

Australian Government

Department of the Environment, Water, Heritage and the Arts Supervising Scientist

SUPERVISING SCIENTIST

Annual Report 2009-2010

© Commonwealth of Australia 2010

This work is copyright. Apart from any use as permitted under the *Copyright Act 1968*, no part may be reproduced by any process without prior written permission from the Supervising Scientist.

This report should be cited as follows:

Supervising Scientist 2010. Annual Report 2009–2010. Supervising Scientist, Darwin.

ISSN 0158-4030 ISBN-13: 978-1-921069-13-0

The Supervising Scientist is part of the environmental program of the Australian Government Department of Sustainability, Environment, Water, Population and Communities¹

Contact

The contact officer for queries relating to this report is:

Ann Webb Supervising Scientist Division Department of Sustainability, Environment, Water, Population and Communities Postal: GPO Box 461, Darwin NT 0801 Australia Street: SEWPAC Building, Pederson Road/Fenton Court, Marrara NT 0812 Australia

Telephone61 8 8920 1100Facsimile61 8 8920 1199E-mailenquiries_ssd@environment.gov.au

Supervising Scientist homepage address is www.environment.gov.au/ssd Annual Report address: www.environment.gov.au/ssd/publications/ss09-10/index.html

For more information about Supervising Scientist publications contact:

Publications Inquiries Supervising Scientist Division Department of Sustainability, Environment, Water, Population and Communities GPO Box 461, Darwin NT 0801 Australia

Telephone61 8 8920 1100Facsimile61 8 8920 1199E-mailpublications_ssd@environment.gov.au

Design and layout: Supervising Scientist Division Cover design: Carolyn Brooks, Canberra Printed in Canberra by Union Offset on Australian paper from sustainable plantation timber.

¹ Following machinery of government changes on 14 September 2010 the department's name was changed in line with the restructure of its portfolio responsibilities.

Australian Government

Department of Sustainability, Environment, Water, Population and Communities Supervising Scientist

The Hon Tony Burke MP Minister for Sustainability, Environment, Water, Population and Communities Parliament House CANBERRA ACT 2600

18 October 2010

Dear Minister

In accordance with subsection 36(1) of the *Environment Protection (Alligator Rivers Region) Act 1978* (the Act), I submit to you the thirty-second Annual Report of the Supervising Scientist on the operation of the Act during the period of 1 July 2009 to 30 June 2010.

Yours sincerely

Alan Hughes Supervising Scientist

ABN 34190894983

Darwin Office

GPO Box 461 Darwin NT 0801 Australia Tel (08) 8920 1100 Fax (08) 8920 1199 E-mail: enquiries_ssd@environment.gov.au Internet: www.environment.gov.au/ssd

Jabiru Field Station

Locked Bag 2 Jabiru NT 0886 Australia Tel (08) 8979 9711 Fax (08) 8979 2076 E-mail: enquiries_ssd@environment.gov.au Internet: www.environment.gov.au/ssd

Photos (from top left) Measuring stream discharge, sieving soil, field spectral calibration on Jabiluka billabong, testing probes on Ranger trial landform (TL), bushtucker collecting and (inset) green plums, community liaison, ground calibration of satellite image (and below that) soil sampling, spectral sampling on Ranger TL, ARRTC members field trip, biomass survey on Magela floodplain, seminar at SSD, snail aquaculture tanks at Jabiru Field Station, (bottom right) deployment of uranium-spiked sediments.

CONTENTS

LE	TTEF	r of ti	RANSMITTAL	III
FC	DREW	/ORD		XII
รเ	JPER	VISING	SCIENTIST'S OVERVIEW	XIII
AE	BBRE	VIATIC	ONS	XIX
GI	loss	ARY		xx
1	INT	RODUG	CTION	1
	1.1	Role a	and function of the Supervising Scientist	1
	1.2	Perfor	mance summary	2
	1.3	Busine	ess planning	2
	1.4	The A	lligator Rivers Region and its uranium deposits	2
		1.4.1		3
		1.4.2	Jabiluka	3
		1.4.3	Nabarlek	3
		1.4.4	Koongarra	4
		1.4.5	South Alligator Valley mines	4
2	EN\	/IRON	MENTAL ASSESSMENTS OF URANIUM MINES	5
	2.1	Superv	vision process	5
		2.1.1	Minesite Technical Committees	5
		2.1.2	Audits and inspections	5
		2.1.3	Assessment of reports, plans and applications	6
	2.2	2.2 Ranger		7
		2.2.1	Developments	7
		2.2.2	On-site environmental management	9
		2.2.3	Off-site environmental protection	17
	2.3	Jabilu	ka	36
		2.3.1	Developments	36
		2.3.2	On-site environmental management	36
		2.3.3	Off-site environmental protection	38
	2.4	Nabar	lek	39
		2.4.1	Developments	39
		2.4.2	On-site conditions	40

