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Executive summary
This report documents the monitoring and evaluation of Commonwealth environmental watering in the Edward-Wakool system in 2012-13. It provides details of the environmental objectives of the watering actions, study design, indicators, methodology, and an assessment of ecosystem responses to environmental watering with respect to the objectives set by the Commonwealth Environmental Water Office. Results and conclusions from the monitoring and evaluation underpin recommendations for future environmental watering in this system.
Edward-Wakool system 
The Edward-Wakool system is a major anabranch and floodplain of the Murray River. It is a complex network of interconnected streams, ephemeral creeks, flood runners and wetlands intersected by irrigation channels. This system has a long history of regulated flows for irrigation, stock and domestic water supply but it is also recognised as having high native species richness and diversity, including threatened and endangered fishes, frogs, mammals, and riparian plants. 
Environmental watering in the Edward-Wakool system in 2012-13
Watering options and flow-dependent ecological objectives for 2012-13 for the mid-Murray region were developed by CEWO (2012). Based on the resource availability and the catchment conditions, the ecological management objectives for the mid-Murray region were expected to be in the moderate to wet range. The objective of the moderate range is to ‘maintain ecological health and resilience to improve the health and resilience of aquatic ecosystems’ and the objective for the wet range is to ‘Improve the health and resilience of aquatic ecosystems’ (CEWO 2012).
The possibility of a wet to moderate resource availability scenario meant that ecological objectives for 2012-13 (CEWO 2012) were expressed in terms of improving ecological outcomes. However, above average temperatures and below average rainfall in 2012-13 meant that environmental water largely contributed to maintaining ecological outcomes, consistent with a moderate resource availability scenario. Our evaluation takes this into account by acknowledging the contribution of environmental water to maintaining ecological outcomes.

Four instream watering actions occurred in the Edward-Wakool system in 2012-13:

1. Yallakool Creek October to December 2012 environmental watering action. A watering action in Yallakool Creek commenced on 19 October and finished on 7 December 2012. The CEWO ecological objective for this event aimed to maintain inundation of habitat for Murray cod nests and maintain the flow until cod eggs could hatch and larvae drift downstream. The Yallakool Creek discharge during this event was held in the range of 360 ML/day to 683 ML/day with a median discharge of 526 ML/day. The total volume delivered was 13,620 ML comprising 10,620 ML of Commonwealth environmental water (CEW) and 3,000 ML of NSW environmental water.
2. Colligen Creek November to December 2012 environmental watering action. A watering action under water use option 1 occurred in Colligen Creek to promote golden perch and silver perch spawning (CEWO 2012). This watering action involved the delivery of two freshes. The first fresh commenced on 2 November 2012, reaching a peak of approximately 903 ML/day on 8 November 2012. Following the fresh, elevated base flows were maintained in anticipation of the second fresh. The second fresh commenced on 8 December 2012 and finished on 18 December with the flows reaching a peak of approximately 655 ML/day on 11 December. The total volume delivered was 10,261 ML, including 7,261 ML of CEW and 3,000 ML of NSW environmental water.
3. Yallakool Creek February 2013 environmental watering action. A watering action in Yallakool Creek under water use option 1 commenced on 2 February 2013 and finished on 22 February 2013. The fresh increased over 3 days to a peak of 430 ML/d on 13 February 2013. The CEWO (2012) ecological objective for this event was to provide opportunities for small bodied fish (instream generalists) to breed. Specifically, the objective was to test if a small (~30 cm) increase in water level can initiate a spawning response in small bodied fish. Secondary objectives of this action were to test whether or not a small water level rise result in the movement of medium/large bodied fish and/or spawning of golden perch. The volume of CEW delivered to Yallakool Creek for this action was 1,796 ML.
4. Yallakool Creek and Colligen Creek March to April 2013 environmental watering action. A watering action in Yallakool and Colligen Creeks under water use option 1 commenced on 13 March 2013 and ceased on 5 April 2013. In Yallakool Creek the fresh increased to a one day duration peak of 563 ML/d on 31 March 2013. In Colligen Creek the fresh increased to a one day duration peak of 499 ML/d on 31 March 2013. It is estimated that 3,750 ML of CEW was delivered to Yallakool Creek, and 4190 ML to Colligen Creek. The total volume of CEW delivered was 4,192 ML to Yallakool Creek, and 5,074 ML to Colligen Creek. The CEWO (2012) objective of these watering actions was to test whether a spawning response could be achieved in small bodied fish from a 30 cm rise in water levels in autumn. A secondary objective was to test whether or not a small water level rise would result in the movement of medium/large bodied fish during autumn.
Monitoring of responses to environmental watering
The Edward-Wakool system consists of several distributary rivers with regulators controlling inflows. This facilitates a rigorous assessment of the responses to environmental watering through comparisons between rivers receiving environmental water (treatment rivers) and rivers in close geographic proximity not receiving environmental water (serving as controls). In 2012-13 environmental water was delivered to Colligen Creek and Yallakool Creek (treatment rivers), and the Wakool River and Little Merran Creek served as controls (no environmental water). 
Sampling was undertaken in four focus rivers; Colligen Creek, Yallakool Creek, Wakool River and Little Merran Creek. The Edward River was also sampled to assess the potential source of propagules for the treatment rivers. In addition, 43 sites were sampled throughout the Edward-Wakool system in an annual survey to assess the response of the fish community to environmental watering. An acoustic array established in 2010 to assess fish movement in the Wakool River, Yallakool Ck and Edward River continued to be monitored in 2012-13. In 2011-12 a set of indicators were selected to assess the ecosystem responses to environmental watering in the Edward-Wakool system (Watts et al 2013). The same indicators were monitored in 2012-13, with the addition of in-channel inundation modelling and shrimp abundance (Table i). 


Table i. Indicators used to assess ecosystem responses to environmental watering in the Edward-Wakool system in 2012-13 in relation to the ecological objectives as listed in CEWO (2012).
	CEWO (2012) ecological objective 
	Expected outcomes of environmental watering
	Related Basin Plan Objective
	Indicators

	Support habitat requirements of native fish.
Support habitat requirements of native aquatic species, including frogs, turtles and invertebrates. Maintain health of existing extent of riparian, floodplain and wetland native vegetation communities.
	· Fish condition
· Vegetation condition
	· Biodiversity
	· In-channel inundation modelling
· Rapid habitat assessment of aquatic and riverbank vegetation


	Support ecosystem functions that relate to mobilisation, transport and dispersal of biotic and abiotic material (e.g. sediment, nutrients and organic matter).
	· Biotic dispersal and movement
· Sediment transport
	· Ecosystem function
	· Water chemistry (dissolved organic carbon, total organic carbon, nutrients, carbon characterisation)
· Phytoplankton biomass
· Biofilm biomass and diversity
· Whole stream metabolism

	Support breeding and recruitment of frogs, turtles and invertebrates
	· Other biota
	· Biodiversity
	· Frog community composition, abundance and recruitment
· Zooplankton abundance, diversity and size composition
· Crustacean abundance and proportion of females in berry

	Support ecosystem functions that relate to longitudinal connectivity and lateral connectivity to maintain populations
	· Hydrological connectivity
	· Ecosystem function
	· Acoustic tracking of fish


	Support breeding and recruitment of native fish.
	· Fish reproduction
	· Biodiversity
	· Larval fish abundance and diversity
· Fish recruitment and community composition/abundance
· Ageing of larval and juvenile fish
· Annual fish survey in main channel and wetland habitats





Ecosystem responses to environmental watering
Environmental watering objective 1 - Support habitat requirements of native aquatic species
· There was a small increase in inundated benthic area during the environmental watering actions. The environmental watering in Colligen Creek resulted in an estimated 14% increase in wetted benthic surface area compared to the base flow 200 ML/day scenario. The environmental watering in Yallakool Creek resulted in an estimated 22% increase in wetted benthic surface area compared to the base flow 170 ML/day scenario. In contrast, the unregulated flows in August 2012 resulted in a considerably larger increase in wetted benthic area. On the peak of the unregulated flow event on 2 August 2012 the modelled wetted benthic surface area relative to the base flow scenario increased by 47.8% in Colligen Creek and 58.9% in Yallakool Creek. 
· The relationship between discharge and wetted benthic surface area in these rivers is not linear. It is likely that the relationship between these factors is strongly influenced by in channel geomorphology. Further modelling is required to determine the optimum discharge for environmental watering to increase in-channel inundation and create slackwater habitat that will trigger ecosystem responses to environmental flows, but minimise third party impacts
· There was a significant increase in the percent cover of submerged aquatic vegetation in Yallakool Creek during the environmental watering action in October to December 2012. The dominant group were Charophytes, which are a type of macroalgae that are similar to water plants, as they grow from the sediment into the water and produce seed-like spores. There was considerable activity of macroinvertebrates and other organisms in the shallow water in this newly established vegetation. The increase in submerged aquatic vegetation was short lived, because when the water level receded in December 2012, at the end of the environmental watering, the submerged aquatic vegetation became fully exposed and was desiccated. 
· The environmental watering actions in Yallakool Creek in February 2013 and in Yallakool Creek and Colligen Creek in March to April 2013 did not result in an increase in aquatic vegetation. However, these events would have wetted the riverbank and this may have contributed to maintaining or sustaining riverbank plants that would provide habitat during subsequent flow events.
[bookmark: _Toc367347245]Environmental watering objective 2 - Support ecosystem functions that relate to mobilisation, transport and dispersal of biotic and abiotic material
· Water temperature was similar at all sites and followed a seasonal trend that is consistent with that recorded in 2011-2012. The dissolved oxygen concentrations remained at acceptable levels throughout the study period, and no hypoxic blackwater event was associated with any of the environmental watering actions.
· Dissolved organic carbon levels were very similar between all sites, except Little Merran Creek. Elevated DOC in Little Merran Creek from August through to October 2012 indicates greater carbon inputs associated with the unregulated flows during this time.
· The bioavailable nutrient concentrations, ammonia, filterable reactive phosphorus (nominally phosphate) and NOx (nitrate plus nitrite) did not exceed ANZECC Trigger concentrations, with the exception of NOx on one occasion during the large unregulated flows in Little Merran Creek in August 2012 where substantially larger areas of benthic surface area was wetted. 
· The environmental watering in Yallakool Creek and the Colligen Creek did not result in the composition of dissolved organic matter in these rivers becoming substantially different to the other rivers. The environmental watering did not stimulate ecosystem productivity by moving nutrients and carbon between the main channel, upper benches and small low commence to flow floodrunners. This suggests that the areas of in-stream habitat that were re-wet during these flows did not have substantial amounts of accumulated organic material (such as leaf litter) and/or the small in-channel watering actions did not reconnect a sufficient area of upper benches and floodrunners to result in substantial exchange of organic matter and nutrients. 
· The greatest influence on organic matter composition and concentration over the study period were the unregulated flows in August and September 2012, where all rivers had elevated organic matter compared to May 2012. Organic matter inputs associated with these unregulated flows did not result in a blackwater event, due to the low water temperature at that time of year.
· The delivery of environmental freshes in the Yallakool and Colligen rivers had no significant effect on phytoplankton densities. Environmental watering resulted in higher diversity in biofilms; high diversity is usually associated with good ecosystem health. There was a reduced biofilm biomass in rivers that received environmental water compared to the control rivers. This is consistent with the hypothesis that increased flow variability from in-channel environmental watering will ensure biofilm biomass in treatment rivers remains below nuisance levels and that biofilm organic biomass will be highest in rivers that have a more constant regulated discharge.
· Rates of gross primary production and ecosystem respiration in these rivers were typical of lowland streams with good water quality. There was minimal change in rates of GPP and ER after freshes. Gross primary production is strongly constrained by low bioavailable nutrient concentrations and the freshes were not of sufficient magnitude to entrain higher nutrient concentrations. Similarly, the relative constancy in ecosystem respiration can be attributed to the low and consistent DOC concentrations. These outcomes should be seen as largely positive, as, the existing levels of metabolism are able to support the fish population without the risk of either algal blooms or anoxic events. However, it is unknown whether an increase in production would result in an increase in fish populations and this could be tested by future studies.
Environmental watering objective 3 - Support breeding and recruitment of frogs and invertebrates
· The watering actions in Colligen and Yallakool Creeks during the 2012 – 2013 sampling period did not increase the abundance of zooplankton, including individual size classes of zooplankton, nor did it appear to stimulate reproduction. Zooplankton abundance was instead highly seasonal, affected by factors unrelated to flow, such as temperature. It is possible that the magnitude of the watering actions were insufficient to inundate habitat and stimulate productivity thereby increasing abundance and taxonomic diversity of zooplankton. Connectivity and upstream sources may also play a role in zooplankton abundance, as suggested by the similarity in zooplankton abundance of Colligen Creek and Yallakool Creek to the Edward River.
· The abundance of shrimp during 2012 – 2013 was not significantly different across the four rivers and the timing of shrimp spawning was not influenced by environmental watering. In fact, Colligen Creek and Yallakool Creek had fewer shrimp overall compared to the control rivers, perhaps as a result of the higher flows reducing the size and availability of slackwaters that are crucial to larval development and juvenile recruitment. 
· [bookmark: _Toc367347256]There was little response of frogs to environmental watering actions in Colligen and Yallakool Creeks. The highest frog calling activity was observed during September and October 2012 prior to the environmental watering actions when there were inundated backwaters present from larger unregulated flows within the Edward Wakool system. The limited response of frogs to environmental watering may be due to low availability of slackwater and inundated habitat.
· 

Environmental watering objective 4 - Support ecosystem functions that relate to longitudinal connectivity and lateral connectivity to maintain populations
· All four fish species monitored (Murray cod, golden perch, silver perch and carp) displayed increased activity in response to increasing temperature and flow during spring and early summer. This period of increased movement corresponded with spawning periods for these species. This increased activity did not result in significant displacement movements, but may represent survival related behaviour, such as an increased feeding response.
· Individual displacement for Murray cod ranged from 10 km downstream to 50 km upstream. Golden perch exhibited a displacement range of 150 km downstream to 10 km upstream. Silver perch were highly mobile, undertaking frequent short (<2 km) return movements. Some movement occurred during environmental watering actions, however this pattern of movement was not restricted to these watering actions.
[bookmark: _Toc367347258]Environmental watering objective 5 - Support breeding and recruitment of native fish
· The analysis of fish community structure from 2010 to 2013 recorded nine of the 21 species thought to occur in the central Murray region of the Murray-Darling Basin prior to European settlement. There was high biomass of apex predators and flow specialists in channel habitat and high abundance of flow generalists in wetland habitat.
· Flooding and subsequent blackwater events in 2010 and 2011 are still having a strong influence on fish community structure. Following the blackwater events, Murray cod largely disappeared from all but the upstream zone of this system, where in 2010 and 2011 irrigation outfalls were used improve water quality. Flooding in 2010 also triggered the proliferation and widespread recruitment of carp and goldfish throughout the system. There was stronger native fish recruitment and lower alien species recruitment during drought conditions.
· There has been a small recovery of native fish populations in the system since the blackwater events in 2010 and 2011. Successive years of environmental water delivery targeted at Murray Cod recruitment in the upper zone have contributed to recovery of the fish community through connection of critical habitat, maintenance of low flow refuges and providing conditions to promote dispersal of individuals to recolonise areas impacted by the blackwater events. However, the environmental watering in 2012-13 did not trigger widespread recruitment that is necessary for population growth.
· There was no evidence of golden and silver perch spawning as a result of the environmental watering actions. No large scale increase in displacement movements by golden perch were detected, however, there was an increase in the proportion of tagged fish moving during all three environmental watering events. It is not known if any of these movements were spawning related behaviour because most adult golden perch migrated downstream outside the larval monitoring zone. No eggs or larvae of silver or golden perch were found during or immediately after the watering actions. Furthermore no young-of-year were collected from any of the focus rivers or fish community sampling sites.
· There was no evidence that the nursery and larval dispersal conditions of Murray cod were enhanced as a result of the October to December 2012 Yallakool Creek watering action. The watering action was provided to maintain the water level moving through Yallakool Creek during the Murray cod breeding season. Adult Murray cod did not utilise Yallakool Creek in response to environmental water delivery. Furthermore, although Murray cod larvae and young-of-year recruits were found in the Yallakool Creek, they were not in significantly greater numbers than the rivers that did not receive environmental watering actions. 
· Spawning and recruitment of carp gudgeon, one of the five small bodied fish species found in the Edward-Wakool system, benefited from the November 2012 environmental watering action. Spawning activity increased, with greater numbers of larvae found after the November environmental water action compared to the other rivers. The number of recruits was also significantly higher in Yallakool Creek and Colligen Creek during and immediately after the November environmental watering actions compared to rivers that did not receive environmental water. However, the number of recruits in the Edward River, the source of the environmental water, was equally high or higher than those found in Yallakool and Colligen Creeks at this time. Therefore, it is not possible to determine if the increase in number of recruits in Yallakool and Colligen Creek is due to increased recruitment within these rivers, or is due to more recruits moving, or being transported, into these systems from the Edward River.


Synthesis of findings
The possibility of a wet to moderate resource availability scenario meant that ecological objectives for 2012-13 (CEWO 2012) were expressed in terms of improving ecological outcomes. However, above average temperatures and below average rainfall in 2012-13 meant that the magnitude and duration of 2012-13 environmental watering actions largely contributed to maintaining ecological outcomes, consistent with a moderate resource availability.
The 2012-13 environmental watering generally contributed to the maintainence of the habitat of native aquatic species. There was a short-term improvement in submerged aquatic habitat in Yallakool Creek from October to December 2012. More work is needed to model the extent of in-channel inundation under a range of flow scenarios to assist the planning of future watering actions.
The overarching conclusion from the assessment of water chemistry and stream metabolism is that throughout the entire period, encompassing base flow and freshes in all streams, water quality posed no threat to these aquatic ecosystems. At no stage did the dissolved oxygen concentration fall below 4 mg O2/L, which may then threaten viability of invertebrates and fish communities. 
There was no response of zooplankton, shrimp or frogs to the environmental watering actions in 2012-13. Under the objective to ‘Improve the health and resilience of aquatic ecosystems’ we would expect to observe higher abundances and evidence of breeding of zooplankton, shrimp and frogs, but this was not achieved. The main reason for the absence of the predicted response appears to be because critical habitat (slackwaters and inundated vegetation) was not created during watering actions. The environmental freshes did not reach sufficient discharge to introduce nutrients and stimulate zooplankton production, nor create slackwater habitat for frogs and shrimp. 
Overall there was little effect of the environmental watering on the spawning and recruitment of native fish community of the Edward-Wakool system. Of the ten native fish species occurring in the system, we found that nine spawned during 2012-13, however, only one species (carp gudgeon) had a significant spawning response to the October to December 2012 environmental watering actions. 
In summary, in 2012-13 there were a small number of significant responses to the October to December 2012 in-channel environmental watering, however, some of the expected benefits of environmental watering were not observed. In contrast, there were almost no significant responses to the February, March and April 2013 environmental watering actions.
Environmental watering recommendations
The ecological objectives for environmental water use in the Edward-Wakool system in 2012-13 were expressed in terms of improving ecological outcomes (CEWO 2012). However, above average temperatures and below average rainfall in 2012-13 meant that environmental water largely contributed to maintaining ecological outcomes, consistent with a moderate resource availability scenario. Better alignment of the timing, magnitude and duration of environmental watering is required to achieve these objectives.
Recommendations relating to the timing of environmental watering
1. To achieve the objective of ‘improving the health and resilience of aquatic ecosystems’, environmental watering actions under water use option 1 should be targeted during spring and early summer. This is the time of year when the greatest benefit for spawning and recruitment of most aquatic species can be realised. An additional benefit of undertaking environmental watering in spring and early summer is that it is less likely to cause water quality issues than environmental watering undertaken in late summer or early autumn when water temperatures are higher and the concentration of dissolved oxygen is lower. Furthermore, delivery of environmental water in spring or early summer may be more straightforward to implement given existing operational constraints, as it can be difficult for river operators to meet all license holders water needs in the Edward-Wakool system during late summer and early autumn during periods of high consumptive demand.
2. Environmental watering actions under water use option 2 (Edward-Wakool system refuge habitat) can be implemented at any time of the year to avoid damage to key assets and provide refuge during hypoxic blackwater events. If there is a high likelihood of a blackwater event, the ecosystem can benefit from environmental watering to provide refuges that have a higher concentration of dissolved oxygen. This option was implemented in 2011-12.
3. Decisions involving the timing of environmental watering should consider the water temperature at the proposed time of of the environmental watering actions because it will strongly influence the success of fish spawning, the risk of hypoxic blackwater events and rate of ecosystem productivity.


