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[bookmark: _Toc390421163]Executive summary
On 7 December 2013 Leach Tank No. 1 at the Energy Resources of Australia (ERA) Ranger uranium mine failed, spilling uranium ore leachate into the plant area. The Supervising Scientist Division of the Department of the Environment (SSD) is investigating potential impacts to human health and to the off-site environment, as a result of the incident. 
Geoscience Australia (GA) was requested to provide advice on the potential for spill-related contaminants entering the off-site environment via the groundwater pathway. GA has based this assessment on a review of data from groundwater monitoring, hydrogeochemistry, groundwater and hydrogeochemical modelling and geological data provided by SSD and ERA.
The Ranger uranium mine is approximately 250 km east of Darwin, in the Magela Creek catchment, which is a tributary of the East Alligator River. The mine operates on a lease surrounded by Kakadu National Park. Uranium mining and processing commenced at Ranger in 1980. Open cut mining ceased on the site at the end of 2012, and operations are scheduled to cease by 2021.
The Leach Tank Spill occurred within areas of pre-existing soil and groundwater contamination identified between 2005 and 2009. Groundwater contamination in the plant area is characterised by low pH, with high levels of iron (Fe), manganese (Mn), uranium (U) and sulfate (SO4).
New groundwater table maps generated for this assessment reveal that the spill-affected area straddles a local groundwater divide. This divide directs flow either to the north and northwest or to the south-southeast. Groundwater from under the spill-affected area thus has the potential to reach Corridor Creek, 300 m to the south-southeast of the spill-affected area, and via this pathway interact with the off-site environment. 
Hydrogeochemical analysis undertaken for this assessment relied on data collected between 2006 and 2013 (pre-spill). SO4 was used to identify the maximum extent of pre-spill contamination underlying the plant and adjacent areas. HCO3 and pH also provide valuable datasets to assess the extent of this contamination. 
The relatively low volume of leachate that potentially infiltrated into the groundwater system, (estimated at 1900 L) combined with a leachate chemical composition similar to existing groundwater, makes it difficult to differentiate the extent of any impact from the spill. Leachate – soil reactions have the potential to immobilise some of the contaminants in the plume, but to confirm this soil mineralogical tests should be carried out in the spill area.
Analysis of very limited post-spill data provides no evidence to either support or refute that the Leach Tank 1 spill in December 2013 entered the groundwater underlying the plant. While this particular spill is unlikely to have impacted the off-site environment, the lack of groundwater understanding along the southerly flow path is an obvious data gap. 



As a result of this assessment, including the data gaps recognised during the work, GA has made several recommendations in relation to groundwater monitoring and reporting, and groundwater flow and geochemical modelling. A key finding is that there is insufficient hydrogeological information in the area south of the spill site, towards Corridor Creek, to provide an adequate understanding to inform future assessments. The spill is unlikely to have impacted the offsite environment via the groundwater pathway.
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[bookmark: _Ref383594587][bookmark: _Ref383594588][bookmark: _Toc390421164]Introduction
On 7 December 2013 Leach Tank No. 1 at the Energy Resources of Australia (ERA) Ranger uranium mine failed, spilling uranium ore leachate into the plant area. The Supervising Scientist Division of the Department of the Environment (SSD) is investigating potential impacts to human health and to the off-site environment, including Kakadu National Park, as a result of the incident. 
Geoscience Australia (GA) was requested to provide advice on the potential for spill-related contaminants entering the off-site environment via the groundwater pathway. GA has based this assessment on a review of data from groundwater monitoring, hydrogeochemistry, groundwater and hydrogeochemical modelling and geological data provided by SSD and ERA. Due to the nature of the data available with which to undertake this assessment, GA has sought to investigate the likelihood of this risk to eventuate, and how it may be detected.
This report starts with background on the geology and hydrogeology of the mine site generally (Chapter 1), and then moves into discussion of existing contamination and previous groundwater investigations in and around the plant area (Chapter 2). Following on from this, there is a discussion of data provided relating to groundwater levels, including the steps GA undertook to process and analyse this data (Section 3.1). This leads into discussion of the hydrogeochemical data provided, and the analysis and assessment undertaken by GA on this data (Section 3.2). The final sections of the report include identified gaps in knowledge or data raised during the assessment (Chapter 4), conclusions of the assessment (Chapter 5), and recommendations for further work (Chapter 6), including monitoring. All the data used in this analysis was provided by ERA and SSD, based on data requests from GA. Groundwater data was requested from ERA for bores within a 1 km radius of the spill extent.
[bookmark: _Ref383594586][bookmark: _Toc390421165]Background
[bookmark: _Toc390421166]Ranger uranium mine
The Ranger uranium mine is approximately 250 km east of Darwin. The mine is in the Magela Creek catchment, a tributary of the East Alligator River, and is surrounded by the World Heritage Kakadu National Park (Figure 1). Uranium mining and processing commenced at Ranger in 1980. Open cut mining ceased on the site at the end of 2012. Processing existing ore stockpiles, backfilling Pit 3 with waste rock and tailings material, and exploration are expected to continue until 2021, with the possibility for extension of the Pit 3 orebody at depth to be mined by underground methods. Operations are scheduled to cease by 2021. Key features of the mine site are shown in Figure 2.
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[bookmark: _Ref378759110][bookmark: _Toc380755486][bookmark: _Toc390761265]Figure 1. Location of the Ranger mine site
The Ranger mine is subject to seasonal extremes of rainfall, typical of a tropical climate. The wet season extends from November to April, and the region experiences more than 90% of its average annual rainfall (1600 mm) in this period (Figure 3). The early wet season of 2013/2014 was drier than average, although a significant rainfall event occurred on 6 December, 2013, with 69 mm recorded at Jabiru Airport, immediately prior to the leach tank spill (BoM, 2014).
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[bookmark: _Ref382828311][bookmark: _Toc390761266]Figure 2. Key features of the Ranger mine site

[bookmark: _Ref378759081][bookmark: _Toc390761267][bookmark: _Ref378759077][bookmark: _Toc380755487]Figure 3. Average monthly rainfall data for Jabiru Airport, 1971 to 2013 (BoM, 2014)
[bookmark: _Toc390421167]Ranger geology, regolith and soils
The Ranger uranium mine lies in the Alligator Rivers Uranium Field, within the Paleoproterozoic Pine Creek Inlier. The Paleoproterozoic rocks of the Cahill Formation are underlain by the Archean Nanambu Complex and unconformably overlain by the Mesoproterozoic Kombolgie Formation and more recently deposited sediments. The trend of the Nanambu Complex and the Cahill Formation is north-south, with the contact between the units at Ranger being fault-controlled. Greenschist-facies metamorphism during regional compression resulted in schists of the Cahill Formation having a planar mica fabric. Shearing characterises the contact between the Nanambu Complex and the Cahill Formation (Golder Associates Pty Ltd., 2011). 
Site-based 1:25 000 geological mapping (Figure 4) highlights the importance of structures in controlling the geology of the Ranger deposit. This mapping is the most up-to-date site-scale geological information, including in relation to geological structures. The mine sits at the confluence of the Ranger and Magela faults. Magela Creek, immediately to the east of the plant area, is closely aligned with the trend of the concealed Magela Fault. A number of smaller faults are mapped and interpreted to the north and northwest of the spill site. The location and character of faults and shears is important in hardrock and weathered rock terrains, as they form important hydrogeological features. Faults and shears can act as barriers or conduits to water flow, and may connect or isolate different parts of a hydrogeological system. At Ranger both these roles are potentially fulfilled by faults and related structures, as discussed further in Section 2.5.
[image: N:\water\Advice\Projects\Uranium\Ranger Mine\SSD Work 2014\Reporting\Figures\Final Figures\Ranger_Spill_FIG04_25k_geol_map.png]
[bookmark: _Ref380755423][bookmark: _Toc390761268][bookmark: _Toc380755489]Figure 4. 1:25,000 geological map of the Ranger mine site (adapted from Salama and Foley, 1997 and ERA-supplied information)
At the Ranger mine site, regolith consists of both residual and alluvial material. Weathering materials include clays and ferruginous oxides. The idealised weathered profile at Ranger is characterised by an upper highly weathered sand-dominated topsoil, a thin calcrete or ferricrete, clayey sand or sandy clay, clay weathered remnant materials and saprolitic bedrock to the base. Regolith thickness varies, and reaches up to 70 m depth (Golder Associates Pty Ltd., 2011). The thickness, distribution and character of regolith materials play an important part in the hydrogeology of the site. Figure 5 is an example of the heterogeneous nature of regolith, and is located to the north of the spill site, adjacent to Pit 3.
[image: N:\water\Advice\Projects\Uranium\Ranger Mine\Ranger 3 Deeps\Photos\October242012\13_boxcut.jpg]
[bookmark: _Ref378762923][bookmark: _Toc380755491][bookmark: _Toc390761269]Figure 5. Exposed weathering profile at Ranger. This photograph shows the Ranger 3 Deeps Exploration Drive Portal boxcut, taken October 2012. Note the variable development of iron oxides (red material) in the top part of the profile, which indicates a heavy influence of rock fabric and structure in regolith development. Photograph taken by Martin Smith, GA
The Australian Soil Resource Information System (ASRIS) provides access to the best available soil and land resource information in a consistent format across the country – the level of detail depends on the survey coverage in each region. ASRIS provides a hierarchy of mapping units with seven levels of generalization. The upper three levels (L1–L3) provide descriptions of soils and landscapes across the complete continent while the lower levels (L4–L6) provide more detailed information, particularly on soil properties, for areas where field survey have been completed. For the area around the Ranger mine site, Level 4 mapping is the most detailed available. This shows that the site surrounding the spill is characterised by tenosols, kandosols and hydrosols (Figure 6). Tenosols are soils that are weakly organized, apart from having a distinct A horizon. They often contain an iron-oxide rich horizon, and overlie unweathered or partly weathered rock. A kandosol is a soil classification that lacks strong texture contrast, with a massive or weakly structure B horizon and is not calcareous. Hydrosols are classified as soils that are seasonally or permanently wet. They are saturated for at least 2 – 3 months in most years.
The extent of the spill occurs near the mapped boundary between the kandosol unit and the hydrosol unit. The resolution of ASRIS Level 4 mapping is limited in its application to this localised assessment. However, it does show that the soils (a principal pathway for groundwater recharge) at the site are fairly uniform.
[bookmark: _Ref378760504][image: ]
[bookmark: _Ref381361083][bookmark: _Toc390761270]Figure 6. Soil types at the Ranger mine site (ASRIS, 2013)
[bookmark: _Toc390421168]Ranger site hydrology
The Ranger mine site encompasses four surface water drainages; the Coonjimba, Gulungul, Corridor and Magela Creek drainages. The Coonjimba, Gulungul and Corridor creeks drain into Magela Creek and thence to the East Alligator River. The site also encompasses three local groundwater catchments; the Coonjimba, Djalkmarra and Corridor Creek catchments (Golder Associates Pty Ltd., 2011).
[bookmark: _Ref382561395][bookmark: _Toc390421169]Ranger site hydrogeology
The current conceptual understanding of hydrogeology at Ranger (Golder Associates Pty Ltd., 2011; Puhalovich, 2010; URS, 2010) is refined from that of Salama and Foley (1997), in that it recognises the importance of rock weathering variability as a critical determinant of the matrix and fracture hydraulic properties, in particular permeability. These properties will control groundwater flow rates and determine possible pathways for contaminants to exploit. This conceptualisation is based on three hydrogeological units:
Primary – The most permeable and extensive hydrogeological units, these are found within the alluvium and weathered and fractured rock underlying creeks and other surface water features.
Secondary – These units are less permeable than the primary units, and lie within weathered and fractured rocks away from surface water features.
Tertiary – These are spatially restricted units. They occur in shallow, residual soils subject to periodic wetting (such as during the wet season) and in fault zones in fresh rock.
Within this conceptualisation, there are three main hydrolithological types recognised:
Alluvial – These occur along and adjacent to surface streams and billabongs, within existing and historic alluvial sediments.
Weathered rock – This type includes ferruginous parts of the weathered profile and residual soils. The combination of the parent rock type, degree of weathering and structural setting act to give highly variable aquifer characteristics. In places, this type may be compartmentalised.
Fractured rock – Fractured rock aquifers are present at depth, in fresher rocks, along open fractures or geological damage zones (e.g. breccia). These may be connected with the other aquifer types.
This conceptualisation results in 4 aquifers being identified on site (URS, 2010). These are shown in Table 1. GA has included the unit and type for completeness (Golder Associates Pty Ltd., 2011; Puhalovich, 2010). The plant area sits on weathered and ferruginised bedrock. This equates to secondary or tertiary weathered bedrock aquifer types.
Groundwater flow through the Ranger mine site more broadly can be split into a shallow flow system and a deep flow system. The shallow flow system can be characterised by its recharge, evapotranspiration, surface water – groundwater interactions and topography, and is considered to be restricted to the alluvial and weathered rock primary and secondary units. The shallow groundwater system at Ranger is unconfined. The deeper groundwater flow system is also driven primarily by topography and interaction with the shallow system, and occurs within the fractured bedrock units. The deeper flow system is partially confined.
The water table is continuous across the site, regardless of geology. Water levels have been shown to vary by 3 to 5 m between the wet and dry seasons in individual bores (see Appendix A for bore hydrographs). This is due to the seasonal nature of recharge events and their interplay with evapotranspiration and subsurface flow.
Ranger site hydraulic conductivity
Reported hydraulic conductivity (K) values of various rock types and weathering materials vary widely across the Ranger mine site. Unweathered bedrock has been inferred by site testing to have K values between 10-4 and 10-2 m/day, which is thought to vary with lithology and with depth (less permeable at greater depths). The weathered bedrock at the site has been shown to vary with location and depth, and is dependent on the degree of weathering. Pumping tests show a range of K values between 10-3 and 10 m/day, clustered around 10-3 – 10-2 m/day. The alluvial units (primary aquifer type) are estimated to have K values ranging from 10-2 to 10 m/day. 
Faults and shears at Ranger are likely to be important hydrogeological features, either blocking flow or providing preferential flow pathways and connections between deep and shallow groundwater systems as well as between groundwater and surface water. Zones within faults at Ranger may have extremely high K values, of up to 100 m/day.
[bookmark: _Ref380759383][bookmark: _Toc390761294]Table 1. Conceptual hydrogeological model at Ranger (after Golder Associates Pty Ltd., 2011; Puhalovich, 2010; URS, 2010)
	Aquifer
	Geology	
	Hydrogeology
	Unit
	Type

