CONTENTS

LETT	ΓER	OF TF	RANSMITTAL	111
FOR	EW	ORD		XIII
SUP	ERV	/ISING	SCIENTIST'S OVERVIEW	XIV
ABB	RE\	/ΙΑΤΙΟ	NS	XX
1 I	NTF	RODUC	CTION	1
1	.1	Role at	nd function of the Supervising Scientist	1
1	.2	Perform	mance summary	1
1	.3	The Al	lligator Rivers Region and its uranium deposits	2
		1.3.1	Ranger	2
		1.3.2	Jabiluka	3
		1.3.3	Nabarlek	3
		1.3.4	Koongarra	3
		1.3.5	South Alligator Valley mines	3
2 E	ENV	IRONN	IENTAL ASSESSMENTS OF URANIUM MINES	5
2	2.1	Superv	vision process	5
		2.1.1	Minesite Technical Committees	5
		2.1.2	Audits and inspections	5
		2.1.3	Assessment of reports, plans and applications	6
2	2.2	Ranger	r	6
		2.2.1	Developments	6
		2.2.2	On-site environmental management	8
		2.2.3	Off-site environmental protection	18
2	2.3	Jabiluk	Ka	34
		2.3.1	Developments	34
		2.3.2	On-site environmental management	34
		2.3.3	On-site environmental protection	30
2	2.4	Nabari	ek	40
		2.4.1	Developments	40
		2.4.2	Off-site environmental protection	40 71
~	5	2.4.J	on-she environmental protection	41
2		Other a	Delectilitation of the South Alliest on Valles and in the	42
		2.3.1	Kenadimation of the South Alligator Valley uranium mines	42

		2.5.2 Exploration	43
	2.6	Radiological issues	43
		2.6.1 Background	43
		2.6.2 Radiation at and from Ranger	44
		2.6.3 Jabiluka	47
3	ENV	IRONMENTAL RESEARCH AND MONITORING	48
	3.1	Ecotoxicological assessment of Ranger mine pond waters	50
	3.2	Chronic toxicity of uranium to larval purple-spotted gudgeon (<i>Mogurnda mogurnda</i>)	53
	3.3	Development of in situ biological monitoring methods for Magela Creek	56
	3.4	Continuous monitoring of water quality in Magela Creek	58
	3.5	Developing water quality closure criteria for Ranger billabongs using macroinvertebrate community data	63
	3.6	Assessment of groundwater data at the rehabilitated Nabarlek mine	68
	3.7	Radiological assessment of the abandoned Sleisbeck mine	71
	3.8	Impact of Cyclone Monica on catchments within the Ranger and Jabiluka leases	74
	3.9	Comparative evaluation of computer models for long-term prediction of landform stability	78
	3.10	Effect on catchment hydrology of extreme rainfall in February – March 2007	81
	3.11	Characterising fire and weed disturbance effects on the Ranger project area and surrounds – implications for rehabilitation	83
	3.12	Use of vegetation analogues to guide planning for rehabilitation of the Ranger mine site	89
	3.13	Seed biology research	93
	3.14	Tropical Rivers Inventory and Assessment Project (TRIAP)	95
4	STA	TUTORY COMMITTEES	101
	4.1	Introduction	101
	4.2	Alligator Rivers Region Advisory Committee	101
	4.3	Alligator Rivers Region Technical Committee	102
5	CON	IMUNICATION AND LIAISON	104
	5.1	Introduction	104
	5.2	Research support and communication	104
		5.2.1 Communication activities and the CSG	104

