1938, Emlet, 1995)
Psammechinus miliaris	97	-	Egg diameter	(Emlet, 1995)
Pseudostichopus mollis	61-421	-	Growth and advanced growth oocyte size	(Morgan and Neal, 2012)
Psilaster charcoti	944	-	Egg diameter	(McEdward and Miner, 2006)
Psolus chitinoides	569	-	Egg diameter	(McEdward and Miner, 2006)
Psolus patagonicus	887 ± 26	-	Mean egg diameter	(Giménez and Penchaszadeh, 2010)
Psychropotes longicauda	4,400	-	Egg diameter	(Sewell and Young, 1997)
Pteraster militaris	1,192	-	Egg diameter	(McEdward and Miner, 2006)
Pteraster militaris	1200	-	-	(McEdward and Morgan, 2001)
Pteraster militaris	1,192	-	Egg diameter	(McEdward and Miner, 2006)
Pteraster tesselatus	1,176	-	Egg diameter	(McEdward and Miner, 2006)
Pteraster tesselatus	1,175	-	Egg diameter	(Strathmann et al., 2002)
Pteraster tesselatus	1,200	-	Egg diameter	(Strathmann, 1987)
Pycnopodia helianthoides	120	-	Egg diameter	(Strathmann, 1987)
Salmacis bicolor	100	-	Egg diameter	(Emlet, 1995)

Species	Egg (µm)	Larval (µm)	Comments	References
Scaphechinus mirabilis	105-110	_	Egg diameter	(Mohri and Hamaguchi, 1990)
Solaster dawsoni	887	-	Egg diameter	(McEdward and Miner, 2006)
Solaster dawsoni	950-1,000	-	Egg diameter	(Strathmann, 1987)
Solaster endeca	811	-	Egg diameter	(McEdward and Miner, 2006)
Solaster endeca	1,000	-	Egg diameter	(Strathmann, 1987)
Solaster stimpsoni	900-1,000	-	Egg diameter	(Strathmann, 1987)
Solaster stimpsoni	912	-	Egg diameter	(McEdward and Miner, 2006)
Solaster stimpsoni	964.8	-	Mean egg width	(McEdward and Carson, 1987)
Stegnaster inflatus	1000	-	Egg diameter	(Byrne, 2006)
Sterechinus neumayeri	179	-	Egg diameter	(Moore and Manahan, 2007)
Strongylocentrotus droebachiensis	145	-	Egg diameter	(Podolsky and Strathmann, 1996)
Strongylocentrotus droebachiensis	152	-	Egg diameter	(McEdward, 1986)
Strongylocentrotus droebachiensis	150	-	Egg diameter	(McEdward and Herrera, 1999)
Strongylocentrotus droebachiensis	155	406	Egg size, metamorph size	(Hart, 1995)
Strongylocentrotus droebachiensis	157	-	Egg diameter	(McEdward and Miner, 2006)
Strongylocentrotus droebachiensis	153-159	-	Egg diameter	(Bertram and Strathmann, 1998)
Strongylocentrotus droebachiensis	155-160	-	Egg diameter	(Strathmann, 1987)
Strongylocentrotus franciscanus	130	350	Egg size, metamorph size	(Emlet, 1995, Emlet et al., 1987, Thomas et al., 2001)

Species	Egg (µm)	Larval (µm)	Comments	References
Strongylocentrotus franciscanus	130-140	-	Egg diameter	(Strathmann, 1987)
Strongylocentrotus franciscanus	134	-	Egg diameter	(McEdward, 1986)
Strongylocentrotus franciscanus	135	-	Egg diameter	(Podolsky and Strathmann, 1996)
Strongylocentrotus franciscanus	139	-	Egg diameter	(McEdward and Miner, 2006)
Strongylocentrotus franciscanus	130	350	Egg size, metamorph size	(Emlet, 1995, Emlet et al., 1987, Thomas et al., 2001)
Strongylocentrotus pallidus	155-170	-	Egg diameter	(Strathmann, 1987)
Strongylocentrotus pallidus	164	-	Egg diameter	(McEdward and Miner, 2006)
Strongylocentrotus purpuratus	84	-	Egg diameter	(Podolsky and Strathmann, 1996)
Strongylocentrotus purpuratus	80, 84	391, 400	Egg size, metamorph size	(Strathmann, 2017, Emlet, 1995)
Strongylocentrotus purpuratus	78-80	-	Egg diameter	(Strathmann, 1987)
Strongylocentrotus purpuratus	80	-	Egg diameter	(Zigler and Raff, 2013, McEdward and Miner, 2006, Villinski et al., 2002, Emlet et al., 1987, Thomas et al., 2001, McEdward and Herrera, 1999, Matson et al., 2012)
Stylocidars lineata	110	-	Egg diameter	(McEdward and Miner, 2006)
Styracaster elongatus	230	-	Previtellogenic oocytes	(Benítez-Villalobos and Díaz-Martínez, 2010)
Synaptula reciprocans	50	-	Egg diameter	(Sewell and Young, 1997)

Species	Egg (µm)	Larval (µm)	Comments	References
Temnopleurus alexandri	125	-	Egg diameter	(Byrne and Sewell, 2019)
Temnopleurus hardwicki	85-95	-	Egg diameter	(Mohri and Hamaguchi, 1990)
Temnotrema sculptum	97	-	Egg diameter	(Emlet, 1995)
Toxopneustes roseus	101.72 (SD 2.07)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Toxopneustes roseus	101.72 (SD 2.07)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Tripneustes depressus	79.16 (SD 1.41)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Tripneustes gratilla	82	-	Egg diameter	(McEdward, 1986)
Tripneustes gratilla	85	-	Egg diameter	(Byrne et al., 2008a, Byrne et al., 2008b)
Tripneustes ventricosus	79	600	Egg size, metamorph size	(Emlet, 1995, Cameron, 1986)
Tripneustes ventricosus	80.35 (SD 2.66)	-	Mean egg diameter (longest axis)	(Lessios, 1990)
Uniphora granifera	500	-	Egg diameter *	(Marshall and Keough, 2003a)

Note: Smallest value was recorded when available, * indicates that size was an approximate value.

A8. Flatworms

Literature search: To identify literature on propagule and female gamete size a systematic literature search was undertaken using the <u>Web of Science</u> database. For flatworms four searches were performed using the following search criteria:

Web of Science: TOPIC: (platyhelminth*) AND TOPIC: (egg size) AND TOPIC: (marine) Results: 406

Web of Science: TOPIC: (platyhelminth*) AND TOPIC: (marine) AND ALL FIELDS: ('egg size') Results: 8

Web of Science: TOPIC: (platyhelminthes) AND TOPIC: (egg size) AND ALL FIELDS: (marine) Results: 17

Web of Science: TOPIC: (platyhelminthes) AND TOPIC: (egg size) Results: 65

Additional articles were also sourced from citations and reference lists of articles produced in the Web of Science database searches.

Species	Egg (µm)	Comments	References
Allomurraytrema robustrum	53.2-73.1	Egg size range	(Roubal, 1994)
Anantrum histocephalum	31-53	Egg size range	(Jensen and Heckmann, 1977)
Anoplodium hymanae	45-97	Egg capsule, zygote 36–40	(Shinn, 1985)
Anoplodium hymanae	45 x 75	Egg dimensions	(Shinn, 1985)
Aphanurus stossichii	9–13	Egg width	(Kostadinova et al., 2004)
Aphanurus virgula	9–13	Egg width	(Kostadinova et al., 2004)
Archocelis macrorhabditis	75 x 80	-	(Riser, 1974)
Bianium plicitum	34-35 x 66-67	Range of egg width x length	(Bray and Cribb, 1998)
Bianium spongiosum	40-45 x 60-63	Range of egg width x length	(Bray and Cribb, 1998)
Bulbocirrus aulostomi	31-32 x 51-54	Range of egg width x length	(Bray and Cribb, 1998)
Capitella teleta	200	Egg diameter *	(Pernet et al., 2012)
Clavogalea trachinoti	30-41 x 61-76	Range of egg width x length	(Bray and Cribb, 1998)
Convoluta paradoxa	70	Mature ova diameter	(GAMBLE, 1893)
Convoluta psammophyla	80-100	Vitellogenic oocyte diameter	(Falleni and Gremigni, 1990)
Echeneidocoelium indicum	29-39 x 54-58	Range of egg width x length	(Bray and Cribb, 1998)
Echinoplana celerrima	130	Zygote diameter	(Gammoudi et al., 2012)
Euplana gracilis	85-100	Fertilised ovum diameter	(Christensen, 1971)

Table A8 Flatworm propagule sizes identified from the literature search

Species	Egg (µm)	Comments	References
Freemania littoricola	160-170	Zygote diameter	(Strathmann, 1987)
Haliotrema spariensis	53.2-66.5	Egg size range	(Roubal, 1994)
Haploporus benedeni	24–27	Egg width	(Atopkin et al., 2019, Blasco-Costa et al., 2009)
Haploporus indicus	11-15	Egg width	(Atopkin et al., 2019)
Haploporus magnisaccus	18-26	Egg width	(Atopkin et al., 2019)
Haploporus mugilis	19-22	Egg width	(Atopkin et al., 2019)
Haploporus musculosaccus	17-23	Egg width	(Atopkin et al., 2019)
Haploporus pacificus	27-31	Egg width	(Atopkin et al., 2019)
Haploporus pseudoindicus	15	Egg width	(Atopkin et al., 2019)
Haploporus spinosus	18-23	Egg width	(Atopkin et al., 2019)
Hypocreadium patellare	51 x 70	Uncollapsed egg width x length	(Bray and Cribb, 1998)
Imogine mcgrathi	120	-	(Jennings and Newman, 1996)
Imogine mediterranea	70	Zygote diameter	(Gammoudi et al., 2012)
Imogine zebra	175-225	Egg diameter	(Rawlinson et al., 2008)
Labellodiscus major	63.8-67.8	Egg size range	(Roubal, 1994)
Lamellodiscus acanthopagri	95-104	Egg size range	(Roubal, 1994)
Lamellodiscus squamosus	53.2-59.8	Egg size range	(Roubal, 1994)
Lepocreadioides orientalis	29-34 x 69-76	Range of egg width x length	(Bray and Cribb, 1998)
Lepocreadium oyabitcha	38-41 x 70-74	Range of egg width x length	(Bray and Cribb, 1998)
Macrostomum lignano	100	Egg diameter	(Mouton et al., 2018)
Maritigrella crozieri	220 (± 15.6)	Egg diameter	(Rawlinson, 2010)

Species	Egg (µm)	Comments	References
Maritigrella crozieri	134	Average zygote diameter	(Bolanos and Litvaitis, 2009)
Melloplana ferruginea	125	Average embryo diameter	(Bolanos and Litvaitis, 2009)
Monocelis lineata	40-50	Mature oocyte diameter	(Gremigni and Nigro, 1984)
Multitestis pyriformis	26-32 x 57-61	Range of egg width x length	(Bray and Cribb, 1998)
Myzoxenus insolens	25-32 x 64-73	Range of egg width x length	(Bray and Cribb, 1998)
Neochilda fusca	150	Egg diameter	(Bush, 1975)
Neowardula brayi	42-52	Egg width	(Al-Jahdali, 2010)
Notoplana australis	120–125	Egg diameter	(Anderson, 1977)
Opechona austrobacillaris	35-54 x 70-89	Range of egg width x length	(Bray and Cribb, 1998)
Pleioplama atomata	290-480	Egg diameter	(Rawlinson et al., 2008)
Prosthiostomum siphunculus	110	Zygote	(Gammoudi et al., 2012)
Prototransversotrema steeri	81.6-108.8	Egg length	(Roubal, 1998)
Pseudohaplogonaria vacua	180–190	-	(Riser, 1974)
Pseudohaploporus planilizum sp.	23-27	Egg width	(Atopkin et al., 2019)
Pseudohaploporus vietnamensis sp.	15-19	Egg width	(Atopkin et al., 2019)
Pseudopecoelus ibunami	17-20 x 40-50	Egg dimensions	(Estrada-García et al., 2018)
Pseudopisthogonoporus vitellosus	32-42 x 67-79	Range of egg width x length	(Bray and Cribb, 1998)
Pseudosylochus ostreophagus	147	-	(Woelke, 1957)
Retronectes euterpe	140	-	(Sterrer and Rieger, 1974)

Species	Egg (µm)	Comments	References
Sclerocollum rubrimaris	14-16	Egg width	(Al-Jahdali, 2010)
Sclerocollum saudii	6-10	Egg width	(Al-Jahdali, 2010)
Spirorchiidae gen. sp	25-30	Egg diameter	(Lehnert et al., 2019)
Stylochus aomori	95-105	-	(Kato, 1940)
Stylochus ellipticus	61 - 74	Egg diameter range	(Chintala and Kennedy, 1993)
Stylochus uniporis	85-95	-	(Kato, 1940)
Stylochus zebra	200-220	Egg diameter	(Lytwyn and McDermott, 1976)
Stylostomum sanjuania	80-90	Zygote diameter	(Strathmann, 1987)
Syndesmis dendrasrorum	72 x 105	Egg capsule dimensions	(Stunkard and Corliss, 1951)
Thysanozoon brocchii	130	Diameter of zygote	(Gammoudi et al., 2012)
Transversotrema licinum	95.2-108.8	Egg length	(Roubal, 1998)

Note: Smallest value was recorded when available, * indicates that size was an approximate value,^{*} indicates species and propagule sizes recorded in the report by Georgiades (2012) that we were not able to access.

A9. Gastropods

Literature search: To identify literature on propagule and female gamete size a systematic literature search was undertaken using the <u>Web of Science</u> database. For gastropods a search was performed using the following search criteria:

Web of Science: TOPIC: (gastropod*) AND TOPIC: (egg size) AND ALL FIELDS: (diameter) Results: 63

Additional articles were also sourced from citations and reference lists of articles produced in the Web of Science database searches.

Table A9 Gastropod propagule sizes identified from the literature search

Species	Egg (µm)	Larval (µm)	Comments	References
Acanthodoris brunnea	80	-	Oocyte size	(Strathmann, 1987)
Acanthodris pilosa	70	-	Oocyte size	(Strathmann, 1987)
Acnthodoris hudsoni	70	-	Oocyte size	(Strathmann, 1987)
Aegires albopunctatus	107-120	-	Oocyte size	(Strathmann, 1987)
Aeolidia papillosa	74	-	Oocyte size	(Strathmann, 1987)
Aeolidiella alba	69.7 (SD ± 0.4)	-	Egg diameter	(Goddard and Hermosillo, 2008)
Aeolidiella chromosoma	85	127.0 (SD ± 4.3)	Maximum egg diameter, shell length at hatching	(Goddard and Hermosillo, 2008)
Alderia modesta	70	-	Oocyte size	(Strathmann, 1987)
Alderia modesta	62-87	-	Egg diameter	(CLARK and GOETZFRIED, 1978)
Aldisa cooperi	110	-	Oocyte size	(Strathmann, 1987)
Alia gausapata	180	-	Oocyte size	(Strathmann, 1987)
Amauropsis islandica	1500	-	Egg diameter	(Thorson, 1935)
Amphissa columbiana	195	-	Oocyte size	(Strathmann, 1987)
Ancula pacifica	58-59	-	Oocyte size	(Strathmann, 1987)
Anisodoris nobilis	83	-	Oocyte size	(Strathmann, 1987)
Aplysiopsis smithi	70	-	Oocyte size	(Strathmann, 1987)
Apylysiopsis maculosa	50	-	Egg diameter	(Jensen and Ong, 2015)
Apylysiopsis zebra	71	-	Egg diameter	(Clark and Jensen, 1981)
Archidoris montereyensis	81-82	-	Oocyte size	(Strathmann, 1987)
Armina californica	95-102	-	Oocyte size	(Strathmann, 1987)
Ascobulla ulla	60	_	Egg diameter	(Jensen, 2001, De Freese and Clark, 1991)

Species	Egg (µm)	Larval (µm)	Comments	References
Bajaeolis bertschi	89	-	Maximum egg diameter	(Goddard and Hermosillo, 2008)
Berthelina darwini	102.8 ± 5.9	-	Egg diameter	(Jensen, 2001)
Berthelina ganapati	50	-	Egg diameter	(Jensen, 2001)
Berthelinia australis	54	-	Egg diameter	(Jensen, 2001)
Berthelinia australis	54	-	Egg diameter	(Wisely, 1962)
Berthelinia caribbea	100	-	Egg diameter	(Jensen, 2001)
Berthella californica	93	-	Oocyte size	(Strathmann, 1987)
Berthellina ilisima	-	144.5 (SD ± 0.4)	Shell length at hatching	(Goddard and Hermosillo, 2008)
Bittium eschrichtii	220	-	Oocyte size	(Strathmann, 1987)
Boonea bisuturalis	68-80	250	Egg enclosed in capsule, Shell diameter at metamorphosis	(Robertson, 2012a)
Boonea impressa	182-238	265	Hatching shell diameter	(Robertson, 2012a, White et al., 1985)
Boonea impressa	80-236	154-276	Egg size, hatching shell diameter	(Robertson, 2012a)
Boonea seminuda	65-78	146-158	Egg size, hatching shell diameter	(Robertson, 2012a)
Bosellia leve	64	-	Egg diameter	(Fernández-Ovies and Ortea, 1986)
Bosellia mimetica	59–75	-	Egg diameter	(Clark and Jensen, 1981)
Buccinanops cochlidium	160-280	-	Egg size	(Averbuj and Penchaszadeh, 2010)
Buccinanops paytensis	184.5-341	-	Egg size	(Averbuj and Penchaszadeh, 2010)
Buccinum scalariforme	300-500	-	Egg size	(Montgomery et al., 2017)
Bulbus carcellesi	200	197–198	Egg diameter, embryo shell diameter	(Penchaszadeh et al., 2016)
Cadlina marginata	90	-	Oocyte size	(Strathmann, 1987)

Species	Egg (µm)	Larval (µm)	Comments	References
Caliphylla mediterranea	89, 50–70	_	Egg diameter	(Schmekel et al.)
Calliostoma ligatum	220-230	-	Oocyte size	(Strathmann, 1987)
Calliostoma ligatum	233	-	Egg diameter	(Strathmann et al., 2002)
Callipoea oophaga	61.7	-	Egg diameter	(Jensen, 1990)
Calyptraea cf. chinensis	480	-	Egg size	(Collin, 2003)
Calyptraea chinensis	480	-	Egg diameter	(Collin, 2003)
Calyptraea conica	177	-	Egg size	(Collin, 2003)
Calyptraea conica	200	-	Egg size	(Collin, 2003)
Calyptraea extinctorum	200-215	-	Egg size	(Collin, 2003)
Calyptraea mamillaris	200	320-380	Egg size, hatching size	(Collin, 2003)
Calyptraea mamillaris	-	340	Hatching size	(Collin, 2003)
Calyptraea pellucida	120	220-227	Egg size, hatching size	(Collin, 2003)
Cellana grata	110-170	-	Mature egg diameter	(Yang et al., 2017)
Clione limacina	90	-	Oocyte size	(Strathmann, 1987)
Conualevia alba	87.7 (SD ± 1.4)	150.7 (SD ± 2.5)	Egg diameter, shell length at hatching	(Goddard and Hermosillo, 2008)
Conus biliosus	172 ± 10.5	-	Diameter of uncleaved egg	(Zehra and Perveen, 1991)
Conus coronatus	152 ± 9.49	-	Diameter of uncleaved egg	(Zehra and Perveen, 1991)
Conus flavidus	180	-	Egg diameter	(Strathmann, 1985)
Conus lividus	150	-	Egg diameter	(Strathmann, 1985)
Conus marmoreus	338	-	Egg diameter	(Strathmann, 1985)
Conus pennaceus	500	_	Egg diameter	(Strathmann, 1985)
Conus quercinus	192	_	Egg diameter	(Strathmann, 1985)
Conus textile	260	-	Egg diameter	(Strathmann, 1985)

Species	Egg (µm)	Larval (µm)	Comments	References
Costasiella nonatoi	69	-	Egg diameter	(Clark and Jensen, 1981)
Costasiella ocellifera	98	-	Egg diameter	(Clark and Jensen, 1981, De Freese and Clark, 1991)
Costasiella pallida	84.6 (SD ± 7.7)	-	Egg diameter	(Jensen, 1990, Jensen, 2001)
Crepidula aculeata	180	360	Egg size	(Collin, 2003)
Crepidula aculeata	197.6	-	Egg size	(Collin, 2003)
Crepidula aculeata	200	1,200	Egg size, hatching size	(Collin, 2003)
Crepidula aculeata	360-390	840	Egg size range, hatching size	(Collin, 2003)
Crepidula aculeata	488	-	Egg size	(Collin, 2003)
Crepidula aculeata	530-560	-	Egg size	(Collin, 2003)
Crepidula adunca	240	-	Oocyte size	(Strathmann, 1987)
Crepidula adunca	262-315	1,500-2,700	Egg size, hatching size	(Collin, 2003)
Crepidula adunca	400-420	-	Egg size	(Collin, 2003)
Crepidula adunca	-	1,190	Hatching size	(Collin, 2003)
Crepidula aplysioides	300	600	Egg size, hatching size	(Collin, 2003)
Crepidula arenata	160	-	Egg size	(Collin, 2003)
Crepidula argentina	170	190-230	Egg size, hatching size	(Collin, 2003)
Crepidula atrasolea	330.1	987	Egg size, hatching size	(Collin and Salazar, 2010)
Crepidula atrasolea	335	1,002	Egg size, hatching size	(Collin, 2003)
Crepidula atrasolea	-	900	Hatching size	(Collin, 2003)
Crepidula cerithicola	234	-	Egg size	(Collin, 2003)
Crepidula cerithicola	160-180	670-920	Egg size, hatching size	(Collin, 2003)
Crepidula complanata	438	1,064	Egg size, hatching size	(Collin, 2003)
Crepidula convexa	262	920	Egg size, hatching size	(Collin, 2003)

Species	Egg (µm)	Larval (µm)	Comments	References
Crepidula convexa	280	-	Egg size	(Collin, 2003)
Crepidula convexa	280	-	Egg size	(Coe, 1949)
Crepidula convexa	320	950	Egg size, hatching size	(Collin, 2003, Hendler and Franz, 1971)
Crepidula convexa	280-320	900–1,080	Egg size, hatching size	(Collin, 2003, Hoagland, 1986)
Crepidula coquimbensis	228	1142	Egg size, hatching size	(Collin, 2003)
Crepidula costata	256	447	Egg size, hatching size	(Collin, 2003)
Crepidula depressa	-	255	Hatching size	(Collin, 2003)
Crepidula dilatata	220.4	1,239	Egg size, hatching size	(Collin, 2003)
Crepidula dilatata	239	1375	Egg size, hatching size	(Collin, 2003)
Crepidula dilatata	195-263	900-1,370	Egg size, hatching size	(Gallardo, 1977)
Crepidula dilatata	-	1,075–1,600	Hatching size	(Chaparro and Paschke, 1990)
Crepidula fecunda	191	294	Egg size, hatching size	(Collin, 2003)
Crepidula fecunda	275.4	-	Egg size	(Collin, 2003)
Crepidula fecunda	204-238	500-560	Egg size, hatching size	(Gallardo, 1977)
Crepidula fimbriata	-	1,570	Hatching size	(Collin, 2003)
Crepidula fornicata	160-180	-	Egg size	(Hoagland, 1986)
Crepidula fornicata	165-180	-	Egg size	(Coe, 1949)
Crepidula fornicata	-	988	Settling size	(Ament, 1979)
Crepidula fornicata	-	445-489	Hatching size	(Pechenik et al., 1996)
Crepidula incurva	150	270	Egg size, hatching size	(Collin, 2003)
Crepidula incurva	160	200	Egg size, hatching size	(Hoagland, 1986)
Crepidula incurva	171	287	Egg size, hatching size	(Collin, 2003)
Crepidula lessoni	213	321	Egg size, hatching size	(Collin, 2003)

Species	Egg (µm)	Larval (µm)	Comments	References
Crepidula lessoni	260	320	Egg size, hatching size	(Hoagland, 1986)
Crepidula lingulata	150	271	Egg size, hatching size	(Hoagland, 1986)
Crepidula lingulata	150	-	Egg size	(Hoagland, 1986)
Crepidula lingulata	150	-	Egg size	(Hoagland et al., 1982)
Crepidula lingulata	150.8	271	Egg size, hatching size	(Coe, 1949)
Crepidula maculosa	440	-	Egg size	(Hoagland et al., 1982)
Crepidula marginalis	151	382	Egg size, hatching size	(Collin, 2003)
Crepidula marginalis	143-168	204-229	Egg size, hatching size	(Collin, 2003)
Crepidula marginalis	-	296	Hatching size	(Collin, 2003)
Crepidula monoxyla	156	2,779	Egg size, hatching size	(Collin, 2003)
Crepidula monoxyla	160	2,900	Egg size, hatching size	(Collin, 2003)
Crepidula monoxyla	-	2,500-3,000	Hatching size	(Collin, 2003)
Crepidula monoxyla	-	2,000-3,250	Hatching size	(Collin, 2003, Pilkington, 1974)
Crepidula naticarum	164	275	Egg size, hatching size	(Collin, 2003)
Crepidula navicula	350	550-1,170	Egg size, hatching size	(Collin, 2003)
Crepidula nivea	130-140	-	Egg size	(Collin, 2003)
Crepidula norrisarum	500	-	Egg size	(Collin, 2003, Coe, 1949)
Crepidula nummaria	400	-	Egg size *	(Collin, 2003, Dehnel, 1955)
Crepidula onyx	172	-	Egg size	(Collin, 2003, Coe, 1949)
Crepidula onyx	150-160	294	Egg size, hatching size	(Collin, 2003)
Crepidula onyx	160-180	-	Egg size	(Collin, 2003)
Crepidula onyx	-	297 (112, 16.5)	Hatching size	(Collin, 2003)

Species	Egg (µm)	Larval (µm)	Comments	References
Crepidula perforans	135	239	Egg size, hatching size	(Collin, 2003)
Crepidula perforans	500	-	Egg size	(Collin, 2003, Coe, 1949)
Crepidula philippiana	140-160	3,000	Egg size, hatching size	(Collin, 2003)
Crepidula plana	136	-	Egg size	(Collin, 2003)
Crepidula plana	130-140	-	Egg size	(Collin, 2003, Hoagland, 1986)
Crepidula plana	-	300	Hatching size	(Collin, 2003)
Crepidula porcellana	400	1,000	Egg size, hatching size	(Collin, 2003)
Crepidula protea	150	-	Egg size *	(Collin, 2003)
Crepidula striolata	140-180	240-440	Egg size, hatching size	(Collin, 2003)
Crepidula ustulatulina	300	840	Egg size*, hatching size	(Collin, 2003)
Crepidula ustulatulina	300-340	744	Egg size, hatching size	(Collin, 2003)
Crepidula ustulatulina	300-340	744	Egg size, hatching size	(Collin and Salazar, 2010)
Crepidula williamsi	158	318	Egg size, hatching size	(Collin, 2003)
Crepidula williamsi	345	976	Egg size, hatching size	(Collin, 2003)
Crepidula williamsi	403	1,470	Egg size, hatching size	(Collin, 2003)
Crepidula williamsi	450	-	Egg size	(Collin, 2003, Coe, 1949)
Crucibulum auricula	218	728	Egg size, hatching size	(Collin, 2003)
Crucibulum marense	-	1,020-1,160	Hatching size	(Collin, 2003)
Crucibulum personatum	-	320	Hatching size	(Collin, 2003)
Crucibulum personatum	-	326	Hatching size	(Collin, 2003, Hoagland, 1986)
Crucibulum quirquinae	309	468	Egg size, hatching size	(Collin, 2003)
Crucibulum quirquinae	325	458	Egg size, hatching size	(Collin, 2003)
Crucibulum radiatum	169	366	Egg size, hatching size	(Collin, 2003)

