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Abstract 
This paper presents farmpredict a data driven micro-simulation model of Australian broadacre 
farms based on the Australian Agricultural and Grazing Industry Survey (AAGIS). Farm 
production and financial data from AAGIS are combined with site-specific climate data including 
various measures of rainfall, temperature and soil moisture. A statistical model is estimated 
linking the production of outputs (e.g., wheat, beef cattle, wool etc.), the use of inputs (e.g., fuel, 
fertiliser, labour etc.) and changes in farm stocks (e.g., livestock and grain) with farm fixed 
inputs, input and output prices, climate variables and other control variables. The model is 
estimated using a non-parametric machine learning method, which combines a gradient boosted 
regression tree algorithm (xgboost) with multi-target stacking (two-stage regression). The 
resulting model can be used to forecast or simulate production, financial outcomes and stock 
changes for individual farms given scenarios for climate conditions and commodity prices. The 
performance of the model is evaluated via cross-validation. Simulation results are presented 
showing the types of farm responses to climate and price shocks produced by the model. 
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1 Introduction 
Farm businesses face a high level of risk due mostly to variations in weather conditions and 
commodity markets. Both sources of risk are particularly high in Australia (Keogh 2012) given 
our export focused and unregulated commodity markets and our variable climate—with lower 
mean rainfall and higher variance than most other countries (Peel et al. 2004). 

The effects of climate and price variation on farms are complex and farm specific. Models which 
can accurately measure these effects have a range of potential applications including forecasting 
farm production and profit (Nelson et al. 2007), pricing farm insurance products (Adeyinka et al. 
2016) and supporting government drought policy programs (Nelson et al. 2007) . Such models 
are also necessary to measure the effects of climate change on farms. This is important in 
Australia where trends in rainfall and temperature related to climate change (Cai & Cowan 
2013) are already having significant effects on crop yields (Hochman et al. 2017) and farm 
productivity (Hughes et al. 2016). 

This paper presents farmpredict a new data-driven micro-simulation model of Australian farms. 
farmpredict is based on data from the Australian Agricultural and Grazing Industry Survey 
(AAGIS) a long running national survey of Australian broadacre farms covering the major 
cropping, livestock (beef and sheep) and mixed farming industries. A sample of 40,733 
observations over the period 1988-89 to 2017-18 are drawn from AAGIS and combined with a 
variety of location specific climate data including measures of rainfall, temperature and soil 
moisture. 

The model comprises a series of input demand and output supply functions which predict the 
production of outputs, the use of inputs and changes in stocks conditional on prices, fixed inputs, 
climate conditions and other control variables. In this sense, the model structure is similar to 
'dual' (reduced form) style production models common in econometrics (Mundlak 2001)—
which emerged as an alternative to 'primal' models due to concerns over endogeneity bias 
(Marschak & Andrews 1944). 

This dual approach has been applied to estimate farm production systems in many Australian 
(Xayavong et al. 2011, Fisher & Wall 1990, Bell et al. 2007) and international (Segerson & Dixon 
1999, Ball et al. 1997, Bouchet et al. 1989, Antle 1984) studies. These studies draw on economic 
profit maximisation theory to develop parametric models which are estimated via standard 
econometric methods. 

The dual approach suffers from some widely acknowledged limitations (Mundlak 2001). Firstly, 
the parametric forms can be highly restrictive. For example, the common normalised quadratic 
profit function (Shumway 1983) assumes linear responses, such that all farms experience the 
same constant marginal changes in output or input. Secondly, for a variety of reasons (including 
data aggregation, risk and uncertainty, non-profit objectives and measurement error) observed 
data typically do not satisfy profit maximisation (see Mundlak 2001, Shumway 1995, Xayavong 
et al. 2011). 

In this study, a machine learning approach to estimation is adopted (for an introduction to 
machine learning see Varian 2014, Einav & Levin 2014). Each function in the model is estimated 
via a gradient boosted regression tree algorithm, specifically xgboost (Friedman 2002, Chen & 
Guestrin 2016). A multi-target stacking (Spyromitros-Xioufis et al. 2012) framework is 
employed to account for interactions between functions, not dissimilar to two-stage least 
squares approaches in econometrics. 

http://www.agriculture.gov.au/abares/research-topics/surveys/farm-definitions-methods#industry-definitions-by-survey
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This non-parametric approach exploits the large sample sizes available and helps address some 
of the limitations of standard econometric methods. However, the model still draws on economic 
theory. In particular, only variables which can safely be assumed exogenous (with one-
directional casual effects) are included as predictors: weather conditions, opening values of fixed 
inputs and prices (based on the standard assumption that farmers are price takers in 
competitive markets). These assumptions help make the model suitable not just for forecasting 
but for counter factual simulation. 

In terms of its structure and potential applications farmpredict is closely related to previous 
farm 'econometric process models' (Antle & Capalbo 2001), which combine spatially explicitly 
econometric models with bio-physical simulation models. 

In particular, farmpredict is a successor to the Agricultural Farm Income Risk Model (AgFIRM) 
developed from AAGIS data by Kokic et al. (2007). AgFIRM combined a primal (structural) 
econometric farm production model (originally developed by Kokic et al. 1993) with two bio-
physical models: the crop yield model of Potgieter et al. (2002) and the pasture growth model of 
Carter et al. (2000). Kokic et al. (2007) demonstrated how AgFIRM could be used to forecast 
farm incomes. Later Nelson et al. (2010) applied AgFIRM to project farm incomes under climate 
change scenarios. 

In the United States, Antle & Capalbo (2001) introduced the concept of econometric process 
models via a dual form model of Montana grain farms. Later Stoorvogel et al. (2004) developed a 
similar model to examine trade-offs between agricultural and environmental outcomes for 
farming areas in northern Ecuador. 

This study differs from the above models, in linking farm production with observed climate data 
rather than bio-physical models, to create a statistical model of the joint farm economic and bio-
physical system. Machine learning feature selection methods are used to select a subset of 
climate variables for each equation in the model from a large combination of potential climate 
measures (e.g., rainfall, temperature, soil moisture etc.) and time scales / periods. 

This data-driven approach has some obvious strengths and weaknesses: while it avoids the 
potential bias from using process based models (which are often calibrated for specific locations, 
crop / pasture types and farming systems) it also limits the ability of the model to extrapolate 
outside of historically observed ranges. While this means process based models might be better 
suited to climate change analysis (Antle & Capalbo 2001), statistical models can still be, and 
often are, usefully applied for this purpose (Lobell & Burke 2010). Further, the predictive 
accuracy achievable with machine learning opens a range of new practical applications including 
farm specific risk analysis of value in credit and insurance markets. 
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2 Methods 
Data 
Farm data 
The Australian Agricultural and Grazing Industry Survey (AAGIS) collects detailed physical and 
financial information from around 1,600 broadacre (extensive non-irrigated cropping / 
livestock) farms across Australia each year. AAGIS data are all collected through face-to-face 
interviews with the owner or manager of the farm. 

AAGIS includes farms across five industry categories (as defined by ANZSIC 2006): Cropping 
specialists, Mixed cropping-livestock, Beef, Sheep and Sheep-Beef. Within these broad categories, 
farms can produce a range of different crop and livestock outputs. For example, many cropping 
specialists farms still hold livestock, while many sheep (and some beef) farms also plant crops 
(see Table 2). 

Results from the survey are presented as national, state or region level weighted averages (for 
34 regions as detailed in Figure 1 and Appendix A). The AAGIS farm level data are geocoded 
(with spatial co-ordinates identifying the approximate centre of the farm property). Cropping 
activity occurs mostly within the 'Wheat-Sheep zone', with livestock production dominating in 
the coastal 'High-rainfall' zones (where rainfall is often too high for cropping) and the more in-
land 'Pastoral' zones (where rainfall is often too low for cropping). 

 

Figure 1: Map Australian Agricultural and Grazing Industries Survey (AAGIS) zones and 
regions 

While AAGIS data are available from 1977-78, the sample for this study is limited to the period 
1988-89 to 2017-18 due to missing data in earlier years. AAGIS involves a rotating sample 
resulting in an unbalanced panel data set. Between 1988-89 and 2017-18 the data includes a 
total of 43,959 observations for 13,117 distinct farm businesses, with farms spending an average 
of 3.4 years in the sample. 

The complete set of variables are listed in Table 11, Table 12 and Table 14 in Appendix B. Key 
variables include: 

http://www.agriculture.gov.au/abares/research-topics/surveys/farm-definitions-methods#industry-definitions-by-survey
http://www.abs.gov.au/ausstats/abs@.nsf/0/20C5B5A4F46DF95BCA25711F00146D75?opendocument
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𝑄𝑄𝑗𝑗𝑗𝑗𝑗𝑗 the quantity of output 𝑗𝑗 sold on farm 𝑖𝑖 in year 𝑡𝑡
𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗 the revenue received from output 𝑗𝑗 on farm 𝑖𝑖 in year 𝑡𝑡
𝐴𝐴𝑗𝑗𝑗𝑗𝑗𝑗 the area of crop 𝑗𝑗 planted on farm 𝑖𝑖 in year𝑡𝑡
𝐻𝐻𝑗𝑗𝑗𝑗𝑗𝑗 the quantity of crop 𝑗𝑗 harvested on farm 𝑖𝑖 in year 𝑡𝑡
𝐶𝐶𝑣𝑣𝑗𝑗𝑗𝑗 expenditure on variable input 𝑣𝑣 on farm 𝑖𝑖 in year 𝑡𝑡

𝑉𝑉𝑣𝑣𝑗𝑗𝑗𝑗 a quantity index for variable input 𝑣𝑣 �
𝐶𝐶𝑣𝑣𝑗𝑗𝑗𝑗
𝑃𝑃𝑣𝑣𝑗𝑗

�on farm 𝑖𝑖 in year 𝑡𝑡

𝐾𝐾𝑘𝑘𝑗𝑗𝑗𝑗 the quantity of capital input 𝑘𝑘 on farm 𝑖𝑖 in year 𝑡𝑡
𝑆𝑆𝑠𝑠𝑗𝑗𝑗𝑗
𝑜𝑜𝑜𝑜,𝑆𝑆𝑠𝑠𝑗𝑗𝑗𝑗𝑐𝑐𝑐𝑐 the opening and closing quantities of stock 𝑠𝑠 on farm 𝑖𝑖 in year 𝑡𝑡
𝐏𝐏𝑗𝑗 annual price indexes for each output and input
𝐙𝐙𝑗𝑗𝑗𝑗 a collection of control variables, including location and year

 

A total of 10 outputs and 8 variable inputs are defined for the model (Table 1), similar to the 
setup used by ABARES for its Total Factor Productivity (TFP) series (Zhao et al. 2012). 

Table 1: Output, variable input and stock types 

Outputs Variable inputs Stocks 

Beef cattle Electricity Beef cattle 

Sheep Fertiliser Sheep 

Lamb Fuel Wool 

Wool Chemicals Wheat 

Wheat Other materials Barley 

Barley Services Sorghum 

Oilseeds Shearing labour Oilseeds 

Sorghum Other  

Other crops   

Other   

 

For livestock outputs (beef cattle, sheep, and wool) price indexes are based on annual national 
median farm prices, for crops (wheat, barley, sorghum and oilseeds) they are based on 
Australian export prices (all other outputs and inputs use the price indexes of Zhao et al. 2012). 
For crop outputs both current and lag prices are constructed. For winter crops in particular 
(wheat, barley and oilseeds) lagged prices are a better indicator for expected prices, given crop 
planting decisions occur prior to the beginning of the survey year (see Figure 2). Price indexes 
and financial variables, such as 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗 and 𝐶𝐶𝑣𝑣𝑗𝑗𝑗𝑗, are all normalised (adjusted for inflation) using the 
Consumer Price Index (CPI). 

