

Final (non-confidential version)

# Assessment of hazardous waste infrastructure needs and capacities in Australia 2018

22 MAY 2019

PREPARED FOR Department of the Environment and Energy

PREPARED IN ASSOCIATION WITH









| Report title           | Assessment of hazardous waste infrastructure needs and capacities in Australia 2018 |
|------------------------|-------------------------------------------------------------------------------------|
| Client                 | Department of the Environment and Energy                                            |
| Status                 | Final (non-confidential version)                                                    |
| Authors                | Paul Randell, Geoff Latimer, Joe Pickin                                             |
| Reviewers              | Joe Pickin, Christine Wardle                                                        |
| Project number         | P863                                                                                |
| Report date            | 22 May 2019                                                                         |
| Contract date          | 20 September 2017                                                                   |
| Information current to | 1 June 2018                                                                         |
| Copyright              | Department of the Environment and Energy; Blue Environment Pty Ltd                  |

#### **Disclaimer**

This report has been prepared for Department of the Environment and Energy in accordance with the terms and conditions of appointment dated 20 September 2017, and is based on the assumptions and exclusions set out in our scope of work. Information in this document is current as of 1 June 2018. While all professional care has been undertaken in preparing this report, Blue Environment Pty Ltd cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

The mention of any company, product or process in this report does not constitute or imply endorsement by Blue Environment Pty Ltd.

© Department of the Environment and Energy; Blue Environment Pty Ltd

#### Blue Environment prints on 100% recycled paper

Blue Environment Pty Ltd ABN 78 118 663 997 Suite 209, 838 Collins St, Docklands Vic 3008 Email: blue@blueenvironment.com.au Web: www.blueenvironment.com.au Phone: +61 3 9081 0440 / +61 3 5426 3536







# Contents

| At a | glanc | e                                                                                     | viii  |
|------|-------|---------------------------------------------------------------------------------------|-------|
| Sum  | mary  |                                                                                       | xi    |
|      | Cond  | lusions and recommendations                                                           | xxiii |
| 1.   | Intro | duction                                                                               | 1     |
|      | 1.1   | Project origins and scope                                                             | 1     |
|      | 1.2   | Project context and key definitions                                                   | 1     |
|      | 1.3   | The structure of this document                                                        | 4     |
|      | 1.4   | Other project outputs                                                                 | 4     |
| 2.   | Proj  | ections of hazardous waste infrastructure needs                                       |       |
|      | 2.1   | Overview of the approach to the projections                                           | 6     |
|      | 2.2   | Waste groups                                                                          |       |
|      | 2.3   | Data inputs to the projections                                                        |       |
|      | 2.4   | Establishing the starting point                                                       |       |
|      | 2.5   | Scenarios for hazardous wastes arising                                                | 13    |
|      | 2.6   | Comparison of the differences between these projections and those prepared in 2014-15 | 10    |
|      | 2.7   | Projections of hazardous waste arising by group                                       |       |
|      | 2.8   | Management of hazardous waste ansing by group                                         |       |
| 3.   | Haza  | Irdous waste infrastructure assessment                                                | 84    |
| э.   | 3.1   | Scope of infrastructure assessment                                                    |       |
|      | 3.2   | Infrastructure groups                                                                 |       |
|      | 3.3   | Industry consultation and database updates                                            |       |
|      | 3.4   | National capacity estimates of hazardous waste infrastructure                         |       |
|      | 3.5   | Jurisdictional capacity estimates of hazardous waste infrastructure                   |       |
|      | 3.6   | Key issues raised by industry during consultation                                     |       |
| 4.   | Asse  | ssment of projected need vs capacity of hazardous waste infrastructure                | 99    |
|      | 4.1   | Method                                                                                |       |
|      | 4.2   | Limitations and uncertainty                                                           |       |
|      | 4.3   | National assessment of need vs capacity by infrastructure group                       |       |
|      |       | Jurisdictional assessment of need versus capacity                                     |       |
| 5.   | Cond  | lusions and recommendations                                                           | 141   |
|      | 5.1   | Hazardous waste arisings and management and current issues                            | 141   |
|      | 5.2   | Hazardous waste packaging recycling facilities                                        | 142   |
|      | 5.3   | E-waste major physical/chemical & disassembly facilities                              | 142   |
|      | 5.4   | Oil re-refining facilities                                                            | 143   |
|      | 5.5   | Lead recycling facilities                                                             | 144   |
|      | 5.6   | Mercury recycling facilities                                                          | 145   |
|      | 5.7   | Solvents/paints/organic chemicals recycling facilities                                | 145   |
|      | 5.8   | Organics recycling (NEPM K code wastes) facilities                                    | 145   |
|      | 5.9   | End-of-life-tyre recycling facilities                                                 | 146   |
|      |       | SPL recycling facilities                                                              |       |
|      | 5.11  | Hazardous waste energy recovery facilities                                            | 147   |







