

Detailed method for a plant import risk analysis

Version: DAFF_v036_280126

We conduct plant import risk analyses in accordance with Australia's method for pest risk analysis (PRA). This document sets out the PRA method. This method is consistent with the International Standards for Phytosanitary Measures (ISPMs), including ISPM 2: *Framework for pest risk analysis* (FAO 2019a) and ISPM 11: *Pest risk analysis for quarantine pests* (FAO 2019b) and the WTO Agreement on the Application of Sanitary and Phytosanitary Measures (WTO 1995).

A PRA is 'the process of evaluating biological or other scientific and economic evidence to determine whether an organism is a pest, whether it should be regulated, and the strength of any phytosanitary measures to be taken against it' (FAO 2025). A pest is 'any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products' (FAO 2025). A 'quarantine pest' is 'a pest of potential economic importance to the area endangered thereby and not yet present there, or present but not widely distributed and being officially controlled' (FAO 2025).

Biosecurity risk consists of 2 major components: the likelihood of a pest entering, establishing and spreading in Australia for a defined import pathway; and the consequences should this happen. These 2 components are combined to give an overall estimate of the pest risk for the defined import pathway.

Unrestricted risk is estimated taking into account, where applicable, the existing commercial production practices of the exporting country and procedures that occur on arrival in Australia. These procedures include verification by the department that the consignment received is as described on the commercial documents and its integrity has been maintained.

Restricted risk is estimated with phytosanitary measure(s) applied. A phytosanitary measure is 'any legislation, regulation or official procedure having the purpose to prevent the introduction or spread of quarantine pests, or to limit the economic impact of regulated non-quarantine pests' (FAO 2025).

A PRA is conducted in 3 consecutive stages: initiation (A1), pest risk assessment (A2) and pest risk management (A3).

A1 Stage 1: Initiation

Initiation identifies the pest(s) and pathway(s) that are of biosecurity concern and should be considered for risk analysis in relation to the identified PRA area.

A pathway is 'any means that allows the entry or spread of a pest' (FAO 2025). For this risk analysis, the 'pathway' being assessed is defined in Chapter 1 (section 1.2.2).

Detailed method for a plant import risk analysis

For this risk analysis, the 'PRA area' is defined as Australia for pests that are absent, or of limited distribution and under official control. For areas with regional freedom from a pest, the 'PRA area' may be defined based on a state or territory of Australia or may be defined as a region of Australia consisting of parts of a state or territory or several states or territories.

According to ISPM 11 (FAO 2019b), the PRA process may be initiated as a result of:

- the identification of a pathway that presents a potential pest hazard. For example, international trade is requested for a commodity not previously imported into the country or a commodity from a new area or new country of origin
- the identification of a pest that may require phytosanitary measures. For example, a new pest risk is identified by scientific research, a pest is repeatedly intercepted, a request is made to import an organism, or an organism is identified as a vector of other pests
- the review or revision of a policy. For example, a country's decision is taken to review phytosanitary regulations, requirements or operations or a new treatment or loss of a treatment system, a new process, or new information impacts on an earlier decision.

The basis for the initiation of this risk analysis is defined in Chapter 1 (section 1.2.1).

The primary elements in the initiation stage are:

- identity of the pests
- potential association of each pest with the pathway being assessed.

The identity of the pests is presented at species level by the species' scientific name in most instances, but a lower taxonomic level may be used where appropriate. Synonyms are provided where the current scientific name differs from that provided by the exporting country's National Plant Protection Organisation (NPPO) or where the cited literature used a different scientific name.

The potential association of each pest with the pathway being assessed considers information on:

- association of the pest with the host plant/commodity and
- the presence or absence of the pest in the exporting country/region relevant to the pathway being assessed.

A2 Stage 2: Pest risk assessment

The process for pest risk assessment includes 2 sequential steps:

- pest categorisation (A2.1)
- further pest risk assessment, which includes evaluation of the likelihoods of the introduction (entry and establishment) and spread of a pest (A2.2), and evaluation of the magnitude of the associated potential consequences (A2.3).