		2.4.3	Off-site environmental protection	41	
	2.5	Other activities in the Alligator Rivers Region			
		2.5.1	Rehabilitation of the South Alligator Valley uranium mines	41	
		2.5.2	Exploration	42	
	2.6	Radiol	ogical issues	42	
		2.6.1	Background	42	
		2.6.2	Radiation at and from Ranger	44	
		2.6.3	Jabiluka	48	
	2.7	EPBC	assessment advice	49	
3	ENV		IENTAL RESEARCH AND MONITORING	50	
	3.1		oring of erosion and solute loads from the Ranger trial		
		landfor	rm	53	
	3.2	In situ	biological monitoring in Gulungul Creek	63	
	3.3	Develo	pping sediment quality criteria for uranium	65	
	3.4	Toxici	ty testing of Ranger process water permeate	69	
	3.5	Influence of dissolved organic carbon on the toxicity of aluminium to tropical freshwater biota			
	3.6	6 Characterisation of the pre-mining radiological footprint at Ranger		76	
	3.7	Radiol	ogical characterisation of Ranger mine land application areas	81	
	3.8	Remote sensing framework for environmental monitoring within the Alligator Rivers Region			
	3.9	The Bushtucker database			
	3.10	0 Conceptual models of contaminant pathways for operational phase of Ranger uranium mine		94	
4	STA	TUTOF	RY COMMITTEES	97	
	4.1	Introdu	action	97	
	4.2	Alligat	tor Rivers Region Advisory Committee	97	
	4.3	3 Alligator Rivers Region Technical Committee		98	
5	CON	MUNI	CATION AND LIAISON	100	
	5.1	Introdu	action	100	
	5.2	Resear	ch support and communication	100	
		5.2.1	Indigenous employment and consultation	100	
		5.2.2	Research protocols for Kakadu National Park	102	
		5.2.3	Internal communication	103	
		5.2.4	Communication with technical stakeholders and the general community	103	

Contents

		5.2.5	Australia Day awards	104
	5.3	Nation	al and international environmental protection activities	105
		5.3.1	Revision of National Water Quality Guidelines	105
		5.3.2	Basslink	105
		5.3.3	Northern Australian Water Futures Assessment	105
		5.3.4	Tropical Rivers and Coastal Knowledge Research Program	106
		5.3.5	Kakadu Research Advisory Committee	106
		5.3.6	Special Feature in the Journal of Spatial Science	106
		5.3.7	EPBC compliance audits	107
		5.3.8	Rum Jungle collaboration	107
		5.3.9	Other contributions	108
	5.4	Scienc	e communication (including conferences)	108
6		INIST	RATIVE ARRANGEMENTS	112
	6.1	Humai	n resource management	112
		6.1.1	Supervising Scientist	112
		6.1.2	Structure	112
		6.1.3	Investors in People	113
		6.1.4	Occupational Health and Safety	114
	6.2	Financ	ce	115
	6.3	Facilit	ies	115
		6.3.1	Darwin facility	115
		6.3.2	Jabiru Field Station	116
	6.4	Inform	nation management	116
	6.5	Interpr	retation of Ranger Environmental Requirements	117
	6.6	Minist	erial directions	117
	6.7	Enviro	onmental performance	117
	6.8	Anima	al experimentation ethics approvals	117
AP	PENI		ARRTC KEY KNOWLEDGE NEEDS 2008–2010:	
	URA	NIUM	MINING IN THE ALLIGATOR RIVERS REGION	119
AP	PENI	DIX 2 F	PUBLICATIONS FOR 2009–2010	132
AP	PENI	DIX 3 F	PRESENTATIONS TO CONFERENCES AND	
	SYN	IPOSIA	A, 2009–2010	136
INC	DEX			138

Tables

Table 2.1 Ranger production activity for 2009–2010 by quarter	7
Table 2.2 Ranger production activity for 2005–2006 to 2009–2010	7
Table 2.3 Audit and RPI	12
Table 2.4 Grading System	13
Table 2.5 Ranger Minesite Technical Committee meetings	15
Table 2.6 RPI Focus during the reporting period	36
Table 2.7 Jabiluka Minesite Technical Committee meetings	38
Table 2.8 Annual radiation doses received by workers at ranger mine	44
Table 2.9 Radon decay product concentrations at Jabiru and Jabiru East and total and mine-derived annual doses received at Jabiru 2006–09	47
Table 3.1 Total bedload collected for 2009–10 wet season	58
Table 3.2 Bedload particle size distribution data for samples collected on 17March 2010 and 15 April 2010	59
Table 3.3 Rainfall events during the week prior to bedload collection	59
Table 3.4 Water quality of Magela Creek water and untreated and treated process water from Ranger uranium mine	70
Table 3.5 Toxicity estimates for treated process water from Ranger uranium mine	71
Table 3.6 Effect of two different forms of dissolved organic carbon on the toxicity of aluminium to three local freshwater species	74
Table 3.7 Sources of water for land application areas at Ranger uranium mine	82
Table 3.8 Spectral bands for the world-view 2 sensor	88
Table 3.9 Potential stressors and transport mechanisms associated with Ranger uranium mine operational phase	96
Table 5.1 Researchers and other visitors, 2009–10	110
Table 6.1 Staffing numbers and locations	113
Table 6.2 Summary of direct program expenses	115
Table 6.3 Animal experimentation ethics approvals	118