Assessment of reproductive propagule size for biofouling risk groups

Species	Egg (µm)	Larval (µm)	Comments	References
Crucibulum scutellatum	-	700	Hatching size	(Collin, 2003)
Crucibulum sp. A	230	934	Egg size, hatching size	(Collin, 2003)
Crucibulum sp. B	292	1,067	Egg size, hatching size	(Collin, 2003)
Crucibulum spinosum	170-190	250-300	Egg size, hatching size	(Collin, 2003)
Crucibulum spinosum	-	325	Hatching size	(Collin, 2003, Coe, 1949)
Crucibulum spinosum	-	240-360	Egg size, hatching size	(Collin, 2003)
Crucibulum spinosum	-	330	Hatching size	(Collin, 2003, Hoagland, 1986)
Crucibulum umbrella	-	380-480	Hatching size	(Collin, 2003)
Cryptochiton stelleri	275-285	-	Oocyte size	(Strathmann, 1987)
Cryptonatica janthostoma	176	-	Mean egg diameter	(Kulikova et al., 2007)
Cuthona columbiana	100	-	Oocyte size	(Strathmann, 1987)
Cuthona divae	107	-	Oocyte size	(Strathmann, 1987)
Cuthona lizae	88.6 (SD ± 1.4)	241.0 (SD ± 6.0)	Egg diameter, shell length at hatching	(Goddard and Hermosillo, 2008)
Cuthona pustulata	120	-	Oocyte size	(Strathmann, 1987)
Cyerce antillensis	112	-	Egg diameter	(Clark and Jensen, 1981)
Cyerce cristallina	60	-	Egg diameter	(Schmekel et al., 1982)
Dendrodoris fumata	101.6 (SD ± 0.7)	174.8 (SD ± 4.8)	Egg diameter, shell length at hatching	(Goddard and Hermosillo, 2008)
Dendronotus diversicolour	96	-	Oocyte size	(Strathmann, 1987)
Dendronotus frondosus	85-90	-	Oocyte size	(Strathmann, 1987)
Dendronotus iris	110	-	Oocyte size	(Strathmann, 1987)
Dendropoma petraeum	500	-	Egg size	(Templado et al., 2016)

Species	Egg (µm)	Larval (µm)	Comments	References
Diaphorodoris lirulaocauda	62-64	-	Oocyte size	(Strathmann, 1987)
Diaulula aurila	87.9 (SD ± 2.6)	139.6 (SD ± 5.7)	Egg diameter, shell length at hatching	(Goddard and Hermosillo, 2008)
Dirona albolineata	70	-	Oocyte size	(Strathmann, 1987)
Discodoris heathi	73-78	-	Oocyte size	(Strathmann, 1987)
Doridella steinbergae	75-85	-	Oocyte size	(Strathmann, 1987)
Doriopsilla rowena	97.4 (SD ± 3.1)	-	Egg diameter	(Goddard and Hermosillo, 2008)
Doris granulosa	73	-	Maximum egg diameter	(Goddard and Hermosillo, 2008)
Doris immonda	-	67.4 (SD ± 1.20)	Shell length at hatching	(Goddard and Hermosillo, 2008)
Doto amyra	150-154	-	Oocyte size	(Strathmann, 1987)
Doto kya	75	-	Oocyte size	(Strathmann, 1987)
Doto sp. (brown)	80	104.3 (SD ± 1.8)	Maximum egg diameter, shell length at hatching	(Goddard and Hermosillo, 2008)
Doto sp. 2	80	121.4 (SD ± 4.6)	Maximum egg diameter, shell length at hatching	(Goddard and Hermosillo, 2008)
Doto sp. 3	89	127.4 (SD ± 8.8)	Maximum egg diameter, shell length at hatching	(Goddard and Hermosillo, 2008)
Elysia atroviridus	54 ± 6	-	Egg diameter	(Jensen, 2001)
Elysia australis	64	-	Egg diameter	(Jensen, 2001)
Elysia catulus	75.3 ± 3.1	-	Egg diameter	(Jensen, 2001)
Elysia chlorotica	79 ± 3	-	Egg diameter	(Jensen, 2001)
Elysia cornigera	105	-	Egg diameter	(Jensen, 2001)
Elysia diomedea	-	128.4 (SD ± 2.4)	Shell length at hatching	(Goddard and Hermosillo, 2008)
Elysia elsiae	80	-	Egg diameter	(Jensen, 2001)

Species	Egg (µm)	Larval (µm)	Comments	References
Elysia evelinae	104	-	Egg diameter	(Jensen, 2001, Clark and Jensen, 1981)
Elysia hamatanii	68	_	Egg diameter	(Jensen, 2001)
Elysia hegpethi	70	-	Oocyte size	(Strathmann, 1987)
Elysia japonica	91 ± 4	-	Egg diameter	(Jensen, 2001)
Elysia maoria	70	-	Egg diameter	(Jensen, 2001)
Elysia papillosa	92	-	Egg diameter	(Jensen, 2001, Clark and Jensen, 1981)
Elysia patina	63	-	Egg diameter	(Jensen, 2001, De Freese and Clark, 1991)
Elysia pusilla	65	-	Maximum egg diameter	(Goddard and Hermosillo, 2008)
Elysia serca	61	-	Egg diameter	(Clark and Jensen, 1981)
Elysia subornata	120	-	Egg diameter	(Clark and Jensen, 1981, De Freese and Clark, 1991)
Elysia thompsoni	62	-	Egg diameter	(Jensen)
Elysia trisinuata	46	-	Egg diameter	(Hamatani, 1960)
Elysia tuca	111	-	Egg diameter	(Clark and Jensen, 1981)
Elysia viridis	60-76	-	Egg diameter	(Schmekel et al., 1982)
Enteroxenos parastichopoli	110-120	-	Oocyte size	(Strathmann, 1987)
Epheria turrita	120-130	-	Egg diameter	(Kolbin and Kulikova, 2008)
Ercolania boodleae	65-100	_	Egg diameter	(Hamatani, 1960)
Ercolania coerulea	60, 70	-	Egg diameter	(Jensen, 2001)
Ercolania emarginata	58 (SD ± 4)	-	Egg diameter	(Jensen, 2001)

Species	Egg (µm)	Larval (µm)	Comments	References
Ercolania endophytophaga	77 (SD ± 1.4)	-	Egg diameter	(Jensen, 2001)
Ercolania felina	56	-	Egg diameter	(Jensen, 2001)
Ercolania funerea	59, 75–90	-	Egg diameter	(De Freese and Clark, 1991)
Ercolania fuscata	64.5 (SD ± 2)	-	Egg diameter	(Clark and Jensen, 1981)
Ercolania gopalai	70	-	Egg diameter	(Jensen, 2001)
Ercolania n.sp	58.5 (SD ± 2.6)	-	Egg diameter	(Jensen, 2001)
Ercolania nigra	70	-	Egg diameter	(Jensen, 2001)
Ercolania nigrovittata	70	-	Egg diameter	(Jensen, 2001)
Eubranchus cucullus	100	-	Maximum egg diameter	(Goddard and Hermosillo, 2008)
Eubranchus rustyus	93	-	Oocyte size	(Strathmann, 1987)
Eubranchus sp	94	203.2 (SD ± 8.5)	Maximum egg diameter, shell length at hatching	(Goddard and Hermosillo, 2008)
Eubranchus sp. 2	-	227.8 (SD ± 3.2)	Shell length at hatching	(Goddard and Hermosillo, 2008)
Euspira pallida	2250	-	Egg diameter	(Thorson, 1935)
Euspira triseriata	350	-	Egg diameter	(Giglioli, 1955)
Falsilunatia eltanini	171-209	-	Egg diameter	(Averbuj et al., 2018)
Fargoa bartschi	55-60	129–158	Egg size, hatching veliger shell diameter	(Robertson, 2012b)
Fargoa dianthophila	53–57	120 to 132	Egg size, hatching veliger shell diameter	(Robertson, 2012b)
Favorinus elenalexiae	-	115.0 (SD ± 1.8)	Shell length at hatching	(Goddard and Hermosillo, 2008)
Fiona pinnata	125	-	Oocyte size	(Strathmann, 1987)
Fissurellidea bimaculata	150-160	-	Oocyte size	(Strathmann, 1987)
Flabellina marcusorum	73	-	Maximum egg diameter	(Goddard and Hermosillo, 2008)

Species	Egg (µm)	Larval (µm)	Comments	References
Flabellina sp. 1	74	99.6 (SD ± 4.9)	Maximum egg diameter, shell length at hatching	(Goddard and Hermosillo, 2008)
Flabellina telja	66.1 (SD ± 0.6)	123.7 (SD ± 3.7)	Egg diameter, shell length at hatching	(Goddard and Hermosillo, 2008)
Flabellina trilineata	60	-	Oocyte size	(Strathmann, 1987)
Fusitriton oregonensis	150	-	Oocyte size	(Strathmann, 1987)
Gastropteron pacificum	95	-	Oocyte size	(Strathmann, 1987)
Glossaulax vesicalis	480	-	Egg diameter	(Amio, 1963)
Haliotis asinina	190	-	Mean egg size	(Singhagraiwan and Sasaki, 1991)
Haliotis coccoradiata	150-250	-	Egg diameter	(Wong et al., 2010)
Haliotis discus hannai	230	_	Mean egg size	(Ino, 1952)
Haliotis iris	230	-	Mean egg size	(Harrison and Grant, 1971)
Haliotis kamschatkana	190	-	Oocyte size	(Strathmann, 1987)
Haliotis midae	212-222	164 x 190	Trocophore dimensions	(Genade et al., 1988)
Haliotis rubra	217-247	-	Egg size range	(Huchette et al., 2004)
Haliotis rufescens	170-190	-	Mature oocytes	(Rogers-Bennett et al., 2004)
Haliotis sieboldii	270-280	-	Mean egg size	(Ino, 1952)
Haliotis tuberculata	180	-	Egg diameter *	(Crofts, 1937)
Haliotis tuberculata coccinea	196 (SD ± 8)	172 (SD ± 8.8)	Mean unfertilised egg size, larvae width	(De Vicose et al., 2007)
Haliotis varia	180	-	Mean egg size	(Najmudeen and Victor, 2004)
Haminaea callidegenita	250	-	Egg diameter	(Strathmann et al., 2002)
Haminaea vesicula	6000 ± 900	-	Width of egg ribbons	(Kang et al., 2003)
Species	Egg (µm)	Larval (µm)	Comments	References
----------------------------	-----------------	------------------	---	-----------------------------------
Haminaea vesicula	82	-	Egg diameter	(Strathmann et al., 2002)
Haminoea ovalis	-	100.9 (SD ± 4.7)	Shell length at hatching	(Goddard and Hermosillo, 2008)
Haminoea sp.	220	-	Oocyte size	(Strathmann, 1987)
Haminoea vesicula	90	-	Oocyte size	(Strathmann, 1987)
Haminoea virescens	-	144.1 (SD ± 4.7)	Shell length at hatching	(Goddard and Hermosillo, 2008)
Hancockia californica	99.6 (SD ± 2.1)	242.9 (SD ± 3.0)	Egg diameter, shell length at hatching	(Goddard and Hermosillo, 2008)
Hermaea bifida	48	-	Egg diameter	(Schmekel et al., 1982)
Hermaea cruciata	77, 100	-	Egg diameter	(Clark and Jensen, 1981)
Hermissenda crassicornis	65	-	Oocyte size	(Strathmann, 1987)
Hermissenda crassicornis	65.4 (SD ± 1.2)	75.4 (SD ± 4.8)	Mean egg diameter, mean width of hatching shell	(Harrigan and Alkon, 1978)
Hermosita hakunamatata	-	115.9 (SD ± 5.6)	Shell length at hatching	(Goddard and Hermosillo, 2008)
Hipponix cranioides	350	-	Oocyte size	(Strathmann, 1987)
Ilyanassa obsoleta	165	-	Oocyte size	(Strathmann, 1987)
Jorunna sp.	65	-	Maximum egg diameter	(Goddard and Hermosillo, 2008)
Julia japonica	65	-	Egg diameter	(Jensen, 2001)
Katharina tunicata	230	-	Average egg diameter	(Strathmann, 1987)
Lacuna spp.	95-125	-	Oocyte size	(Strathmann, 1987)
Lacuna vincta or variegata	101	-	Egg diameter	(Strathmann et al., 2002)
Laila cockerelli	95	-	Oocyte size	(Strathmann, 1987)

Assessment of reproductive propagule size for biofouling risk groups

Species	Egg (µm)	Larval (µm)	Comments	References
Lepidochitoa fernaldi	270	-	Average egg diameter	(Strathmann, 1987)
Limacina helicina	98	-	Oocyte size	(Strathmann, 1987)
Limapontia capitata	82	-	Egg diameter	(Chia, 1971)
Limapontia depressa	80	-	Egg diameter	(Chia, 1971)
Limapontia senestra	200	-	Egg diameter	(Chia, 1971)
littorina keenae	89	-	Oocyte size	(Strathmann, 1987)
Littorina plena	96	-	Oocyte size	(Strathmann, 1987)
Littorina scutulata	100	-	Oocyte size	(Strathmann, 1987)
Littorina scutulata	100	-	Egg diameter	(Strathmann et al., 2002)
Littorina sitkana	175	-	Oocyte size	(Strathmann, 1987)
Littorina sitkana	190	-	Egg diameter	(Strathmann et al., 2002)
Lobiger souverbiei	56	-	Egg diameter	(Jensen, 2001, De Freese and Clark, 1991)
Lobiger viridis	93.4 ± 3.0	106 ± 3.3	Size of egg capsule, maximum diameter of the veliger shell	(Jensen and Ong, 2015)
Lomanotus sp. 2	65.0 (SD ± 1.5)	-	Egg diameter	(Goddard and Hermosillo, 2008)
Margarites marginatus	190-200	-	Oocyte size	(Strathmann, 1987)
Marsenina rhombica	200	-	Oocyte size	(Strathmann, 1987)
Melanochlamys diomedea	98	-	Oocyte size	(Strathmann, 1987)
Melibe leolina	90	-	Oocyte size	(Strathmann, 1987)
Mopalia ciliata	225	-	Average egg diameter	(Strathmann, 1987)
Mopalia lignosa	230	-	Average egg diameter	(Strathmann, 1987)
Mopalia muscosa	215	-	Average egg diameter	(Strathmann, 1987)

Species	Egg (µm)	Larval (µm)	Comments	References
Mourgona germaineae	62	-	Egg diameter	(Clark and Jensen, 1981)
Natica vitellus	1000	-	Egg diameter	(Thorson, 1940)
Navanax aenigmaticus	81	-	Maximum egg diameter	(Goddard and Hermosillo, 2008)
Neptunea lyrata	300	-	Oocyte size	(Strathmann, 1987)
Nucella canaliculata	375-600	-	Oocyte size	(Strathmann, 1987)
Nucella emarginata	180	-	Oocyte size	(Strathmann, 1987)
Nucella lamelosa	590-638	-	Oocyte size	(Strathmann, 1987)
Odontocymbiola pescalia	-	192.0 (SD ± 6)	Four cell embryo size	(Penchaszadeh et al., 2017)
Oenopota levidensis	279-301	-	Oocyte size	(Strathmann, 1987)
Okenia angelensi	62	-	Egg diameter	(Goddard and Hermosillo, 2008)
Okenia angelica	68	103.5 (SD ± 1.9)	Maximum egg diameter, shell length at hatching	(Goddard and Hermosillo, 2008)
Onchidella borealis	125-132	-	Oocyte size	(Strathmann, 1987)
Onchidoris bilamellata	100	-	Oocyte size	(Strathmann, 1987)
Onchidoris muricata	75–77	-	Oocyte size	(Strathmann, 1987)
Ophiodermella inermis	160-280	-	Oocyte size	(Strathmann, 1987)
Oxynoe antillarum	63	-	Egg diameter	(Jensen, 2001)
Oxynoe azuropunctata	120	-	Egg diameter	(Jensen, 2001)
Oxynoe olivacea	62–69, 250	-	Egg diameter	(Jensen, 2001)
Oxynoe panamensis	73	-	Maximum egg diameter	(Goddard and Hermosillo, 2008)
Oxynoe viridis	56, 72	-	Egg diameter	(Jensen, 2001)
Palio dubia	69.2 (SD ± 0.8)	119.2 (SD+ 4.6)	Mean diameter of zygotes, mean hatching larvae shell length	(Goddard, 2011)
Palio zosterae	70	-	Oocyte size	(Strathmann, 1987)

Species	Egg (µm)	Larval (µm)	Comments	References
Petaloconchus cf. varians	145	-	Embryo diameter	(Weinberger et al., 2010)
Petaloconchus compactus	104-110	-	Oocyte size	(Strathmann, 1987)
Petaloconchus sp	180-210	-	Embryo diameter	(Weinberger et al., 2010)
Phidiana lascrucensis	146.6 (SD ± 1.8)	248.6 (SD ± 7.2)	Egg diameter, shell length at hatching	(Goddard and Hermosillo, 2008)
Phyllaplysia padinae	100	-	Maximum egg diameter	(Goddard and Hermosillo, 2008)
Phyllaplysia taylori	144-157	-	Oocyte size	(Strathmann, 1987)
Placida cremoniana	50-60	-	Egg diameter	(Jensen, 1990)
Placida daguilarensis	56	-	Egg diameter	(Schmekel et al., 1982)
Placida dendritica	47-67	-	Egg diameter	(Clark, 1975)
Placida dendritica	47-67	-	Oocyte size	(Strathmann, 1987)
Placida kingstoni	60	-	Egg diameter	(Clark and Jensen, 1981)
Placida viridis	40-60	-	Egg diameter	(Schmekel et al., 1982)
Pleurobranchus areolatus	-	121.4 (SD ± 3.1)	Shell length at hatching	(Goddard and Hermosillo, 2008)
Polinices lewisi	250	-	Oocyte size	(Strathmann, 1987)
Polinices pulchellus	-	300	Larvae size	(Kulikova et al., 2007)
Polybranchia viridis	-	96.4 (SD ± 2.9)	Shell length at hatching	(Goddard and Hermosillo, 2008)
Polycera alabe	60	-	Egg diameter	(Goddard and Hermosillo, 2008)
Provocator corderoi	256.0 (SD ± 6.4)	-	Uncleaved egg diameter	(Penchaszadeh et al., 2017)

Species	Egg (µm)	Larval (µm)	Comments	References
Rapana venosa	-	310-340	Range of mean veliger diameters	(Harding et al., 2013)
Rostanga pulchra	80	-	Oocyte size	(Strathmann, 1987)
Serpulorbis arenarius	352.5	-	Mean diameter of uncleaved ova	(Calvo and Templado, 2005)
Siphonaria thersites	150-162	-	Oocyte size	(Strathmann, 1987)
Siphopatella walshi	240-260	-	Egg size	(Collin, 2003)
Stiliger aureomarginatus	56 (SD ± 1.6)	-	Egg diameter	(Jensen, 2001)
Stiliger berghi	65	-	Egg diameter	(Hamatani)
Stiliger fuscovittatus	66.5	-	Egg diameter	(CLARK and GOETZFRIED, 1978)
Stiliger Ilerai	122	-	Egg diameter	(CLARK and GOETZFRIED, 1978)
Stiliger verticillata	130	-	Egg diameter	(Jensen)
Stilinger fuscovittatus	95	-	Oocyte size	(Strathmann, 1987)
Stramonita haemastoma canaliculata	65-70	49.70 ± 8.30	Egg diameter, hatching size	(Roller and Stickle, 1988)
Stramonita haemastoma floridana	107	130	Egg diameter, hatching size	(D'Asaro, 1966)
Stramonita haemastoma haemastoma	60-75	40-62	Hatching size	(Lahbib et al., 2011)
Tectura persona	200	-	Oocyte size	(Strathmann, 1987)
Tectura scutum	140-150	-	Oocyte size	(Strathmann, 1987)
Tectura scutum	138	-	Egg diameter	(Strathmann et al., 2002)
Thordisa sp	80	120.5 (SD ± 4.7)	Maximum egg diameter, shell length at hatching	(Goddard and Hermosillo, 2008)
Thuridella vatae	55-65	-	Egg diameter	(Jensen, 2001)
Thuridilla bayeri	80	-	Egg diameter	(Johnson and Boucher)
Thuridilla hopei	200	-	Egg diameter	(Thompson and Salghetti-Drioli)

Species	Egg (µm)	Larval (µm)	Comments	References
Thuridilla ratna	80-85	-	Egg diameter	(Johnson and Boucher)
Thylaeodus equatorialis	-	1,100–2,200	Larvae diameter	(Spotorno and Simone, 2013)
Tonicella insignis	245	-	Average egg diameter	(Strathmann, 1987)
Tonicella lineata	230	-	Average egg diameter	(Strathmann, 1987)
Trichotropis cancellata	250	-	Oocyte size	(Strathmann, 1987)
Tridachia crispata	205	-	Egg diameter	(Clark and Jensen, 1981, De Freese and Clark, 1991)
Triopha catalina	75-87	-	Oocyte size	(Strathmann, 1987)
Tritonia diomedea	87	-	Oocyte size	(Strathmann, 1987)
Tritonia festiva	79	-	Oocyte size	(Strathmann, 1987)
Tritonia pickensi	69	-	Maximum egg diameter	(Goddard and Hermosillo, 2008)
Trochita calyptraeformi	460	1150	Egg size, hatching size	(Collin, 2003)
Trophon acanthodes	213-236	-	Egg diameter	(Pastorino and Penchaszadeh, 2009)
Trophon geversianus	270 ± 10	2,790 ± 40	Hatching size	(Cumplido et al., 2011)
Tylodina fungina	73	126.0 (SD ± 3.7)	Shell length at hatching	(Goddard and Hermosillo, 2008)
Tyrinna evelinae	81	118	Maximum egg diameter, minimum shell length at hatching	(Goddard and Hermosillo, 2008)
Velutina plicatilis	200	-	Oocyte size	(Strathmann, 1987)
Volutidae	90-450	-	Spawned egg diameter	(Penchaszadeh et al., 2017)
Volvatella australis	100.8 ± 6.2	-	Egg diameter	(Jensen, 2001)
Volvatella bermudae	66	-	Egg diameter	(Jensen, 2001)

Species	Egg (µm)	Larval (µm)	Comments	References
Volvatella ventricosa	97.2 ± 10.5	-	Egg diameter	(Jensen, 2001)

Note: Smallest value was recorded when available, * indicates that size was an approximate value.

A10. Hydroids

Literature search: To identify literature on Hydroid reproductive cell sizes a systematic literature search was undertaken using the <u>Web of Science</u> database. For Hydroids three searches were performed using the following search criteria:

Web of Science: TOPIC: (hydrozoa*) AND TOPIC: (egg size) Results: 21

Web of Science: TOPIC: (hydrozoa*) AND TOPIC: (asexual) Results: 62

Web of Science: TOPIC: (hydrozoa*) AND TOPIC: (medusae size) Results: 54

Additional articles were also sourced from citations and reference lists of articles produced in the Web of Science database searches.

Species	Egg (µm)	Medusa (µm)	Comments	References
Aequorea victoria	100	-	Egg diameter	(Strathmann, 1987)
Anthopleura elegantissima	120-150	-	Egg diameter	(Strathmann, 1987)
Anthopleura xanthogrammica	175-220	-	Egg diameter	(Strathmann, 1987)
Bougainvillia principis	160	-	Egg diameter	(Strathmann, 1987)
Caryophyllia alaskensis	120-150	-	Egg diameter	(Strathmann, 1987)
Clytia hemisphaerica	160-180	-	Fully–grown oocytes	(Amiel and Houliston, 2009)
Clytia linearis	-	348-540	Newly liberated medusa base diameter	(Lindner and Migotto, 2002)
Clytia noliformis	-	264-420	Newly liberated medusa base diameter	(Lindner and Migotto, 2002)

Assessment of reproductive propagule size for biofouling risk groups

Species	Egg (µm)	Medusa (µm)	Comments	References
Cytaeis uchidae	110	_	Diameter of fully developed oocytes before spawning	(Takeda et al., 2006)
Euphysa japonica	250	-	Egg diameter	(Strathmann, 1987)
Eutonina indicans	170-180	-	Egg diameter	(Strathmann, 1987)
Gonoionemus vertens	95-100	-	Egg diameter	(Strathmann, 1987)
Gonothyraea loveni	150	-	Diameter of mature oocytes	(Burmistrova et al., 2018)
Gonothyrea sp.	140-170	-	Egg diameter	(Strathmann, 1987)
Hydractinia spp.	180	-	Egg diameter	(Strathmann, 1987)
Hydractinia spp.	210-220	-	Unfertilised egg diameter	(Freeman and Miller, 1982)
Mitrocomella polydiademata	130-170	-	Egg diameter	(Strathmann, 1987)
Obelia geniculata	-	350	Medusae diameter	(Slobodov and Marfenin, 2004)
Orthopyxis	195-205	-	Unfertilised egg diameter	(Freeman and Miller, 1982)
Orthopyxis compressa	200-220	-	Egg diameter	(Strathmann, 1987)
Phialidium eggs	175-195	-	Unfertilised egg diameter	(Freeman and Miller, 1982)
Phialidium gregarium	165-180	-	Egg diameter	(Strathmann, 1987)
Polyorchis penicillatus	100	-	Egg diameter	(Strathmann, 1987)
Proboscidactyla flavicirrata	120	-	Egg diameter	(Strathmann, 1987)
Sarsia princeps	107	-	Egg diameter	(Strathmann, 1987)
Sarsia sp	120-125	-	Unfertilised egg diameter	(Freeman and Miller, 1982)
Sarsia spp.	129	-	Egg diameter	(Strathmann, 1987)
Sarsia turbulosa	80-85	-	Unfertilised egg diameter	(Freeman and Miller, 1982)
Sarsia turbulosa	92	-	Egg diameter	(Strathmann, 1987)

Species	Egg (µm)	Medusa (µm)	Comments	References
Stomotoca atra	100	-	Egg diameter	(Strathmann, 1987)
Tubularia crocea	-	260 (SE 5.34)	Diameter of actinula central disc	(Walters and Wethey, 1996)
Urticinia crassicornis	500-700	-	Egg diameter	(Strathmann, 1987)
Urticinia lofotensis	1200	-	Egg diameter	(Strathmann, 1987)

Note: Smallest value was recorded when available, * indicates that size was an approximate value.

A11. Macroalgae

Literature search: To identify literature on macroalgae reproductive cell sizes a systematic literature search was undertaken using the <u>Web of</u> <u>Science</u> database. For macroalgae three searches were performed using the following search criteria:

Web of Science: TOPIC: (Chlorophyta) AND TOPIC: (spore size) Results: 12

Web of Science: TOPIC: (macroalgae) AND TOPIC: (spore size) Results: 23

Web of Science: TOPIC: (Rhodophyta) AND TOPIC: (spore size) Results: 49

Additional articles were also sourced from citations and reference lists of articles produced in the Web of Science database searches.