A2.1 Pest categorisation

Pest categorisation examines the pests identified in the initiation stage (A1) to determine which of these pests meet the definition of a quarantine pest and require further pest risk assessment.

ISPM 11 (FAO 2019b) states that '*The opportunity to eliminate an organism or organisms from consideration before in-depth examination is undertaken is a valuable characteristic of the categorisation process. An advantage of pest categorisation is that it can be done with relatively little*

Detailed method for a plant import risk analysis

information; however information should be sufficient to adequately carry out the categorisation'. In line with ISPM 11, the department utilises the pest categorisation step to screen out some pests from further consideration where appropriate. For each pest that is not present in Australia, or is present but under official control, the department assesses its potential to enter (importation and distribution) on the pathway being assessed and, if having potential to enter, its potential to establish and spread in the PRA area. For a pest to cause economic consequences, the pest will need to enter, establish and spread in the PRA area. Therefore, pests that do not have potential to enter on the pathway being assessed, or have potential to enter but do not have potential to establish and spread in the PRA area, are not considered further. The potential for economic consequences is then assessed for pests that have potential to enter, establish and spread in the PRA area. Further pest risk assessments are then undertaken for pests that have potential to cause economic consequences, i.e., pests that meet the criteria for a quarantine pest.

Pest categorisation uses the following primary elements to identify the quarantine pests and to screen out some pests from further consideration where appropriate for the pathway being assessed:

- presence or absence and regulatory status in the PRA area
- potential for entry, establishment and spread in the PRA area
- potential for economic consequences in the PRA area.

A2.2 Assessment of the likelihood of entry, establishment and spread

ISPM 11 (FAO 2019b) provides details of how to assess the 'probability of entry', 'probability of establishment' and 'probability of spread' of a pest. The SPS Agreement (WTO 1995) uses the term 'likelihood' rather than 'probability' for these estimates. In qualitative PRAs, the department uses the term 'likelihood' as the descriptor. The use of the term 'probability' is limited to the direct quotation of ISPM definitions.

A summary of the assessment process is given here, followed by a description of the qualitative methodology used in this risk analysis.

A2.2.1 Likelihood of entry

The likelihood of entry describes the likelihood that a quarantine pest will enter Australia when a given commodity is imported, be distributed in a viable state in the PRA area and subsequently be transferred to a host.

For the purpose of considering the likelihood of entry, the department divides this step into 2 components:

- **Likelihood of importation** – the likelihood that a pest will arrive in Australia in a viable state when a given commodity is imported
- **Likelihood of distribution** – the likelihood that the pest will be distributed in a viable state, as a result of the processing, sale or disposal of the commodity, in the PRA area and subsequently transfer to a susceptible part of a host.

Factors to be considered in the likelihood of importation may include:

- likelihood of the pest being associated with the pathway at origin

Detailed method for a plant import risk analysis

- prevalence of the pest in the source area
- occurrence of the pest in a life-stage that would be associated with the commodity
- mode of trade (for example, bulk, packed)
- volume and frequency of movement along each pathway
- seasonal timing of imports
- pest management, cultural and commercial procedures applied at the place of origin (for example, application of plant protection products, handling, culling, and grading)
- likelihood of survival of the pest during transport or storage
 - speed and conditions of transport and duration and conditions of storage compared with the duration of the life cycle of the pest
 - vulnerability of the life-stages of the pest during transport or storage
 - prevalence of the pest likely to be associated with a consignment
 - commercial procedures (for example, refrigeration) applied to consignments during transport and storage in the country of origin, and during transport to Australia
- likelihood of pest surviving existing pest management procedures.

Factors to be considered in the likelihood of distribution may include:

- commercial procedures (for example, refrigeration) applied to consignments during distribution in Australia
- dispersal mechanisms of the pest, including vectors, to allow movement from the pathway to a suitable host
- whether the imported commodity is to be sent to a few or many destination points in the PRA area
- proximity of entry, transit and destination points to suitable hosts
- time of year at which import takes place
- intended use of the commodity (for example, for planting, processing or consumption)
- risks from by-products and waste.