Figures

Map 1 Alligator Rivers Region	xvi
Map 2 Ranger minesite	xvii
Map 3 Sampling locations used in SSD's research and monitoring programs	xviii
Figure 2.1 Annual rainfall Jabiru Airport 1980–81 to 2009–10	9

Figure 2.2 Electrical conductivity and discharge measurements in Magela Creek between December 2009 and July 2010 – continuous monitoring data	18
Figure 2.3 Uranium concentrations measured in Magela Creek by SSD between December 2009 and June 2010	19
Figure 2.4 Electrical conductivity measurements in Magela Creek between December 2009 and June 2010 – grab sample data	20
Figure 2.5 Electrical conductivity measurements and water level (lower trace) in Magela Creek between December 2005 and July 2010 – continuous monitoring data	20
Figure 2.6 Electrical conductivity measurements in Magela Creek (SSD data) between December 2002 and July 2010 – grab sample data	
Figure 2.7 Uranium concentrations in Magela Creek since the 2002–03 wet season – grab sample data	21
Figure 2.8 Radium-226 in Magela Creek 2001–2010	22
Figure 2.9 Electrical conductivity measurements in Gulungul Creek between December 2002 and June 2010 – grab sample measurements	23
Figure 2.10 Electrical conductivity measurements in Gulungul Creek between December 2009 and June 2010 – continuous monitoring data	24
Figure 2.11 Uranium concentrations measured in Gulungul Creek by SSD between December 2009 and June 2010 – grab sample measurements.	24
Figure 2.12 Uranium concentrations measured in Gulungul Creek by SSD between December 2002 and June 2010 – grab sample measurements	25
Figure 2.13 Time-series of snail egg production data from toxicity monitoring tests conducted in Magela Creek using creekside tests and in situ tests	27
Figure 2.14 Mean concentrations of U measured in mussel soft-parts, sediment and water samples collected from Mudginberri Billabong and Sandy Billabong since 2000	29
Figure 2.15 Annual committed effective doses from Ra226 and Pb210 for a 10 year old child eating 2 kg of mussels (wet) collected at Mudginberri Billabong	30
Figure 2.16 Paired upstream-downstream dissimilarity values calculated for community structure of macroinvertebrate families in several streams in the vicinity of the Ranger mine for the period 1988 to 2010	32
Figure 2.17 Ordination plot of macroinvertebrate community structure data from sites sampled in several streams in the vicinity of Ranger mine for the period 1988 to 2010	33
Figure 2.18 Paired control-exposed dissimilarity values calculated for community structure of fish in Mudginberri ('exposed') and Sandy ('control') Billabongs in the vicinity of the Ranger mine over time	34
Figure 2.19 Relative abundance of chequered rainbowfish in Mudginberri and Sandy billabongs from 1989 to 2010 with associated total	
discharge in Magela Creek	35

Figure 2.20 Electrical conductivity measurements in Ngarradj between December 2009 and June 2010 – continuous monitoring data	39
Figure 2.21 Radon decay product concentration measured by SSD and ERA in Jabiru and Jabiru East from January 2004 to March 2010	46
Figure 2.22 Long lived alpha activity concentration measured by SSD and ERA in Jabiru and Jabiru East from January 2004 to March 2010	46
Figure 2.23 Radon decay product and long lived alpha activity concentrations measured at SSD's Mudginberri Four Gates Rd radon station from July 2004 to March 2010	48
Figure 3.1 Layout of the plots on the trial landform	53
Figure 3.2 Runoff through flume on trial landform erosion plot 3 during a storm event	54
Figure 3.3 Digital Elevation Model of trial landform produced from December 2009 survey	55
Figure 3.4 Locations of scanning laser instrument	56
Figure 3.5 High resolution digital elevation model of erosion plot 2	57
Figure 3.6 Rainfall induced turbidity events occurring between 4 and 11am on 13 April 2010	57
Figure 3.7 Box plot summarising the mean, maximum, minimum, third quartile and first quartiles of the maximum first flush EC values and scatter plot of maximum first flush EC values and total event rainfall	60
Figure 3.8 Box plots showing the mean, maximum, minimum, third quartile and first quartile values of Mg, SO4, U and EC measured in the water samples collected from each plot over the 2009–10 wet season	61
Figure 3.9 Rainfall event between 4 and 7 am on 1 February 2010	62
Figure 3.10 Rainfall event between 3 and 4 pm on 23 March 2010	62
Figure 3.11 In situ toxicity monitoring results for freshwater snail egg production for Gulungul Creek compared with results from Magela Creek, 2009–10 wet season	64
Figure 3.12 Deployment of uranium-spiked sediments for pilot experiment at Gulungul Billabong study site, 9 December 2009, and Gulungul Billabong study site, 7 January 2010	68
Figure 3.13 Responses of five tropical freshwater species to treated process water from Ranger uranium mine	71
Figure 3.14 Concentration-response plots for Al exposures: Suwannee River fulvic acid in dilute Magela Creek water; Sandy Billabong Water diluted in synthetic Magela Creek water;	75
Figure 3.15 Linear regression fits of IC50 values from Figure 3.14 against DOC concentrations for each of the three test species and the two types of DOC	76
Figure 3.16 1997 AGS data and the results of on ground gamma dose rate measurements performed from 2007 to 2009, overlaid on a 2006 Quickbird image of the area immediately south of the Ranger lease	78
Carrier and the second and the second second of the real for the	,0