		5.2.2	Indigenous employment and consultation	105
		5.2.3	Internal communication	106
		5.2.4	Communication with technical stakeholders and the general	
			community	107
	5.3	Nation	al and international environmental protection activities	110
		5.3.1	Environmental radiation protection	110
		5.3.2	Northern Australian Water Use Experts Summit	110
		5.3.3	Kakadu National Park Landscape Change Symposium	111
		5.3.4	AusAID Public Sector Linkages Programme (PSLP) Project	111
		5 2 5	Tranical Divers Inventory and Assessment Project	111
		536	Resclink	112
	5 /	S.J.O	a communication and education	112
	5.4	Jud		112
	5.5	Interna	itional conferences	114
6	ADI	MINIST	RATIVE ARRANGEMENTS	115
	6.1	Humar	n resource management	115
		6.1.1	Supervising Scientist	115
		6.1.2	Structure	115
		6.1.3	Investors in People	116
		6.1.4	Occupational Health and Safety	116
	6.2	Financ	e	117
	6.3	Faciliti	ies	117
		6.3.1	Darwin facility	117
		6.3.2	Jabiru Field Station	118
		6.3.3	Library	118
	6.4	Busine	ess planning process	118
	6.5	Interpr	etation of Ranger Environmental Requirements	119
	6.6	Minist	erial Directions	119
	6.7	Sustair	nability	119
	6.8	Nation	al Centre for Tropical Wetland Research	124
	6.9	Anima	l experimentation ethics approvals	125
AF	PEN	DIX 1 A	ARRTC KEY KNOWLEDGE NEEDS	127
AF	PPEN	DIX 2 F	PUBLICATIONS FOR 2006–2007	139
AF	PPEN	DIX 3 F	PRESENTATIONS TO CONFERENCES AND	
	SYN	IPOSIA	A, 2006–2007	144
IN	DEX			147

Tables

Table 2.1 Ranger production activity for 2006–2007 by quarter	7
Table 2.2 Ranger production activity for 2002–2003 to 2006–2007	7
Table 2.3 Audit and RPI	13
Table 2.4 Ranger Minesite Technical Committee meetings	15
Table 2.5 Ranger Authorisation changes	15
Table 2.6 RPI Focus during the reporting period	35
Table 2.7 Jabiluka Minesite Technical Committee meetings	36
Table 2.8 Nabarlek Minesite Technical Committee meetings	40
Table 2.9 Annual radiation doses received by workers at Ranger uranium mine	44
Table 2.10 Radon decay product concentrations at Jabiru and Jabiru East,and total and mine derived annual dosesreceived at Jabiru in 2004–	
2006	46
Table 3.1 Summary of toxicity of RP2 water from Ranger mine to five local freshwater species	51
Table 3.2 Summary of toxicity of Pit 3 water from Ranger mine to three local freshwater species	53
Table 3.3 Total monthly and annual Mg load estimated at the continuous monitoring stations on Magela Creek over the 2005–06 and 2006–07 wet seasons	62
Table 3.4 Average terrestrial gamma dose rates in the Sleisbeck area	73
Table 3.5 Estimated canopy cover pre- and post- cyclone Monica for Gulungul. Ngarradi and Nabarlek	77
Table 3.6 Differences between the Siberia and CAESAR models	80
Table 3.7 Summary of fire statistics on the Ranger and Jabiluka project areas, Kakadu National Park and western Arnhem Land	84
Table 3.8 Descriptions of three broad analogue communities and the matching vegetation units	91
Table 3.9 Major activities of TRIAP sub-project 1	97
Table 3.10 Major activities of TRIAP sub-project 2	98
Table 3.11 Summary of key ecosystem assets and threats, and ecological and measurement endpoints, used for quantitative ecological risk	
assessment of aquatic ecosystems in the Daly River catchment	100
Table 5.1 International conferences, seminars and workshops	114
Table 6.1 Staffing numbers and locations	116
Table 6.2 Summary of cost of outputs	117

Contents

Table 6.3 Occupancy and area of building	121
Table 6.4 Total power consumption	121
Table 6.5 Performance – transport	122
Table 6.6 Materials – paper	123
Table 6.7 Animal experimentation ethics approvals	125