Recommendations relating to the magnitude of environmental watering
4. To achieve the objective of ‘improving the health and resilience of aquatic ecosystems’ under water use option 1, the magnitude of environmental watering freshes should be larger than environmental flow actions delivered in 2012-13. In contrast to the small or absent responses to environmental watering in Yallakool Creek and Colligen Creek in 2012-13, the larger magnitude unregulated flow events in August and September 2012 inundated a significantly larger area of riverbank and triggered an increase in river productivity. Better ecological outcomes could be achieved through delivery of environmental freshes of sufficient magnitude to inundate low lying benches and backwaters and create shallow water habitat and slackwaters and inundate riverbank vegetation. Additional modelling of inchannel inundation should be undertaken during the planning of environmental watering actions to assist with optimisation of flow magnitude to help achieve watering objectives and maximise the creation of shallow inundated areas. It is possible that for a given volume of environmental water, a better ecological outcome could have been achieved in 2012-13 by delivery of fewer larger freshes rather than several smaller freshes, however this hypothesis needs to be tested in an adaptive management context
5. Smaller magnitude freshes (such as those delivered in 2012-13) can be delivered to achieve the ecological objective of ‘avoid damage’, or to ‘provide capacity for recovery or maintain health’. When smaller magnitude watering actions are being planned and implemented it is important that realistic watering objectives are set for each watering action.
6. A comprehensive community engagement program will be required to facilitate the delivery of larger environmental freshes to the Edward-Wakool system. The in-channel inundation modelling, mentioned in recommendation 4, will enable scenarios to be presented to stakeholders prior to implementation, which will help identify and minimise risks and serve to inform and engage stakeholders in the planning process.
Recommendations relating to the duration of environmental watering
7. The duration and shape of the hydrograph of environmental watering events should be carefully planned to avoid rapid rates of recession to minimise stranding of aquatic biota and desiccation of newly established submerged plants. For example, future watering actions could include a longer, gradual recession to ensure a portion of newly established submerged habitat remains inundated and has the opportunity to increase in area following the flow recession. This will also ensure that organisms utilising the inundated shallow areas have sufficient time to return to in-channel habitats and avoid stranding.
8. There is a need to consider multiple objectives when setting the duration of environmental watering events. For example, the objective of the environmental watering event in Yallakool Creek from October to December 2012 was targeted for Murray cod but was also of sufficient duration that it resulted in a significant increase in aquatic vegetation that was not observed during the shorter duration environmental watering events in Colligen Creek or Yallakool Creek later in the year. 
General recommendations for environmental watering
9. The quality of source water should be carefully considered prior to each environmental watering action as it will influence the outcome of environmental watering. The quality of source water for environmental watering actions in the Edward-wakool system (e.g. the Edward River or Mulwala canal) can vary considerably. For example, on occasions when there is considerable overbank flooding in the Murray catchment, the water in the Edward River or the Mulwala canal may carry high dissolved carbon loads (Watts et al 2013). 
10. Decisions around the timing of environmental watering should consider the antecedent hydrological conditions because they can strongly influence the success of subsequent environmental watering actions. 
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This report documents the monitoring and evaluation of Commonwealth environmental watering in the Edward-Wakool system in 2012-13. It provides details of the environmental objectives of the watering actions, study design, indicators, methodology, and an assessment of ecosystem responses to environmental watering with respect to the objectives set by the Commonwealth Environmental Water Office. A summary of stakeholder consultation and community involvement in the project is also provided. Results and conclusions from the monitoring and evaluation underpin recommendations for future environmental watering in this system.
[bookmark: _Toc405894628]Background

Assessment of ecosystem responses to in-channel environmental flows
The regulation of the world’s major river systems is a threat to global biodiversity (Nilsson et al. 2005; Poff et al. 1997; Ward et al. 2001; Poff et al. 2007). Under natural flow regimes, riverine systems are a complex mosaic of habitats which vary across space and time with changes in water volume, velocity and flooding duration (Stanley et al. 2010; Ward et al. 2001). Periods of high flows (flood pulse) inundate river benches, fill backwaters and small anabranches and raise ground water levels, which can lead to the creation of groundwater ponds along river margins (Poff et al. 1997; Ward et al. 1999). Furthermore, periods of low flow result in slow-flowing or still water, which can provide habitat for taxa sensitive to higher flow velocities (Bogan and Lytle 2007; Hazell et al. 2003). Under river regulation, these periods of very high and very low flows are reduced, with subsequent declines in the availability of habitat types linked to these flow conditions (Ward et al. 1999).
Growing awareness of the impacts of river regulation has led to increased interest in the delivery of environmental water to restore the ecological function of regulated river systems (e.g. Poff 2009; Arthington et al. 2010). Two major types of environmental watering are overbank flows, that inundate wetlands and floodplains, and instream flows that are contained within the channel.  Internationally, there have been a few high-profile examples of the monitoring and evaluation of instream environmental flows, such as the experimental flood downstream of the USA‘s Glen Canyon Dam in the mid-1990s (e.g. Speas 2000; Shannon et al. 2001; Valdez et al. 2001) and more recently in 2009 (Cross et al. 2011), and an experimental flood in the Spöl River in Switzerland (Robinson et al. 2003, 2004). In Australia instream flows have historically been used to disperse algal blooms and other contaminants (e.g. Maier et al. 2004; Mitrovic et al. 2003). Prior to 2009 there were few examples in Australia where environmental water was used to create instream pulsed flows (Watts et al. 2009a). 
Water managers need a means of evaluating the success of environmental watering, however our understanding of flow-ecology relationships is limited, especially in large and complex floodplain systems, which hinders our attempts to manage these systems (Poff and Zimmerman 2010). There are only a small number of empirical studies testing the mechanisms whereby changes to the river flow regimes drive changes in key population processes and ecological functions (Arthington et al. 2006; Arthington et al. 2010). In the case of fish, changes in natural flooding regimes may be associated with reduced recruitment success (Humphries et al. 2002), changes in movement patterns (Tonkin et al. 2008a) and increased densities of exotic fish species (Gehrke and Harris 2001). Changes to aquatic macroinvertebrate communities (Grubbs and Taylor 2004; Sheldon et al. 2002; Vallania and Corigliano 2007) and biofilm production (Ryder 2004) also occur following the simplification of flow regimes. The impacts of changes of flow regime on other riverine taxa, such as frogs, are poorly understood (Kingsford et al. 2010). 
Since 2010, instream freshes have been delivered to several river systems in the Murray-Darling Basin. The ecosystem benefit of instream watering actions is not well understood and is being assessed through monitoring and evaluation programs. In addition, water managers require information on the most appropriate timing, duration and magnitude of flows to assist the adaptive management of future flow events. The monitoring of in-stream environmental watering in the Edward-Wakool system in 2012-13 will provide an assessment of the ecosystem responses in this system, as well as provide information to inform decisions on the timing, duration and magnitude of flows in this system
The Edward-Wakool system
[bookmark: _Ref320613878][bookmark: _Ref320613830][bookmark: _Toc324953402]The Edward-Wakool system is a large anabranch system of the Murray River main channel. The system begins upstream of the Barmah choke, and travels northwest through a series of river red gum forests before discharging back into the Murray River downstream of Kyalite (Figure 1). It is a complex network of interconnected streams, ephemeral creeks, flood-runners and wetlands including the Wakool River, Yallakool Creek, Colligen-Niemur Creek and Merran Creek. 
[image: edwardWakoolRiverMaps.png]
Figure 1. Map showing the main rivers in the Edward-Wakool system.
The Edward-Wakool system is considered to be important for its high native species richness and diversity including threatened and endangered fish, frogs, mammals, and riparian plants. It is listed as an endangered ecosystem, as part of the ‘aquatic ecological community in the natural drainage system of the lower Murray River catchment’ in New South Wales (NSW Fisheries Management Act 1994). This system has abundant areas of fish habitat, and historically had diverse fish communities which supported both commercial and recreational fisheries.
Like many areas of the Murray-Darling Basin, the Edward-Wakool anabranch system has suffered from the effects of river regulation, migration barriers and degradation of water quality. Water regimes within the Edward-Wakool River have been significantly altered by river regulation (Green 2001; Watkins et al. 2010), with changes to the timing and volume of flows. Natural flows in the river system would have been high in spring and very low in summer and autumn. River regulation is likely to have resulted in changes in water velocities, the availability of in-channel habitat types, and ecosystem processes and functions. These problems were manifested in a fish kill event in 2007-08 which resulted in a loss of many hundreds of native fish, including large individuals of the iconic Murray cod. 
Between February 2006 and September 2010 there were periods of minimal or no flow in the Edward-Wakool system (Figure 2) due to severe drought conditions. A number of large natural flow events occurred in the Edward-Wakool system between September 2010 and March 2011 coinciding with heavy rainfall in the catchment (Figure 2). Commonwealth environmental water has been delivered to the Edward-Wakool system since 2010.

[bookmark: _Ref320614796]
[bookmark: _Ref324953812][bookmark: _Toc324953403][bookmark: _Ref324953806]Figure 2. Daily discharge between 01/01/2008 and 28/02/2013 in four rivers in the Edward-Wakool system: Colligen Creek, Yallakool Creek, Wakool River and Little Merran Creek. Daily discharge data was obtained from NSW Government water information website (NSW Office of Water, 2012) for four gauging stations: Colligen Creek regulator (409024), Wakool River offtake regulator (409019), Yallakool Creek offtake regulator (409020), and the Little Merran Creek gauge at Franklings Bridge (409044).
A preliminary fish monitoring program was established by NSW Department of Primary Industries (DPI) in 2010 to provide information on native fish populations in the system. The work involved establishing long-term fish monitoring sites throughout the Edward-Wakool system that have been sampled for three consecutive years. In addition, an array of acoustic receivers was established and a population of tagged fish has been maintained in the Edward-Wakool system to monitor behavioural responses to environmental watering. In 2011-12, Charles Sturt University, Monash University and the Murray CMA monitored ecosystem responses to environmental watering in the Edward Wakool system (Watts et al. 2013) focussing on four rivers: Colligen Creek, Yallakool Creek, Wakool River, and Little Merran Creek. The project involved comparing ecosystem responses in rivers that received environmental water to those in rivers that did not receive environmental water. The current project ‘Monitoring the ecosystem responses to Commonwealth environmental water delivered to the Edward-Wakool river system, 2012-13’ follows on from the previous projects by bringing together the long-term fish monitoring, fish movement and ecosystem monitoring.
[bookmark: _Toc334533607][bookmark: _Toc362347829][bookmark: _Toc405894629]Commonwealth water use options and flow-dependant ecological objectives 2012-2013

Water use options and flow-dependent ecological objectives for 2012-13 for the mid-Murray region were developed by the CEWO (2012), taking into account likely resource availability and the catchment conditions. During the 2011-12 water year, the mid-Murray region experienced relatively wet conditions with significant rainfall and floodplain inundation occurring during late summer and early autumn, and the rainfall in the catchment from 1 July 2011 to 30 June 2012 was greater than the seasonal average (CEWO 2012). 
Consistent with the Basin Plan, the ‘Framework for determining Commonwealth environmental water use’ outlines ecological objectives for environmental watering under a range of water resource availability scenarios (Table 1). The ecological objectives that guided environmental watering under the range of possible circumstances expected in 2012-13 are outlined in Table 2. Based on the resource availability and the catchment conditions, the ecological management objectives for the mid-Murray region were expected to be in the moderate to wet range. The ecological objective of the moderate range is to ‘maintain ecological health and resilience’ and the ecological objective for the wet range is to ‘improve the health and resilience of aquatic ecosystems’ (CEWO 2012).
Three water use options relevant to the Edward-Wakool system are listed in Table 3. As these options focus on the delivery of in-channel flows, the ecological objectives for this system focus on breeding, recruitment and habitat requirements of native fish and other aquatic organisms, as well as in-channel ecosystem functions.
[bookmark: _Ref329786905]Table 1. Ecological and management objectives for environmental water use under different resource availability scenarios. (From CEWO 2012)
	
	Extreme Dry
	Dry
	Moderate
	Wet
	Very Wet

	Ecological watering objectives
	Avoid damage to key environmental assets
	Ensure ecological capacity for recovery
	Maintain ecological health and resilience
	Improve the health and resilience of aquatic ecosystems
	Build future capacity to support ecological health and resilience





Table 2. Planning and resource availability scenarios to assist with water use options, with arrow showing the expected resource availability in the mid-Murray region as at 1 July 2012. (From CEWO 2012)
	
	Resource availability scenario as at 1 July 2012
	Possible Inflows in 2012-13
	Probability of exceedance based on historical inflows for the catchment
	Likely resource availability scenarios 2012-13 for the given inflows
	Relevant ecological objective for environmental watering

	
	 (
Wet- Moderate
)
	Very high inflows
(very wet) 
	10 %
	Very wet
	Build future capacity to support ecological health and resilience

	
	
	High inflows 
(wet)
	25 %
	Wet
	Improve the health and resilience of aquatic ecosystems

	
	
	Moderate inflows (moderate)
	50 %
	Moderate
	Maintain ecological health and resilience

	
	
	Low inflows (dry)
	75 %
	
	

	
	
	Very low inflows 
(very dry)
	90 %
	Dry
	Ensure ecological capacity for recovery



Table 3. Water use options and flow-dependent ecological objectives as listed in CEWO (2012) for the mid-Murray system that are relevant for the 2012-13 monitoring program in the Edward-Wakool system.
	Option

	Site 
	Flow-dependent ecological objectives 

	[bookmark: _Ref325106442]Option 1 - Edward Wakool River system fish freshes
A number of freshes throughout the water year. Current planning allows for freshes in spring / early summer and autumn.
	Edward River downstream of Stevens Weir, Wakool River, Yallakool Creek, Colligen Creek-Niemur River
	· Support breeding and recruitment of native fish.
· Support habitat requirements of native fish.
·  Support habitat requirements of native aquatic species, including frogs, turtles, invertebrates, etc.
· Maintain health of existing extent of riparian, floodplain and wetland native vegetation communities.
· Support ecosystem functions that relate to longitudinal connectivity and lateral connectivity to maintain populations.

	[bookmark: _Ref325106465][bookmark: _Ref325106454]Option 2 - Edward-Wakool River system refuge habitat
Dependent on the need to provide refuge habitat which is contingent on catchment conditions.
Hypoxic blackwater is most likely to occur from Nov onwards, as water temperatures increase
	Edward River, Wakool River, Yallakool Creek, Colligen Creek, Niemur River
	· Support habitat requirements of native fish.
· Support habitat requirements of native aquatic species, including frogs, turtles, invertebrates, etc.
· Support ecosystem functions that relate to mobilisation, transport and dispersal of biotic and abiotic material (e.g. sediment, nutrients and organic matter).
· Support ecosystem functions that relate to longitudinal connectivity (i.e. connectivity along a watercourse) and lateral connectivity (i.e. connectivity between the river channel, wetlands and floodplain) to maintain populations.

	[bookmark: _Ref325106469]Option 4 - mid-Murray freshes 

Unregulated peaks are most likely to occur in spring, however could occur at any time.
	Edward River, Wakool River, Yallakool Creek, Colligen Creek-Niemur River
	· Support breeding and recruitment of native fish, frogs, turtles, invertebrates etc.
· Support habitat requirements of native fish, frogs, turtles, invertebrates etc.
· Maintain health of existing extent of riparian, floodplain and wetland native vegetation communities.
· Support ecosystem functions that relate to mobilisation, transport and dispersal of biotic and abiotic material (e.g. sediment, nutrients and organic matter).
· Support ecosystem functions that relate to longitudinal connectivity and lateral connectivity to maintain populations.


[bookmark: _Toc362347830][bookmark: _Toc405894630]Environmental watering in 2012-13

Up to 60 GL of Commonwealth environmental water was made available for use in the Edward-Wakool River System during 2012-13 (CEWO 2013). Commonwealth environmental water was delivered in conjunction with water supplied by the New South Wales Government. Commonwealth environmental water was used to provide several in-stream freshes delivered between spring 2012 and autumn 2013. Target creeks and rivers included the Edward and Wakool rivers, and Yallakool and Colligen Creeks (CEWO 2013). The Commonwealth environmental water will help build on the outcomes of environmental water provided to the Edward-Wakool River System in previous years.
The possibility of a wet to moderate resource availability scenario meant that ecological objectives for 2012-13 (CEWO 2012) were expressed in terms of improving ecological outcomes. However, above average temperatures and below average rainfall in 2012-13 meant that environmental water largely contributed to maintaining ecological outcomes, consistent with a moderate resource availability scenario. Our evaluation takes this into account by acknowledging the contribution of environmental water to maintaining ecological outcomes.
Four instream watering actions occurred in the Edward-Wakool system in 2012-13 (Figure 3). 
1. Yallakool Creek October to December 2012 environmental watering action. A watering action in Yallakool Creek under water use option 1 commenced on 19 October 2012 and finished on 7 December 2012. The CEWO (2012) ecological objective for this event was aimed at maintaining inundation of habitat for Murray cod nests and maintaining the flow until cod eggs could hatch and larvae drift downstream. The Yallakool Creek discharge during this event was held in the range of approximately 360 ML/day to 683 ML/day with a median discharge of 526 ML/day (Figure 3). The total volume delivered was 13,620 ML comprising 10,620 ML of Commonwealth environmental water and 3,000 ML of NSW environmental water allocation.
2. Colligen Creek November to December 2012 environmental watering action. A watering action under water use option 1 occurred in Colligen Creek to promote golden perch and silver perch spawning (CEWO 2012). This watering action involved the delivery of two freshes between 2 November 2012 and 17 December 2012. The first fresh commenced on 2 November 2012, reaching a peak of approximately 903 ML/day on 8 November 2012 (Figure 3). Following the fresh, elevated base flows were maintained in anticipation of the second fresh. Due to operational considerations, the second fresh was delayed, and elevated based flows were reduced and ceased by the end of November. The second fresh commenced on 8 December 2012 and finished on 18 December with the flows reaching a peak of approximately 655 ML/day on 11 December (Figure 3). The total volume delivered was 10,261 ML, including 7,261 ML of CEW, and 3,000 ML of NSW environmental water.
3. Yallakool Creek February 2013 environmental watering action. A watering action in Yallakool Creek under water use option 1 commenced on 2 February 2013 and finished on 22 February 2013. The fresh increased over 3 days to a peak of 430 ML/d on 13 February 2013. The CEWO (2012) ecological objective for this event was to provide opportunities for small bodied fish (instream generalists) to breed. Specifically, the objective was to test if a small (~30 cm) increase in water level can initiate a spawning response in small bodied fish. Secondary objectives of this action were to test whether or not a small water level rise resulted in the movement of medium/large bodied fish and/or spawning of golden perch. Note that a fresh in Colligen Creek in February 2013 (Figure 3) was not part of this environmental watering action but was due to an water order rejection. The volume of CEW delivered to Yallakool Creek for this action was 1,796 ML.
4. Yallakool Creek and Colligen Creek March to April 2013 environmental watering action. Watering actions in Yallakool and Colligen Creeks under water use option 1 commenced on 13 March 2013 and ceased on 5 April 2013. In Yallakool Creek the fresh increased to a one day duration peak of 563 ML/d on 31 March 2013 (Figure 3). In Colligen Creek the fresh increased to a one day duration peak of 499 ML/d on 31 March 2013 (Figure 3). It is estimated that 3,750 ML of CEW was delivered to Yallakool Creek, and 4190 ML to Colligen Creek. The total volume of CEW delivered was 4,192 ML to Yallakool Creek, and 5,074 ML to Colligen Creek. The CEWO (2012) ecological objective for these watering actions was to test whether a spawning response could be achieved in small bodied fish from a 30 cm rise in water levels in autumn. A secondary objective was to test whether or not a small water level rise would result in the movement of medium/large bodied fish during autumn.
A steering committee led by the CEWO contributed to the planning and delivery of these flows. Participants included representatives of CEWO, NSW OEH, Murray CMA, State Water Corporation, NSW Office of Water, MDBA River Murray Operations, and scientists from NSW DPI Fisheries and Charles Sturt University. Teleconferences were generally bi-weekly in the months preceding the watering event, and weekly during each event. Preliminary results from the monitoring program were provided during these teleconferences to help inform the watering decisions and delivery of Commonwealth environmental water and water supplied by the New South Wales Government. 

[image: ]
Figure 3. Daily discharge (ML/day) between 1/7/12 and 15/5/13 in Colligen Creek, Yallakool Creek, Wakool River and Little Merran Creek. Timing and duration of environmental watering in Yallakool Creek and Colligen Creek in 2012-13 is shown with coloured bars. The star symbols on the y axis indicate estimated bankfull discharge in each river.


[bookmark: _Toc405894631]Monitoring design and location of sampling sites

The monitoring of ecosystem responses to environmental watering in the Edward-Wakool system in 2012-13 was undertaken as follows:
1. Focus rivers – Monitoring under watering option 1
The nature of the Edward-Wakool system provides a unique opportunity to assess responses to in-channel environmental watering. In this system there are several distributary rivers with regulators that control inflows. Under watering option 1 (Table 3), environmental water can be delivered as freshes via regulators to Colligen Creek, Yallakool Creek and the Wakool River from the Edward River (Figure 4). This facilitates a rigorous assessment of the responses to environmental watering through comparisons between rivers receiving environmental water (‘treatment’ rivers) and rivers in close geographic proximity not receiving environmental water (‘control’ rivers). The study reaches in each focus river ranged from 3 to 5 km in length. These focus reaches were also sampled to assess ecosystem responses to environmental watering in 2011-12 (Watts et al. 2013).
In 2012-13 environmental water was delivered to Colligen Creek and Yallakool Creek (treatment rivers), and the Wakool River and Little Merran Creek served as controls (no environmental water). The Edward River was sampled to assess the potential source of propagules for the treatment rivers (Figures 4, 5). A detailed description of sampling design and data analysis for each indicator is presented in section 5. When linking the monitoring design to the CEWO (2012) ecological objectives, the expected responses are presented in Table 4.
Table 4. Expected ecosystem responses in treatment and control rivers in response to environmental watering in the Edward-Wakool system in 2012-13.
	Resource availability scenario:
	CEWO (2012) ecological objective:
	Expected ecosystem response in treatment’ rivers:
	Expected ecosystem response in ‘control’ rivers:

	Moderate
	“Maintain ecological health and resilience”
	No change relative to antecedent conditions (eg. No change in abundance and recruitment of aquatic organisms, water chemistry and habitat availability)
	Reduced ecological health and resilience relative to antecedent conditions as a result of not receiving environmental water. (eg. reduced abundance and recruitment of aquatic organisms, reduced habitat availability)

	Wet
	“Improve the health and resilience of aquatic ecosystems”
	Improved ecological health and resilience (eg. greater abundance and recruitment of aquatic organisms, improved water chemistry and increased habitat availability)
	No change or reduced ecological health and resilience relative to antecedent conditions as a result of not receiving environmental water.


2. Focus rivers- Monitoring under watering option 2
Under watering option 2 (Table 3) there is the opportunity to deliver environmental water to the Edward River and Wakool River via escapes from the Mulwala canal. To facilitate assessment of environmental watering from the Wakool escape in the event of a blackwater event, sampling in the Wakool River was undertaken upstream and downstream of the Wakool escape (Figure 4) and in the Mulwala canal as a potential source of propagules (Figure 4). Samples from downstream of the escape were processed immediately and were used in the analysis of watering option 1. As no environmental water was delivered from the Mulwala canal to the Wakool River under watering option 2 in 2012-13, the samples from the canal and the upstream Wakool River site were not required to assess watering and are hereafter not referred to in this report.
[image: edwardWakoolProject v2.png]
Figure 4. Location of four focus rivers for the assessment of ecosystem responses to environmental watering in the Edward-Wakool system (shown in red). The Edward River and Mulwala canal (shown in pink) were sampled as potential sources of propagules.
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Colligen Creek			  		   Yallakool Creek
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Wakool River	                                                                Little Merran Creek
Figure 5. Photos of the four focus rivers; Colligen Creek, Yallakool Creek, Wakool River and Little Merran Creek.


3. Whole of system assessment
A total of 43 sites were sampled throughout the Edward-Wakool system (Figure 6) to assess the response of the fish community to environmental watering. The sampling included 30 sites that were established in 2010 and 7 sites established in Werai Forest in 2011 (Figure 7). A selection of the sample sites are shown in Figure 8. An acoustic array established in 2010 to assess fish movement in the Wakool River, Yallakool Ck and Edward River continued to be monitored in 2012-13 (Figure 9).
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Figure 6. The Edward-Wakool River system highlighting the location of 43 monitoring sites for fish community monitoring. Major forests are shown in green.

[image: werrai_181212_a5]
Figure 7. Map of the Werai Forest showing the location of the survey sites. 
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Widgee, Yallakool Creek				  Ventura, Neimur River
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Merribit, Merribit Creek				    Merran Creek Bridge, Merran Creek
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Thule Creek Bridge, Thule creek			      Dunn’s, Coobool Creek
Figure 8. A selection of the 43 sites sampled for the annual fish community assessment across the study area.
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Figure 9. Overview of acoustic receiver array used to detect fish movements in response to environmental water delivery in the Edward-Wakool system. The array was established to detect movements in the Wakool-Yallakool River (orange) and also the upper Edward system (yellow). Detailed coverage of the original tagging location at the Wakool-Yallakool junction is enlarged for clarity.

[bookmark: _Toc362347832][bookmark: _Toc405894632]Indicators

As it is not possible to measure every ecosystem response to environmental watering, a selection of potential indicators was assessed. The best indicators are those where there is a high level of predictability in response to environmental changes. Cairns et al. (1993) suggest that a good indicator should also be relatively cheap and quick to measure, repeatable and sensitive to environmental change. Furthermore, numerous authors have stated the most important attribute of an indicator is that it can be quantitatively validated, requiring the reliability of the data and what the response indicates to be unambiguous (Fairweather 1999).
In 2011-12 a set of indicators were selected to assess the physical, chemical or biological responses to environmental watering in the Edward-Wakool system (Watts et al. 2013). As these indicators were considered to be appropriate for assessment of the flow-dependent ecological objectives identified in CEWO (2012), the indicators monitored in 2011-12 were monitored again in 2012-13. The indicators selected for the assessment of environmental watering in the Edward-Wakool system are tightly linked with the CEWO (2012) ecological objectives for the proposed water use options for this system (Table 5). These indicators reflect the in-channel focus of the water use options for the Edward-Wakool system; the majority of indicators focus on assessment of breeding, recruitment and habitat requirements of native fish and other aquatic organisms and in-channel ecosystem functions. The expected responses of these indicators to watering objectives, if the ecological objectives are met, are outlined in Table 4.
The frequency of sampling and locations where the indicators were monitored are listed in Table 6. Some indicators were monitored continuously via logging equipment and others were sampled fortnightly or monthly. Some indicators can be assessed quickly and provide real time information to water managers allowing them to modify the watering regime to achieve the watering objective.
Table 5. Monitoring indicators used to assess ecosystem responses to environmental watering in the Edward-Wakool system in 2012-13 in relation to the ecological objectives as listed in CEWO (2012).
	CEWO Ecological objective 
	Watering option
	Indicators

	Objective 1:

Support habitat requirements of native fish. Support habitat requirements of native aquatic species, including frogs, turtles and invertebrates.
Maintain health of existing extent of riparian, floodplain and wetland native vegetation communities.