	Aquifer 1a
	Alluvial sediments in channels. Usually at the surface, associated with surface water features. Up to 9 m thick.
	Wet during the wet season, when it hosts the water table. Porous medium.
	Primary
	Alluvial

	Aquifer 1b
	Upper part of the weathered profile, as well as ferruginous sediments, located away from current channels. Usually present at the surface, or under fill. Up to 23 m thick.
	Wet during the wet season, when it hosts the water table. Porous medium.
	Secondary
	Weathered Rock

	Aquifer 2
	Weathered bedrock with clay present. Generally found underlying 1a or 1b, rarely present at the surface. Up to 40 m thick.
	Hosts the dry season water table. Fractured porous medium. 
	Secondary or Tertiary
	Weathered Rock

	Aquifer 3
	Fractured, fresh bedrock. Usually underlies 2, or directly beneath fill, 1a or 1b where 2 is not present.
	Fully saturated. Partially confined to unconfined. Groundwater flow is predominantly limited to fractures and damage zones.
	Tertiary
	Fractured Rock


Recharge and discharge
Recharge processes at Ranger are driven by the interplay of rainfall, predominantly during November to March, and evapotranspiration throughout the year. Rainfall events may be intense, with rapid infiltration. Recharge estimates range from 2 mm/yr to 300 mm/yr based on estimated specific yield and seasonal fluctuation in bores across the site (Salama and Foley, 1997), another recharge estimate of 42 mm/yr is based on chloride mass balance methods (Woods, 1994). Higher recharge rates occur in primary aquifer types (adjacent to surface water bodies), and the lowest recharge rates occur in tertiary aquifer types in the area around the tailings storage facility (Golder Associates Pty Ltd., 2011). Previous investigations have identified that most recharge is discharged to surface water as base flow in the wet season (Salama and Foley, 1997). Vertical flow through the unsaturated zone may be quite fast, however, horizontal flow in the saturated zone is likely to be much slower.
[bookmark: _Ref383594611][bookmark: _Toc390421170]Spill area
[bookmark: _Toc390421171]Spill extent
The leach tank spill of 7 December, 2013 of 1.4 ML covered an area of approximately 14,700 m2 (Figure 7). The spill was contained within the plant area (Figure 8), from which surface drainage is to Retention Pond 2 (RP2). Water from RP2 is not released to the environment without prior treatment. ERA is reported as saying that containment processes at the site prevented impact to the surrounding environment (e.g. Battersby and Ker, 2013). Some leachate remained at the surface, and could be considered to have a potential for infiltration to the unsaturated zone and then to the shallow groundwater system. The spilled material consisted of ground uranium ore, water and acid, at a pH of approximately 2. A summary of the average discharge composition of the Leach Tank 1 material in the week prior to the incident is summarised in Table 2. This information is based on solid oxide assay, liquor iron (Fe) and U3O8 assays for the tank input and output in the week prior to the incident. Table 3 presents selected filtered acid leachate slurry water quality results obtained from samples of the spill material taken by SSD on the 13th of December, 2013. The SSD results are thought to more accurately represent the composition of any material which had a potential to infiltrate the ground surface materials.
[bookmark: _Ref382563808][bookmark: _Toc390761295]Table 2. Summary chemistry of discharge from Leach Tank 1 in the week prior to the spill[footnoteRef:2] [2:  Data provided in email from Shelly Illes (ERA) to Martin Smith (GA), 30 January 2014.] 

	
	Total Fe in liquor (g/l)
	U3O8 in liquor (g/l)
	% Solids 
	Fe2O3 in solids (%)
	MgO in solids (%)
	MnO2 in solids (%)
	Na2O in solids (%)
	SO3 in solids (%)
	U3O8 in solids (%)

	Average
	3.178
	0.980
	36.9
	4.360
	4.824
	0.025
	0.095
	0.077
	0.042

	Maximum
	4.481
	1.063
	39.9
	4.780
	4.988
	0.026
	0.455
	0.103
	0.049

	Minimum
	2.110
	0.865
	29.1
	4.003
	4.626
	0.023
	0.033
	0.061
	0.035

	Standard Deviation
	0.731
	0.052
	2.5
	0.226
	0.135
	0.001
	0.125
	0.011
	0.004


[bookmark: _Ref387659955][bookmark: _Toc390761296]Table 3. Selected acid leach slurry water quality chemical composition data[footnoteRef:3] [3:  Data provided in email from Keith Tayler (SSD) to Martin Smith (GA), 29 April 2014.] 

	
	Fe (mg/L)
	Mg (mg/L)
	Mn (mg/L)
	Na (µg/L)
	SO4 (mg/L)
	U (mg/L)
	Al (mg/L)
	Ca (mg/L)

	1
	463
	4510
	1340
	83.1
	29800
	386
	1260
	387

	2
	368
	3590
	986
	65.1
	23900
	317
	976
	319

	3
	310
	3240
	948
	63.4
	22000
	291
	895
	351

	Average
	380
	3780
	1091
	70.5
	25233
	331
	1044
	352

	Maximum
	463
	4510
	1340
	83.1
	29800
	386
	1260
	387

	Minimum
	310
	3240
	948
	63.4
	22000
	291
	895
	319
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[bookmark: _Ref379367628][bookmark: _Toc380755494][bookmark: _Toc390761271]Figure 7. Leach Tank 1 location and mapped spill extent at the surface (spill extent data provided by ERA to SSD[footnoteRef:4]) [4:  Email from Keith Tayler (SSD) to Martin Smith (GA), 16 May 2014.] 

[bookmark: _Toc390421172]Plant area surface materials
The area of the plant which was exposed to the leach tank spill is characterised by a mixture of natural and artificial sealed and unsealed surfaces (Figure 8). The sealed surfaces are likely to have facilitated runoff, with low possibility of infiltration. While unsealed and vegetation cover types are thought most likely to be areas of potential contaminant infiltration, most of the unsealed areas within the spill extent are heavily trafficked, and subject to compaction. It is possible that these compacted areas would have similar infiltration properties to the sealed areas, except for where the surface is cracked or less compacted. Soil profiles have been collected to a depth of 1 m in the spill-affected area by SSD for comparison with profiles excavated in the unaffected area of the plant to provide further data on this[footnoteRef:5]. These profiles will also provide a comparison with the profiles described in Hollingsworth (2006). [5:  Email correspondence between SSD and GA officers, 24 January, 31 January and 12 February 2014.] 
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[bookmark: _Ref379367432][bookmark: _Toc380755495][bookmark: _Toc390761272]Figure 8. Spill extent and cover type (spill extent data provided by ERA to SSD[footnoteRef:6]) [6:  Email from Keith Tayler (SSD) to Martin Smith (GA), 16 May 2014.] 

[bookmark: _Toc390421173][bookmark: _Ref381179971]Corridor Creek 
Corridor Creek flows to the south of Pit 1 in an easterly direction, into Magela Creek approximately 750 m east of Leach Tank 1. The confluence is marked by Georgetown Billabong. GC2 is a surface water gauging structure installed downstream of Pit 1 on Corridor Creek (Figure 2). GC2 is downstream from a dam (GCMBL) which holds pond water permeate, as part of the site water management system. As part of their water management plan, ERA release water from GCMBL during the dry season, resulting in flow at GC2. 
Daily discharge data from GC2 for the period from July 2010 through to the end of February 2014 shows distinct peaks in flow during the wet season, with possible low to moderate baseflow contributions identified during the dry season of 2011, mid-June to mid-August 2012, and mid-April to the end of June 2013 (Figure 9). These events are shown by flow above zero without corresponding rainfall or GCMBL release events. The regular and defined baseflow events indicate that Corridor Creek is receiving some portion of flow from interaction with groundwater.