| 5.12 Chemical and physical treatment (CPT) plant facilities | .147 |
|-------------------------------------------------------------|------|
| 5.13 Clinical waste treatment facilities                    | .148 |
| 5.14 Bioremediation facilities                              | .148 |
| 5.15 Oily water treatment (OWT) facilities                  | .149 |
| 5.16 Contaminated soils treatment facilities                | .149 |
| 5.17 Hazardous waste landfill facilities                    | .150 |
| 5.18 POP thermal destruction facilities                     | .151 |
| 5.19 Clinical waste thermal destruction facilities          | .152 |
| 5.20 Transfer station or temporary storage facilities       | .152 |
| 5.21 Long-term isolation facilities                         | .153 |
| 5.22 Uncertainty in assessing need vs capacity              | .153 |
|                                                             |      |
|                                                             |      |

| ography15 | 55 |
|-----------|----|
|-----------|----|

## **Appendices**

| Appendix A | Wastes that are tracked in tracking systems | 158 |
|------------|---------------------------------------------|-----|
| Appendix B | NEPM 75 codes links to waste groups         | 160 |

## **Figures**

| Figure 1:  | Hierarchy for selecting the primary projection method for waste arising         |
|------------|---------------------------------------------------------------------------------|
| Figure 2:  | Best estimate of national projections for all hazardous waste to 2036-3716      |
| Figure 3:  | High estimate of national projections for all hazardous waste to 2036-3717      |
| Figure 4:  | Low estimate of national projections for all hazardous waste to 2036-3718       |
| Figure 5:  | Best, high and low national projection estimates of plating & heat treatment    |
|            | waste to 2037                                                                   |
| Figure 6:  | Best, high and low national projection estimates of acid waste to 203724        |
| Figure 7:  | Best, high and low national projection estimates of alkali waste to 203725      |
| Figure 8:  | Best, high and low national projection estimates of inorganic fluorine (SPL)    |
|            | waste to 2037                                                                   |
| Figure 9:  | Best, high and low national projection estimates of mercury, mercury            |
|            | compounds waste to 2037                                                         |
| Figure 10: | Best, high and low national projection estimates of lead, lead compounds        |
|            | waste to 2037                                                                   |
| Figure 11: | Best, high and low national projection estimates of zinc compounds waste to     |
|            | 2037                                                                            |
| Figure 12: | Best, high and low national projection estimates of non-toxic salt waste to     |
|            | 2037                                                                            |
| Figure 13: | Best, high and low national projection estimates of other inorganic chemical    |
|            | waste to 2037                                                                   |
| Figure 14: | Best, high and low national projection estimates of reactive chemical waste to  |
|            | 2037                                                                            |
| Figure 15: | Best, high and low national projection estimates of paints, resins, inks and    |
|            | organic sludge waste to 2037                                                    |
| Figure 16: | Best, high and low national projection estimates of organic solvent waste to    |
|            | 2037                                                                            |
| -          | Best, high and low national projection estimates of pesticide waste to 203740   |
| -          | Best, high and low national projection estimates of oil waste to 203741         |
| -          | Best, high and low national projection estimates of oily water waste to 2037    |
| -          | Best, high and low national projection estimates of grease trap waste to 203743 |
| Figure 21: | Best, high and low national projection estimates of other putrescible/organic   |
|            | waste to 2037                                                                   |