	1, 2, 4
	· Inundation modelling
· Rapid habitat assessment of aquatic and riverbank vegetation


	Objective 2:
Support ecosystem functions that relate to mobilisation, transport and dispersal of biotic and abiotic material (e.g. sediment, nutrients and organic matter).
	2, 4
	· Water chemistry (Dissolved organic carbon, total organic carbon, nutrients)
· Carbon characterisation)
· Phytoplankton biomass
· Biofilm biomass and diversity
· Whole stream metabolism

	Objective 3:
Support breeding and recruitment of frogs, turtles and invertebrates
	4
	· Frog community composition, abundance and recruitment
· Zooplankton abundance, diversity and size composition
· Crustacean abundance and proportion of females in berry

	Objective 4:
Support ecosystem functions that relate to longitudinal connectivity (i.e. connectivity along a watercourse) and lateral connectivity (i.e. connectivity between the river channel, wetlands and floodplain) to maintain populations

	1, 2, 4
	Longitudinal connectivity
· Acoustic tracking of fish


	Objctive 5:
Support breeding and recruitment of native fish.
	1, 4
	· Larval fish abundance and diversity
· Fish recruitment and community composition/abundance
· Ageing of larval and juvenile fish
· Large-scale fish survey of main channel and wetland habitats


Table 6. Summary of location and frequency for sampling of indicators
	
	
	Study sites/reaches

	Ecological Objective
	Indicators
	Focus rivers:
Colligen Ck
Yallakool Ck
Wakool R
Little Merran Ck
	Source rivers:
Edward R
Mulwala canal
	Acoustic array sites in Wakool R, Yallakool Ck and Edward R
	43 sites throughout Edward-Wakool system

	1. Support habitat requirements of native aquatic species
	Inundation modelling
	Modelled for range flow scenarios
	
	
	

	
	Rapid habitat assessment of aquatic and riverbank vegetation
	monthly
	
	
	

	2. Support ecosystem functions that relate to mobilisation, transport and dispersal of biotic and abiotic material
	Water chemistry (Dissolved oxygen, light, temperature)
	continuous 
	continuous
	
	

	
	Water chemistry spot measures 
	fortnightly
	fortnightly
	
	annually

	
	Water chemistry (carbon, nutrients)
	fortnightly
	fortnightly
	
	

	
	Whole stream metabolism
	continuous
	
	
	

	
	Phytoplankton 
	fortnightly
	fortnightly
	
	

	
	Biofilms
	monthly
	
	
	

	3. Support breeding and recruitment of frogs, turtles, invertebrates
	Zooplankton
	fortnightly
	fortnightly
	
	

	
	Shrimp
	fortnightly
	fortnightly
	
	

	
	Crayfish and Yabby
	
	
	
	annually

	
	Frogs
	monthly
	
	
	

	4. Support ecosystem functions that relate to longitudinal and lateral connectivity 
	Fish movement
	
	
	continuous
	

	5. Support breeding and recruitment of native fish.
	Fish larvae and eggs
	fortnightly
	fortnightly
	
	

	
	Fish community structure 
	
	
	
	annually

	
	Fish recruitment
	
	
	
	annually


[bookmark: _Toc405894633]Responses of indicators against environmental watering objectives

[bookmark: _Toc405894634]Objective 1: Support habitat requirements of native aquatic species
[bookmark: _Toc362347840][bookmark: _Toc405894635] (
Key findings
The environmental watering in Colligen Creek resulted in an estimated 14% increase in wetted benthic surface area compared to the base flow 200 ML/day scenario. The environmental watering in Yallakool Creek resulted in an estimated 22% increase in wetted benthic surface area compared to the base flow 170 ML/day scenario.
T
he unregulated flows in August 2012 resulted in a considerably larger increase in wetted benthic are
a than the environmental watering
. On the
 peak of the unregulated flow event on 2 August 2012 the modelled wetted benthic surface area 
relative to
 the base flow 
scenario
 increased by 47.8% in Colligen Creek and 58.9% in Yallakool Creek.
The relationship between discharge and wetted benthic surface area in these rivers is not linear
. It is likely that the relationship between these factors is strongly influenced by in channel geomorphology.
Further modelling is required to de
termine the optimum discharge
 for environmental watering
 to 
increase 
in-channel 
inundation 
and create slackwater habitat that will
 
trigger
 ecosystem responses to environmental flows, but 
minimise
 third party impacts
.
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Background
Understanding the extent of riverbank inundation under different discharge scenarios is essential to describe changes in wetted benthic surface area and shallow water habitat during environmental watering actions. Inundation modelling can also assist the interpretation of other indicators, such as nutrients, river metabolism, and emergence of zooplankton from riverbank sediments. Remote sensing is a useful method for estimating the extent of inundation under different flow scenarios because it provides results more cheaply and efficiently than ground based survey methods. Previous studies modelling river flow and floodplain inundation have been undertaken for wetlands on the Darling River (Shaikh et al. 2001), and floodplains on the Murrumbidgee River (Frazier et al.2003) and the River Murray (Overton 2005; Overton et al. 2006). These studies have generally focussed on estimating floodplain inundation during overbank flows. Methods employed include optical satellite image analysis, radar remote sensing and of landsat TM (Townsend and Walsh 1998; Shaikh et al. 2001; Frazier et al. 2003; Overton et al. 2006).
The use of digital elevation models to create a floodplain surface that can be inundated under different discharge scenarios may not give the best representation of floodplain inundation, because even small impediments on a predominantly flat floodplain can affect the models. However, in a system such as the Edward-Wakool system where environmental watering is contained within the channel, the use of digital elevation models to create flow path assessments below bankfull is an appropriate approach to compare the extent of riverbank inundation under different discharge scenarios. The inundation models can also serve as a tool to help predict the likely outcome of different flow management options on patterns of riverbank inundation.
Methods
Discharge scenarios were modelled for the four focus reaches; Colligen Creek, Yallakool Creek, Wakool River and Little Merran Creek. Each reach was represented within the hydraulic model using a digital elevation model (DEM) supplied by the Murray Catchment Management Authority-NSW. Inundation modelling was undertaken by Marine Solutions. Digital elevation models derived from LiDAR survey can be used for detailed flow path assessments. However, unless carefully checked, small scale artefacts can remain during the conversion of mass point clouds to surface models. Artefacts remaining within DEMs can impede normal flow and impact the results of hydraulic models. Several significant artefacts were removed from the Little Merran Creek and Colligen Creek DEMs to ensure normal stream flow was not impeded. Artefacts were removed by identifying erroneous elevation values and integrating corrected values directly into the elevation surface using a process of data fusion. To account for vegetation in each reach the surface friction coefficient (Manning’s n) within the model was set to a value of 0.05 with the exception of the Yallakool Creek site where a value of 0.04 was deemed more appropriate. 
Six discharge scenarios were modelled for each river ranging from low flow to estimated bank-full flows (Table 7). The exceptions were Yallakool Creek where an additional environmental watering scenario was modelled and Little Merran Creek where only three scenarios could be successfully replicated because the LiDAR survey was undertaken when discharge was approximately 200ML/day, so low flow and base flow scenarios could not be modelled in this system. In Colligen Creek the environmental watering scenario was the same as estimated half bankfull. Discharge values were converted from ML/day to m3.sec-1 and supplied to the model as static flow values. 
Each scenario was modelled assuming an initial dry starting condition with no residual water in the system with the exception of Little Merran Creek reach where it was identified that a base flow of 200 ML/day was present when the DEM was captured. All scenarios were run until stable state flow was achieved whereby the instantaneous flow rate at the downstream boundary condition stabilised and matched the upstream inflow value. The exception was scenario 6 for the Wakool River reach where a steady state flow could not be achieved without a loss from the system into the Edward River. Under the 3000 ML/day discharge a stable state flow of approximately 2820 ML/day was recorded at the downstream boundary condition for the Wakool site with 180 ML/day escaping into the Edward River. Inflow values were provided to the upstream boundary condition as a static value and did not vary over the duration of a model run. Discharge scenarios were modelled using the 2D grid implementation of Eonfusion Flood (Myriax Software) with model outputs post-processed using the GIS functionality of Eonfusion (Myriax Software).  
Upon reaching stable state flow, an extent output from the model was captured representing the spatial coverage of the water surface. Within each cell of the extent the water depth and surface elevation were captured allowing a 3D surface of the stream bed underlying the water surface to be constructed. The wetted benthic surface area covered by the water surface was then calculated using the derived 3D surface. Post-processing, including surface area calculations, was achieved using Eonfusion (Myriax Software), Quantum GIS and made distributable using Google Earth. 



Table 7. Summary of discharge scenarios modelled for the four focus reaches; Colligen Creek, Yallakool Creek, Wakool River and Little Merran Creek.
	Scenarios
	 
	Discharge ML/day
	 

	 
	Wakool
	Yallakool
	Colligen
	Merran

	1 - low flow (estimated)
	25
	30
	30
	

	2 - base flow (estimated)
	50
	170
	200
	

	3 - median flow (2011-2013)
	110
	271
	314
	230

	Environmental watering 
	
	560
	800
	 

	4 - half bank (estimated)
	500
	800
	800
	500

	5 - maximum daily discharge (2011-2013)
	1442
	1913
	2808
	1062

	6 - bankfull (estimated)
	3000
	4000
	4000
	



Results and discussion
The estimates of wetted benthic surface area (Table 8) and inundation maps (Figure 10) illustrate that estimated low flows, estimated base flows and the calculated median flow for 2011-2013 were constrained within the river channel. There was a small increase in wetted benthic surface area from the low flows to the median flow scenario. In Colligen Creek the environmental flow of 800 ML/day resulted in a 14% increase in wetted benthic surface area from the base flow 200 ML/day scenario. In Yallakool Creek the environmental flow of 560 ML/day resulted in a 22% increase in wetted benthic surface area from the base flow 170 ML/day scenario.
Figure 10 demonstrates that the wetted benthic surface area during the maximum daily discharge scenario experienced in 2011-2012 during high unregulated flows was considerably higher than the wetted area during the base flow or environmental flow scenarios. The models estimate there would be a considerable further increase in wetted benthic surface area during a bankfull flow, however this type of flow event did not occur during the study period.
Table 8. Estimates of wetted benthic surface area under a range of discharge scenario in the four focus reaches; Colligen Creek, Yallakool Creek, Wakool River and Little Merran Creek.
	Scenarios
	Wetted surface area (m3)

	 
	Wakool
	Yallakool
	Colligen
	Merran

	1 - low flow (estimated)
	42,196
	33,896
	43,257
	-

	2 - base flow (estimated)
	43,587
	38,237
	48,292
	-

	3 - median flow (2011-2013)
	46,222
	41,858
	49,982
	160,908

	Environmental watering
	
	46,726
	55,110
	 

	4 - half bank (estimated)
	58,547
	49,734
	55,110
	242,902

	5 - maximum daily discharge (2011-2013)
	200,455
	60,789
	71,337
	542,584

	6 - bankfull (estimated)
	264,109
	86,368
	84,820
	-
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Figure 10. Maps showing representation the spatial coverage of the water surface under different discharge scenarios
Figure 11 shows that the relationship between discharge and wetted surface area in these rivers is not linear. It is likely that the relationship between these factors is strongly influenced by geomorphology. The modelling has demonstrated that a fresh of a given discharge in one river may not result in the same increase in wetted benthic surface area in another river. For example, an increase from 200 ML/day to 800 ML/day in Colligen Creek resulted in a modelled 14% increase in wetted benthic area, whereas a similar increase from 170ML/day to 800 ML/day in Yallakool Creek resulted in a modelled 30% increase in wetted benthic area (Table 8). There is a large increase in estimated wetted surface area with increasing discharge in Little Merran Creek.

Figure 11. Modelled relationship between discharge (ML/day) and wetted surface area (m3) for study reaches in Colligen Creek, Yallakool Creek, Wakool River and Little Merran Creek.
In summary, the inundation modelling results suggest that the environmental watering in Yallakool Creek and Colligen Creek increased the inundated benthic area in these systems, but the increase was small relative to increases for unregulated events or bankfull discharge. As the data presented here are for only a small section of each river, it is important to consider that the relationship between discharge wetted benthic surface area will be reach specific and that these relationships need to be examined over a longer river distance in the study rivers. This would facilitate better planning for the magnitude and duration of environmental watering events.
These results have important implications for in-channel environmental watering actions. It may be more appropriate to examine the relationship between inundation area and ecosystem responses to in-channel flows rather than focussing on relationships with daily discharge data, as has commonly been the practise. In-channel hydrodynamic modelling under different flow scenarios can be used to: 
i) better understand the relationship between in-channel flows and ecosystem responses, 
ii) predict the consequences of in-channel flows on biota and ecosystem functions, and 
iii) facilitate better planning and management of the future in-channel environmental flows. The modelling can help managers determine the optimum discharge to increase the inundation to produce ecosystem responses to environmental flows, but with minimal third party impacts.
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Key findings
T
here was a significant increase in the percent cover 
of submerged aquatic vegetation in 
Yallakool Creek during the environmental watering action in October to December 2012
.
 
The dominant group were Charophytes, which are a type of algae that are similar to water plants, as they grow from the sediment into the water and produce seed-like spores
. 
T
here was 
considerable 
activity of macroinvertebrates and other organisms in the shallow water in this newly 
established
 vegetation. 
The increase in submerged aquatic vegetation was short lived, because when the water level receded in December 2012, at the end of the environmental watering, the submerged aquatic vegetation became fully exposed and was desiccated. 
The environmental watering actions in Yallakool Creek in February 2013 and in Yallakool Creek and Colligen Creek in March to April 2013 did not result in an increase in aquatic vegetation
. 
However, these 
watering 
events would have wetted the river
bank
 and this may 
contribute
 to maintaining riverbank plants that would provide habitat during subsequent 
flow events.
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Background
Riverbank vegetation and aquatic vegetation plays an important role in river ecosystems and provides habitat for fish, invertebrates, frogs and birds (Roberts and Marston 2011). The cover and composition of aquatic vegetation can determine the availability of oviposition sites for macro invertebrates and calling and spawning locations for frogs (Wassens et al. 2010) and support wetland food webs and zooplankton communities (Warfe and Barmuta 2006). Furthermore, the response of aquatic and riverbank vegetation following a flow event can assist understanding the response of other biological indicators. 
Riverbank plant survival and growth is affected by the frequency and duration of inundation (Toner and Keddy 1997; Johansson and Nilsson 2002). Frequent inundation can delay reproduction of (Blom and Voesenek 1996), whilst long duration of inundation can reduce growth (Blom et al.  1994; Johansson and Nilsson 2002). Favourable soil moisture and nutrient conditions created by a receding flood can encourage rapid recovery and root and shoot development and many plants, including emergent macrophytes and riparian understorey herbs, often germinate on flood recession (Nicol 2004; Roberts and Marston 2011). Differences in seasonal patterns of inundation within a single year can result in different survival, growth and reproduction responses of riverbank and aquatic plant species (Lowe 2002).
The aim of the monitoring was to assess habitat responses to environmental watering in two zones: 1. Aquatic vegetation within 5 m of water adjacent to the waters edge – representing shallow inundated terrestrial vegetation or submerged and emergent aquatic vegetation, and 2. Riverbank vegetation in a 5 m transect adjacent on the riverbank to the waters edge. This riverbank vegetation becomes inundated aquatic habitat when water levels rise during instream freshes.

Hypothesis
The percent cover of aquatic vegetation and riverbank vegetation will be higher in rivers receiving environmental water than in those not receiving environmental water. Environmental flows of longer duration will result in greater response than those having a short duration.


Methods
A rapid habitat assessment was undertaken once per month at the four focus rivers (Colligen Creek, Wakool River, Yallakool Creek and Little Merran Creek) over the eight month survey period (September 2012 to April 2013). Overall river characteristics were recorded including surrounding land use, general assessments of the surrounding vegetation communities, soil type, continuity of fringing vegetation, percent open water and percent inundated vegetation cover. Inundation levels and extent from watering events were monitored using photopoints. The photo points were set up at sites within each focus river to assess inundation of key features such as point bars and benches. 
Three sites within each focus river were surveyed monthly between September 2012 and April 2013. One hundred (100) metre long transects that ran along the water’s edge of the river channel were surveyed to monitor changes in the percent cover of terrestrial and aquatic vegetation over time. Each transect was ten metres in width, which allowed for five metres on the riverbank side to represent terrestrial riverbank vegetation and 5m within the water representing submerged and emergent aquatic vegetation plus , in some cases, inundated riverbank vegetation. Measurements of percent cover along each 100m transect were taken visually at 5 m intervals. The riverbank transect was was classed as grasses (tall and short), herbs (tall and short), logs and litter, and bare ground. Aquatic vegetation was classed as tall emergent, short emergent, broadleaf emergent, attached floating, or submerged and the percent cover of each class was recorded. 
Results and discussion
Aquatic habitat assessment
There was a different response in each river in terms of aquatic vegetation cover and diversity over the survey period (Figure 12). Hydrological conditions, such as water depth and stability of water levels (Casanova and Brock 2000), and channel geomorphology can both strongly influence aquatic vegetation community and structure (Brock et al. 2006; Thoms et al. 2006). 
The aquatic vegetation cover in Little Merran Creek and Wakool Rivers (control river) remained relatively constant over the survey period (Figure 12). There was a trend towards and increase in the percent cover of tall emergent aquatic plants slightly over time in the second control, Wakool River, but this was not statistically significant due to high variation among replicates.
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Figure 12. Mean percent cover (± 1SE) of aquatic vegetation cover observed at focus rivers between September 2012 and April 2013.
There was a significant response of submerged aquatic vegetation in the Yallakool Creek October to December 2012 environmental watering action (Figure 12). Submerged aquatic vegetation cover was very low in September 2012, but increased during October and November 2012 (Figure 12). The dominant group were Charophytes, which are a type of algae that are similar to water plants, as they grow from the sediment into the water and produce seed-like spores. The duration of inundation provided the opportunity for submerged vegetation (in particular Characeae sp) to increase in area in the shallow water zone that was created during the environmental watering. There was a visible increase in the activity of macroinvertebrates and other organisms in the shallow water zone in this newly established vegetation. The increase in submerged aquatic vegetation was short lived, because the water level receded in December 2012 at the end of the environmental watering, and the percent cover of submerged aquatic vegetation decreased as the banks became exposed and the aquatic vegeration was desiccated (Figure 13). Although Yallakool Creek received additional environmental freshes from March to April 2013, no increase in aquatic vegetation cover was observed as a result of` these shorter environmental watering events (Figure 12; Figure 13). These observations support the hypothesis that environmental watering of longer duration will result in greater response in aquatic vegetation than those having a short duration.
A higher cover of inundated short emergent vegetation, comprised mostly of grasses and rushes, was present in Colligen Creek between September and October 2012 compared to the other focus rivers (Figure 12). The higher cover of aquatic vegetation in Colligen Creek during the November to December 2012 environmental watering action appeared to be due to riverbank plants becoming inundated during the environmental watering, not necessarily due to an increase in production of aquatic vegetation. When the watering action concluded in mid December 2012, the wetted areas receded and dried and several rushes, sedges and short herbs were identified on the drying/dry banks which likely emerged from the receding environmental fresh. The Colligen Creek March to April 2013 environmental watering action resulted in a slight (but non-significant) increase of inundated vegetation (Figure 12). 
 (
a) 
September 2012
November 2012
December 2012
b) 
January 2013
February 2013
c) 
March 2013
April 2013
) Figure 13. Exposed bank of Yallakool Creek during environmental freshes during survey period (September 2012 and April 2013): where a) spring, (b) summer and (c) autumn 
Riverbank vegetation
Riverbank vegetation consisted of the four vegetation classes (tall and short grass and tall and short herbs) at each river (Figure 14). Colligen Creek contained the highest cover of tall grasses (~20% cover) and tall herbs (~10% cover), whereas Yallakool Creek and Wakool River both contained the highest short herb cover (~35% and ~15% respectively) (Figure 14). Little Merran Creek had the least percent cover of riverbank plants of all the focus rivers. 
Riverbank vegetation was similar across all rivers and did not change substantially during the survey period, regardless of whether the river received an environmental fresh or not (Figure 14). The lack of change in vegetation cover may be, in part, because only minor inundation of the riverbank occurred at the study reaches during the environmental watering (Table 8, Section 7.1.1). The study area also experienced extreme mean maximum temperatures consistently above 40 degrees between November 2012 and February 2013, as well as very low rainfall (4.4 mm in January) (Figure 15). Combined with limited riverbank inundation, it is not surprising there was little change in the cover and community compositions of vegetation within the focus rivers.
Riverbank vegetation productivity and structure can be influenced by hydrological conditions such as frequency, duration, magnitude and timing of events (Casanova and Brock 2000; Kehr et al. 2013; Robertson et al. 2001) and understorey vegetation community composition can vary in response to wet and dry periods (Reid et al. 2011). The inundation of riverbank vegetation following larger flow events may be important for the Edward-Wakool system, as increased plant productivity can contribute to carbon and nutrient dynamics in aquatic and terrestrial ecosystems (Sims and Thoms 2002) and provde habitat for a range of organisms.
Grazing by domestic livestock can also influence riparian vegetation (Robertson, 1997; Robertson and Rowling 2000) and evidence of pugging and grazing by sheep, cows and horses was observed during the survey period at all focus rivers. Thus, the relatively low cover of riverbank vegetation at the study sites may be, in part, due to grazing which can reduce plant biomass (Lunt et al. 2007; Reid et al. 2011; Robertson and Rowling 2000) and species diversity in flood prone areas (Robertson 1997). Grazing can also alter plant community composition by advantaging species, such as grasses, that respond positively to grazing (Landsberg et al. 2002). Although grazing impacts were not monitored during this study, the impacts of grazing by domestic livestock should be considered in future monitoring.
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Figure 14. Mean percentage cover of terrestrial and fringing vegetation observed, and accompanying photograph representing typical cover at each focus reach.
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Figure 15. Weather experienced during the survey period (September 2012-April 2013): a) mean monthly maximum temperature and mean temperature; b) mean monthly rainfall
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 (
Key findings
Water temperature was similar at all sites and followed a seasonal trend that is consistent with that recorded in 2011-2012
.
The dissolved oxygen concentrations remained at acceptable levels throughout the study period
, indicating that no hypoxic blackwater event was associated with any of the environmental watering actions.
The environmental watering actions did not trigger an increase in DOC. 
Dissolved organic carbon levels
 were
 very similar between all sites
,
 except Little Merran
 Creek. Elevated DOC in Little Merran Creek from August through to October 2012 indicates greater carbon inputs associated with the unregulated flows during this time. 
The
 bioavailable nutrient concentrations, ammonia, filterable reactive phosphorus and NO
x
 (nitrate plus nitrite) 
did not 
exceed 
ANZECC Trigger concentrations
, 
with the exception of NO
x
 on just one occasion during the large natural flows in the Little Merran Creek in August 2012 where substantially larger areas of benthic surface were wetted. 
The environmental watering did not 
stimulate ecosystem productivity by moving nutrients and carbon between the main channel, upper benches and small low commence to flow floodrunners.
 
This is probably due to the 
small magnitude of
 increase in wetted benthic area 
during
 the environmental watering (see 7.1
.
1)
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Background
A range of parameters can be measured as indicators of water quality in river systems and many of these are directly or indirectly influenced by environmental watering. Parameters such as dissolved oxygen and temperature will directly influence the suitability of the water for aquatic organisms, such as fish. These may be influenced by flow through changes in water volume, turbulence and through indirect processes, such as alterations in rates of bacterial metabolism and photosynthesis. Nutrients and organic matter concentrations may be influenced by flow, either by dilution or through inputs associated with water contacting parts of the channel or floodplain which were previously dry and which have stores of nutrients and carbon in both plant materials and the soil (Baldwin 1999; Baldwin and Mitchell 2000). Inputs of these substances may have a positive influence on the river community through the stimulation of productivity and increased food availability for downstream communities (Robertson et al. 1999), however, excessive inputs can result in poor water quality through the development of problem algal blooms or blackwater events resulting in very low dissolved oxygen concentrations (Howitt et al. 2007; Hladyz et al. 2011). This project aims to assess changes to water quality in response to alterations in flow and to consider changes in both the quantity and type of organic matter present in the system.
Hypotheses
· Environmental watering is expected to stimulate ecosystem productivity by moving nutrients and carbon between the main channel, upper benches and small low commence to flow floodrunners. 
· Environmental watering is not expected to trigger blackwater events in these systems.