Figures

Map 1 Alligator Rivers Region	xvii
Map 2 Ranger minesite	xviii
Map 3 Sampling locations used in SSD's research and monitoring	
programmes	xix
Figure 2.1 Tailings storage facility – March 2007	8
Figure 2.2 Annual rainfall Ranger mine 1971–72 to 2006–07	9
Figure 2.3 Evaporation ponds during construction on 2s stockpile	11
Figure 2.4 Magnesium concentrations in Magela Creek since 2001	19
Figure 2.5 Uranium concentrations measured in Magela Creek by SSD and ERA between December 2006 and June 2007	20
Figure 2.6 Uranium concentrations in Magela Creek since the 2000–01	
wet season	20
Figure 2.7 Radium-226 in Magela Creek 2001–07	21
Figure 2.8 Uranium concentrations measured in Gulungul Creek by SSD and ERA during the 2006–07 wet season	22
Figure 2.9 Uranium concentrations in Gulungul Creek between 2000 and 2007	23
Figure 2.10 Creekside monitoring results for freshwater snail egg production for wet seasons between 1992 and 2007	24
Figure 2.11 Mean concentrations of U measured in mussel soft-parts, sediment and water samples collected from Mudginberri Billabong and control billabongs since 1979	26
Figure 2.12 ²²⁶ Ra activity concentrations in the flesh of freshwater mussels collected from Mudginberri Billabong 2000–2006 and Sandy Billabong 2002–2006	27
Figure 2.13 Mean concentrations of U measured in the flesh of forktail catfish, sediment and water samples collected from Mudginberri and Sandy Billabongs, since 1981	28
Figure 2.14 Paired upstream-downstream dissimilarity values calculated for community structure of macroinvertebrate families in several	20

Figure 2.14 Paired upstream-downstream dissimilarity values calculated for community structure of macroinvertebrate families in several streams in the vicinity of the Ranger mine for the period 1988 to	
2007	29
Figure 2.15 Ordination plot of macroinvertebrate communities sampled	
from sites in several streams in the vicinity of Ranger mine for the	20
	50
Figure 2.16 Paired control-exposed dissimilarity values calculated for community structure of fish in Mudginberri ('exposed') and Sandy ('control') Billabongs in the vicinity of the Ranger uranium mine	
over time	31
Figure 2.17 Paired control-exposed site dissimilarity values calculated	
for community structure of fish in 'directly-exposed' Magela and	
'control' Nourlangie and Magela Billabongs in the vicinity of the	22
E 210 P i la	33
Figure 2.18 Regression relationship between average fish abundance and average weight of <i>Eleocharis</i> spiper trap enclosure in Coopiimba	
Billabong since 1994	33
Figure 2.19 Djarr Djarr camp revegetation	35
Figure 2.20 Uranium concentrations in Ngarradi since the 1998–99 wet	
season	38
Figure 2.21 Turbidity in Ngarradj since the 1998–99 wet season	38
Figure 2.22 Uranium concentrations measured in Ngarradj by SSD and	
ERA in the 2006–07 wet season	39
Figure 2.23 Radium-226 in Ngarradj 2001–07	39
Figure 2.24 Radon decay product concentration measured by SSD and ERA in Jabiru and Jabiru East from June 2004 to June 2007	46
Figure 2.25 Radon decay product and long-lived alpha activity	
concentrations measured at SSD's Mudginberri Four Gates Rd radon	
station	47
Figure 3.1 Responses of five local freshwater species to RP2 water from Ranger mine	51
Figure 3.2 Species sensivity distribution based on IC_{10} values	52
Figure 3.3 Responses of three local freshwater species to Pit 3 water from Ranger mine	52
Figure 3.4 Effect of feeding regime on mean dry weight and length of larval purple-spotted gudgeon (<i>Mogurnda mogurnda</i>) over 28 days	54
Figure 3.5 Effect of 28 days exposure to uranium on mean dry weight, length and survival of larval purple-spotted gudgeon (<i>Mogurnda</i>	
mogurnda), normalised against the control responses	55