REC RANDELL ENVIRONMENTAL CONSULTING





| -          | Best, high and low national projection estimates of PCB waste to 2037<br>Best, high and low national projection estimates of POP-BDE and HBCD waste | 45         |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 0          | to 2037                                                                                                                                             | 49         |
| -          | Best, high and low national projection estimates of HCB waste to 2037                                                                               | 51         |
| Figure 25: | Best, high and low national projection estimates of PFOS contaminated                                                                               |            |
| Figure 2C  | biosolids waste to 2037                                                                                                                             | 55         |
| Figure 26: | Best, high and low national projection estimates of PFOS contaminated soil waste to 2037                                                            | 58         |
| Figure 27: | Best, high and low national projection estimates of AFFF concentrates waste                                                                         |            |
| 0.         | to 2037                                                                                                                                             | 61         |
| Figure 28: | Best, high and low national projection estimates of other organic chemical                                                                          |            |
|            | waste to 2037                                                                                                                                       | 61         |
| Figure 29: | Best, high and low national projection estimates of contaminated soil waste to 2037                                                                 | 63         |
| Figure 30: | Best, high and low national projection estimates of other contaminated                                                                              | <b>C</b> C |
| Eiguro 21. | biosolid waste to 2037<br>Best, high and low national projection estimates of other industrial treatment                                            |            |
| ingule 51. | residue waste to 2037                                                                                                                               | 67         |
| Figure 32: | Best, high and low national projection estimates of asbestos waste to 2037                                                                          |            |
| -          | Best, high and low national projection estimates of other soil/sludge waste to                                                                      |            |
|            | 2037                                                                                                                                                | 70         |
| Figure 34: | Best, high and low national projection estimates of clinical and                                                                                    |            |
| 51         | pharmaceutical waste to 2037                                                                                                                        |            |
| -          | Best, high and low national projection estimates of tyre waste to 2037                                                                              |            |
| Figure 36: | Best, high and low national projection estimates of other miscellaneous waste to 2037                                                               | 74         |
| Figure 37: | Best, high and low national projection estimates of lithium ion battery waste                                                                       |            |
| 51         | to 2037                                                                                                                                             | 75         |
| Figure 38: | The management method of reported tracked hazardous waste in NSW, Qld, SA, Vic and WA, 2016-17 (tonnes)                                             | 77         |
| Figure 39. | The assumed proportional management of each waste group in NSW, as used                                                                             | //         |
| inguic 55. | for comparing demand and capacity,                                                                                                                  |            |
| Figure 40: | The assumed proportional management of each waste group in Qld, as used                                                                             |            |
| -          | for comparing demand and capacity,                                                                                                                  | 79         |
| Figure 41: | The assumed proportional management of each waste group in SA, as used                                                                              |            |
|            | for comparing demand and capacity,                                                                                                                  | 80         |
| Figure 42: | The assumed proportional management of each waste group in Vic, as used                                                                             | 01         |
| Figure 12: | for comparing demand and capacity<br>The assumed proportional management of each waste group in WA, as used                                         | 81         |
| rigule 45. | for comparing demand and capacity                                                                                                                   | 82         |
| Figure 44: | The assumed proportional management of each waste group generated in the                                                                            | 02         |
| 0. 0. 1    | ACT, NT and Tas, as used for comparing demand and capacity                                                                                          | 83         |
| Figure 45: | Hazardous waste groups arisings, coverage in capacity database and extent of                                                                        |            |
|            | assessment                                                                                                                                          |            |
| Figure 46: | NEPM 2016-17 total imports and exports by jurisdiction                                                                                              | 124        |
|            |                                                                                                                                                     |            |

#### **Tables**

| Table 1: | Waste groups and components of particular interest                    | 7  |
|----------|-----------------------------------------------------------------------|----|
|          | Information and data underpinning the projections and how it was used |    |
| Table 3: | Metadata for the state and territory hazardous waste data received    | 10 |
| Table 4: | Pre-existing waste projections used in building our projections       | 11 |