A2.2.2 Likelihood of establishment

Establishment is defined as the ‘perpetuation, for the foreseeable future, of a pest within an area after entry’ (FAO 2025). In order to estimate the likelihood of establishment of a pest, reliable biological information (for example, lifecycle, host range, epidemiology, survival) is obtained from the areas where the pest currently occurs. The situation in the PRA area can then be compared with that in the areas where it currently occurs and expert judgement used to assess the likelihood of establishment.

Factors to be considered in the likelihood of establishment in the PRA area may include:

- availability of suitable hosts, alternate hosts and vectors in the PRA areas
 - prevalence of hosts and alternate hosts in the PRA area

Detailed method for a plant import risk analysis

- whether hosts and alternate hosts occur within sufficient geographic proximity to allow the pest to complete its life cycle
- whether there are other plant species, which could prove to be suitable hosts in the absence of usual host species
- whether a vector, if needed for dispersal of the pest, is already present in the PRA area or likely to be introduced
- suitability of environment in the PRA area
 - factors in the environment in the PRA area (for example, suitability of climate, soil, pest and host competition) that are critical to the development of the pest, its host and if applicable its vector, and to their ability to survive periods of climatic stress and complete their life cycles
- cultural practices and control measures in the PRA area that may influence the ability of the pest to establish
- other characteristics of the pest
 - reproductive strategy of the pest and method of pest survival
 - potential for adaptation of the pest
 - minimum population needed for establishment.

A2.2.3 Likelihood of spread

Spread is defined as ‘the expansion of the geographical distribution of a pest within an area’ (FAO 2025). The likelihood of spread considers the factors relevant to the movement of the pest, after establishment on a host plant or plants, to other susceptible host plants of the same or different species in other areas. In order to estimate the likelihood of spread of the pest, reliable biological information is obtained from areas where the pest currently occurs. The situation in the PRA area is then carefully compared with that in the areas where the pest currently occurs and expert judgement used to assess the likelihood of spread.

Factors to be considered in the likelihood of spread may include:

- suitability of the natural and/or managed environment for natural spread of the pest
- presence of natural barriers
- potential for movement with commodities, conveyances or by vectors
- intended use of the commodity
- potential vectors of the pest in the PRA area
- potential natural enemies of the pest in the PRA area.

A2.2.4 Assigning likelihoods for entry, establishment and spread

Likelihoods are assigned to each step of entry, establishment and spread. Six qualitative likelihood descriptors are used: High; Moderate; Low; Very Low; Extremely Low; and Negligible. Definitions for these descriptors and their indicative ranges are given in Table A.1. The indicative ranges are only provided to illustrate the boundaries of the descriptors and are not used beyond this purpose in qualitative PRAs. These indicative ranges provide guidance to the risk analyst and promote consistency between different pest risk assessments.

Detailed method for a plant import risk analysis

Table A.1 Nomenclature of likelihoods

Likelihood	Descriptive definition	Indicative range
High	The event would be very likely to occur	0.7 < to \leq 1
Moderate	The event would occur with an even likelihood	0.3 < to \leq 0.7
Low	The event would be unlikely to occur	0.05 < to \leq 0.3
Very Low	The event would be very unlikely to occur	0.001 < to \leq 0.05
Extremely Low	The event would be extremely unlikely to occur	0.000001 < to \leq 0.001
Negligible	The event would almost certainly not occur	0 < to \leq 0.000001

A2.2.5 Combining likelihoods

The likelihood of entry is determined by combining the likelihood that the pest will be imported into the PRA area and the likelihood that the pest will be distributed within the PRA area, using a matrix of rules (Table A.2). This matrix is then used to combine the likelihood of entry and the likelihood of establishment, and the likelihood of entry and establishment is then combined with the likelihood of spread to determine the overall likelihood of entry, establishment and spread.