There are few missing values in the dataset post 1988-89, however some imputation is required 
for control variables Z_edu and Z_age (farmer education and age) and for crop pool payment 
variables (which account for participation in centralised crop marketing schemes, see Appendix 
B and C). Lagged or next year values are used for imputation where available (for farms in the 
sample multiple years) and annual median values otherwise. Some livestock data is missing in 
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2004 (for beef and sheep sales, births and deaths) and is not imputed. After removing outliers 
(observations where one or more key variables exceed the 99.5th percentile) and observations 
with large changes in farm scale (differences between opening and closing land area), the final 
sample size for estimation is 40,202. Selected summary statistics are shown in Table 2. 

Table 2: Sample percentiles for selected AAGIS variables by industry ('000 $) 

 0.05 0.25 0.5 0.75 0.95 

Cropping and mixed farms      

Beef revenue, R_beef 0.0 0.0 0.0 34.9 315.4 

Wheat revenue, R_wheat 0.0 22.2 126.0 343.7 986.5 

Total revenue, R_total 95.6 282.8 561.4 1006.2 2129.8 

Total costs, C_total 82.7 214.6 414.8 739.7 1638.7 

Farm cash income, R_total - C_total -129.7 24.2 120.2 288.5 741.0 

Farm business profit -318.2 -81.9 3.5 142.3 560.4 

Beef farms      

Beef revenue, R_beef 30.7 114.1 316.5 838.4 3161.4 

Wheat revenue, R_wheat 0.0 0.0 0.0 0.0 0.0 

Total revenue, R_total 43.6 147.6 398.5 973.3 3330.8 

Total costs, *C_total 43.6 121.8 304.5 756.3 2334.3 

Farm cash income, R_total - C_total -252.6 -7.0 63.9 236.5 1113.5 

Farm business profit -514.7 -94.1 -18.0 123.0 903.1 

All farms      

Beef revenue, R_beef 0.0 0.0 42.7 217.8 1331.4 

Wheat revenue, R_wheat 0.0 0.0 0.0 92.8 623.6 

Total revenue, R_total 61.0 201.6 444.5 888.3 2227.7 

Total costs, C_total 56.7 159.9 337.0 670.1 1710.1 

Farm cash income, R_total - C_total -154.6 7.8 84.6 236.9 745.0 

Farm business profit -340.6 -84.4 -11.2 111.7 572.6 
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Climate data 
Climate data are obtained from a number of sources. Monthly rainfall and temperature data are 
sourced from the Australian Water Availability Project (AWAP) (Raupach et al. 2009). Soil 
moisture data are obtained from the Bureau of Meteorology (BoM) Australian Water Resources 
Assessment Landscape model (AWRA-L) (Frost et al. 2016). Daily rainfall and temperature data 
for Australian weather stations are obtained from the Scientific Information for Land Owners 
(SILO) database (Jeffrey et al. 2001). Data on hail storms were obtained from the BoM Severe 
Storms Archive. 

Both AWAP and AWRA-L provide spatial data for Australia on a 0.05 degree (around 5km) grid. 
Monthly data for rainfall, average maximum and minimum temperatures and soil moisture were 
matched to each farm using the spatial co-ordinates and land area. Daily rainfall and 
temperature data were matched to farms on the basis of nearest weather station. 

A variety of variables are constructed from these sources, for a combination of different climate 
measures (Table 3) and time periods / seasons (Figure 2) of potential relevance to Australian 
cropping and livestock production (see Appendix B for more detail). Climate variables include 
measures of both total rainfall and rainfall volatility (the spread of daily rainfall totals across a 
period). Various measures of exposure to upper and lower temperature extremes are also 
included. 

Table 3: Climate variable measures 

Name Description Units Source 

rain Rainfall volume mm AWAP 

tmax Average maximum temperature degrees C AWAP 

tmin Average minimum temperature degrees C AWAP 

moist Root zone soil moisture index (0-1) AWRA-L 

fr2 Exposure to frost (days below 2C) days SILO 

gdd Heat accumulation (growing degree days) degrees C SILO 

hgdd Expsoure to high temperatures degrees C SILO 

gni Rainfall volatility (Gini coefficient) index SILO 

pci Rainfall volatility index SILO 

hail Exposure to hail storms index (0-1) BoM 

 

 

Figure 2: Climate variable time periods 

http://www.csiro.au/awap/
http://www.bom.gov.au/water/landscape/
http://www.bom.gov.au/water/landscape/
https://legacy.longpaddock.qld.gov.au/silo/
https://legacy.longpaddock.qld.gov.au/silo/
http://www.bom.gov.au/australia/stormarchive/
http://www.bom.gov.au/australia/stormarchive/
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The time periods (Figure 2) are defined with relevance to the survey (financial) year. Note that 
the winter cropping season begins prior to the start of the survey year. For example 2016-17 
winter crop production data, refers to the winter crops planted in the autumn of 2016. Lagged 
climate variables (up to two years prior to the survey year) are relevant given their potential 
effects both on farmer expectations (and therefore behaviour) and on unmeasurable natural 
capital stocks (e.g. the condition of soil and livestock). 

The set of climate variables is reduced by eliminating highly correlated terms, leaving a final set 
of 40 variables, as listed in Table 13. A subset of these climate variables are then selected for 
each equation in the statistical model, see Estimation). 

Other spatial data 
A range of other spatial variables are also matched to the sample farms (Table 14), including 
proximity to irrigation areas (based on land use map data Land use of australia, 2010-11 2016) 
and farm propensity for flooding, based on Water Observations from Space (WoFS) data 
(Mueller et al. 2016). In previous studies using AAGIS data (Hughes et al. 2016) propensity for 
flooding had significant and plausible effects on farm productivity (positive effects in dry years 
and negative in wet). 

Estimation 
The statistical model 
The core of farmpredict is a statistical model which generates farm level predictions for multiple 
dependent (target) variables 𝐘𝐘𝑗𝑗𝑗𝑗 (the 46 variables listed in Table 11) as a function of a large 
number of explanatory variables (predictors) 𝐗𝐗𝑗𝑗𝑗𝑗 = {𝐏𝐏𝑗𝑗,𝐊𝐊𝑗𝑗𝑗𝑗,𝐒𝐒𝑗𝑗𝑗𝑗

𝑜𝑜𝑜𝑜,𝐖𝐖𝑗𝑗𝑗𝑗,𝐙𝐙𝑗𝑗𝑗𝑗} (as listed in Table 12, 
Table 13 and Table 14). 

The key dependent variables in the model are defined below. 
𝐷𝐷𝑗𝑗𝑗𝑗𝑗𝑗 Crop classification, = 1 if crop 𝑗𝑗 sold on farm 𝑖𝑖 in year 𝑡𝑡
𝐴𝐴𝑗𝑗𝑗𝑗𝑗𝑗̇ Proportion of farm land planted to crop 𝑗𝑗
𝐻𝐻𝑗𝑗𝑗𝑗𝑗𝑗̇ Yield for crop 𝑗𝑗,𝐻𝐻𝑗𝑗𝑗𝑗𝑗𝑗/𝐴𝐴𝑗𝑗𝑗𝑗𝑗𝑗
𝑄𝑄𝑗𝑗𝑗𝑗𝑗𝑗̇ Proportion of stock sold for output 𝑗𝑗

= 𝑄𝑄𝑗𝑗𝑗𝑗𝑗𝑗/(𝐻𝐻𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗
𝑜𝑜𝑜𝑜 + 𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗

𝑜𝑜𝑝𝑝𝑝𝑝𝑐𝑐ℎ), for crops and wool

= 𝑄𝑄𝑗𝑗𝑗𝑗𝑗𝑗/(𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗
𝑜𝑜𝑜𝑜 + 𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗

𝑜𝑜𝑝𝑝𝑝𝑝𝑐𝑐ℎ), for livestock
𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗̇ Farm price received for output 𝑗𝑗,𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗/𝑄𝑄𝑗𝑗𝑗𝑗𝑗𝑗
𝑉𝑉𝑣𝑣𝑗𝑗𝑗𝑗 Quantity index for variable input 𝑣𝑣,𝐶𝐶𝑣𝑣𝑗𝑗𝑗𝑗/𝑃𝑃𝑣𝑣𝑗𝑗

 

For crops, the model predicts which crop types are planted 𝐷𝐷𝑗𝑗𝑗𝑗𝑗𝑗, the proportion of farm land 
planted �̇�𝐴𝑗𝑗𝑗𝑗𝑗𝑗 and crop yield �̇�𝐻𝑗𝑗𝑗𝑗𝑗𝑗. Given the potential for on-farm storage (and on-farm use of 
crops for livestock feed) crop sales 𝑄𝑄𝑗𝑗𝑗𝑗𝑗𝑗  can differ from production 𝐻𝐻𝑗𝑗𝑗𝑗𝑗𝑗. For farms with storage 
facilities, the model also predicts crop sales as a proportion of production and opening stocks: 
�̇�𝑄𝑗𝑗𝑗𝑗𝑗𝑗. 

Beef cattle and sheep sales are modelled as a proportion of opening stocks plus livestock 
purchases / transfers-in. Livestock is a complex commodity representing both an output and 
input (in the case of purchases) and a capital good / fixed input. In farmpredict livestock 
purchases / transfers-in are assumed exogenous (treated as a fixed input). In testing, livestock 
purchases displayed limited correlation with exogenous variables including climate and prices. 

http://www.ga.gov.au/scientific-topics/hazards/flood/wofs
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For most outputs, the model also predicts farm price received �̇�𝑅𝑗𝑗𝑗𝑗𝑗𝑗 in-order to account for 
variation across farms in revenue per unit sold (for a given national market price 𝑃𝑃𝑗𝑗𝑗𝑗). This 
variation can reflect a range of factors including differences in output quality or type (e.g., 
livestock weight/condition, livestock breed or crop variety etc.). While national price levels 𝑃𝑃𝑗𝑗𝑗𝑗 
are considered exogenous—as they are determined by global commodity markets—farm prices 
received (𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗/𝑄𝑄𝑗𝑗𝑗𝑗𝑗𝑗) are assumed endogenous: as they can be affected by farmer decisions and 
are likely to be correlated with other predictor variables. For example, the types of crops and 
livestock produced vary by location, while crop and livestock quality can differ between wet and 
dry years. 

For wheat, barley, sorghum and oilseeds, adjustments are also made to account for centralised 
marketing / pool payment schemes. Here �̇�𝑅𝑗𝑗𝑗𝑗𝑗𝑗  is based on revenue received from crops sold 
within the financial year (even if that revenue is received in a subsequent year, see Appendix B 
and C for detail). 

For inputs, predictions are only required for quantity indexes 𝑉𝑉𝑣𝑣𝑗𝑗𝑗𝑗, given 𝐶𝐶𝑣𝑣𝑗𝑗𝑗𝑗 = 𝑉𝑉𝑣𝑣𝑗𝑗𝑗𝑗.𝑃𝑃𝑣𝑣𝑗𝑗𝑗𝑗 by 
definition. Other costs (C_othercosts) which include interest, rent payments and livestock 
purchases are treated exogenous and excluded from the statistical model. 

Typically, dual form models estimate a complete set of price effects including all cross-price 
terms. However, as market prices 𝑃𝑃𝑗𝑗𝑗𝑗 typically contain limited cross-sectional variation (in our 
case none) estimation efficiency can be low (see Mundlak 2001). This study focuses on 
estimating own price effects (e.g., the effect of beef prices on beef output), with a limited number 
of cross-price terms included (see the Machine learning discussion below). 