Methods
Water temperature and dissolved oxygen were logged every ten minutes at two sites in each of the four focus river reaches, with loggers located approximately 3-5 km apart. Data were downloaded and loggers calibrated approximately once per month, although on some occasions it was a longer period if high flow events made it difficult to retrieve loggers. Light and depth loggers were deployed at the commencement of the 2012-13 monitoring period and data downloaded on a monthly basis.
Water quality parameters (temperature (oC), specific conductivity (mS/cm), dissolved oxygen (%), pH, and turbidity (NTU)) were also measured as spot recordings, fortnightly at two sites within each river.
Water samples were collected from four sites within each river reach to assess for:
· Total Organic Carbon (TOC)
· Dissolved Organic Carbon (DOC)
· Nutrients (Ammonia (NH3), filtered reactive phosphorus (FRP), dissolved nitrate + nitrite (NOx), Total nitrogen (TN) and Total phosphorus (TP))

DOC and nutrient samples were filtered on-site using 0.2 m membrane filters. Samples were frozen and organic carbon samples refrigerated for transport to Monash University for analysis. Nutrient analysis (by Flow Injection Analysis) and organic carbon analysis (high temperature conversion to CO2 followed by infra-red detection) were undertaken by the National Association of Testing Authorities (NATA) accredited laboratory at the Monash University Water Studies Centre using accredited Quality Assurance protocols, thereby ensuring the integrity of data and analysis procedures.
An asymmetrical BACI (before-after, control-impact) (Underwood 1991) statistical design was used to test the effect of specific environmental water actions on water chemistry parameters. Differences in mean values between control/impact rivers and before/during/after environmental watering were evaluated statistically for each watering action using 2-way mixed effects analysis of variance (ANOVA). Because there were multiple sampling times used to represent before, during and after environmental flows, and multiple rivers used as ‘control’ and sometimes ‘impact’ rivers, sampling trip (random effect) was nested within Period (fixed effect, three levels: before, during and after), and river (random effect) was nested in Treatment (fixed effect, two levels: control rivers, impact rivers). Impact rivers received environmental freshes, while Control rivers were those that did not receive environmental water. For this analysis particular interest is in the Period x Treatment interaction term, which indicates a significant effect of the environmental watering action. Visual assessment of plots, grouped by Period and Treatment, were used to confirm if the significant interaction term was positively or negatively associated with the environmental watering action.
In November, two watering actions took place, one in Yallakool Creek and the other in Colligen Creek. For the Yallakool Creek November fresh, we compared the two sampling times Before (3 October, 17 October 2012) with the three times During (31 October 2012, 14 November, 28 November 2012) and two times After (12 December, 29 December 2012) the fresh (Table 9). Here, the Yallakool Creek was the ‘Impact’ river, and the Wakool River and Little Merran Creek the ‘Control’ rivers. The Colligen Creek November 2012 fresh was delivered as two distinct pulses and so the BACI analyses were run on each pulse separately. For the first pulse, we compared one sampling time before (17 October 2012) with two times during (31 October, 14 November 2012) and one time after (28 November 2012) the fresh. For the second pulse, we compared one sampling time before (28 November 2012), with one time during (12 December 2012) and one after (29 December 2012) the pulse. Here, Colligen Creek was the ‘Impact’ river, and the Wakool River and Little Merran Creek the ‘Control’ rivers (Table 9).
Yallakool Creek received a second fresh in February 2013, and here we compared two sampling times before (9 January 2013, 23 January 2013) with two sampling times during (5 February 2013, 20 February 2013), with one sampling time after (6 March 2013) (Table 9). Yallakool Creek was the Impact river, and the Wakool River and Little Merran Creek the Control rivers. In March 2013, Colligen and Yallakool Creeks received freshes of similar magnitude, duration and ‘shape’. The similar hydrographs in both Impact rivers meant we were able to perform an ANOVA with both Yallakool and Colligen Creeks used as Impact Rivers, and Wakool River and Little Merran Creek as Controls. Before the fresh was represented by one sampling time (6 March 2013), during by two sampling times (20 March 2013, 3 April 2013), and after by one sampling time (17 April 2013) (Table 9). The null hypothesis was that water chemistry parameters in the rivers which received environmental water were not significantly different to the control rivers.

Table 9. Summary of dates and rivers used to detect changes in water chemistry parameters (this section), phytoplankton (section 7.2.3), zooplankton (section 7.3.1) and larval fish densities/abundances (section 7.5.1) for the individual 2012-2013 watering actions. A‘BACI’ style 2-way nested ANOVA was used.
	Water action
	Treatment
(impact river/s)          (control river/s)
	Period
(before-during-after)
	date

	Yallakool River Nov 2012 watering action
	Yallakool 
	Wakool, Merran
	before
	1-5 Oct 2012
15-19 Oct 2012

	
	
	
	during
	29 Oct-2 Nov 2012
10-14 Nov 2012
26-30 Nov 2012

	
	
	
	after
	10-14 Dec 2012,
27-30 Dec 2012

	Colligen River Nov 2012 watering action - fresh #1
	Colligen
	Wakool, Merran
	before
	15-19 Oct 2012

	
	
	
	during
	29 Oct-2 Nov 2012
12-16 Nov 2012

	
	
	
	after
	26-30 Nov 2012

	Colligen River Nov 2012 2
	Colligen
	Wakool, Merran
	before
	26-30 Nov 2012

	watering action - fresh #
	
	
	during
	10-14 Dec 2012

	
	
	
	after
	27-30 Dec 2012

	Yallakool  River Feb 2013 watering action
	Yallakool
	Wakool, Merran
	before
	7-11 Jan 2013
21-25 Jan 2013

	
	
	
	during
	4-8 Feb 2013
18-22 Feb 2013

	
	
	
	after
	4-8 Mar 2013

	Yallakool and Colligen Rivers March 2013 watering actions
	Yallakool, Colligen 
	Wakool, Merran
	before
	4-8 Feb 2013

	
	
	
	during
	18-22 Mar 2013
2-5 Apr 2013

	
	
	
	after
	15-19 Apr 3013


Results and Discussion
The data collected by the loggers was used to calculate daily average dissolved oxygen concentrations (Figure 16) and temperature (Figure 17) for each of the rivers from September 2012 to April 2013. Water temperature at all sites was similar and followed a seasonal trend that is consistent with that recorded in 2011-2012 (Watts et al. 2013) The dissolved oxygen concentrations remained at acceptable levels throughout the study period, indicating that no hypoxic blackwater event was associated with any of the environmental watering actions.
Spot water quality measurements taken in August 2012, prior to the loggers being installed, indicated that dissolved oxygen concentrations were above 7.6 mg/L at all sites, and the only values below 8 mg/L were recorded in Little Merran Creek on 3 August 2012. The water temperature during this period was 9 oC and the measured oxygen concentrations were well below saturation, indicating elevated respiration associated with unregulated flows at this time. Little Merran Creek was most affected, but the concentrations remain well above the level at which fish are expected to be seriously impacted (Gehrke et al, 1993).
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Figure 16. Average Daily Dissolved Oxygen concentrations (mg O2/L). Data were collected continuously at 10 minute intervals over the period 23/9/2012 to 15/4/2013. Wakool data prior to 17/4/2012 were not included as the sensor was out of the water.
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Figure 17. Average Daily Water Temperature (oC). Data was taken from the DO loggers which were collecting data continuously at 10 minute intervals over the period 23/9/2012 to 15/4/2013. Wakool data prior to 17/4/2012 were not included as the sensor was out of the water.
Dissolved organic carbon levels (Figure 18) were very similar between all sites, except Little Merran Creek, on most sampling dates. Elevated levels recorded in the Edward River on 17 October 2012 are not consistent with other water quality parameters (see section 7.2.2). Elevated DOC in Little Merran Creek from August through to October 2012 is consistent with the lower DO concentrations noted above and indicates greater carbon inputs associated with the unregulated higher flows during this time. While the DOC in Little Merran Creek was higher than in the other rivers, at no time did the DOC concentrations reach the levels observed during the unregulated flow event that occurred in March and April 2012 (Watts et al. 2013). After the unregulated flow event DOC concentrations returned to the normal base range (2-4 mg/L) observed in this system. Particulate organic carbon concentrations (Figure 19) remained low throughout the study period and high levels of variability were observed (as might be expected in this concentration range). 
The ANZECC (2000) water quality guidelines do not provide trigger levels for total organic carbon and dissolved organic carbon, and this reflects the expectation that there will be large variation in the ‘normal’ concentrations of organic carbon between ecosystems and also in the chemical and biological reactivity of the mixture of organic compounds making up the DOC and TOC at a particular site. Trigger levels are concentrations of key water quality parameters designed to provide guidance for ecological protection. Where it has been determined that the measured concentration of one or more parameters in the water body exceed this level (or for some parameters, fall outside the given range) the trigger levels are designed to ‘trigger’ further investigation to establish whether the concentrations are causing harm in that system. Exceedance of a trigger level is not an absolute indicator of ecological harm. Given the variable make-up of organic carbon, and the possible range of ecological responses to this mixture, a trigger level for this parameter would not be appropriate. However, trigger levels are provided for a number of nutrients and these are discussed below. 
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Figure 18. Dissolved Organic Carbon (DOC) concentrations in water from Colligen Creek, Yallakool Creek, Wakool River, Little Merran Creek and the Edward River between July 2012 and May 2013. Blue and green bars represent the start and finish dates of environmental watering. (error bars: 1 s.d., n=4)
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Figure 19. Particulate Organic Carbon (POC) concentrations in water from Colligen Creek, Yallakool Creek, Wakool River, Little Merran Creek and the Edward River between July 2012 and May 2013. Blue and green bars represent the start and finish dates of environmental watering. (error bars: 1 s.d., n=4).

While there were no large scale changes in DOC or POC concentrations associated with the environmental watering actions, a small number of significant interactions were detected using the BACI statistical analysis (Table 10, Figure 20). The analysis has detected differences in the pattern of changing concentrations over time, rather than a clear separation of average concentrations between the treatment and control rivers during the watering action. The only significant interactions between control-impact rivers and before-during-after treatments occurred on the second fresh in Colligen Creek in November. The DOC concentration in the Colligen increased very slightly during this watering action while the control rivers had decreasing concentrations. It should be noted that Colligen Creek started with a slightly lower DOC concentration than the control rivers and only rose to an equivalent concentration during the watering action –the during and after concentrations of DOC are equivalent for the three rivers. No significant interactions were detected for Yallakool Creek.  The only significant interaction for the POC data (p=0.041), was associated with a decrease in POC during the same flow event. As this pattern was also not noted in Yallakool Creek and the concentrations are both low and variable, the impact of flow at the scale of these watering actions was minimal.


Table 10. Statistical results for 2 way mixed-effects Analysis of Variance (ANOVA). A significant interaction between the two fixed factors: Period (before, during, after) and CI (control rivers, impact rivers) indicates that  mean POC or DOC (mg/L C) in Impact Rivers was significantly different to changes that occurred over the same period of time within the Control Rivers. Significant interactions highlighted in bold print.
	Environmental flow
	DOC/POC
	Main effect
	d.f
	F-test
	p-value

	
	
	
	
	
	

	Nov 2012 – Colligen Creek fresh #1
	
	
	
	

	
	DOC
	Period (B-D-A)
	2,42
	4.006
	0.025

	
	
	CI (C-I)
	1,42
	2.740
	0.105

	
	
	Period*CI
	2,42
	2.928
	0.064

	
	POC
	Period (B-D-A)
	2,39
	0.667
	0.518

	
	
	CI (C-I)
	1,39
	1.38
	0.246

	
	
	Period*CI
	2,39
	0.46
	0.633

	
	
	
	
	
	

	Nov 2012 – Colligen Creek fresh #2
	
	
	
	

	
	DOC
	Period (B-D-A)
	2,29
	110.622
	0.003

	
	
	CI (C-I)
	1,1
	1.136
	0.450

	
	
	Period*CI
	2,29
	16.064
	<0.001

	
	POC
	Period (B-D-A)
	2,29
	6.776
	0.003

	
	
	CI (C-I)
	1,1
	2.768
	0.344

	
	
	Period*CI
	2,29
	3.569
	0.041

	
	
	
	
	
	

	Nov 2012 – Yallakool Creek fresh
	
	
	
	

	
	DOC
	Period (B-D-A)
	2,78
	6.123
	0.003

	
	
	CI (C-I)
	1,78
	0.997
	0.321

	
	
	Period*CI
	2,78
	0.949
	0.391

	
	POC
	Period (B-D-A)
	2,77
	0.118
	0.888

	
	
	CI (C-I)
	1,77
	0.153
	0.696

	
	
	Period*CI
	2,77
	1.224
	0.299

	
	
	
	
	
	

	Feb 2013 – Yallakool Creek fresh
	
	
	
	

	
	DOC
	Period (B-D-A)
	2,54
	0.339
	0.714

	
	
	CI (C-I)
	1,54
	1.139
	0.290

	
	
	Period*CI
	2,54
	0.175
	0.840

	
	POC
	Period (B-D-A)
	2,53
	4.220
	0.019

	
	
	CI (C-I)
	1,53
	4.667
	0.497

	
	
	Period*CI
	2,53
	0.357
	0.701

	Mar  2013 – Yallakool & Colligen Creek freshes
	
	
	

	
	DOC
	Period (B-D-A)
	2,58
	0.809
	0.450

	
	
	CI (C-I)
	1,58
	9.941
	0.002

	
	
	Period*CI
	2,58
	1.458
	0.241

	
	POC
	Period (B-D-A)
	2,58
	0.534
	0.589

	
	
	CI (C-I)
	1,58
	0.125
	0.724

	
	
	Period*CI
	2,58
	0.373
	0.690
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Figure 20: Mean concentration (±1SE) of dissolved organic carbon (DOC) and particulate organic carbon (POC) present in the Edward-Wakool system before, during and after the second environmental flow ‘fresh’ in Colligen Creek in November 2012. The Wakool River and Little Merran Creek did not receive environmental water, and were used as controls. Planned comparisons with significant interactions between control-impact rivers (impact river; Yallakool Creek, control rivers; Wakool River, Little Merran Creek) and Period (before, during, after) are marked with an asterisk, indicating that mean DOC changed significantly in Colligen Creek during the environmental watering.

Concentrations of Total Nitrogen (Figure 21) and NOx (nitrate plus nitrate) (Figure 22) also indicate that the unregulated flow in August 2012 resulted in a different response in Little Merran Creek than in the other rivers. Both TN and NOx were elevated in Little Merran Creek relative to the other rivers over this period, while there is no clear pattern in the ammonia data (Figure 23). The environmental watering actions have not impacted on the nitrogen concentrations in either of the impact rivers, relative to the control rivers. 
While the TN concentrations at times exceed the ANZECC (2000) trigger value for lowland rivers of 500 μg/L (0.5 mg/L) (Figure 21), the bioavailable forms of nitrogen are well below the trigger values (with the exception of NOx in Little Merran Creek at the beginning of August). This pattern is repeated with the concentrations of P - while the Total P concentrations frequently exceed the trigger value of 50 μg/L (0.05 mg/L) (Fgure 24), the filterable reactive P (the more bioavailable fraction) is well below the trigger value of 20 μg/L (Figure 25). A slight increase in bioavailable P occurs in early August 2012 and is greatest in Little Merran Creek, but FRP is not impacted by any of the environmental watering actions. Total P concentrations in November and December indicate that when freshes are being delivered in Colligen and Yallakool Creeks, a decrease in Total P is observed in these two rivers and the Edward River and, while the control rivers retain higher concentrations. This effect was not repeated with freshes later in the season. 
The ANZECC Water Quality Guidelines recommend that in order to minimize the risk of algal blooms and other adverse outcomes in lowland rivers in south-eastern Australia, the bioavailable concentrations of ammonia, FRP and NOx should be below 20, 20 and 40 μg/L respectively (Figure 26). The median concentrations were nearly an order of magnitude lower than these guidelines. The occasional high NOx values in Little Merran Creek coincided with a natural higher flow event in August-September 2012.
[image: ]
Figure 21. TN Average Total Nitrogen Concentrations in water from Colligen Creek, Yallakool Creek, Wakool River, Little Merran Creek and the Edward River between July 2012 and May 2013. Blue and green bars represent the start and finish dates of environmental watering. (error bars: 1 s.d., n=4). The dashed line indicates the ANZECC (2000) trigger level for this nutrient.
[image: ]Figure 22. Average NOx (Nitrate and Nitrite) concentrations in water from Colligen Creek, Yallakool Creek, Wakool River, Little Merran Creek and the Edward River between July 2012 and May 2013. Blue and green bars represent the start and finish dates of environmental watering. (error bars: 1 s.d., n=4). The dashed line indicates the ANZECC (2000) trigger level for this nutrient.
[image: ]Figure23. Average ammonia concentrations (error bars: 1 s.d., n=4) in water from Colligen Creek, Yallakool Creek, Wakool River, Little Merran Creek and the Edward River between July 2012 and May 2013. Blue and green bars represent the start and finish dates of environmental watering. (error bars: 1 s.d., n=4). The dashed line indicates the ANZECC (2000) trigger level for this nutrient. 
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Figure 24. Average Total Phosphorus Concentrations (error bars: 1 s.d., n=4) in water from Colligen Creek, Yallakool Creek, Wakool River, Little Merran Creek and the Edward River between July 2012 and May 2013. Blue and green bars represent the start and finish dates of environmental watering. (error bars: 1 s.d., n=4). The dashed line indicates the ANZECC (2000) trigger level for this nutrient.

[image: ]Figure 25. Average filterable reactive phosphorus concentrations (error bars: 1 s.d., n=4). in water from Colligen Creek, Yallakool Creek, Wakool River, Little Merran Creek and the Edward River between July 2012 and May 2013. Blue and green lines represent the start and finish dates of environmental watering. (error bars: 1 s.d., n=4). The dashed line indicates the ANZECC (2000) trigger level for this nutrient.

[image: ]
Figure 26. ‘Box and Whisker Plot’ Summary of bioavailable nutrient concentrations in the four study rivers: C = Colligen Creek, LM = Little Merran Creek, W = Wakool River, Y = Yallakool Creek. Note that the concentration axis is on a logarithmic scale for ease of presentation. All concentrations less than the detection limit of 1 μg/L were plotted as 0.5 μg/L. The boxes represent the data range 25th to 75th percentile, with the ‘middle’ line in the box being the median. The “whiskers” indicate 10th and 90th percentiles in the data. Outliers are shown as circles. The two dashed horizontal lines represent the ANZECC (2000) Trigger Values for FRP and Ammonia (20 μg/L) and NOx (40 μg/L).
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Key findings
The environmental watering in Yallakool Creek and the Colligen Creek did not result in the composition of dissolved organic matter in these rivers becoming substantially different to the other rivers
. This suggests that the areas of in-stream habitat that were re-wetted during these flows did not have substantial amounts of accumulated organic material (such as leaf litter) and t
he small in-channel watering actions did not reconnect sufficient area of upper benches and floodrunners to result in substantial exchange of organic matter and nutrients. The in-channel environmental watering did not result in blackwater event.
The greatest influence on organic matter composition and concentration over the study period were the unregulated flows
 in August and September 2012, where all rivers had elevated organic matter compared to May 2012. 
Organic matter inputs associated with the
se unregulated flows 
did not result in a blackwater event, due to the low water temperature at 
that
 time of year.
Over the period from August to early October 2012, the organic matter content of Little Merran Creek was higher than all other sample sites. 
This 
may be due to
 
the longer period of 
elevated flows 
in this river, the different water source (Murray River), and the greater areas of 
new 
riverbank
 being wetted in Little Merran 
Creek
 t
han the other study rivers.
)[image: ]Organic matter characterisation