Contents

Figure 3.17 Radon flux densities plotted versus soil radium activity concentrations measured at Anomaly 2	79
Figure 3.18 Radon concentration in air for various heights (30 cm, 50 cm, 150 cm) above the ground	80
Figure 3.19 ²²⁶ Ra/ ²¹⁰ Pb activity ratios and ²²⁶ Ra activity concentrations of the soils collected and data overlaid on results from a 1976 airborne gamma survey	84
Figure 3.20 Radon flux densities measured in the dry and wet season, respectively, at various distances from the sprinklers at LAAs on the Ranger lease	86
Figure 3.21 Total alpha activity at various heights above ground in the dry season 2008 along a transect in Magela B land application area	87
Figure 3.22 Distribution of the Ground Control Points (GCPs) across the WV-2 imagery, example of tarpaulin GCP (site 2) captured by the WV-2 satellite in the panchromatic band, and collection of the dGPS data from the site 2 GCP	89
Figure 3.23 Calibration tarpaulins as captured by the WV-2 satellite (panchromatic band), photographs of target set up on Jabiru Oval, and the spectral signal of each tarpaulin as measured with the ASD SpecPro spectrometer	90
Figure 3.24 Google Earth snapshot with an information callout box and customised icons	93
Figure 3.25 Another Google Earth snapshot showing a callout box with icons for the bushtucker species sampled at that site	93
Figure 3.26 Conceptual model diagram for transport of inorganic toxicants from Ranger uranium mine via surface water to surface water pathway	95
Figure 5.1 SSD staff discuss research activities with local residents	102
Figure 5.2 Schoolchildren from West Arnhem College attending a presentation on ecosystem protection at Jabiru Field Station	102
Figure 5.3 The Kakadu Junior Ranger program visits Jabiru Field Station	102
Figure 5.4 Macroinvertebrate display at 'Friends of Fogg Dam' Field Day	
Figure 5.5 SSD staff at Mahbilil	104
Figure 5.6 Wendy Murray shows the IAEA delegates around the Jabiru Field Station	
Figure 6.1 Organisational structure of the Supervising Scientist Division (as at 30 June 2010)	112
Figure 6.2 JFS aquaculture facility after installation of new roof and snail tubs	116

Foreword

Subsection 36(1) of the *Environment Protection (Alligator Rivers Region) Act 1978* requires the Supervising Scientist to provide an Annual Report to Parliament on the operation of the Act and on certain related matters. The Act requires the following information to be reported:

- all directions given to the Supervising Scientist by the Minister who, for this reporting period, was the Minister for Environment Protection, Heritage and the Arts;
- information on the collection and assessment of scientific data relating to the environmental effects of mining in the Alligator Rivers Region;
- standards, practices and procedures in relation to mining operations adopted or changed during the year, and the environmental effects of those changes;
- measures taken to protect the environment, or restore it from the effects of mining in the region;
- requirements under prescribed instruments that were enacted, made, adopted or issued and that relate to mining operations in the Alligator Rivers Region and the environment;
- implementation of the above requirements; and
- a statement of the cost of operations of the Supervising Scientist.

SUPERVISING SCIENTIST'S OVERVIEW

The Supervising Scientist plays an important role in the protection of the environment of the Alligator Rivers Region of the Northern Territory through the supervision, monitoring and audit of uranium mines in the Region, as well as research into the possible impact of uranium mining on the environment of the Region.

Ranger is currently the only operational uranium mine in the Region, and is owned and operated by Energy Resources of Australia Ltd (ERA). Production commenced at Ranger in August 1981, and current plans will see mining of the Ranger 3 deposit cease in 2012 with milling of stockpiled ore expected to continue through until 2020. Recent proposals by ERA to include a heap leach facility at Ranger have not affected the current mining and milling operations timetable but could potentially increase production over the same period.

As the time of mine closure and rehabilitation draws closer, the work of the Supervising Scientist includes a focus on these themes as well as on current operational issues. Staff have been engaged with stakeholders in discussions and research activities associated with rehabilitation and closure.