For example, if a descriptor of Low is assigned for the likelihood of importation, Moderate for the likelihood of distribution, High for the likelihood of establishment and Very Low for the likelihood of spread, then the likelihood of importation of Low and the likelihood of distribution of Moderate are combined to give a likelihood of Low for entry. The likelihood for entry is then combined with the likelihood assigned for establishment of High to give a likelihood for entry and establishment of Low. The likelihood for entry and establishment is then combined with the likelihood assigned for spread of Very Low to give the overall likelihood for entry, establishment and spread of Very Low. This can be summarised as:

importation x distribution = entry [E] **Low x Moderate = Low**

entry x establishment = [EE] **Low x High = Low**

[EE] x spread = [EES] **Low x Very Low = Very Low**

Table A.2 Matrix of rules for combining likelihoods

		High	Moderate	Low	Very Low	Extremely Low	Negligible
High	High	Moderate	Low	Very Low	Extremely Low	Negligible	
Moderate	–	Low	Low	Very Low	Extremely Low	Negligible	
Low	–	–	Very Low	Very Low	Extremely Low	Negligible	
Very Low	–	–	–	Extremely Low	Extremely Low	Negligible	
Extremely Low	–	–	–	–	Negligible	Negligible	
Negligible	–	–	–	–	–	Negligible	

Time and volume of trade

One factor affecting the likelihood of entry is the volume and duration of trade. If all other conditions remain the same, the overall likelihood of entry will increase as time passes and the overall volume of trade increases.

The department normally considers the likelihood of entry on the basis of the estimated volume of one year's trade. This is a convenient value for the analysis that is relatively easy to estimate and allows for expert consideration of seasonal variations in pest presence, incidence and behaviour to be taken into account. The consideration of the likelihood of entry, establishment and spread and subsequent consequences takes into account events that might happen over a number of years even though only one year's volume of trade is being considered. This difference reflects biological and ecological facts, for example where a pest or disease may establish in the year of import but spread may take many years.

The use of a one year volume of trade has been taken into account when setting up the matrix that is used to estimate the risk and therefore any policy based on this analysis does not simply apply to one year of trade. Policy decisions that are based on the department's method that uses the estimated volume of one year's trade are consistent with Australia's policy on appropriate level of protection and meet the Australian Government's requirement for ongoing quarantine protection. If there are substantial changes in the volume and nature of the trade in specific commodities then the department will review the risk analysis and, if necessary, provide updated policy advice.

In assessing the volume of trade in this risk analysis, the department assumed that a substantial volume of trade will occur.

A2.3 Assessment of potential consequences

In estimating the potential consequences of a pest if the pest were to enter, establish and spread in Australia, the department uses a 2-step process. In the first step, a qualitative descriptor of the impact is assigned to each of the direct and indirect criteria in terms of the *level of impact* and the *magnitude of impact*. The second step involves combining the impacts for each of the criteria to obtain an 'overall consequences' estimation.

Step 1: Assessing direct and indirect impacts

Direct pest impacts are considered in the context of the impacts on:

- the life or health of plants and plant products

This may include pest impacts on the life or health of the plants and production effects (yield or quality) either at harvest or during storage.

– Where applicable, pest impacts on the life or health of humans or of animals and animal products may also be considered.

- other aspects of the environment.

Indirect pest impacts are considered in the context of the impacts on:

- eradication and control

Detailed method for a plant import risk analysis

This may include pest impacts on new or modified eradication, control, surveillance or monitoring and compensation strategies or programs.

- domestic trade

This may include pest impacts on domestic trade or industry, including changes in domestic consumer demand for a product resulting from quality changes and effects on other industries supplying inputs to, or using outputs from, directly affected industries.

- international trade

This may include pest impacts on international trade, including loss of markets, meeting new technical requirements to enter or maintain markets and changes in international consumer demand for a product resulting from quality changes.

- non-commercial and environment

This may include pest impacts on the community and environment, including reduced tourism, reduced rural and regional economic viability, loss of social amenity, and any 'side effects' of control measures.