Background
Australian riverine ecosystems can be heavily reliant on both algal and terrestrial dissolved organic matter for microbial productivity and can be limited by dissolved organic carbon concentrations (Hadwen et al. 2010). While water quality guidelines (ANZECC 2000) include trigger values (concentrations of concern) for a number of water quality parameters such as chlorophyll a, nutrients, dissolved oxygen and pH, no guidelines are given for organic matter and aquatic environments are expected to have quite varying dissolved organic matter concentrations. 
Organic matter is made up of a complex mixture of compounds from a diverse range of sources. Microbial communities do not respond to all types of organic matter in the same way (Baldwin 1999; O’Connell et al. 2000; Howitt et al. 2008) although it has been shown that bacterial communities can respond to changes in organic carbon source quite rapidly (Wehr et al. 2002). The very large, complex type of organic matter referred to as humic substances has been shown to be less available to bacterial communities than simpler non-humic carbon (Moran and Hodson 1990) although this can be altered over time with exposure to ultraviolet light (Howitt et al. 2008). 
One way of examining the mixture of organic substances present is to measure the spectroscopic behaviour of the substances i.e. to study which wavelengths of light they absorb, and to examine which wavelengths of light they emit (fluoresce) in response to this absorption of incoming light (Dahlen et al. 1996; Mobed et al. 1996; Baker and Spencer 2004; Howitt et al. 2008). Both absorbance and fluorescence spectra are used to examine the organic matter in this study. As a general guide, absorbance at longer wavelengths indicates larger, more complex organic matter (Bertilsson and Bergh 1999).  Absorbance at a particular wavelength may be increased by increasing concentration of organic matter or a change in the type of organic matter.
The consideration of changes in both the quantity and type of organic matter present in the system allows for a more detailed examination of the hypotheses around the movement of organic carbon and the creation of blackwater events. 
Hypothesis
If environmental watering facilitates inundation of extensive new sources of organic matter it would result in changes to the spectroscopic responses of the organic matter through alteration of the mixture of compounds that make up dissolved organic matter.
Methods
Samples for organic matter characterisation were collected fortnightly from August 2012 until early May 2013. Four samples were collected from each river reach on each sampling date. On each sampling trip the samples were collected in the following sequence: Little Merran Creek, Yallakool Creek, Wakool River (day 2), Colligen Creek, Edward River, (day 3). All graphs are labelled with the date indicating day 3 (usually Wednesday) of the relevant sampling trip.  Water samples were filtered through a 0.2 m pore-sized membrane at the time of sampling and then stored on ice until returned to the laboratory and then analysed within a 2 days of returning from the field. Absorbance scans were collected using a Varian Cary 4000 instrument across a wavelength range of 550 nm to 200 nm (green through to ultraviolet) with a 1 nm step size. Absorbance is a measure of light absorbed by the sample and is a logarithmic scale. An absorbance of 1 indicates that only 10% of the light of that wavelength is transmitted through the sample. Fluorescence scans were collected using a Varian Eclipse spectrofluorometer scanning both emission and excitation wavelengths to give an excitation-emission matrix (EEM). Excitation wavelengths were scanned from 200 to 400 nm with a 10 nm step size and for each excitation wavelength, emission of light at 90O to the source was recorded from 200 nm to 550 nm with a 1 nm step size. Fluorescence results were corrected for sample absorption and plotted as contour plots (Howitt et al., 2008). To correct for drift in the instrument zero position, each contour plot was scaled by subtracting the average emission intensity across the range 200-210 nm for an excitation of 250 nm from all fluorescence intensities (effectively setting this region of the contour plot to zero on all plots). 
An example of a contour plot is shown in Figure 27. The contour plots have the excitation wavelength (light shone into the sample) on the y-axis. On the x-axis is the emission wavelength (light given off by the sample). The intensity of the fluorescence (how much light is given off, corrected for absorbance by the sample) is represented by the colours of the contour plot, with more intense fluorescence represented by the blue end of the scale. The two blue diagonal lines are artefacts of the technique and will be present in all samples- key data is found between these two lines.
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Figure 27. Sample excitation emission contour plot indicating key features of the data. (from Watts et al. 2013)
Results and discussion
Absorbance scans of representative water samples from each sampling trip are presented in Figure 28. The greatest variation between replicates for each river is expected at 200 nm and the range was less than 10% of the measured absorbance on most occasions (up to 20% during higher flows in August but commonly 2-5% later in the season). An exception was a sample from Little Merran Creek on the 14 November, where the shape of the scan indicated sample contamination and the sample was excluded. In general, this data indicates that the greatest influence on organic matter composition and concentration over the study period were the unregulated flows in August and September 2012, where all rivers had elevated organic matter compared to May 2012 (Watts et al. 2013). Over the period from August to early October 2012, the organic matter content of Little Merran Creek is clearly higher than that found at all the other sample sites. This reflects differences in the hydrograph (the elevated flows are spread over a longer period for the Little Merran), the spatial coverage of the water surface and the water source. The organic matter loading in the Little Merran Creek is influenced by overbank flows from the Murray River into the Koondrook-Perricoota Forest upstream of the offtake and scenario modelling also indicates that the flows at this time resulted in considerably more new riverbank being wetted in Little Merran Creek than for the other study rivers. Throughout the study period the absorbance scans for the Wakool River, Colligen Creek and Yallakool Creek generally match those of the Edward River, where overbank flows through the Barmah-Millewa Forest can be a source of organic matter upstream. Shortly after Little Merran Creek returned to base flows in mid-October the absorbance results become fairly consistent with those of the other study sites. The in-channel pulsed flows in both the Yallakool Creek and the Colligen Creek do not result in the absorbance scans at these sites becoming substantially different to the other sites, suggesting that the areas of in-stream habitat that were re-wet during these flows did not have substantial amounts of accumulated organic material (such as leaf litter).
Representative fluorescence scans are shown in Figure 29a, 29b and 29c. Fluorescence spectroscopy is a more sensitive technique for the characterisation of organic matter and so the difference between the Little Merran organic matter and the other river sites is evident for longer following the unregulated flows in August and September. The fluorescence analysis indicates that by early December 2012 the amount and type of organic matter at all sites is very consistent. Consistent with the absorbance results presented above, there is no evidence that the freshes in the Colligen and Yallakool resulted in changes in the organic matter load or the composition of the mixture of compounds making up the fluorescent dissolved organic matter. There are increases in the aromatic protein region of the spectrum in all rivers during December and these persist through to March 2013, but this appears to be a seasonal effect and the increased signal in this region is consistent with that observed throughout most of the 2011-2012 study period (Watts et al. 2013). Increases in fluorescence in this region of the spectrum may indicate the presence of a more bioavailable fraction of organic matter and may be associated with breakdown of humic and fulvic components by sunlight (Howitt et al. 2008). Peaks in this region have also been associated with bacterial metabolism (Elliott et al. 2006), and have been found in marine environments (Coble 1996) where their presence is likely of algal origin. The patterns observed in the absorbance and fluorescence results are consistent with those observed in 2011-2012 (Watts et al. 2013) - the organic matter profiles become complex and the rivers are different from each other during periods of high flow where overbank flow may occur for individual river sites or for the source rivers upstream, but long periods of in-channel flow result in a reduction and simplification of the organic matter signals and there is consistency across the rivers. 
The absorbance and fluorescence results are consistent with the dissolved organic carbon results, which indicate that the dissolved carbon loading in the rivers fed by the Edward River are generally consistent with each other and the source water, irrespective of the flow conditions in the individual rivers. The higher carbon loading in Little Merran Ceek at the beginning of the study period is reflected in all three data sets. The exceptions to the correlations between the data sets are the small reduction in DOC at the end of December which is not evident in the spectroscopic analyses and the very high DOC result in the Edward River on 17 October 2012.  This dramatic increase in DOC at this site is not reflected in the absorbance scans, where the Edward is indistinguishable from the connected rivers, which is surprising as a dramatic increase in even quite simple organic matter would be expected to affect at least the very shortest wavelengths in these scans. There is a very slight increase in humic and fulvic signature in the Edward on this date, but an increase in DOC from normal floodplain sources to the concentrations recorded here would be expected to result in higher fluorescence in this region. Increases in DOC at this site have not been accompanied by increases in nutrients, as might be expected with overbank flows and was seen in Little Merran data in August. There is no evidence of a flow-on effect to the connected rivers on this or the following sampling date. In the absence of a highly localised input of extremely simple dissolved organic compounds (which would be expected to be reflected in a dip in dissolved oxygen at the site), it seems likely that the DOC samples for this site may have been contaminated in some way.  
The small in-channel watering actions did not reconnect a sufficient area of upper benches and floodrunners to result in substantial exchange of organic matter and nutrients. The hypothesis that environmental watering would stimulate ecosystem productivity by moving nutrients and carbon between the main channel, upper benches and small, low commence-to-flow floodrunners was not adequately tested through a substantial increase in wetted area and was not upheld for the in-channel watering actions in 2012-13.
It was expected that dissolved organic carbon and particulate organic carbon levels would remain relatively unchanged following in-channel environmental watering. The environmental watering was not expected to trigger blackwater events in these systems. These hypotheses were supported- in-channel environmental watering did not result in large inputs of dissolved or particulate organic matter and no blackwater event was observed. Organic matter inputs associated with the unregulated flows in August did not result in a blackwater event, primarily due to the low water temperature at this time of year.
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Figure 28a. Absorbance scans of water samples (1 August 2012 to 31 October 2012) 
[image: D:\Users\jhowitt\Documents\Research projects\Wakool\2012-2013\2012-13 absorbance compiled 2.JPG]Figure 28b. Absorbance scans for water samples (14 November 2012 to 23 January 2013)
[image: D:\Users\jhowitt\Documents\Research projects\Wakool\2012-2013\2012-13 absorbance compiled 3.JPG]Figure 28c. Absorbance scans for water samples 6 February to 17 April 2013
[image: D:\Users\jhowitt\Documents\Research projects\Wakool\2012-2013\2012-13 fluorescence compiled 1.JPG]
Figure 29a: Fluorescence scans for water samples collected between August and October 2012.
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Figure 29b. Fluorescence scans- November 2012 to January  2013.
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Figure 29c. Fluorescence scans: February to April 2013.
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Key findings
The delivery of environmental freshes in the Yallakool and Colligen rivers had no significant effect on phytoplankton densities
 during the November 2012 Yallakool watering action, the February 2013 watering action, or the March 2012 Yallakool and Colligen watering actions. 
In general, p
hytoplankton
 c
hlorophyll-a concentration in all rivers increased from August 2012 through to April 2013, with a reduction in all rivers recorded in May 2013 as water temperature started to decrease.
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Background
Phytoplankton are photosynthetic organisms that live in the water column of water bodies. They are a major energy source in standing and slow-flowing water bodies where they are primarily fed upon by zooplankton. They are also an important source of organic carbon through production of dissolved carbon compounds and through settling out to the bottom of rivers and lakes, contributing to sediment particulate organic matter. Algal growth depends on the availability and supply of the nutrients nitrogen and phosphorus, light and warm water temperatures.
Phytoplankton are potential indicators of ecological responses to environmental flows because they proliferate under low flow conditions, potentially outcompeting biofilms for light and nutrients (Carter 2011). Phytoplankton can be influenced by flow through changes in water volume, turbulence and through indirect processes, such as change in bioavailable nutrients and turbidity (influencing light penetration into the water body).
Studies examining the relationship between flows and phytoplankton have tended to focus on the issue of controlling algal blooms. The success of pulsed flows to disperse algal blooms has been demonstrated in the Murray Darling Basin (e.g. Sherman et al. 1998; Webster et al. 2000; Maier et al. 2004; Mitrovic et al. 2003; Bormans et al. 2005). The provision pulsed flow has been recommended as best-practice for controlling algal blooms (Edgar and Davis 2007) and has become part of the operating protocols for many systems including the Murray River. For example, in February 1999, water in addition to operational requirements was released from storages along the Murray and Murrumbidgee rivers to flush a blue-green algae bloom between Euston and Wentworth on the Murray River.
Hypothesis
The environmental watering will result in an initial decline in phytoplankton biomass, due to the enhanced turbidity from that fresh causing light limitation of photosynthesis. Following that initial decline, phytoplankton biomass will increase to a higher than pre-fresh levels due to the influx of nutrients. Environmental watering is not expected to trigger an algal bloom in these systems.


Methods
Five 500 mL water samples were collected from each river reach fortnightly on each sample date to determine the biomass of phytoplankton in the water column. Water was filtered through a GFC-50 0.5 µm pore-sized filter and the filter papers frozen until processing. 
Chlorophyll-a concentrations were determined using the phaeophytin/acidification method where the total amount of pigment (chlorophyll plus phaeopigments) is determined in an methanol extract by spectrophotometry. The same sample is then acidified, and the chlorophyll degrades to phaeopigment, which is then measured spectrophotometrically. The chlorophyll-a concentration can then be determined from the difference in the two absorbance readings following Ritchie (2006).
Samples were placed in 10 mL of 90% methanol containing 150 mg magnesium hydroxide carbonate, extracted for 18 hours at 4°C, transferred to a 70°C water bath and boiled for two minutes. Samples were centrifuged at 4500 rpm for three minutes and optical densities at 750 and 666 nanometres measured pre- and post-acidification (1 M HCl) using a UV/Visible Spectrophotometer. 
An asymmetrical BACI (before-after, control-impact) (Underwood, 1991) statistical design was used to test the effect of specific 2012-2013 environmental water actions on phytoplankton biomass in the Edward-Wakool system. Differences in mean densities of phytoplankton between control/impact rivers and before/during/after environmental freshes were evaluated statistically for each watering action using 2-way mixed effects analysis of variance (ANOVA). Because there were multiple sampling times used to represent before, during and after environmental flows, and multiple rivers used as ‘control’ and sometimes ‘impact’ rivers, sampling trip (random effect) was nested within  Period (fixed effect, three levels: before, during and after), and river (random effect) was nested in Treatment (fixed effect, two levels: control rivers, impact rivers). Impact rivers received environmental freshes, while Control rivers were those that did not receive environmental water. For this analysis particular interest is in the Period x Treatment interaction term, which indicates a significant effect of the environmental watering action. Visual assessment of mean (±1SE) biomass plots, grouped by Period and Treatment, were used to confirm if the significant interaction term was positively or negatively associated with the environmental watering action. A summary of dates and rivers used to detect changes in phytoplankton biomass is presented in Table 9 (section 7.2.1). The null hypothesis was that mean phytoplankton densities in the rivers which received environmental water were not significantly different to the control rivers. 
Results and discussion
Throughout the study planktonic chlorophyll-a concentrations were similar to levels reported for other lowland rivers (Reynolds and Descy 1996). The concentrations observed in the Edward-Wakool system were slightly higher than ANZECC (2000) trigger levels (Figure 30), but not of concern as they were similar to levels measured in the Murray River near Yarrawonga (Howitt et al. 2004).
The delivery of environmental freshes in the Yallakool and Colligen rivers had no significant effect on phytoplankton densities during the November 2012 Yallakool watering action, the February 2013 watering action, or the March 2012 Yallakool and Colligen watering actions (p>0.05, Table 11). Missing data for the sampling trip 26-30 November 2012 meant that the November 2012 Colligen watering action could not be statistically analysed. In general, phytoplankton chlorophyll-a concentrations increased from August 2012 through to April 2013, with a reduction in all rivers recorded in May 2013 as water temperature started to decrease.
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Figure30. Phytoplankton chlorophyll-a concentrations (mg/m3) ± 1 SE in water from Colligen Creek, Yallakool Creek, Wakool River and Little Merran Creek between July 2012 and May 2013. Blue and green bars represent the start and finish dates of environmental watering.


Table 11: Results of 2-way mixed-effects Analysis of Variances, comparing mean phytoplankton biomass (ug/L) between control/impact rivers (CI), before, during and after (Period) the 2012-2013 environmental watering actions. A significant interaction between the two fixed factors indicates that the mean phytoplankton biomass within ‘Impact’ rivers was significantly different to changes that occurred over the same period of time within the Control Rivers. There were no significant interactions.

	Environmental watering action
	Main effects
	d.f
	F-test
	p-value

	
	
	
	
	
	

	
	
	
	
	
	

	Nov 2012 – Yallakool River watering action
	
	
	
	

	
	
	Period (B-D-A)
	2,69
	0.290
	0.748

	
	
	CI (C-I)
	1,69
	3.450
	0.067

	
	
	Period*CI
	2,69
	0.166
	0.857

	
	
	
	
	
	

	Feb 2013 – Yallakool River watering action
	
	
	
	

	
	
	Period (B-D-A)
	2,54
	0.207
	0.813

	
	
	CI (C-I)
	1,54
	0.505
	0.480

	
	
	Period*CI
	2,54
	0.036
	0.965

	
	
	
	
	
	

	Mar  2013 – Yallakool & Colligen River watering actions
	
	
	

	
	
	Period (B-D-A)
	2,72
	0.749
	0.476

	
	
	CI (C-I)
	1,72
	0.139
	0.709

	
	
	Period*CI
	2,72
	1.113
	0.339
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Key findings
Environmental watering resulted in higher
 diversity in biofilms
.
 
A high diversity of biofilms usually indicates good ecosystem health
. Taxa richness in the month old
 
biofilm growths
 ranged from five in the Wakool River (control) during April 2013 to a maximum of 15 taxa in Yallakool Creek (received environmental water) in March 2013. Yallakool Creek also had the highest
 richness during February 2013.
There was significantly higher relative biovolume of early successional taxa (diatoms) in rivers that received environmental water
 
(Coll
igen Creek and Yallakool Creek) and a higher percentage abundance
 of green algae 
in the one month old
 
biofilms in
 the 
control rivers
 (Little Merr
an Creek and the Wakool River). 
There was a reduced biofilm biomass in rivers that received environmental water compared to the 
control rivers
. 
This is consistent with the hypothesis that 
increased flow
 variability from in-channel environmental watering will ensure biofilm biomass in 
treatment rivers
 
remains below nuisance levels and that b
iofilm organic biomass will be highest in rivers that have a more constant 
regulated 
discharge.
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Background
Biofilms (also known as periphyton) are a combination of bacteria, algae and fungi that grow on submerged surfaces (e.g. wood, rocks, sediment) in aquatic systems. They are a major instream source of carbon in river systems and provide food and habitat for a range of organisms.
The biomass and productivity of biofilms are influenced by light, nutrients, temperature and availability of substratum (Peterson 1996; Burns and Ryder 2001) and disturbances such as grazing, changes in water level and flow velocity (Stevenson 1996). Disturbance by flood events is one of the most important regulators of spatial and temporal variability in benthic communities of streams (Davis and Barmuta 1989), with shifts in benthic algal community structure and function being well documented (e.g. Biggs et al. 1999; Uehlinger et al. 1996). Previous studies in lowland river reaches in the Murray-Darling Basin (e.g. Ryder 2004) and faster flowing upland systems (e.g. Watts et al. 2006, 2008, 2009b) have shown that regulated flow regimes with reduced variability in discharge can result in reduced productivity, reduced diversity, and cause the biomass of biofilms to increase to levels that become a nuisance (over 100 mg/m2; Quinn 1991). Pulsing flows and increasing variability in flow (towards that in unregulated conditions) is a way to reduce biofilm biomass and improve river health. Pulsed flow events have been shown to reset biofilms (Watts et al. 2005, 2008, 2009b), which can have a positive effect on the instream ecosystem by reducing the biomass of biofilm and enabling early successional algae (e.g. diatoms) to become established, facilitating a shift in the biofilm community towards that of a reference stream (Watts et al. 2008; 2011).
Biofilms are excellent indicators of ecological responses to inchannel environmental watering because they respond to flow changes in a time frame (days to weeks) that is appropriate for flow management (Burns and Ryder 2001). The benefits of resetting biofilms through the delivery of in-channel environmental flows include:
· To promote of early successional algal taxa (e.g. diatoms) and higher biofilm diversity. A high diversity of biofilms usually indicates good ecosystem health.
· To contribute to nutrients and particulate organic matter in the water column, thus providing an important food resource for downstream communities
· To reduce in the nuisance of a high algal biomass of biofilm growing on the beds of rivers to avoid it increasing to levels unacceptable to the public. Quinn (1991) recommended that “the seasonal maximum cover of stream or river bed by periphyton as filamentous growths or mats (greater than about 3 mm thick) should not exceed 40% and/or biomass should not exceed 100 mg chlorophyll-a /m2”.
Hypotheses
· Environmental watering is expected to increase flow variability in these systems, increasing diversity in riverine biofilms, in particular increasing the relative biovolume of early successional taxa (eg diatoms).
· Increased flow variability from in-channel environmental watering will ensure biofilm organic biomass in these systems remains below nuisance levels. Biofilm organic biomass will be highest in rivers that have a more constant discharge.

Methods
Blocks of red gum wood (10 x 8 x 2 cm, 232 cm2) were established at sites in five focus river reaches in October 2012. The biofilm redgum blocks could not be deployed prior to this time due to high flows in Yallakool Creek. Five blocks were suspended on metal racks mounted on star pickets (Figure 31) and placed in the photic zone at a known height relative to river discharge. This enabled biofilms to colonise the blocks and be sequentially harvested at regular and opportunistic intervals to compare the response of biofilm attributes to hydrological and water quality conditions.
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Figure 31. Redgum blocks prior to deployment for assessment of bioilms, and b). Redgum block with biofilm established on it.

There were two biofilm treatments a) blocks set out each month and harvested the following month representing newly colonised biofilm and b) blocks set out at the beginning of the project (16 October 2012) and harvested at the end of the project (30 April 2013), representing long-term standing stock. Five ‘one month old’ blocks were harvested each month and five ‘standing stock’ blocks were harvested at the end of the study period. For some sample dates there are missing data because the water levels dropped and the blocks were out of water. Biofilm blocks for that month were removed but not processed as they would not represent the true growth over that period.
The following biofilm attributes were assessed:
· Chlorophyll a (algal biomass)
· Organic biomass and organic matter percent (percent of total weight)
· Biofilm algal species composition (biodiversity) and relative biovolume of major algal groups
The biofilm from each redgum block was scrubbed into 200 mL of distilled water using a soft nailbrush. Sub-samples were removed from the 200 mL residue (biofilm slurry) for determination of chlorophyll-a, and a 20 mL sample collected for the assessment of taxonomic composition and stored in Lugols solution (Figure 32). Using GC-50 0.5 µm filter papers, a recorded amount of the solution was filtered, the filter paper dried at 80°C for 24 hours, weighed, combusted for four hours at 500°C and reweighed. All samples were weighed to four decimal places and converted to dry weight and ash free dry weight/organic biomass. Percent organic matter was calculated as the proportion of AFDW to DW and converted to a percentage to standardise across sites and dates. Chlorophyll-a in biofilm samples was determined as described in the phytoplankton methods section 7.2.3.
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Figure 32. A 20 mL sample of the biofilm residue is collected for the assessment of taxonomic composition