Further, noise is added to the year variable (Z_year in Table 12, see Appendix B) to help the 
model separate annual price effects 𝑃𝑃𝑗𝑗𝑗𝑗 from general time related changes (e.g., technology 
change). This noise effectively forces the machine learning algorithms to adopt smoother time 
trends and assign more of the annual variation to other model variables including prices. It is 
important to note that these co-linearity problems are less of a concern for other model 
predictors (including climate variables) given a high level of cross-sectional variation within 
each year. 

Machine learning 
The model applies the xgboost regression algorithm (Chen & Guestrin 2016) a popular 
implementation of the Gradient Boosted Regression Trees method (Friedman 2002). A version 
of multi-target regression stacking (Spyromitros-Xioufis et al. 2012) is applied to transform 
xgboost into a multiple target regression model. Similar to two-stage least squares the approach 
involves first regressing each target variable as an function of the inputs. 

�̌�𝑌𝑦𝑦𝑗𝑗𝑗𝑗 = 𝑓𝑓𝑦𝑦1(𝐗𝐗𝑗𝑗𝑗𝑗) for 𝑦𝑦 ∈ 1, . . . ,51 

Predictions from this first stage �̌�𝐘𝑗𝑗𝑗𝑗 are then used as predictors in second stage regressions. This 
process helps to account for interactions between target variables, which are important, given 
the joint multi-output nature of Australian broadacre farming. Following Spyromitros-Xioufis et 
al. (2012) we use out-of-sample predictions for 𝐘𝐘𝑗𝑗𝑗𝑗 (collected via cross-validation) in the second 
stage. In order to exploit the panel structure of the data the second stage also incorporates 
lagged prediction errors 𝑒𝑒𝑦𝑦𝑗𝑗,𝑗𝑗−1, for those observations that were surveyed in a previous year: 

�̂�𝑌𝑦𝑦𝑗𝑗𝑗𝑗 = 𝑓𝑓𝑦𝑦2(𝐗𝐗𝑗𝑗𝑗𝑗 , �̌�𝐘𝑗𝑗𝑗𝑗
−𝑦𝑦

, 𝑒𝑒𝑦𝑦𝑗𝑗,𝑗𝑗−1) 

𝑒𝑒𝑦𝑦𝑗𝑗,𝑗𝑗−1 = ��̌�𝑌𝑦𝑦𝑗𝑗,𝑗𝑗−1 − 𝑌𝑌𝑦𝑦𝑗𝑗,𝑗𝑗−1, if 𝑌𝑌𝑦𝑦𝑗𝑗,𝑗𝑗−1 exists
0, otherwise
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To evaluate the model 10-fold cross-validation is employed. The cross-validation strategy 
involves 'blocking' by farm cross-sections: for each fold, each farm has all of its observations 
(across multiple years) grouped together in either the training or test sample. This strategy 
avoids an over-fitting problem where the model can identify the same farm appearing in 
multiple years, from predictors such as location and fixed inputs (which for many farms are 
relatively constant overtime).The hyper-parameters of the xgboost (including nrounds, eta, 
min_child_weight and max_depth) are tuned to minimise cross-validated Mean Absolute Error 
(MAE). The tuning procedure makes use of a model-based optimisation (MBO) algorithm (Bischl 
et al. 2017). 

The model involves a large set of potential predictor variables (NNN variables in total for stage 
1, see Appendix B). For each target variable a subset of predictors are selected by recursive 
feature elimination on the basis of the xgboost feature importance scores. A fixed subset of the 
predictors are deemed mandatory and forced to be included in each stage 1 function (see 
Appendix B). The stage 2 functions take all of the chosen stage 1 predictors as mandatory. 

A number of other variable inclusions / exclusions are also made manually. Firstly, own price 
terms (e.g., effect of beef price on beef output) are mandatory. Secondly, given winter crop 
planting decisions are made prior to the start of the survey year, functions for 𝐷𝐷𝑗𝑗𝑗𝑗𝑗𝑗 and 𝐴𝐴𝑗𝑗𝑗𝑗𝑗𝑗  for 
wheat, barley and oilseeds exclude all climate variables except for lag terms and the win (June to 
August) period (see Figure 2). 

Regression diagnostics 
Regression diagnostics are presented in Appendix D. Table 15 and Table 16 compare the cross-
validated performance of the xgboost model with standard Ordinary Least Squares (OLS) 
regression. On average (across the 39 continuous target variables) xgboost achieves an 
improvement (reduction) in mean absolute error of around 20 per cent relative to OLS. At the 
farm-level cross-validated 𝑅𝑅2 averages 0.45 for the xgboost model and 0.27 for OLS. Note that 
the performance metrics (e.g., 𝑅𝑅2) are all significantly higher in the simulation model (see the 
Results section), once variables are converted from ratios to levels and additional simulation 
assumptions are applied. 

Predictive accuracy varies considerably across the target variables. Generally higher 
performance is achieved for the more common farm outputs (e.g., beef and wheat) and weaker 
performance for less common outputs (e.g., sorghum, lamb, and 'Other crops'). In some cases 
(𝑅𝑅_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑑𝑑𝑑𝑑𝑡𝑡, 𝑅𝑅_𝑑𝑑𝑖𝑖𝑙𝑙𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑𝑠𝑠_𝑑𝑑𝑑𝑑𝑡𝑡 and 𝑉𝑉_𝑠𝑠ℎ𝑒𝑒𝑙𝑙𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒) the simple OLS model obtains a strong fit, and 
the xgboost model offers limited gains. However for many key variables, particularly crop areas 
and yields and livestock turn-off, birth and death rates, OLS struggles and the xgboost model 
offers large gains in performance. 

Performance for crop yield is generally better than livestock birth/death rates (e.g., 
𝐻𝐻_𝑤𝑤ℎ𝑒𝑒𝑙𝑙𝑡𝑡_𝑑𝑑𝑑𝑑𝑡𝑡 has 𝑅𝑅2 0.53 compared with 𝑆𝑆_𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓_𝑙𝑙𝑖𝑖𝑒𝑒𝑡𝑡ℎ𝑠𝑠 0.32). This is not surprising given the 
heterogeneity in livestock farming: where for example farms can specialise at different stages of 
the life-cycle, with some focused more on breeding and others on 'finishing' (even though 
dedicated feed-lot operations are excluded from the data-set). 

In general, performance is relatively lower for crop and livestock turn-off rates �̇�𝑄𝑗𝑗𝑗𝑗𝑗𝑗. Again this is 
not surprising given the potential sources of noise in these variables. As turn-off decisions affect 
stocks, they can be influenced longer-term planning decisions / expectations. Crop storage 
decisions are also affected by on-farm storage capacity, which is unobserved in the data. Further, 
very high livestock turn-off rates (e.g., farms selling / transferring the majority of their herd in a 
year) are likely to reflect random factors such as the rotation a herd between different 
properties or the sale of a farm business. 
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Table 17 (Appendix D) shows the relative contribution of the different explanatory variable 
types to each target variable (climate, prices, opening stocks, capital, location and other control 
variables). Climate conditions have a significant effect on all of the target variables, with larger 
effects on crop yields and livestock birth and death rates as would be expected. Further 
assessment of the model climate and price responses is provided in the Results section. 

Simulation 
farmpredict simulates production and financial outcomes at a farm level given scenarios for 
climate conditions, prices and other variables (Figure 3). 

 

Figure 3: Generating simulation results using farmpredict 

Model scenarios are defined by a data / assumptions for the predictors 𝐗𝐗�𝑗𝑗𝑗𝑗 (the baseline scenario 
takes the actual data, 𝐗𝐗�𝑗𝑗𝑗𝑗 = 𝐗𝐗𝑗𝑗𝑗𝑗). Alternative scenarios (see Results) involve assumptions for 
climate and price variables, usually taking farm fixed inputs, stocks and control variables as 
given by the survey data. For any scenario predicted values for the target variables �̂�𝐘𝑗𝑗𝑗𝑗 can be 
generated from the statistical model. A range of simulation results can then be generated 
including closing stocks and profit measures (see Appendix C for details). Profit measures 
produced by the model include farm cash income, farm business profit and rate-of-return all 
defined in keeping with AAGIS definitions. 

In producing these results, the simulation model takes into account a range of additional 
variables not included within the statistical model, including 'other costs' C_othercosts (including 
interest, rent and livestock purchases), 'other revenue' R_other. These variables all remain 
exogenous and are held fixed at observed values in all scenarios (see Appendix C). 

http://www.agriculture.gov.au/abares/research-topics/surveys/farm-definitions-methods
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3 Results 
Validation 
Validation results are presented below in Table 4. More detailed results for a wider selection of 
model variables are presented in Appendix E. 

Two validation scenarios are considered. The baseline scenario takes the out-of-sample 
regression predictions obtained through cross-validation in the model estimation stage (as 
described above). While out-of-sample predictions are used, some aspects of the simulation 
model make use of observed (in-sample) farm data in generating final profit measures 
(including the 'other' revenue and costs components, see Appendix C). As such, the baseline 
scenario may slightly overstate out-of-sample performance. To account for this we also include a 
lagcast scenario, which predicts farm outcomes using the previous years farm data and observed 
price and climate data (i.e., similar to a hindcast but with known prices and climate conditions). 
Note the lagcast scenario underestimates model performance at the region and national level, as 
it is subject to additional annual sampling error in the AAGIS data. 

As shown in Table 4 performance improves as we move from farm, to regional to national scales. 
In general, results for the lagcast scenario show a similar pattern to the baseline, but with 
slightly weaker performance as would be expected. Model predictions for profit have limited 
skill at the farm level (𝑅𝑅2 of 0.38 for farm cash income and 0.23 for farm business profit), 
although farm level performance is much higher for other model variables including revenues 
and costs. Given the relatively low profit levels in the sample (with approximately half the farms 
experiencing losses) small errors in revenue or cost predictions can have large relative effects 
on simulated profits. 

Model skill in predicting profit improves considerably at higher scales with an 𝑅𝑅2 of 0.57-0.69 at 
the regional level and 0.8-0.96 nationally (see Figure 4). The performance of the model by region 
is summarised in Figure 5 and Table 20 (Appendix E). Performance is strongest in south-eastern 
and south-western Australia and weakest in central WA and coastal NSW and QLD. These 
differences can be partly explained by sample size, with the best performing regions tending to 
be those with the most sample points (see Table 20). 

Some bias is observed in the predictions of costs due to end-point bias in the variable input 
regression models, such that costs are underestimated for very large farms. In the baseline 
scenario total costs are slightly underestimated on average (by 2.5 per cent) and farm business 
profit slightly overestimated (see Figure 4). This bias has limited relevance for scenario analysis, 
but would require some post-model bias-correction in forecasting applications. 

The most affected input type is 𝐶𝐶_𝑑𝑑𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡, which is underestimated by nearly 20 per cent on 
average . While 𝐶𝐶_𝑑𝑑𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡 only accounts for around 10 per cent of total costs on average it is 
important in reflecting the effects of drought, because it includes the costs of purchased grain / 
hay for livestock. Improving the performance of this input is a subject for future research. 
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Table 4: 𝑹𝑹𝟐𝟐 for the baseline and lagcast scenarios, at the farm, regional and national levels 

 baseline  lagcast  

 
Farm 
level Regional National 

Farm 
level Regional National 

Wheat revenue, R_wheat 0.77 0.98 0.96 0.82 0.94 0.67 

Beef revenue, R_beef 0.86 0.96 0.99 0.88 0.87 0.86 

Wool revenue, R_wool 0.90 0.99 1.00 0.90 0.93 0.97 

Lamb revenue, R_lamb 0.76 0.96 0.99 0.40 0.74 0.89 

Total revenue, R_total 0.84 0.94 0.99 0.85 0.80 0.91 

Fertiliser costs, C_fert 0.71 0.97 0.96 0.76 0.94 0.90 

Fuel costs, C_fuel 0.76 0.94 0.98 0.81 0.84 0.83 

Other materials costs, 
C_othermat 

0.56 0.83 0.52 0.63 0.77 0.43 

Services and labour costs, 
C_serv 

0.80 0.93 0.94 0.84 0.83 0.72 

Total costs, C_total 0.92 0.97 0.98 0.82 0.76 0.85 

Farm cash income, FBP_fci 0.38 0.69 0.96 0.44 0.57 0.89 

Farm business profit, FBP_fbp 0.23 0.65 0.92 0.37 0.58 0.80 

 

 

Figure 4: Average annual farm cash income actual and predicted, 1988-89 to 2017-18 
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Figure 5: Regional 𝑅𝑅2 for farm business profit under the baseline scenario 

Price responses 
Given the non-parametric approach employed, the responses of the model to specific variables 
can be complex: both non-linear and farm, time and location specific (depending on interaction 
effects with other variables). However, it is possible to estimate average farm responses to price 
changes through simulation. 