Staff of the Division remain active in ongoing supervision, inspection and audit, radiological, biological and chemical monitoring, and research activities in relation to both present and past uranium mining activities in the Region. Significant work has continued in developing improvements to the Supervising Scientist's surface water monitoring program. This program is relevant to both the operational and rehabilitation phases of mining.

At Ranger mine the 2009–10 wet season was around average with rainfall of 1596 mm. During the year there were no reported incidents that resulted in any environmental impact off the immediate minesite. The extensive monitoring and research programs of the Supervising Scientist Division confirm that the environment has remained protected through the period.

Over the past year ERA achieved a small reduction in the process water volumes stored on site by reducing additions to the process water systems through measures including reducing the area of surface runoff catchment reporting to it. However, delays in commissioning of the process water treatment facility and deferred implementation of a proposed enhanced evaporation program mean that the process water inventory at the mine remains a focus.

Monitoring programs by ERA, the NT Department of Resources and SSD continue to indicate that there is no evidence of seepage from the base of the Ranger tailings storage facility (TSF) impacting on Kakadu National Park. ERA has installed additional monitoring bores around the TSF at the request of stakeholders, including SSD.

The SSD surface water quality monitoring program continues to be improved with refinements to the operation of continuous monitoring of pH, electrical conductivity (EC) and turbidity in Magela and Gulungul Creeks upstream and downstream of Ranger mine. Continuous monitoring results indicate that water quality variations, both natural and mine-related, can occur on a time base measured in hours rather than days. This method of

monitoring has therefore proven to be superior to the statutory weekly grab sampling technique that is currently employed.

The SSD monitoring stations have also been equipped with autosamplers that collect water samples triggered by in-stream events such as increases in EC or turbidity exceeding defined threshold levels. This has enhanced the capability of the monitoring program by allowing collection of samples outside of normal working hours or when conditions in the creeks are unsafe for manual grab sampling.

During April 2010 there were occasions where EC spikes in Magela Creek triggered the SSD autosampler at the downstream monitoring station. Subsequent analysis of the samples confirmed that the cause was elevated levels of magnesium sulfate in the water and that these events did not contain significantly elevated levels of uranium or radium. It was concluded that the anomalous EC readings were mine-related, having resulted from elevated salt levels in Retention Pond 1.

The principal biologically-based toxicity monitoring approach for 2009–10 was in situ monitoring using fresh water snails, with test organisms deployed in containers floating in the creek water. This program was extended from Magela Creek to include Gulungul Creek during the 2009–10 wet season.

Determination of radionuclide levels in mussels from Mudginberri Billabong has been a continuing element of the SSD monitoring program downstream of Ranger. Results for 2009–10 are similar to previous years and it is concluded that the consistently low levels of uranium and radium in mussels collected downstream of Ranger pose no risk to human or ecological health.

Ecotoxicology research programs in progress include determination of responses for a variety of organisms to pulse event durations for a range of magnesium concentrations. Previous work has confirmed a strong correlation between magnesium and EC in Magela Creek. Use of EC as a surrogate for magnesium has the obvious advantage of being suitable for direct measurement rather than relying on sampling and analysis at a remote laboratory.

An eight hectare trial landform was constructed by ERA during late 2008 and early 2009 adjacent to the north-western wall of the tailings storage facility at Ranger mine. SSD is involved in erosion studies on the trial landform to assist in longer term modelling of the performance of ultimate landform created during rehabilitation of the site.

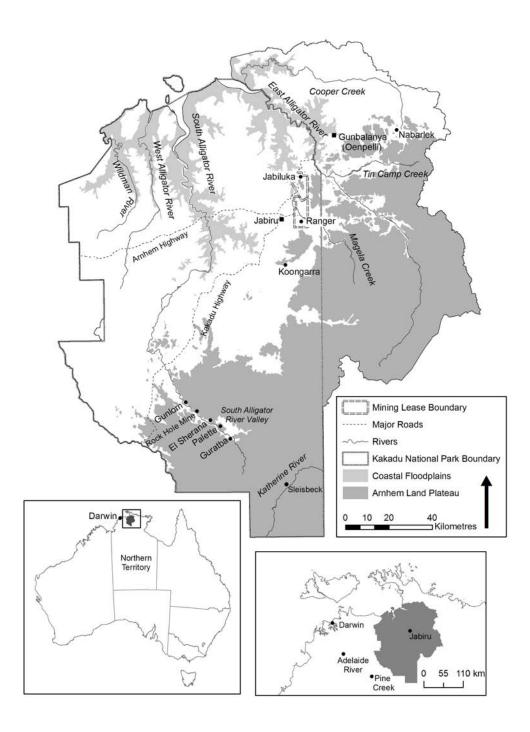
The Jabiluka project remains in long-term care and maintenance, and the next stage of the project is a matter for discussion between ERA and the area's traditional owners.