[bookmark: _Ref382822247][bookmark: _Toc390761273]Figure 9. Rainfall compared to GC2 discharge from July 2010 to February 2014 (rainfall data from BoM, 2014; GC2 discharge volumes supplied by ERA)
[bookmark: _Toc390421174]Existing groundwater conditions in the plant area
The spill extent is interpreted to overlie aquifers 1b and 2, characterised by the upper part of the weathered profile grading down in parts to weathered bedrock, with clay present. Ferruginous sediments are present across the area, and the plant area is not located on current surface water channels. These ferruginous sediments host the water table during the wet season. Groundwater flow occurs either within a porous or fractured porous medium.
A study of potentially contaminated groundwater was undertaken between 2006 and 2009 in the Plant Area (Alarcon Leon et al., 2007a; Alarcon Leon et al., 2007b; Gellert, 2009a; b; Gellert and Jones, 2008). The plant area was identified as a source for groundwater contamination, and recommendations regarding ongoing monitoring and further work were put forward, particularly by Alarcon Leon et al. (2007b). These studies identified seven potential contamination zones within the plant area, tied to potential contaminant sources, and characterised the groundwater contamination at these locations. The zones are shown in Figure 10. Specific events leading to the contamination were not identified for these studies; they were designed to identify the cumulative extent of groundwater contamination at the time. The 7 December 2013 leach tank spill occurred within the CCD Circuit and Lime Towers zone, and the spill extent covered parts of this zone as well as parts of the Acid Plant & Sulphur Stockpile and Power Plant zones. 
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[bookmark: _Ref379368383][bookmark: _Toc390761274][bookmark: _Toc380755496]Figure 10. Sites identified with groundwater contamination (Alarcon Leon et al., 2007a; Gellert, 2009a; b; Gellert and Jones, 2008)
[bookmark: _Ref381179980][bookmark: _Toc390421175]Plant area surface material contamination
Soil contamination mapping in the vicinity of the plant area was undertaken by Hollingsworth (2006). This study examined profiles up to 1 m depth, taking samples at various intervals. Nine sites were examined from within the CCD and Lime Towers zone (sites 1, 2, 3, 4, 5, 10, 11, 12, 13; shown in Figure 11). Electrical conductivity (EC), pH, copper (Cu), lead (Pb), zinc (Zn), Mn and U for these sites are summarised in Table 4. Sites 12 and 13 are located adjacent to the Leach Tanks, and provide data on pre-spill impacts. These were compared by Hollingsworth (2006) to the Ranger site-wide average baseline dataset, shown in Table 5.
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[bookmark: _Ref381622759][bookmark: _Toc390761275][bookmark: _Ref381096951]Figure 11. Locations of soil profiles from Hollingsworth (2006)
Soil profile sites within the CCD Circuit and Lime Towers contaminated zones showed pH ranging from 3.9 to 7.4, clustering around 5.5. Electrical conductivities ranged from very low (62 S/cm) to extremely high (29,900 S/cm), clustering around 1,500 S/cm. Trace metals ranged from very low to extremely high (2 – 17,800 ppm). Sites 12 and 13, immediately adjacent to the Leach Tanks had slightly acidic to neutral pH (5.9 – 7.1), a wide range of EC (62 – 546 S/cm) in the upper ranges of the site-wide baseline (3.4 – 510 S/cm), and high trace metals with reference to the Ranger site-wide average baseline. These sites, however, had values within the lower range for the CCD Circuit and Lime Towers zone sites (1, 2, 3, 4, 5, 10, 11, 12, 13), although these are still elevated with respect to the Ranger site-wide average baseline values. Generally speaking, the lower parts of the profiles in the CCD Circuit and Lime Towers contaminated zones showed decreasing trends with depth for EC (with the exception of site 4), Cu, Pb, Zn, Mn and U. pH does not show a trend with depth in soil profiles.
[bookmark: _Ref381622669][bookmark: _Toc390761297]Table 4.Summary data for soil profiles (Hollingsworth, 2006)
	Name
	pH
	EC (uS/cm)
	Cu (mg/kg)
	Pb (mg/kg) 
	Zn (mg/kg)
	Mn (mg/kg)
	U (mg/kg)

	Minimum
	3.9
	62
	5
	2
	6
	63
	4

	Median
	5.5
	1,460
	55
	31
	36
	571
	98

	Average
	5.6
	3,667
	82
	78
	74
	2,655
	169

	Maximum
	7.4
	29,900
	403
	722
	640
	17,800
	1090

	Standard deviation
	1.3
	6,076
	83
	142
	129
	5,219
	228


[bookmark: _Ref381620215][bookmark: _Toc390761298]Table 5. Ranger site-wide average baseline reference soil parameters (Hollingsworth, 2006)
	
	pH
	EC (uS/cm)
	Cu (mg/kg)
	Pb (mg/kg) 
	Zn (mg/kg)
	Mn (mg/kg)
	U (mg/kg)

	Minimum
	4.1
	3.4
	1
	0
	0
	8
	0.1

	Median
	5.5
	12
	10
	5
	4
	22
	1.5

	Average
	5.66
	23.68
	14
	6
	5
	39
	4.5

	Maximum
	8.7
	510.1
	100
	32
	26
	570
	112


Soil profile data obtained by SSD as part of their investigations into the Leach Tank 1 spill comprises profiles from within the spill extent and profiles from outside this extent. The profiles were obtained by a backhoe, and extended to approximately 1 m depth. Physical inspection of the five holes revealed a variable surficial layer of various types of fill overlying in situ lateritic soil material. The fill comprised bitumen, road base, blue metal and possibly dust from the conveyor belt supplying the process plant. The fill in the holes inspected by SSD was often compacted and had low permeability. The natural soil materials encountered in the soil profiles are similar to those described by Chartres et al. (1991). Some key features are the high gravel and ferruginous fractions, and the low clay and organic matter materials. These materials correspond with those described by Hollingsworth (2006) for the plant area more broadly, with no obvious visible signs of infiltration by spill material[footnoteRef:7].  [7:  Preliminary results of soil profiles provided by SSD to GA, 10 June, 2014.] 