Here the model is used to simulate a 10 per cent increase for a given output or input price 
relative to long run average prices (holding all other prices fixed). Long run average prices are 
computed as the 20-year average price of the input or output over the period 1988-89 to 2017-
18. Table 5 shows the average own-price effects (e.g., effect of wheat prices on average wheat 
sales, production and stocks). 

The average price responses are broadly consistent with economic theory: output price effects 
are positive (higher price, higher output) and input effects negative. A key exception is barley 
where the own-price effect is negative. This is due to a high level of co-linearity between barley 
and wheat prices in the sample period. Output supply responses are larger for crops than for 
livestock which is also plausible. Crop production can be increased in the short-term by 
increasing area planted and by applying more inputs. However, livestock production is 
somewhat constrained by the current herd, further increases in price provide an incentive to 
increase herd-size. As shown in Table 5 higher livestock prices also increase birth rates and 
closing stocks for beef and sheep. 

Table 6 shows the average effects of a price change in a given output / input on farm total 
revenue, total cost and farm cash income. Here the model is able to simulate plausible cross 
price effects, with farm costs (input use) generally increasing in response to an output price 
rises, while farm revenue (output) decreases following an increase in input prices. Beef prices 
have the largest effect on farm cash incomes on average, reflecting their larger share of average 
farm revenue. 
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Table 5: Average own-price effect (%) for a 10% increase in output / input prices 

 Production / births Quantity sold / used Closing stock 

Output prices    

Wheat 2.0 1.9 1.5 

Barley -0.9 -0.8 -0.8 

Oilseeds 1.7 1.7 -1.0 

Sorghum 0.9 0.2 2.5 

Beef 0.4 -0.0 0.3 

Sheep 1.2 0.3 0.1 

Lamb 0.0 0.2 0.0 

Wool -0.1 -0.0 -0.3 

Input prices    

Fuel  -1.1  

Fertiliser  -1.9  

Chemicals  -2.2  

 

Table 6: Average farm-wide effects (%) for a 10% increase in output / input prices 

 Total revenue Total cost Farm cash income 

Output prices    

Wheat 1.5 -0.0 6.6 

Barley 0.5 0.1 1.9 

Oilseeds 0.1 0.0 0.5 

Sorghum 0.7 0.2 2.5 

Beef 6.0 0.4 25.2 

Sheep 0.4 0.0 1.6 

Lamb 0.8 -0.2 4.2 

Wool 0.9 0.1 3.9 

Input prices    

Fuel -0.0 0.3 -1.0 

Fertiliser -0.1 0.3 -1.3 

Chemicals -0.1 0.5 -2.0 
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Climate responses 
Climate variable importance 
Table 17 (Appendix D) shows the importance of climate on each model target variable including 
the relative importance of rainfall and temperature variables. Crop yields depend heavily on 
rainfall (accounting for around 90% of their climate effect), while key livestock variables (turn-
off, birth and death rates) are relatively more dependent on temperature. For example, around 
50% of the climate effect on cattle birth rate is due to temperature. 

Table 18 lists the most important relationships between specific target and climate variables 
identified by the model. Not surprisingly the strongest climate relationship in the model is that 
between winter growing season rainfall and winter crop yields (wheat, barley and oilseeds). As 
would be expected sorghum production depends heavily on summer rainfall. A range of 
temperature related variables are found to have effects on livestock production, including lagged 
autumn maximum temperatures on cattle birth rates (which could reflect impacts on livestock 
mating / fertility). 

Drought responses 
To examine the model responses to climate further we define a historical_climate scenario, 
which takes a recent cohort of farms (2015-16 to 2017-18) and simulates the effect of observed 
climate (at each farm location) for the period 1950-51 to 2018-19. This scenario reflects what 
would happen to current farms (with farm size, capital stocks, livestock holdings, technology 
and prices as observed between 2015-16 and 2017-18) under alternative historical climate 
conditions. 

A detailed examination of the effects of historical and projected changes in climate on Australian 
farms remains an obvious future subject for the farmpredict model. For now we focus on the 
model's responses to drought conditions, using the recent 2018-19 drought as an example. Here 
we calculate percentage effects under 2018-19 conditions (relative to median conditions for the 
period 2000-01 to 2018-19) for farms in NSW (where the drought was most severe). Table 7 
shows the effects on crop production, Table 8 livestock production, and Table 9 farm profits. 
Note these results show the effect of climate only and are not a forecast of 2018-19 farm 
outcomes (which would depend also on 2018-19 prices). 

Table 7: Average effect (%) of 2018-19 drought conditions on crop production (NSW 
farms) 

 Wheat Barley Oilseeds Sorghum 

Area planted -7.8 -5.0 -13.3 -64.4 

Yield -36.9 -29.1 -29.1 -10.2 

Harvest -51.9 -44.5 -46.5 -70.7 

Quantity sold -49.9 -40.7 -46.8 -54.5 

Closing stock -32.8 -26.2 -26.2 -48.5 

Price received 1.8 2.1 -1.6 -1.4 

Crop revenue -48.7 -37.9 -48.2 -54.3 
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Table 8: Average effect (%) of 2018-19 drought conditions on livestock production (NSW 
farms) 

 Beef Sheep Lamb Wool 

Quantity sold 5.3 6.4 3.6 -6.2 

Production    -6.9 

Price received -3.7 -0.7 -0.7 -1.9 

Revenue 0.5 4.3 3.2 -7.4 

Births -5.7 -9.3   

Deaths 6.4 11.9   

Closing stock -4.6 -7.6  -4.5 

 

Table 9: Average effect (%) of 2018-19 drought conditions on revenue, cost and profit 
(NSW farms by industry) 

 Cropping Mixed Sheep Beef Sheep-Beef 

Wheat revenue -47.6 -49.1 -57.4 -75.6 -34.3 

Beef revenue 3.2 -0.2 -0.7 -0.1 2.2 

Wool revenue -7.2 -5.1 -10.4 -6.7 -4.8 

Lamb revenue 2.0 4.8 2.6 -0.2 0.6 

Total revenue -29.0 -17.4 -5.4 -0.9 -0.4 

Fertiliser costs -23.1 -22.6 -13.6 -13.7 -14.5 

Fuel costs 0.3 0.4 2.5 3.3 4.0 

Other materials costs 4.6 9.9 14.0 13.4 13.8 

Services and labour costs -6.0 -5.0 -1.1 -2.4 -1.4 

Total costs -6.6 -4.8 -0.3 -0.4 -0.3 

Farm cash income -117.3 -46.7 -16.1 -2.2 -0.5 

Wheat closing stock -30.5 -34.9 -40.0 -47.9 -22.8 

Beef closing stock -5.2 -5.0 -3.5 -4.5 -5.0 

Sheep closing stock -7.0 -7.6 -8.8 -5.0 -6.6 

Farm business profit -328.8 -121.2 -86.9 -43.6 -42.9 
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As would be expected, drought leads to large reductions in crop areas planted, yield and 
production (Table 7). For grain crops these effects are offset slightly by an increase in prices 
received (reflecting improved grain quality / higher protein content). This effect is reversed for 
oilseeds—prices received are lower in drought—which is expected given oilseeds deteriorate in 
hotter and dry conditions. Ultimately drought leads to large reductions in revenue on cropping 
farms, offset only marginally by reductions in crop related input costs (such as fertiliser), 
resulting in negative average farm cash incomes and profits on average (greater than 100 per 
cent decreases, Table 9). 

With livestock, drought leads to both an increase in turn-off rates and a decrease in prices 
received: reflecting negative effects of drought on livestock condition / quality (Table 8). As 
such, limited change in revenue is observed on livestock farms on average. Some increases in 
input costs are observed (related to higher livestock fodder requirements) although these are 
offset by reductions in cropping related costs. More significant are the effects on livestock 
holdings. Here we see lower birth rates and higher death rates and turn-off, leading to significant 
reductions in closing stocks, and in-turn farm business profits for both beef and sheep farms. 

Note that under AAGIS definitions, farm business profit includes the value of changes in herd 
size, but not changes in value caused by prices (i.e., capital depreciation). If the drought-induced 
decline in livestock quality applies equally to all cattle (not just those sold) then the effective 
decline in farm profit would be larger than that shown in Table 9. 
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4 Conclusions 
farmpredict is a data-driven bio-economic micro-simulation model of Australian broadacre 
farms. The model adopts a similar structure to previous reduced-from econometric farm 
models: with variable inputs and outputs modelled as functions of fixed inputs, prices and 
climate variables. A non-parametric machine learning approach is taken to estimating the mode, 
using a large farm-level panel dataset linked to location specific climate data. The resulting 
model is capable of simulating production and financial outcomes at a farm level across 
Australia for a diverse mix of cropping, livestock and mixed farm types. 

Validation results show that the model has good skill in predicting production and revenue for 
major crop and livestock commodities. Model accuracy is limited in predicting profit at the 
individual farm level, although performance improves considerably at higher spatial scales. 
Ultimately, predicting profit at the farm level is a difficult task, given high levels of noise and 
heterogeneity in farm level data. This is compounded by the low profit levels of farms in the 
sample, which means that small errors in revenue or costs translate into large errors in profit. 

Simulation results show that the model generates realistic responses to price and climate shocks 
consistent with economic and bio-physical fundamentals. Increases in crop prices lead to higher 
crop production and crop related input use; increases in livestock prices lead to higher birth 
rates and closing stocks; higher input prices lead to lower input use and lower farm output. 

The simulation results demonstrate the differing effects of drought on cropping and livestock 
farms. Drought conditions lead to large decreases in crop areas planted, yield, production and 
revenue. As a result cropping farms experience large and immediate reductions in farm cash 
income. On livestock farms, climate effects are transmitted more though changes in livestock 
holdings, with drought leading to significant decreases in beef and sheep herds due to a 
combination of lower birth rates and higher turn-off and death rates. 

farmpredict has a range of potential applications. Currently the model is being applied to assess 
the effects of recent and future potential changes in climate on the farm profitability. Plans are 
also underway to develop farmpredict for forecasting by linking the model with BOM seasonal 
climate outlooks. farmpredict could also be used to develop indicators of drought exposure and 
sensitivity which could help to inform government farm risk management and drought 
programs. Finally, farmpredict could have financial sector applications, including assessing farm 
lender exposure to climate change, and designing and testing weather insurance products. 