The Nabarlek mine in western Arnhem Land was decommissioned in 1995 and the rehabilitation of this site remains under ongoing assessment. During the year Uranium Equities Limited undertook exploration and rehabilitation activities at Nabarlek. SSD participated in stakeholder inspections and audits of these activities and there were no significant environmental issues identified.

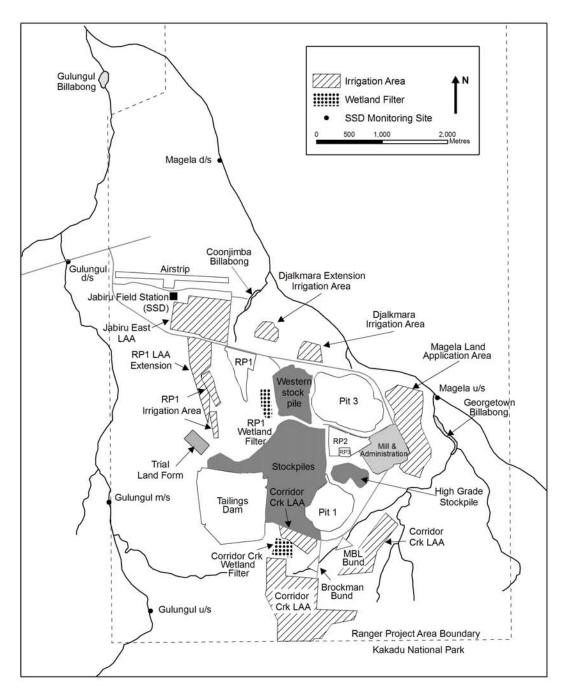
Detailed research outcomes of the Environmental Research Institute of the Supervising Scientist (*eriss*) are published in journal and conference papers and in the Supervising Scientist and Internal Report series. Highlights of this work are described in this annual report.

In May 2006, the Australian Government announced funding to undertake rehabilitation of former uranium mining sites in the South Alligator River Valley in the southern part of Kakadu National Park. Most of the work associated with this project has now been completed. SSD continues to provide advice and assistance to the Director of National Parks as the rehabilitation works are completed and post works monitoring progresses.

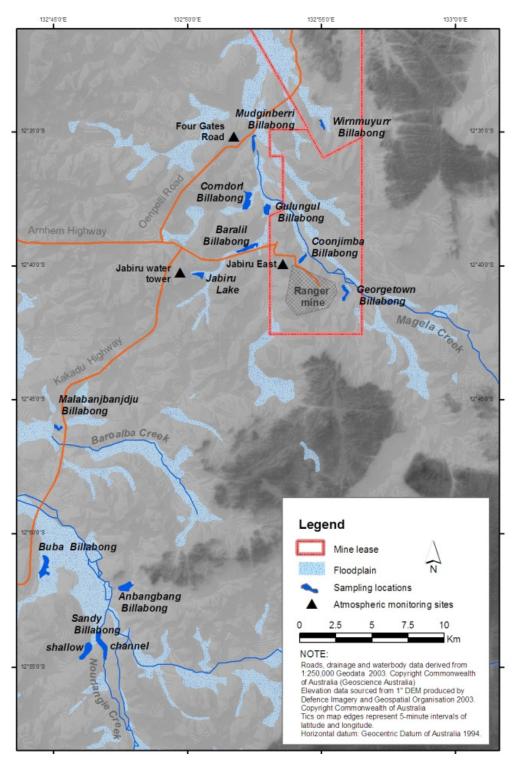
The Alligator Rivers Region Technical Committee (ARRTC) continues to play a vital role in assessing the science used in making judgements about the protection of the environment from the impacts of uranium mining. Dr Gavin Mudd was appointed to ARRTC as a technical member representing environmental non-government organisations. Dr Carl Grant and Professor Peter Johnston resigned as independent members during 2009–10 and replacement members were appointed in early 2010–11. The new members are Professor David Mulligan and Mr Andrew Johnston. Their areas of expertise are in plant ecology and rehabilitation and in radiation protection respectively.


During the reporting period, SSD provided advice to the Approvals and Wildlife Division of the department on referrals submitted in accordance with the EPBC Act for proposed new and expanding uranium mines, including the following projects:

- Olympic Dam Expansion, SA
- Ranger Mine Heap Leach proposal, NT
- Beverley North Project, SA
- Yeelirrie WA


Funds were provided in the 2009–10 Federal Budget for a four-year program to progress and implement environmental maintenance activities, conduct appropriate environmental monitoring programs and develop contemporary site rehabilitation strategies at Rum Jungle under a national partnership agreement between the Northern Territory and the Australian Government. The Rum Jungle Technical Working Group (RJTWG) comprises representatives from the NT Department of Resources, NT Department of Natural Resources, Environment, the Arts and Sport, Australian Government Department of Resources, Energy and Tourism, the Northern Land Council and SSD. SSD has contributed to the work of the RJTWG during the reporting period.