A one-factor ANOVA was undertaken to test if algal biomass and organic biomass from standing stock biofilms was significantly different across the 4 rivers at the end of the monitoring period. When significant differences were indicated, post hoc pairwise comparisons were undertaken to determine differences between the rivers. 
The average discharge, median discharge and coefficient of variation of discharge was calculated for each sample date from when the redgum block was deployed to when it was sampled. The number of days that blocks were in the water ranged from 21 to 35 days, with most samples being deployed for 28 days. The relationship between biofilm attributes and these flow variables was examined using Pearson’s correlations. Correlations between the one month biofilm biomass and independent variables (mean discharge, mean coefficient of variation of discharge (CV), and median discharge) were conducted using Spearman Rank correlations for parameters that were not normally distributed and Pearson’s correlations where data were normally distributed. Scatterplots were constructed for correlations which were significant between independent and dependent variables. All univariate analyses were conducted using the software package SPSS Statistics v20.
Results and discussion
A total of 41 taxa were found in the one-month-old biofilm growths and this was considerably higher than the 25 taxa found in the standing stock biofilms. There were 12 and 10 Green taxa, and 13 and 9 Cyanobacteria taxa in the monthly growths compared with the standing stocks, respectively. There were only 6 diatom taxa collected in the standing stock samples compared with 15 in the monthly growths, indicating that many of the diatom species are early successional taxa.
The taxa richness in the standing stock growths ranged from three in Colligen Creek during March 2013 to a maximum of 10 taxa in Yallakool Creek in January and February 2013. The filamentous green alga Oedogonium was the most prolific taxa (10 – 95%) at all sites. Spirogya was also persistent (>50%) in both the Wakool River and in Yallakool Creek in March and April 2013. In the standing stock biofilms the branching filamentous Cyanobacterium, Haplosiphon was the dominant Cyanophyte. Similarly in the Wakool River during March 2013 Haplosiphon made up 40% and during April made up 100% of the biofilm. The majority of Haplosiphon species grow in stagnant or very slow flowing waters, usually clear and with water plants (Komárek 1992). It is also a good nitrogen fixer.
Taxa richness in the monthly algal growths ranged from five in the Wakool River (control) during April 2013 to a maximum of 15 taxa in Yallakool Creek (received environmental water) in March 2013. Yallakool Creek also had the highest richness during February 2013. This is consistent with the expectation that there would be a higher diversity of biofilms in the reaches that had higher variation in discharge. In the one month old biofilms, the branching filamentous Cyanobacterium, Haplosiphon was found at >10% in Colligen Creek and Little Merran Creek in January and March 2013. It was also >50% of the biofilm during March 2013 in the Wakool River and >25% at Yallakool Creek in November 2012. The cosmopolitan filamentous Diatom Aulocoseira granulata was ubiquitous in the Wakool River during November 2012 and in Yallakool Creek during January 2013. 
There was significantly higher percentage abundance of green algae in the one month old biofilms in the control rivers (Little Merran Creek and Wakool River) compared to the treatment rivers (Colligen Creek and Yallakool Creek) and consequently a higher relative biovolume of early successional taxa (diatoms) in the treatment rivers (Figure 33). This is consistent with studies demonstrating a positive relationship between diversity in biofilms and flow variability (Ryder 2004). There was increasing algal biomass (chlorophyll-a) in the Wakool River with each subsequent sample of one month old biofilms (Figure 33). This is noteworthy, because new blocks were established each month, so the biomass had accumulated over approximately one month, and does not reflect a build up of biomass over an extended period of time. The response may be due to increasing water temperature and decreased turbidity in the low discharge conditions in the Wakool River. Algal biomass in this system did not reach nuisance levels (100 mg/m2; Quinn 1991). In contrast, the organic biomass was variable across systems, with no obvious pattern among rivers (Figure 34). The highest organic biomass was observed in Little Merran Creek (control river) in March 2013 (Figure 34). 
Algal biomass was significantly correlated with mean discharge (r = -0.425, p = 0.043, n-23) (Figure 35) and organic biomass of one month old biofilms was significantly negatively correlated (r = -0.438, p = 0.028, n-25) with the coefficient of variation of discharge (Figure 35). These negative correlations demonstrate that the higher discharge and higher variation in discharge during the environmental watering can help to prevent excessive growth of biofilm as can occur under constant flow regimes. 
The biomass of standing stock biofilms was compared in April 2013 after growing on the blocks since establishment in October 2012. The organic biomass in April 2013 was significantly higher in the Wakool River (control)(62.8 g/m2± 16.6) than in Yallakool Creek (19.1 g/m2± 2.5) or Colligen Creek (25.9 g/m2± 2.6). Similarly, the algal biomass was significantly higher in Wakool River (22.1 mg/m2± 1.8) compared to Yallakool Creek (15.1 g/m2± 21.5) or Colligen Creek (14.6 g/m2± 2.6). This is consistent with the hypothesis that increased flow variability from in-channel environmental watering will ensure biofilm biomass in treatment rivers remains below nuisance levels and that biofilm organic biomass will be highest in rivers that have a more constant discharge.
In summary, environmental watering resulted in higher diversity in biofilms, in particular an increase in the number and percent abundance of early successional taxa (eg diatoms). There was also a reduced biofilm biomass in rivers that received environmental water compared to the control rivers that had a more constant discharge. 
[image: ]
Figure 33. Relative percentage abundance (as biovolume) of algal divisions and algal biomass (chlorophyll-a mg/m2 ±1SE) from one month old biofilms from Colligen Creek, Yallakool Creek and Wakool River from December 2012 to April 2013.
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Figure 34. Organic biomass (g/m2± 1 SE) for 1 month old biofilm grown on redgul blocks suspended below the water surface at Colligen creek, Yallakool Creek, Wakool River and Little Merran Creek.
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Figure 35. Scatter plots showing statistically significant relationships between biofilm biomass and flow variables across the study rivers.
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Key findings
Rates of gross primary production 
(GPP) 
and ecosystem respiration 
(ER) 
in these rivers were typical of lowland streams with good water quality
. 
There was minimal change in rates of GPP and ER after 
environmental watering
. Gross primary production is strongly constrained by low bioavailable nutrient concentrations in this system. The environmental freshes were not of sufficient magnitude to entrain higher nutrient concentrations from rewetting the floodplain. Similarly, the relative constancy in ER can be attributed to the low and consistent DOC concentrations. These outcomes should be seen as largely positive, as, the existing levels of metabolism are able to support the fish population without the risk of either algal blooms or anoxic events. However, it is unknown whether an increase in production would result in an increase in fish populations and this could be tested by future studies.
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Background
Whole stream metabolism measures the production and consumption of dissolved oxygen gas (‘DO’) by the key ecological processes of photosynthesis and respiration (Odum 1956). Healthy aquatic ecosystems need both processes to generate new biomass (which becomes food for organisms higher up the food chain) and to break down plant and animal detritus to recycle nutrients to enable growth to occur. Hence metabolism is a means of assessing the energy base underpinning aquatic foodwebs. The relationships between these processes are shown in Figure 36.
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Figure 36. Relationships between photosynthesis, respiration, organic matter, dissolved gases and nutrients
If the rates of these processes are too low, this will limit the amount of food (in the form of bacteria, algae and water plants) available to organisms that consume these entities. This limitation will flow on up through the food web and constrain the populations of larger organisms including fish and amphibians. Rates are expected to vary on a seasonal basis as warmer temperatures and more direct, and longer hours of, sunlight contribute to enhancing primary production. Warmer temperatures and a supply of organic carbon usually result in higher rates of ecosystem respiration (Roberts et al. 2007).
Most concern arises when rates of these processes are too high. Greatly elevated primary production rates usually indicate probable algal bloom conditions (or excessive growth of plant species, including duckweed and azolla). Several deleterious effects can then occur – blocking of sunlight penetration into the water which can kill off other submerged plants, possible production of potent algal toxins and large swings in diel DO (over the course of 24 hours). Although photosynthesizing algae can produce extremely high concentrations of DO during daylight hours, overnight, elevated respiration rates can drive the DO concentration very low, even to the point of anoxia (no dissolved oxygen in the water). Also, when an algal bloom eventually collapses, the very large biomass of labile organic material is then respired, often resulting in anoxia for extended periods. Very low (or no) DO in the water can be fatal to many organisms resulting in fish kills and unpleasant odors. Bloom collapse is also often, but not always, coincident with release of algal toxins, hence the water becomes unusable for stock and domestic purposes as well.
After allowing for seasonal variability, sustainable rates of primary production for a given system will primarily depend on the characteristics of the aquatic ecosystem being considered. Streams with naturally higher concentrations of nutrients (e.g. arising from the geology), especially those with very open canopies (hence lots of sunlight access to the water) will have much higher natural rates of primary production than forested streams, where rates might be extremely low due to heavy shading and low concentrations. The important point is that the ecology of each stream will develop based (partly) on the rates of these fundamental processes. Habitat availability, climate and many other factors also influence food web structure and function. Uehlinger (2000) demonstrated that freshes with sufficient stream power to cause scouring can ‘reset’ primary production to very low rates which are then maintained until biomass of primary producers is re-established.
Hypotheses
The following hypotheses were developed specifically related to the possible impact of freshes on the rates of stream metabolism and were partially derived from the work of Vink et al. (2005) on impacts of irrigation releases on the middle reaches of the Murrumbidgee River and from the predictions of the ‘Flood Pulse Concept’ (Junk et al. 1989):
i) A fresh will result in an initial decline in Gross Primary Production (GPP) due to the enhanced turbidity from that fresh causing light limitation of photosynthesis.
ii) Following that initial decline, GPP will increase to a higher rate than pre-fresh levels due to the influx of nutrients.
iii) Similarly, there will be an initial decline in Ecosystem Respiration (ER) followed by a rapid increase as more labile organic carbon is introduced into the stream channel.

Methods
Rates of primary production and respiration can readily be estimated by continuously recording DO, temperature and ambient light (known as photosynthetically active radiation or PAR) over periods of many months under a range of meteorological conditions and flows (Grace and Imberger, 2006). Rates are calculated for each day so that the influence of flow, cloud cover and season can be assessed. A typical daily DO trace is shown in Figure 37. The figure illustrates how DO changes in a sinusoidal pattern over 24 hours, with DO increasing after sunrise, reaching a peak in later afternoon (due to photosynthesis throughout daylight hours) and then declining overnight, as ecosystem respiration (which consumes DO) continues 24 hours a day. Estimation of these rates must also include one additional factor – reaeration, which is the physical movement of DO across the air water interface. If the water contains less DO than it can hold (100% saturation), such as overnight when respiration consumes DO, then more oxygen will diffuse from the atmosphere into the water.
[image: ]
Figure 37. Typical Dissolved Oxygen Concentration profile over a 24 hour period. This data was from the Wakool River on 18th September, 2011.
Battery-powered ZebraTech data sondes (DO Loggers) were deployed mid-stream, with one sonde at either end of each of the four focus reaches (typically separated by 3-5 km). Each sonde was set to measure and log DO and water temperature every 10 minutes. Approximately every month, data were downloaded from the sondes, which were then recalibrated to ensure high quality data. PAR data were also recorded every 10 minutes on loggers placed in open fields near each of the stream sites. The metabolic parameters, gross primary production and ecosystem respiration, plus the reaeration rate were calculated for each day using the daytime regression method described by Atkinson et al. (2008). The DO data for Little Merran Creek for the most of November 2012 was not included in the analysis as the data sonde was out of the water. Only data where the diel curve reasonably matched the shape shown in Figure 37, and the inverse modeling approach produced excellent fits to these diel curves, were included in the subsequent analysis of the metabolic rates. 
Statistical analyses were performed to examine the hypotheses. As daily metabolic rates are affected by weather and water temperature, the potential impact of environmental watering was assessed by determining whether there was a change in the difference in daily rates between the impacted streams (Yallakool or Colligen Creeks) and the control streams (Wakool River or Little Merran Creek). For example, the ‘pre-fresh’ difference in GPP between Yallakool Creek and Wakool River was calculated each day. This ‘before’ data was then compared to the daily ‘post-fresh’ differences in GPP in the same two streams. The Student t-test was used to test for statistically significant differences (at p < 0.05) between the before and after data sets assuming that the Shapiro-Wilk normality requirement was met in the two data sets (at p < 0.05). If normality conditions were not met, then a Mann-Whitney Non-Parametric Rank Sum Test was performed.
Results
The rates of both primary production and respiration remain relatively constant over the entire study period (Figures 38 to 41). There are some longer term (seasonal) trends where both primary production and respiration rates increased during summer due to warmer water temperatures, and in the case of primary production, more hours of sunshine. At no stage between September and early March did any of the loggers record very low dissolved oxygen concentrations (< 20% DO saturation), even during and immediately after the freshes. Elevated flows did lead to a decrease in %DO maxima each day by 0-20% and also the same magnitude decline in the minimum %DO. Consequently, the environmental watering in November and February did not constitute a black water event. This finding is consistent with the organic matter characterization results (section 7.2.2). Although these flows connected with some low-lying backwater areas, they did not spread out onto the floodplain, remain for days-weeks and then return, which is the most common scenario for development of ‘black water’ (high dissolved organic carbon and very low or no dissolved oxygen).
Table 12 provides summary data for the gross primary production (GPP) and ecosystem respiration (ER) rates for each river. The table lists the lowest and highest rates found, plus the median value. The P/R ratio refers to the balance between primary production rates and ecosystem respiration rates. A value for this ratio of < 1 indicates that more organic carbon is being consumed in the study reach than is being produced by primary production (photosynthesis).
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Figure 38. Gross Primary Production (GPP) rates and stream discharge for the Wakool River and Yallakool Creek from September 2012 to April 2013.
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Figure 39. Gross Primary Production (GPP) rates and stream discharge for Colligen and Little Merran Creeks from September 2012 to April 2013. (The Merran loggers were out of the water from 28 Oct to 28 Nov, 2012).
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Figure 40. Ecosystem Respiration rates and stream discharge for the Wakool River and Yallakool Creek from September 2012 to April 2013.
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Figure 41. Ecosystem respiration rates and stream discharge for Colligen and Little Merran Creeks from September 2012 to April 2013. (The Merran loggers were out of the water from 28 Oct to 28 Nov, 2012).
Table 12. Summary of primary production (GPP) and ecosystem respiration (ER) rates for the four study rivers (combined upstream and downstream data), September 2012 - April 2013
	
	Colligen Creek (n = 203)
	Little Merran Creek (n = 222)

	
	Median
	Min
	Max
	Median
	Min
	Max

	GPP (mg O2/L/Day)
	2.22
	1.06
	4.45
	1.72
	0.47
	3.05

	ER (mg O2/L/Day)
	2.87
	1.49
	10.00
	2.69
	1.15
	6.89

	P/R
	0.77
	0.25
	1.27
	0.63
	0.19
	1.02

	
	
	
	
	
	
	

	
	Wakool River (n = 311)
	Yallakool Creek (n = 250)

	
	Median
	Min
	Max
	Median
	Min
	Max

	GPP (mg O2/L/Day)
	2.38
	0.89
	6.48
	1.68
	0.67
	3.60

	ER (mg O2/L/Day)
	3.86
	0.97
	10.14
	3.86
	1.56
	9.80

	P/R
	0.62
	0.18
	2.60
	0.44
	0.13
	0.96



The gross primary productivity and ecosystem respiration rates in the four study rivers (Table 12) are typical of rates found in non-polluted, slow flowing rivers elsewhere in the world. As was also found during the 2011-12 monitoring, these rates are very similar between the four rivers, with median primary production rates and median respiration rates differing by less than a factor of 2 between the four rivers. This is largely unsurprising given the similarity in land forms, land use, the sizes of the rivers and that they are all in the same region. The median values for the P/R ratio (0.44 – 0.77) indicate that for most of the time, these rivers are net heterotrophic (P/R < 1) implying that there must be another source of organic carbon fuelling respiration. Such carbon additions generally come from further up in the catchment or have fallen in/been washed in from riparian vegetation. It is pertinent to note though that primary production within the stream channel, as measured here by GPP, is also an extremely important contributor to organic carbon supply (which is the food sustaining higher organisms in the food web).
Figure 42 clearly demonstrates that there was also an extremely large variation in GPP at any particular light value. This indicates that light is generally not the major factor limiting primary production in these streams. If that were the case, a much stronger relationship would be expected between Daily PAR and GPP. Hence, this suggests another factor or factors must be contributing to the measured GPP rates. One of these important factors is the biomass of organisms capable of photosynthesizing that are present. These are typically divided into three major groups: the macrophytes, biofilms and floating algae (phytoplankton). Biofilms are likely to be the dominant primary producer in most reaches of these streams, especially in the shallow, marginal zones of the stream where sunlight easily penetrates through the water. In the water column, photosynthesis can only occur when there is sufficient light. When the water is turbid, this limits how far into the water light can penetrate. The point at which photosynthesis is no longer biologically viable is known as the ‘euphotic depth’, Zeu. This parameter can also be estimated from simple relationships derived from empirical data. As a relationship is not available for these rivers, we used information for the Darling River, a larger, turbid, lowland river in northern NSW (Oliver et al. 1999). This empirical equation is Zeu = 4.6 / (0.04 x Turbidity + 0.73). Table 13 lists the euphotic depth for each river based on the regular, fortnightly measurements of turbidity taken during this project. The euphotic depths indicate that for all reaches deeper than Zeu, insufficient light will reach the sediment surface to allow macrophytes and biofilms to grow. Hence biofilms will be restricted in range to shallower regions on the edges of the stream. This will decrease the overall primary productivity of the rivers.
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Figure 42. Linear relationships between daily light (as PAR) and gross primary production for the Wakool River and Yallakool Creek. Collated data from September 2012 to April 2013. P-values for the slope term: Wakool < 0.01; Yallakool < 0.001

Table 13. Summary of stream turbidity (NTU) plus the median euphotic depth, Zeu, for the four study rivers, August 2012 - April 2013.
	
	Colligen
	Little Merran
	Wakool
	Yallakool

	Median
	60
	92
	70
	70

	Min
	27
	25
	36
	41

	Max
	124
	168
	185
	157

	Zeu (m)
	1.48
	1.05
	1.30
	1.31



It was expected that increasing water temperatures associated with seasonal change would result in faster physiological rates in organisms and hence greater rates of GPP and ER. The relationship between Mean Daily Water Temperature and the Rate of Daily Gross Primary Productivity (Figure 43) confirms this hypothesis. The figure shows data for Colligen Creek, but the other three streams were similar. The scatter of data about the positive trendlines for Little Merran Creek and Wakool River were much greater, indicating that other factors were equally or more important than temperature in determining GPP. Also not shown, but displaying similar positive relationships with Mean Daily Water Temperature, are the rates of Ecosystem Respiration in the four rivers. The slopes and coefficients of variation (r2) for all eight plots are given in Table 14. All four coefficients of variation (r2) were low for the positive relationship between ecosystem respiration and mean daily water temperature, indicating again that other factors are probably more important.
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Figure 43. Linear relationship between daily mean water temperature and gross primary production for Colligen Creek. Collated data from September 2012 to April 2013. P-value for slope < 0.001.

Table 14. Temperature Dependence of GPP and ER Rates for the four study streams. 
	
	
	GPP vs Temperature
	ER vs Temperature

	Stream
	n
	Slope
	r2
	Slope
	r2

	Colligen
	203
	0.117
	0.44
	0.184
	0.19

	Little Merran
	265
	0.052
	0.15
	0.114
	0.18

	Wakool
	311
	0.106
	0.13
	0.162
	0.072

	Yallakool
	250
	0.116
	0.41
	0.138
	0.058


Note: All slopes were significantly different from 0 (p-value < 0.001)
The temperature dependence of the GPP and ER rates exemplified in Figure 43 and determined by linear regression (Table 14) indicates a potential problem during hot, dry summers. Higher water temperatures automatically mean lower dissolved oxygen solubilities. By itself this is rarely problematic as solubility is 6.4 mg O2/L at a water temperature of 40oC, well above the ANZECC trigger value of 4.0 mg O2/L. However, as temperature increases, the net drawdown of O2 also increases as respiration rates increase more rapidly with temperature than GPP (Table 14). This net drawdown exacerbates the lower O2 solubility and increases the likelihood of suboxic, even anoxic conditions. Fortunately, physical reaeration by diffusion of O2 from the atmosphere will partially counteract this potential for developing very low dissolved oxygen concentrations. It is highly pertinent to note that reaeration across the air-water interface is significantly higher from a moving water column than from a still one, especially if the current increases water turbulence. Thus maintenance of even slow flow rates, for example by periodic freshes, is far preferable to standing water in the streams as a means of addressing potential anoxia during hot, dry spells. Note that this is a different scenario to blackwater events, where rapid oxygen drawdown is brought about by direct contact of water with high levels of organic carbon on the floodplain. 
Another key factor controlling the rate of photosynthesis is the concentration of nutrients in the water. Nutrients, and in particular nitrogen and phosphorus, are needed to form new cells (carbon, hydrogen and oxygen are also needed but are abundantly available in the water). As was also found previously in 2011-2012, the bioavailable nutrient concentrations in the water column of each of the rivers in this study were very low (see Figure 26 section 7.2.1). In most cases, the nitrate (NOx) concentration was below the detection limit of 1 μg/L. These very low nutrient concentrations are the major constraint on the overall primary productivity of the rivers. This nutrient limitation means that large algal blooms are unlikely in these streams. As seen regularly with algal blooms in rivers such as those in the Darling River system in northern NSW, high turbidity and hence low light penetration into the water is insufficient to prevent large blooms if nutrient concentrations are high. The high turbidity simply favours species such as the toxic cyanobacteria (blue-green algae) Anabaena, which can alter its position in the water column to move to the surface and obtain sufficient light to grow prolifically. The major difference between the rivers in the Edward-Wakool system and those in the Darling and other regions, is the very low nutrient concentrations which greatly limit algal proliferation. Hence management focus in the study region should continue to include nutrient minimization strategies.
When considering possible nutrient limitation, the form of the nutrient is critically important. Measurements of total concentrations of nitrogen and phosphorus include all N and P in that sample. However, only the bioavailable fractions, nominally FRP for phosphorus and the sum of ammonia and NOx for nitrogen, are in the form readily taken up by primary producers, whereas other N and P species can be relatively recalcitrant (not suitable for assimilation into plant biomass). Table 15 shows several salient features of the nutrient concentrations in the study streams over the period August 2012 to April 2013: i) the median concentrations of the bioavailable forms are extremely low by both national and international standards for lowland rivers; ii) As noted in the Water Quality section of this report (section 7.2.1), the Total P and Total N concentrations are frequently above the ANZECC Water Quality Guidelines; iii) typically only 5-7% of the phosphorus in the water column is bioavailable and just 1% (or less) of the nitrogen is bioavailable. This highlights a general finding in turbid waters, that the use of total nutrient concentrations, rather than bioavailable concentrations, can provide extremely misleading information about the potential of a water body to suffer adverse effects from ostensibly high nutrient levels.

Table 15. Median Bioavailable and Total Nutrient Concentrations and the fraction of Bioavailable P & N in the four study streams.
	
	Nutrients (μg/L)
	
	

	River
	n
	Ammonia
	FRP
	NOx
	Total P
	Total N
	% Bioavailable P
	% Bioavalable N

	Colligen
	18*
	2
	3
	< 1
	40
	425
	6.0
	0.7

	Little Merran
	18*
	3
	4
	2.5
	60
	470
	6.7
	1.2

	Wakool
	18*
	1.5
	3
	< 1
	50
	495
	5.0
	0.5

	Yallakool
	18*
	2
	3
	< 1
	50
	440
	6.0
	0.5


* Sampled on 18 separate occasions with typically 4 replicates in each sample.
Unlike 2011-12, where there was some indication of enhanced rates of GPP and ER after freshes, such behaviour was not strongly evident during 2012-2013, in contrast to the initial hypotheses. It is clear that GPP is strongly constrained by bioavailable nutrient concentrations and that the freshes were not of sufficient magnitude to entrain higher nutrient concentrations (e.g. from rewetting the floodplain). Similarly, the relative constancy in ER can be attributed to the low and consistent DOC concentrations (see Water Quality, section 7.2.1). These outcomes should be seen as largely positive, as, for example, the existing levels of metabolism are able to support the fish population without running the risk of either algal blooms or anoxic events. 
The influence of freshes on the rates of GPP and ER has been determined by examining these rates before and after each of these events. The rationale is to isolate the effect of the fresh from weather and water temperature effects, which are assumed to act equally on both the Impact rivers (Yallakool or Colligen Creeks) and the Control rivers (Wakool River or Little Merran Creek). Two of the four sets of results from the Table are presented as Box Plots in Figures 44 and 45: Yallakool Creek with control = Wakool River, and Colligen Creek with control = Little Merran Creek respectively.
Although the statistical analysis summarized in Table 16 indicates that there were statistically significant differences in metabolic rates between the control and impact streams induced by the freshes on several occasions, the direction of the change was variable. Of the nine comparisons of ecosystem respiration (five for Yallakool, four for Colligen), five showed a significant increase in ER in the weeks immediately following the fresh; there were two cases of suppressed ER compared to the control (Feb 2013 fresh in Yallakool Creek with the Wakool River as control and the extended Nov-Dec 2012 fresh in Colligen Creek with Little Merran Creek as the control). Two cases showed no significant difference. 
The preponderance of ER enhancement is largely in line with the hypothesis that a fresh would increase ER by introducing new organic matter. The results were less consistent for GPP. Of the nine combinations shown in Table 16, there were four suppressions (in line with the hypothesis related to increased light attenuation), two enhancements and three with no significant difference pre and post fresh. However, by far the most important finding of this statistical analysis is that any suppression or enhancement of GPP or ER was very small; typically limited to within the range ± 2 mg O2/L/Day as shown in Figures 44 and 45. It was noted earlier that the metabolic rates in these streams are relatively low (but ‘normal’) compared to other streams around the world and it is apparent that these freshes are sometimes causing small fluctuations in these ‘low’ rates. Freshes that result in water moving onto the floodplain and then returning to the stream channel may have a much larger impact on gross primary production and ecosystem respiration, but this was unable to be examined during the 2012-13 period as there were no overbank flows.
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Figure 44. Box plots showing the effect of the three freshes on metabolism in Yallakool Creek. A negative value on the Y-axis indicates that the rate in the control stream (Wakool River) was higher than in Yallakool Creek. The boxes represent the data range 25th to 75th percentile, with the ‘middle’ line in the box being the median. The “whiskers” indicate 10th and 90th percentiles in the data. Outliers are shown as circles.
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Figure 45. Box plots showing the effect of the three freshes on metabolism in Colligen Creek. A negative value on the Y-axis indicates that the rate in the control stream (Little Merran Creek) was higher than in Colligen Creek. The boxes represent the data range 25th to 75th percentile, with the ‘middle’ line in the box being the median. The “whiskers” indicate 10th and 90th percentiles in the data. Outliers are shown as circles.
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Table 16. Statistical Summary of Effects of Freshes on Stream Metabolism. Green shading = rate enhancement, pink = rate suppression, compared to control.
	Stream
	Control
	Watering Event
	Data Periods in Relation to Fresh
	Effect on Metabolic Rates*

	
	
	
	Before
	After
	GPP
	ER

	Yallakool
	Wakool
	19/10/12 to 7/12/12
	22/9/12 to 4/10/12
	9/12/12 to 6/1/13
	T, no sig diff in GPP, p = 0.234, Power = 0.22
	T, enhancement of Yallakool ER, p  < 0.001, Power = 0.99

	
	
	1/2/13 to 23/2/13
	1/1/13 to 31/1/13
	24/2/13 to 12/3/13
	M-W, suppression of Yallakool GPP, p < 0.001
	T, suppression of Yallakool ER, p  = 0.020, Power = 0.65

	
	
	13/3/13 to 5/4/13
	24/2/13 to 12/3/13
	6/4/13 to 15/4/13
	M-W, no sig diff in GPP, p = 0.13
	T, enhancement of Yallakool ER, p  < 0.001, Power = 1.00

	
	
	
	
	
	
	

	
	Little Merran
	19/10/12 to 7/12/12
	22/9/12 to 4/10/12
	9/12/12 to 6/1/13
	no before data
	no before data

	
	
	1/2/13 to 23/2/13
	1/1/13 to 31/1/13
	24/2/13 to 12/3/13
	M-W, enhancement of Yallakool GPP, p < 0.001
	M-W, no sig diff in ER, p = 0.17

	
	