For each of these direct and indirect criteria, the level of impact is estimated over 4 geographic levels, defined as:

- **Local**—an aggregate of households or enterprises (a rural community, a town or a local government area)
- **District**—a geographically or geopolitically associated collection of aggregates (generally a recognised section of a state or territory, such as 'Far North Queensland')
- **Regional**—a geographically or geopolitically associated collection of districts in a geographic area (generally a state or territory, although there may be exceptions with larger states such as Western Australia)
- **National**—Australia wide (Australian mainland states and territories and Tasmania).

For each criterion, the magnitude of impact at each of these geographic levels is described using 4 categories, defined as:

- **Unlikely to be discernible**—pest impact is not usually distinguishable from normal day-to-day variation in the criterion
- **Minor significance**—expected to lead to a minor increase in mortality/morbidity of hosts or a minor decrease in production but not expected to threaten the economic viability of production. Expected to decrease the value of non-commercial criteria but not threaten the criterion's intrinsic value. Effects would generally be reversible.
- **Significant**—expected to threaten the economic viability of production through a moderate increase in mortality/morbidity of hosts, or a moderate decrease in production. Expected to significantly diminish or threaten the intrinsic value of non-commercial criteria. Effects may not be reversible.
- **Major significance**—expected to threaten the economic viability through a large increase in mortality/morbidity of hosts, or a large decrease in production. Expected to severely or irreversibly damage the intrinsic 'value' of non-commercial criteria.

Each individual direct or indirect impact is given an impact score (A–G) using the decision rules in Figure A.1. This is done by determining which of the shaded cells with bold font in Figure A.1 correspond to the level and magnitude of the particular impact.

Detailed method for a plant import risk analysis

The following are considered during this process:

- At each geographic level below 'National', an impact more serious than 'Minor significance' is considered at least 'Minor significance' at the level above. For example, a 'Significant' impact at the state or territory level is considered equivalent to at least a 'Minor significance' impact at the national level.
- If the impact of a pest at a given level is in multiple states or territories, districts or regions or local areas, it is considered to represent at least the same magnitude of impact at the next highest geographic level. For example, a 'Minor significance' impact in multiple states or territories represents a 'Minor significance' impact at the national level.
- The geographic distribution of an impact does not necessarily determine the impact. For example, an outbreak could occur on one orchard/farm, but the impact could potentially still be considered at a state or national level.

Figure A.1 Decision rules for determining the impact score for each direct and indirect criterion, based on the *level of impact* and the *magnitude of impact*

Impact score	Geographic level			
	Local	District	Regional	National
G				Major significance
F		Major significance	Significant	
E	Major significance	Significant	Minor significance	
D	Major significance	Significant	Minor significance	Unlikely to be discernible
C	Significant	Minor significance	Unlikely to be discernible	
B	Minor significance	Unlikely to be discernible		
A	Unlikely to be discernible			

For each criterion:

- the *level of impact* is estimated over 4 geographic levels: local, district, regional and national
- the *magnitude of impact* at each of the 4 geographic levels is described using 4 categories: unlikely to be discernible, minor significance, significant and major significance
- an impact score (A–G) is assigned by determining which of the shaded cells with bold font correspond to the level and magnitude of impact.

Step 2: Combining direct and indirect impacts

The overall consequence for each pest or each group of pests is achieved by combining the impact scores (A–G) for each direct and indirect criterion using the decision rules in Table A.3. These rules are mutually exclusive, and are assessed in numerical order until one applies. For example, if the first rule does not apply, the second rule is considered, and so on.

Table A.3 Decision rules for determining the overall consequence rating for each pest

Rule	The impact scores for consequences of direct and indirect criteria	Overall consequence rating
1	Any criterion has an impact of 'G'; or more than one criterion has an impact of 'F'; or a single criterion has an impact of 'F' and each remaining criterion an 'E'.	Extreme
2	A single criterion has an impact of 'F'; or all criteria have an impact of 'E'.	High
3	One or more criteria have an impact of 'E'; or all criteria have an impact of 'D'.	Moderate
4	One or more criteria have an impact of 'D'; or all criteria have an impact of 'C'.	Low
5	One or more criteria have an impact of 'C'; or all criteria have an impact of 'B'.	Very Low
6	One or more but not all criteria have an impact of 'B', and all remaining criteria have an impact of 'A'; or all criteria have an impact of 'A'.	Negligible

A2.4 Estimation of the unrestricted risk

Once the assessment of the likelihood of entry, establishment and spread and for potential consequences are completed, the unrestricted risk can be determined for each pest or each group of pests. This is determined by using a risk estimation matrix (Table A.4) to combine the estimates of the likelihood of entry, establishment and spread and the overall consequences of pest establishment and spread.