The inferred low permeability of surficial materials within the spill extent implies that infiltration of leachate is unlikely to have occurred. This is supported by the short residence time at the surface, given that the majority of the slurry was cleaned up within a few days of the spill. Further physical and chemical analyses will provide more data to determine the capacity for the soils to bind and store contaminants. It is important to monitor soil profiles more generally to provide assurance that the characteristics of any previously identified soil contamination has not changed significantly since 2006. 
[bookmark: _Toc390421176]Plant area groundwater levels
Alarcon Leon et al. (2007a) derived groundwater level maps for the dry season (Figure 12) and wet season (Figure 13) in the plant area. This mapping was based on limited time series data, although it is unclear from Alarcon Leon et al. (2007b) how many measurements from which bores were used to construct the water table maps. Data provided by ERA for this assessment includes between one and 2,403 measurements of groundwater level for bores within 1 km of the plant area between 2005 and 2009, with a median of two readings per bore. Although based on limited data, these maps show two key features relevant to the current assessment:
The water table fluctuates significantly between the wet and the dry season, increasing (coming closer to the ground surface) by up to 5 m in the wet. 
A local groundwater flow divide almost directly underlying the plant area; this divide directs groundwater to the south, towards Corridor Creek and Pit 1, or to the north, towards RP2 and Pit 3. 
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[bookmark: _Ref383783109][bookmark: _Toc390761276]Figure 12. Dry season water table elevation map showing a groundwater flow divide immediately to the north of Leach Tank 1 (from Alarcon Leon et al., 2007a). Black arrows indicate general groundwater flow direction
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[bookmark: _Ref381619797][bookmark: _Toc390761277]Figure 13. Wet season water table elevation map showing a groundwater flow divide immediately to the north of Leach Tank 1, and a flow valley directly underneath the tank caused by the divide bifurcating (from Alarcon Leon et al., 2007a). Black arrows indicate general groundwater flow directions
The local groundwater flow divide is different to the surface watershed, as shown in Figure 14. This groundwater divide is also described in Energy Resources of Australia Ltd (2013a) noting that the plant sits astride the divide. The dry season groundwater divide sits to the north of Leach Tank 1, with water levels between 18 and 25 m AHD (~2 to 12 m below ground). The divide in the wet season shows a spur to the south. Groundwater flow changes across the area underlying the spill extent, moving towards RP2 and Pit 3 to the north of the divide and towards Corridor Creek (south to south-southeast) to the south of the divide. Flow in the wet season may be channelled to the west and west-southwest, but the southerly flow direction is still persistent. The wet season water table is between 18 and 27 m AHD (~2 to 10 m below ground).
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[bookmark: _Ref381177518][bookmark: _Toc390761278]Figure 14. Site watershed (data provided by SSD) compared to wet and dry season groundwater divides (Alarcon Leon et al., 2007a). Note that the location of the surface watershed implies that all surface flow from the plant area exposed to spill material will flow to RP2, while the groundwater divides sit directly under the spill-affected area
[bookmark: _Toc390421177]Plant area groundwater quality
Alarcon Leon et al. (2007a) concluded that groundwater underlying the CCD circuit and Acid Plant and Sulphur Stockpile is contaminated with trace metals and sulfate. This was correlated with low groundwater pH. Contaminated material at the surface in the plant area was considered to be affecting groundwater quality under the plant area, and this water was found to be moving along the flow paths defined above. 
Three plumes were identified:
Low pH, high Fe, U and SO4.Sourced from the CCD Circuit and moving along the southerly flow path. 
Enriched in SO4, Fe, Mn and U and moving along the northerly flow path from the Acid Plant and Sulphur Stockpile zone. 
Weak enrichment in total petroleum hydrocarbon fractions, and moving easterly from the Diesel Tanks during the dry season.
Alarcon Leon et al. (2007a); Gellert (2009a); b); and Gellert and Jones (2008) characterise contamination of groundwater underlying the CCD Circuit and Lime Towers Zone as having very low pH, with measurements of less than pH 3.5. In addition, nutrients (ammonia) are extremely high, up to 1,250 mg/L. Other contaminants (such as SO4 and U) were at their highest levels in this zone. The contaminated sites surveys identified that the contamination had not reached bore 35 or 36 (shown in Figure 13) on the southern flow path by 2009. 
The above studies identified that the key groundwater contaminants at the Acid Plant and Sulphur Stockpile zone were SO4, Al, Fe, Mn and U. Concentrations in groundwater appear to fluctuate seasonally, being highest in the wet season, and lower in the dry. pH in this zone is also very low, with groundwater in one bore recording a pH of 2.69. The acid plant and sulphur stockpile had been decommissioned or removed by the 2008 dry season.
The contaminated site survey within the plant area identified Mn as the main groundwater contaminant of concern in the Power Station zone. Other trace metals were also identified as potential groundwater contaminants. 
Work by Gellert (2009a) showed that contaminant plumes were moving extremely slowly. They had not progressed measurably between 2006 and 2009. The contaminant plume from the CCD Circuit and Lime Towers had not reached bores 35 and 36 between the initial sampling in 2006 and the final round sampling in 2009. No samples have been collected after 2009 with which to verify any transport rates. 
ERA (Energy Resources of Australia Ltd, 2013a) state that the groundwater monitoring program for Ranger within the Corridor Creek Catchment is set up to identify potential impacts from process water seepage from Pit 1, as well as from the Corridor Creek Land Application Area (which lies to the south of Pit 1, in the headwaters of Corridor Creek). The land application area lies outside the area of this assessment. Contamination from the plant area, and its potential impacts, are not part of the routine groundwater monitoring program at Ranger. In fact, since the last round of sampling undertaken for Gellert (2009a); b), only two bores from the plant area contamination investigations have been sampled, bores 35 and 36, as part of the Leach Tank 1 spill investigation on 13 December, 2013. 
[bookmark: _Ref383594782][bookmark: _Toc390421178]Structural controls
Figure 4 shows that faulting is a key control on the geology of the Ranger mine site. Similarly, hydrogeological work undertaken across the site has identified that faulting and shearing play an important role in site groundwater flow regimes. In some cases, faults may act to compartmentalise groundwater systems, isolating some parts from others. In other cases, faults will provide conduits for flow. For example, Salama and Foley (1997) outline the importance of faults underlying the tailings storage facility in connecting it with the shallow and deep aquifer systems, via faults (and surrounding damage zones) acting as conduits, with only one of the nine mapped faults being identified as a barrier to groundwater flow. Similar levels of structural detail are not available in the plant area. Another type of secondary permeability may result from the foliated nature of the rocks at Ranger, although this has not been demonstrated.
Figure 4 also shows that a major north-trending fault offsets geological units approximately 400 m to the west of Leach Tank 1. This fault intersects east- and northwest-trending faults near Pit 3 and Pit 1 respectively. The hydraulic properties of these faults are unknown. Magela Creek is fault-controlled immediately to the east of the plant area. With baseflow being a potential component of the groundwater balance, it is important to understand the role that faults play in driving groundwater flow, interaquifer connectivity and surface water – groundwater connectivity. No geological structures have been mapped in the area underlying the plant, or in the Corridor Creek catchment to the south. As discussed above, flow in Corridor Creek appears to receive baseflow. 
[bookmark: _Toc390421179]Groundwater modelling
The Ranger uranium mine has been the subject of several groundwater computational models as reviewed by URS (2010). These include a model focusing on the fate and transport of contaminants from tailings in Pit 1 flowing towards Corridor Creek. Many of these models have focused on the Tailings Storage Facility (TSF) and to an extent cover parts of the plant site. URS (2010) summarises the modelling studies as being dependent on “pre-defined distribution of high permeability zones applied in the models” (p37, paragraph 4, URS (2010)).  While modelling has been undertaken for the TSF, Pit 1 closure, Pit 3 closure and the Ranger 3 Deeps project independently of each other, at the time of this assessment, there is no site-wide groundwater numerical model.
Current modelling at Ranger is focussed on the potential effects of proposed underground mining of Ranger 3 Deeps, down dip (to the east) of Pit 3. As part of this, a model combining existing Pit 1 and Pit 3 modelling is being developed by Intera and CSIRO for ERA. In addition, ERA is undertaking modelling to assist in planning for closure of Pit 1 and Pit 3. This project includes an assessment of the Upper Cahill Formation Hanging Wall Sequence situated beneath the plant site and the subsequent associated hydraulic conductivities to inform the hydrogeological conceptual model. Additional in-bore hydraulic testing of hydrolithology has identified that structures within the Hanging Wall Sequence do not exhibit any marked increases in hydraulic conductivity and that K generally decreases with depth. As with any borehole measurements, these are only representative of the hydrogeology and structure in the immediate vicinity of the borehole. The values of the Upper Cahill Formation from these packer tests are being incorporated into the conceptual model being developed for ERA. GA is unaware of any work available at this time examining transient flow of groundwater at a local-scale from the plant site towards the watercourses to the east of the site on a seasonal basis.
[bookmark: _Toc390421180]Analysis
[bookmark: _Toc378766820][bookmark: _Toc381014166][bookmark: _Toc381705161][bookmark: _Ref383594645][bookmark: _Toc390421181]Groundwater levels
Assessing the spatial and temporal variation of groundwater levels aids the understanding of movement of groundwater in the area. With sufficient good quality, accurate water-level data it is possible to quantify volumes and rates of groundwater flow as well as direction. Such quality data is also intrinsic to the development and accuracy of predictive numerical simulations of groundwater flow as well as to test the capacity of the model in replicating past water-levels. Depending on the type of numerical model, steady-state or transient, some form of time averaging of water-level data will be required to establish initial conditions for water-levels in the model.
The following methodology assesses groundwater level data as a temporal average for different periods over the plant site. This approach is undertaken due to the limited number of concurrent data points in a suite of bores for any specific month, particularly during recent years. The analysis is undertaken for a larger area than that studied by Alarcon Leon et al. (2007a)
[bookmark: _Toc381014167][bookmark: _Toc381705162][bookmark: _Toc390421182]Supplied ERA groundwater-level data
GA requested groundwater-level data from bores identified to be within 1 km of the spill extent. These bores were identified from a bore database included in URS (2010). The groundwater-level data provided by ERA included records from 151 bores in the vicinity of the plant. These groundwater-level records covered a date range of January 1981 to January 2014. Data consists of a mixture of manually measured water levels and automated logger data. Water-level data was provided in electronic form by ERA for seasonal analysis. The majority of data points were provided as Reduced Standing Water Levels (RSWL) in metres tied to the Australian Height Datum (mAHD). Some water-level data was provided as raw Standing Water Level (SWL), which required to be referenced to the AHD. The data was not prepared in a format that was readily assimilated for processing. This included:
Imprecise/missing bore location – i.e. rounded easting and northing values for location information
Missing construction details including measure point elevation, top-of-casing, and erroneous depth-of-hole measurements.