	13/3/13 to 5/4/13
	24/2/13 to 12/3/13
	6/4/13 to 15/4/13
	T, suppression of Yallakool GPP, p  = 0.006, Power = 0.83
	T, enhancement of Yallakool ER, p  < 0.001, Power = 1.00

	
	
	
	
	
	
	

	Colligen
	Wakool
	2/11/12 to 18/12/12
	29/9/12 to 21/10/12
	20/12/12 to 26/1/13
	T, no sig diff in GPP, p = 0.875, Power = 0.053
	T, enhancement of Colligen ER, p  < 0.001, Power = 0.99

	
	
	13/3/13 to 5/4/13
	24/2/13 to 12/3/13
	7/4/13 to 15/4/13
	M-W, suppression of Colligen GPP, p= 0.010
	T, no sig diff in ER, p = 0.310, Power = 0.26

	
	
	
	
	
	
	

	
	Little Merran
	2/11/12 to 18/12/12
	29/9/12 to 21/10/12
	20/12/12 to 26/1/13
	T, suppression of Colligen GPP, p < 0.001, Power = 0.99
	T, suppression of Colligen ER, p = 0.0013, Power = 0.92

	
	
	13/3/13 to 5/4/13
	24/2/13 to 12/3/13
	7/4/13 to 15/4/13
	M-W, enhancement of Colligen GPP, p = 0.004
	T, enhancement of Colligen ER, p = 0.037, Power = 0.57


* ‘T’ = Student's two-tailed t-test; performed if the Shapiro-Wilk normality test was passed (at p = 0.05). ‘M-W’ = Mann-Whitney, Non-parametric Rank Sum Test; performed when normality requirement for t-test not met.
[bookmark: _Toc362347841]
[bookmark: _Toc405894643]Objective 3: Support breeding and recruitment of frogs and invertebrates
[bookmark: _Toc405894644]Zooplankton
 (
http://www.freshwaterlife.org/servlet/CDSServlet?status=ND0xMTg2NyZjdG5faW5mb192aWV3X3NpemU9Y3RuX2luZm9fdmlld19mdWxsJjY9ZW4mMzM9KiYzNz1rb3M~
Key findings
The watering actions in Colligen and Yallakool Creeks during the 2012 – 2013 sampling period did not increase the abundance of zooplankton, including individual size classes of zooplankton, nor did it appear to stimulate reproduction.
 Zooplankton abundance was instead highly seasonal, affected by factors unrelated to flow, such as temperature.
It is possible that the magnitude of the environmental watering actions were not sufficient to inundate riverbank habitat and stimulate productivity, thereby we did not observe the expected increase in abundance and taxonomic diversity of zooplankton. 
Environmental freshes of greater magnitude and duration would likely be needed to elicit a response, particularly flows which increase the extent of 
riverbank 
inundation
.
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Background
Zooplankton are abundant, widely distributed and a diverse group of organisms which are the foundation of many aquatic food-webs (Lampert 1997). Zooplankton consist of two major groups; rotifers and microcrustaceans (cladocerans, copepods, and ostracods) which are common in the planktonic community, but also occupy benthic and littoral areas (Boon et al. 1990; Shiel 1990). In riverine ecosystems zooplankton are one of the major food sources for larval fish, therefore forming an important link between primary producers and higher trophic levels (King 2005). Fish recruitment is strongly influenced by the availability of food resources as well as flow regime. It is one thing for environmental flows to elicit a spawning response in fish, but if larvae have no food supply, then fish may not exhibit successful recruitment due to high initial mortality. 
During the early life stages of fish, natural mortality is high and the availability of appropriately-sized prey is thought to be critical to recruitment success (May 1974). Zooplankton are typically less than 4 mm in size, and rotifers, which tend to dominate the zooplankton community, are generally less than 200 µm while some cladocera taxa reach lengths of 4-6 mm (Shiel 1995). Zooplankton samples are generally collected with a 53 m net, however further sieving allows separation into size classes which can be directly related to fish larvae with corresponding gape sizes (Masson et al. 2004). 
Although zooplankton are not often used in studies of hydrological variation or monitoring of flow impacts, they provide an easy, inexpensive option for monitoring. In addition, their rapid life cycles means they respond quickly to changes in their environment, including altered flow. Hydrology plays an important role in structuring zooplankton communities, primarily flow velocity and water residence time. Different taxonomic groups and life-history stages have varying flow velocity requirements, however it is generally accepted that zooplankton abundance is negatively related to velocity (Vranovský 1995)). High flows impact on zooplankton communities via direct mortality, dislodgement and suppression of reproduction (Ferrari et al. 1989; Rzoska 1978). Low flows and hence longer water residence time is positively related to zooplankton abundance (Basu & Pick 1996). This is thought to be due to the creation of slackwater habitats, which are known to support high densities of zooplankton, higher temperatures, and greater food availability (Reckendorfer et al 1999; Ning et al 2010).
Riverine zooplankton communities are, however, a product of both in-channel community dynamics and upstream sources (Saunders and Lewis 1988). Impoundments, for example, may be significant sources of individual zooplankters, contributing to downstream populations during periods of high flow (Dickerson et al. 2010; Humphries et al. 2013). Floodplain inundation up stream of zooplankton communities can similarly increase abundance and diversity (Ning et al. 2013; Saunders and Lewis 1988).
Zooplankton are responsive to environmental changes in temperature, turbidity, nutrients and other ecological parameters. Different taxonomic groups and life-history stages also have varying flow velocity requirements which, in addition to the previously mentioned characteristics, make them a potential indicator for the assessment of environmental watering. By examining the response of zooplankton to changes in flows, we can better understand the relationship with other components of the ecosystem such as native fish recruitment success.
Hypotheses
In monitoring the response of zooplankton to watering actions in the Edward-Wakool system in 2012 – 2013 we make the following predictions:
1. The abundance of zooplankton and the proportion of egg-carrying zooplankton will decrease during the delivery of freshes, due to high velocity leading to mortality, displacement and the suppression of reproduction
2. The abundance of zooplankton in Colligen and Yallakool Creeks will increase following increases in discharge due to Stevens weir (Edward River) acting as a source of zooplankters.
3. The abundance of zooplankton and the proportion of egg-carrying zooplankton will increase during low flows due to longer water residence time, and higher temperatures.

Methods
Five replicate zooplankton samples were collected at seven river reaches by filtering 50 L of water with a 53 µm plankton net (Figure 46). Samples were preserved in 70% ethanol prior to taxonomic identification in the laboratory. Samples were collected fortnightly between August 2012 and early May 2013. 
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Figure 46. River water is filtered through a plankton net
In the laboratory zooplankton samples were stained then sieved into four size fractions (53 – 106 µm, 106 – 200 µm, 200 – 500 µm, and 500 µm +). These sizes could then be compared with the gape size of predatory larval fish as described by Masson et al. (2004) which provides an upper limit for larval fish prey size. Zooplankton in each size fraction were then sub-sampled and identified and counted under a stereomicroscope. The main microcrustacean groups (cladocera, copepoda) were counted seperately from rotifers, and the presence of ovigerous zooplankton (individuals carrying eggs or resting stages) were noted. Individual subsamples were counted until a minimum of 200 individuals had been identified or 100% of the sample had been processed. All count data were converted to densities (i.e. animals per litre) prior to analysis.
Preliminary data analysis indicated that there was little effect of dilution on densities of zooplankton, and therefore only density data is presented here. Zooplankton data from flowing waters is sometimes converted to a number which takes into account discharge, (e.g. Transport, which provides an indication of the overall number of animals moving downstream each day, and is influenced by river discharge). However, this approach has been criticised for inflating abundances, and for making assumptions about the movement of zooplankton populations in a riverine system.
To examine differences across rivers, a two-way ANOVA was performed on the main factors of river and date of sampling. When significant differences were indicated, post hoc pair wise comparisons (Tukey’s test) were undertaken to determine differences between the factors. An asymmetrical BACI (before-after, control-impact) (Underwood, 1991) statistical design was used to test the effect of specific 2012-2013 environmental water actions on zooplankton density and the proportion of ovigerous zooplankton, as described in Section 7.2.1 and Table 9.
Correlations between the density of zooplankton and independent variables (7 day mean discharge, 7 day mean C.V discharge, dissolved organic carbon (DOC), particulate organic carbon (POC), temperature, turbidity and chlorophyll a (Chla) were conducted using the non-parametric Kendall-rank co-efficient. Where data was available, means for the previous 7 days were used to reflect the conditions during the short life cycles of zooplankton (4-5 days for rotifers; Shiel 1995).  Scatterplots were constructed for correlations which were significant between independent and dependent variables. All univariate analyses were conducted using the software package SPSS Statistics v20. 
Results 
Seasonal patterns
Rotifers numerically dominated across all rivers, comprising approximately 88 % of the zooplankton assemblage (cladocera and copepods compromised 7 % and 5 % respectively).  Rotifer density varied seasonally, with peaks in late October 2012 and December 2012 / January 2013 across all rivers (Figure 47). Copepod percent contribution peaked in August and September across all rivers. Cladocera on the other hand made up a low proportion of zooplankton across all rivers with the exception of the Little Merran Creek, where they made up a high proportion from January to April (19 – 87 %). A Tukey’s test for differences in cladocera density among sites supports this finding (Appendix 1; Tukey’s test, P<0.001 for Little Merran vs. all rivers).
Zooplankton in the smallest size class (53 – 106 µm) dominated all rivers, comprising on average 66 % (Figure 48). Seasonal fluctuations in the relative proportions of each size class were variable, however, zooplankton size increased over December 2012 and January 2013 in all rivers. Zooplankton size also increased in the Little Merran Creek in October 2012 and March 2013. Zooplankton greater than 500 µm in size comprised on average only 0.06 % of total zooplankton density and have therefore been excluded from statistical analyses (Figure 48).
A two-way ANOVA indicated that the total density (number of animals per litre) of zooplankton in each river across the 2012 - 2013 sampling period was similar (Appendix 1; Table 17; Figure 49; Two-way ANOVA, DF=4; P >0.05). Indeed, zooplankton density peaked at the same time among all rivers – October 2012 and January 2013. However, zooplankton density in the 53-106 and 200-500 size classes were similar among the Edward, Colligen and Yallakool, but not the Little Merran and Edward Rivers (Tables 18 and 19). 

Table 17. Zooplankton density in five rivers in the Edward-Wakool system across the 2012 – 2013 sampling period. Numbers are totals across all sampling dates, with minima and maxima in parentheses.  
	River
	Size class (µm)
	Total zooplankton
	Rotifers
	Cladocera
	Copepods

	Colligen
	53 – 106 
106 – 200 
200 – 500
>500
	15869 (7 - 714)
6907 (3 - 387)
1040 (0 - 185)
5 (0 - 2)
	15525 (7 - 712)
6438 (3 - 374)
945 (0 - 184)
4 (0 - 2)
	18 (0 - 4)
127 (0 - 19)
66 (0 - 22)
0 (0 - 0)
	326 (0 - 26)
341 (0 - 27)
28 (0 - 3)
1 (0 - 0)

	Yallakool
	53 – 106
106 – 200
200 – 500
>500
	15075 (0 - 896)
8185 (7 - 496)
1176 (0 - 234)
6 (0 - 2)
	14879 (0 - 890)
7716 (6 - 495)
1088 (0 - 233)
5 (0 - 2)
	16 (0 - 4)
174 (0 - 12)
60 (0 - 7)
0 (0 - 0)
	179 (0 - 10)
293 (0 - 32)
26 (0 - 2)
1 (0 - 0)

	Wakool 
	53 – 106
106 – 200
200 – 500
>500
	18447 (15 - 689)
7456 (6 - 556)
1588 (0 - 304)
128 (0 - 46)
	18089 (14 - 689)
7069 (2 - 556)
1470 (0 - 303)
124 (0 - 46)
	10 (0 - 2)
156 (0 - 10)
83 (0 - 13)
1 (0 - 0)
	346 (0 - 50)
229 (0 - 28)
34 (0 - 4)
3 (0 - 1)

	Little Merran
	53 – 106
106 – 200
200 – 500
>500
	11207 (0 - 466)
7132 (9 - 490)
2252 (0 - 388)
7 (0 - 1)
	10920 (0 - 466)
4888 (0 - 325)
467 (0 - 56)
1 (0 - 0.1)
	91 (0 - 40)
1954 (0 - 464)
1754 (0 - 388)
4 (0 - 1)
	195 (0 - 10)
285 (0 - 26)
28 (0 - 4)
3 (0 - 1)

	Edward
	53 – 106
106 – 200
200 – 500
>500
	16593 (1 - 764)
7670 (0 - 371)
788 (0 - 70)
1 (0 - 0)
	16281 (1 - 764)
7225 (0 - 368)
689 (0 - 69)
0 (0 - 0)
	38 (0 - 15)
91 (0 - 12)
85 (0 - 45)
0 (0 - 0)
	275 (0 - 38)
353 (0 - 23)
14 (0 - 2)
0 (0 - 0)




Table 18. Results of post-hoc analysis of zooplankton density for the 53 – 106 µm size class. Numbers indicate significant P values for differences between rivers.
	
	Colligen
	Edward
	Little Merran
	Wakool
	Yallakool

	Colligen
	
	
	
	
	

	Edward
	
	
	
	
	

	Little Merran
	<0.001
	<0.001
	
	
	

	Wakool
	<0.01
	<0.001
	<0.001
	
	

	Yallakool
	
	
	<0.05
	<0.001
	



Table 19. Results of post-hoc analysis of zooplankton density for the 200 – 500 µm size class. Numbers indicate significant P values for differences between rivers.
	 
	Colligen
	Edward
	Little Merran
	Wakool
	Yallakool

	Colligen
	
	
	
	
	

	Edward
	
	
	
	
	

	Little Merran
	<0.001
	<0.001
	
	
	

	Wakool
	<0.001
	<0.001
	<0.001
	
	

	Yallakool
	
	
	<0.001
	<0.01
	



Ovigerous (egg-carrying) zooplankton
Across all rivers and sampling times, a greater proportion of cladocera (15 %) were carrying eggs than rotifers (6 %) and copepods (5 %) (Figure 50). Cladocera egg production peaked in November 2012 across all sites, and again in March and April 2013. Rotifer egg production did not show a clear pattern across time, however, was low in all rivers in December 2012 to January 2013.
There was a significantly greater proportion of ovigerous zooplankton in Little Merran Creek than in Colligen Creek or the Edward River (Two-way ANOVA, DF=4,63; P <0.001; Tukey’s test,  P<0.001 and P<0.001 respectively), and a significantly lower proportion in the Edward River than the Wakool River and Little Merran Creek (Tukey’s test, P<0.05 and P<0.001 respectively). Colligen Creek had a significantly lower proportion of ovigerous rotifers than the Yallakool Creek (Appendix 1; Two-way ANOVA, DF=3; P <0.01; Tukey’s test, P<0.05). The Edward River had a significantly lower proportion of ovigerous copepods than all the Wakool River and Yallakool Creek (Appendix 1; Two-way ANOVA, DF=3; P <0.001; Tukey’s test, P<0.001 and P<0.05 respectively).
Responses to Yallakool and Colligen Creek watering actions
The watering actions carried out during 2012 – 2013 had no effect on zooplankton density during Colligen Creek November 2012 fresh, Yallakool Creek February 2013 fresh, and the Yallakool Creek and Colligen Creek March 2013 fresh (Appendix 2; Figures 51-55). There was a significant interaction between period (before, during, after) and control/impact for the 106 – 200 m size class (Two-way mixed effects ANOVA df = 2,97; p = 0.03). This was a result of an increase in abundance during and after the watering action in Yallakool Creek compared to the control rivers. However, this result should be treated with caution given the P value was only just under the significance level of 0.05, and the fact that this watering action coincided with seasonal peaks in zooplankton abundance occurring across all rivers. The watering actions in the Colligen Creek and Yallakool Creek did not significantly stimulate egg production in zooplankton (Appendix 2).
Responses to environmental variables
There were no significant correlations between zooplankton density and the environmental variables (discharge, CV, DOC, POC, temperature, turbidity and chlorophyll a) (Table 20). The proportion of total zooplankton which were ovigerous was positively correlated with DOC and negatively correlated with temperature (Table 20; Figure 56). Ovigerous copepods showed the same pattern. 
Table 20. Results of correlations (non-parametric Kendall-rank co-efficient) with environmental data. Statistically significant results are highlighted. * = P<0.01, ** = P<0.001, *** = P<0.0001.
	
	Density (individuals/L)
	Ovigerous (proportion)

	
	Total zooplankton
	Rotifers
	Cladocera 
	Copepods 
	53-106
	106-200
	200-500
	Total zooplankton
	Rotifers 
	Cladocera
	Copepods

	7 day mean daily discharge (ML/d) 
	-0.07
	-0.07
	-0.01
	0.12
	-0.05
	-0.04
	-0.18
	0.16
	0.13
	0.07
	0.16

	7 day CV of daily discharge (ML/d) 
	0.04
	0.09
	-0.09
	0.14
	0.2
	-0.06
	-0.22
	0.07
	0.22
	-0.06
	0.06

	DOC (mg/L) 
	0.05
	0.05
	0
	-0.17
	0.16
	-0.03
	-0.19
	0.46***
	0.29
	0.19
	0.44**

	POC (mg/L) 
	0.14
	0.13
	0.01
	-0.09
	0.18
	0.07
	-0.06
	0.26
	0.24
	0.17
	0.23

	Temperature (°C) 
	0.15
	0.08
	-0.06
	0.34
	-0.02
	0.26
	0.34
	-0.39**
	-0.26
	-0.18
	-0.37**

	Turbidity (NTU) 
	0.03
	-0.04
	0.28
	0.04
	-0.09
	0.12
	0.27
	-0.05
	-0.16
	0.1
	0.02

	Chla (mg/m3) 
	0.12
	0.06
	0.1
	0.29
	0.06
	0.16
	0.09
	0.12
	0.02
	0
	0.06
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Figure 47. Total zooplankton density within each size class across sites. Horizontal bars indicate duration of watering actions in Colligen Creek and Yallakool Creek.
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Figure 48. Percent contribution (%) of each zooplankton size class. Note Edward site was located in weir pool, therefore no hydrograph is presented. Horizontal bars indicate duration of watering actions in Colligen Creek and Yallakool Creek.
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Figure 49. Total density of zooplankton and mean temperature at all sites during the 2012 – 2013 sampling season. 
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Figure 50. Percent contribution (%) of ovigerous (egg-carrying) zooplankton. Note Edward site was located in weir pool, therefore no hydrograph is presented. Horizontal bars indicate duration of watering actions in Colligen Creek and Yallakool Creek.
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Figure 51. Density of zooplankton and proportion of ovigerous zooplankton before (B) during (D) and after (A) the October to November 2012 fresh in Colligen Creek. The Wakool River and Little Merran Creek did not receive environmental water and were used as controls.
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Figure 52. Density of zooplankton and proportion of ovigerous zooplankton before (B) during (D) and after (A) the  December 2012 fresh in Colligen Creek. The Wakool River and Little Merran Creek did not receive environmental water and were used as controls.
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Figure 53. Density of zooplankton and proportion of ovigerous zooplankton before (B) during (D) and after (A) the  March/April 2013 fresh in Colligen Creek and Yallakool Creek. The Wakool River and Little Merran Creek did not receive environmental water and were used as controls.
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Figure 54. Density of zooplankton and proportion of ovigerous zooplankton before (B) during (D) and after (A) the October/November/December 2012 fresh in Yallakool Creek. The Wakool River and Little Merran Creek did not receive environmental water and were used as controls.
[image: ]
Figure 55. Density of zooplankton and proportion of ovigerous zooplankton before (B) during (D) and after (A) the January/February 2013 fresh in Yallakool Creek. The Wakool River and Little Merran Creek did not receive environmental water and were used as controls.
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Figure 56. Scatter plots showing statistically significant relationships between zooplankton and environmental parameters across the study rivers.
Discussion
2013 – 2013 watering actions in Colligen Creek and Yallakool Creek
We predicted that the abundance of zooplankton and the proportion of egg-carrying zooplankton would decrease during the delivery of freshes, due to high velocity leading to mortality, displacement and the suppression of reproduction. However, the abundance of zooplankton and the proportion of zooplankton carrying eggs did not change during the watering actions in Colligen and Yallakool Creeks in 2012-13. It is possible that the magnitude and duration of the watering actions in 2012-2013 were insufficient to displace large numbers of zooplankton or suppress reproduction to an extent that we were able to detect the predicted changes. Zooplankton abundances have been found to be negatively correlated with flow during prolonged seasonal rises in discharge in lowland rivers (Saunders and Lewis 1989; Van Zanten and Van Dijk 1994). Zooplankton abundance is also affected by dilution from increasing volumes of water (Basu and Pick 1997), however, there was no evidence of dilution of zooplankton densities here. Instead, changes in abundance of zooplankton in the Edward-Wakool system appeared to be unrelated to the magnitude and duration of flows seen during the 2012-2013 monitoring period.
It is possible that the magnitude of the watering actions in 2012-2013 were insufficient to inundate habitat and stimulate zooplankton productivity in the Edward-Wakool system. Flows sufficient to inundate greater areas of habitat (benches, slackwaters, and floodplain areas) are needed to stimulate emergence from the egg bank and to introduce nutrients and carbon into the system from upstream inundated floodplain areas, leading to greater productivity and potentially increasing abundance and taxonomic diversity (Ning et al. 2010). 
Upstream sources vs. in-channel production
Zooplankton populations in riverine systems at any given time are influenced by a combination of in-channel production and individuals transported from connected habitats (Jenkins and Boulton 2003; Wahl et al. 2008). Upstream and adjacent habitats (in-channel and floodplain) can act as a source of individual zooplankters and resting stages (Petts 1984; Vadadi-Fülöp 2013), and upstream habitats such as weirs and dams often develop large zooplankton communities (Havel and Pattinson 2004). In-channel production is a combination of continual turnover of the residing zooplankton population and the hatching of dormant eggs from the egg bank in riverine sediments.
During the 2012- 2013 study period, there was no evidence of a dilution effect during freshes. In addition, the pattern of zooplankton abundance in Colligen Creek, Yallakool Creek and the Edward River were more similar to one another than Little Merran Creek and the Wakool River, suggesting abundances in Colligen Creek and Yallakool Creek may be reflecting upstream (source) abundances in the Edward River. During the 2011-2012 study period, the pattern of zooplankton abundance in Yallakool and Colligen Creeks were similar (Watts et al. 2013). Although the Edward River was not sampled in 2011-2012, it suggests a similar reliance on upstream sources as found in 2012-13. A longitudinal study of zooplankton in the Missouri River, USA, found zooplankton (particularly microcrustacea) assemblages and abundance were significantly influenced by upstream impoundments (Havel et al. 2013). Similarly, Humphries et al. (2013) found zooplankton biomass in the regulated Goulburn River to be strongly influenced by discharge and unrelated to temperature, attributing this pattern to high zooplankton production in the warm and shallow upstream reservoir (Lake Eildon). A longitudinal study on zooplankton abundance is needed to further examine the influence of impoundments on zooplankton dynamics in the Edward-Wakool system.
The proportion of ovigerous rotifers was greatest in the weeks leading up to the late October peak in zooplankton abundance among all rivers, suggesting in-channel production was responsible for the seasonal peak in abundance observed. However, it is possible that the unregulated high flows in late winter/spring 2012 leading up to the monitoring period increased productivity and inundated greater areas of habitat for zooplankton, resulting in the observed peak. Since monitoring only began after these high flows, this is purely speculative.
The role of low flows, nutrients and temperature
Zooplankton had a distinct seasonal pattern across all sites, largely unrelated to flow, with peaks in abundance occurring at the same time (late October and January) across all rivers. The similarity in the timing and magnitude of these peaks suggests that seasonal cues for reproduction in zooplankton were overriding other factors which varied among the rivers, such as flow. This is consistent with the findings of the 2011-2012 monitoring, when increases in zooplankton abundance were consistent among rivers but unrelated to flow (Watts et al. 2013). Temperature is widely known to affect zooplankton abundance (Kobayashi 1997; Reckendorfer 1999), but was unrelated to zooplankton abundance here. Temperature was, however, negatively correlated with the presence of ovigerous zooplankton, and it is possible that the lag effect of a change in rate of reproduction was greater than the 7 day temperature window used for statistical analysis here. Indeed zooplankton biomass in a temperate river has been found to be related to temperature when temperature for the previous month is considered (Humphries et al. 2013).
The persistence of low flow conditions (and hence longer water residence time) in the Wakool for the majority of the study period may have led to increased zooplankton production in that system. Water residence time strongly influenced zooplankton biomass and community structure in a study of the Danube River floodplain, with greater biomass during longer water residence times (Baranyi et al. 2002). Higher abundances of zooplankton in the Wakool in February to April 2013 followed elevated phytoplankton levels and hence food availability. Nutrient limitation has proven to be a significant factor prohibiting zooplankton production in other temperate rivers, with strong positive relationships between chlorophyll a and zooplankton biomass (Basu and Pick 1997). 
Of all the rivers sampled in the Edward-Wakool during 2012 – 2013, the zooplankton community in Little Merran Creek differed the most from other rivers in terms of taxonomic and size class composition, and abundance. Although total numbers of zooplankton sampled in Little Merran Creek were low compared to the other rivers, zooplankton individuals were generally larger in Little Merran Creek. Zooplankton biomass is therefore likely to have been similar, if not greater, in the Little Merran compared to the other rivers given the larger size of the individuals. In one study of riverine zooplankton, microcrustaceans numerically made up only 2 % of zooplankton abundance but 46 % of biomass (Saunders and Lewis 1988). Although time constraints prevented us from calculating zooplankton biomass, caution must be taken in relating zooplankton abundance to food availability for larval fish in the Little Merran, since the large size of zooplankters may have meant a similar or greater biomass of food to other rivers. 
In conclusion, the watering actions carried out in the Edward-Wakool system in 2012 – 2013 appeared to have little influence on zooplankton populations. Seasonal cues (possibly temperature) had a greater influence on zooplankton than the magnitude of watering actions in the Colligen and Yallakool. Low flow conditions in the Wakool River appeared to increase phytoplankton production and consequently, zooplankton abundances. Environmental freshes of greater magnitude and duration would likely be needed to elicit a response, particularly flows which aim to increase the extent of inundation. In addition, the role of upstream storages in shaping downstream zooplankton populations needs to be further explored.
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Background
Freshwater shrimp are an important component of freshwater ecosystems, particularly with regard to nutrient cycling (Covich et al. 1999; Crowl et al. 2001; March et al. 2001). In the Edward-Wakool system, shrimp often occur in very large numbers and as well as being important to ecosystem function are likely to be an important food source for vertebrates such as native fish.  One of the objectives of the watering Option 1 in the Edward-Wakool system is to support ecosystem function and support habitat requirements of native aquatic species, including frogs, turtles, and invertebrates.
In the Murray-Darling Basin there are two atyid species, Paratya australiensis and Caridina mccullochi, and one palaemonid, Macrobrachium australiense. Previous studies have shown that the distribution and abundance of C. mccullochi and M. australiense may be affected by altered flow regimes, whereas P. australiensis seems to be more tolerant (Richardson et al. 2004) This relationship is thought to be linked to the availability of suitable slackwater habitats during their spawning period (Richardson et al. 2004). Slackwaters act as an important nursery habitat for larval shrimp by providing refuges from current and energetic advantages during a key stage of their development (Humphries et al. 2006; Price and Humphries 2010). Flow has the ability to alter the size, availability and permanence of slackwaters (Bowen et al. 2003; Price et al. 2013), thus environmental watering has the potential to affect the recruitment success of shrimp. 
The aim of this component of the study was to determine if the environmental watering actions in 2012-2013 influenced the relative abundance of shrimp in the Edward-Wakool system. 
Hypothesis
The abundance of shrimp larvae and juveniles in the rivers that received environmental watering will differ from the control rivers that do not receive environmental water. The effects of the environmental watering on shrimp abundance will be influenced by how the environmental freshes influence the availability of slackwaters. Shrimp abundance will be higher in rivers that have more permanent and larger areas of slackwater.