Future research could improve farmpredict in a number of directions. In-particular, the model's 
treatment of livestock fodder costs is less than ideal (currently these costs are included in a 
broad 'other materials' variable, for which the model's performance is relatively low). This could 
be addressed by making farm grain and hay consumption (quantities) endogenous to the model. 
In time, this could also allow a partial equilibrium representation of domestic hay / grain 
markets to be added to the model. This is important in the context of the recent 2018-19 
drought, where wide-spread dry conditions led to spikes in domestic grain prices, above 
international prices. Further, the model framework could easily be extended to Australian dairy 
farms, by making use of ABARES Australian Dairy Industry Survey (ADIS). 
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5 Appendix A: AAGIS regions 
Table 10: AAGIS regions 

State Region name Code 

New South Wales (NSW) Far West 111 

New South Wales (NSW) North West Slopes and Plains 121 

New South Wales (NSW) Central West 122 

New South Wales (NSW) Riverina 123 

New South Wales (NSW) Tablelands 131 

New South Wales (NSW) Coastal 132 

Victoria (VIC) Mallee 221 

Victoria (VIC) Wimmera 222 

Victoria (VIC) Central North 223 

Victoria (VIC) South-Eastern Victoria 231 

Queensland (QLD) Cape York and the Gulf 311 

Queensland (QLD) West and South West 312 

Queensland (QLD) Central North 313 

Queensland (QLD) Charleville - Longreach 314 

Queensland (QLD) Eastern Darling Downs 321 

Queensland (QLD) Darling Downs & Central Highlands 322 

Queensland (QLD) South Queensland Coastal 331 

Queensland (QLD) North Queensland Coastal 332 

South Australia (SA) North Pastoral 411 

South Australia (SA) Eyre Peninsula 421 

South Australia (SA) Murray Lands and Yorke Peninsula 422 

South Australia (SA) South East 431 

Western Australia (WA) The Kimberly 511 

Western Australia (WA) Pilbara and the Central Pastoral 512 

Western Australia (WA) Central and South Wheat Belt 521 
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Western Australia (WA) North and East Wheat Belt 522 

Western Australia (WA) South West Coastal 531 

Tasmania (TAS) Tasmania 631 

Northern Teritory (NT) Alice Springs Districts 711 

Northern Teritory (NT) Barkly Tablelands 712 

Northern Teritory (NT) Victoria River District - Katherine 713 

Northern Teritory (NT) Top End Darwin and the Gulf 714 
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6 Appendix B: Model variables 
Dependent variables 
Table 11: Model target / dependent variables 

 Description Unit 

A_barley_dot Proportion of land planted to barley, A_barley / K_land proportion 

A_double_dot Proportion of land double cropped, A_double / K_land proportion 

A_oilseeds_dot Proportion of land planted to oilseeds, A_oilseeds / K_land proportion 

A_othercrops_dot Proportion of land planted to othercrops, A_othercrops / 
K_land 

proportion 

A_sorghum_dot Proportion of land planted to sorghum, A_sorghum / K_land proportion 

A_total_cropped_dot Proportion of land cropped, A_total_cropped / K_land proportion 

A_wheat_dot Proportion of land planted to wheat, A_wheat / K_land proportion 

D_barley Barley planted, =1 if A_barley > 0 binary 

D_double Double cropping, =1 if A_double > 0 binary 

D_oilseeds Oilseeds planted, =1 if A_oilseeds > 0 binary 

D_othercrops Other crops planted, =1 if A_othercrops > 0 binary 

D_sorghum Sorghum planted, =1 if A_sorghum > 0 binary 

D_wheat Wheat planted, =1 if A_wheat > 0 binary 

H_barley_dot Barley yield, H_barley / A_barley t / ha 

H_oilseeds_dot Oilseeds yield, H_oilseeds / A_oilseeds t / ha 

H_sorghum_dot Sorghum yield, H_sorghum / A_sorghum t / ha 

H_wheat_dot Wheat yield, H_wheat / A_wheat t / ha 

H_wool_dot Wool yield, H_wool / (S_sheep_op + S_sheep_purch + 
S_sheep_births) 

t / ha 

Q_barley_dot Proportion of barley sold, Q_barley / (S_barley_op + 
H_barley + S_barley_purch) 

proportion 

Q_beef_dot Proportion of beef cattle sold, Q_beef / (S_beef_op + 
S_beef_purch + S_beef_births) 

proportion 

Q_lamb_dot Proportion of lamb sold, Q_lamb / (S_sheep_op + 
S_sheep_purch) 

proportion 
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Q_oilseeds_dot Proportion of oilseeds sold, Q_oilseeds / (S_oilseeds_op + 
H_oilseeds + S_oilseeds_purch) 

proportion 

Q_othercrops Quantity index for other crop output index 

Q_sheep_dot Proportion of sheep sold, Q_sheep / (S_sheep + 
S_sheep_purch + S_sheep_births) 

proportion 

Q_sorghum_dot Proportion of sorghum sold, Q_sorghum / (Q_sorghum_op + 
H_oilseeds + S_sorghum_purch) 

proportion 

Q_wheat_dot Proportion of wheat sold, Q_wheat / (S_wheat_op + H_wheat 
+ S_wheat_purch) 

proportion 

Q_wool_dot Proportion of wool sold, Q_wool / (S_wool_op + H_wool) proportion 

R_barley_dot Barley price received adjusted for pool payments, $ / t 

 (R_barley - R_barley_pool_pmt + R_barley_future_pool_pmt) 
/ Q_barley 

 

R_beef_dot Beef cattle price received, R_beef / Q_beef $ / no. 

R_lamb_dot Lamb cattle price received, R_lamb / Q_lamb $ / no. 

R_oilseeds_dot Oilseeds price received adjusted for pool payments, $ / t 

 (R_oilseeds - R_oilseeds_pool_pmt + 
R_oilseeds_future_pool_pmt) / Q_oilseeds 

 

R_sheep_dot Sheep price received, R_sheep / Q_sheep $ / no. 

R_sorghum_dot Sorghum price received adjusted for pool payments, $ / t 

 (R_sorghum - R_sorghum_pool_pmt + 
R_sorghum_future_pool_pmt) / Q_sorghum 

 

R_wheat_dot Wheat price received adjusted for pool payments, $ / t 

 (R_wheat - R_wheat_pool_pmt + R_wheat_future_pool_pmt) / 
Q_wheat 

 

R_wool_dot Wool price received, R_wool / Q_wool $ / kg 

S_beef_births_dot Beef cattle birth rate, S_beef_births / (S_beef_op + 
S_beef_purch) 

proportion 

S_beef_deaths_dot Beef cattle death rate, S_beef_deaths / (S_beef_op + 
S_beef_purch) 

proportion 

S_sheep_births_dot Sheep birth rate, S_sheep_births / (S_sheep_op + 
S_sheep_purch) 

proportion 

S_sheep_deaths_dot Sheep death rate, S_sheep_deaths / (S_sheep_op + 
S_sheep_purch) 

proportion 
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V_chem Quantity index for crop and pasture chemical inputs index 

V_fert Quantity index for fertiliser input index 

V_fuel Quantity index for fuel, oil and grease inputs index 

V_othermat Quantity index for other material inputs index 

V_serv Quantity index for service & labour inputs index 

V_shearing Quantity index for shearing labour input index 

Z_conditions_4 Farmer assessment of seasonal conditions: drought binary 

Explanatory variables 
Farm variables 
Table 12: Model features (farm variables) 

Name Description Unit Mandatory 

K_build Quantity index for buildings and fixed 
improvements capital 

index Yes 

K_equip Quantity index for plant and equipment capital index Yes 

K_land Total farm land area operated (average of opening 
and closing) 

ha Yes 

K_otherlive Quantity index for other livestock capital $ No 

K_stock_op Value of trading stocks on hand at 1 July $ No 

S_barley_op Barley on hand 1 July t No 

S_beef_op Beef cattle on hand at 1 July no. Yes 

S_hay_op Hay on hand 1 July t No 

S_horses_op Horses on hand 1 July t No 

S_oilseeds_op Oilseeds on hand 1 July t No 

S_othercrops_op Other crops on hand 1 July t No 

S_pigs_op Pigs on hand 1 July t No 

S_sheep_op Sheep on hand at 1 July no. Yes 

S_sorghum_op Sorghum on hand 1 July t No 

S_wheat_op Wheat on hand 1 July t Yes 

S_wool_op Wool on hand 1 Jult t Yes 
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Z_age Age of operator-manager years Yes 

Z_debt_op Total debt at 1 July $ Yes 

Z_edu_1 Highest education level is: No Schooling binary No 

Z_edu_2 Highest education level is: Primary School binary No 

Z_edu_3 Highest education level is: 1-4 years high school binary No 

Z_edu_4 Highest education level is: 5-6 years high school index No 

Z_edu_5 Highest education level is: trade completed binary No 

Z_famlabour Family weeks worked wks Yes 

Z_ind_1 Industry: cropping binary No 

Z_ind_2 Industry: mixed crop-livestock binary No 

Z_ind_3 Industry: sheep binary No 

Z_ind_4 Industry: beef binary No 

Z_ind_5 Industry: beef-sheep binary No 

Z_irrigcrop Irrigated crops (1 =Yes, 0=No) indicator No 

Z_land_price_op Land value (farmer estimate) opening $ / ha No 

Z_lat Latitude degrees Yes 

Z_long Longitude degrees Yes 

Z_nonfarmincome Total non-farm income $ Yes 

Z_north Farm in northern beef region (1=Yes, 0=No) indicator No 

Z_state_1 State is NSW, =1 if Z_state=1 binary No 

Z_state_2 State is VIC, =1 if Z_state=2 binary No 

Z_state_3 State is QLD, =1 if Z_state=3 binary No 

Z_state_4 State is SA, =1 if Z_state=4 binary No 

Z_state_5 State is WA, =1 if Z_state=5 binary No 

Z_state_6 State is TAS, =1 if Z_state=6 binary No 

Z_state_7 State is NT, =1 if Z_state=7 binary No 

Z_year Financial year with noise added, year ±1 annual Yes 

Here Z_year is defined as: 

𝑍𝑍_𝑦𝑦𝑒𝑒𝑙𝑙𝑒𝑒 = �
𝑡𝑡 + 1, if 𝜎𝜎 < 1/3
𝑡𝑡, if 1/3 ≥ 𝜎𝜎 ≤ 2/3
𝑡𝑡 − 1, if 𝜎𝜎 > 2/3
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𝜎𝜎 ∼ 𝑈𝑈[0,1] 

 

Climate variables 
Table 13: Model features (climate variables) 