Table A11 Macroalgae propagule sizes identified from the literature search

Species	Spore (µm)	Comments	References
Acanthophora muscoides	63.5-112.5	Carpospore	(Ngan and Price, 1979)
Acanthophora muscoides	42.5-98.5	Tetraspore	(Ngan and Price, 1979)
Acanthophora spicifera	55.0	Carpospore	(Ngan and Price, 1979)
Acanthophora spicifera	40.0-112.5	Tetraspore	(Ngan and Price, 1979)
Acrocystis nana	31.0-123.5	Tetraspore	(Ngan and Price, 1979)
Antithamnion kylinii	25.4 ± 0.17	Tetraspore	(Okuda and Neushul, 1981)

Species	Spore (µm)	Comments	References
Articulated corrallines	20-90	Tetraspore	(Chihara, 1973)
Bangia fuscopurpurea	11	Carpospore	(Okuda and Neushul, 1981)
Bostrychia binderi	46	Tetraspore	(Ngan and Price, 1979)
Bostrychia binderi	67	Carpospore	(Ngan and Price, 1979)
Bostrychia binderi	58.5-81	Carpospore	(Ngan and Price, 1979)
Bostrychia binderi	250-51	Tetraspore	(Ngan and Price, 1979)
Bostrychia radicans	42.5-68.5	Tetraspore	(Ngan and Price, 1979)
Bostrychia tenella	30.0-53.5	Tetraspore	(Ngan and Price, 1979)
Bryopsis hypnoides	4–5 x 10–12	Female gamete dimensions	(Burr and West, 1970)
Caloglossa bombayensis	30-61	Tetraspore	(Ngan and Price, 1979)
Caloglossa leprieurii	31-57.7	Carpospore	(Ngan and Price, 1979)
Caloglossa leprieurii	30-51	Tetraspore	(Ngan and Price, 1979)
Catenella nipae	45.0-66.0	Carpospore	(Ngan and Price, 1979)
Catenella nipae	35.0-69.0	Tetraspore	(Ngan and Price, 1979)
Caulacanths ustulatus	22.5-46.0	Carpospore	(Ngan and Price, 1979)
Caulacanths ustulatus	23.5-37.5	Tetraspore	(Ngan and Price, 1979)
Caulerpa cupressoide	10.3 x 2.3	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Caulerpa cupressoide	5.3 x 2.3	Microgamete	(Clifton and Clifton, 1999)
Caulerpa mexicana	10.5x 2.3	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Caulerpa mexicana	4.5 x 2.3	Microgamete	(Clifton and Clifton, 1999)
Caulerpa racemosa	7.3 x 2.3	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Caulerpa racemosa	2.3 x 5.3	Microgamete	(Clifton and Clifton, 1999)
Caulerpa serrulata	6.3 x 2.3	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Caulerpa serrulata	5.3 x 2.3	Microgamete	(Clifton and Clifton, 1999)
Caulerpa sertularioides	7.1 x 2.3	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Caulerpa sertularioides	5.3 x 2.3	Microgamete	(Clifton and Clifton, 1999)

Species	Spore (µm)	Comments	References
Centroceras clavulatum	43.6 (SE ± 0.32)	Carpospore	(Okuda and Neushul, 1981)
Centroceras clavulatum	40.8 (SE ± 0.24)	Tetraspore	(Okuda and Neushul, 1981)
Centroceras clavulatum	33.5-43.5	Carpospore	(Ngan and Price, 1979)
Centroceras clavulatum	27.5-38.5	Tetraspore	(Ngan and Price, 1979)
Ceramium californicum	34.5 (SE ± 0.19)	Carpospore	(Okuda and Neushul, 1981)
Ceramium californicum	31.5 (SE ± 0.15)	Tetraspore	(Okuda and Neushul, 1981)
Ceramium fastigiatum	33	Carpospore	(Ngan and Price, 1979)
Ceramium fastigiatum	27.5-38.5	Carpospore	(Ngan and Price, 1979)
Ceramium sp.	17.5-50	Carpospore	(Ngan and Price, 1979)
Ceramium sp.	16-51	Tetraspore	(Ngan and Price, 1979)
Champia parvula	45.0-73.5	Carpospore	(Ngan and Price, 1979)
Champia parvula	25.0-98.5	Tetraspore	(Ngan and Price, 1979)
Chondria dasyphylla	57.5-95.0	Carpospore	(Ngan and Price, 1979)
Chondria dasyphylla	57.5-102.5	Tetraspore	(Ngan and Price, 1979)
Chondria rainfordii	68.5-111.0	Carpospore	(Ngan and Price, 1979)
Chondria rainfordii	48.5-110	Tetraspore	(Ngan and Price, 1979)
Chondria sp	46-96	Carpospore	(Ngan and Price, 1979)
Chondria sp	45-75	Tetraspore	(Ngan and Price, 1979)
Chondrococcus hornemanni	10.0-21.0	Carpospore	(Ngan and Price, 1979)
Chondrus verrucosus	15.1-25.3	Carpospore	(Bellgrove et al., 2019)
Chondrus verrucosus	15.06-27.12	Tetraspore	(Bellgrove et al., 2019)
Cladophora vagabunda	4–5 x 7–11	Female gamete	(Hoek, 1978)
Codium fragile	13.3	Female gamete mean diameter	(Prince and Trowbridge, 2004)
Codium fragile	10-11 x 15	Female gamete	(Miravalles et al., 2012)
Coelothrix indica	21.0-61.0	Carpospore	(Ngan and Price, 1979)

Species	Spore (µm)	Comments	References
Coelothrix indica	10-51	Tetraspore	(Ngan and Price, 1979)
Crytopleura violaceae	53.4 (SE ± 0.22)	Carpospore	(Okuda and Neushul, 1981)
Crytopleura violaceae	51.4 (SE ± 0.21)	Tetraspore	(Okuda and Neushul, 1981)
Cystophora torulosa	100	Propagule diameter	(Stevens et al., 2008)
Dictyota diemensis	58-77	Spore	(Phillips et al., 1990)
Dictyota diemensis	58-70	Egg dimensions	(Phillips et al., 1990)
Durvillaea antarctica	29	Propagule diameter	(Stevens et al., 2008)
Ectocarpus siliculosus	7-10	Zoospore	(Baker and Evans, 1973, Müller, 1977)
Ectocarpus siliculosus	4-5	Gametes	(Baker and Evans, 1973, Müller, 1977)
Enteromorpha intestinalis	11-12	Zoospore	(Phillips, 1988)
Eucheuma uncinatum	39.5 (SE ± 0.330)	Caraspore	(Okuda and Neushul, 1981)
Fucales various spp.	64–250	Egg	(Clayton, 1990, Ramon, 1973)
Gelidiopsis variabilis	20.0-47.5, 15.0-32.5	Tetraspore	(Ngan and Price, 1979)
Gelidium corneum	17.5-22.5	Tetraspore	(Ngan and Price, 1979)
Gelidium coulterii	27.8 (SE ± 0. 15)	Carpospore	(Okuda and Neushul, 1981)
Gelidium coulterii	26.5 (SE ± 0.16)	Tetraspore	(Okuda and Neushul, 1981)
Gelidium crinale	17.2-38.5	Carpospore	(Ngan and Price, 1979)
Gelidium heteroplatos	18.5-33.5	Carpospore	(Ngan and Price, 1979)
Gelidium heteroplatos	20.0-28.5	Tetraspore	(Ngan and Price, 1979)
Gelidium pusillum	18.5–37.5	Tetraspore	(Ngan and Price, 1979)
Gigantina canaliculata	17	Tetraspore	(Okuda and Neushul, 1981)
Gigantina canaliculata	18	Carpospore	(Okuda and Neushul, 1981)
Gigartina leptorhynchos	19.9 (SE ± 0.14)	Carpospore	(Okuda and Neushul, 1981)
Gigartina leptorhynchos	18.4 (SE ± 0.13)	Tetraspore	(Okuda and Neushul, 1981)

Species	Spore (µm)	Comments	References
Gracilari	25	Spore size	(Kain and Destombe, 1995)
Gracilaria crassa	15.0 -32.5	Carpospore	(Ngan and Price, 1979)
Gracilaria crassa	16.0-35.0	Tetraspore	(Ngan and Price, 1979)
Gracilaria edulis	22	Carpospore	(Ngan and Price, 1979)
Gracilaria edulis	23	Tetraspore	(Ngan and Price, 1979)
Gracilaria sjoestedti	24.6 (SE ± 0.13)	Carpospore	(Okuda and Neushul, 1981)
Gracilaria sjoestedti	23.0 (SE ± 0.12)	Tetraspore	(Okuda and Neushul, 1981)
Gracilaria verrucosa	15.07 (SE, 0.19)	Haploid spore	(Destombe et al., 1992)
Gracilaria verrucosa	27.71 (SE 0.14)	Diploid spore	(Destombe et al., 1992)
Gracilia textorii	17.5-26.0	Carpospore	(Ngan and Price, 1979)
Gracilia textorii	20.0-32.5	Tetraspore	(Ngan and Price, 1979)
Gracilia verrucosa	20.0-32.5	Carpospore	(Ngan and Price, 1979)
Graciliaria edulis	17.5–28.5	Carpospore	(Ngan and Price, 1979)
Graciliaria edulis	11.0-31.0	Tetraspore	(Ngan and Price, 1979)
Graciliaria rhodotricha	20.0-37.5	Carpospore	(Ngan and Price, 1979)
Graciliaria rhodotricha	16.0-30.0	Tetraspore	(Ngan and Price, 1979)
Grateloupia divaricata	13.5-20.0	Tetraspore	(Ngan and Price, 1979)
Halimeda discoidea	6.0x 2.0	Macrogamete	(Clifton and Clifton, 1999)
Halimeda discoidea	4.5 x 2.3	Microgamete	(Clifton and Clifton, 1999)
Halimeda goreaui	6.8x 7.0	Macrogamete	(Clifton and Clifton, 1999)
Halimeda goreaui	4.5 x 2.3	Microgamete	(Clifton and Clifton, 1999)
Halimeda incrassata	13.5 x 2.3	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Halimeda incrassata	5.3 x 1.5	Microgamete	(Clifton and Clifton, 1999)
Halimeda incrassata	12-22 x 8-10	Female gamete dimensions	(Meinesz, 1980)
Halimeda monile	6.0x 2.3	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Halimeda monile	5.0 x 2.3	Microgamete	(Clifton and Clifton, 1999)

Species	Spore (µm)	Comments	References
Halimeda opuntia	5.3 x 2.3	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Halimeda opuntia	5.0 x 2.3	Microgamete	(Clifton and Clifton, 1999)
Halimeda simulans	16.5 x 2.0	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Halimeda simulans	16.5 x 2.3	Microgamete	(Clifton and Clifton, 1999)
Halimeda tuna	6.8 x 2	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Halimeda tuna	5.3 x 2.3	Microgamete	(Clifton and Clifton, 1999)
Hormosira banksii	61	Propagule diameter	(Stevens et al., 2008)
Hypnea boergeseni	12.5-32.5	Carpospore	(Ngan and Price, 1979)
Hypnea boergeseni	18.5-28.5	Tetraspore	(Ngan and Price, 1979)
Hypnea cervicornis	17.5-36.0	Carpospore	(Ngan and Price, 1979)
Hypnea cervicornis	10.0-30.0	Tetraspore	(Ngan and Price, 1979)
Hypnea esperi	20.0-40.0	Carpospore	(Ngan and Price, 1979)
Hypnea esperi	13.5-25.0	Tetraspore	(Ngan and Price, 1979)
Hypnea pannosa	12.5-31.0	Tetraspore	(Ngan and Price, 1979)
Hypnea valentiae	20.0-27.5	Tetraspore	(Ngan and Price, 1979)
Laminariales various spp.	4-8 x 4	Zoospore	(Henry and Cole, 1982, Clayton, 1990)
Laminariales various spp.	20-45	Egg dimensions	(Henry and Cole, 1982, Clayton, 1990)
Laurencia majuscula	35-105	Carpospore	(Ngan and Price, 1979)
Laurencia majuscula	61-103.5	Tetraspore	(Ngan and Price, 1979)
Laurencia nidifica	65-113.5	Carpospore	(Ngan and Price, 1979)
Laurencia nidifica	41-116	Tetraspore	(Ngan and Price, 1979)
Laurencia obtusa	35-92.5	Tetraspore	(Ngan and Price, 1979)
Laurencia papillosa	5-101	Carpospore	(Ngan and Price, 1979)
Laurencia papillosa	40-101	Tetraspore	(Ngan and Price, 1979)

Species	Spore (µm)	Comments	References
Laurencia perforate	26.0-81.0	Tetraspore	(Ngan and Price, 1979)
Laurencia pygmaea	42.5-77.5	Carpospore	(Ngan and Price, 1979)
Laurencia pygmaea	43.5-77.5	Tetraspore	(Ngan and Price, 1979)
Laurencia succisa	55-73.5	Carpospore	(Ngan and Price, 1979)
Laurencia succisa	26-68.5	Tetraspore	(Ngan and Price, 1979)
Laurencia tenera	56-102.5	Carpospore	(Ngan and Price, 1979)
Laurencia tenera	43.5-86	Tetraspore	(Ngan and Price, 1979)
Leveillea jungermannioides	106.0-182.5	Tetraspore	(Ngan and Price, 1979)
Microcladia coulteri	98	Tetraspore	(Coon et al., 1971)
Neoagardhiella baileyi	34.1 (SE ± 0.20)	Carpospore	(Okuda and Neushul, 1981)
Neoagardhiella baileyi	28.0 (SE ± 0.25)	Tetraspore	(Okuda and Neushul, 1981)
Pedobesia clavaeformis	30-40	Zoospore	(MacRaild and Womersley, 1974)
Penicillus capitatus	210 x 120	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Penicillus capitatus	4.5 x 2.3	Microgamete	(Clifton and Clifton, 1999)
Penicillus dumetosus	180 x 72.0	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Penicillus dumetosus	4.5 x 2.3	Microgamete	(Clifton and Clifton, 1999)
Penicillus lamouroxii	210 x 90	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Penicillus lamouroxii	5.3 x 2.3	Microgamete	(Clifton and Clifton, 1999)
Penicillus pyriformis	168 x 102	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Penicillus pyriformis	5.3 x 1.5	Microgamete	(Clifton and Clifton, 1999)
Polysiphonia coacta	37.5-67-5	Carpospore	(Ngan and Price, 1979)
Polysiphonia coacta	33.5-62.5	Tetraspore	(Ngan and Price, 1979)
Polysiphonia subtilissima	37.5-55	Carpospore	(Ngan and Price, 1979)
Polysiphonia subtilissima	35-73	Tetraspore	(Ngan and Price, 1979)
Prasiola stipitata	2.4-4	Female gamete	(Cole and Akintobi, 1963)

Species	Spore (µm)	Comments	References
Prasiola stipitata	14	Zygote	(Cole and Akintobi, 1963)
Rhipcephalus phoenix	168 x 66	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Rhipcephalus phoenix	5.3 x 2.3	Microgamete	(Clifton and Clifton, 1999)
Sarconema filiforme	15.0-28.5	Carpospore	(Ngan and Price, 1979)
Sarconema filiforme	17.5-27.5	Tetraspore	(Ngan and Price, 1979)
Scytosiphon lomentaria	3-4 x 7	Zoospore	(Clayton, 1978, Clayton, 1980)
Scytosiphon lomentaria	5-6	Female gamete	(Clayton, 1978, Clayton, 1980)
Solierla mollis	12.5-33-5	Carpospore	(Ngan and Price, 1979)
Solierla mollis	21.0-31.0	Tetraspore	(Ngan and Price, 1979)
Solierla robusta	15.0-21.0	Carpospore	(Ngan and Price, 1979)
Solierla robusta	15.0-32.5	Tetraspore	(Ngan and Price, 1979)
Sphacelaria rigidula	7–13 x 5–9	Zoospore	(Van Reine, 1982)
Sphacelaria rigidula	4-13	Female gamete	(Van Reine, 1982)
Tolypiocladia glomerulata	35.0	Carpospore	(Ngan and Price, 1979)
Tolypiocladia glomerulata	32.5	Tetraspore	(Ngan and Price, 1979)
Udotea abbottiorum	168 x 60	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Udotea abbottiorum	6 x 2.3	Microgamete	(Clifton and Clifton, 1999)
Udotea caribaea	180 x 102	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Udotea caribaea	5.3 x 2.3	Microgamete	(Clifton and Clifton, 1999)
Udotea cyathiformis	198 x 102	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Udotea cyathiformis	5.3 x 2.3	Microgamete	(Clifton and Clifton, 1999)
Udotea flabellum	9.8 x 2.3	Minimum length x width of macrogamete	(Clifton and Clifton, 1999)
Udotea flabellum	6.0 x 2.3	Microgamete	(Clifton and Clifton, 1999)
Ulva rigida	9–15 x 5–10	Zoospore	(Phillips, 1988)

Species	Spore (µm)	Comments	References
Ulva rigida	7–11 x 4–6	Female gamete	(Phillips, 1988)
Zygnema sp.	29 (SD ± 3.13)	Mature zygospore	(Poulíčková et al., 2007)

Note: Smallest value was recorded when available, * indicates that size was an approximate value.

A12. Ascidians

Literature search: To identify literature on propagule and female gamete size a systematic literature search was undertaken using the <u>Scopus</u> and the <u>Web of Science</u> databases. For ascidians, searches were performed using the following search criteria:

Scopus (TITLE-ABS-KEY (ascidiacea) AND TITLE-ABS-KEY (viable AND propagule AND size) OR TITLE-ABS-KEY ('egg AND size') OR ALL (diameter) OR TITLE-ABS-KEY 78 results

Web of Science: TOPIC: (ascidia) AND TOPIC: (egg size) 59 results

Web of Science: TOPIC: (ascidia) AND TOPIC: (egg size) OR TOPIC: (viable propagule) OR TOPIC: (diameter) Refined by: TOPIC: (ascidiacea) 111 results

Additional articles were also sourced from citations and reference lists of articles produced in the Web of Science database searches.

Table A12 Ascidian propagule s	sizes identified from	the literature search
--------------------------------	-----------------------	-----------------------

Species	Egg (µm)	Larvae (µm)	Comments	References
Aplidium constellatum	-	770	Length of zooid	(Bullard and Whitlatch, 2004)
Ascidia callosa	165	1,200	Egg diameter, larvae length	(Strathmann, 1987)
Ascidia mentula	125	-	Mature oocyte size	(Svane, 1984)
Ascidia paratropa	169	-	Egg diameter	(Strathmann et al., 2002)
Ascidiella aspersa	-	270	Width of one day old juvenile	(Bullard and Whitlatch, 2004)

Species	Egg (µm)	Larvae (µm)	Comments	References
Boltenia echniata	180	_	Diameter of ovum	(Millar, 1951)
Boltenia villosa	156	-	Egg diameter	(Strathmann et al., 2002)
Boltenia villosa	160	-	Egg diameter	(Bates, 2002)
Boltenia villosa	-	1,200	Larvae length	(Strathmann, 1987)
Botrylloides lenis	90	-	Egg diameter	(Mukai et al., 1987)
Botrylloides simodensis	180	-	Egg diameter	(Mukai et al., 1987)
Botrylloides violaceus	80	-	Egg size	(Carver et al., 2006, Manni et al., 1995)
Botrylloides violaceus	-	2,350	Width of one day old juvenile	(Bullard and Whitlatch, 2004)
Botryllus gigas	450	-	Egg diameter	(Jeffery and Swalla, 1992, Swalla and Jeffery, 1990)
Botryllus schlosseri	60-100	-	Stage 3 oocyte size range	(Stewart-Savage et al., 1999)
Botryllus schlosseri	120	_	Oocyte diameter initial phases of vitellogenesis	(Manni et al., 1994)
Botryllus schlosseri	300	-	Egg size	(Carver et al., 2006)
Botryllus schlosseri	-	380-630	Width range of one day old juveniles	(Bullard and Whitlatch, 2004)
Botryllus schlosseri	-	1,500	Size of gonozoid at 5 days old	(Grave, 1933)
Bulla hydatis	200	_	Egg diameter *	(Berrill, 1931)
Ciona intestinalis	140	-	Egg diameter *	(Gregory and Veeman, 2013)
Ciona intestinalis	140	-	Egg diameter *	(Lemaire et al., 2008)
Ciona intestinalis	150	-	Approximate egg diameter	(Marshall and Keough, 2003a)
Ciona intestinalis	170	-	Egg diameter	(Jantzen et al., 2001)

Species	Egg (µm)	Larvae (µm)	Comments	References
Ciona intestinalis	-	240-340	Width range of one day old juveniles	(Bullard and Whitlatch, 2004)
Clavelina oblonga	310	2,250	Egg diameter, tadpole length	(Berrill, 1932)
Clavelina picta	490	3,300	Egg diameter, tadpole length	(Berrill, 1932)
Cnemidocarpa finmarkiensis	150	-	Egg diameter	(Bates, 2002)
Cnemidocarpa verrucosa	200	-	Mature oocyte size	(Sahade et al., 2004)
Corella inflata	135	-	Egg diameter	(Strathmann et al., 2002)
Corella inflata	140	-	Egg diameter	(Strathmann, 1987)
Dendrodoa grossularia	60-120	-	Oocyte diameter (no yolk present)	(Millar, 1954)
Diazona violacea	100	-	Egg size	(Berrill, 1948)
Didemnum albidum	250	-	Minimum size of eggs containing yolk	(Marks, 1996)
Didemnum romssae	350	-	Mature egg size	(Marks, 1996)
Didemnum sp.	-	930	Width of one day old juvenile	(Bullard and Whitlatch, 2004)
Diplosoma listerianum	130	-	Vitellogenic oocytes diameter > 130	(Bishop et al., 2000)
Diplosoma listerianum	-	1,240	Width of one day old juvenile	(Bullard and Whitlatch, 2004)
Diplosoma listerianum	278-344	-	Oocyte diameter *	(Hammerschmidt et al., 2011)
Diplosoma listerianum	-	625-700	Larval trunk length *	(Hammerschmidt et al., 2011)
Diplosoma migrans	200	-	Fully grown egg diameter *	(Groepler, 2002)
Distaplia occidentalis	450	-	Egg diameter	(Strathmann, 1987)
Ecteinascidia thurstoni	300	-	Maximum oocyte diameter	(Rao, 1959)
Ecteinascidia turbinata	720	-	Egg diameter	(Jeffery and Swalla, 1992, Berrill, 1945, Swalla and Jeffery, 1990)

Species	Egg (µm)	Larvae (µm)	Comments	References
Halocynthia pyriformis	260	-	Diameter of ovum	(Millar, 1951)
Halocynthia roretzi	280	-	Egg diameter *	(Lemaire et al., 2008)
Herdmania momus	120	-	Minimum size of mature oocytes	(Shenkar and Loya, 2008)
Megalodicopia hians	175-190	-	Overall egg diameter range	(Havenhand et al., 2006)
Metandrocarpa taylori	300	-	Egg diameter when released from ovary*	(Haven, 1971)
Molgula citrina	210	-	Egg diameter	(Jeffery and Swalla, 1992, Berrill, 1945, Swalla and Jeffery, 1990)
Molgula manhattensis	-	220	Width of one day old juvenile	(Bullard and Whitlatch, 2004)
Molgula occulata	80-100	-	Egg diameter	(Jeffery and Swalla, 1992, Berrill, 1945, Swalla and Jeffery, 1990)
Molgula oculata	80	-	Egg diameter	(Lindquist et al., 1992, Berrill, 1945, Swalla and Jeffery, 1990)
Molgula pacifica	160-180	-	Egg diameter	(Bates, 2002)
Molgula tectiformis	150	-	Fertilised egg diameter *	(Tagawa et al., 1997)
Oikopleura dioica	76	-	Egg diameter	(Strathmann et al., 2002)
Oikopleura dioica	80	-	Egg diameter	(Miller and King, 1983)
Phallusia mammillata	120	-	Egg diameter *	(Lemaire et al., 2008)
Phallusia mammillata	100-120	-	Embryo diameter	(Robin et al., 2011)
Polycarpa cryptocarpa kroboja	150	-	-	(Chen and Dai, 1998)

Species	Egg (µm)	Larvae (µm)	Comments	References
Pyrua praeputlialis	270-310	-	Egg diameter range	(Manríquez and Castilla, 2010)
Pyura fissa	150	-	Approximate egg diameter	(Marshall and Keough, 2003a)
Pyura sp.	150	-	Maximum oocyte diameter	(Rao, 1959)
Pyura squamulosa	160	-	Diameter of ovum	(Millar, 1951)
Pyura stolonifera	250-350	-	Egg diameter range	(Marshall et al., 2002)
Styela canopus	230.4-336.0	600–900	Egg diameter range, tadpole length range	(Huang et al., 2003)
Styela clava	150	-	Ripe ova size	(McClary et al., 2008)
Styela clava	-	290	Width of one day old juvenile	(Bullard and Whitlatch, 2004)
Styela plicata	150	-	Approximate egg diameter	(Marshall and Keough, 2003a)
Symplegma reptans	220	-	Oocyte maximum diameter	(Sugimoto and Nakauchi, 1974)
Trididemnum solidum	-	2,000-3,000	Tadpole larvae length	(Lindquist et al., 1992, Berrill, 1945, Swalla and Jeffery, 1990)

Note: Smallest value was recorded when available, * indicates that size was an approximate value.

References

- AARAB, L., PÉREZ-CAMACHO, A., VIERA-TOLEDO, M. D. P., DE VIÇOSE, G. C., FERNÁNDEZ-PALACIOS, H. & MOLINA, L. 2013. Embryonic development and influence of egg density on early veliger larvae and effects of dietary microalgae on growth of brown mussel *Perna perna* (L. 1758) larvae under laboratory conditions. *Aquaculture International*, 21, 1065-1076.
- ABELE, L. G. 1972. Introductions of two freshwater decapod crustaceans (Hymenosomatidae and Atyidae) into Central and North America. *Crustaceana*, 209-218.
- ABELLÓ, P. & MACPHERSON, E. 1991. Distribution patterns and migration of *Lithodes ferox* (Filhol)(Anomura: Lithodidae) off Namibia. *Journal of Crustacean Biology*, 11, 261-268.
- ACKERMAN, J. D., SIM, B., NICHOLS, S. J. & CLAUDI, R. 1994. A review of the early life history of zebra mussels (Dreissena polymorpha): comparisons with marine bivalves. *Canadian Journal of Zoology*, 72, 1169-1179.
- ÅKESSON, B. 1976. Morphology and life cycle of *Ophryotrocha diadema*, a new polychaete species from California. *Ophelia*, 15, 23-35.
- AL-JAHDALI, M. O. 2010. Helminth parasites from Red Sea fishes: Neowardula brayi gen. nov., sp. nov.(Trematoda: Mesometridae Poche, 1926) and Sclerocollum saudii sp. nov.(Acanthocephala: Cavisomidae Meyer, 1932). *Zootaxa*, 2681, 57-65.
- ALAGARSWAMI, K. 1980. Review on production of mussel seed. CMFRI Bulletin, 29, 22-26.
- ALI, M. H. & SALMAN, S. D. 1986. The reproductive biology of *Parhyale basrensis* Salman (Crustacea, Amphipoda) in the Shatt al-Arab river. *Estuarine, Coastal and Shelf Science*, 23, 339-351.
- ALLEN, E. 1905. The Anatomy of Pcecilochsetus, Claparede. *Quarterly Journal of Microscopical Science*, 48, 79.
- ALLEN, J. D., ARMSTRONG, A. F. & ZIEGLER, S. L. 2015. Environmental induction of polyembryony in echinoid echinoderms. *The Biological Bulletin*, 229, 221-231.
- ALLEN, J. D., REITZEL, A. M. & JAECKEL, W. 2018. Asexual reproduction of marine invertebrate embryos and larvae. In: Carrier TJ, Reitzel AM, Heyland A (eds) Evolutionary 275 Mar Ecol Prog Ser 609: 271–276, 2019 Ecology of Marine Invertebrate Larvae. Oxford University Press, Oxford, 67-87.
- ALLEN, J. D., ZAKAS, C. & PODOLSKY, R. D. 2006. Effects of egg size reduction and larval feeding on juvenile quality for a species with facultative-feeding development. *Journal of Experimental Marine Biology and Ecology*, 331, 186-197.
- ALLEN, M. J. 1957. The breeding of polychaetous annelids near Parguera, Puerto Rico. *The Biological Bulletin*, 113, 49-57.
- AMENT, A. S. 1979. Geographic variation in relation to life history in three species of the marine gastropod genus Crepidula.
- AMIEL, A. & HOULISTON, E. 2009. Three distinct RNA localization mechanisms contribute to oocyte polarity establishment in the cnidarian *Clytia hemisphaerica*. *Developmental biology*, 327, 191-203.
- AMIO, M. 1963. A comparative embryology of marine gastropods, with ecological considerations. J. Shimonoseki Univ. Fisheries, 12, 229-253.
- AMSLER, M. O. L. & GEORGE, R. Y. 1984. Seasonal variation in the biochemical composition of the embryos of *Callinectes sapidus* Rathbun. *Journal of Crustacean Biology*, 4, 546-553.