Methods
Shrimp larvae and juveniles were sampled in addition to larval and juvenile fish using quatrefoil perspex traps containing bioluminescent light sticks (see methods in section 7.5.1 and Figure 87). Three traps were set at five sites within each of the four rivers/creeks (15 traps in total per river). Traps were deployed at random along the littoral edge at each site at dusk, and retrieved the following morning (7:00-9:00am). All shrimp collected from the light traps were preserved in 90% ethanol and returned to the laboratory for processing. 
Abundances were log10(x+1) transformed prior to statistical analyses when necessary to normalise data and stabilize variances. To test if total abundance was significantly different across the 4 rivers, total abundance was analysed for each species using a one way ANOVA with river as the grouping variable. When significant differences were indicated, post hoc pairwise comparisons were undertaken to determine differences between the rivers. 
Results and discussion
Abundance of shrimp
A total of 71,249 shrimp were collected over the 2012-2013 spawning season. Of these, 35,007 were P. australiensis and 36,242 were M. australiense (Table 21). The mean abundance of shrimp was significantly different across the four rivers (ANOVA d.f=3, F-test=4.806, p<0.05) (Figure 57). The mean (±SE) number of shrimp sampled from Colligen Creek, Yallakool Creek, Wakool River and Little Merran Creek was 574 (±85), 814 (±194), 1205 (±270) and 2576 (±663), respectively. P. australiensis were significantly more abundant in Little Merran Creek than in Colligen Creek and Yallakool Creek that both received environmental freshes (ANOVA d.f=3, F-test=4.796, p<0.05). Colligen Ceek also had significantly fewer M. australiense than Little Merran Creek (ANOVA d.f=3, F-test=3.229, p<0.05).
The rivers that received environmental water had fewer shrimp overall compared to the two control rivers. Increased flows can often reduce rather than increase the size and availability of slackwaters crucial to larval development and juvenile recruitment of shrimp (Bowen et al. 2003; Vietz et al. 2013). This is supported by Richardson et al. (2004) who found that M. australiense was found in fewer numbers and C. mccullochi was absent in sections of the Campaspe River which experienced higher flows in summer for irrigation purposes compared to other sections of that river. Permanence of slack waters was also likely to be affected by watering actions. Price et al. (2013) found that fluctuations in discharge resulted in a reduction in the permanency of slack waters. It is possible that the recruitment success of shrimp may be affected by this, as shrimp recruitment occurs during the normally low flow summer period (Humphries et al. 2006). Sharp increases in flow may result in higher larvae mortality as a result of displacement and catastrophic drift from slackwater habitats (Humphries et al. 2006; Price and Humphries 2010). Indeed, Hancock and Bunn 1997 found that high flow events limited the recruitment of P. australiensis. 

The magnitude of flow provided by the watering actions in Colligen Creek and Yallakool Creek reached less than half bankfull levels and were likely to have decreased the size and availability of slackwaters. Veitz et al. (2013) found that in the Broken River there was a general decrease in the area of slackwaters as flow increased and slackwaters became available only at the channel margins. Only at near bankfull levels when benches were inundated, do large slackwaters start to develop and result in a general increase in slackwater area. Indeed, the inundation modelling from section 7.1.1 suggests a similar pattern in the Edward-Wakool system (Figure 10, section 7.1.1.) at bankfull flows. Therefore, for shrimp at least, it is likely that the magnitude and timing of environmental flows delivered during the 2012-2013 water actions did not result in an increase in available habitat for shrimp recruitment which is a key objective of the watering actions. 

Table 21. Total abundance of shrimp collected with light traps from the four focus rivers in the Edward-Wakool system during 2012-2013. 
	Species
	Colligen
	Yallakool
	Wakool
	Merran
	Total

	Paratya australiensis
	4010
	3157
	8237
	19603
	35007

	Macrobrachium      australiense
	2919
	7598
	7653
	18072
	36242

	total
	6929
	10755
	15890
	37675
	71249

	(%)
	(10)
	(15)
	(22)
	(53)
	

	
	
	
	
	
	




Figure 57. Mean abundance (±1SE) of P. australiensis and M. australiense in the Edward-Wakool system during 2012-2013. Horizontal bars indicate duration of environmental watering actions in the treatment rivers, Colligen Creek and Yallakool Creek.
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Background
Two species of freshwater crayfish inhabit the Edward-Wakool system, the Murray crayfish (Euastacus armatus) and the common yabby (Cherax destructor). Both species are of considerable conservation value but little is known of either species specific flow requirements. The yabby can adapt to a range of different habitats and river conditions, and has a natural range of approximately two million square kilometers, including the Murray-Darling Basin (Unmack 2001). The Murray crayfish has a much more restricted range and is found only in the Murray and Murrumbidgee catchments. Both species have a higher tolerance to changes in water quailty than many native fish species (King et al. 2010). However, abnormal events, such as flow-linked hypoxic water or extended drought, can lead to high population mortality (Morris et al. 2005). 
Mckinnon (1995) suggested that the provision of environmental water could lead to a recruitment response in both species. Environmental water delivery could be used to maintain water quality during events such as hypoxic blackwater events, or be used to inundate wetlands where significant populations of yabbies are known to occur. Little is known about the current abundance and distribution of Murray crayfish or yabbies within the Edward-Wakool system. Monitoring was undertaken to determine the relative abundance of these species among habitat types and spatial zones within the system in relation to the flow regime delivered within a watering year. These data are part of the time-series collected during the fish community monitoring program. Responses to individual flow events are not examined, instead long term condition through comparison of changes in abundance over time is made. Catch data from 2012-13 will be compared with abundances collected in previous years to plot change trajectories and related to water regime. 
Methods
A total of 37 sites were sampled in 2010, and 43 sites from 2011 onwards (the inclusion of Werai) were sampled annually. Sample sites were stratified between wetland and channel habitats to determine the role these different habiat types in supporting crayfish communities in the Edward-Wakool system. These habitats were further stratified by postion in the system; upper, middle, lower and Werai  to capture any potential difference that may occur over a larger spatial scale(Figure 109). 
Five baited (with liver) Munyana crab traps (75 cm diameter) were set and retrieved after a minimum of 2 hours at each site (Figure 58). Incidental catches from an additional 10 baited fish traps were also recorded. All crayfish were measured to the nearest mm (carapace length), their sex determined, and if female, the presence or absence of berries (eggs or juveniles) on the underside of the tail recorded. 
Changes in abundance among years were analysed using ANOVA. Data were exposed to a variance-stabilising log (x+1) transformation and quantile plots confirmed normalised distributions. A post-hoc Tukey test was applied to determine any specific year that resulted in higher recruitment. 

























 

Figure 58. Manyana crab trap (top left), opera house (top right), are used to sample for Murray crayfish (bottom left) and yabbies (bottom right).



Results and Discussion 
No Murray crayfish were caught in any year. Recent intensive sampling for crayfish in the Edward-Wakool system also did not record any Murray crayfish in the Wakool River and only low numbers in the Edward River (pers com. Martin Asmus). However, historical information indicates that crayfish were historically widespread and relatively abundant throughout the current study area (Gilligan et al. 2007) with recreational fishers reporting Murray crayfish declines in the system (O’Connor 1986). These data suggest few Murray crayfish persist in the region and that there is little evidence of a recent recovery.
A total of 275 yabbies ranging in size from 11 to 70 mm were sampled over the four years from 2010 to 2013 (Figure 59). They were found at 32 sites; 23 channel, and 9 wetland (Figure 59). There were signifcantly [F (7, 24) = 6.923, P <0.001] more yabbies caught in 2011 when compared to 2010, 2012 and 2013 across all zones (upper, middle, lower and Werai). This increased abundanced occurred after large flow event and supports findings by Reid et al. (1997) who analysed yabby catch data over several decades and found increased catch rate correlated with flood levels. One possible explaination for this result is that the input of large quantities of carbon into the system during flooding benefited yabby recruitment and survival. 

[image: ]
Figure 59. Mean average number of yabbies caught at all sites per section of the river. Red: 2010, blue: 2011, dark green: 2012 and purple: 2013. Error bars show standard error of the means.

In post flood years (2012, 2013), yabby numbers returned to pre-flood abundance. There were no observed differences in abundances between 2010, 2012 and 2013 [F (7,24) = 6.923, P <0.0 [F (7, 24) = 6.923, P <0.001]. One possible explanation for the decline in yabby abundance after 2011 may be changes in food availability. Giling et al. (2009) and McKinnon (1995) reported that flood events can cause a shift in natural food availability (especially aquatic invertebrates), prompting yabbies to relocate in order to fulfil their dietry requirements. 
Yabbies were captured in both channel and wetland habitats. While yabbies have a high tolerance to rapid changes in water quality (Hobbs 1981), they prefer wetland habitats (Johnston 2009). The abundance of yabbies in channel sites could indicate that flow regulation and the prolonged drought created a situation where channel habitat was effecetively a series of disconneted pools serving as isolated wetlands. Many other wetlands in the region became totally dry during the drought and may take many years to recover following re-connection. Variability of in-channel flows and periodic reconnection of wetlands to prevent extended drying and to facilitate carbon transfer may benefit yabby populations. 
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Background
Riverine frogs have a range of life history strategies which allow them to utilise and occupy riverine habitats. In south-eastern Australia nine frog species are wholly dependent on flowing water for reproduction, (Gillespie and Hines 1999) whilst five others use streams for breeding only under certain flow conditions (Gillespie and Hines 1999; Heard et al. 2006). Many generalist riverine frog species utilise a range of habitats created during overbank events, such as back-waters and ground-water pools (Bateman et al. 2008; Wassens and Maher 2011). Permanently inundated systems may not necessarily support frog breeding due to their high predator densities, rather they may be used as refuge habitats during dry periods (Wassens and Maher 2011). Seasonally or intermittently inundated wetland systems, such as the Edward Wakool system, may be important for breeding by species with longer development times (Wassens et al. 2010; Wassens and Maher 2011) therefore in-channel environmental watering is most likely to lead to an increase in frog abundance and calling activity if intermittent and seasonal habitats are created adjacent to the main channel. For example Wassens and Maher (2011) found that temporary water bodies created during environmental flows were preferentially utilised for breeding over the more persistent habitat within the stream channel. 

Hypotheses
· Frog activity (number of individuals calling and observed) will increase in rivers that receive environmental water relative to rivers that do not receive environmental water.
· Frog breeding (by presence of egg masses, tadpoles and metamorphs) will be observed more often in rivers that receive environmental water relative to rivers that do not.

Methods
Tadpoles were surveyed monthly from September 2012 to April 2013 during the day within a 50 m transect at three locations within each focus river using a large D-bottom sweep net (Figure 60). Tadpoles caught in the net were identified to species level if possible and their developmental stage recorded according to Anstis (2002). Once identified, all tadpoles were released at the point of capture. 
Three replicate audio and visual surveys were undertaken at each focus river at monthly intervals, to detect distinct calls of resident frog species and record the number of individuals calling. The number of individuals was estimated when calling frog numbers exceeded the ability of the recorder to differentiate between calling individuals. Frogs were surveyed at night along a 200 m long and 5 m wide transect running parallel to the water’s edge for 30 minutes on each survey occasion. A spotlight was used to search along the water’s edge and within terrestrial habitats. Each individual encountered was identified to species level.
Changes in the abundance of each frog species between focus rivers was assessed using the Kruskal–Wallis one-way analysis of variance by ranks, which is non-parametric equivalent to Analysis of variance. Changes in individual frog species abundance in each focus river over time were measured using the Jonckheere-Terpstra Test for ordered alternatives. Spearman's rho analysis was used to measure the relationships between frog abundance and mean rainfall during the survey period. All Analyses were carried out in SPSS version 20, IBM.
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Figure 60. Tadpole surveys using a sweep net at one of the study rivers 

Results and discussion
Six frog species were recorded at the four focus rivers over the eight month survey period (September 2012 to April 2013). Little Merran Creek initially supported the highest frog diversity which included the only record of the eastern banjo frog (Limnodynastes dumerilii) (Figure 61). Colligen Creek contained the highest number of frog (n=509), respectively followed by Little Merran Creek (n=399), Yallakool Creek (n=170) and Wakool River (n=114) (Figure 61). No frogs listed as vulnerable or endangered under the EPBC Act 1999 were observed or heard calling. 
Frog community composition was similar across the rivers over the survey period, with spotted marsh frog (L. tasmaniensis) and barking marsh frog (L. fletcheri) being the most commonly encountered species, followed by plain’s froglet (Crinia parinsignifera) respectively (Figure 62). No significant differences between frog abundance occurred in terms of the abundance of the above-mentioned species (Kruskal Wallis Test; p=0.286; p=0.064; p=0.334 respectively). There were significant differences however in Litoria peronii numbers between rivers (Kruskal Wallis Test: p=0.000) which was expected, as Colligen Creek and Little Merran Creek both had higher numbers compared to the other rivers (Figure 61, Figure 63). Eastern froglet (C. signifera) numbers were significantly different between rivers (Kruskal Wallis Test: p=0.005) and were also found in higher abundances during September and October 2012 in Colligen Creek than at the other rivers (Figure 61; Figure 63). The eastern banjo frog (L. dumerilii) was recorded once only in September 2012 (Figure 61; Figure 63). Our findings are comparable to frog diversity and numbers observed along the Murray River between Lock 15 and the South Australian border during an environmental watering event in 2005-06 (Val et al 2007) and very high compared to the more recent environmental flow event in the Darling Anabranch in 2010-12 which detected only 292 individuals during a three year survey period (Bogenhuber et al. 2013).
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Figure 61. Frog community composition and mean abundance (± 1SE) identified during audio and visual frog surveys within each focus reach between September 2012 and April 2013.
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Figure 62. Typical frog species detected during night time surveys at the study reaches. a) Peron’s tree frog, b) plain’s froglet, c) barking marsh frog and d) spotted marsh frog
Response to environmental watering 

It was hypothesised that frog activity (measured as an increase in the number of individuals observed) would increase in Colligen and Yallakool Creeks in response to environmental watering. The most frog activity was observed during the September and October 2012 surveys in all rivers prior to the environmental watering actions. There were inundated backwaters present from larger unregulated flows within the Edward Wakool system that occurred prior to the commencement of the four environmental watering actions, which could have accounted for the large frog numbers and significant differences in abundances of Litoria peronii (Kruskal Wallis Test: p=0.000) and Crinia signifera (Kruskal Wallis Test: p=0.005) between rivers observed during the September and October 2012 surveys. An increase in activity at this time was also expected as most frogs that were identified are generally actively calling from September and during the warmer months (Wassens and Maher 2011). Subsequent surveys did not detect significant differences across rivers in terms of frog abundance for L. tasmaniensis (Kruskal Wallis Test: p=0.286) L. fletcheri (Kruskal Wallis Test: p=0.266) or C. parinsignifera (Kruskal Wallis Test: p=0.064), as there was a gradual reduction in frog diversity and numbers from December 2012 in all rivers (Figure 63). 
Flows during the Colligen Creek November to December 2012 environmental watering action inundated some riverbank vegetation, and concurrent surveys found frog numbers were higher compared with the other rivers (Figure 63). Furthermore, a pair of L. fletcheri was observed in amplexus during the November to December 2012 environmental watering action whilst amplexus was not observed at the other rivers throughout the study period. The increase in frog numbers and activity at Colligen Creek could be due to the environmental freshes and a shift into the warmer seasons in which the frogs that were identified are generally more active (Wassens 2011). Little Merran Creek, which received no environmental freshes, also had high calling frog numbers during October (Figure 61), but may have been influenced by climate, with a shift into the warmer seasons in which the frogs identified in this study are generally more active (Wassens 2011).
The Colligen Creek March to April 2013 environmental watering action was a smaller event than the November to December action and did not inundate a significant area of riverbank vegetation (see Section 7.1.2). The frog response to this event was muted compared to the spring fresh in terms of numbers. Frog response during the Colligen Creek March to April 2013 environmental watering action did not differ from frog responses at other focus rivers during that period, thus this event may not have reached sufficient height to inundate suitable breeding habitats or trigger an increase in frog calling activity during this watering action, thus possibly why fewer individuals were observed or heard calling in response to the Colligen Creek March to April 2013 environmental watering action. The frog community in Colligen Creek differed to the other focus rivers, as it contained higher numbers of plain’s and eastern froglets (Crinia spp.) and spotted marsh frogs (L. tasmaniensis) (Figure 63). Crinia parinsignifera dominated the frog community at Colligen Creek, and although it was already initially prevalent, its activity did not increase in response to either of the environmental freshes, rather it declined significantly over time during the survey period (Figure 63; Jonckheere-Terpstra Test: p=0.000).
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Figure 63. Frog community composition and mean abundance (± 1SE) identified within each focus reach during each survey month (September 2012 and April 2013). 
Although there was a slight increase in frog numbers at Colligen Creek during the November to December 2012 and the March to April 2013 environmental watering actions compared to focus reaches that did not receive freshes, they were only significantly different to other rivers in terms of Crinia signifera and C. parinsignifera from September 2012 to April 2013 (Jonckheere-Terpstra Test: p=0.000). However no significant differences were detected between the other frog species in this river. Furthermore, the Yallakool Creek environmental watering actions resulted in little difference to other focus reaches in terms of increased frog numbers (Jonckheere-Terpstra Test: p=not sig). Frog recruitment was not observed, and no tadpoles or egg masses were observed at any focus river, regardless whether it received an environmental fresh or not. 
The small frog response in Colligen Creek and the lack of frog response in Yallakool Creek to the environmental watering actions as well as significant declines in frog abundances (Litoria peronii, Limnodynastes tasmaniensis, L. fletcheri, C.sigifera and C.parinsignifera) over time observed in Little Merran Creek (Jonckheere-Terpstra Test: p=0.001; p=.011, p=.030,p=0.009,p=0.009 respectively) and declines for C. signifera and C. parinsignifera in Colligen Creek and the Wakool River (Jonckheere-Terpstra Test: p=0.000; p=.001 respectively), may be in part, due to the unprecedented hot weather and extremely low rainfall conditions experienced in the region at this time (Figure 15, section 7.1.2). Mean maximum temperatures escalated to 45.9 degrees Celsius and low mean rainfall of 4.4 mm recorded in January 2013 (Figure 15, Section 7.1.2) which is considerably lower than the 30 year January average monthly rainfall which ranges between 25 and 50 mm (BOM, accessed online 5 September 2013).  Although rainfall decreased over time during the survey period, along with frog abundances at Colligen Creek, Wakool River and Little Merran Creek (Jonckheere-Terpstra Test: p=0.000), a strong correlation existed between rainfall and abundance for all frogs (Spearman's Correlation; p= <0.005) across all focus rivers when there was better rainfall earlier in the season. 
Riverbank vegetation cover and aquatic vegetation cover was generally low in each focus reach (Section 7.1.2), which potentially reduced suitable habitat for frogs. Inundated vegetation is used by frogs as calling and spawning locations (Wassens et al. 2010) and as habitat for adults and tadpoles (Healey et al. 1997). Inundated vegetation also acts as substrate for biofilm which is an important food source for tadpoles. The availability of inundated vegetation may have been low because environmental freshes remained in channel, not reaching half bank full (Section 7.1.1). As a consequence, the lack of newly wetted vegetated habitats may be a key factor influencing the response of frogs to environmental watering.
High predator densities in the main channel from low flows may also inhibit frog breeding activity and could explain why no tadpoles were caught in-channel during the survey period. Exotic predatory fish including the mosquito fish (Gambusia holbrooki), known to predate upon tadpoles (Anstis 2002; Ralph et al. 2011) and the European carp (Cyprinus carpio), also known to impact frog recruitment (Spencer and Wassens 2009), were present in most rivers. The occurrence of these predators, combined with small environmental freshes, may have resulted in no suitable inundated habitat being available to provide refuge from predators or support breeding and recruitment of frogs (Wassens and Maher 2011).
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