When interpreting the risk estimation matrix, note the descriptors for each axis are similar (for example, Low, Moderate, High) but the vertical axis refers to likelihood and the horizontal axis refers to consequences. Accordingly, a Low likelihood combined with High consequences, is not the same as a High likelihood combined with Low consequences—the matrix is not symmetrical. For example, the former combination would give an unrestricted risk rating of Moderate, whereas the latter would give a Low rating.

Detailed method for a plant import risk analysis

Table A.4 Risk estimation matrix

Likelihood of pest entry, establishment and spread	Consequences of pest entry, establishment and spread					
	Negligible	Very Low	Low	Moderate	High	Extreme
High	Negligible risk	Very Low risk	Low risk	Moderate risk	High risk	Extreme risk
Moderate	Negligible risk	Very Low risk	Low risk	Moderate risk	High risk	Extreme risk
Low	Negligible risk	Negligible risk	Very Low risk	Low risk	Moderate risk	High risk
Very Low	Negligible risk	Negligible risk	Negligible risk	Very Low risk	Low risk	Moderate risk
Extremely Low	Negligible risk	Negligible risk	Negligible risk	Negligible risk	Very Low risk	Low risk
Negligible	Negligible risk	Negligible risk	Negligible risk	Negligible risk	Negligible risk	Very Low risk

A2.5 The appropriate level of protection (ALOP) for Australia

The SPS Agreement defines the concept of an ‘appropriate level of sanitary or phytosanitary protection (ALOP)’ as the level of protection deemed appropriate by the WTO Member establishing a sanitary or phytosanitary measure to protect human, animal or plant life or health within its territory.

Like many other countries, Australia expresses its ALOP in qualitative terms. The ALOP for Australia, which reflects community expectations through government policy, is currently expressed as providing a high level of sanitary or phytosanitary protection aimed at reducing risk to a very low level, but not to zero. The band of cells in Table A.4 marked ‘Very Low risk’ represents the ALOP for Australia.

A2.6 Adoption of outcomes from previous assessments

Outcomes of previous risk assessments have been adopted in this assessment for pests for which the risk profile is assessed as comparable to previously assessed situations.

The prospective adoption of previous risk assessment ratings for the likelihood of importation and the likelihood of distribution is considered on a case-by-case basis by comparing factors relevant to the pathway being assessed with those assessed previously. For assessment of the likelihood of importation, factors considered/compared include the commodity type, the prevalence of the pest and commercial production practices in the exporting country/region. For assessment of the likelihood of distribution of a pest the factors considered/compared include the commodity type, the ways the imported produce will be distributed within Australia as a result of the processing, sale or disposal of the imported produce, and the time of year when importation occurs and the availability and susceptibility of hosts at that time. After comparing these factors and reviewing the latest literature, previously determined ratings may be adopted if the department considers the likelihoods for the pathway being assessed to be comparable to those assigned in the previous assessment(s), and there is no new information to suggest that the ratings assigned in the previous assessment(s) have changed.

The likelihoods of establishment and of spread of a pest species in the PRA area will be comparable between risk assessments, regardless of the import pathway through which the pest has entered the PRA area. This is because these likelihoods relate specifically to conditions and events that occur in the PRA area, and are independent of the import pathway. Similarly, the estimate of potential

consequences associated with a pest species is also independent of the import pathway. Therefore, the likelihoods of establishment and of spread of a pest, and the estimate of potential consequences, are directly comparable between assessments. If there is no new information available that would significantly change the ratings for establishment or spread or the consequences the pests may cause, the ratings assigned in the previous assessments for these components may be adopted with confidence.