Assessment of reproductive propagule size for biofouling risk groups

- ANDERSON, D. 1977. The embyonic and laval development of the turbellarian *Notoplana australis* (Schmarda, 1859)(Polycladida: Leptoplanidae). *Marine and Freshwater Research*, 28, 303-310.
- ANDERSSON, E. 1969. Life-cycle and Growth of Aselus Aquaticus (L.) with Special Reference to the Effects of Temperature, Institute of Freshwater Research.
- ANDRADE-VILLAGRÁN, P., CHAPARRO, O., PARDO, L., PAREDES-MOLINA, F. & THOMPSON, R. 2016. Embryo brooding and its effect on feeding in the bivalve *Gaimardia bahamondei* Osorio & Arnaud, 1984. *Helgoland Marine Research*, 70, 4.
- ANGER, K., MOREIRA, G. & ISMAEL, D. 2002. Comparative size, biomass, elemental composition (C, N, H), and energy concentration of caridean shrimp eggs. *Invertebrate reproduction & development*, 42, 83-93.
- ANGER, K. & MOREIRA, G. S. 2004. Biomass and elemental composition of eggs and larvae of a mangrove crab, *Sesarma rectum* Randall (Decapoda: Sesarmidae) and comparison to a related species with abbreviated larval development. *Scientia Marina*, 68, 117-126.
- AOKI, M. 1999. Morphological characteristics of young, maternal care behaviour and microhabitat use by Caprellid Amphipods. *Journal of the Marine Biological Association of the United Kingdom*, 79, 629-638.
- APPUKUTTAN, K., JOSEPH, M. & THOMAS, K. 1988. Larval rearing and spat production of the brown mussel *Perna indica* at Vizhinjam. *CMFRI Bulletin*, 42, 337-343.
- ATKINS, D. 1955. The cyphonautes larvae of the Plymouth area and the metamorphosis of *Membranipora membranacea* (L.). *Journal of the Marine Biological Association of the United Kingdom*, 34, 441-449.
- ATKINSON, D., MORLEY, S. A. & HUGHES, R. N. 2006. From cells to colonies: at what levels of body organization does the 'temperature-size rule' apply? *Evolution & development*, **8**, 202-214.
- ATOPKIN, D. M., BESPROZVANNYKH, V. V., HA, D. N., NGUYEN, V. H., NGUYEN, V. T. & CHALENKO, K.
 P. 2019. A new subfamily, Pseudohaploporinae subfam. n. (Digenea: Haploporidae), with morphometric and molecular analyses of two new species: *Pseudohaploporus vietnamensis* n. g., sp. n. and *Pseudohaploporus planilizum* n. g., sp. n. from Vietnamese mullet.
 Parasitology International, 69, 17-24.
- AVERBUJ, A. & PENCHASZADEH, P. E. 2010. Reproductive seasonality, oviposition and development of the nassariid whelk *Buccinanops cochlidium* (Dillwyn, 1817) in Patagonia, Argentina. *Journal of Molluscan Studies*, 76, 25-32.
- AVERBUJ, A., PENCHASZADEH, P. E. & PASTORINO, G. 2018. Egg masses and development of Falsilunatia eltanini (Mollusca: Gastropoda): a deep-sea naticid from a Southwestern Atlantic Canyon. Marine Biology: International Journal on Life in Oceans and Coastal Waters, 165.
- BAKER, J. & EVANS, L. 1973. The ship fouling alga *Ectocarpus*. *Protoplasma*, 77, 1-13.
- BANSE, K. 1954. Über Morphologie und Larvalentwicklung von Nereis (Neanthes) succinea (Leuckart) 1847 (Polychaeta errantia). Zoologische Jahrbücher Abteilung fuer Anatomie und Ontogenie Tiere, 74, 160-171.
- BANSE, K., HOBSON, K., NICHOLS, F. & LIE, U. 1963. Annotated list of polychaetes. U. Lie: A quantitative study of benthic infauna in Puget Sound, Washington, USA, in, 1964, 521-556.
- BARKER, M. 1976. Culture and morphology of some New Zealand barnacles (Crustacea: Cirripedia). New Zealand Journal of Marine and Freshwater Research, 10, 139-158.

- BARNARD, J. L. 1959. *Epipelagic and under-ice Amphipoda of the Central Arctic Basin*, Terrestrial Sciences Laboratory, Geophysics Research Directorate, Air Force.
- BARNARD, J. L. & INGRAM, C. L. 1986. The supergiant amphipod *Alicella gigantea* Chevreux from the North Pacific gyre. *Journal of Crustacean Biology*, *6*, 825-839.
- BARNES, H. & BARNES, M. 1965. Egg size, nauplius size, and their variation with local, geographical, and specific factors in some common cirripedes. *The Journal of Animal Ecology*, 391-402.
- BARNES, M. 1989. Egg production in cirripedes. Oceanogr. Mar. Biol, 27, 91-166.
- BARRETT, B. E. 1966. A contribution to the knowledge of the amphipodous crustacean, *Ampithoe valida*, Smith 1873.
- BASS, N. & BRAFIELD, A. 1972. The life-cycle of the polychaete *Nereis virens*. *Journal of the marine biological Association of the United Kingdom*, 52, 701-726.
- BASSINDALE, R. The developmental stages of three English barnacles, *Balanus balanoides* (Linn.), *Chlhamalas stellatas* (Poli), and *Verruca stroemia* (OF Müller). Proceedings of the Zoological Society of London, 1936. Wiley Online Library, 57-74.
- BATES, W. R. 2002. The phylogenetic significance of maximum direct development in the ascidian, *Molgula pacifica. Invertebrate Reproduction & Development*, 41, 185-192.
- BATTLE, H. I. 1932. Rhythmic sexual maturity and spawning of certain bivalve mollusks. *Contributions to Canadian Biology and Fisheries*, 7, 255-276.
- BELDING, D. 1931. The soft-shelled clam fishery of Massachusetts. Department of Conservation, Division of Fish and Game. *Marine Fisheries Section, Marine Fisheries Series*, 1-65.
- BELLA, M. & FISH, J. 1996. Fecundity and seasonal changes in reproductive output of females of the gravel beach amphipod, *Pectenogammarus planicrurus*. *Journal of the Marine Biological Association of the United Kingdom*, **76**, 37-55.
- BELLGROVE, A., NAKAYA, F., SERISAWA, Y., MATSUYAMA-SERISAWA, K., KAGAMI, Y., JONES, P. M., SUZUKI, H., KAWANO, S. & AOKI, M. N. 2019. Maintenance of Complex Life Cycles Via Cryptic Differences In The Ecophysiology Of Haploid And Diploid Spores Of An Isomorphic Red Alga1. Journal of phycology.
- BENÍTEZ-VILLALOBOS, F. & DÍAZ-MARTÍNEZ, J. P. 2010. Reproductive patterns of the abyssal asteroid *Styracaster elongatus* from the NE Atlantic Ocean. *Deep Sea Research Part I: Oceanographic Research Papers*, 57, 157-161.
- BENJAMIN, D., HARIKRISHNAN, M., ROZARIO, J. V., JOSE, D., KURUP, B. M., SREEDHAR, U. & CUBELIO, S. S. 2019. Reproductive traits of deep-sea armoured shrimp, *Glyphocrangon investigatoris* from Bay of Bengal, Indian Ocean. *Journal of the Marine Biological Association of the United Kingdom*, 99, 93-100.
- BENNETT, B. A., SMITH, C. R., GLASER, B. & MAYBAUM, H. L. 1994. Faunal community structure of a chemoautotrophic assemblage on whale bones in the deep northeast Pacific Ocean. *Marine Ecology-Progress Series*, 108, 205.
- BERRILL, N. 1931. The natural history of *Bulla hydatis* Linn. *Journal of the Marine Biological Association of the United Kingdom,* 17, 567-571.
- BERRILL, N. 1932. Ascidians of the Bermudas. *The Biological Bulletin*, 62, 77-88.
- BERRILL, N. 1948. The development, morphology and budding of the ascidian Diazona. *Journal of the Marine Biological Association of the United Kingdom*, 27, 389-399.

- BERRILL, N. J. 1945. Size and organization in the development of ascidians. *Essays on Growth and Form.* Oxford Univ. Press London and New York.
- BERTRAM, D. F. & STRATHMANN, R. R. 1998. Effects of maternal and larval nutrition on growth and form of planktotrophic larvae. *Ecology*, 79, 315-327.
- BINGHAM, B. L., GILES, K. & JAECKLE, W. B. 2004. Variability in broods of the seastar *Leptasterias* aequalis. Canadian Journal of Zoology, 82, 457-463.
- BISHOP, J. D., MANRIQUEZ, P. H. & HUGHES, R. N. 2000. Water–borne sperm trigger vitellogenic egg growth in two sessile marine invertebrates. *Proceedings of the Royal Society of London. Series B: Biological Sciences,* 267, 1165-1169.
- BLAKE, J. A. 1969. Reproduction and larval development of Polydora from northern New England (Polychaeta: Spionidae). *Ophelia*, 7, 1-63.
- BLAKE, J. A. 1993. Life history analysis of five dominant infaunal polychaete species from the continental slope off North Carolina. *Journal of the Marine Biological Association of the United Kingdom*, 73, 123-141.
- BLASCO-COSTA, I., GIBSON, D. I., BALBUENA, J. A., RAGA, J. A. & KOSTADINOVA, A. 2009. A revision of the Haploporinae Nicoll, 1914 (Digenea: Haploporidae) from mullets (Mugilidae):
 Haploporus Looss, 1902 and Lecithobotrys Looss, 1902. Systematic parasitology, 73, 107.
- BOLANOS, D. M. & LITVAITIS, M. K. 2009. Embryonic muscle development in direct and indirect developing marine flatworms (Platyhelminthes, Polycladida). *Evolution & development*, 11, 290-301.
- BOLAÑOS, J., CUESTA, J. A., HERNÁNDEZ, G., HERNÁNDEZ, J. & FELDER, D. L. 2004. Abbreviated larval development of *Tunicotheres moseri* (Rathbun, 1918)(Decapoda, Pinnotheridae), a rare case of parental care in brachyuran crabs. *Scientia Marina*, 68, 373-384.
- BOOKHOUT, C. G. & HORN, E. C. 1949. The development of *Axiothella mucosa* (Andrews). *Journal of morphology*, 84, 145-183.
- BOUSFIELD, E. 1970. Terrestrial and aquatic amphipod Crustacea from Rennell Island. *The Natural History of Rennell Island, British Solomon Islands,* 6, 155-168.
- BRAY, R. A. & CRIBB, T. H. 1998. Lepocreadiidae (Digenea) of Australian coastal fishes: New species of *Opechona* Looss, 1907, Lepotrema Ozaki, 1932 and *Bianium* Stunkard, 1930 and comments on other species reported for the first time or poorly known in Australian waters. *Systematic Parasitology*, 41, 123-148.
- BREGAZZI, P. 1972. Life cycles and seasonal movements of *Cheirimedon femoratus* (Pfeffer) and *Tryphosella kergueleni* (Miers)(Crustacea: Amphipoda). *British Antarctic Survey Bulletin*, 30, 1-34.
- BREGAZZI, P. 1973. Embryological development in *Tryphosella kergueleni* (Miers) and *Cheirimedon femoratus* (Pfeffer)(Crustacea: Amphipoda). *British Antarctic Survey Bulletin,* 32, 63-74.
- BRITAYEV, T. 1991. Life cycle of the symbiotic scaleworm *Arctonoe vittata* (Polychaeta: Polynoidae). *Ophelia*, 5, 305-12.
- BROWN-GILPIN, J. 1959. The reproduction and larval development of *Nereis fucata* (Savigny). *Journal* of the Marine Biological Association of the United Kingdom, 38, 65-80.
- BROWN, K. E., KING, C. K. & HARRISON, P. L. 2015. Reproduction, growth and early life history of the Antarctic gammarid amphipod *Paramoera walkeri*. *Polar Biology*, 38, 1583-1596.
- BUHL-MORTENSEN, L. & HØEG, J. T. 2006. Reproduction and larval development in three scalpellid barnacles, *Scalpellum scalpellum* (Linnaeus 1767), Ornatoscalpellum stroemii (M. Sars 1859)

and Arcoscalpellum michelottianum (Seguenza 1876), Crustacea: Cirripedia: Thoracica): implications for reproduction and dispersal in the deep sea. *Marine biology*, 149, 829-844.

- BULLARD, S. G. & WHITLATCH, R. B. 2004. A guide to the larval and juvenile stages of common Long Island Sound Ascidians and Bryozoans, Connecticut Department of Environmental Protection.
- BURMISTROVA, Y. A., OSADCHENKO, B. V., BOLSHAKOV, F. V., KRAUS, Y. A. & KOSEVICH, I. A. 2018. Embryonic development of thecate hydrozoan *Gonothyraea loveni* (Allman, 1859). *Development, growth & differentiation,* 60, 483-501.
- BURR, F. & WEST, J. 1970. Light and electron microscope observations on the vegetative and reproductive structures of *Bryopsis hypnoides*. *Phycologia*, 9, 17-37.
- BURROWS, M., HAWKINS, S. & SOUTHWARD, A. 1999. Larval development of the intertidal barnacles Chthamalus stellatus and Chthamalus montagui. Journal of the Marine Biological Association of the United Kingdom, 79, 93-101.
- BUSH, L. 1975. Biology of Neochilda fusca n. gen., n. sp. from the Northeastern coast of the United States (Platyhelminthes: Turbellaria). *The Biological Bulletin*, 148, 35-48.
- BUZHINSKAJA, G. N. & JØRGENSEN, L. L. 1997. Redescription of *Trochochaeta carica* (Birula, 1897) (Polychaeta, Trochochaetidae) with notes on reproductive biology and larvae. *Sarsia*, 82, 69-75.
- BYRNE, M. 1991. Developmental diversity in the starfish genus Patiriella (Asteroidea: Asterinidae). *Biology of echinodermata*, 499-508.
- BYRNE, M. 2006. Life history diversity and evolution in the Asterinidae. *Integrative and Comparative Biology*, 46, 243-254.
- BYRNE, M. & CERRA, A. 1996. Evolution of intragonadal development in the diminutive asterinid sea stars *Patiriella vivipara* and *P. parvivipara* with an overview of development in the Asterinidae. *The Biological Bulletin*, 191, 17-26.
- BYRNE, M., CERRA, A. & VILLINSKI, J. T. 1999. Oogenic strategies in the evolution of development in *Patiriella* (Echinodermata: Asteroidea). *Invertebrate reproduction & development*, 36, 195-202.
- BYRNE, M., PROWSE, T. A. A., SEWELL, M. A., DWORJANYN, S., WILLIAMSON, J. E. & VAITILINGON, D. 2008a. Maternal provisioning for larvae and larval provisioning for juveniles in the toxopneustid sea urchin *Tripneustes gratilla*. *Marine Biology*, 155, 473-482.
- BYRNE, M. & SEWELL, M. A. 2019. Evolution of maternal lipid provisioning strategies in echinoids with non-feeding larvae: selection for high-quality juveniles. *Marine Ecology Progress Series*, 616, 95-106.
- BYRNE, M., SEWELL, M. A. & PROWSE, T. A. A. 2008b. Nutritional ecology of sea urchin larvae: influence of endogenous and exogenous nutrition on echinopluteal growth and phenotypic plasticity in *Tripneustes gratilla*. *Functional Ecology*, 22, 643-648.
- CALVO, M. & TEMPLADO, J. 2005. Reproduction and sex reversal of the solitary vermetid gastropod Serpulorbis arenarius. Marine Biology, 146, 963-973.
- CAMERON, R. A. 1986. Reproduction, larval occurrence and recruitment in Caribbean sea-urchins. *Bulletin of Marine Science*, 39, 332-346.
- CARDOSO, J. F., VAN DER VEER, H. W. & KOOIJMAN, S. A. 2006. Body-size scaling relationships in bivalve species: A comparison of field data with predictions by the Dynamic Energy Budget (DEB) theory. *Journal of Sea Research*, 56, 125-139.

- CARRASCO, F. D. & ARCOS, D. F. 1984. Ampelisca ara ucana. *Marine Ecology-Progress Series*, 14, 245-252.
- CARVER, C., MALLET, A. & VERCAEMER, B. 2006. *Biological synopsis of the colonial tunicates* (*Botryllus schlosseri and Botrylloides violaceus*), Bedford Institute of Oceanography.
- CERICOLA, M. J. & WILLIAMS, J. D. 2015. Prevalence, reproduction and morphology of the parasitic isopod *Athelges takanoshimensis* Ishii, 1914 (Isopoda: Bopyridae) from Hong Kong hermit crabs. *Marine Biology Research*, 11, 236-252.
- CHA, H., OH, C. & CHOI, J. 2004. Biology of the cocktail shrimp, *Trachysalambria curvirostris* (Decapoda: Penaeidae) in the Yellow Sea of Korea. *Journal of the Marine Biological Association of the United Kingdom*, 84, 351-357.
- CHAN, B. K. K. 2003. Studies on *Tetraclita Squamosa* and *Tetraclita Japonica* (Cirripedia: Thoracica) II: Larval Morphology and Development. *Journal of Crustacean Biology*, 23, 522-547.
- CHAN, T.-Y. & SHY, J.-Y. 1996. Complete larval development of the edible mud shrimp *Upogebia edulis* Ngoc-Ho & Chan, 1992 (Decapoda, Thalassinidea, Upogebiidae) reared in the laboratory. *Crustaceana*, 69, 175-186.
- CHANG, G., WU, X., CHENG, Y., ZENG, C. & YU, Z. 2017. Reproductive performance, offspring quality, proximate and fatty acid composition of normal and precocious Chinese mitten crab *Eriocheir sinensis. Aquaculture*, 469, 137-143.
- CHAPARRO, O. & PASCHKE, K. 1990. Nurse egg feeding and energy balance in embryos of *Crepidula dilatata* (Gastropoda: Calyptraeidae) during intracapsular development. *Mar Ecol Prog Ser*, 65, 183-191.
- CHARMANTIER, G. & CHARMANTIER-DAURES, M. 1994. Ontogeny of osmoregulation and salinity tolerance in the isopod crustacean *Sphaeroma serratum*. *Marine Ecology-Progress Series*, 114, 93.
- CHARNOV, E. 1987. Sexuality and hermaphroditism in barnacles: a natural selection approach, Rotterdam (Netherlands): AA Balkema.
- CHEN, Y. & DAI, C. 1998. Sexual reproduction of the Ascidian *Polycarpa cryptocarpa* kroboja from the Northern Coast of Taiwan. *Acta Oceanographica Taiwanica*, 37, 201-210.
- CHIA, F.-S. 1971. Oviposition, fecundity, and larval development of three sacoglossan opisthobranchs from the Northumberland coast, England. *Veliger*, 13, 319-325.
- CHIHARA, M. 1973. The significance of reproductive and spore germination characteristics in the systematics of the Corallinaceae: articulated coralline algae. *Jpn. J. Bot.,* 20, 369-379.
- CHINTALA, M. M. & KENNEDY, V. S. 1993. Reproduction of *Stylochus ellipticus* (Platyhelminthes: Polycladida) in response to temperature, food, and presence or absence of a partner. *The Biological Bulletin*, 185, 373-387.
- CHOI, J. H., KIM, J. N., MA, C. W. & CHA, H. K. 2005. Growth and reproduction of the kishi velvet shrimp, *Metapenaeopsis dalei* (Rathbun, 1902)(Decapoda, Penaeidae) in the western sea of Korea. *Crustaceana*, 947-963.
- CHRISTENSEN, D. J. 1971. Early development and chromosome number of the polyclad flatworm *Euplana gracilis. Transactions of the American Microscopical Society*, 457-463.
- CHURCHILL, G. J. 2003. An investigation into the captive spawning, egg characteristics and egg quality of the mud crab (Scylla serrata) in South Africa. Citeseer.
- CLARK, H. L. 1923. The echinoderm fauna of South Africa, Trustees of the South African Museums.

- CLARK, K. 1975. Nudibranch life cycles in the Northwest Atlantic and their relationship to the ecology of fouling communities. *Helgoländer Wissenschaftliche Meeresuntersuchungen*, 27, 28.
- CLARK, K. B. & GOETZFRIED, A. 1978. Zoogeographic influences on development patterns of North Atlantic Ascoglossa and Nudibranchia, with a discussion of factors affecting egg size and number. *Journal of Molluscan Studies*, 44, 283-294.
- CLARK, K. B. & JENSEN, K. R. 1981. A comparison of egg size, capsule size, and development patterns in the order Ascoglossa (Sacoglossa)(Mollusca: Opisthobranchia). *International Journal of Invertebrate Reproduction*, 3, 57-64.
- CLAYTON, M. 1978. Morphological variation and life history in cylindrical forms of *Scytosiphon lomentaria* (Scytosiphonaceae: Phaeophyta) from southern Australia. *Marine Biology*, 47, 349-357.
- CLAYTON, M. N. 1980. Sexual reproduction—a rare occurrence in the life history of the complanate form of Scytosiphon (Scytosiphonaceae, Phaeophyta) from southern Australia. *British Phycological Journal*, 15, 105-118.
- CLAYTON, M. N. 1990. The adaptive significance of life history characters in selected orders of marine brown macroalgae. *Australian Journal of Ecology*, **15**, 439-452.
- CLAYTON, M. N. 1992. Propagules of marine macroalgae: structure and development. *British Phycological Journal*, 27, 219-232.
- CLEMENS, H. P. 1950. Life cycle and ecology of Gammarus fasciatus Say, Ohio State University.
- CLIFTON, K. E. & CLIFTON, L. M. 1999. The phenology of sexual reproduction by green algae (Bryopsidales) on Caribbean coral reefs. *Journal of Phycology*, **35**, 24-34.
- COBO, V. J. & OKAMORI, C. M. 2008. Fecundity of the spider crab *Mithraculus forceps* (Decapoda, Mithracidae) from the northeastern coast of the state of São Paulo, Brazil. *Iheringia. Série Zoologia*, 98, 84-87.
- COE, W. R. 1949. Divergent methods of development in morphologically similar species of prosobranch gastropods. *Journal of Morphology*, 84, 383-399.
- COLE, K. & AKINTOBI, S. 1963. The life cycle of *Prasiola meridionalis* Setchell and Gardner. *Canadian Journal of Botany*, 41, 661-668.
- COLLIN, R. 2003. Worldwide patterns in mode of development in calyptraeid gastropods. *Marine Ecology Progress Series,* 247, 103-122.
- COLLIN, R. & SALAZAR, M. Z. 2010. Temperature-mediated plasticity and genetic differentiation in egg size and hatching size among populations of Crepidula (Gastropoda: Calyptraeidae). *Biological Journal of the Linnean Society*, 99, 489-499.
- COMELY, C. & ANSELL, A. 1988. Invertebrate associates of the sea urchin, *Echinus esculentus* L., from the Scottish west coast. *Ophelia*, 28, 111-137.
- CONTINS, M. & VENTURA, C. R. R. 2011. Embryonic, larval, and post-metamorphic development of the sea urchin *Cassidulus mitis* (Echinoidea; Cassiduloida): an endemic brooding species from Rio de Janeiro, Brazil. *Marine biology*, 158, 2279-2288.
- COON, D., NEUSHUL, M. & CHARTERS, A. settling behavior of marine algal spores. International Symposium on Seaweed Research, 7th, Sapporo, 1971.
- COSTA, T. & SOARES-GOMES, A. 2009. Population structure and reproductive biology of *Uca rapax* (Decapoda: Ocypodidae) in a tropical coastal lagoon, southeast Brazil. *Zoologia (Curitiba)*, 26, 647-657.

- COSTLOW JR, J. D. & BOOKHOUT, C. 1957. Larval development of *Balanus eburneus* in the laboratory. *The Biological Bulletin*, 112, 313-324.
- CRAIG, S. F., SLOBODKIN, L. B., WRAY, G. A. & BIERMANN, C. H. 1997. The 'paradox' of polyembryony: a review of the cases and a hypothesis for its evolution. *Evolutionary Ecology*, 11, 127-143.
- CROFTS, D. R. 1937. V-The development of *Haliotis Tuberculata*, with special reference to organogenesis during torsion. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*, 228, 219-268.
- CROKER, R. A. 1971. A new species of Melita (Amphipoda: Gammaridae) from the Marshall Islands, Micronesia.
- CUESTA, J. A., SCHUH, M., DIESEL, R. & SCHUBART, C. D. 1999. Abbreviated development of *Armases miersii* (Grapsidae: Sesarminae), a crab that breeds in supralittoral rock pools. *Journal of Crustacean Biology*, 19, 26-41.
- CUMPLIDO, M., PAPPALARDO, P., FERNÁNDEZ, M., AVERBUJ, A. & BIGATTI, G. 2011. Embryonic development, feeding and intracapsular oxygen availability in *Trophon geversianus* (Gastropoda: Muricidae). *Journal of Molluscan Studies*, 77, 429-436.
- CURRIE, D. R., MCARTHUR, M. & COHEN, B. 2000. Reproduction and distribution of the invasive European fanworm *Sabella spallanzanii* (Polychaeta: Sabellidae) in Port Phillip Bay, Victoria, Australia. *Marine Biology*, 136, 645-656.
- D'ASARO, C. N. 1966. The egg capsules, embryogenesis, and early organogenesis of a common oyster predator, *Thais haemastoma floridana* (Gastropoda: Prosobranchia). *Bulletin of Marine Science*, 16, 884-914.
- DALES, R. P. 1950. The reproduction and larval development of *Nereis diversicolor* OF Müller. *Journal* of the Marine Biological Association of the United Kingdom, 29, 321-360.
- DAUM, J. 1954. Zur Biologie einer Isopodenart unterirdischer Gewässer: Caecosphaeroma (Vireia) burgundum Dollfus. Universität des Saarlandes.
- DAY, R. L. & BLAKE, J. A. 1979. Reproduction and larval development of *Polydora giardi* Mesnil (Polychaeta: Spionidae). *The Biological Bulletin*, 156, 20-30.
- DE FREESE, D. E. & CLARK, K. B. 1991. Transepidermal uptake of dissolved free amino acids from seawater by three ascoglossan opisthobranchs. *Journal of molluscan studies*, 57, 65-74.
- DE VICOSE, G. C., VIERA, M., BILBAO, A. & IZQUIERDO, M. 2007. Embryonic and larval development of *Haliotis tuberculata* coccinea Reeve: an indexed micro-photographic sequence. *Journal of Shellfish Research*, 26, 847-854.
- DEHNEL, P. A. 1955. Rates of growth of gastropods as a function of latitude. *Physiological Zoology*, 28, 115-144.
- DELL, R. K. 1987. Mollusca of the Family Mytilidae (Bivalvia) Associated with Organic Remains from Deep Water Off New Zealand, with Revisions of the Genera Adipicola Dautzenberg, 1927 and Idasola Iredale, 1915, National Museum of New Zealand.
- DELLATORRE, F. G. & GONZÁLEZ-PISANI, X. 2011. Embryonic development and fecundity of the squat lobster *Munida gregaria* (Decapoda: Galatheidae) in northern Patagonia. *Journal of the Marine Biological Association of the United Kingdom*, 91, 695-704.
- DEPARTMENT OF THE ENVIRONMENT AND NEW ZEALAND MINISTRY FOR PRIMARY INDUSTRIES 2015. Anti-fouling and in-water cleaning guidelines, Department of Agriculture, Canberra. CC BY 3.0.