Finally, I would like to offer my personal thanks to all the staff of the Supervising Scientist Division for their continued enthusiasm and efforts during the year. The commitment and professionalism of the Division's staff remain vital factors in the Division being able to fulfil its role in environmental protection.


Alan Hughes Supervising Scientist

Map 1 Alligator Rivers Region

Map 2 Ranger minesite

Map 3 Sampling locations used in SSD's research and monitoring programs

ABBREVIATIONS

ARR	Alligator Rivers Region
ARRAC	Alligator Rivers Region Advisory Committee
ARRTC	Alligator Rivers Region Technical Committee
DEWHA	Department of the Environment, Water, Heritage and the Arts
DRET	Department of Resources, Energy and Tourism
DoR	Department of Resources (formerly Department of Regional Development,
	Primary Industry, Fisheries and Resources)
EMS	Environmental Management System
ERA	Energy Resources of Australia Ltd
ERAES	ERA Environmental Strategy (formerly EWLS)
eriss	Environmental Research Institute of the Supervising Scientist
ERs	Environmental Requirements
G8210009	Magela Creek d/s (downstream) gauging station
GAC	Gundjeihmi Aboriginal Corporation
IAEA	International Atomic Energy Agency
ICRP	International Commission on Radiological Protection
KKN	Key Knowledge Needs
LAA	Land application area
MCUGT	Magela Creek u/s (upstream) site (formerly described as MCUS)
MTC	Minesite Technical Committee
NLC	Northern Land Council
NRETAS	Department of Natural Resources, Environment, the Arts and Sport
OSS	Office of the Supervising Scientist
POSS	Parks Operational Support Section
РОТ	Parks Operation and Tourism Branch
RJTWG	Rum Jungle Technical Working Group
RL	Reduced Level - the number after RL denotes metres above or below a
	chosen datum
RMC	Rockhole Mine Creek
RPI	Routine Periodic Inspection
SEWPAC	Department of Sustainability, Environment, Water, Population and Communities
SSAR	Supervising Scientist Annual Report
SSD	Supervising Scientist Division
TRaCK CERF	Tropical Rivers and Coastal Knowledge Commonwealth Environmental Research Facility
TSF	Tailings Storage Facility
UEL	Uranium Equities Limited

GLOSSARY

1s – 7s	When referring to ore and stockpiles indicates the amount of extractable uranium in the ore (grade). At Ranger, 1s indicates the lowest grade (waste) and 7s indicates the highest grade ore.
airborne gamma survey	Aerial measurements of the terrestrial gamma radiation using a large volume sodium iodide (NaI) detector on board an aircraft.
alpha radiation (α)	A positively charged helium (He ²⁺) nucleus (two protons + two neutrons) that is spontaneously emitted by an energetically unstable heavy atomic nucleus (such as 226 Ra or 238 U).
application	A document stating how the mining operator proposes to change the conditions set out in the mining Authorisation. These changes need to be approved by all MTC stakeholders.
authorisation	For mining activities authorisation is required under the Northern Territory <i>Mining Management Act</i> (MMA) for activities that will result in substantial disturbance of the ground. It details the authorised operations of a mine, based on the submitted mining management plan and any other conditions that the Northern Territory Minister considers appropriate.
becquerel (Bq)	SI unit for the activity of a radioactive substance in decays per second [s $^{\cdot1}$].
beta radiation (β)	A high energy electron or positron emitted when an unstable atomic nucleus (such as ⁹⁰ Sr or ⁴⁰ K) loses its excess energy.
bioaccumulation	Occurs when the rate of uptake by biota of a chemical substance, such as metals, radionuclides or pesticides is greater than the rate of loss. These substances may be taken up directly, or indirectly, through consumption of food containing the chemicals.
bioavailable	The proportion of the total present (in water, sediment, soil or food) of metals and radionuclides, that can be taken up by biota (see also bioaccumulation).
biodiversity (biological diversity)	The variety of life forms, including plants, animals and micro-organisms, the genes they contain and the ecosystems and ecological processes of which they are a part.
biological assessment	Use and measurement of the biota to monitor and assess the ecological health of an ecosystem.
biological community	An assemblage of organisms characterised by a distinctive combination of species occupying a common environment and interacting with one another.
bund	Embankment or wall designed to retain contents (usually liquids) in the event of leakage or spillage from a storage facility.
concentration factor	The metal or radionuclide activity concentration measured in biota divided by the respective concentration measured in the underlying soil (for terrestrial biota) or water (for aquatic biota).
damp-proof course	A waterproof barrier comprising bitumen and aluminium.
direct seeding	Vegetation is established by broadcasting seed across the area to be revegetated.
dissolved organic carbon	Natural organic material from plants and animals that has broken down and is able to pass through a very fine (0.45 micrometre) filter.