#### REC RANDELL ENVIRONMENTAL CONSULTING





| Table 5:        | Industry activity projections and analyses and their use in the projections                                     | 11  |
|-----------------|-----------------------------------------------------------------------------------------------------------------|-----|
| Table 6:        | Projection starting points for each waste group by jurisdiction (see Table 1 for full waste group descriptions) | 12  |
| Table 7:        | Significant differences in approach between 2018 and 2015 projection                                            | 12  |
|                 | assumptions                                                                                                     |     |
| Table 8:        | Best, high and low projected rates of change for plating & heat treatment                                       |     |
|                 | waste to 2037                                                                                                   | 22  |
| Table 9:        | Best, high and low projected rates of change for acid waste to 2037                                             |     |
| Table 10:       | Best, high and low projected rates of change for alkali waste to 2037                                           | 24  |
| Table 11:       | Best, high and low projected rates of change for Inorganic fluorine (SPL) waste to 2037                         | 26  |
| Table 12:       | Best, high and low projected rates of change for mercury; mercury                                               | 20  |
|                 | compounds waste to 2037                                                                                         |     |
| Table 13:       | Best, high and low projected rates of change for lead, lead compounds waste                                     |     |
|                 | to 2037                                                                                                         | 29  |
| Table 14:       | Best, high and low projected rates of change for zinc compounds waste to                                        |     |
|                 | 2037                                                                                                            |     |
| Table 15:       | Best, high and low projected rates of change for non-toxic salt waste to 2037                                   |     |
| Table 16:       | Best, high and low projected rates of change for other inorganic chemical                                       |     |
|                 | waste to 2037                                                                                                   | 35  |
| Table 17:       | Best, high and low projected rates of change for reactive chemical waste to                                     |     |
| <b>T</b>     40 | 2037                                                                                                            |     |
| Table 18:       | Best, high and low projected rates of change for paints, resins, inks and                                       | 27  |
| Table 10.       | organic sludge waste to 2037                                                                                    |     |
| Table 19:       | Best, high and low projected rates of change for organic solvent waste to 2037                                  | 20  |
| Table 20:       | Best, high and low projected rates of change for pesticide waste to 2037                                        |     |
| Table 21:       | Best, high and low projected rates of change for pestede waste to 2037                                          |     |
| Table 22:       | Best, high and low projected rates of change for oily water waste to 2037                                       |     |
| Table 23:       | Best, high and low projected rates of change for grease trap waste to 2037                                      |     |
| Table 24:       | Best, high and low projected rates of change for other putrescible/organic                                      |     |
|                 | waste to 2037                                                                                                   |     |
| Table 25:       | Best, high and low projected rates of change for PCB waste to 2037                                              | 45  |
| Table 26:       | Best, high and low projected tonnes for POP-BDEs waste to 2037                                                  |     |
| Table 27:       | Best, high and low projected tonnes for HBCD waste to 2037*                                                     | 50  |
| Table 28:       | Best, high and low projected tonnes for HCB waste to 2037                                                       | 51  |
| Table 29:       | Best, high and low projected tonnes for PFOS contaminated biosolids waste to 2037                               | 54  |
| Table 30:       | Best, high and low projected tonnes for PFOS contaminated soils waste to                                        |     |
|                 | 2037                                                                                                            | 57  |
| Table 31:       | Best, high and low projected tonnes for AFFF concentrates to 2037                                               | 60  |
| Table 32:       | Best, high and low projected rates of change for other organic chemical waste                                   |     |
|                 | to 2037                                                                                                         | 61  |
| Table 33:       | Best, high and low projected rates of change for contaminated soil waste to                                     |     |
|                 | 2037                                                                                                            | 63  |
| Table 34:       | Best, high and low projected rates of change for contaminated biosolid waste                                    |     |
| T. 1.1. 07      | to 2037                                                                                                         | 65  |
| Table 35:       | Best, high and low projected rates of change for other industrial treatment                                     | ~ ~ |
| Table 26:       | residue waste to 2037<br>Best, high and low projected rates of change for asbestos waste to 2037                |     |
| Table 36:       | best, high and low projected rates of change for aspestos waste to 2037                                         | bð  |