- DESTOMBE, C., GODIN, J., LEFEBVRE, C., DEHORTER, O. & VERNET, P. 1992. Differences in dispersal abilities of haploid and diploid spores of *Gracilaria verrucosa* (Gracilariales, Rhodophyta). *Botanica Marina*, 35, 93-98.
- DITTEL, A. I. & EPIFANIO, C. E. 2009. Invasion biology of the Chinese mitten crab *Eriochier sinensis*: A brief review. *Journal of Experimental Marine Biology and Ecology*, 374, 79-92.
- DIX, T. & SJARDIN, M. 1975. Larvae of the commercial scallop, *Pecten meridionalis* from Tasmania, Australia. *Marine and Freshwater Research*, 26, 109-112.
- DIX, T. G. 1976. Larval development of queen scallop, *Equichlamys bifrons*. *Australian Journal of Marine and Freshwater Research*, 27, 399-403.
- DOWNER, D. & STEELE, D. 1979. Some aspects of the biology of *Amphiporeia lawrenciana* Shoemaker (Crustacea, Amphipoda) in Newfoundland waters. *Canadian journal of zoology*, 57, 257-263.
- DROUIN, C.-A., BOURGET, E. & TREMBLAY, R. 2002. Larval transport processes of barnacle larvae in the vicinity of the interface between two genetically different populations of Semibalanus balanoides. *Marine Ecology Progress Series*, 229, 165-172.
- DUMAY, D. 1972. Etude compare Âe de la fecondite de deux espe Áces du groupe Locusta': *Gammarus crinicornis* Stock 1966 et *G. subtypicus* Stock (Amphipoda). TeÂthys.
- DURCHON, M. 1956. Mode de reproduction et développement de Nereis (Ceratonereis) costae Grube (Annélide polychète) à Alger. *Archives de Zoologie expérimentale et générale,* 93, 57-69.
- ECKELBARGER, K. J. 1976. Larval development and population aspects of the reef-building polychaete *Phragmatopoma lapidosa* from the east coast of Florida. *Bulletin of Marine Science*, 26, 117-132.
- ECKELBARGER, K. J. 1986. Vitellogenic mechanisms and the allocation of energy to offspring in polychaetes. *Bulletin of marine science*, 39, 426-443.
- ECKELBARGER, K. J. & GRASSLE, J. P. 1983. Ultrastructural differences in the eggs and ovarian follicle cells of Capitella (Polychaeta) sibling species. *The Biological Bulletin,* 165, 379-393.
- ECKERT, G. L. 1998. Larval development, growth and morphology of the sea urchin *Diadema antillarum*. *Bulletin of Marine Science*, 63, 443-451.
- ELDREDGE, L. & LG, E. 1976. Two new species of Lithodid (Anomura, Paguridea, Lithodidae) Crabs from Guam.
- EMLET, R. B. 1988. Larval form and metamorphosis of a" primitive" sea urchin, *Eucidaris thouars*i (Echinodermata: Echinoidea: Cidaroida), with implications for developmental and phylogenetic studies. *The Biological Bulletin*, 174, 4-19.
- EMLET, R. B. 1995. Developmental mode and species geographic range in regular sea urchins (Echinodermata: Echinoidea). *Evolution*, 49, 476-489.
- EMLET, R. B., MCEDWARD, L. R. & STRATHMANN, R. R. 1987. Echinoderm larval ecology viewed from the egg. *Echinoderm Studies*, 2, 55-136.
- ESTCOURT, I. 1966. Life history and breeding biology of *Nicon aestuariensis* Knox (Annelida, Polychaeta). *Transactions of The Royal Society Of New Zealand-Zoology*, **7**, 179.
- ESTRADA-GARCÍA, M. A., GARCÍA-PRIETO, L. & GARRIDO-OLVERA, L. 2018. Description of a new species of Pseudopecoelus (Trematoda: Opecoelidae) with new records of trematodes of marine fishes from the Pacific coast of Mexico. *Revista Mexicana de Biodiversidad*, 89, 22-28.

Assessment of reproductive propagule size for biofouling risk groups

- EVANS, L., CHRISTIE & AO 1970. Studies on the ship-fouling alga *Enteromorpha* I. Aspects of the finestructure and biochemistry of swimming and newly settled zoospores. *Annals of Botany*, 34, 451-466.
- EWERS-SAUCEDO, C. & PAPPALARDO, P. 2019. Testing adaptive hypotheses on the evolution of larval life history in acorn and stalked barnacles. *Ecology and evolution*, 9, 11434-11447.
- FALKNER, I., BARBOSA, S. & BYRNE, M. 2013. Reproductive biology of four ophiocomid ophiuroids in tropical and temperate Australia–reproductive cycle and oogenic strategies in species with different modes of development. *Invertebrate reproduction & development*, 57, 189-199.
- FALKNER, I., SEWELL, M. A. & BYRNE, M. 2015. Evolution of maternal provisioning in ophiuroid echinoderms: characterisation of egg composition in planktotrophic and lecithotrophic developers. *Marine Ecology Progress Series*, 525, 1-13.
- FALLENI, A. & GREMIGNI, V. 1990. Ultrastructural study of oogenesis in the acoel Turbellarian Convoluta. *Tissue and Cell*, 22, 301-310.
- FAXON, W. 1893. Reports on the dredging operations off the west coast of Central America to the Galapagos, to the west coast of Mexico, and in the Gulf of California, in charge of Alexander Agassiz, carried on by the US Fish Commission Steamer" Albatross" during 1891, Lt.
 Commander ZL Tanner, USN, commanding, VI: Preliminary description of new species of Crustacea. *Bulletin of the Museum of Comparative Zoology at Harvard College*, 24, 149-220.
- FENWICK, G. D. 1985. Life-histories of four co-occurring amphipods from a shallow, sand bottom at Kaikoura, New Zealand. *New Zealand journal of zoology*, 12, 71-105.
- FERNÁNDEZ-OVIES, C. & ORTEA, J. 1986. Descripción de una nueva especie de *Bosellia* Trinchese, 1890 (Mollusca: Opisthobranchia: Ascoglosa) de las Islas Canarias. *Iberus*, 6, 101-106.
- FISH, J. D. 1975. Development, hatching and brood size in *Bathyporeia pilosa* and *B. pelagica* (Crustacea: Amphipoda). *Journal of the Marine Biological Association of the United Kingdom*, 55, 357-368.
- FISH, S. 1970. The biology of *Eurydice pulchra* [Crustacea: Isopoda]. *Journal of the Marine Biological Association of the United Kingdom*, 50, 753-768.
- FLORES, A., QUEIROLO, D. & TOMASONI, M. 2017. Estimating fecundity using image analysis in *Cervimunida johni* and *Pleuroncodes monodon*. *Fisheries Research*, 190, 34-42.
- FOFONOFF, P., RUIZ, G., STEVES, B., SIMKANIN, C. & CARLTON, J. 2018. National Exotic Marine and Estuarine Species Information System.
- FORET, J. 1974. Etude des effets a long terme de quelques detergents sur la sequence de developpement de la polychette sedentaire *Capitella capitata* (Fabricius). *Tethys,* 6, 751-778.
- FORSMAN, B. 1944. Beobachtungen über Jaera albifrons Leach on der schwedischen Westküste, Natura.
- FOSTER, B. 1967. The early stages of some New Zealand shore barnacles. Tane, 13, 33-42.
- FOWLER, A. E. & MCLAY, C. L. 2013. Early Stages of a New Zealand Invasion by Charybdis Japonica (A. Milne-Edwards, 1861) (Brachyura: Portunidae) from Asia: Population Demography. Journal of Crustacean Biology, 33, 224-234.
- FREDETTE, T. J. & DIAZ, R. J. 1986. Life history of *Gammarus mucronatus* Say (Amphipoda: Gammaridae) in warm temperate estuarine habitats, York River, Virginia. *Journal of Crustacean Biology*, 6, 57-78.

- FREEMAN, G. & MILLER, R. L. 1982. Hydrozoan eggs can only be fertilized at the site of polar body formation. *Developmental biology*, 94, 142-152.
- FULLARTON, J. 1890. On the development of the common scallop (Pecten opercularis, L.). *Rep. Fish. Bd. Scot*, 8, 290-299.
- GALLARDO, C. 1977. *Crepidula philippiana* n. sp., nuevo gastrópodo Calyptraeidae de Chile con especial referencia al patrón de desarrollo. *Studies on Neotropical Fauna and Environment*, 12, 177-185.
- GALLEY, E. A., TYLER, P. A., CLARKE, A. & SMITH, C. R. 2005. Reproductive biology and biochemical composition of the brooding echinoid *Amphipneustes lorioli* on the Antarctic continental shelf. *Marine Biology*, 148, 59-71.
- GAMBLE, F. W. 1893. Memoirs: Contributions to a Knowledge of British Marine Turbellaria. *Quarterly Journal of Microscopical Science*, s2-34, 433-528.
- GAMMOUDI, M., NOREÑA, C., TEKAYA, S., PRANTL, V. & EGGER, B. 2012. Insemination and embryonic development of some Mediterranean polyclad flatworms. *Invertebrate reproduction & development*, 56, 272-286.
- GARDNER, C. & QUINTANA, R. 1998. Larval development of the Australian giant crab *Pseudocarcinus* gigas (Lamarck, 1818)(Decapoda: Oziidae) reared in the laboratory. *Journal of plankton* research, 20, 1169-1188.
- GASPARINI, F., MANNI, L., CIMA, F., ZANIOLO, G., BURIGHEL, P., CAICCI, F., FRANCHI, N., SCHIAVON,
 F., RIGON, F., CAMPAGNA, D. & BALLARIN, L. 2015. Sexual and asexual reproduction in the colonial ascidian *Botryllus schlosseri*. genesis, 53, 105-120.
- GENADE, A., HIRST, A. & SMIT, C. 1988. Observations on the spawning, development and rearing of the South African abalone *Haliotis midae* Linn. *South African Journal of Marine Science*, 6, 3-12.
- GENTIL, F., DAUVIN, J.-C. & MÉNARD, F. 1990. Reproductive biology of the polychaete *Owenia fusiformis* Delle Chiaje in the Bay of Seine (eastern English Channel). *Journal of Experimental Marine Biology and Ecology*, 142, 13-23.
- GEORGE, S., CELLARIO, C. & FENAUX, L. 1990. Population differences in egg quality of *Arbacia lixula* (Echinodermata: Echinoidea): proximate composition of eggs and larval development. *Journal of Experimental Marine Biology and Ecology*, 141, 107-118.
- GEORGE, S. B. 1994. The Leptasterias (Echinodermata: Asteroidea) species complex: variation in reproductive investment. *Marine Ecology-Progress Series*, 109, 95.
- GEORGE, S. B. 1999. Egg quality, larval growth and phenotypic plasticity in a forcipulate seastar. *Journal of Experimental Marine Biology and Ecology*, 237, 203-224.
- GEORGE, S. B., YOUNG, C. M. & FENAUX, L. 1997. Proximate composition of eggs and larvae of the sand dollar *Encope michelini* (Agassiz): the advantage of higher investment in plankotrophic eggs. *Invertebrate Reproduction & Development*, 32, 11-19.
- GEORGIADES, E. 2012. Assessment of 50 μm as the size fraction for recapture during in-water cleaning. Appendix 1: Size of reproductive propagules. *In:* BIOSECURITY SCIENCE AND RISK DIRECTORATE, B. N. Z. (ed.).
- GERACI, S. & ROMAIRONE, V. 1986. Larval Stages and Balanus (Cim'pedia) Settlement in a Port Environment with a Key to Naupliar Stages of Tyrrhenian Species. *Marine Ecology*, 7, 151-164.

- GIANGRANDE, A., LICCIANO, M., MUSCO, L. & STABILI, L. 2010. Shift in *Sabella spallanzanii* (Polychaeta, Sabellidae) spawning period in the Central Mediterranean Sea: a consequence of climate change? *Mediterranean Marine Science*, **11**, 373-380.
- GIANGRANDE, A., LICCIANO, M., PAGLIARA, P. & GAMBI, M. 2000. Gametogenesis and larval development in *Sabella spallanzanii* (Polychaeta: Sabellidae) from the Mediterranean Sea. *Marine Biology*, 136, 847-861.
- GIANGRANDE, A. & PETRAROLI, A. 1991. Reproduction, larval development and post-larval growth of *Naineris laevigata* (Polychaeta, Orbiniidae) in the Mediterranean Sea. *Marine Biology*, 111, 129-137.
- GIBBS, P. 1984. The population cycle of the bivalve *Abra tenuis* and its mode of reproduction. *Journal of the Marine Biological Association of the United Kingdom*, 64, 791-800.
- GIGLIOLI, M. 1955. The egg masses of the Naticidae (Gastropoda). *Journal of the Fisheries Board of Canada*, 12, 287-327.
- GIL, D. G., ESCUDERO, G. & ZAIXSO, H. E. 2011. Brooding and development of *Anasterias minuta* (Asteroidea: Forcipulata) in Patagonia, Argentina. *Marine Biology*, 158, 2589-2602.
- GIL, D. G., ZAIXSO, H. E. & TOLOSANO, J. A. 2009. Brooding of the sub-Antarctic heart urchin, Abatus cavernosus (Spatangoida: Schizasteridae), in southern Patagonia. Marine biology, 156, 1647-1657.
- GILAT, E. 1962. The benthonic Amphipoda of the Mediterranean coast of Israel. II. Ecology and life history. *Bulletin of the Research Council of Israel, Haifa*, 11, 71-92.
- GIMÉNEZ, J. & PENCHASZADEH, P. E. 2010. Brooding in *Psolus patagonicus* (Echinodermata: Holothuroidea) from Argentina, SW Atlantic Ocean. *Helgoland Marine Research*, 64, 21-26.
- GIMENEZ, L. & ANGER, K. 2001. Relationships among salinity, egg size, embryonic development, and larval biomass in the estuarine crab *Chasmagnathus granulata* Dana, 1851. *Journal of Experimental Marine Biology and Ecology*, 260, 241-257.
- GIMÉNEZ, L. & ANGER, K. 2003. Larval performance in an estuarine crab, *Chasmagnathus granulata*, is a consequence of both larval and embryonic experience. *Marine Ecology Progress Series*, 249, 251-264.
- GODDARD, J. H. 2011. *Palio dubia* (Nudibranchia: Doridina) from the north-west Atlantic Ocean: is its morphology at hatching consistent with settlement one day later? *Journal of the Marine Biological Association of the United Kingdom*, 91, 1651-1654.
- GODDARD, J. H. & HERMOSILLO, A. 2008. Developmental mode in opisthobranch molluscs from the tropical eastern Pacific Ocean. *Veliger*, 50, 83.
- GORE, R. H. 1968. The larval development of the commensal crab *Polyonyx gibbesi* Haig, 1956 (Crustacea: Decapoda). *The Biological Bulletin*, 135, 111-129.
- GOSHIMA, S., ITO, K., WADA, S., SHIMIZU, M. & NAKAO, S. 1995. Reproductive biology of the stone crab *Hapalogaster dentata* (Anomura: Lithodidae). *Crustacean Research*, 24, 8-18.
- GRAVE, B. 1933. Rate of growth, age at sexual maturity, and duration of life of certain sessile organisms, at Woods Hole, Massachusetts. *The Biological Bulletin*, 65, 375-386.
- GREGORY, C. & VEEMAN, M. 2013. 3D-Printed Microwell Arrays for Ciona Microinjection and Timelapse Imaging. *Plos One*, **8**, 6.
- GREMIGNI, V. & NIGRO, M. 1984. Ultrastructural study of oogenesis in *Monocelis lineata* (Turbellaria, Proseriata). *International journal of invertebrate reproduction and development*, 7, 105-118.

- GROEPLER, W. 2002. Ovulation in *Diplosoma* (Tunicata, Ascidiacea, Didemnidae): A light microscopical study. *Helgoland Marine Research*, 55, 102-111.
- GRUFFYDD, L. D. & BEAUMONT, A. 1972. A method for rearing *Pecten maximus* larvae in the laboratory. *Marine Biology*, 15, 350-355.
- GUILLOU, M. & HILY, C. 1983. Dynamics and biological cycle of a *Melinna palmata* (Ampharetidae) population during the recolonisation of a dredged area in the vicinity of the harbour of Brest (France). *Marine Biology*, 73, 43-50.
- GUZMÁN, L. & CAMPODÓNICO, I. Fecundidad de la centolla Lithodes Antárctica Jacquinot (Crustácea Decapoda, Anomura: Lithodidae). Anales del Instituto de la Patagonia, 1972.
- HADDON, M. 1994. Size-fecundity relationships, mating behaviour, and larval release in the New Zealand paddle crab, *Ovalipes catharus* (White 1843)(Brachyura: Portunidae). *New Zealand Journal of Marine and Freshwater Research*, 28, 329-334.
- HADDY, J., ROY, D. & COURTNEY, A. 2003. The fishery and reproductive biology of barking crayfish, *Linuparus trigonus* (Von Siebold, 1824) along Queenslands East Coast. *Crustaceana*, 1189-1200.
- HAMATANI, I. 1960. Notes on veligers of Japanese opisthobranchs (2). *Publications of the Seto marine biological laboratory*, 9, 307-315.
- HAMATANI, I. 1963. Notes on veligers of Japanese opisthobranchs (6). *Publications of the Seto Marine Biological Laboratory*, 125-130.
- HAMATANI, I. 1967. Notes on veligers of Japanese opisthobranchs (7). *Publications of the Seto Marine Biological Laboratory*, 121-131.
- HAMMERSCHMIDT, K., PEMBERTON, A. J., MICHIELS, N. K. & BISHOP, J. D. D. 2011. Differential maternal allocation following mixed insemination contributes to variation in oocyte size in a sea squirt. *Marine Ecology Progress Series*, 422, 123-128.
- HANNERZ, D. G. L. 1956. Larval Development of the Polychaete Families Spionidae Sars, Disomidae Mesnil, and Poecilochetidae N. Fam. in the Gullmar Fjord, Sweden. (Reprinted from Zoologiska Bidrag Från Uppsala.)[A Thesis.].
- HARDING, J. M., UNGER, M. A., MANN, R., JESTEL, E. A. & KILDUFF, C. 2013. *Rapana venosa* as an indicator species for TBT exposure over decadal and seasonal scales. *Marine biology*, 160, 3027-3042.
- HARRIGAN, J. F. & ALKON, D. L. 1978. Larval rearing, metamorphosis, growth and reproduction of the eolid nudibranch *Hermissenda crassicornis* (Eschscholtz, 1831)(Gastropoda: Opisthobranchia). *The Biological Bulletin*, 154, 430-439.
- HARRISON, A. & GRANT, J. 1971. Progress in abalone research. Tasmanian Fish. Res, 5, 1-10.
- HART, M. W. 1995. What are the Costs of Small Egg Size for a Marine Invertebrate with Feeding Planktonic Larvae? *The American Naturalist*, 146, 415-426.
- HART, M. W. 1996. Evolutionary loss of larval feeding: development, form and function in a facultatively feeding larva, Brisaster latifrons. *Evolution*, 50, 174-187.
- HARTMAN, O. 1944. Polychaete annelids, Pt. 5: Eunicea. Allan Hancock Paci-fic Exped, 10, 1-238.
- HARTNOLL, R. & PAUL, R. 1982. The embryonic development of attached and isolated eggs of *Carcinus maenas. International Journal of Invertebrate Reproduction*, 5, 247-252.
- HARTNOLL, R. G. 1985. Growth, Sexual Maturity and Reproductive Output. *Crustacean issues 3.* Routledge.

HARVEY, E. B. 1956. The American Arbacia and other sea urchins, Princeton University Press.

- HATFIELD, P. A. 1965. Polydora commensalis Andrews—larval development and observations on adults. *The Biological Bulletin,* 128, 356-368.
- HAUENSCHILD, C. 1951. Nachweis der sogenannten atoken Geschlechtsform des Polychaeten Platynereis dumerilii Aud. et M. Edw. als eigene Art auf Grund von Zuchtversuchen. Nachdruck verboten. Ubersetzungsr. Vor, 107-128.
- HAVEN, N. D. 1971. Temporal patterns of sexual and asexual reproduction in the colonial ascidian *Metandrocarpa taylori* Huntsman. *The Biological Bulletin*, 140, 400-415.
- HAVENHAND, J. N., MATSUMOTO, G. I. & SEIDEL, E. 2006. *Megalodicopia hians* in the Monterey submarine canyon: Distribution, larval development, and culture. *Deep-Sea Research Part I: Oceanographic Research Papers*, 53, 215-222.
- HE, J., QI, J. F., FENG, D. Q. & KE, C. H. 2016. Embryonic and larval development of the invasive biofouler *Mytilopsis sallei* (Recluz, 1849) (Bivalvia: Dreissenidae). *Journal of Molluscan Studies*, 82, 23-30.
- HELLER, S. P. 1968. Some aspects of the biology and development of Ampithoe lacertosa (Crustacea: Amphipoda). University of Washington.
- HENDERSON, J. 1924. The gribble: a study of the distribution factors and life-history of *Limnoria Lignorum* at St. Andrews, NB. *Contributions to Canadian Biology, New Series,* 2, 309-325.
- HENDLER, G. & FRANZ, D. R. 1971. Population dynamics and life history of *Crepidula convexa* Say (Gastropoda: Prosobranchia) in Delaware Bay. *The Biological Bulletin*, 141, 514-526.
- HENRY, E. C. & COLE, K. M. 1982. Ultrastructure of swarmers in the Laminariales (Phaeophyceae). ii. sperm 1. *Journal of Phycology*, 18, 570-579.
- HENRY, J.-P. 1976. Recherches sur les Asellidae hypogés de la lignée cavaticus: Crustacea, Isopoda, Asellota.
- HERRERA, J. C., MCWEENEY, S. K. & MCEDWARD, L. R. 1996. Diversity of energetic strategies among echinoid larvae and the transition from feeding to nonfeeding development. *Oceanologica Acta*, 19, 313-321.
- HERRERO-PÉREZRUL, M., BONILLA, H. R., GARCÍA-DOMÍNGUEZ, F. & CINTRA-BUENROSTRO, C. 1999. Reproduction and growth of *Isostichopus fuscus* (Echinodermata: Holothuroidea) in the southern Gulf of California, Mexico. *Marine Biology*, 135, 521-532.
- HERRING, P. J. 1974. Size, density and lipid content of some decapod eggs. *Deep Sea Research and Oceanographic Abstracts*, 21, 91-94.
- HESSLER, R. R., INGRAM, C. L., YAYANOS, A. A. & BURNETT, B. R. 1978. Scavenging amphipods from the floor of the Philippine Trench. *Deep Sea Research*, 25, 1029-1047.
- HEWITT, C., CAMPBELL, M., COUTTS, A., DAHLSTROM, A., SHIELDS, S. & VALENTINE, J. 2011. Species biofouling risk assessment. Report produced for the Australian Department of Agriculture, Fisheries and Forestry, Canberra.
- HILBIG, B. & BLAKE, J. A. 1991. Dorvilleidae (Annelida: Polychaeta) from the US Atlantic slope and rise. Description of two new genera and 14 new species, with a generic revision of Ophryotrocha. *Zoologica Scripta*, 20, 147-183.
- HILL, J., FOWLER, D. L. & VAN DEN AVYLE, M. J. 1989. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Mid-Atlantic). Blue Crab. Georgia Cooperative Fishery and Wildlife Research Unit Athens.