Figure 3.6 Comparison of snail egg production for creekside monitoring and in situ monitoring, 2005–06 and 2006–07 wet seasons	57
Figure 3.7 Relationships between mud concentration and turbidity for Magela Creek and Mg concentration and EC for upstream and downstream sites on Magela Creek	59
Figure 3.8 Predicted continuous Mg concentration traces along with grab sample values measured upstream and downstream of Ranger mine, together with Magela Creek discharge measured at gauging station G8210009, for the 2006–07 wet season	60
Figure 3.9 Estimated cumulative Mg loads upstream and downstream of Ranger mine and Magela Creek discharge measured at gauging station G8210009 over the 2005–06 and 2006–07 wet seasons	61
Figure 3.10 Ordination plots of macroinvertebrate communities from different sites and habitats in waterbodies on or near the Ranger minesite	66
Figure 3.11 Histograms of mean macroinvertebrate abundance and taxa number among waterbodies on or near the Ranger uranium mine site	67
Figure 3.12 Uranium activity concentration contour plot for Nabarlek borewaters in 2004	70
Figure 3.13 Aerial view of the Sleisbeck pit looking south and waste rock dumps, 2002	72
Figure 3.14 Radionuclide activity concentration profiles in trenches A, B and C	74
Figure 3.15 Example of a rootball and crater as a result of tree fall in the Gulungul Creek catchment	75
Figure 3.16 Estimated track of cyclone Monica across the ARR and the location of the three focus catchments	76
Figure 3.17 Simulated rehabilitated Ranger landform after 1000 years for a worst case starting condition of waste rock without vegetation cover	79
Figure 3.18 CAESAR simulation of changes to the proposed Ranger landform using high intensity rainfall inputs recorded in 1979–1980	80
Figure 3.19 Hourly rainfall data collected at Jabiru airport during the flood event	81
Figure 3.20 Gauging station G8210009 along Magela Creek during the flood on 1 March and post-flood on 6 March	82
Figure 3.21 Landslips in the upper Magela Creek catchment	82
Figure 3.22 Kakadu National Park and western Arnhem Land merged fire datasets showing the relative location of the target area, and the	
probability of a burn across seasons	85
Figure 3.23 Probability of an early dry season burn in the target area	86

Figure 3.24 Time since last burn in the target area	86
Figure 3.25 Map showing locations of perennial and annual mission grass on the RPA and on adjacent areas of Kakadu National Park	88
Figure 3.26 Cluster analysis of combined ERISS and EWLS 'trees and shrubs' data from different ARR landforms	90
Figure 3.27 Application of treatments to seeds to determine dormancy mechanisms that limit germination	94
Figure 3.28 Two common fruit eating birds, the Figbird and Pied Imperial Pigeon, used to assess the effects of bird consumption on seed germination of two local Ficus species	94
Figure 3.29 Location of Tropical Rivers Inventory and Assessment Project	96
Figure 3.30 Hierarchical and tiered approach adopted for conceptual model development and associated risk assessments	99
Figure 3.31 Flowchart of relative risk model (RRM) methodology	99
Figure 5.1 Setting up of pop-nets at sample sites within crocodile nets. and Jabiru Field Station crew in 2006–07	106
Figure 5.3 SSD staff and conference delegates at the SSD booth at the AusIMM Uranium Conference, May 2007	107
Figure 5.4 Closure consultations – Manaburduma November 2006	108
Figure 5.5 Visitors at the SSD stall at Gunbalanya Open Day	109
Figure 5.6 Healthy streams macroinvertebrate display at Mahbilil	109
Figure 5.7 PSLP mining environmental monitoring and regulation course participants and SSD presenters at Mt Todd Gold Mine, NT	112
Figure 5.8 The CSIRO Double Helix Club visits the SSD Ecotoxicology laboratory	114
Figure 6.1 Organisational structure of the Supervising Scientist Division	115
Figure 6.2 Flood damage to creek side monitoring equipment	118
Figure 6.3 Darwin DEW waste produced 2006–07	123
Figure 6.4 Darwin DEW greenhouse emissions 2006–07	124