#### REC RANDELL ENVIRONMENTAL CONSULTING





| Table 37:  | Best, high and low projected rates of change for other soil/sludge waste to                | 60  |
|------------|--------------------------------------------------------------------------------------------|-----|
| T. 1.1. 20 | 2037                                                                                       |     |
| Table 38:  | Best, high and low projected rates of change for clinical and pharmaceutical waste to 2037 | 70  |
| Table 39:  | Best, high and low projected rates of change for tyre waste to 2037                        |     |
| Table 40:  | Best, high and low projected rates of change for other miscellaneous waste to              |     |
|            | 2037                                                                                       | 73  |
| Table 41:  | Best, high and low projected rates of change for lithium ion battery waste to              |     |
|            | 2034                                                                                       | 75  |
| Table 42:  | Limitations to the scope of the 2015 and Rawtec (2014 p.8) database of                     |     |
|            | hazardous waste infrastructure in Australia                                                | 85  |
| Table 43:  | Infrastructure groups and coverage                                                         | 86  |
| Table 44:  | Summary of numbers of sites and capacities assessed in 2018 assessment                     |     |
| Table 45:  | Questions asked of industry consultation survey respondents                                |     |
| Table 46:  | National capacity estimate of hazardous waste infrastructure                               | 91  |
| Table 47:  | Jurisdictional capacity estimate of hazardous waste infrastructure                         | 94  |
| Table 48:  | Mapping of waste management method to infrastructure group                                 | 100 |
| Table 49:  | Infrastructure capacity estimates assessment of uncertainty                                | 106 |
| Table 50:  | National assessment of projected arisings vs infrastructure capacity                       | 107 |
| Table 51:  | NEPM 2016-17 net imports/exports by jurisdiction and NEPM 15 code                          | 124 |
| Table 52:  | ACT assessment of projected arisings vs infrastructure capacity                            | 125 |
| Table 53:  | NSW assessment of projected arisings vs infrastructure capacity                            | 127 |
| Table 54:  | NT assessment of projected arisings vs infrastructure capacity                             | 129 |
| Table 55   | Qld assessment of projected arisings vs infrastructure capacity                            | 131 |
| Table 56   | SA assessment of projected arisings vs infrastructure capacity                             | 133 |
| Table 57   | Tas assessment of projected arisings vs infrastructure capacity                            | 135 |
| Table 58   | Vic assessment of projected arisings vs infrastructure capacity                            | 137 |
| Table 59   | WA assessment of projected arisings vs infrastructure capacity                             | 139 |

## **Abbreviations and glossary**

| 7,65                |                                                                                                          |
|---------------------|----------------------------------------------------------------------------------------------------------|
| ACT                 | Australian Capital Territory                                                                             |
| the Act             | Hazardous Waste (Regulation of Exports and Imports) Act 1989                                             |
| AFFF                | aqueous film forming foams                                                                               |
| ANZBP               | Australian & New Zealand Biosolids Partnership                                                           |
| ANZSIC              | Australia and New Zealand Standard Industry Classification                                               |
| Basel<br>Convention | The Basel Convention on the Control of Transboundary Movements of Hazardous<br>Wastes and their Disposal |
| CAGR                | compound annual growth rate                                                                              |
| CCA                 | chromated copper arsenate                                                                                |
| C&D                 | construction and demolition                                                                              |
| CO <sub>2</sub> -e  | carbon dioxide equivalent                                                                                |
| СРТ                 | chemical or physical treatment                                                                           |
| congener            | are related chemical substances that are related to each other by origin,                                |
|                     | structure, or function                                                                                   |