- HIRAMOTO, K. & SATO, S. 1970. Biological and fisheries survey on an anomuran crab, *Lithodes* aequispina Benedict, off Boso Peninsula and Sagami Bay, central Japan. Japanese Journal of Ecology (Nihon Seitai Gakkai), 20, 165-170.
- HOAGLAND, K., KE, H. & WR, C. 1982. Larval development in *Crepidula maculosa* (Prosobranchia: Crepidulidae) from Florida.
- HOAGLAND, K. E. 1986. Patterns of encapsulation and brooding in the Calyptraeidae (Prosobranchia, Mesogastropoda). *American Malacological Bulletin,* **4**, 173-183.
- HØEG, J. T., LAGERSSON, N. C. & GLENNER, H. 2003. The complete cypris larva and its significance in the costracan phylogeny. *Evolutionary and developmental biology of Crustacea (G. Scholtz, ed.).* AA Balkema, Lisse, Netherlands, 197-215.
- HOEK, C. 1978. Algen: Einführung in die Phykologie, Georg Thieme Verlag.
- HOLDICH, D. 1968. Reproduction, growth and bionomics of *Dynamene bidentata* (Crustacea: Isopoda). *Journal of Zoology*, 156, 137-153.
- HONKOOP, P. & VAN DER MEER, J. 1997. Reproductive output of *Macoma balthica* populations in relation to winter-temperature and intertidal-height mediated changes of body mass. *Marine Ecology Progress Series*, 149, 155-162.
- HONKOOP, P. & VAN DER MEER, J. 1998. Experimentally induced effects of water temperature and immersion time on reproductive output of bivalves in the Wadden Sea. *Journal of Experimental Marine Biology and Ecology*, 220, 227-246.
- HONKOOP, P., VAN DER MEER, J., BEUKEMA, J. & KWAST, D. 1999. Reproductive investment in the intertidal bivalve *Macoma balthica*. *Journal of Sea Research*, 41, 203-212.
- HSUEH, P.-W. 2018. A new species of Neorhynchoplax (Crustacea: Decapoda: Brachyura: Hymenosomatidae) from Taiwan. *Zootaxa*, 4461, 350-358.
- HUANG, Y., KE, C., FENG, D., ZHOU, S. & LI, F. 2003. Observations on the morphology of embryonic and larval development in *Styela canopus* Savigny. *Acta Oceanologica Sinica*, 22, 621-628.
- HUCHETTE, S., SOULARD, J., KOH, C. & DAY, R. 2004. Maternal variability in the blacklip abalone, *Haliotis rubra* leach (Mollusca: Gastropoda): effect of egg size on fertilisation success. *Aquaculture*, 231, 181-195.
- HUGHES, J. 1982. Life history of the sandy-beach amphipod *Dogielinotus loquax* (Crustacea: Dogielinotidae) from the outer coast of Washington, USA. *Marine Biology*, 71, 167-175.
- HUGHES, R. N. 2002. Reproductive biology of invertebrates. Vol. XI. Progress in asexual reproduction. Chichester: John Wiley & Sons, Ltd.
- HUTCHINGS, P. 1973. Gametogenesis in a Northumberland population of the polychaete *Melinna cristata*. *Marine Biology*, 18, 199-211.
- HYNES, H. 1954. The ecology of *Gammarus duebeni* Lilljeborg and its occurrence in fresh water in western Britain. *The Journal of Animal Ecology*, 38-84.
- HYNES, H. 1955. The reproductive cycle of some British freshwater Gammaridae. *The Journal of Animal Ecology*, 352-387.
- ICHIKAWA, T., HAMASAKI, K. & HAMADA, K. 2004. Egg size and relationship between seawater temperature and egg incubation period of the red frog crab *Ranina ranina* (Decapoda : Raninidae) reared in the laboratory. *Nippon Suisan Gakkaishi*, 70, 343-347.
- IKEDA, T. 1995. Distribution, growth and life cycle of the mesopelagic amphipod *Primno abyssalis* (Hyperiidea: Phrosinidae) in the southern Japan Sea. *Marine biology*, 123, 789-798.
- INGRAM, C. L. & HESSLER, R. R. 1987. Population biology of the deep-sea amphipod *Eurythenes gryllus*: inferences from instar analyses. *Deep Sea Research Part A. Oceanographic Research Papers*, 34, 1889-1910.
- INO, T. 1952. Biological study on the propagation of Japanese abalone (genus Haliotis). *Bull Tokai Reg Fish Res Lab,* 5, 1-102.
- IVANOV, A. Biology of some Black Sea amphipods. Dokl. Akad. Nauk SSSR, 1961. 728-729.
- JACOBS, J. R., BIESIOT, P. M., PERRY, H. M. & TRIGG, C. 2003. Biochemical composition of embryonic blue crabs *Callinectes sapidus* Rathbun 1896 (Crustacea: Decapoda) from the Gulf of Mexico. *Bulletin of marine science*, 72, 311-324.
- JANTZEN, T. M., DE NYS, R. & HAVENHAND, J. N. 2001. Fertilization success and the effects of sperm chemoattractants on effective egg size in marine invertebrates. *Marine Biology*, 138, 1153-1161.
- JEFFERY, W. R. & SWALLA, B. J. 1992. Evolution of alternate modes of development in Ascidians. *Bioessays*, 14, 219-226.
- JENNINGS, K. & NEWMAN, L. 1996. Four new stylochid flatworms (Platyhelminthes: Polycladida) associated with commercial oysters from Moreton Bay, southeast Queensland, Australia. *Raffles Bulletin of Zoology*, 44, 493-508.
- JENSEN, J. P. 1956. Biological Observations on the Isopod Sphaeoroma Hookeri Leach, Bianco Luno.
- JENSEN, K. 1990. Three new species of *Ascoglossa* (Mollusca, Opisthobranchia) from Hong Kong, and a description of the internal anatomy of *Costasiella pallida* Jensen, 1985. pp. 419-432 in Morton, B.(ed.) Proceedings of the 2nd International Marine Biological Workshop: The Marine Flora and Fauna of Hong Kong and Southern China, Hong Kong, 1986. Vol. 1. Introduction and taxonomy. Hong Kong University Press: Hong Kong. 0.
- JENSEN, K. R. Sacoglossa (Mollusca, opisthobranchia) from Rottnest Island and Central Western Australia. Proceedings of the Fifth Intern. Marine Biological Workshop, 1993. Western Australian Museum, 207-253.
- JENSEN, K. R. 2001. Review of reproduction in the Sacoglossa (Mollusca, Opisthobranchia). *Bollettino Malacologico*, 81-98.
- JENSEN, K. R. & ONG, R. S. 2015. Spawning observed in a specimen of the shelled sacoglossan Lobiger viridis Pease, 1863 from Singapore (Mollusca: Gastropoda: Heterobranchia). Raffles Bulletin of Zoology, 250-254.
- JENSEN, L. A. & HECKMANN, R. A. 1977. *Anantrum histocephalum* Sp N (Cestoda Bothriocephalidae) from Synodus Lucioceps (Synodontidae) of southern California. *Journal of Parasitology*, 63, 471-472.
- JEWETT, S., SLOAN, N. & SOMERTON, D. 1985. Size at sexual maturity and fecundity of the fjorddwelling golden king crab *Lithodes aequispina* Benedict from northern British Columbia. *Journal of Crustacean Biology*, **5**, 377-385.
- JOHNSON, S. & BOUCHER, L. M. 1983. Notes on some Opisthobranchia (Mollusca: Gastropoda) from the Marshall Islands, including 57 new records. *Pacific Science*, 37, 251-291.
- JONES, D. 1970. Population densities and breeding in *Eurydice pulchra* and *Eurydice affinis* in Britain. Journal of the Marine Biological Association of the United Kingdom, 50, 635-655.
- JONES, L. & CRISP, D. The larval stages of the barnacle *Balanus improvisus* Darwin. Proceedings of the Zoological Society of London, 1954. Wiley Online Library, 765-780.

- JØRGENSEN, C. 1946. Reproduction and larval development of Danish bottom invertebrates. Lamellibranchia. *Meddelelser fra Kommisionen for Danmarks Fiskeriog Havundersogelser. Serie Plankton*, 4, 277-311.
- KAIM-MALKA, R. A. 1969. Biologie et écologie de quelques Ampelisca (Crustacea-Amphipoda) de la région de Marseille.
- KAIN, J. M. & DESTOMBE, C. 1995. A review of the life history, reproduction and phenology of Gracilaria. *Journal of applied phycology*, **7**, 269.
- KANG, D.-H., AHN, I.-Y. & CHOI, K.-S. 2003. Quantitative assessment of reproductive condition of the Antarctic clam, *Laternula elliptica* (King & Broderip), using image analysis. *Invertebrate reproduction & development*, 44, 71-78.
- KANNEWORFF, E. 1965. Life cycle, food, and growth of the amphipod *Ampelisca macrocephala* Liljeborg from the Øresund. *Ophelia*, **2**, 305-318.
- KANNEWORFF, E. 1966. On some amphipod species of the genus Haploops, with special reference to *H. tubicola* Liljeborg and *H. tenuis* sp. nov. from the Øresund. *Ophelia*, **3**, 183-207.
- KATO, K. 1940. On the development of some Japanese polyclads. Jpn J Zool, 8, 537-573.
- KECK, R. T., MAURER, D. & LIND, H. 1975. A comparative study of the hard clam gonad developmental cycle. *The Biological Bulletin*, 148, 243-258.
- KEESING, J. K., GRAHAM, F., IRVINE, T. R. & CROSSING, R. 2011. Synchronous aggregated pseudocopulation of the sea star *Archaster angulatus* Müller & Troschel, 1842 (Echinodermata: Asteroidea) and its reproductive cycle in south-western Australia. *Marine biology*, 158, 1163-1173.
- KENT, G. N., MAGUIRE, G. B., JOHN, M., CROPP, M. & FRANKISH, K. 1998. Broodstock conditioning, spawning induction, and larval rearing of the stepped venerid, *Katelysia scalarina* (Lamark 1818). *Journal of Shellfish Research*, 17, 1065-1070.
- KINNE, O. 1954. Eidonomie, Anatomie und Lebenszyklus von *Sphaeroma hookeri* Leach (Isopoda). *Kieler Meeresforsch*, 10, 100-120.
- KITTLEIN, M. J. 1991. Population biology of *Sphaeroma serratum* Fabricius (Isopoda, Flabellifera) at the port of Mar del Plata, Argentina. *Journal of Natural History*, 25, 1449-1459.
- KJENNERUD, J. 1950. Ecological observations on *Idothea neglecta* GO Sars. *Universitetet i Bergen* Arbok Naturvitenskapelig Rekke, 7, 1-47.
- KNUDSEN, J. 1961. The bathyal and abyssal Xylophaga (Pholadidae, Bivalvia). *Galathea Report*, 5, 163-209.
- KOLBIN, K. & KULIKOVA, V. 2008. Larval development of the gastropod *Epheria turrita* (Gastropoda: Littorinidae). *Russian Journal of Marine Biology*, 34, 333-335.
- KOLDING, S. & FENCHEL, T. M. 1981. Patterns of reproduction in different populations of five species of the amphipod genus Gammarus. *Oikos*, 167-172.
- KOMINAMI, T. & TAKATA, H. 2003. Timing of early developmental events in embryos of a tropical sea urchin *Echinometra mathaei*. *Zoological Science*, 20, 617-626.
- KOSTADINOVA, A., GIBSON, D. I., BALBUENA, J. A., POWER, A. M., MONTERO, F. E., AYDOGDU, A. & RAGA, J. A. 2004. Redescriptions of *Aphanurus stossichii* (Monticelli, 1891) and A. virgula Looss, 1907 (Digenea: Hemiuridae). *Systematic Parasitology*, 58, 175-184.

- KOZÁK, P., BUŘIČ, M. & POLICAR, T. 2006. The fecundity, time of egg development and juvenile production in spiny-cheek crayfish (*Orconectes limosus*) under controlled conditions. *Bulletin Français de la Pêche et de la Pisciculture*, 1171-1182.
- KRAEUTER, J. N. & CASTAGNA, M. 2001. Biology of the hard clam, Elsevier.
- KRAJANGDARA, T. & WATANABE, S. 2005. Growth and reproduction of the red frog crab, *Ranina ranina* (Linnaeus, 1758), in the Andaman Sea off Thailand. *Fisheries Science*, 71, 20.
- KRISHNAN, G. 1936. The development of *Diopatra variabilis* (Southern). *Zeitschrift fur wissenschaftliche Zoologie*, 147, 513-525.
- KRISTENSEN, R. M. & NØRREVANG, A. 1982. Description of *Psammodrilus aedificator* sp.
 n.(Polychaeta), with notes on the Arctic interstitial fauna of Disko Island, W. Greenland.
 Zoologica Scripta, 11, 265-279.
- KÜHNE, H. & BECKER, G. 1964. Der Holz-Flohkrebs Chelura terebrans Philippi; Amphipoda, Cheluridae: Morphologie, Verbreitung, Lebensweise, Verhalten, Entwicklung u. Umweltabhängigkeit, Duncker & Humblot.
- KULIKOVA, V. A., KOLBIN, K. G. & KOLOTUKHINA, N. K. 2007. Reproduction and larval development of the gastropod *Cryptonatica janthostoma* (Gastropoda: Naticidae). *Russian Journal of Marine Biology*, 33, 324-328.
- KUPRIYANOVA, E. K. 2006. Fertilization success in *Galeolaria caespitosa* (Polychaeta: Serpillidae): gamete characteristics, role of sperm dilution, gamete age, and contact time. *Scientia Marina*, 70, 309-317.
- KUPRIYANOVA, E. K. & NISHI, E. 2001. Life-history patterns in serpulimorph polychaetes: ecological and evolutionary perspectives.
- KUZNETSOV, V. 1964. Biologiya massovkyh i naibolee obtginykh vidov vakoobraznykh Barentseva i Belogo Morei. Akad. Nauk SSSR. Moscow, Russia.[In Russian.].
- LAFRANCE, K. & RUBER, E. 1985. The life cycle and productivity of the amphipod *Gammarus mucronatus* on a northern Massachusetts salt marsh. *Limnology and Oceanography*, 30, 1067-1077.
- LAHBIB, Y., ABIDLI, S. & EL MENIF, N. T. 2011. Spawning and intracapsular development of *Stramonita haemastoma haemastoma* (Gastropoda: Muricidae) collected in northern Tunisia. *Marine Biology Research*, **7**, **7**19-726.
- LAMARCHE, G. & BRUNEL, P. 1987. Cycle de développement, écologie et succès d'*Hippomedon* propinquus (Amphipoda, Gammaridea) dans deux écosystèmes du golfe du Saint-Laurent. Canadian journal of zoology, 65, 3116-3132.
- LANDSCHOFF, J. & GRIFFITHS, C. L. 2015. Brooding behavior in the shallow-water brittle star Ophioderma wahlbergii. *Invertebrate biology*, 134, 168-179.
- LANG, W. H. 1976. The larval development and metamorphosis of the pedunculate barnacle *Octolasmis mulleri* (Coker, 1902) reared in the laboratory. *The Biological Bulletin*, 150, 255-267.
- LAWRENCE, A. & POULTER, C. 2001. Impact of copper, pentachlorophenol and benzo a pyrene on the swimming efficiency and embryogenesis of the amphipod *Chaetogammarus marinus*. *Marine Ecology Progress Series*, 223, 213-223.
- LAWRENCE, J. M., MCCLINTOCK, J. B. & GUILLE, A. 1984. Organic level and caloric content of eggs of brooding asteroids and an echinoid (Echinodermata) from Kerguelen (South Indian Ocean). *International journal of invertebrate reproduction and development*, **7**, 249-257.

- LEE, A. L., DAFFORN, K. A., HUTCHINGS, P. A. & JOHNSTON, E. L. 2018. Reproductive strategy and gamete development of an invasive fanworm, *Sabella spallanzanii* (Polychaeta: Sabellidae), a field study in Gulf St Vincent, South Australia. *PloS one*, **13**, e0200027.
- LEGUEUX, M. 1926. Etude de la ponte chez un amphipode (*Melita pellucida* GO Sars). Variation du nombre et de la taille des oeufs. *Bull. biol. Fr. Belg,* 60, 334-342.
- LEHNERT, K., POULIN, R. & PRESSWELL, B. 2019. Checklist of marine mammal parasites in New Zealand and Australian waters. *Journal of Helminthology*, 93, 649-676.
- LEMAIRE, P., SMITH, W. C. & NISHIDA, H. 2008. Ascidians and the plasticity of the chordate developmental program. *Current Biology*, 18, R620-R631.
- LESSIOS, H. 1990. Adaptation and phylogeny as determinants of egg size in echinoderms from the two sides of the Isthmus of Panama. *The American Naturalist*, 135, 1-13.
- LEVIN, L. A. 1984. Life history and dispersal patterns in a dense infaunal polychaete assemblage: community structure and response to disturbance. *Ecology*, 65, 1185-1200.
- LI, L. 2000. A new species of Dynoides (Crustacea: Isopoda: Sphaeromatidae) from the Cape d'Aguilar Marine Reserve, Hong Kong. *Records Australian Museum*, 52, 137-150.
- LIMA, F. A., MARTINELLI-LEMOS, J. M., SILVA, K. C., KLAUTAU, A. G. & CINTRA, I. H. 2018. Population structure and fecundity of *Scyllarides delfosi* Holthuis, 1960 (Scyllaridae) on the Amazon continental shelf. *Crustaceana*, 91, 1027-1037.
- LINDNER, A. & MIGOTTO, A. E. 2002. The life cycle of *Clytia linearis* and *Clytia noliformis*: metagenic campanulariids (Cnidaria: Hydrozoa) with contrasting polyp and medusa stages. *Journal of the Marine Biological Association of the United Kingdom*, 82, 541-553.
- LINDQUIST, N., HAY, M. E. & FENICAL, W. 1992. Defense of ascidians and their conspicuous larvae: adult vs. larval chemical defenses. *Ecological Monographs*, 62, 547-568.
- LLODRA, E. R., TYLER, P. A. & COPLEY, J. T. 2000. Reproductive biology of three caridean shrimp, *Rimicaris exoculata, Chorocaris chacei* and *Mirocaris fortunata* (Caridea: Decapoda), from hydrothermal vents. *Journal of the Marine Biological Association of the United Kingdom*, 80, 473-484.
- LOMBARDI, C., COCITO, S., OCCHIPINTI-AMBROGI, A. & HISCOCK, K. 2006. The influence of seawater temperature on zooid size and growth rate in *Pentapora fascialis* (Bryozoa: Cheilostomata). *Marine Biology*, 149, 1103-1109.
- LOOSANOFF, V. L. 1953. Reproductive cycle in *Cyprina islandica*. *The Biological Bulletin*, 104, 146-155.
- LOOSANOFF, V. L. & DAVIS, H. C. 1963. Rearing of Bivalve Mollusks. *In:* RUSSELL, F. S. (ed.) *Advances in Marine Biology.* Academic Press.
- LOOSANOFF, V. L. & ENGLE, J. B. 1941. Little known enemies of young oysters. Science, 93, 328.
- LOVÉN, S. L. 1850. Bidrag till kännedomen om utvecklingen af Mollusca acephala, Lamellibranchiata, Norstedt.
- LOVRICH, G. 1993. Reproductive biology of the false southern king crab (*Paralomis granulosa*, Lithodidae) in the Beagle Channel, Argentina. *Fishery Bulletin*, 91, 664-675.
- LOVRICH, G. A. & VINUESA, J. H. 1999. Reproductive potential of the lithodids *Lithodes santolla* and *Paralomis granulosa* (Anomura, Decapoda) in the Beagle Channel, Argentina. *Scientia Marina*, 63, 355-360.

- LUCAS, J. S. 1980. Spider crabs of the family Hymenosomatidae (Crustacea: Brachyura) with particular reference to Australian species. Systematics and biology.
- LUXMOORE, R. 1982. The reproductive biology of some serolid isopods from the Antarctic. *Polar Biology*, 1, 3-11.
- LYNCH, W. F. 1947. The behavior and metamorphosis of the larva of *Bugula neritina* (Linnaeus): experimental modification of the length of the free-swimming period and the responses of the larvae to light and gravity. *The Biological Bulletin*, 92, 115-150.
- LYTWYN, M. & MCDERMOTT, J. 1976. Incidence, reproduction and feeding of *Stylochus zebra*, a polyclad turbellarian symbiont of hermit crabs. *Marine Biology*, 38, 365-372.
- MACDONALD, J., PIKE, R. & WILLIAMSON, D. Larvae of the British species of *Diogenes, Pagurus, Anapagurus and Lithodes* (Crustacea, Decapoda). Proceedings of the Zoological Society of London, 1957. Wiley Online Library, 209-258.
- MACGINITIE, G. E. 1955. Distribution of ecology of the marine invertebrates of Point Barrow, Alaska. *Smithsonian Miscellaneous Collections*.
- MACRAILD, G. & WOMERSLEY, H. 1974. The morphology and reproduction of *Derbesia clavaeformis* (J. Agardh) de Toni (Chlorophyta). *Phycologia*, 13, 83-93.
- MADRONES-LADJA, J. A. 1997. Notes on the induced spawning, embryonic and larval development of the window-pane shell, *Placuna placenta* (Linnaeus, 1758), in the laboratory. *Aquaculture*, 157, 137-146.
- MANJÓN-CABEZA, M. & RASO, J. G. 2000. Reproductive aspects of females of the hermit crab Diogenes pugilator (Crustacea: Decapoda: Anomura) from southern Spain. Journal of the Marine Biological Association of the United Kingdom, 80, 85-93.
- MANNI, L., ZANIOLO, G. & BURIGHEL, P. 1994. An unusual membrane system in the oocyte of the ascidian *Botryllus schlosseri*. *Tissue and Cell*, 26, 403-412.
- MANNI, L., ZANIOLO, G. & BURIGHEL, P. 1995. Oogenesis and oocyte envelope differentiation in the viviparous ascidian *Botrylloides violaceus*. *Invertebrate reproduction & development*, 27, 167-180.
- MANRÍQUEZ, P. H. & CASTILLA, J. C. 2010. Fertilization efficiency and gamete viability in the ascidian *Pyura praeputialis* in Chile. *Marine Ecology Progress Series*, 409, 107-119.
- MANSHIP, B. M., WALKER, A. J. & DAVIES, A. J. 2011. Brooding and embryonic development in the crustacean *Paragnathia formica* (Hesse, 1864)(Peracarida: Isopoda: Gnathiidae). *Arthropod structure & development*, 40, 135-145.
- MARKS, J. A. 1996. Three sibling species of didemnid ascidians from northern Norway: *Didemnum albidum* (Verrill, 1871), *Didemnum polare* (Hartmeyer, 1903), and *Didemnum romssae* sp. nov. *Canadian journal of zoology*, 74, 357-379.
- MARSDEN, J. R. 1992. Reproductive isolation in two forms of the serpulid polychaete, *Spirobranchus polycerus* (Schmarda) in Barbados. *Bulletin of marine science*, 51, 14-18.
- MARSHALL, D. J. & BOLTON, T. F. 2007. Effects of size on the development time of non-feeding larvae. *Biological Bulletin*, 212, 6-11.
- MARSHALL, D. J. & KEOUGH, M. J. 2003a. Sources of variation in larval quality for free-spawning marine invertebrates: Egg size and the local sperm environment. *Invertebrate Reproduction and Development*, 44, 63-70.

- MARSHALL, D. J. & KEOUGH, M. J. 2003b. Variation in the dispersal potential of non-feeding invertebrate larvae: the desperate larva hypothesis and larval size. *Marine Ecology Progress Series*, 255, 145-153.
- MARSHALL, D. J., STYAN, C. A. & KEOUGH, M. J. 2002. Sperm environment affects offspring quality in broadcast spawning marine invertebrates. *Ecology Letters*, 5, 173-176.
- MARTÍNEZ, G. & DEFEO, O. 2006. Reproductive biology of the isopod *Excirolana braziliensis* at the southern edge of its geographical range. *Helgoland Marine Research*, 60, 273.
- MARUKAWA, H. 1933. Biological and fishery research on Japanese king-crab Paralithodes camtschatica (Tilesius). Journal of the Imperial Fisheries Experimental Station Tokyo, 4.
- MARYLÈNE GAUDRON, S., DEMOYENCOURT, E. & DUPERRON, S. 2012. Reproductive traits of the cold-seep symbiotic mussel *Idas modiolaeformis*: gametogenesis and larval biology. *The Biological Bulletin*, 222, 6-16.
- MATHISEN, O. 1953. Some investigations of the relict crustaceans in Norway with special reference to *Pontoporeia affinis* Lindström and *Pallasea quadrispinosa* GO Sars. *Nytt magasin for zoologi*, 1, 49-86.
- MATSON, P., YU, P., SEWELL, M. & HOFMANN, G. 2012. Development Under Elevated pCO2 Conditions Does Not Affect Lipid Utilization and Protein Content in Early Life-History Stages of the Purple Sea Urchin, *Strongylocentrotus purpuratus*. *The Biological Bulletin*, 223, 312-327.
- MATTHEWS, S. L. 2008. Maternal care, male-male aggression, and the use of a specialized appendage in the caprellid amphipod, Caprella mutica. University of Oregon.
- MAZUR, J. E. & MILLER, J. W. 1971. A description of the complete metamorphosis of the sea urchin *Lytechinus variegatus* cultured in synthetic sea water.
- MAZURKIEWICZ, M. 1975. Larval development and habits of *Laeonereis culveri* (Webster)(Polychaeta: Nereidae). *The Biological Bulletin*, 149, 186-204.
- MCCARTHY, D. A., YOUNG, C. M. & EMSON, R. H. 2003. Influence of wave-induced disturbance on seasonal spawning patterns in the sabellariid polychaete Phragmatonoma lapidosa. *Marine Ecology Progress Series*, 256, 123-133.
- MCCLARY, D. & NELLIGAN, R. 2001. Alternate biosecurity management tools for vector threats: technical guidelines for acceptable hull cleaning facilities. *Kingett Mitchell & Associates, Report Prepared for the New Zealand Ministry of Fisheries (Project ZBS2000/03).*
- MCCLARY, D. J., PHIPPS, C. & HINNI, S. 2008. *Reproductive behaviour of the Clubbed Tunicate, Styela clava, in northern New Zealand waters*, Ministry of Agriculture and Forestry.
- MCCURDY, D. G. 2001. Asexual Reproduction in *Pygospio elegans* Claparède (Annelida, Polychaeta) in Relation to Parasitism by *Lepocreadium setiferoides* (Miller and Northup) (Platyhelminthes, Trematoda). *Biological Bulletin*, 201, 45-51.
- MCDONALD, J. 1982. *Eurypanopeus depressus* (Crustacea: Brachyura: Xanthidae). *Mar. Ecol. Prog. Ser*, 8, 173-180.
- MCEDWARD, L. R. 1986. Comparative morphometrics of echinoderm larvae. I. Some relationships between egg size and initial larval form in echinoids. *Journal of Experimental Marine Biology and Ecology*, 96, 251-265.
- MCEDWARD, L. R. & CARSON, S. F. 1987. Variation in egg organic content and its relationship with egg size in the starfish *Solaster stimpsoni*. *Mar. Ecol. Prog. Ser*, 37, 159-169.

- MCEDWARD, L. R. & HERRERA, J. C. 1999. Body form and skeletal morphometrics during larval development of the sea urchin *Lytechinus variegatus* Lamarck. *Journal of Experimental Marine Biology and Ecology*, 232, 151-176.
- MCEDWARD, L. R. & MINER, B. G. 2006. Estimation and interpretation of egg provisioning in marine invertebrates. *Integrative and comparative biology*, 46, 224-232.
- MCEDWARD, L. R. & MORGAN, K. H. 2001. Interspecific relationships between egg size and the level of parental investment per offspring in echinoderms. *The Biological Bulletin*, 200, 33-50.
- MCEUEN, F., WU, B. & CHIA, F. 1983. Reproduction and development of *Sabella media*, a sabellid polychaete with extratubular brooding. *Marine Biology*, 76, 301-309.
- MCHUGH, D. 1989. Population structure and reproductive biology of two sympatric hydrothermal vent polychaetes, *Paralvinella pandorae* and *P. palmiformis*. *Marine Biology*, 103, 95-106.
- MCHUGH, D. & FONG, P. P. 2002. Do life history traits account for diversity of polychaete annelids? *Invertebrate Biology*, 121, 325-338.
- MCHUGH, D. & TUNNICLIFFEL, V. 1994. Ecology and reproductive biology of the hydrothermal vent polychaete *Amphisamytha galapagensis* (Ampharetidae). *Marine Ecology Progress Series*, 106, 111-120.
- MEDEIROS, T. B. & WEBER, L. I. 2016. Aspects of the reproductive biology of the freshwater/brackish amphipod *Quadrivisio lutzi* (Crustacea, Amphipoda) from an unstable coastal lagoon of southeastern Brazil. *Nauplius*, 24.
- MEIJER, L. 1979. Hormonal control of oocyte maturation in *Arenicola marina* L.(Annelida, Polychaeta) I. Morphological study of oocyte maturation. *Development, Growth & Differentiation*, 21, 303-314.
- MEINESZ, A. 1980. Connaissances actuelles et contribution à l'étude de la reproduction et du cycle des Udotéacées (Caulerpales, Chlorophytes). *Phycologia*, 19, 110-138.
- MERCER, S. C., GIBSON, G. D. & DADSWELL, M. J. 2007. Life history of the marine isopod *Cyathura polita* in the Saint John River Estuary, New Brunswick: a species at the northern extent of its range. *The Canadian field-naturalist*, 121, 168-177.
- METAXAS, A., SCHEIBLING, R. E., ROBINSON, M. C. & YOUNG, C. M. 2008. Larval development, settlement, and early post-settlement behavior of the tropical sea star *Oreaster reticulatus*. *Bulletin of Marine Science*, 83, 471-480.
- MILES, C. M. 2006. Life-history consequences of artificial selection for increased egg size in Hydroides elegans (Polychaeta: Serpulidae), University of Florida.
- MILITELLI, M. I., FIRPO, C., RODRIGUES, K. A. & MACCHI, G. J. 2019. Egg production and validation of clutch fullness indices scale of southern king crab, *Lithodes santolla*, in the Central Patagonian Sector, Argentina (44°–48° S). *Fisheries Research*, 211, 40-45.
- MILLAR, R. 1951. The development and early stages of the ascidian *Pyura squamulosa* (Alder). Journal of the Marine Biological Association of the United Kingdom, 30, 27-31.
- MILLAR, R. 1954. The annual growth and reproductive cycle of the ascidian *Dendrodoa grossularia* (van Beneden). *Journal of the Marine Biological Association of the United Kingdom*, 33, 33-48.
- MILLER, K. M., BLOWER, S. M., HEDGECOCK, D. & ROUGHGARDEN, J. 1989. Comparison of larval and adult stages of *Chthamalus dalli* and *Chthamalus fissus* (Cirripedia: Thoracica). *Journal of Crustacean Biology*, 9, 242-256.