Name Description Unit 

W_winter_rain Rainfall volume for the winter growing season (April to 
October) 

mm 

W_aut_tmax_L1 Average maximum temperature for the autumn season 
(March to May), previous year 

degrees 
C 

W_sum_rain Rainfall volume for the summer season (December to 
February) 

mm 

W_winter_gdd Heat accumulation (growing degree days) for the winter 
growing season (April to October) 

degrees 
C 

W_win_tmin Average minimum temperature for the winter season (June 
to August) 

degrees 
C 

W_summer_gdd Heat accumulation (growing degree days) for the summer 
growing season (November to March) 

degrees 
C 

W_aut_moist Root zone soil moisture for the autumn season (March to 
May) 

index 

W_aut_tmin Average minimum temperature for the autumn season 
(March to May) 

degrees 
C 

W_FY_rain Rainfall volume for the financial year (July to June) mm 

W_sum_tmax_L1 Average maximum temperature for the Summer (December 
to February), previous year 

degrees 
C 

W_spr_rain Rainfall volume for the spring season (September to 
November) 

mm 

W_aut_moist_L1 Root zone soil moisture for the autumn season (March to 
May), previous year 

index 

W_aut_rain Rainfall volume for the autumn season (March to May) mm 

W_aut_gni_L1 Rainfall volatility (gini coefficient) for the autumn season 
(March to May), previous year 

index 

W_aut_tmax Average maximum temperature for the autumn season 
(March to May) 

degrees 
C 

W_FY_rain_L1 Rainfall volume for the previous financial year mm 

W_FY_moist_L2 Root zone soil moisture for the average of two previous index 



ABARES working paper 

29 

financial years 

W_sum_tmax Average maximum temperature for the summer season 
(December to February) 

degrees 
C 

W_win_moist Root zone soil moisture for the winter season (June to 
August) 

index 

W_FY_rain_L2 Rainfall volume for the average of two previous financial 
years 

mm 

W_win_rain Rainfall volume for the winter season (June to August) mm 

W_aut_rain_L1 Rainfall volume for the autumn season (March to May), 
previous year 

mm 

W_spr_moist Root zone soil moisture for the spring season (September to 
November) 

index 

W_win_gni Rainfall volatility (gini coefficient) for the winter season (June 
to August) 

index 

W_winter_hgdd Expsoure to extreme high temperature for the winter 
growing season (April to October) 

degrees 
C 

W_sum_rain_L1 Rainfall volume for the Summer (December to February), 
previous year 

mm 

W_summer_rain_L1 Rainfall volume for the summer growing season (November 
to March) 

mm 

W_summer_hgdd Expsoure to extreme high temperature for the summer 
growing season (November to March) 

degrees 
C 

W_FY_moist_L1 Root zone soil moisture for the previous financial year index 

W_summer_moist Root zone soil moisture for the summer growing season 
(November to March) 

index 

W_spr_gni Rainfall volatility (gini coefficient) for the spring season 
(September to November) 

index 

W_FY_moist Root zone soil moisture for the financial year (July to June) index 

W_aut_pci_L1 Rainfall volatility (gini coefficient) for the autumn season 
(March to May), previous year 

index 

W_spr_pci Rainfall volatility (gini coefficient) for the spring season 
(September to November) 

index 

W_win_fr2 Exposure to frost (days below 2 C) for the winter season 
(June to August) 

days 

W_summer_moist_L1 Root zone soil moisture for the summer growing season 
(November to March) 

index 
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W_aut_fr2_L1 Exposure to frost (days below 2 C) for the autumn season 
(March to May), previous year 

days 

W_win_pci Rainfall volatility (gini coefficient) for the winter season (June 
to August) 

index 

W_spr_fr2 Exposure to frost (days below 2 C) for the spring season 
(September to November) 

days 

W_win_hail Exposure to hail storms for the winter season (June to 
August) 

index 

Selected climate measures are defined below. 

𝑒𝑒𝑑𝑑𝑑𝑑 = ��(𝑡𝑡𝑙𝑙𝑙𝑙𝑥𝑥𝑗𝑗 + 𝑡𝑡𝑙𝑙𝑖𝑖𝑒𝑒𝑗𝑗)/2− 8, if 𝑡𝑡𝑙𝑙𝑙𝑙𝑥𝑥𝑗𝑗 < 32 and 𝑡𝑡𝑙𝑙𝑖𝑖𝑒𝑒𝑗𝑗 ≥ 8
0, otherwise

𝑗𝑗=𝑛𝑛

𝑗𝑗=1

 

ℎ𝑒𝑒𝑑𝑑𝑑𝑑 = ��𝑡𝑡𝑙𝑙𝑙𝑙𝑥𝑥𝑗𝑗 − 32, if 𝑡𝑡𝑙𝑙𝑙𝑙𝑥𝑥𝑗𝑗 > 32
0, otherwise

𝑗𝑗=𝑛𝑛

𝑗𝑗=1

 

ℎ𝑙𝑙𝑖𝑖𝑙𝑙 = max{1 − 𝑑𝑑ℎ𝑙𝑙𝑖𝑖𝑙𝑙/50,0} 

Where: 
𝑡𝑡𝑙𝑙𝑙𝑙𝑥𝑥𝑗𝑗 , 𝑡𝑡𝑙𝑙𝑖𝑖𝑒𝑒𝑗𝑗  are the max. and min. temperatures on day 𝑡𝑡 ∈ 1, . . . ,𝑒𝑒 for a given season
𝑑𝑑ℎ𝑙𝑙𝑖𝑖𝑙𝑙  is the distance (in kilometers) to the nearest hail storm for a given farm in a given season 

Other spatial data 
Table 14: Other spatial predictors / explanatory variables 

Name Description Unit 

Z_flood1 Average frequency of flooding ignoring areas flooded more than 1.5% 
of the time 

proportion 

Z_flood20 Average frequency of flooding ignoring areas flooded more than 20% 
of the time 

proportion 

Z_flood5 Average frequency of flooding ignoring areas flooded more than 5.0% 
of the time 

proportion 

Z_irrig1 Relative distance to irrigation area, = 𝑍𝑍_𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒2/(𝐾𝐾_𝑙𝑙𝑙𝑙𝑒𝑒𝑑𝑑)0.5 index 

Z_irrig2 Distance to nearest irrigation area km 

Z_rain_avg Average annual rainfall, since 1977-78 mm 
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7 Appendix C: Simulation 
This section details the simulation component of farmpredict, which takes predictions for target 
variables �̂�𝐘𝑗𝑗𝑗𝑗 (for a scenario 𝐗𝐗�) and then generates simulation results 𝐘𝐘�𝑗𝑗𝑗𝑗 including estimates of 
farm revenue, cost, profit and changes in stocks. For convenience, below we mix symbolic 
notation (e.g., 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗) with model code labels (e.g., R_wheat, R_beef etc., see Appendix B for variable 
definitions). Here we also introduce the suffix hat to separate model predicted / simulated 
variables from observed / exogenous variables. 

To begin, predictions for livestock outputs (Q_beef_hat, Q_sheep_hat, Q_lamb_hat, H_wool_hat) 
and livestock births and deaths (S_beef_births_hat, S_beef_deaths_hat, S_sheep_births_hat, 
S_sheep_deaths_hat) are recovered by multiplying model predicted ratios (e.g., �̂̇�𝑄𝑗𝑗𝑗𝑗𝑗𝑗) by their 
relevant denominators (see Table 11). 

For all of these variables, simulated output is set to zero if actual output is zero (i.e., decisions 
over whether or not to produce livestock outputs remain exogenous). 

𝑄𝑄_𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓_ℎ𝑙𝑙𝑡𝑡 = �𝑄𝑄_𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓_𝑑𝑑𝑑𝑑𝑡𝑡_ℎ𝑙𝑙𝑡𝑡. (𝑆𝑆_𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓_𝑑𝑑𝑜𝑜 + 𝑆𝑆_𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓_𝑜𝑜𝑝𝑝𝑒𝑒𝑝𝑝ℎ) if 𝑄𝑄_𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓 > 0
0 otherwise

 

Next, crop areas planted are defined as: 

𝐴𝐴�𝑗𝑗𝑗𝑗𝑗𝑗 = 𝐾𝐾_𝑙𝑙𝑙𝑙𝑒𝑒𝑑𝑑. �̂�𝐴𝑗𝑗𝑗𝑗𝑗𝑗 �̂�𝐷𝑗𝑗𝑗𝑗𝑗𝑗 

Here the farm decision to plant a crop is endogenous (determined by �̂�𝐷𝑗𝑗𝑗𝑗𝑗𝑗). Next crop production 
(H_wheat_hat, H_barley_hat, H_oilseeds_hat, H_sorghum_hat) is defined as yield times area 
planted: 

𝐻𝐻�𝑗𝑗𝑗𝑗𝑗𝑗 = �̂̇�𝐻𝑗𝑗𝑗𝑗𝑗𝑗 𝐴𝐴�𝑗𝑗𝑗𝑗𝑗𝑗 

Both crop and wool sales are then calculated as a proportion of total quantity available for sale 
(production plus opening stocks): 

𝑄𝑄�𝑗𝑗𝑗𝑗𝑗𝑗 = �̂̇�𝑄𝑗𝑗𝑗𝑗𝑗𝑗 (𝐻𝐻�𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑆𝑆�𝑗𝑗𝑗𝑗𝑗𝑗
𝑜𝑜𝑜𝑜) 

Next revenue for livestock outputs (R_beef_hat, R_sheep_hat, R_lamb_hat, R_wool_hat) is defined 
as price received times quantity sold: 

𝑅𝑅�𝑗𝑗𝑗𝑗𝑗𝑗 = �̂̇�𝑅𝑗𝑗𝑗𝑗𝑗𝑗 .𝑄𝑄�𝑗𝑗𝑗𝑗𝑗𝑗 

The equations for crop revenue (R_wheat_hat, R_barley_hat, R_oilseeds_hat, R_sorghum_hat) 
account for farm participation in crop pool payment schemes, where revenue from a given crop 
harvest may be spread over several years. For example: 

𝑅𝑅_𝑤𝑤ℎ𝑒𝑒𝑙𝑙𝑡𝑡_ℎ𝑙𝑙𝑡𝑡 = 𝑅𝑅_𝑤𝑤ℎ𝑒𝑒𝑙𝑙𝑡𝑡_𝑜𝑜𝑑𝑑𝑑𝑑𝑙𝑙_𝑜𝑜𝑙𝑙𝑡𝑡 + 𝑅𝑅_𝑤𝑤ℎ𝑒𝑒𝑙𝑙𝑡𝑡_𝑑𝑑𝑑𝑑𝑡𝑡_ℎ𝑙𝑙𝑡𝑡.𝑄𝑄�𝑗𝑗𝑗𝑗𝑗𝑗 . (1 − 𝑅𝑅_𝑤𝑤ℎ𝑒𝑒𝑙𝑙𝑡𝑡_𝑜𝑜𝑑𝑑𝑑𝑑𝑙𝑙_𝑑𝑑𝑑𝑑𝑡𝑡) 

where R_wheat_pool_pmt includes any crop pool payments received this year for crops sold in 
previous years and R_wheat_pool_dot is the proportion of revenue from crops sold this year 
which will be received next year. Both R_wheat_pool_pmt and R_wheat_pool_dot are exogenous 
and both are zero for farms that do not participate in crop pools. 

Variable costs (and other crop receipts) are then recovered by multiplying by their relevant 
price indexes: 

𝐶𝐶�𝑣𝑣𝑗𝑗𝑗𝑗 = �̂�𝑉𝑣𝑣𝑗𝑗𝑗𝑗 .𝑃𝑃�𝑣𝑣𝑗𝑗 
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𝑅𝑅_𝑑𝑑𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑑𝑑𝑜𝑜𝑠𝑠ℎ𝑙𝑙𝑡𝑡 = 𝑄𝑄_𝑑𝑑𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑑𝑑𝑜𝑜𝑠𝑠ℎ𝑙𝑙𝑡𝑡.𝑃𝑃_𝑑𝑑𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑑𝑑𝑜𝑜𝑠𝑠 

For beef cattle and sheep, closing stocks are defined as: 

𝑆𝑆_𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓_𝑝𝑝𝑙𝑙_ℎ𝑙𝑙𝑡𝑡
= 𝑆𝑆_𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓_𝑑𝑑𝑜𝑜 − 𝑄𝑄_𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓_ℎ𝑙𝑙𝑡𝑡 + 𝑆𝑆_𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓_𝑜𝑜𝑝𝑝𝑒𝑒𝑝𝑝ℎ + 𝑆𝑆_𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓_𝑙𝑙𝑖𝑖𝑒𝑒𝑡𝑡ℎ𝑠𝑠_ℎ𝑙𝑙𝑡𝑡 − 𝑆𝑆_𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓_𝑑𝑑𝑒𝑒𝑙𝑙𝑡𝑡ℎ𝑠𝑠_ℎ𝑙𝑙𝑡𝑡 

  

𝑆𝑆_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑜𝑜_𝑝𝑝𝑙𝑙_ℎ𝑙𝑙𝑡𝑡
= 𝑆𝑆_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑜𝑜_𝑑𝑑𝑜𝑜 − 𝑄𝑄_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑜𝑜_ℎ𝑙𝑙𝑡𝑡 − 𝑄𝑄_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑆𝑆_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑜𝑜_𝑜𝑜𝑝𝑝𝑒𝑒𝑝𝑝ℎ + 𝑆𝑆_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑜𝑜_𝑙𝑙𝑖𝑖𝑒𝑒𝑡𝑡ℎ𝑠𝑠_ℎ𝑙𝑙𝑡𝑡
− 𝑆𝑆_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑜𝑜_𝑑𝑑𝑒𝑒𝑙𝑙𝑡𝑡ℎ𝑠𝑠_ℎ𝑙𝑙𝑡𝑡 

where S_sheep_purch and S_beef_purch are exogenous and all other variables are model 
predictions. 