| controlled<br>waste                     | Waste that falls under the control of the NEPM. Generally equivalent to hazardous waste, although definitional differences of the latter exist across jurisdictions. |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CRT                                     | cathode ray tube                                                                                                                                                     |
| CSG                                     | coal seam gas                                                                                                                                                        |
| DBDPE                                   | decabromodiphenyl ethane                                                                                                                                             |
| decaBDE                                 | Decabromodiphenyl ether                                                                                                                                              |
| DoEE                                    | Department of the Environment and Energy                                                                                                                             |
| EOLT                                    | end-of-life tyres                                                                                                                                                    |
| EPA                                     | Environment Protection Authority                                                                                                                                     |
| EPS                                     | expanded polystyrene                                                                                                                                                 |
| expected<br>capacity change             | additional or reduced capacity changes expected at current installed infrastructure in the near future                                                               |
| GAC                                     | granular activated carbon                                                                                                                                            |
| hazardous<br>waste                      | See section 1.2.1                                                                                                                                                    |
| HBCD                                    | hexabromocyclododecane                                                                                                                                               |
| НСВ                                     | hexachlorobenzene                                                                                                                                                    |
| HEPA                                    | Heads of EPAs                                                                                                                                                        |
| infrastructure<br>group                 | group based on the waste received and the waste management method of the infrastructure                                                                              |
| installed<br>infrastructure<br>capacity | the maximum capacity that currently installed infrastructure could process on an annual basis                                                                        |
| interstate data                         | data collected about hazardous waste generated in one jurisdiction and treated in another, through cross-border transport under the NEPM                             |
| intrastate data                         | data collected about hazardous waste generated, transported and treated within one jurisdiction                                                                      |
| kt                                      | kilotonnes (thousands of tonnes)                                                                                                                                     |
| LPCL                                    | low persistent organic pollutant concentration limit                                                                                                                 |
| LSLC                                    | lead sulphate leach concentrate                                                                                                                                      |
| MRU                                     | mercury removal unit                                                                                                                                                 |
| Mt                                      | Megatonnes (millions of tonnes)                                                                                                                                      |
| NEPM                                    | National Environment Protection (Movement of Controlled Waste between States<br>and Territories) Measure 1998                                                        |
| NSW                                     | New South Wales                                                                                                                                                      |
| NT                                      | Northern Territory                                                                                                                                                   |
| octaBDE                                 | octabromodiphenyl ether                                                                                                                                              |
| OWT                                     | oil/water treatment                                                                                                                                                  |
| ра                                      | per annum                                                                                                                                                            |
| PBDE                                    | polybrominated diphenyl ethers                                                                                                                                       |
| pentaBDE                                | pentabromodiphenyl ether                                                                                                                                             |
| РСВ                                     | polychlorinated biphenyl                                                                                                                                             |