No specified null value for missing data
Inconsistency in water-level measurement convention (i.e. some bores were negative values versus positive values for standing water-levels.)
Poor consistency in bore naming (i.e. RP2_15 vs RP2/15)
[bookmark: _Toc381705163][bookmark: _Toc390421183]Processing assumptions
The supplied data created challenges for its processing and evaluation. Some of the data errors were secondary, such as water-levels measured at depths below the total bore depth. Due to the limited availability of data, such errors were assumed to be minor and the data was included in the analysis.
The majority of the ERA-supplied water-level data was assumed to be referenced to the Australian height datum by ERA and appropriately quality verified, however a summary review of groundwater hydrographs indicate some water level records as being above the measure point (See Appendix A). Key to this analysis of water-level data is the accurate vertical position of the water-level record measure point for each bore. Where no top-of-case or measure-point elevation was provided, the 1 second resolution Shuttle Radar Topography Mission Digital Elevation Map data was used to extract an estimated natural surface elevation. This digital elevation data was used as a proxy for the missing measure point elevation to convert the standing water-levels to reduced water levels in metres AHD. This assumption contributes to the uncertainty of water-levels in bores. However, this is considered to be acceptable for the level of evaluation being conducted for this assessment.
As outlined in Section 1.1.4, the shallow groundwater system at Ranger, including under the Plant area, is considered to act as a single aquifer. In addition, the deeper system interacts with the shallow system in places, and this is facilitated by weathering style and faulting. This assessment is based on these working assumptions.
[bookmark: _Toc381014168][bookmark: _Toc381705164][bookmark: _Toc390421184]Groundwater-level analysis method
The spatial distribution of bores is important to be able to establish a groundwater flow pattern and critical component in assessing the water-level data is the seasonality and the induced changes in groundwater flow at the site. With the limited availability of bores with extensive and concurrent measurements of water-levels over time, it was necessary to evaluate averaged data sets. 
This approach has its limitations but also has the benefit of identifying longer-term trends in the groundwater levels and subsequent flow paths and gradients beneath and around the plant site.
Long-term seasonal average groundwater-level
The long-term average for the entire water-level data set provided by ERA is indicative of long-term prevailing groundwater flow patterns regardless of the inherent variation due to seasonality. This type of water-level average can be used as a comparison to steady-state numerical groundwater model outputs. From the rainfall record (Figure 3), the wet season at Ranger extends from November to April, and the dry season from May to October. As such, water-level records for the months of November, December, January, February, March and April for all years were averaged per bore to give a long-term wet season average. This analysis was also conducted for the dry season months of May, June, July, August, September and October. There was an appropriate number and spatial distribution of bores to allow a spatial interpretation of the prevailing seasonal flow patterns from the data supplied. This approach gives insight to the variation in prevailing long-term seasonal groundwater flow directions and is comparative to a seasonal two-state, steady-state groundwater flow model.
Annual seasonal average groundwater-level
The assessment of annual seasonal average water-levels is to identify spatial variations in groundwater level due to changing rainfall recharge conditions from year to year. Due to the paucity of temporal data and appropriate spatial distribution of the data over the site for water-levels in the last 7 years, aside from the prevailing groundwater divide under the site, no conclusive assessment of groundwater flow direction or magnitude could be inferred from the annual seasonal data. A summary of available seasonal data availability is provided in Table 6. With appropriate data availability, it may be feasible to conduct a transient annual seasonal groundwater flow model of the region.
[bookmark: _Toc381705165][bookmark: _Toc390421185]Result summary
Long-term seasonal average groundwater-level mapping
The 1 second DEM (Figure 15) highlights the low topographic relief across the plant site, with ore and waste rock stockpiles having greater elevation. It can be seen that groundwater flow broadly follows topography, however the surface watersheds and local groundwater divides are not always co-located as inferred by Alarcon Leon et al. (2007a) is the case under the plant area (Figure 14).
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[bookmark: _Ref380728425][bookmark: _Toc381012617][bookmark: _Toc381051466][bookmark: _Toc390761279]Figure 15. Surface topographic contours derived from 1 second Shuttle Radar Topography Mission Digital (SRTM) Elevation Model (DEM)
An assessment of long-term averages in seasonal water-levels indicates a likely groundwater divide trending from the West-southwest from under the stockpiles to East-northeast beneath the plant site to Magela Creek. Of concern is the limited number of water-level records for bores within the plant vicinity. Figure 16 also displays those bores with less than 100 water-level records for all available, this is indicative of the comparative quality of the averaged water-level between bores. That is, there is lower confidence in averaged value for bores with a lower number of records. Due to the large number of bores with limited water-level records in the vicinity of the plant site, it is difficult to ascertain if these plots of long-term trends in groundwater elevation and flow are representative of actual conditions in the region around the plant site.
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[bookmark: _Ref380732643][bookmark: _Toc381012618][bookmark: _Toc381051467][bookmark: _Toc390761280]Figure 16. Long-term average of all water-level records. Bores with fewer than 100 records have been labelled with the number of records available. Arrows indicate general direction of groundwater flow
Consequently, the evaluation of the long-term average of water-levels during the dry season (Figure 17) is again hampered by the paucity of water-level records immediately within the plant site footprint. The groundwater divide is accentuated in the long-term average of dry season water-levels with groundwater flowing to the north-northwest and to the south-southeast directions with the divide situated immediately beneath the plant site.
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[bookmark: _Ref380763507][bookmark: _Toc381012619][bookmark: _Toc381051468][bookmark: _Toc381783958][bookmark: _Toc390761281]Figure 17. Long-term average of dry season water-level records. Bores with fewer than 100 records have been labelled with the number of records available. Arrows indicate general direction of groundwater flow
A similar divide of flow is seen in the long-term average wet season water-levels shown in (Figure 18). In general, there are marginally more water-level records during the wet season, but only in the order of less than 4 additional records and this is limited to only a few bores in the vicinity of the plant site. Of interest in Figure 18 is an apparent groundwater mound to the south of the plant site. However this is only derived from two water-level records in bore OA11 to the south of the plant site.
Aside from the subtle variation in the location of the interpreted groundwater divide, the size and shape of the long-term wet season average groundwater mound under the site broadens relative to the size and shape of the long-term dry season average water-level. A secondary inferred groundwater divide results from limited data in bores OA09 and OA11.
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[bookmark: _Ref383513610][bookmark: _Toc390761282]Figure 18. Long-term average of wet season water-level records. Bores with fewer than 100 records have been labelled with the number of records available. Arrows indicate the direction of groundwater flow
The majority of the plant site and subsequent spill is located on the Upper Cahill Formation Hanging Wall Sequence (Figure 4). The Hanging Wall Sequence (HWS) has low measured hydraulic conductivities. These K-values range from 4x10-3 to 1x10-6 m/day in the schists to 1x10-5 to 2x10-8 m/day in carbonate rocks which occur between Pit 1 and Pit 3, to the west of the spill-affected area (Intera, 2013).
Seasonal average water-level map
Recent seasonal average water-levels maps are of interest in light of the recent leachate spill as they can provide information of groundwater flow in the context of preceding seasonal rainfall prior to the spill. Due to the limited number and spatial distribution of available records, only the seasonal average water-level maps for the wet season of 2008-2009 and the dry season in 2008 could be constructed. The resulting maps of groundwater levels (Figure 19 and Figure 20) have been displayed with a count of the number of records in each bore, where the count is less than 10 records. Previous studies have not assessed the number of records available during a seasonal period.
The map of average water-levels during the wet season of 2008/2009 (Figure 19) shows a mounding of groundwater beneath the plant site. This is confirms the initial assessment of long-term seasonal groundwater levels. However with the limited number of water-level records in each bore does not allow for an interpretation of this map against individual rainfall events.
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[bookmark: _Ref381048936][bookmark: _Toc381051470][bookmark: _Toc381783960][bookmark: _Toc390761283]Figure 19. 2008/2009 wet season average water-level. Bores with fewer than 10 records have been labelled with the number of records available. Arrows indicate general direction of groundwater flow
The average water-level map for the dry season of 2008 (Figure 20) indicates a less broad groundwater mound beneath the plant compared to the wet season that follows it as shown in Figure 19. With limited water-level records at the plant site, it is difficult to determine if this is truly representative of the seasonal average water-levels. The divide is, however, clearly present and a groundwater mound is persistent across all seasonal average maps. This indicates a flow of groundwater in a northerly direction from the plant site towards RP2 and southerly towards Corridor Creek. This implies that the plant area is an area of recharge. This accords with findings from Alarcon Leon et al. (2007a), as well as with this part of the site being a broad topographic high point.
The assessment of water-levels draws comparative conclusions to previous studies from Alarcon Leon et al. (2007a) and shows similarities with maps produced for other work being undertaken by ERA. The maps of average water-levels provide a larger-scale context for groundwater flow relative to previous studies by collating information from a greater spatial distribution of bores.
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[bookmark: _Ref381050763][bookmark: _Toc381051471][bookmark: _Toc381783961][bookmark: _Toc390761284]Figure 20. 2008 dry season average water-level. Bores with fewer than 10 records have been labelled with the number of records available. Arrows indicate general direction of groundwater flow
[bookmark: _Toc381705166][bookmark: _Toc390421186]Groundwater-level analysis limitations
To develop seasonal water-level surfaces for assessing seasonal groundwater flow, sufficient spatial distribution of bores is required as well as an adequate number of records in each bore to allow a representative seasonal average to be calculated. The “natural neighbour” spatial interpolation method selected used a minimum of 20 bore locations to generate a suitable surface. Table 6 displays the number of bores available per season in recent years and the corresponding number of records in those bores. The wet season of 2009/10 and the dry season of 2010 identify an anomaly in the number of records due to the bore RP3 which has a high density of water-level records during these seasons, presumably as a result of data loggers being installed. A higher sampling frequency for water-level data in certain bores adds additional information, however it does cause issue with the use of averaged water-levels.
[bookmark: _Ref381100136][bookmark: _Ref381103663][bookmark: _Toc390761299]Table 6. Count of bores with seasonal data and the number of records. The anomaly in the count of records during the Wet 2009/10 and the Dry 2010 seasons are a result of an intense period of monitoring in bore RP3 are shown in bold
	Season
	Count of bores
	Count of Records