Crop closing stocks (S_wheat_cl_hat, S_barley_cl_hat, S_sorghum_cl_hat and S_oilseeds_cl_hat) are 
defined as: 

𝑆𝑆�𝑠𝑠𝑗𝑗𝑗𝑗
𝑐𝑐𝑐𝑐 = 𝑆𝑆𝑠𝑠𝑗𝑗𝑗𝑗

𝑜𝑜𝑜𝑜 + 𝐻𝐻�𝑗𝑗𝑗𝑗𝑗𝑗 .𝐴𝐴�𝑗𝑗𝑗𝑗𝑗𝑗 − 𝑄𝑄�𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑆𝑆𝑠𝑠𝑗𝑗𝑗𝑗
𝑜𝑜𝑝𝑝𝑝𝑝𝑐𝑐ℎ 

where 𝑆𝑆𝑠𝑠𝑗𝑗𝑗𝑗
𝑜𝑜𝑝𝑝𝑝𝑝𝑐𝑐ℎ is exogenously determined and reflects net crop usage / purchase. 

Wool stocks are defined as: 

𝑆𝑆_𝑤𝑤𝑑𝑑𝑑𝑑𝑙𝑙_𝑝𝑝𝑙𝑙_ℎ𝑙𝑙𝑡𝑡 = 𝑆𝑆_𝑤𝑤𝑑𝑑𝑑𝑑𝑙𝑙_𝑑𝑑𝑜𝑜 + 𝐻𝐻_𝑤𝑤𝑑𝑑𝑑𝑑𝑙𝑙_ℎ𝑙𝑙𝑡𝑡 − 𝑄𝑄_𝑤𝑤𝑑𝑑𝑑𝑑𝑙𝑙_ℎ𝑙𝑙𝑡𝑡 

Next farm_cash_income can be calculated as: 

𝑓𝑓𝑙𝑙𝑒𝑒𝑙𝑙_𝑝𝑝𝑙𝑙𝑠𝑠ℎ_𝑖𝑖𝑒𝑒𝑝𝑝𝑑𝑑𝑙𝑙𝑒𝑒_ℎ𝑙𝑙𝑡𝑡 = �𝑅𝑅�𝑗𝑗𝑗𝑗𝑗𝑗

𝑗𝑗

+ 𝑅𝑅_𝑑𝑑𝑡𝑡ℎ𝑒𝑒𝑒𝑒 −�𝐶𝐶�𝑣𝑣𝑗𝑗𝑗𝑗

𝑣𝑣

− 𝐶𝐶_𝑑𝑑𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑝𝑝𝑑𝑑𝑠𝑠𝑡𝑡𝑠𝑠 

where 𝐶𝐶_𝑑𝑑𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑝𝑝𝑑𝑑𝑠𝑠𝑡𝑡𝑠𝑠,𝑅𝑅_𝑑𝑑𝑡𝑡ℎ𝑒𝑒𝑒𝑒 are exogenous (fixed at observed values). Finally, farm business 
profit is defined as below, in accordance with standard AAGIS definitions: 

𝑓𝑓𝑙𝑙𝑒𝑒𝑙𝑙_𝑙𝑙𝑝𝑝𝑠𝑠𝑖𝑖𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠_𝑜𝑜𝑒𝑒𝑑𝑑𝑓𝑓𝑖𝑖𝑡𝑡_ℎ𝑙𝑙𝑡𝑡

= 𝑓𝑓𝑙𝑙𝑒𝑒𝑙𝑙_𝑝𝑝𝑙𝑙𝑠𝑠ℎ_𝑖𝑖𝑒𝑒𝑝𝑝𝑑𝑑𝑙𝑙𝑒𝑒_ℎ𝑙𝑙𝑡𝑡 + �𝑃𝑃�𝑠𝑠𝑗𝑗
$ (𝑆𝑆�𝑠𝑠𝑗𝑗𝑗𝑗

𝑐𝑐𝑐𝑐 − 𝑆𝑆�𝑠𝑠𝑗𝑗𝑗𝑗
𝑜𝑜𝑜𝑜)

𝑠𝑠

+ 𝐹𝐹𝐹𝐹𝑃𝑃_𝑓𝑓𝑙𝑙𝑜𝑜_𝑒𝑒𝑒𝑒𝑠𝑠𝑖𝑖𝑑𝑑 + 𝐹𝐹𝐹𝐹𝑃𝑃_𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓_𝑒𝑒𝑙𝑙𝑡𝑡𝑖𝑖𝑑𝑑𝑒𝑒𝑠𝑠.𝑃𝑃�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑗𝑗
$

+ 𝐹𝐹𝐹𝐹𝑃𝑃_𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑜𝑜_𝑒𝑒𝑙𝑙𝑡𝑡𝑖𝑖𝑑𝑑𝑒𝑒𝑠𝑠.𝑃𝑃�𝑠𝑠ℎ𝑏𝑏𝑏𝑏𝑜𝑜,𝑗𝑗
$  

where 𝐹𝐹𝐹𝐹𝑃𝑃_𝑓𝑓𝑙𝑙𝑜𝑜_𝑒𝑒𝑒𝑒𝑠𝑠𝑖𝑖𝑑𝑑 includes other crop and livestock net gain in stocks less deductions for 
depreciation and the value of family labour. Here 𝑃𝑃�𝑠𝑠𝑗𝑗

$  is an average simulated unit price, at a 
state level for livestock and at a national level for crops, for example: 

𝑃𝑃�𝑠𝑠𝑗𝑗
$ = �𝑅𝑅�𝑠𝑠𝑗𝑗𝑗𝑗

𝑗𝑗

/�𝑄𝑄�𝑠𝑠𝑗𝑗𝑗𝑗

𝑗𝑗

 

Finally, farm rate-of-return is defined as: 

𝐹𝐹𝐹𝐹𝑃𝑃_𝑒𝑒𝑑𝑑𝑒𝑒_ℎ𝑙𝑙𝑡𝑡 = (𝐹𝐹𝐹𝐹𝑃𝑃_𝑓𝑓𝑙𝑙𝑜𝑜_ℎ𝑙𝑙𝑡𝑡 + 𝐹𝐹𝐹𝐹𝑃𝑃_𝑜𝑜𝑓𝑓𝑒𝑒_𝑒𝑒𝑒𝑒𝑠𝑠𝑖𝑖𝑑𝑑)/𝐾𝐾_𝑡𝑡𝑑𝑑𝑡𝑡𝑙𝑙𝑙𝑙_𝑝𝑝𝑙𝑙𝑜𝑜𝑖𝑖𝑡𝑡𝑙𝑙𝑙𝑙_𝑑𝑑𝑜𝑜 

where 𝐹𝐹𝐹𝐹𝑃𝑃_𝑜𝑜𝑓𝑓𝑒𝑒_𝑒𝑒𝑒𝑒𝑠𝑠𝑖𝑖𝑑𝑑 includes adjustments for interest and other financing costs (which in 
keeping with AAGIS translates farm business profit into profit at full equity). 
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8 Appendix D: Regression results 
Table 15: Cross-validated regression performance, xgboost stack versus least squares regression 
(ols) 

 Sample 
xgboost 

𝑅𝑅2 
OLS 
𝑅𝑅2 

xgboost 
RMAE 

OLS 
RMAE 

RMAE xgboost / 
OLS 

A_barley_dot 13039 0.52 0.15 0.26 0.42 0.63 

A_double_dot 2544 0.22 0.15 0.42 0.51 0.82 

A_oilseeds_dot 7166 0.50 0.22 0.32 0.56 0.58 

A_othercrops_dot 26763 0.46 0.07 0.17 0.25 0.67 

A_sorghum_dot 2374 0.52 0.21 0.21 0.30 0.72 

A_total_cropped_dot 35722 0.82 0.47 0.04 0.09 0.39 

A_wheat_dot 16237 0.60 0.29 0.26 0.40 0.65 

H_barley_dot 13039 0.45 0.23 0.27 0.32 0.85 

H_oilseeds_dot 7169 0.39 0.14 0.28 0.34 0.83 

H_sorghum_dot 2373 0.37 0.22 0.34 0.37 0.93 

H_wheat_dot 16242 0.53 0.29 0.22 0.26 0.82 

H_wool_dot 23485 0.33 0.11 0.20 0.24 0.84 

Q_barley_dot 9368 0.24 0.04 0.23 0.24 0.95 

Q_beef_dot 24723 0.22 0.11 0.23 0.25 0.95 

Q_lamb_dot 10517 0.41 0.18 0.36 0.43 0.83 

Q_oilseeds_dot 1731 0.17 -0.03 0.22 0.25 0.90 

Q_othercrops 40125 0.54 0.28 0.71 1.27 0.56 

Q_sheep_dot 20645 0.09 0.05 0.43 0.45 0.97 

Q_sorghum_dot 1516 0.17 0.01 0.40 0.41 0.96 

Q_wheat_dot 11100 0.19 -0.01 0.08 0.09 0.93 

Q_wool_dot 8277 0.23 0.14 0.16 0.18 0.91 

R_barley_dot 9457 0.46 0.37 0.15 0.16 0.90 

R_beef_dot 25527 0.49 0.28 0.17 0.21 0.80 

R_lamb_dot 10927 0.73 0.70 0.16 0.17 0.94 
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R_oilseeds_dot 5642 0.73 0.73 0.11 0.11 0.93 

R_sheep_dot 21257 0.39 0.32 0.21 0.23 0.91 

R_sorghum_dot 1530 0.11 0.15 0.19 0.18 1.04 

R_wheat_dot 13290 0.39 0.29 0.14 0.16 0.89 

R_wool_dot 23478 0.61 0.42 0.16 0.19 0.84 

S_beef_births_dot 24259 0.32 0.14 0.21 0.24 0.87 

S_beef_deaths_dot 22645 0.21 -0.01 0.56 0.58 0.95 

S_sheep_births_dot 21863 0.39 0.18 0.24 0.29 0.83 

S_sheep_deaths_dot 22885 0.19 0.09 0.60 0.63 0.95 

V_chem 40125 0.73 0.50 0.49 0.85 0.58 

V_fert 40125 0.71 0.49 0.46 0.74 0.63 

V_fuel 40125 0.76 0.61 0.31 0.43 0.73 

V_othermat 40125 0.55 0.44 0.48 0.62 0.78 

V_serv 40125 0.80 0.67 0.29 0.40 0.73 

V_shearing 40125 0.86 0.82 0.30 0.41 0.73 

Average 18914 0.45 0.27 0.28 0.36 0.81 

Table 16: Cross-validated regression performance (binary targets), xgboost stack versus least 
squares 

 Sample xgboost accuracy LS accuracy accuracy xgboost / LS 

D_barley 40125 0.89 0.83 1.07 

D_double 40125 0.94 0.94 1.00 

D_oilseeds 40125 0.91 0.86 1.06 

D_othercrops 40125 0.85 0.80 1.06 

D_sorghum 40125 0.97 0.96 1.01 

D_wheat 40125 0.92 0.89 1.03 

Z_conditions_4 34995 0.88 0.85 1.04 
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Table 17: xgboost feature importance score, by feature type (stack 1) 