- MILLER, R. L. & KING, K. R. 1983. Sperm chemotaxis in *Oikopleura dioica* fol, 1872 (Urochordata: Larvacea). *The Biological bulletin*, 165, 419-428.
- MILLS, E. L. 1967. The biology of an Ampeliscid amphipod crustacean sibling species pair. *Journal of the Fisheries Board of Canada*, 24, 305-355.
- MINER, B. G., COWART, J. D. & MCEDWARD, L. R. 2002. Egg energetics for the facultative planktotroph *Clypeaster rosaceus* (Echinodermata: Echinoidea), revisited. *The Biological Bulletin*, 202, 97-99.
- MIRAVALLES, A. B., LEONARDI, P. I. & CÁCERES, E. J. 2012. Female gametogenesis and female gamete germination in the anisogamous green alga *Codium fragile* subsp. Novae-Zelandiae (Bryopsidophyceae, Chlorophyta). *Phycological Research*, 60, 77-85.
- MIURA, T. & KAJIHARA, T. The development of a serpulid worm, *Hydroides ezoensis* (Annelida, Polychaeta). Proceedings of the Japanese Society of Systematic Zoology, 1981. The Japanese Society of Systematic Zoology, 7-12.
- MOHRI, T. & HAMAGUCHI, Y. 1990. Quantitative analysis of the process and propagation of cortical granule breakdown in sea urchin eggs. *Cell structure and function*, 15, 309-315.
- MONTGOMERY, E. M., HAMEL, J.-F. & MERCIER, A. 2017. The deep-sea neogastropod *Buccinum* scalariforme: Reproduction, development and growth. *Deep Sea Research Part I:* Oceanographic Research Papers, 119, 24-33.
- MOORE, M. & MANAHAN, D. T. 2007. Variation among females in egg lipid content and developmental success of echinoderms from McMurdo Sound, Antarctica. *Polar Biology*, 30, 1245-1252.
- MOORE, P. 1978. Turbidity and kelp holdfast Amphipoda. I. Wales and SW England. *Journal of* experimental marine biology and ecology, 32, 53-96.
- MORAN, A. L. 2004. Egg size evolution in tropical American arcid bivalves: the comparative method and the fossil record. *Evolution*, 58, 2718-2733.
- MORGAN, A. & NEAL, L. 2012. Aspects of reproductive ecology and benthic–pelagic coupling in the sub-antarctic sea cucumber *Pseudostichopus mollis* (Theel). *Continental Shelf Research*, 43, 36-42.
- MORINO, H. 1978. Studies on the Talitridae (Amphipoda, Crustacea) in Japan-iii. Life history and breeding activity of *Orchestia Platensis* Krøyer.
- MORRIS, A. E. 2002. Early life history of the introduced seastar Asterias amurensis in the Derwent Estuary, Tasmania: the potential for ecology-based management. University of Tasmania.
- MORRISEY, D. J. 2013. In-water cleaning of vessels: biosecurity and chemical contamination risks. Ministry for Primary Industries.
- MORTENSEN, T. 1938. Contributions to the study of the development and larval forms of echinoderms. *K. Dan. Vidensk. Selsk. Biol. Skr.*, 4, 1-59.
- MORTON, B. & DINESEN, G. E. 2011. The biology and functional morphology of *Modiolarca subpicta* (Bivalvia: Mytilidae: Musculinae), epizoically symbiotic with *Ascidiella aspersa* (Urochordata: Ascidiacea), from the Kattegat, northern Jutland, Denmark. *Journal of the Marine Biological Association of the United Kingdom*, 91, 1637-1649.
- MOUTON, S., WUDARSKI, J., GRUDNIEWSKA, M. & BEREZIKOV, E. 2018. The regenerative flatworm *Macrostomum lignano*, a model organism with high experimental potential. *The International journal of developmental biology*, 62, 551.

- MUKAI, H., SAITO, Y. & WATANABE, H. 1987. Viviparous development in Botrylloides (Compound Ascidians). *Journal of Morphology*, 193, 263-276.
- MÜLLER, D. 1977. Sexual reproduction in british *Ectocarpus siliculosus* (Phaeophyta). *British Phycological Journal*, 12, 131-136.
- MUTHIAH, P., RODRIGO, J. X. & SUJA, N. 2002. Larval rearing and spat production of *Marcia opima* (Gmelin). *Aquaculture*, 211, 393-401.
- NAGAO, J. & MUNEHARA, H. 2007. Characteristics of broods fertilized with fresh or stored sperm in the helmet crab *Telmessus cheiragonus*. *Journal of Crustacean Biology*, 27, 565-569.
- NAGAO, J., MUNEHARA, H. & SHIMAZAKI, K. 1999. Embryonic Development of the Hair Crab *Erimacrus isenbeckii. Journal of Crustacean Biology*, 19, 77-83.
- NAGATA, K. 1966. Studies on marine gammaridean Amphipoda of the Seto Inland Sea. IV.
- NAIR, K. & ANGER, K. 1979. Life cycle of Corophium insidiosum (Crustacea, Amphipoda) in laboratory culture. *Helgoländer Wissenschaftliche Meeresuntersuchungen*, 32, 279-294.
- NAJMUDEEN, T. & VICTOR, A. 2004. Seed production and juvenile rearing of the tropical abalone *Haliotis varia* Linnaeus 1758. *Aquaculture*, 234, 277-292.
- NAKAJIMA, K. & TAKEUCHI, I. 2008. Rearing Method for *Caprella Mutica* (Malacostraca: Amphipoda) in an Exhibition Tank in the Port of Nagoya Public Aquarium, with Notes on Reproductive Biology. *Journal of Crustacean Biology*, 28, 171-174.
- NAYLOR, E. 1955. The life cycle of the isopod *Idotea emarginata* (Fabricius). *The Journal of Animal Ecology*, 270-281.
- NAYLOR, E. & QUÉNISSET, D. 1964. The habitat and life history of *Naesa bidentata* (Adams). *Crustaceana*, 212-216.
- NELSON, K. S., LIDDY, M. & LAMARE, M. D. 2017. Embryology, larval development, settlement and metamorphosis in the New Zealand Serpulid Polychaete *Galeolaria hystrix*. *Invertebrate Reproduction & Development*, 61, 207-217.
- NELSON, W. G. 1978. The community ecology of seagrass amphipods: predation and community structure, life histories, and biogeography. Duke University.
- NEWELL, G. 1948. A contribution to our knowledge of the life history of *Arenicola marina* L. *Journal* of the Marine Biological Association of the United Kingdom, 27, 554-580.
- NEWMAN, W. A. & ABBOTT, D. P. 1980. Cirripedia: the barnacles. *Intertidal invertebrates of California*, 504, 535.
- NGAN, Y. & PRICE, I. R. 1979. Systematic significance of spore size in the Florideophyceae (Rhodophyta). *British Phycological Journal*, 14, 285-303.
- NICOLAIDOU, A. 1983. Life history and productivity of *Pectinaria koreni* Malmgren (Polychaeta). *Estuarine, Coastal and Shelf Science,* 17, 31-43.
- NOBLITT, S. B., PAYNE, J. F. & DELONG, M. 1995. A comparative study of selected physical aspects of the eggs of the crayfish *Procambarus clarkii* (Girard, 1852) and *P. zonangulus* Hobbs & Hobbs, 1990 (Decapoda, Cambaridae). *Crustaceana*, 575-582.
- O'RIORDAN, R. M., MYERS, A. A. & CROSS, T. F. 1995. The reproductive cycles of *Chthamalus* stellatus (Poli) and *C. montagui* Southward in south-western Ireland. *Journal of Experimental Marine Biology and Ecology*, 190, 17-38.

- OKUDA, S. 1946. Studies on the development of Annelida Polychaeta I (with 17 plates and 33 textfigures). 北海道帝國大學理學部紀要= Journal of the Faculty of Seince Hokkaido Imperial University Series VI. Zoology, 9, 115-219.
- OKUDA, T. & NEUSHUL, M. 1981. Sedimentation studies of red algal spores 1. *Journal of Phycology*, 17, 113-118.
- OLIVE, P. 1970. Reproduction of a Northumberland population of the polychaete *Cirratulus cirratus*. *Marine Biology*, **5**, 259-273.
- ONODA, K. 1931. Notes on the development of *Heliocidaris crassispina* with special reference to the structure of the larval body. *Mem Coll Sci Kyoto Imp Univ (B),* 7, 103-135.
- OTTO, R. Plots of South Georgia Island crab data. CCAMLR Workshop on the Management of the Antarctic Crab Fishery. Document WS-Crab-93/94, 1993.
- PASTORINO, G. & PENCHASZADEH, P. E. 2009. Egg capsules, eggs and embryos of *Trophon* acanthodes (Gastropoda: Muricidae) and its new generic position. *Journal of Molluscan Studies*, 75, 337-341.
- PAULET, Y., LUCAS, A. & GERARD, A. 1988. Reproduction and larval development in two Pecten maximus (L.) populations from Brittany. Journal of Experimental Marine Biology and Ecology, 119, 145-156.
- PAWSON, D. L. 2002. A new species of bathyal elasipod sea cucumber from New Zealand (Echinodermata: Holothuroidea). New Zealand Journal of Marine and Freshwater Research, 36, 333-338.
- PAXTON, H. 1979. Taxonomy and aspects of the life history of Australian beachworms (Polychaeta: Onuphidae). *Marine and Freshwater Research*, 30, 265-294.
- PECHENIK, J., HILBISH, T., EYSTER, L. & MARSHALL, D. 1996. Relationship between larval and juvenile growth rates in two marine gastropods, *Crepidula plana* and *C. fornicata*. *Marine Biology*, 125, 119-127.
- PECHENIK, J. A. 1999. On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. *Marine Ecology Progress Series*, 177, 269-297.
- PENCHASZADEH, P. E., ATENCIO, M., MARTINEZ, M. I. & PASTORINO, G. 2016. Giant egg capsules and hatchlings in a deep-sea moon snail (Naticidae) from a southwestern Atlantic Canyon. *Marine biology*, 163, 209.
- PENCHASZADEH, P. E., TESO, V. & PASTORINO, G. 2017. Spawn in two deep-sea volute gastropods (Neogastropoda: Volutidae) from southwestern Atlantic waters. *Deep Sea Research Part I: Oceanographic Research Papers*, 130, 55-62.
- PEREZ, O. 1990. Reproductive biology of the sandy shore crab *Matuta lunaris* (Brachyura: Calappidae). *Mar. Ecol. Prog. Ser*, 59, 83-89.
- PERNET, B., AMIEL, A. & SEAVER, E. C. 2012. Effects of maternal investment on larvae and juveniles of the annelid *Capitella teleta* determined by experimental reduction of embryo energy content. *Invertebrate Biology*, 131, 82-95.
- PERNET, B. & JAECKLE, W. B. 2004. Size and organic content of eggs of marine annelids, and the underestimation of egg energy content by dichromate oxidation. *The Biological Bulletin*, 207, 67-71.
- PETERS-DIDIER, J. & SEWELL, M. A. 2017. Maternal investment and nutrient utilization during early larval development of the sea cucumber *Australostichopus mollis*. *Marine biology*, 164, 178.

- PHILIPPART, C. J., VAN AKEN, H. M., BEUKEMA, J. J., BOS, O. G., CADÉE, G. C. & DEKKER, R. 2003. Climate-related changes in recruitment of the bivalve *Macoma balthica*. *Limnology and Oceanography*, 48, 2171-2185.
- PHILLIPS, J., CLAYTON, M., MAIER, I., BOLAND, W. & MÜLLER, D. 1990. Sexual reproduction in *Dictyota diemensis* (Dictyotales, Phaeophyta). *Phycologia*, 29, 367-379.
- PHILLIPS, J. A. 1988. Field, anatomical and development studies on southern Australian species of *Ulva* (Ulvaceae, Chlorophyta). *Australian Systematic Botany*, 1, 411-456.
- PILKINGTON, M. C. 1974. The eggs and hatching stages of some New Zealand prosobranch molluscs. *Journal of the Royal Society of New Zealand*, 4, 411-431.
- PILLAI, T. 1958. Studies on a brackish-water polychaetous annelid, *Marphysa borradailei*, sp. n. from Ceylon. *Ceylon Journal of Science (Biological Sciences)*, **1**, 94-106.
- PODOLSKY, R. & STRATHMANN, R. 1996. Evolution of egg size in free-spawners: consequences of the fertilization-fecundity trade-off. *The American Naturalist*, 148, 160-173.
- PODOLSKY, R. D. & MCALISTER, J. S. 2005. Developmental plasticity in Macrophiothrix brittlestars: are morphologically convergent larvae also convergently plastic? *The Biological Bulletin,* 209, 127-138.
- POLTERMANN, M., HOP, H. & FALK-PETERSEN, S. 2000. Life under Arctic sea ice reproduction strategies of two sympagic (ice-associated) amphipod species, *Gammarus wilkitzkii* and *Apherusa glacialis*. *Marine Biology*, 136, 913-920.
- POORE, G. C. & BRUCE, N. L. 2012. Global diversity of marine isopods (except Asellota and crustacean symbionts). *PLoS One*, 7.
- POULÍČKOVÁ, A., ŽIŽKA, Z., HAŠLER, P. & BENADA, O. 2007. Zygnematalean zygospores: morphological features and use in species identification. *Folia microbiologica*, 52, 135-145.
- POULIN, R. & HAMILTON, W. J. 1997. Ecological correlates of body size and egg size in parasitic Ascothoracida and Rhizocephala (Crustacea). *Acta Oecologica*, 18, 621-635.
- POWELL, E. N., MORSON, J. & KLINCK, J. M. 2011. Application of a gene-based population dynamics model to the optimal egg size problem: why do bivalve planktotrophic eggs vary in size? *Journal of Shellfish Research*, 30, 403-423.
- PRINCE, J. S. & TROWBRIDGE, C. D. 2004. Reproduction in the green macroalga Codium (Chlorophyta): characterization of gametes. *Botanica Marina*, 47, 461-470.
- PROWSE, T., SEWELL, M. & BYRNE, M. 2008. Fuels for development: evolution of maternal provisioning in asterinid sea stars. *Marine biology*, 153, 337-349.
- PROWSE, T. A. A., SEWELL, M. A. & BYRNE, M. 2017. Three-stage lipid dynamics during development of planktotrophic echinoderm larvae. *Marine Ecology Progress Series*, 583, 149-161.
- PURCELL, J. E., BÅMSTEDT, U. & BÅMSTEDT, A. 1999. Prey, feeding rates, and asexual reproduction rates of the introduced oligohaline hydrozoan *Moerisia lyonsi*. *Marine Biology*, 134, 317-325.
- PYEFINCH, K. 1948. Methods of identification of the larvae of *Balanus balanoides* (L.), *B. crenatus* Brug. and *Verruca stroemia* OF Müller. *Journal of the Marine Biological Association of the United Kingdom*, 27, 451-463.
- QIAN, P.-Y. & CHIA, F.-S. 1991. Fecundity and egg size are mediated by food quality in the polychaete worm *Capitella* sp. *Journal of Experimental Marine Biology and Ecology*, 148, 11-25.

- RAGHU PRASAD, R. & TAMPI, P. 1953. Contribution to the biology of the blue swimming crab, *Neptunus pelagicus* (Linnaeus), with a note on the zoea of Thalamita crenata Latreille. *Journal of the Bombay Natural History Society*, 51, 674-689.
- RAKUSA-SUSZCZEWSKI, S. 1982. The biology and metabolism of *Orchomene plebs* (Hurley 1965)(Amphipoda: Gammaridea) from McMurdo sound, Ross Sea, Antarctic. *Polar Biology*, 1, 47-54.
- RAMON, E. 1973. Germination and attachment of zygotes of *Himanthalia elongata* (I.) SF Gray 1. *Journal of Phycology*, 9, 445-449.
- RAO, S. R. V. 1959. Size relationship of oocytes and their nuclei in 2 species of Ascidians. *Nature*, 183, 1454-1455.
- RAWLINSON, K. A. 2010. Embryonic and post-embryonic development of the polyclad flatworm *Maritigrella crozieri*; implications for the evolution of spiralian life history traits. *Frontiers in Zoology*, 7, 12.
- RAWLINSON, K. A., MARCELA BOLAÑOS, D., LIANA, M. K. & LITVAITIS, M. K. 2008. Reproduction, development and parental care in two direct-developing flatworms (Platyhelminthes: Polycladida: Acotylea). *Journal of Natural History*, 42, 2173-2192.
- READ, G. B. 1984. Recruitment and population dynamics of *Axiothella serrata* (Polychaeta: Maldanidae) on an intertidal sand flat. *New Zealand journal of zoology*, 11, 399-411.
- REES, G. H. 1959. Larval development of the sand crab *Emerita talpoida* (Say) in the laboratory. *The Biological Bulletin*, 117, 356-370.
- REISH, D. J. 1954. The Life History and Ecology of the Polychaetous Annelid Nereis Grubei Kinberg. Pl. 1-14.
- REISH, D. J. 1957. The life history of the polychaetous Annelid *Neanthes caudata* (delle Chiaje), including a summary of development in the family Nereidae.
- REISH, D. J. 1974. The establishment of laboratory colonies of polychaetous annelids.
- REITZEL, A. M., MILES, C. M., HEYLAND, A., COWART, J. D. & MCEDWARD, L. R. 2005. The contribution of the facultative feeding period to echinoid larval development and size at metamorphosis: a comparative approach. *Journal of Experimental Marine Biology and Ecology*, 317, 189-201.
- REITZEL, A. M. & MINER, B. G. 2007. Reduced planktotrophy in larvae of Clypeasterrosaceus (Echinodermata, Echiniodea). *Marine biology*, 151, 1525-1534.
- RICHARDS, T. 1967. Reproduction and development of the polychaete *Stauronereis rudolphi*, including a summary of development in the superfamily Eunicea. *Marine Biology*, 1, 124-133.
- RISER, N. 1974. Epilogue. In: Biology of the Turbellaria (NW Riser and MP Morse (Eds.)) McGraw-Hill.
- ROBERTSON, R. 2012a. B-type protoconchs and all three modes of larval development in eastern North American Boonea (Pyramidellidae). *American Malacological Bulletin*, 30, 229-246.
- ROBERTSON, R. 2012b. C-type protoconchs and planktotrophy in small eastern North American Fargoa (Pyramidellidae). *American Malacological Bulletin*, 30, 247-253.
- ROBIN, F. B., DAUGA, D., TASSY, O., SOBRAL, D., DAIAN, F. & LEMAIRE, P. 2011. Time-lapse imaging of live *Phallusia* embryos for creating 3D digital replicas. *Cold Spring Harbor Protocols*, 6, 1244-1246.

- ROE, P. 1975. Aspects of life history and of territorial behavior in young individuals of *Platynereis* bicanaliculata and Nereis vexillosa (Annelida, Polychaeta).
- ROGERS-BENNETT, L., DONDANVILLE, R. F. & KASHIWADA, J. 2004. Size specific fecundity of red abalone (*Haliotis rufescens*): evidence for reproductive senescence? *Journal of Shellfish Research*, 23, 553-560.
- ROLLER, R. & STICKLE, W. 1988. Intracapsular development of *Thais haemastoma-canaliculata* (Gray) (Prosobranchia, Muricidae) under laboratory conditions. *American Malacological Bulletin*, 6, 189-197.
- RONQUILLO, J. D. & MCKINLEY, R. S. 2006. Developmental stages and potential mariculture for coastal rehabilitation of endangered Pacific angelwing clam, *Pholas orientalis*. *Aquaculture*, 256, 180-191.
- ROSE, R. A. & DIX, T. G. 1984. Larval and juvenile development of the doughboy scallop, *Chlamys* (*Chlamys*) asperrimus (Lamarck) (Mollusca, Pectinidae). Australian Journal of Marine and Freshwater Research, 35, 315-323.
- ROUBAL, F. 1994. Observations on the eggs and-fecundity of dactylogyrid and diplectanid monogeneans from the Australian marine sparid fish, *Acanthopagrus australis*. *Folia Parasitologica*, 41, 220-222.
- ROUBAL, F. R. 1998. Observations on the seasonal occurrence of two species of transversotrematid Digenea parasitising the sparid fish *Acanthopagrus australis* in Moreton Bay, eastern Australia. *Folia parasitologica*, 45, 205-210.
- ROUSE, G. & PLEIJEL, F. 2001. *Polychaetes*, Oxford University Press.
- RUFF, R. & BROWN, B. 1989. A new species of Euchone (Polychaeta, Sabellidae) from the northwest Atlantic with comments on ontogenetic variability. *Proceedings of the Biological Society of Washington*, 102, 753-760.
- RUPPERT, E. E., FOX, R. S. & BARNES, R. D. 2004. *Invertebrate Zoology: A Functional Evolutionary Approach*, Thomson-Brooks/Cole.
- RYLAND, J. & STEBBING, A. Settlement and orientated growth in epiphytic and epizoic bryozoans. Fourth European marine biology symposium, 1971. Cambridge University Press Cambridge, 105-123.
- RYLAND, J. S. & HAYWARD, P. J. 1991. Marine flora and fauna of the Northeastern United States: erect Bryozoa.
- SACH, G. 1975. Zur Fortpflanzung des Polychaeten Anaitides mucosa. Marine Biology, 31, 157-160.
- SAGI, A., SHOUKRUN, R., KHALAILA, I. & RISE, M. 1996. Gonad maturation, morphological and physiological changes during the first reproductive cycle of the crayfish *Cherax quadricarinatus* female. *Invertebrate Reproduction & Development*, 29, 235-242.
- SAHADE, R., TATIÁN, M. & ESNAL, G. B. 2004. Reproductive ecology of the ascidian *Cnemidocarpa verrucosa* at Potter Cover South Shetland Islands, Antarctica. *Marine Ecology Progress Series*, 272, 131-140.
- SAHER, N. U. & QURESHI, N. A. 2010. Zonal distribution and population biology of *Ilyoplax frater* (Brachyura: Ocypodoidea: Dotillidae) in a coastal mudflat of Pakistan. *Current Zoology*, 56, 244-251.
- SAINTE-MARIE, B. A review of the reproductive bionomics of aquatic gammaridean amphipods: variation of life history traits with latitude, depth, salinity and superfamily. VIIth International Colloquium on Amphipoda, 1991. Springer, 189-227.

- SAINTE-MARIE, B., LAMARCHE, G. & GAGNON, J.-M. 1990. Reproductive bionomics of some shallowwater lysianassoids in the Saint Lawrence Estuary, with a review on the fecundity of the Lysianassoidea (Crustacea, Amphipoda). *Canadian journal of zoology*, 68, 1639-1644.
- SAMEOTO, D. 1969. Some aspects of the ecology and life cycle of three species of subtidal sandburrowing amphipods (Crustacea: Haustoriidae). *Journal of the Fisheries Board of Canada*, 26, 1321-1345.
- SAMUEL, N. J. & SOUNDARAPANDIAN, P. 2009. Embryonic development of commercially important portunid crab *Portunus sanguinolentus* (Herbst). *International Journal of Animal and Veterinary Advances*, 1, 32-38.
- SANDERS, M. 1973. *Culture of the scallop, Patinopecten yessoensis (Jay) in Japan*, Fisheries and Wildlife Department.
- SANDISON, E. E. & DAY, J. 1954. The identification of the nauplii of some South African barnacles with notes on their life histories. *Transactions of the Royal Society of South Africa*, 34, 69-101.
- SASAKI, R. 1979. A report on the study of scallop and oyster in the course of Japan/Scotland exchange research scholarship 1977/1978. *Fisheries Division, Highlands and Islands Development Board, Scotland*.
- SASTRY, A. 1966. Temperature effects in reproduction of the bay scallop, *Aequipecten irradians* Lamarck. *The Biological Bulletin*, 130, 118-134.
- SATO-OKOSHI, W., SUGAWARA, Y. & NOMURA, T. 1990. Reproduction of the boring polychaete *Polydora variegata* inhabiting scallops in Abashiri Bay, North Japan. *Marine Biology*, 104, 61-66.
- SCHELTEMA, R., WILLIAMS, I., SHAW, M. & LOUDON, C. 1981. Gregarious settlement by the larvae of *Hydroides dianthus* (Polychaeta: Serpulidae). *Mar. Ecol. Prog. Ser*, 5, 69-74.
- SCHINNER, G. O. & MCCLINTOCK, J. B. 1993. Structural characteristics of marsupial brood pouches of the Antarctic sea urchins Abatus nimrodi and Abatus shackletoni (Echinoidea: Spatangoida). Journal of morphology, 216, 79-93.
- SCHMEKEL, L., PORTMANN, A., RICHTER, I. & BOUSANI-BAUR, S. 1982. *Opisthobranchia des Mittelmeeres*, Springer Science & Business Media.
- SCHROEDER, P. C. 1968. On the life history of *Nereis grubei* (Kinberg), a polychaete annelid from California. *Pac. Sci*, 22, 476-481.
- SCHUH, M. & DIESEL, R. 1995a. Effects of salinity and starvation on the larval development of Sesarma curacaoense De Man, 1892, a mangrove crab with abbreviated development (Decapoda: Grapsidae). Journal of Crustacean Biology, 15, 645-654.
- SCHUH, M. & DIESEL, R. 1995b. Effects of salinity, temperature, and starvation on the larval development of Armases (= Sesarma) miersii (Rathbun, 1897), a semiterrestrial crab with abbreviated development (Decapoda: Grapsidae). *Journal of Crustacean Biology*, 15, 205-213.
- SCIANNI, C. & GEORGIADES, E. 2019. Vessel in-water cleaning or treatment: Identification of environmental risks and science needs for evidence-based decision making. *Frontiers in Marine Science*, 6, 467.
- SELIM, S., NABY, F. A., GAB-ALLA, A. & GHOBASHY, A. 2005. Gametogenesis and spawning of Spirobranchus tetraceros (Polychaeta, Serpulidae) in Abu Kir Bay, Egypt. Mediterranean Marine Science, 6, 89-98.