A2.7 Application of Group PRAs to this risk analysis

The Group PRAs that were applied to this risk analysis are:

- the *Final group pest risk analysis for thrips and orthotospoviruses on fresh fruit, vegetable, cut-flower and foliage imports* (thrips Group PRA) (DAWR 2017)
- the *Final group pest risk analysis for mealybugs and the viruses they transmit on fresh fruit, vegetable, cut-flower and foliage imports* (mealybugs Group PRA) (DAWR 2019)
- the *Final group pest risk analysis for soft and hard scale insects on fresh fruit, vegetable, cut-flower and foliage imports* (scales Group PRA) (DAWE 2021)
- the *Final report for a review of pest risk assessments for spider mites (Acari: Trombidiformes: Tetranychidae)* (spider mite review) (DAFF 2024).

The Group PRA approach is consistent with relevant international standards and requirements—including ISPM 2: *Framework for Pest Risk Analysis* (FAO 2019a), ISPM 11: Pest Risk Analysis for Quarantine Pests (FAO 2019b) and the SPS Agreement (WTO 1995). ISPM 2 states that ‘Specific organisms may ... be analysed individually, or in groups where individual species share common biological characteristics.’

Risk estimates derived from a Group PRA are ‘indicative’ in character. This is because the likelihood of entry (the combined likelihoods of importation and distribution) can be influenced by a range of pathway-specific factors, as explained in section A2.6. Therefore, the indicative likelihood of entry from a Group PRA needs to be verified on a case-by-case basis.

In contrast, and as noted in section A2.6, the risk factors considered in the likelihoods of establishment and spread, and the potential consequences associated with a pest species are not pathway-specific, and are therefore comparable across all import pathways within the scope of the Group PRA. This is because at these latter stages of the risk analysis the pest is assumed to have already found a host within Australia at or beyond its point of entry. Therefore, unless there is specific evidence to suggest otherwise, a Group PRA assessment can be applied as the default outcome for any pest species on a plant import pathway once the previously assigned likelihood of entry has been verified.

In a scenario where the likelihood of entry for a pest species on a commodity is assessed as different to the indicative estimate, the Group PRA-derived likelihoods of establishment and spread and the estimate of consequences can still be used, but the overall risk rating (the URE) may change.

Application of Group policy involves identification of up to 3 species of each relevant group associated with the import pathway. However, if any other quarantine pests or regulated articles not included in this risk analysis and/or in the relevant group policies are detected at pre-export or on arrival in Australia, the relevant Group policy will also apply.

A3 Stage 3: Pest risk management

Pest risk management describes the process of identifying and implementing phytosanitary measures to manage risks to achieve the ALOP for Australia, while ensuring that any negative effects on trade are minimised.

The conclusions from pest risk assessment are used to decide whether risk management is required and if so, the appropriate measures to be used. Where the unrestricted risk estimate does not achieve the ALOP for Australia, risk management measures are required to reduce this risk to a very low level. The guiding principle for risk management is to manage risk to achieve the ALOP for Australia. The effectiveness of any proposed/recommended phytosanitary measures (or combination of measures) is evaluated, using the same approach as used to evaluate the unrestricted risk. This ensures the restricted risk for the relevant pest or pests achieves the ALOP for Australia.

ISPM 11 (FAO 2019b) provides details on the identification and selection of appropriate risk management options and notes that the choice of measures should be based on their effectiveness in reducing the likelihood of entry of the pest.

Examples given of measures commonly applied to traded commodities include:

- options for consignments—for example, inspection or testing for freedom from pests, prohibition of parts of the host, a pre-entry or post-entry quarantine system, specified conditions on preparation of the consignment, specified treatment of the consignment, restrictions on end-use, distribution and periods of entry of the commodity
- options preventing or reducing infestation in the crop—for example, treatment of the crop, restriction on the composition of a consignment so it is composed of plants belonging to resistant or less susceptible species, harvesting of plants at a certain age or specified time of the year, production in a certification scheme
- options ensuring that the area, place or site of production or crop is free from the pest—for example, pest-free area, pest-free place of production or pest-free production site
- options for other types of pathways—for example, consider natural spread, measures for human travellers and their baggage, cleaning or disinfections of contaminated machinery
- options within the importing country—for example, surveillance and eradication programs
- prohibition of commodities—if no satisfactory measure can be found.