| PFAS                                                                                                                                     | per- and poly-fluoroalkyl substances, including PFOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PFOS                                                                                                                                     | perfluorooctane sulfonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| POP                                                                                                                                      | persistent organic pollutants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| POP-BDE                                                                                                                                  | persistent organic pollutants - bromodiphenyl ethers (various forms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PSO                                                                                                                                      | Product Stewardship for Oil program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Qld                                                                                                                                      | Queensland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RO                                                                                                                                       | reverse osmosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SA                                                                                                                                       | South Australia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SPL                                                                                                                                      | spent pot liner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Stockholm<br>Convention                                                                                                                  | Stockholm Convention on Persistent Organic Pollutants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Tas                                                                                                                                      | Tasmania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ТВВРА                                                                                                                                    | tetrabromobisphenol A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TD                                                                                                                                       | thermal destruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| tpa                                                                                                                                      | tonnes per annum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| tracking system                                                                                                                          | jurisdiction-based hazardous waste tracking system, in place in NSW, Qld, SA, WA and Vic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| tracked data                                                                                                                             | hazardous waste collected under the arrangements of a tracking system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| treatment                                                                                                                                | removal, reduction or immobilisation of a hazardous characteristic to enable waste to be reused, recycled, sent to an energy from waste facility or disposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ULAB                                                                                                                                     | used lead acid batteries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ULAB<br>Vic                                                                                                                              | used lead acid batteries<br>Victoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Vic                                                                                                                                      | Victoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Vic<br>WA                                                                                                                                | Victoria<br>Western Australia<br>Materials or products that are unwanted or have been discarded, rejected or<br>abandoned. Waste includes materials or products that are recycled, converted to<br>energy, or disposed. Materials and products that are reused (for their original or<br>another purpose without reprocessing) are not solid waste because they remain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vic<br>WA<br>waste                                                                                                                       | Victoria<br>Western Australia<br>Materials or products that are unwanted or have been discarded, rejected or<br>abandoned. Waste includes materials or products that are recycled, converted to<br>energy, or disposed. Materials and products that are reused (for their original or<br>another purpose without reprocessing) are not solid waste because they remain<br>in use.<br>waste which causes demand for processing, storage, treatment or disposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Vic<br>WA<br>waste<br>waste arisings                                                                                                     | Victoria<br>Western Australia<br>Materials or products that are unwanted or have been discarded, rejected or<br>abandoned. Waste includes materials or products that are recycled, converted to<br>energy, or disposed. Materials and products that are reused (for their original or<br>another purpose without reprocessing) are not solid waste because they remain<br>in use.<br>waste which causes demand for processing, storage, treatment or disposal<br>infrastructure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Vic<br>WA<br>waste<br>waste arisings<br>waste code                                                                                       | VictoriaWestern AustraliaMaterials or products that are unwanted or have been discarded, rejected or<br>abandoned. Waste includes materials or products that are recycled, converted to<br>energy, or disposed. Materials and products that are reused (for their original or<br>another purpose without reprocessing) are not solid waste because they remain<br>in use.waste which causes demand for processing, storage, treatment or disposal<br>infrastructurethree-digit code used by jurisdictions to describe NEPM-listed wastethe end destination of waste, including reuse, treatment, recycling, energy                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vic WA waste waste waste arisings waste code waste fate                                                                                  | VictoriaWestern AustraliaMaterials or products that are unwanted or have been discarded, rejected or<br>abandoned. Waste includes materials or products that are recycled, converted to<br>energy, or disposed. Materials and products that are reused (for their original or<br>another purpose without reprocessing) are not solid waste because they remain<br>in use.waste which causes demand for processing, storage, treatment or disposal<br>infrastructurethree-digit code used by jurisdictions to describe NEPM-listed wastethe end destination of waste, including reuse, treatment, recycling, energy<br>recovery, and disposalthe groups of hazardous waste with similar characteristics which are used for                                                                                                                                                                                                                                                                                                         |
| Vic<br>WA<br>waste<br>waste arisings<br>waste arisings<br>waste fate<br>waste fate<br>waste group<br>waste<br>management                 | Victoria<br>Western Australia<br>Materials or products that are unwanted or have been discarded, rejected or<br>abandoned. Waste includes materials or products that are recycled, converted to<br>energy, or disposed. Materials and products that are reused (for their original or<br>another purpose without reprocessing) are not solid waste because they remain<br>in use.<br>Waste which causes demand for processing, storage, treatment or disposal<br>infrastructure<br>three-digit code used by jurisdictions to describe NEPM-listed waste<br>the end destination of waste, including reuse, treatment, recycling, energy<br>recovery, and disposal<br>the groups of hazardous waste with similar characteristics which are used for<br>projections of waste arising (the groups closely follow the NEPM categories)<br>The waste management type provided at the site (e.g. recycling energy recovery,<br>treatment, disposal, short-term storage or transfer, long-term storage). Some                             |
| Vic<br>WA<br>Waste<br>waste<br>waste arisings<br>waste code<br>waste fate<br>waste group<br>waste group<br>waste<br>management<br>method | VictoriaWestern AustraliaMaterials or products that are unwanted or have been discarded, rejected or<br>abandoned. Waste includes materials or products that are recycled, converted to<br>energy, or disposed. Materials and products that are reused (for their original or<br>another purpose without reprocessing) are not solid waste because they remain<br>in use.waste which causes demand for processing, storage, treatment or disposal<br>infrastructurethree-digit code used by jurisdictions to describe NEPM-listed wastethe end destination of waste, including reuse, treatment, recycling, energy<br>recovery, and disposalthe groups of hazardous waste with similar characteristics which are used for<br>projections of waste arising (the groups closely follow the NEPM categories)The waste management type provided at the site (e.g. recycling energy recovery,<br>treatment, disposal, short-term storage or transfer, long-term storage). Some<br>sites provide more than one waste management method. |







# At a glance

In 2016-17, 6.1 Mt of hazardous waste arose in Australia. Around 2.3 Mt of these wastes were managed by 185 specialist facilities that have an installed capacity to manage 3.1 Mt of hazardous waste. The remaining 3.8 Mt of waste arisings were managed in infrastructure such as composting facilities and landfills that receive mostly non-hazardous waste but are also licensed to receive low risk hazardous wastes (asbestos, low-level contaminated soils and/or end-of-life tyres).

Hazardous waste arisings are projected to be between 5.5 and 15.4 Mt by 2036-37 with a 'best' estimate of 8.9 Mt. The wide range reflects high levels of uncertainty in projecting the quantities of several large-scale waste streams. The high scenario, in particular, assumes:

- high range estimates of the large contaminated soil and asbestos waste streams
- releases from storages/stockpiles
- that from 2023, non-toxic salts from the coal-seam gas (CSG) industry are no longer stored onsite
- projected large-scale growth of PFAS contaminated soil and PFOS contaminated biosolids, from 2020.