dose coefficient	The committed tissue equivalent dose or committed effective dose Sievert [Sv] per unit intake Becquerel [Bq] of a radionuclide. See definition of Sievert and Becquerel.
dose constraint	The International Commission on Radiation Protection (ICRP) defines dose constraint as 'a prospective restriction on anticipated dose, primarily intended to be used to discard undesirable options in an optimization calculation' for assessing site remediation options.
early detection	Measurable early warning biological, physical or chemical response in relation to a particular stress, prior to significant adverse affects occurring on the system of interest.
flume	A channel control structure with known cross-sectional area used to measure flow rate of runoff water.
fulvic acid	A component of dissolved organic carbon that is especially reactive and forms strong complexes with metals. Fulvic acids account for a large part of the dissolved organic matter in natural water.
gamma radiation (γ)	High energy electromagnetic radiation emitted by excited nuclei (for example after an alpha or beta decay) in their transition to lower-lying nuclear levels.
grab sampling	Collection of a discrete water sample for chemical analysis
Gray (Gy)	Name for absorbed dose 1 Gray = 1 Joule kg^{-1} . The absorbed dose gives a measure for the energy imparted by ionising radiation to the mass of the matter contained in a given volume element.
half-life	Time required to reduce by one-half the concentration (or activity in the case of a radionuclide) of a material in a medium (eg soil or water) or organism (eg fish tissue) by transport, degradation or transformation.
Hydstra	Hydrology data management software package.
IC50	The concentration of a compound that causes a 50% inhibition in a particular response (eg growth, reproduction) of an organism relative to that of a control organism (ie an organism not exposed to the compound).
ionising radiation	Sub-atomic particles (α , β) or electromagnetic (γ , x-rays) radiation that have enough energy to knock out an electron from the electron shell of molecules or atoms, thereby ionising them.
land application	A method for management of excess accumulated water by spray irrigation. The method depends on the evaporation from spray droplets, and from vegetation and ground surfaces once its reaches them.
laterite	In the Ranger mine context, laterite is a local term used to describe well weathered rock and soil profile material that consists primarily of a mixture of sand and silt/clay size particles. It may or may not exhibit characteristics of a fully-developed laterite profile.
LC50	The concentration of a compound that causes the death of 50% of a group of organisms relative to that of a control group of organisms (ie a group of organisms not exposed to the compound).
MOL	Maximum Operating Level. The maximum level at which a liquid containing impoundment can be operated.
MCUGT	Current acronym for the upstream station u/s (formerly described as MCUS).
ore	A type of rock that bears minerals, or metal, which can be extracted.

permeate	The higher purity stream produced by passage of water through a reverse osmosis (RO) treatment process.
polished	Water that has been passed through a wetland filter.
pond water	Water derived from seepage and surface water runoff from mineralised rock stockpiles as well as runoff from the processing areas that are not part of the process water circuit.
potable water	Water suitable for human consumption.
process water	Water that has passed through the uranium extraction circuit, and all water that has come into contact with the circuit. It has a relatively high dissolved salt load constituting the most impacted water class on site.
radiologically anomalous area	Area that displays significantly above background levels of radioactivity.
radionuclide	An atom with an unstable nucleus that loses its excess energy via radioactive decay. There are natural and artificial radionuclides. Natural radionuclides are those in the uranium (²³⁸ U), actinium (²³⁵ U) and thorium (²³² Th) decay series for example, which are characteristic of the naturally occurring radioactive material in uranium orebodies.
radium	A radioactive chemical element that is found in trace amounts in uranium ores.
radon	Colourless, odourless, tasteless, naturally-occurring radioactive noble gas formed from the decay of radium.
Sievert (Sv)	Name for equivalent dose and effective dose 1 Sievert = 1 Joule-kg ⁻¹ . In contrast to the Gray, the Sievert takes into account both the type of radiation and the radiological sensitivities of the organs irradiated, by introducing dimensionless radiation and tissue weighting factors, respectively.
sonde	A water quality instrument that is immersed in water for measuring (typically) electrical conductivity, pH, turbidity and dissolved oxygen.
speciation (of an element)	The forms in which an element exists within a particular sample or matrix.
stable lead isotopes	Lead has four stable isotopes, three of which, ²⁰⁶ Pb, ²⁰⁷ Pb and ²⁰⁸ Pb, are end members of the natural uranium, actinium and thorium decay series, respectively. ²⁰⁴ Pb is primordial only.
tailings	A slurry of ground rock and process effluents left over once the target product, in this case uranium, has been extracted from mineralised ore.
thoriferous	Containing thorium.
toxicity monitoring	The means by which the toxicity of a chemical or other test material is determined in the field over time. The monitoring comprises field toxicity tests which are used to measure the degree of response produced by exposure to a specific level of stimulus (or concentration of chemical).
tube stock	Seeds are germinated in a plant nursery and the young seedlings are then planted out.
uraniferous	Containing uranium.
uranium oxide	An oxide of uranium which occurs naturally or is produced by a uranium extraction process. This is the product from the Ranger mine.
water treatment plant (WTP)	The process system that removes undesirable chemicals, materials, and biological contaminants from water thereby decreasing its ability to harm the environment.