	Wet 2007/08
	2
	148

	Dry 2008
	28
	228

	Wet 2008/09
	44
	274

	Dry 2009
	13
	386

	Wet 2009/10
	12
	21622

	Dry 2010
	13
	30037

	Wet 2010/11
	13
	305

	Dry 2011
	13
	331

	Wet 2011/12
	11
	62

	Dry 2012
	11
	83

	Wet 2012/13
	11
	55

	Dry 2013
	11
	77

	Wet 2013/14
	11
	28


The use of time averaged water-levels can be indicative of fundamental groundwater flow in a region, however changes in sampling frequency, particularly during a specific period (such as RP3 during 2009-2010 and 79/2 during 1982-1987 and 1998-2000 versus the number of records post 2005) can skew the long-term averages towards values during those specific time periods due to the density of records during those periods.
Figure 21 shows the variation of recording frequency in bore 79/2 and how this distribution of records over time can skew the data towards the high frequency recording period. The rapid drawdown exhibited in bore 79/2 groundwater level from 1998 onwards is the result of dewatering in Pit 3. The 79/2 data also contains anomalous spikes in the record of water-levels (Figure 21); this cannot be readily explained from the data or metadata accompanying the data set. It is assumed these anomalies could be associated with logger removal and data retrieval. For this assessment, 79/2 was included in the groundwater-level and flow direction assessments, however, where groundwater-level datasets exhibit similar poor quality control, and lack of metadata, any derived products must be questioned.
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[bookmark: _Ref381101266][bookmark: _Toc381783963][bookmark: _Toc390761285]Figure 21. Reduced Stand Water-level (RSWL) records for bore 79/2 (black line). The red crosses are individual measurements. Note the high density of measurements during the wet season of 1982-1987 and 1998-2000 relative to the number of records post 2005. Spikes in the data appear anomalous with no reason found in the metadata accompanying the 79/2 water-level data. The blue dotted line plots the available top of casing data for the bore 79/2. The decline in water-levels from September 1998 is likely associated with dewatering
Comparatively, Figure 22 shows a higher density of groundwater level records over a shorter time period, and includes some anomalous records in December 2010, which have no associated metadata indicating these water-levels are to be disregarded.
The use of long-term averaged water-levels can be skewed by variations in sampling density, with an emphasis on water-levels during high sampling rate periods; however the comparative assessment of annual seasonal averaged water-levels indicates some consistency in the directions of flow and the shape of the groundwater mound under the plant site.
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[bookmark: _Ref384218605][bookmark: _Toc390761286]Figure 22: Reduced Stand Water-level (RSWL) records for bore RP3 (black line). The red crosses are individual measurements. Note the high density of measurements during the wet season of September 2009 and September 2010 relative to the number of records post 2010. Spikes in the data around December 2010 appear anomalous with no reason found in the metadata accompanying the RP3 water-level data. The apparent lack of seasonal variation may be due to a buffering provided by Retention Pond 2, and other on-site water management practises
[bookmark: _Toc381705167][bookmark: _Toc390421187]Flow path assessment
From both long-term average water-level analysis and recent average seasonal water-level assessment, there is a persistent groundwater divide located beneath the plant site causing groundwater to flow from the plant area in a north-northwest direction towards RP2 and in a south-southeast direction towards Corridor Creek. There may be subtle variations in flow directions over time, particularly yearly seasonal variations, but the general trend in a northerly and southerly direction remains consistent over time. The breadth of the groundwater flow divide changes with each season and the subsequent gradients in flow change also.
[bookmark: _Ref383594667][bookmark: _Toc390421188]Plant area hydrogeochemistry
[bookmark: _Toc390421189]Hydrogeochemical methods
Groundwater contaminant mapping
As outlined in Section 1.1.4, the shallow groundwater system at Ranger, including under the Plant area, is considered to act as a single aquifer. In addition, the deeper system interacts with the shallow system in places, and this is facilitated by weathering style and faulting. This assessment is based on these working assumptions. Data for hydrogeochemistry was provided by ERA. GA requested all hydrogeochemical analyses from bores within a 1 km radius of the spill extent. This was based on a bore database provided in URS (2010), and identified 200 bores. Of these 200 bores, ERA was able to provide hydrogeochemical data for 90, for a total of 5031 samples. The minimum number of samples available from a borehole was one, the maximum 642, the average 55.9 and the median 3.5. Samples were taken between March 1982 and January 2014. Geochemical data were available from both open holes, and bores screened at a variety of depths, from between 2.6 m and 150 m down hole depth. Of the 90 bores with available hydrogeochemical data, 18 did not have data for pH, SO4, HCO3, U, or Mn for every sample. This represents 20% of the available samples. This includes bores with only one recorded hydrogeochemical sample, and one bore with 193 recorded samples. Alarcon Leon et al. (2007a) and Klessa (2001), among others, have shown that these parameters are important in understanding contamination at Ranger. Most bores with hydrogeochemical data contain results for these parameters, and they are used in this assessment.
Sulfate has been identified as the most conservative ion associated with leached ore (Klessa, 2001). In addition, Alarcon Leon et al. (2007a) identified sulfate as a key tracer of pre-spill contamination from the plant area. In the current assessment sulfate was used as an indicator to map the pre-spill contamination extent in groundwater under the Plant area. Sulfate in groundwater was interpolated from averaged data collected between 2006 and 2013. This yields an average groundwater sulfate map over the given period, and highlights the extent of contamination at the site prior to the date of the spill. The Interpolation method used was the natural neighbour method in ArcGIS. This interpolation technique is a weighted average method that is optimised for handling input point datasets, and works well with clustered point data, such as the bore data provided by ERA (Childs, 2004).
HCO3 and pH average data for the same period were processed in the same manner. A pH map was produced to gain a better understanding of the current extent of groundwater contamination while a HCO3 map was produced to gain an understanding of potential buffering capacity for the uncontaminated groundwater which may be exposed to contaminant fluid.
Hydrogeochemical characterisation of groundwater and Leach Tank 1 contaminant fluids
The groundwater chemical composition was characterised using Stiff Diagrams, giving a distribution of the major fluid components as well as the concentration of those components. This method was chosen over other graphical representations due to the large inherent range in groundwater chemistry both spatially and seasonally. It was also chosen to best illustrate groundwater chemistry given the limited data. Stiff Diagrams are a simple method to differentiate between water bodies and also for understanding the chemical evolution of a fluid. This method of graphical representation is described in Freeze and Cherry (1979).
[bookmark: _Toc390421190]Hydrogeochemical analysis
Pre-spill contaminant mapping
To understand the possible impacts of the December 2013 Leach Tank 1 spill, the baseline hydrogeochemistry needs to be characterised prior to this date.
It is evident from Figure 23 that pre-existing contamination occurs under the plant area. The sulfate concentrations range from below detection limit in the south-southeast and northeast of the plant area to approximately 12,000 mg/L (bore C1) under the lime towers. The extent of elevated sulfate seems to be relatively constrained along the flow paths towards the south-southeast and to the north which may be due to low permeability sediments or possibly alternative flow pathways not apparent in current water level data. These patterns are consistent with groundwater flow shown in the groundwater-level data. The pre-spill contamination also extends towards the northwest of the plant area; this may be due to a range of processes such as higher hydraulic gradients or higher horizontal hydraulic conductivities. It is still unclear what the source of the contamination may be, but this mapping is consistent with other work, which showed that SO4 plumes extend towards the northwest and south-southeast of the plant area (Alarcon Leon et al., 2007a; Gellert, 2009a; Gellert and Jones, 2008). 
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[bookmark: _Ref381187787][bookmark: _Toc390761287]Figure 23. Natural neighbour interpolated surface of average SO4 concentrations in groundwater between 2006 and 2013. Labelled bores are used for more detailed analysis
Bicarbonate alkalinity under the plant area exhibits general commonality with trends in sulfate (Figure 24). As HCO3 is not directly derived from spill material or groundwater underlying the plant area, the observed distribution may be explained through a combination of processes, the most likely being weathering of minerals such as plagioclase, induced by low-pH groundwater, or interaction of recharge water with lime dust at the surface from the lime towers. The possibility of the lime towers as a source of contamination would make HCO3 a good potential tracer of contaminant from the plant area. Geological mapping (Figure 4) shows that the elevate HCO3 to the west of the plant area corresponds with a change in the geology.
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[bookmark: _Ref381187953][bookmark: _Toc390761288]Figure 24. Natural neighbour interpolated surface of average HCO3 concentrations between 2006 and 2013. Labelled bores are used for more detailed analysis
The interpolated pH map (Figure 25) shows similar trends to sulfate but the extent of low-pH groundwater is greater than that of elevated sulfate groundwater. There are clear plumes extending to the northeast and south-southeast of the plant site. The pH under the spill site is 2.76 at the lowest point directly under the Acid Plant and Sulphur Stockpile; this may be the source of contamination for groundwater in the area. The low pH distribution may however not be entirely sourced from the Sulphur stockpiles as the soil pH for the area is between 4.8 - 5.5 (ASRIS, 2013). The soil pH range is higher than that of groundwater observed under the Acid Plant and Sulphur stockpile. Low pH and high HCO3 are not mutually exclusive parameters in groundwater hydrogeochemistry.
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[bookmark: _Ref381187897][bookmark: _Toc390761289]Figure 25. Natural neighbour interpolated surface of average pH between 2006 and 2013. Labelled bores are used for more detailed analysis
Groundwater hydrogeochemical characterisation pre-spill
Bore C1a is immediately adjacent to the lime towers and a sample taken on 15 January 2009 
Figure 26) has a strongly Ca/HCO3 water type, suggesting it is possible that elevated HCO3 is a result of CaCO3 dissolution, potentially sourced from the lime dust in the lime towers area of the plant. Plagioclase weathering would result in higher Na proportions than those recorded and carbonate minerals are not reported as a major component of the rocks of the plant area. This suggests that HCO3 may be a good tracer of pre-spill contamination under the plant area.
[bookmark: _Ref381188040][image: C:\Users\Gerhard Schoning\Desktop\ranger chem\figures\C1a 2009.emf]
[bookmark: _Toc390761290]Figure 26. Stiff Diagram from bore C1a on 15/01/2009 showing a Ca/HCO3 type water
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[bookmark: _Ref381188025][bookmark: _Toc390761291]Figure 27. Stiff Diagram from bores 35 and 36 on 15/01/2009 showing Mg/SO4 and Na+K/SO4 water types
Bores 35 and 36 are down flow of bore C1a, and from existing contaminant maps (Figure 23, Figure 25 and Figure 24) are probably outside the pre-spill plume extents. Figure 27 shows that groundwater at bores 35 and 36 is characterised by the dominant anion being sulfate, with Mg and Na+K representing the dominant cations. Given that the water type at these two bores down flow of the plant area is distinctly different to that of the pre-spill contaminant composition of Ca/HCO3 dominance (represented by C1a) it is unlikely that these sites were affected by contamination at 15 January 2009. This is consistent with the conclusion also reached by Gellert (2009a).
 Post-spill groundwater characteristics
Not enough data was available to enable post-spill hydrogeochemical mapping to be undertaken. Only two post-spill hydrogeochemical samples had been taken by ERA in the Corridor Creek catchment, at bores 35 and 36. To that end, the only post-spill hydrogeochemical characterisation was possible at these sites.
Bores 35 and 36 were sampled by ERA six days after the 7 December 2013 Leach Tank 1 spill. Figure 28 shows Stiff Diagrams giving the groundwater composition of bores 35 and 36. Although the concentrations are almost an order of magnitude higher in comparison to 2009, the water type is still Mg/SO4 dominant, with Na+K being a secondary cation component.
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[bookmark: _Ref381188095][bookmark: _Toc390761292]Figure 28. Stiff Diagrams from bores 35 and 36 post-spill composition
[bookmark: _Ref381179900][bookmark: _Ref381179908][bookmark: _Toc390421191]Hydrogeochemical Impact Assessment 
Analysis of very limited post-spill data provides no evidence to either support or refute that the Leach Tank 1 spill on 7 December 2013 entered the groundwater underlying the plant. This may reflect low flow rates, the similarity of the leachate with the groundwater underlying the plant area, the lack of information on the actual or potential for leachate to infiltrate through the unsaturated zone into the groundwater system and the lack of post-spill groundwater level measurements or quality samples taken. In addition, it is likely to be difficult to assess the singular impact of the 7 December 2013 spill in the context of the pre-existing contamination underlying the plant area.
Leach tank discharge chemical results provided by ERA shows that the material has very high sulfur (averaging 23,112 mg/L; equivalent to 69,241 mg/L SO4), Mg (averaging 9,152 mg/L), Mn (averaging 2,712 mg/L), Fe (averaging 3,004 mg/L) and aluminium (averaging 2,665 mg/L). Similarly, filtered acid leach slurry samples from the spilled material (Table 3) have elevated SO4 (25,233 mg/L), Mg (3,780 mg/L) and Mn (1,091). This can be considered to be equivalent to an Mg/SO4 dominant fluid. While the leachate is likely to have a similar chemical signature to groundwater under the plant area (Mg/SO4 dominant), it potentially interacted with lime dust at the surface and may have acquired a high HCO3 composition, which is not shown in Figure 28. This does not rule out the possibility that the 7 December 2013 spill has impacted the groundwater at bores 35 and 36 if, for instance, fracture flow allowed for faster travel times and minimal interaction with lime occurred then the observed compositions could be expected. The order of magnitude difference in concentrations between 2009 and 2013 may be due to the post-spill samples being collected in the transition from wet to dry season, such that wet season recharge had not yet diluted groundwater.
It is also important to consider the relatively low volume of leachate that potentially infiltrated into the groundwater system. Of the 1.4 million litres of Leach Tank 1 material released in the spill, most of this was removed from the surface or remained within the bund. Of the material that remained, it is estimated that the majority flowed into RP2. A conservative estimate of 1900 L of fluid may have remained at the surface and had potential to infiltrate and interact with groundwater[footnoteRef:8]. Based on the water table mapping described earlier, it is assumed that approximately half may have entered the northerly flow path, and half the southerly flow path. A leachate chemical composition similar to current (pre-existing, contaminated) groundwater might make it difficult to differentiate the extent of any impact from the spill.  [8:  This estimate is based on the assumption that the spill was 10 cm deep over 30 m2 of the spill extent area amenable to infiltration (vegetation or unsealed and uncompacted ground) gives 3000 L of slurry. The slurry is 37% solid material, 63% liquid. This yields 1900 L of liquid at the surface which had a chance to infiltrate the soil.] 