References

DAFF 2024, *Final report for a review of pest risk assessments for spider mites (Acari: Trombidiformes: Tetranychidae)*, Department of Agriculture, Fisheries and Forestry, Canberra, available at <https://www.agriculture.gov.au/biosecurity/risk-analysis/plant/review-of-pest-risk-assessments-for-spider-mites>.

DAWE 2021, *Final group pest risk analysis for soft and hard scale insects on fresh fruit, vegetable, cut-flower and foliage imports*, Department of Agriculture, Water and the Environment, Canberra, available at <https://www.agriculture.gov.au/biosecurity-trade/policy/risk-analysis/group-pest-risk-analyses/scales>.

DAWR 2017, *Final group pest risk analysis for thrips and orthotospoviruses on fresh fruit, vegetable, cut-flower and foliage imports*, Department of Agriculture and Water Resources, Canberra, available at <https://www.agriculture.gov.au/biosecurity-trade/policy/risk-analysis/group-pest-risk-analyses/group-pra-thrips-orthotospoviruses/final-report>.

--- 2019, *Final group pest risk analysis for mealybugs and the viruses they transmit on fresh fruit, vegetable, cut-flower and foliage imports*, Department of Agriculture and Water Resources, Canberra, available at <https://www.agriculture.gov.au/biosecurity-trade/policy/risk-analysis/group-pest-risk-analyses/mealybugs/final-report>.

FAO 2019a, *International Standards for Phytosanitary Measures (ISPM) no. 2: Framework for pest risk analysis*, Secretariat of the International Plant Protection Convention, Food and Agriculture Organization of the United Nations, Rome, Italy, available at <https://www.ippc.int/en/core-activities/standards-setting/ispm5>.

--- 2019b, *International Standards for Phytosanitary Measures (ISPM) no. 11: Pest risk analysis for quarantine pests*, Secretariat of the International Plant Protection Convention, Food and Agriculture Organization (FAO) of the United Nations, Rome, Italy, available at <https://www.ippc.int/en/core-activities/standards-setting/ispm11>.

--- 2025, *International Standards for Phytosanitary Measures (ISPM) no. 5: Glossary of phytosanitary terms*, Secretariat of the International Plant Protection Convention, Food and Agriculture Organization of the United Nations, Rome, Italy, available at <https://www.ippc.int/en/core-activities/standards-setting/ispm5>.

WTO 1995, *Agreement on the application of sanitary and phytosanitary measures*, World Trade Organization, Geneva, available at https://www.wto.org/english/docs_e/legal_e/15-sps.pdf (pdf 91 kb).

Acknowledgement of Country

We acknowledge the continuous connection of First Nations Traditional Owners and Custodians to the lands, seas and waters of Australia. We recognise their care for and cultivation of Country. We pay respect to Elders past and present, and recognise their knowledge and contribution to the productivity, innovation and sustainability of Australia's agriculture, fisheries and forestry industries.

© Commonwealth of Australia 2026

Unless otherwise noted, copyright (and any other intellectual property rights) in this publication is owned by the Commonwealth of Australia (referred to as the Commonwealth).

All material in this publication is licensed under a [Creative Commons Attribution 4.0 International Licence](https://creativecommons.org/licenses/by/4.0/) except content supplied by third parties, logos and the Commonwealth Coat of Arms.

The Australian Government acting through the Department of Agriculture, Fisheries and Forestry has exercised due care and skill in preparing and compiling the information and data in this publication. Notwithstanding, the Department of Agriculture, Fisheries and Forestry, its employees and advisers disclaim all liability, including liability for negligence and for

Detailed method for a plant import risk analysis

any loss, damage, injury, expense or cost incurred by any person as a result of accessing, using or relying on any of the information or data in this publication to the maximum extent permitted by law.