 
Climate 

(rain) 
Climate 
(temp.) Prices Stocks Capital Location 

Other 
Controls 

A_barley_dot 9.4 2.8 0.3 14.0 43.5 12.1 18.0 

A_double_dot 8.5 10.0 2.7 11.0 31.7 4.2 31.9 

A_oilseeds_dot 9.0 4.9 2.4 16.7 27.0 8.8 31.3 

A_othercrops_dot 11.1 4.8 2.3 5.6 46.1 6.8 23.3 

A_sorghum_dot 10.4 3.1 2.4 9.3 44.9 7.4 22.6 

A_total_cropped_dot 1.6 0.4 0.1 5.6 23.5 1.3 67.6 

A_wheat_dot 8.6 3.5 1.0 9.2 35.9 5.8 36.0 

D_barley 7.7 3.7 1.1 44.3 5.9 11.9 25.4 

D_double 23.8 9.9 4.6 5.3 14.7 10.1 31.7 

D_oilseeds 5.9 4.9 2.7 14.3 15.7 16.6 39.8 

D_othercrops 7.9 4.8 1.3 14.6 31.4 8.7 31.3 

D_sorghum 10.6 5.0 0.3 22.4 5.0 28.8 27.8 

D_wheat 6.6 3.0 0.3 38.2 7.6 4.5 39.7 

H_barley_dot 49.1 5.4 7.8 3.8 6.8 4.7 22.4 

H_oilseeds_dot 52.2 6.9 5.6 3.4 5.9 6.0 20.1 

H_sorghum_dot 24.9 17.0 2.5 2.0 5.8 6.0 41.8 

H_wheat_dot 51.4 4.5 5.7 2.3 5.6 6.5 24.0 

H_wool_dot 14.4 7.0 2.4 13.3 10.5 12.3 40.1 

Q_barley_dot 21.1 5.3 6.7 21.5 11.0 19.4 15.0 

Q_beef_dot 12.0 6.6 0.6 43.0 5.0 18.0 14.7 

Q_lamb_dot 7.5 6.0 2.9 34.2 7.9 11.0 30.5 

Q_oilseeds_dot 25.5 10.3 6.3 24.5 10.5 9.4 13.6 

Q_othercrops 3.1 2.1 3.6 7.9 27.8 6.2 49.3 

Q_sheep_dot 28.9 7.6 5.9 17.8 8.8 7.6 23.3 

Q_sorghum_dot 30.5 7.6 9.8 27.2 9.5 4.6 10.7 

Q_wheat_dot 9.8 10.4 8.0 38.7 11.6 14.0 7.6 
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Q_wool_dot 8.9 6.4 5.6 60.2 7.0 1.7 10.2 

R_barley_dot 13.6 3.2 61.3 1.4 2.7 7.3 10.4 

R_beef_dot 6.9 11.7 26.6 6.3 6.0 9.6 32.9 

R_lamb_dot 2.5 2.5 77.7 4.4 2.5 6.2 4.2 

R_oilseeds_dot 6.1 5.1 10.3 0.7 2.1 16.0 59.7 

R_sheep_dot 3.2 1.7 78.2 4.1 2.6 4.6 5.6 

R_sorghum_dot 31.9 14.7 20.5 4.7 7.0 4.9 16.2 

R_wheat_dot 20.9 3.5 48.3 3.1 4.1 8.4 11.7 

R_wool_dot 13.8 11.3 50.6 5.5 3.3 6.4 9.1 

S_beef_births_dot 12.3 11.1 6.7 30.4 6.6 11.4 21.4 

S_beef_deaths_dot 32.7 17.0 2.8 7.7 9.4 5.6 24.9 

S_sheep_births_dot 12.4 3.5 7.6 19.0 7.2 15.8 34.5 

S_sheep_deaths_dot 26.0 6.1 11.2 11.1 6.3 6.7 32.7 

V_chem 3.4 1.4 4.5 3.8 51.0 4.1 31.8 

V_fert 4.1 3.4 2.0 4.9 46.5 16.2 22.9 

V_fuel 1.6 1.5 2.2 20.6 56.6 3.9 13.7 

V_othermat 7.8 4.1 4.1 55.2 7.4 4.1 17.3 

V_serv 2.6 1.7 1.3 45.3 31.3 3.5 14.3 

V_shearing 1.0 0.6 1.2 92.4 1.3 0.9 2.7 

Z_conditions_4 52.0 9.3 15.1 2.2 4.3 11.1 6.1 
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Table 18: Most important relationships between specific model targets (columns) and specific 
climate variables (rows) 

Climate variable Target 1 Target 2 Target 3 Target 4 

W_winter_rain H_wheat_dot H_barley_dot H_oilseeds_dot S_beef_deaths_dot 

W_aut_tmax_L1 H_wool_dot Q_oilseeds_dot S_beef_births_dot S_beef_deaths_dot 

W_sum_rain R_sorghum_dot Q_sorghum_dot H_sorghum_dot Q_oilseeds_dot 

W_winter_gdd R_wool_dot S_beef_deaths_dot D_double H_barley_dot 

W_win_tmin D_double Q_sheep_dot Q_wheat_dot S_beef_deaths_dot 

W_summer_gdd H_sorghum_dot Q_oilseeds_dot R_sorghum_dot A_double_dot 

W_aut_moist Q_sheep_dot Q_oilseeds_dot S_beef_deaths_dot D_double 

W_aut_tmin H_sorghum_dot S_beef_deaths_dot Q_sorghum_dot D_double 

W_FY_rain Q_beef_dot Q_sorghum_dot H_sorghum_dot R_sorghum_dot 

W_sum_tmax_L1 R_sorghum_dot Q_beef_dot R_wheat_dot H_sorghum_dot 

W_spr_rain R_sorghum_dot Q_sorghum_dot S_sheep_deaths_dot D_double 

W_aut_moist_L1 R_sorghum_dot S_beef_deaths_dot Q_barley_dot Q_sheep_dot 

W_aut_rain Q_sorghum_dot R_sorghum_dot Q_sheep_dot S_beef_deaths_dot 

W_aut_gni_L1 R_sorghum_dot S_beef_deaths_dot H_oilseeds_dot H_sorghum_dot 

W_aut_tmax Q_wheat_dot S_beef_deaths_dot Q_sheep_dot H_oilseeds_dot 

W_FY_rain_L1 Q_barley_dot D_double S_sheep_deaths_dot R_barley_dot 

W_FY_moist_L2 Q_oilseeds_dot S_beef_deaths_dot Q_sorghum_dot A_barley_dot 

W_sum_tmax Q_barley_dot Q_sorghum_dot R_sorghum_dot R_barley_dot 

W_win_moist R_sorghum_dot D_double S_beef_deaths_dot S_sheep_deaths_dot 

W_FY_rain_L2 H_sorghum_dot H_oilseeds_dot S_beef_deaths_dot R_sorghum_dot 

Figure 8 shows the average model responses to growing season rainfall (W_winter_rain) and 
lagged autumn average maximum temperature (W_aut_tmax_L1). Note that farm level marginal 
responses will differ from these averages (depending on farm type / location etc.). As would be 
expected, wheat yield is increasing in winter rainfall. Beef birth (death) rates are generally 
increasing (decreasing) in winter rainfall, and decreasing (increasing) in autumn temperature. 
Wheat area planted is on average increasing in autumn maximum temperatures, up to around 
25 degrees, and decreasing thereafter (although the effects of climate on crop areas are 
relatively small in comparison with yields). 
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Figure 8: Average response of selected target variables to W_winter_rain and W_aut_tmax_L1 
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9 Appendix E: Validation results 
Table 19: Farm level cross-validated performance of the baseline scenario 

 Farm level Regional National 

Wheat gross receipts, R_wheat 0.77 0.98 0.96 

Barley gross receipts, R_barley 0.63 0.95 0.92 

Oilseeds gross receipts, R_oilseeds 0.56 0.93 0.97 

Sorghum gross receipts, R_sorghum 0.57 0.95 0.67 

Other crop gross receipts, R_othercrops 0.55 0.82 0.56 

Beef cattle receipts, R_beef 0.86 0.96 0.99 

Sheep gross receipts, R_sheep 0.60 0.94 0.98 

Wool gross receipts, R_wool 0.90 0.99 1.00 

Prime lamb net receipts, R_lamb 0.76 0.96 0.99 

Expenditure on fertiliser, C_fert 0.71 0.97 0.96 

Expenditure on fuel, oil and grease, C_fuel 0.76 0.94 0.98 

Expenditure on crop and pasture chemicals, C_chem 0.71 0.97 0.98 

Other materials, C_othermat 0.56 0.83 0.52 

Total expenditure on services and labour, C_serv 0.80 0.93 0.94 

Hired labour shearing, C_shearing 0.85 0.97 0.87 

Wheat area sown, A_wheat 0.81 0.98 0.96 

Barley area sown , A_barley 0.60 0.94 0.93 

Oilseeds area sown, A_oilseeds 0.46 0.92 0.96 

Sorghum area sown , A_sorghum 0.36 0.93 0.87 

Wheat production (harvest), H_wheat 0.76 0.97 0.98 

Harley production (harvest), H_barley 0.58 0.94 0.95 

Oilseeds production (harvest), H_oilseeds 0.54 0.93 0.98 

Sorghum production (harvest), H_sorghum 0.41 0.94 0.71 

Beef number sold, Q_beef 0.87 0.96 0.96 

Sheep number sold, Q_sheep 0.67 0.89 0.86 
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Prime lamb number sold, Q_lamb 0.75 0.96 0.97 

Wool produced, Q_wool 0.91 0.99 0.99 

Beef cattle births, S_beef_births 0.87 0.95 0.98 

Beef cattle deaths, S_beef_deaths 0.53 0.84 0.82 

Sheep births, S_sheep_births 0.86 0.97 0.97 

Sheep deaths, S_sheep_deaths 0.52 0.86 0.88 

Table 20: Regional level 𝑅𝑅2 of profit measures under the baseline scenario 

 Sample size Farm business profit Farm cash income 

NSW: Riverina 2428 0.92 0.89 

VIC: Southern and Eastern Victoria 2667 0.92 0.92 

VIC: Wimmera 1566 0.89 0.83 

NSW: Central West 2012 0.87 0.83 

VIC: Central North 1782 0.87 0.89 

NSW: Tablelands 1896 0.84 0.86 

SA: Murray Lands & Yorke Peninsula 1664 0.83 0.82 

WA: Central and South Wheat Belt 1887 0.83 0.88 

SA: Eyre Peninsula 1046 0.79 0.81 

NT: Alice Springs Districts 338 0.78 0.84 

NT: Victoria River District 336 0.76 0.71 

SA: South East 1694 0.73 0.60 

QLD: Darling Downs and Highlands 2561 0.71 0.75 

VIC: Mallee 1297 0.69 0.65 

QLD: Central North 931 0.68 0.66 

NT: Barkly Tablelands 171 0.66 0.53 

TAS: Tasmania 1812 0.65 0.70 

WA: North and East Wheat Belt 1099 0.62 0.51 

NSW: Far West 798 0.60 0.67 

QLD: Eastern Darling Downs 1479 0.60 0.69 

NSW: North West Slopes and Plains 1920 0.60 0.40 
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SA: North Pastoral 635 0.58 0.69 

WA: The Kimberly 199 0.57 0.50 

QLD: West and South West 838 0.55 0.50 

NT: Top End Darwin and NT Gulf 202 0.53 0.56 

QLD: South Coastal 1519 0.51 0.65 

QLD: Cape York and the Gulf 368 0.49 0.30 

NSW: Coastal 883 0.45 0.48 

WA: South West Coastal 1103 0.44 0.25 

QLD: Charleville - Longreach 936 0.42 0.70 

QLD: North Coastal 579 0.32 -0.03 

WA: Pilbara and the Central 357 -0.07 0.43 
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