A simple calculation based on K values and flow directions, not taking into account unsaturated zone flow or reactive transport, shows that for any leachate that may have infiltrated the groundwater system and reached bore OA11 (~180m to the south of the edge of the spill extent), it could take between 60 and 1800 days. Similarly it could take between 50 and 1500 days for the bores to the west, and 15 to 370 days to reach RP2 (to the northwest) via a groundwater pathway. As discussed above, given the relatively small volume of leachate with the potential to enter the groundwater system, and that only a proportion of that will enter the southerly groundwater flow path, a hydrogeochemical response is unlikely to be detected from this particular incident.
It is however possible to infer the likely water-rock interactions which would take place as a result of the spill. ERA supplied leach tank material chemical data to GA in January 2014, which showed that the spill material had high concentrations of total Fe, SO4 (using S concentration as a proxy) and a pH of 1.2; it is possible that hydrated ferrous sulfate efflorescence would form in the unsaturated zone upon oxidation of ferric-oxyhydroxides or basic ferric sulfates by the spill material. This process has the potential to immobilise some of the contaminants in the plume but, to confirm this, detailed mineralogical tests would need to be undertaken on unsaturated zone material from within the spill extent area. Porosity and permeability analysis of unsaturated zone material would also provide data about the likelihood that leachate could infiltrate to the groundwater system.
[bookmark: _Ref381628713][bookmark: _Ref382828118][bookmark: _Ref382828133][bookmark: _Toc390421192]Data gaps and uncertainty
Data and knowledge gaps have been identified as part of this assessment which have a bearing on understanding the potential impacts of the December 2013 Leach Tank 1 spill, closure planning and general hydrogeological understanding of the site.
A lack of repeated water-level measurements and groundwater quality sampling since 2009 at bores to the south and southeast of the plant site means that flow paths and the extent of pre-spill contamination towards Corridor Creek is poorly understood. Lack of data in this part of the site has implications on the predictive capacity of any modelling. As a result, it is difficult to characterise the background chemistry and identify seasonal variation (including major ion chemistry, trace metals, and pH), including a lack of time series data to enable differentiation between contamination and natural variation, such as seasonal variation.
Water-levels were provided as both positive and negative numbers, without any information as to whether this represents a change in measuring practice, or real (artesian) conditions. In addition, some bores do not have recorded reference points from which water-level measurements are taken.
Not all groundwater data relating to the Ranger site is stored in a centrally located database. Data from work undertaken by consultants was not stored with ERA-collected data.
Structural geology under the plant area and surrounds is poorly understood, particularly in Corridor Creek catchment area. While it is recognised that sections of Magela Creek are fault-controlled, and these sections interact with groundwater, it is not clear if Corridor Creek is similarly dependent on faulting or other geological structures.
Very little information is available relating to percolation and flow through the unsaturated zone. This is important in understanding recharge and discharge dynamics.
Data and information about the deeper, regional groundwater system to the southeast of the Ranger site is lacking. This includes information about the potential importance of vertical flow and connection to the deeper regional groundwater system, which informs model development. This gap can be provided by deeper, nested vertical bores in strategically identified locations. 
Mineralogy of soil materials across the plant area is required to understand the potential mineral precipitation and dissolution processes that may occur in the event of future incidents, to inform geochemical modelling of water-rock interactions in the unsaturated zone affecting the availability of contaminants to groundwater, as well as providing knowledge to inform closure planning.
There is no coherent site-wide analysis of hydrographic or hydrogeochemical analysis within a well-defined geological and structural framework. This is amplified by the lack of a single, site-wide groundwater model at Ranger.
[bookmark: _Ref383594704][bookmark: _Toc390421193]Conclusions
There is insufficient post-spill data to either support or refute that the Leach Tank 1 spill in December 2013 entered the groundwater underlying the plant. This conclusion is based on data contained in the hydrogeochemical impact assessment presented in Section 3.2.3. Despite this, the spill from Leach Tank 1 on 7 December 2013 is considered unlikely to have impacted the offsite environment via the groundwater pathway. 
From both long-term average water-level analysis and recent average seasonal water-level assessment, there is a persistent groundwater divide located beneath the plant site causing groundwater to flow from the plant area in a north-northwest direction towards RP2 and in a south-southeast direction towards Corridor Creek.
Groundwater underlying the plant area has previously been shown to be contaminated (see Section 2.3 and 2.4.1), yet water quality in Corridor Creek has not shown evidence of this contamination. In addition, contaminant mapping undertaken in this assessment show the plumes are of limited extent. While the surface water in the spill-affected area all flows to RP2, groundwater (shown to be contaminated) from the plant site flows to the north as well as to the south and south east. Groundwater flowing along the southerly flow path may have the potential to interact with Corridor Creek and via this Magela Creek under suitable flow conditions. While groundwater level and chemistry data are too sparse to allow a more detailed and specific assessment, the combination of surface water data and available groundwater data provide the grounds for making assumptions about the relative risk of offsite contamination via the groundwater pathway.
The area exposed to spill material is comprised of sealed and unsealed surfaces, with approximately 30 m2 being vegetated. The sealed areas will have acted as an effectively impermeable material, facilitating surface runoff with no infiltration. The unsealed areas are heavily trafficked and compacted, and likely to have acted in a similar manner to the sealed areas. The soil profile information collected from the plant area was compacted, and of low permeability due to the high clay and fine material fractions. 
Of the 1.4 ML of spill material, 1900 L of liquid interacted with the vegetated area, the most likely area for infiltration to occur. This is a low volume of liquid, which will have interacted with low-permeability unsaturated zone materials. The hydrogeochemical risk assessment showed that given the existing groundwater quality underlying the plant area, the relatively small volume of leachate with the potential to enter the groundwater system, the low permeability of unsaturated zone materials, and low groundwater flow rates, the likelihood of leachate from the 7 December spill reaching Corridor Creek is low. This conclusion is supported by data from Corridor Creek, which lies well within the mining lease boundary. 
While this spill is unlikely to have impacted the off-site environment, the lack of groundwater understanding along the southerly flow path needs to be addressed at least as part of closure planning. This includes improving the understanding of the interaction between the local, shallow groundwater systems with the deeper, regional system. In particular, the role of geological structures, and their hydraulic properties, requires quantification. Geological structures may also play a key role in connecting the groundwater and surface water systems in the region. The potential for extension of the groundwater contamination plume away from the plant area needs to be understood to inform future assessments.
[bookmark: _Ref383594721][bookmark: _Toc390421194]Recommendations
[bookmark: _Toc390421195]Groundwater system understanding
GA recommended initial follow up weekly investigative water-level monitoring and water quality sampling at bores 35, 36, 47, OA09, and OA11[footnoteRef:9] (shown in Figure 29). These bores were selected based on analysis of water levels, to determine most likely flow directions away from the spill affected area. This initial sampling and monitoring is important in understanding whether December 2013 samples from bores 35 and 36 represent groundwater contamination from the spill, or the broader contamination already identified in the plant area propagating via the groundwater flow path, or any combination of the two. GA recommended that initial follow up investigative samples include water level, EC, dissolved oxygen, oxidation/reduction potential, pH, alkalinity by titration, temperature, turbidity, major cations and anions and (filtered) minor and trace metals, as well as nitrogen (T_N) and Ionic Balance. In addition, installing automatic data loggers in these bores should be considered to obtain time series groundwater-level data. [9:  Original recommendations included bores OA10 and 20A. Bore 20A was destroyed during construction of the brine concentrator, and OA10 is unable to be located. Potential replacements for 20A were ruled out during a site visit, as they appeared to be damaged or destroyed. A potential replacement for OA10, for longer term monitoring is bore MC38] 

The water quality of groundwater at these locations showed no significant variation after five sampling events during April. GA recommended that sampling at these bores be undertaken monthly. GA recommends that ERA should work to incorporate at least these five monitoring points in the Ranger Groundwater run of ongoing routine operational groundwater monitoring (Energy Resources of Australia Ltd, 2013b) and that results from these bores be reported as part thereof. As part of any monitoring, sampling and reporting program, data quality issues identified in Section 4 should be addressed.
Installation of deep monitoring bores in the Corridor Creek catchment, as well as on the southern side of Corridor Creek should be considered. These will provide valuable data to assist in determining potential connection of groundwater of the Ranger site with that of Kakadu National Park and the regional groundwater system.
More detailed geological mapping should be undertaken to provide data on the presence or absence of geological structures in the Corridor Creek catchment. This should be informed by appropriate geophysical investigations, and will, in turn, inform a more thorough hydrogeological conceptual model of this part of the Ranger mine site. 
Information from soil profiles should be gathered to underpin future groundwater impact assessments, as the soil profile is the principal pathway by which contaminants may enter the groundwater system. This is particularly important to understand given the potentially significant physicochemical effects of the seasonally fluctuating water table at Ranger. It is important to know the mineralogy of soil materials, as this determines the potential dissolution and precipitation reactions that can be expected to occur in the event of spills, or post-closure.
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[bookmark: _Ref381626204][bookmark: _Toc390761293]Figure 29. Location of bores recommended for immediate sampling and inclusion in operational monitoring regime
More detailed analysis of hydrogeological and hydrogeochemical conditions should be undertaken across the Ranger mine site. This would include groundwater level mapping, hydrogeochemical interpolation, as well as integrated geological and hydrogeological conceptualisations to provide robust information to closure planning. All bores should have their screened intervals assigned to an aquifer from the hydrogeological conceptual model where possible. Where this is not possible, the reasons for this should be recorded. This will allow a more in-depth analysis of groundwater-level and hydrogeochemical data. Additional stream and groundwater hydrograph analysis should be undertaken to inform the importance of baseflow to the groundwater balance. As part of this analysis, bore locations and measurement reference points should be surveyed, and a bore status audit undertaken.
Following any reconceptualisation, and as part of hydrogeological investigations for closure, hydraulic properties of faults and geological damage zones should be analysed. It is understood this is being undertaken for the Ranger 3 Deeps project, as well as for work currently being undertaken by CSIRO and Intera for ERA.
[bookmark: _Toc390421196]Groundwater modelling
The seasonal variation in groundwater-levels and flow precludes the use of steady state modelling to inform local-scale assessment around the plant site. This form of modelling is more applicable to long-term trends in groundwater flow directions. A better understanding of recharge and water flow through the unsaturated zone during the distinct seasonal periods will add much information regarding the key driving mechanisms in the model from seasonal rainfall. To this end more recent data is required to adequately calibrate any models, transient or otherwise.
The lack of hydrogeological understanding in the southeastern corner of the Ranger site is a crucial data gap that needs to be addressed for proper impact assessments. Once these data gaps have been addressed, a more detailed understanding of the potential hydrogeological processes that may occur as a result of groundwater contamination may be developed. Chemical processes along flow paths such as water-rock interaction and redox processes should be assessed to understand the fate of high concentration solutes such as SO4, Fe, Mg, Cu, Mn and U in the system.  This is best done in combination with groundwater flow modelling in the form of coupled reactive transport models. This approach can give an indication of the likely impacts and extents, not only of the recent spill but also of the cumulative contamination which would be crucial in any future assessments.
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The following bore hydrographs were reviewed as part of a quality assurance process in the interpretation of groundwater levels. Much of the data provided by ERA was as Reduced Standing Water Levels (referenced to mAHD). In some instances were Standing Water Levels only were provided, these were converted to a RSWL by using the top of casing information supplied with the bore details. Where no top of casing information was provided, the natural surface elevation was sampled from the 1-second DEM data to be used as a proxy. The following hydrographs have had the top of case elevation plotted as a blue dashed line. Where no top of casing data was supplied the natural surface elevation was plotted as a green dashed line. The hydrographs show the measured groundwater level (in mAHD), with the bore identified at the top of each chart.
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Figure A-1. Map showing location of bores in this appendix

Table A-1. Synopsis of hydrograph bore screening information provided. Where no screening information was available, it was assumed to be an open bore at the base. Also includes  summary statistics RSWL (mAHD) as well as a count of water-level records for the bores
	Bore
ID
	Top of screen
	Bottom of screen
	Bore description
	RSWL max
	RSWL mean
	RSWL min
	Record count