- SELLA, G. 1990. Sex allocation in the simultaneously hermaphroditic polychaete worm *Ophryotrocha diadema*. *Ecology*, **71**, 27-32.
- SELVAKUMARASWAMY, P. & BYRNE, M. 2000. Reproduction, spawning, and development of 5 ophiuroids from Australia and New Zealand. *Invertebrate Biology*, 119, 394-402.
- SEWELL, M. A. 2005. Utilization of lipids during early development of the sea urchin *Evechinus* chloroticus. Marine Ecology Progress Series, 304, 133-142.
- SEWELL, M. A. & YOUNG, C. M. 1997. Are echinoderm egg size distributions bimodal? *The Biological Bulletin*, 193, 297-305.
- SGRO, L., TUROLLA, E., ROSSI, R. & MISTRI, M. 2002. Sexual maturation and larval development of the immigrant Asian date mussel, *Musculista senhousia*, in a Po River deltaic lagoon. *Italian Journal of Zoology*, 69, 223-228.
- SHANKS, A. 2001. An identification guide to the larval marine invertebrates of the Pacific Northwest, Oregon State University Press.
- SHEADER, M. 1977a. The breeding biology of *Idotea pelagica* (Isopoda: Valvifera) with notes on the occurrence and biology of its parasite *Clypeoniscus hanseni* (Isopoda: Epicaridea). *Journal of the Marine Biological Association of the United Kingdom*, 57, 659-674.
- SHEADER, M. 1977b. Production and population dynamics of *Ampelisca tenuicornis* (Amphipoda) with notes on the biology of its parasite *Sphaeronella longipes* (Copepoda). *Journal of the Marine Biological Association of the United Kingdom*, 57, 955-968.
- SHEADER, M. 1978. Distribution and reproductive biology of *Corophium insidiosum* (Amphipoda) on the north-east coast of England. *Journal of the marine biological Association of the United Kingdom*, 58, 585-596.
- SHEADER, M. & CHIA, F.-S. 1970. Development, fecundity and brooding behaviour of the amphipod, Marinogammarus obtusatus. Journal of the Marine Biological Association of the United Kingdom, 50, 1079-1099.
- SHENKAR, N. & LOYA, Y. 2008. The solitary ascidian *Herdmania momus*: Native (Red Sea) versus nonindigenous (Mediterranean) populations. *Biological Invasions*, 10, 1431-1439.
- SHIELDS, J. D., OKAZAKI, R. K. & KURIS, A. 1991. Fecundity and the reproductive potential of the yellow rock crab *Cancer anthonyi*. *Fishery Bulletin*, 89, 299-305.
- SHINN, G. L. 1985. Reproduction of Anoplodium hymanae, a turbellarian flatworm (Neorhabdocoela, Umagillidae) inhabiting the coelom of sea cucumbers; production of egg capsules, and escape of infective stages without evisceration of the host. The Biological Bulletin, 169, 182-198.
- SINGHAGRAIWAN, T. & SASAKI, M. 1991. Breeding and early development of the donkey's ear abalone, *Haliotis asinina* Linne. *Thailand Marine Fisheries Research Bulletin*, 2, 83-94.
- SLATTERY, P. N. 1985. Life histories of infaunal amphipods from subtidal sands of Monterey Bay, California. *Journal of crustacean biology*, **5**, 635-649.
- SLOBODOV, S. A. & MARFENIN, N. N. 2004. Reproduction of the colonial hydroid *Obelia geniculata* (L., 1758) (Cnidaria, Hydrozoa) in the White Sea. *Hydrobiologia*, 530, 383-388.
- SMITH, R. 1984. Development and settling of *Spirobranchus giganteus* (Polychaeta; Serpulidae). *Proc. 1st Internat. Polychaete Confer.*, 147-153.
- SOMERTON, D. The disjunct distribution of blue king crab, *Paralithodes platypus*. Proc. Int. King Crab Symp. Fairbanks, AK: U. of Alaska Sea Grant College Program Rep, 1985. 23-48.

- SOMERTON, D. A. & MACINTOSH, R. A. 1985. Reproductive biology of the female blue king crab *Paralithodes platypus* near the Pribilof Islands, Alaska. *Journal of Crustacean Biology*, 5, 365-376.
- SØMME, O. M. 1940. A study of the life history of the gribble *Limnoria lignorum* (Rathke) in Norway. *Saertr Nytt Mag Naturvid*, 81, 145-205.
- SOUTHERN, R. 1921. Fauna of the Chilka Lake and also of fresh and brackish waters in other parts of India. *Memoirs of the Indian Museum Calcutta*, **5**, 563-659.
- SPOONER, G. 1947. The distribution of Gammarus species in estuaries. Part I. Journal of the Marine Biological Association of the United Kingdom, 27, 1-52.
- SPOTORNO, P. & SIMONE, L. R. L. 2013. First record of Thylaeodus (Gastropoda: Vermetidae) from the Equatorial Atlantic Ocean, with the description of a new species. *Zoologia (Curitiba)*, 30, 88-96.
- STEEL, E. A. Some observations on the life history of Asellus aquaticus (L.) and Asellus meridianus Racovitza (Crustacea: Isopoda). Proceedings of the Zoological Society of London, 1961. Wiley Online Library, 71-87.
- STEELE, D. 1967. The life cycle of the marine amphipod *Stegocephalus inflatus* Krøyer in the northwest Atlantic. *Canadian Journal of Zoology*, 45, 623-628.
- STEELE, D. 1972. Some aspects of the biology of *Gammarellus homari* (Crustacea, Amphipoda) in the Northwestern Atlantic. *Journal of the Fisheries Board of Canada*, 29, 1340-1343.
- STEELE, D., DH, S. & VJ, S. 1978. Some aspects of the biology of *Pontoporeia femorata* and *Pontoporeia affinis* (Crustacea, Amphipoda) in the northwestern Atlantic.
- STEELE, D., HOOPER, R. G. & KEATS, D. 1986. Two corophioid amphipods commensal on spider crabs in Newfoundland. *Journal of Crustacean Biology*, 6, 119-124.
- STEELE, D. & STEELE, V. 1972a. Biology of *Gatnmarellus angulosus* (Crustacea, Amphipoda) in the Northwestern Atlantic. *Journal of the Fisheries Board of Canada*, 29, 1337-1340.
- STEELE, D. H. 1973. The Biology of *Parhy Alella pietschmanni* Schellenberg, 1938 (Amphipoda, Hyalellidae) at Nosy Bé, Madagascar. *Crustaceana*, 25, 276-280.
- STEELE, D. H. & STEELE, V. J. 1969. The biology of Gammarus (Crustacea, Amphipoda) in the northwestern Atlantic. I. *Gammarus duebeni* Lillj. *Canadian Journal of Zoology*, 47, 235-244.
- STEELE, D. H. & STEELE, V. J. 1970. The biology of Gammarus (Crustacea, Amphipoda) in the northwestern Atlantic. III. Gammarus obtusatus Dahl. Canadian Journal of Zoology, 48, 989-995.
- STEELE, D. H. & STEELE, V. J. 1973. Some aspects of the biology of *Calliopius laeviusculus* (Krøyer)(Crustacea, Amphipoda) in the northwestern Atlantic. *Canadian Journal of Zoology*, 51, 723-728.
- STEELE, D. H. & STEELE, V. J. 1975. The biology of Gammarus (Crustacea, Amphipoda) in the northwestern Atlantic. IX. *Gammarus wilkitzkii* Birula, *Gammarus stoerensis* Reid, and *Gammarus mucronatus* Say. *Canadian Journal of Zoology*, 53, 1105-1109.
- STEELE, V. J. & STEELE, D. H. 1972b. The biology of Gammarus (Crustacea, Amphipoda) in the northwestern Atlantic. V. Gammarus oceanicus Segerstråle. Canadian Journal of Zoology, 50, 801-813.
- STEPHENSEN, K. 1923. Crustacea Malacostraca: (Amphipoda. V-VIII. I-IV), Bianco Luno.

- STEPHENSEN, K. 1933. Fresh and brackish-water Amphipoda from Bonaire, Curaçao and Aruba. Zoologische Jahrbücher. Abteilung für Systematik, Ökologie un Geographie der Tiere, 64, 289-508.
- STEPHENSEN, K. 1944. Crustacea Malacostraca, VIII: Amphipoda, IV, Hagerup.
- STEPHENSON, W. 1950. The development of Cirratulus cirratus (OF Müller). *Rep. Dove mar. Lab.(Ser. 3),* 2, 7-20.
- STERRER, W. & RIEGER, R. 1974. Retronectidae-a new cosmopolitan marine family of Catenulida (Turbellaria). *Biology of the Turbellaria*, 63-92.
- STEVENS, C., TAYLOR, D., DELAUX, S., SMITH, M. & SCHIEL, D. 2008. Characterisation of waveinfluenced macroalgal propagule settlement. *Journal of Marine Systems*, 74, 96-107.
- STEWART-SAVAGE, J., WAGSTAFF, B. J. & YUND, P. O. 1999. Development Basis of Phenotypic Variation in Egg Production in a Colonial Ascidian: Primary Oocyte Production Versus Oocyte Development. *The Biological Bulletin*, 196, 63-69.
- STOECKEL, J. A., PADILLA, D. K., SCHNEIDER, D. W. & REHMANN, C. R. 2004. Laboratory culture of *Dreissena polymorpha* larvae: spawning success, adult fecundity, and larval mortality patterns. *Canadian Journal of Zoology*, 82, 1436-1443.
- STRATHMANN, M. F. 1987. Reproduction and development of marine invertebrates of the northern Pacific coast: data and methods for the study of eggs, embryos, and larvae.
- STRATHMANN, M. F. 2017. Reproduction and development of marine invertebrates of the northern Pacific coast: data and methods for the study of eggs, embryos, and larvae, University of Washington Press.
- STRATHMANN, R. R. 1985. Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. *Annual review of ecology and systematics*, 16, 339-361.
- STRATHMANN, R. R., STAVER, J. M. & HOFFMAN, J. R. 2002. Risk and the evolution of cell-cycle durations of embryos. *Evolution*, 56, 708-720.
- STRONG JR, D. R. 1972. Life history variation among populations of an amphipod (*Hyalella azteca*). *Ecology*, 53, 1103-1111.
- STRONG, K. 1978. Breeding and bionomics of *Idotea baltica* (Pallas)(Crustacea: Isopoda). *Proceedings* of the Nova Scotian Institute of Science, 28, 1977-1978.
- STUNKARD, H. W. & CORLISS, J. O. 1951. New species of Syndesmis and a revision of the family Umagillidae Wahl, 1910 (Turbellaria: Rhabdocoela). *The Biological Bulletin*, 101, 319-334.
- SUBRAMONIAM, T. & GUNAMALAI, V. 2003. Breeding biology of the intertidal sand crab, Emerita (Decapoda: Anomura). *Emerita*, 170, 172.
- SUDNIK, S. 2018. Biology of the shrimp *Oplophorus spinosus* (Brullé, 1839)(Decapoda, Oplophoridae) in the continental slope waters of the coast of northwest Africa. *Studies on Decapoda and Copepoda in Memory of Michael Türkay.* Brill.
- SUGIMOTO, K. & NAKAUCHI, M. 1974. Budding, sexual reproduction, and degeneration in the colonial ascidian, *Symplegma reptans*. *The Biological Bulletin*, 147, 213-226.
- SULLIVAN, C. M. 1948. Bivalve larvae of Malpeque Bay, PEI.
- SUNDELIN, B. & ERIKSSON, A.-K. 1998. Malformations in embryos of the deposit-feeding amphipod *Monoporeia affinis* in the Baltic Sea. *Marine Ecology Progress Series*, 171, 165-180.
- SVANE, I. 1984. Observations on the long-term population dynamics of the perennial ascidian, Ascidia mentula OF Muller, on the Swedish west coast. The Biological Bulletin, 167, 630-646.

- SWALLA, B. J. & JEFFERY, W. R. 1990. Interspecific hybridization between an anural and urodele ascidian: differential expression of urodele features suggests multiple mechanisms control anural development. *Developmental biology*, 142, 319-334.
- SWEDMARK, B. 1958. *Psammodriloides fauveli* n. gen. n. sp. et la famille des Psammodrilidae (Polychaeta Sedentaria). *Arkiv för Zoologi, sér, 2*, 55-65.
- SYAMA, V. & ANILKUMAR, G. Lunar rhythm-dependent spawning and larval release in the continuously breeding mangrove crab, *Sesarma quadratum* (Decapoda: Brachyura). 2nd International Conference on Environmental Science and Technology (ICEST), Singapore, 2011.
- TAGAWA, K., JEFFERY, W. R. & SATOH, N. 1997. The recently-described ascidian species *Molgula tectiformis* is a direct developer. *Zoological Science*, 14, 297-303.
- TAKEDA, N., KYOZUKA, K. & DEGUCHI, R. 2006. Increase in intracellular cAMP is a prerequisite signal for initiation of physiological oocyte meiotic maturation in the hydrozoan *Cytaeis uchidae*. *Developmental biology*, 298, 248-258.
- TAKEUCHI, I. & HIRANO, R. 1992. Duration and size of embryos in epifaunal amphipods *Caprella danilevskii* Czerniavski and *C. okadai* Arimoto (Crustacea: Amphipoda: Caprellidea). *Journal of Experimental Marine Biology and Ecology*, 164, 161-169.
- TANDBERG, A. H. S., VADER, W. & BERGE, J. 2010. Studies on the association of *Metopa glacialis* (Amphipoda, Crustacea) and *Musculus discors* (Mollusca, Mytilidae). *Polar biology*, 33, 1407-1418.
- TAPELLA, F., LOVRICH, G. A., ROMERO, M. C. & THATJE, S. 2002. Reproductive biology of the crab *Munida subrugosa* (Decapoda: Anomura: Galatheidae) in the Beagle Channel, Argentina. *Journal of the Marine Biological Association of the United Kingdom*, 82, 589-595.
- TAYLOR, H. & LEELAPIYANART, N. 2001. Oxygen uptake by embryos and ovigerous females of two intertidal crabs, *Heterozius rotundifrons* (Belliidae) and *Cyclograpsus lavauxi* (Grapsidae): scaling and the metabolic costs of reproduction. *Journal of Experimental Biology*, 204, 1083-1097.
- TEMPLADO, J., RICHTER, A. & CALVO, M. 2016. Reef building Mediterranean vermetid gastropods: disentangling the *Dendropoma petraeum* species complex. *Mediterranean Marine Science*, 17, 13-31.
- THATJE, S. & HALL, S. 2016. The effect of temperature on the evolution of per offspring investment in a globally distributed family of marine invertebrates (Crustacea: Decapoda: Lithodidae). *Marine biology*, 163, 48.
- THIEL, M. 1997. Reproductive biology of an epibenthic amphipod (*Dyopedos monacanthus*) with extended parental care. *Journal of the Marine Biological Association of the United Kingdom*, 77, 1059-1072.
- THIEL, M. 1998. Reproductive biology of a deposit-feeding amphipod, *Casco bigelowi*, with extended parental care. *Marine Biology*, 132, 107-116.
- THIEL, M. 1999. Reproductive biology of a wood-boring isopod, *Sphaeroma terebrans*, with extended parental care. *Marine Biology*, 135, 321-333.
- THIEL, M. 2000. Population and reproductive biology of two sibling amphipod species from ascidians and sponges. *Marine Biology*, 137, 661-674.
- THIEL, M. 2003. Reproductive biology of *Limnoria chilensis*: another boring peracarid species with extended parental care. *Journal of Natural History*, **37**, 1713-1726.

- THIEL, M., SAMPSON, S. & WATLING, L. 1997. Extended parental care in two endobenthic amphipods. *Journal of Natural History*, 31, 713-725.
- THOMAS, F., BOLTON, T. & SASTRY, A. 2001. Mechanical forces imposed on echinoid eggs during spawning: mitigation of forces by fibrous networks within egg extracellular layers. *Journal of Experimental Biology*, 204, 815-821.
- THOMPSON, T. & SALGHETTI-DRIOLI, U. 1984. Unusual features of the development of the sacoglossan *Elysia hopei* in the Mediterranean Sea. *Journal of Molluscan Studies*, 50, 61-63.
- THORSON, G. 1935. Studies on the egg capsules and development of Arctic marine Prosobranchs: Treaars expeditionen Til Christian Den X's Land 1931-34 Under Ledelse Af Lauge Koch; with 75 Fig. in text, Reitzel.
- THORSON, G. 1940. Studies on the Egg Masses and Larval Development of Gastropoda from the Iranian Gulf, Ejnar Munksgaard.
- THURMAN, C. L. 1985. Reproductive biology and population structure of the fiddler crab *Uca subcylindrica* (Stimpson). *The Biological Bulletin*, 169, 215-229.
- THURSTON, M. H. 1974. Crustacea amphipoda from Graham Land and the Scotia Arc, collected by Operation Tabarin and the Falkand Islands Dependencies Survey, 1944-59, British Antarctic Survey.
- TORAL-GRANDA, M. V. & MARTÍNEZ, P. C. 2007. Reproductive biology and population structure of the sea cucumber *Isostichopus fuscus* (Ludwig, 1875) (Holothuroidea) in Caamaño, Galápagos Islands, Ecuador. *Marine Biology*, 151, 2091-2098.
- TORO, J., THOMPSON, R. & INNES, D. 2002. Reproductive isolation and reproductive output in two sympatric mussel species (*Mytilus edulis, M. trossulus*) and their hybrids from Newfoundland. *Marine Biology,* 141, 897-909.
- TSUTSUMI, H. & KIKUCHI, T. 1984. Study of the life history of Capitella capitata (Polychaeta: Capitellidae) in Amakusa, South Japan including a comparison with other geographical regions. *Marine Biology*, 80, 315-321.
- TURRA, A. & LEITE, F. P. P. 2001. Fecundity of three sympatric populations of hermit crabs (Decapoda, Anomura, Diogenidae). *Crustaceana*, 1019-1027.
- TYLER, P. A., MARSH, L., BACO-TAYLOR, A. & SMITH, C. R. 2009. Protandric hermaphroditism in the whale-fall bivalve mollusc *Idas washingtonia*. *Deep Sea Research Part II: Topical Studies in Oceanography*, 56, 1689-1699.
- TYLER, P. A., YOUNG, C. M. & DOVE, F. 2007. Settlement, growth and reproduction in the deep-sea wood-boring bivalve mollusc *Xylophaga depalmai*. *Marine Ecology Progress Series*, 343, 151-159.
- VALDERHAUG, V. 1985. Population structure and production of *Lumbrineris fragilis* (Polychaeta: Lumbrineridae) in the Oslofjord (Norway) with a note on metal content of jaws. *Marine Biology*, 86, 203-211.
- VAN DER VEER, H. W., CARDOSO, J. F. & VAN DER MEER, J. 2006. The estimation of DEB parameters for various Northeast Atlantic bivalve species. *Journal of Sea Research*, 56, 107-124.
- VAN DOLAH, R., SHAPIRO, L. & REES, C. 1975. Analysis of an intertidal population of the amphipod *Gammarus palustris* using a modified version of the egg-ratio method. *Marine Biology*, 33, 323-330.
- VAN DOLAH, R. F. & BIRD, E. 1980. A comparison of reproductive patterns in epifaunal and infaunal Gammaridean amphipods. *Estuarine and Coastal Marine Science*, 11, 593-604.

- VAN REINE, W. P. 1982. A taxonomic revision of the European Sphacelariaceae: (Sphacelariales, *Phaeophyceae*), Brill Archive.
- VILLINSKI, J. T., VILLINSKI, J. C., BYRNE, M. & RAFF, R. A. 2002. Convergent maternal provisioning and life-history evolution in echinoderms. *Evolution*, 56, 1764-1775.
- VINUESA, J. 1987. Embryonary development of Lithodes antarcticus Jacquinot (Crustacea, Decapoda, Lithodidae) developmental stages, growth and mortality. *Physis*, 45, 21-29.
- WÄGELE, J.-W. 1987. On the reproductive biology of *Ceratoserolis trilobitoides* (Crustacea: Isopoda): latitudinal variation of fecundity and embryonic development. *Polar Biology*, **7**, **11**-24.
- WÄGELE, J. 1979. Der Fortpflanzungszyklus von *Cyathura carinata* (Isopoda, Anthuridea) im Nord-Ostsee-Kanal. *Helgoländer wissenschaftliche Meeresuntersuchungen*, 32, 295.
- WALKER, R. L. & O'BEIRN, F. X. 1996. Embryonic and larval development of *Spisula solidissima similis* (Say, 1822)(Bivalvia: Mactridae).
- WALTER, N. G. 1980. Reproductive patterns of gammaridean amphipods. Sarsia, 65, 61-71.
- WALTERS, L. J. & WETHEY, D. S. 1996. Settlement and early post-settlement survival of sessile marine invertebrates on topographically complex surfaces: the importance of refuge dimensions and adult morphology. *Marine Ecology Progress Series*, 137, 161-171.
- WARREN, L. M. 1976. A review of the genus *Capitella* (Polychaeta Capitellidae). *Journal of Zoology*, 180, 195-209.
- WEINBERGER, V., MILOSLAVICH, P. & MACHORDOM, A. 2010. Distribution pattern, reproductive traits, and molecular analysis of two coexisting vermetid gastropods of the genus Petaloconchus: a Caribbean endemic and a potential invasive species. *Marine biology*, 157, 1625-1639.
- WHITE, M. E., KITTING, C. L. & POWELL, E. N. 1985. Aspects of reproduction, larval development, and morphometrics in the pyramidellid, *Boonea impressa* (= *Odostomia impressa*),(Gastropoda: Opisthobranchia).
- WHITE, M. G. 1970. Aspects of the breeding biology of *Glyptonotus antarcticus* (Eights)(Crustacea, Isopoda) at Signy Island, South Orkney Islands.
- WHITEHILL, E. A. & MORAN, A. L. 2012. Comparative larval energetics of an ophiuroid and an echinoid echinoderm. *Invertebrate Biology*, 131, 345-354.
- WILBUR, K. M., VERDONK, N. & VAN DEN BIGGELAAR, J. 2013. Reproduction, Elsevier.
- WILDISH, D. 1979. Reproductive consequences of the terrestrial habit in Orchestia (Crustacea: Amphipoda). *International Journal of Invertebrate Reproduction*, 1, 9-20.
- WILDISH, D. 1982. Evolutionary ecology of reproduction in gammaridean Amphipoda. *International Journal of Invertebrate Reproduction*, 5, 1-19.
- WILDISH, D. & PEER, D. 1981. Methods for estimating secondary production in marine Amphipoda. *Canadian Journal of Fisheries and Aquatic Sciences*, 38, 1019-1026.
- WILDISH, D. J. 1980. Reproductive bionomics of two sublittoral amphipods in a Bay of Fundy estuary. *International Journal of Invertebrate Reproduction*, 2, 311-320.
- WILLIAMS, J. A. 1978. The annual pattern of reproduction of *Talitrus saltator* (Crustacea: Amphipoda: Talitridae). *Journal of Zoology*, 184, 231-244.
- WILLIAMS, J. D., BOYKO, C. B., RICE, M. E. & YOUNG, C. M. 2019. A report on two large collections of the squat lobster *Munidopsis platirostris* (Decapoda, Anomura, Munidopsidae) from the

Caribbean, with notes on their parasites, associates, and reproduction. *Journal of Natural History*, 53, 159-169.

- WILLIAMSON, D. 1965. Some larval stages of three Australian crabs belonging to the families Homolidae and Raninidae, and observations on the affinities of these families (Crustacea: Decapoda). *Marine and Freshwater Research*, 16, 369-398.
- WILLIS, K. J., WOODS, C. M. & ASHTON, G. V. 2009. Caprella mutica in the Southern Hemisphere: Atlantic origins, distribution, and reproduction of an alien marine amphipod in New Zealand. *Aquatic Biology*, 7, 249-259.
- WILSON, D. P. 1932. The development of *Nereis pelagica* Linnaeus. *Journal of the Marine Biological Association of the United Kingdom,* 18, 203-217.
- WILSON, W. 1983. Life-history evidence for sibling species in *Axiothella rubrocincta* (Polychaeta: Maldanidae). *Marine biology*, 76, 297-300.
- WIMALASIRI, H. & DISSANAYAKE, D. 2016. Reproductive biology of the three-spot swimming crab (*Portunus sanguinolentus*) from the west coast of Sri Lanka with a novel approach to determine the maturity stage of male gonads. *Invertebrate Reproduction & Development*, 60, 243-253.
- WISELY, B. 1962. An outline of the development of the bivalve gastropod *Midorigai australis* Burn, 1960. *Journal of the Malacological Society of Australia*, 1, 37-39.
- WOELKE, C. E. 1957. *The flatworm Pseudostylochus ostreophagus Hyman, a predator of oysters,* State of Washington, Department of Fisheries, Shellfish Laboratory.
- WONG, E., DAVIS, A. R. & BYRNE, M. 2010. Reproduction and early development in *Haliotis* coccoradiata (Vetigastropoda: Haliotidae). *Invertebrate Reproduction & Development*, 54, 77-87.
- WOODWICK, K. H. 1960. Early larval development of *Polydora nuchalis* Woodwick, a spionid polychaete.
- WU, B. 1964. Subspecific differentiation and ecological characteristics of *Capitella capitata* (Fabricius, 1780)(Polychaeta, Capitellidae). *Oceanol. Limnol. Sin*, 6, 266-271.
- YAMADA, Y. & IKEDA, T. 2000. Development, maturation, brood size and generation length of the mesopelagic amphipod *Cyphocaris challengeri* (Gammaridea: Lysianassidae) off southwest Hokkaido, Japan. *Marine Biology*, 137, 933-942.
- YAMADA, Y., IKEDA, T. & TSUDA, A. 2002. Abundance, growth and life cycle of the mesopelagic amphipod *Primno abyssalis* (Hyperiidea: Phrosinidae) in the Oyashio region, western subarctic Pacific. *Marine Biology*, 141, 333-341.
- YAMAGUCHI, M. & LUCAS, J. S. 1984. Natural parthenogenesis, larval and juvenile development, and geographical distribution of the coral reef asteroid *Ophidiaster granifer*. *Marine Biology*, 83, 33-42.
- YAMAMOTO, G. 1980. Ecological study on indicator species of eutrophic waters. Annual report of the study supported by the Grant from the Ministry of Education of Japan (Grant No. 254219) in, 1979, 51-82.
- YAMASAKI, I., MINGKID, W., WATANABE, S. & ASAKURA, A. 2008. Revalidation of *Hemigrapsus takanoi* Asakura & Watanabe, 2005: A rebuttal to" Sakai (2007): Comments on an invalid nominal species, *Hemigrapsus takanoi* Asakura & Watanabe, 2005, a synonym of *Hemigrapsus penicillatus* (De Haan, 1835)(Decapoda, Brachyura, Grapsidae)". Crustaceana, 81, 1263-1273.

- YAN, Y. & CHAN, B. K. 2001. Larval development of *Chthamalus malayensis* (Cirripedia: Thoracica) reared in the laboratory. *Journal of the Marine Biological Association of the United Kingdom*, 81, 623-632.
- YAN, Y., CHAN, B. K. K. & WILLIAMS, G. A. 2006. Reproductive development of the barnacle *Chthamalus malayensis* in Hong Kong: implications for the life-history patterns of barnacles on seasonal, tropical shores. *Marine Biology*, 148, 875-887.
- YANG, H.-S., KANG, D.-H., PARK, H.-S. & CHOI, K.-S. 2017. Annual gametogenesis and reproductive effort of the limpet *Cellana grata* (Gould, 1859)(Gastropoda: Nacellidae) in a rocky intertidal beach at Ulleungdo Island off the east coast of Korea. *Ocean Science Journal*, 52, 519-526.
- YOKOYAMA, H. 1990. Life history and population structure of the spionid polychaete Paraprionospio sp.(form A). *Journal of experimental marine biology and ecology*, 144, 125-143.
- YU, O. H. & SUH, H.-L. 2006. Life history and reproduction of the amphipod Synchelidium trioostegitum (Crustacea, Oedicerotidae) on a sandy shore in Korea. Marine biology, 150, 141-148.
- ZAKLAN, S. 2002. *Evolutionary history and phylogeny of the family Lithodidae*. Ph. D. thesis, University of Alberta.
- ZEHRA, I. & PERVEEN, R. 1991. Egg capsule structure and larval development of *Conus biliosus* (Röding, 1798) and C. coronatus Gmelin, 1791, from Pakistan. *Journal of molluscan studies*, 57, 239-248.
- ZHOU, M. & ALLEN, S. 2003. A review of published work on *Crassostrea ariakensis*. Journal of Shellfish Research, 22, 1.
- ZIGLER, K. S., LESSIOS, H. A. & RAFF, R. A. 2008. Egg energetics, fertilization kinetics, and population structure in echinoids with facultatively feeding larvae. *The Biological Bulletin*, 215, 191-199.
- ZIGLER, K. S. & RAFF, R. A. 2013. A shift in germ layer allocation is correlated with large egg size and facultative planktotrophy in the Echinoid *Clypeaster rosaceus*. *The Biological Bulletin*, 224, 192-199.
- ZOTTOLI, R. 1983. Amphisamytha galapagensis, a new species of ampharetid polychaete from the vicinity of abyssal hydrothermal vents in the Galapagos Rift, and the role of this species in rift ecosystems. *Proceedings of the Biological Society of Washington*, 96, 379-391.