	10
	2.50
	5.50
	Lime Tanks
	20.62
	21.84
	19.82
	4

	15B
	1.00
	4.00
	Power Plant Cooling Towers
	18.11
	18.11
	18.11
	1

	15C
	4.00
	7.00
	Power Plant Cooling Towers
	18.38
	18.73
	18.20
	3

	1A
	N/A
	N/A
	N/A
	20.93
	20.93
	20.93
	1

	2
	4.00
	7.00
	Conveyor Area
	21.09
	22.16
	20.32
	4

	20
	0.25
	4.75
	Acid Plant
	20.19
	20.65
	19.74
	2

	20A
	N/A
	6.75
	Acid Plant
	19.56
	19.86
	19.35
	3

	22
	N/A
	7.7
	Conveyor Area
	21.49
	22.14
	20.54
	4

	23558
	2.60
	3.60
	Djalkmarra Ck
	11.41
	13.49
	6.94
	196

	23559
	5.00
	6.00
	Djalkmarra Ck
	10.83
	13.84
	7.22
	172

	23560
	3.78
	4.79
	Djalkmarra Ck
	11.68
	13.57
	8.11
	178

	31A
	3.00
	7.00
	Bulk Diesel Tanks
	23.99
	24.28
	23.79
	3

	31B
	7.00
	10.00
	Bulk Diesel Tanks
	23.63
	23.67
	23.57
	3

	31C
	3.00
	7.00
	Bulk Diesel Tanks
	23.39
	23.39
	23.39
	1

	31D
	3.00
	7.00
	Bulk Diesel Tanks
	23.45
	23.45
	23.45
	1

	32
	4.00
	7.00
	Bulk Diesel Tanks
	24.68
	26.32
	23.03
	2

	32A
	4.00
	7.00
	Bulk Diesel Tanks
	23.49
	24.42
	22.76
	3

	32B
	7.00
	10.00
	Bulk Diesel Tanks
	23.63
	23.63
	23.63
	1

	33
	3.00
	7.00
	CCD Circuit
	21.97
	22.71
	21.23
	2

	35
	7.00
	10.00
	CCD Circuit
	21.56
	23.27
	20.27
	4

	36
	3.00
	6.00
	CCD Circuit
	20.79
	23.18
	19.54
	4

	3A
	2.50
	5.50
	CCD Circuit
	22.34
	22.56
	22.12
	2

	3B
	7.00
	10.00
	CCD Circuit
	21.98
	22.31
	21.65
	2

	47
	7.00
	10.00
	Primary Grinding Area
	21.44
	22.02
	20.78
	4

	48
	4.00
	7.00
	Bulk Diesel Tanks
	23.37
	26.26
	22.09
	4

	51
	1.00
	5.50
	Heavy Vehicle Maintenance workshop
	20.79
	21.09
	20.49
	2

	53
	7.00
	10.00
	Ammonia Plant Area
	21.37
	22.75
	20.40
	4

	53A
	2.25
	6.25
	SX
	22.45
	22.75
	22.16
	2

	53C
	3.00
	7.00
	SX
	22.59
	22.78
	22.39
	2

	54
	3.00
	7.00
	SX
	24.15
	25.34
	22.94
	4

	79/1
	N/A
	3
	RP2
	15.48
	18.54
	12.67
	329

	79/2
	11.00
	15.00
	RP2
	12.37
	18.02
	-4.31
	1639

	79/6
	10.00
	110.00
	Djalkmarra Ck
	9.25
	11.75
	5.71
	208

	82/3
	34.20
	60.50
	RP2
	16.33
	19.45
	6.58
	653

	C1
	3.25
	6.25
	CCD Circuit
	22.55
	23.40
	21.69
	2

	C10
	7.00
	10.00
	Lime Tanks
	21.87
	22.89
	20.85
	2

	C15
	0.25
	6.00
	Power Plant Cooling Towers
	22.34
	23.04
	21.92
	4

	C1A
	0.25
	4.00
	CCD Circuit
	22.31
	23.37
	21.71
	3

	C3
	N/A
	N/A
	N/A
	24.36
	25.93
	22.80
	4

	C31
	4.00
	7.00
	Bulk Diesel Tanks
	24.36
	26.44
	23.17
	3

	C34
	N/A
	N/A
	N/A
	19.51
	20.35
	18.66
	2

	C47
	7.00
	10.00
	Primary Grinding Area
	22.24
	22.96
	21.43
	4

	C51A
	2.50
	8.50
	Heavy Vehicle Maintenance workshop
	18.92
	18.92
	18.92
	1

	C51B
	1.50
	4.50
	Heavy Vehicle Maintenance workshop
	19.44
	19.68
	19.19
	2

	C52A
	0.25
	8.50
	Heavy Vehicle Maintenance workshop
	21.15
	21.32
	20.98
	2

	C52B
	0.25
	7.00
	Heavy Vehicle Maintenance workshop
	21.07
	21.07
	21.07
	1

	C52C
	0.25
	6.00
	Heavy Vehicle Maintenance workshop
	21.65
	21.88
	21.42
	2

	CC15
	10.80
	16.80
	Corridor Creek
	15.92
	17.59
	13.09
	126

	DW3A
	16.50
	25.50
	Orebody # 3
	9.62
	16.06
	-1.54
	90

	DW3C
	15.90
	37.20
	Orebody # 3
	8.12
	22.70
	3.15
	234

	MB-1
	0.00
	50.00
	Pit #1
	12.96
	21.70
	8.20
	56

	MB-2
	0.00
	50.00
	Pit #1
	5.75
	7.84
	3.98
	42

	MB-B
	44.00
	50.00
	PIt #1
	1.42
	8.46
	-4.99
	261

	MB-H
	26.00
	32.00
	PIt #1
	3.67
	14.19
	-3.34
	305

	MC15
	1.60
	2.60
	Magela irrigation
	20.83
	21.78
	19.35
	227

	MC22
	3.60
	4.60
	Magela irrigation
	14.67
	17.97
	11.42
	558

	MC23
	3.00
	5.00
	Magela irrigation
	12.87
	15.40
	10.69
	570

	MC24
	2.20
	3.20
	Magela irrigation
	12.43
	18.36
	9.11
	561

	MC25
	1.00
	3.00
	Magela irrigation
	12.65
	15.03
	11.76
	446

	MC28
	3.00
	5.00
	Magela irrigation
	14.94
	18.10
	13.14
	472

	MC29
	1.00
	3.00
	Magela irrigation 29
	17.03
	19.87
	16.59
	311

	MC30
	1.50
	3.50
	Magela irrigation
	20.37
	26.17
	19.90
	311

	MC31
	3.00
	5.00
	Magela irrigation
	22.10
	26.15
	21.70
	299

	MC33
	1.90
	2.90
	Magela irrigation
	20.08
	20.93
	17.74
	581

	MC34
	3.00
	5.00
	Magela irrigation
	18.04
	20.62
	14.84
	522

	MC35
	3.00
	5.00
	Magela irrigation
	15.23
	19.13
	13.50
	268

	MC36
	3.00
	5.00
	Magela irrigation
	21.83
	26.22
	19.03
	262

	MC37
	3.00
	5.00
	Magela irrigation
	21.59
	28.67
	18.64
	263

	MC38
	3.00
	5.00
	Magela irrigation
	16.27
	19.06
	13.39
	264

	OA03
	12.00
	15.00
	Ranger Plant Area
	20.68
	20.68
	20.68
	1

	OA04
	12.00
	15.00
	Ranger Plant Area
	21.47
	21.47
	21.47
	1

	OA05
	11.60
	15.00
	Ranger Plant Area
	21.28
	21.28
	21.28
	1

	OA06
	11.80
	14.80
	Ranger Plant Area
	18.80
	18.80
	18.80
	1

	OA07
	11.90
	14.90
	Ranger Plant Area
	19.40
	19.40
	19.40
	1

	OA08
	12.00
	15.20
	Ranger Plant Area
	22.10
	22.10
	22.10
	1

	OA09
	12.00
	15.00
	Ranger Plant Area
	25.27
	25.27
	25.27
	1

	OA10
	11.80
	14.80
	Ranger Plant Area
	23.68
	23.68
	23.68
	1

	OA11
	12.20
	14.80
	Ranger Plant Area
	26.29
	26.29
	26.29
	1

	OB28
	35.00
	50.40
	Magela irrigation
	20.50
	22.71
	17.43
	251

	OB29
	31.00
	46.40
	Djalkmarra Ck
	12.69
	15.13
	-14.58
	1171

	OB52
	15.00
	37.00
	RP2
	13.37
	18.04
	-0.66
	189

	OB53
	14.00
	17.00
	RP2
	10.47
	17.07
	0.57
	367

	OB54
	24.00
	84.00
	Djalkmarra Ck
	6.67
	14.08
	-17.75
	352

	OB55
	24.00
	84.00
	Djalkmarra Ck
	12.48
	13.96
	9.97
	142

	OB83
	N/A
	34
	Waste rock dump
	18.17
	19.19
	17.24
	69

	OB85
	N/A
	39
	Waste rock dump
	19.44
	20.04
	18.51
	69

	OB87
	12.00
	24.00
	Orebody#3
	19.00
	22.63
	14.61
	39

	OB91
	14.00
	20.00
	Orebody#3
	9.45
	14.35
	4.27
	141

	OB92
	14.00
	20.00
	Orebody#3
	15.26
	18.26
	9.56
	46

	PMP1
	27.20
	30.20
	Pit#1
	14.26
	15.80
	11.53
	66

	PMP3
	24.30
	27.30
	Pit#1
	14.16
	15.76
	11.78
	64

	PMP4
	37.10
	40.10
	Pit#1
	14.07
	15.69
	11.57
	63

	PMP5
	25.10
	28.10
	Pit#1
	13.86
	15.64
	11.11
	62

	R3B5
	6.00
	12.00
	Orebody # 3
	-4.35
	0.70
	-9.40
	2

	R3B6
	6.00
	12.00
	Orebody # 3
	6.19
	10.01
	4.59
	61

	RP2
	N/A
	71
	Pit#3
	16.33
	20.10
	7.46
	8065

	RP2/1
	16.00
	17.00
	RP2 - Artesian
	12.97
	18.33
	-0.64
	1780

	RP2/10
	11.50
	13.50
	RP2
	12.52
	14.82
	0.45
	922

	RP2/11
	14.00
	16.00
	RP2
	12.14
	14.54
	-2.48
	922

	RP2/12
	8.00
	18.00
	RP2
	16.54
	19.55
	13.08
	564

	RP2/13
	8.00
	16.50
	RP2
	16.58
	18.46
	14.92
	275

	RP2/14
	10.00
	17.00
	RP2
	17.88
	19.64
	16.72
	714

	RP2/15
	6.00
	10.00
	RP2
	17.10
	19.51
	14.51
	717

	RP2/16
	14.10
	17.10
	RP2
	16.04
	19.93
	12.65
	567

	RP2/17
	14.30
	17.30
	RP2
	14.59
	17.92
	12.28
	426

	RP2/18
	17.30
	20.30
	RP2
	16.86
	19.46
	9.89
	606

	RP2/19
	15.60
	18.60
	RP2
	13.70
	17.26
	5.41
	616

	RP2/2
	8.00
	15.25
	RP2 - artesian
	16.45
	18.08
	15.52
	600

	RP2/4
	9.50
	12.00
	RP2 - artesian
	15.41
	17.97
	6.88
	1247

	RP2/5
	5.60
	7.00
	RP2 - artesian
	14.23
	16.07
	7.27
	1247

	RP2/6
	13.00
	15.00
	RP2 - artesian
	15.02
	16.64
	14.44
	542

	RP2/7
	25.50
	31.50
	RP2
	11.27
	13.76
	-12.46
	1030

	RP2/8
	22.00
	25.00
	RP2
	12.35
	15.03
	-7.55
	982

	RP2/9
	9.00
	12.00
	RP2
	12.34
	14.68
	2.87
	1031

	RP2/A
	14.00
	33.00
	RP2
	13.16
	17.97
	1.44
	358

	RP2/B
	12.00
	35.00
	RP2
	12.91
	18.05
	1.67
	359

	RP3
	N/A
	110
	Pit#3
	19.52
	21.47
	0.00
	51564

	SMP1
	15.00
	21.00
	Pit#1
	14.62
	16.66
	11.49
	64

	SMP2
	11.00
	17.00
	Pit#1
	14.67
	16.18
	12.26
	64

	SMP3
	16.70
	22.70
	Pit#1
	15.41
	19.60
	12.96
	66

	SMP8
	25.00
	40.10
	Pit#1
	16.82
	22.22
	14.11
	63
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