Over the next few years an increase of around 1 Mt of capacity is expected to be added to Australia's management capacity across the infrastructure groups of: e-waste, lead, mercury, end-of-life tyres (EOLTs) and spent pot liner (SPL) recycling facilities; chemical or physical treatment (CPT) facilities and soil treatment facilities; persistent organic pollutant (POP) and clinical waste thermal destruction facilities; and long-term isolation facilities.

Waste industry operators raised important issues during consultation, listed below:

- falling demand for hazardous waste infrastructure risks a non-viable core infrastructure supply
- stockpiles of SPL, mercury waste and EOLTs are a significant issue and risk
- inconsistent landfill levies drive interstate disposal of hazardous wastes
- inconsistent landfill levies undermine investment in recovery or treatment of hazardous wastes
- inconsistent landfilling pre-treatment requirements create unfair market competition across different jurisdictions
- regulatory settings should support large infrastructure investment that is required
- additional infrastructure is needed to manage reverse osmosis brine wastes from the CSG industry
- asbestos disposal costs are high and access to disposal points is getting harder
- significant infrastructure for destroying POPs is coming online in 2018 in response to PFAS risks
- for PFAS contaminated waters
  - contaminant threshold requirements are needed
  - filtration media destruction requirements are inconsistent
- distances and low tonnages of hazardous waste are a major challenge in WA, in particular
- additional infrastructure is needed for recovering hazardous packaging.

The following table summarises the amount of waste sent to each infrastructure group, nationally, and when the infrastructure capacities are projected to be exceeded.







| Infrastructure group                                          | 16-17<br>arisings | Installed capacity | Capacity<br>increase | Est. year | Est. year arisings > installed<br>capacity |         |  |  |
|---------------------------------------------------------------|-------------------|--------------------|----------------------|-----------|--------------------------------------------|---------|--|--|
|                                                               | (kt/yr)           | (kt/yr)            | (kt/yr)              | Best      | High                                       | Low     |  |  |
| Recycling and energy recovery                                 |                   |                    |                      |           |                                            |         |  |  |
| Hazardous waste packaging facility                            | 15                | 19                 | 0                    | >2037     | 2033                                       | >2037   |  |  |
| E-waste facility                                              | 4                 | 106                | 12                   | 2037      | 2035                                       | >2037   |  |  |
| Oil re-refining facility                                      | 325               | 526                | 0                    | >2037     | 2034                                       | >2037   |  |  |
| Lead facility                                                 | 119               | 124                | 71                   | 2023      | 2018                                       | >2037   |  |  |
| Mercury facility                                              | 0.2               | CIC                | CIC                  | >2037     | >2037                                      | >2037   |  |  |
| Solvents/paints/organic chemicals facility                    | 26                | 14                 | 0                    | 2018      | 2018                                       | 2018    |  |  |
| Organics processing facility                                  | 600               | 106                | 0                    | 2018      | 2018                                       | 2018    |  |  |
| EOLT facility                                                 | 47                | 100                | 9                    | >2037     | >2037                                      | >2037   |  |  |
| SPL facility                                                  | 46                | CIC                | CIC                  | >2037     | 2020                                       | >2037   |  |  |
| Energy recovery                                               | 2                 | CIC                | CIC                  | >2037     | >2037                                      | >2037   |  |  |
| Treatment                                                     |                   |                    |                      |           |                                            |         |  |  |
| CPT plant                                                     | 395               | 1,129              | 4                    | >2037     | >2037                                      | >2037   |  |  |
| Clinical waste treatment facility                             | 23                | 25                 | 0                    | 2026      | 2023                                       | >2037   |  |  |
| Bioremediation facility                                       | 192               | 0                  | 0                    | no inf.   | no inf.                                    | no inf. |  |  |
| OWT facility                                                  | 187               | 199                | 0                    | 2025      | 2019                                       | >2037   |  |  |
| Soils treatment facility                                      | 131               | 178                | 296                  | >2037     | 2018                                       | >2037   |  |  |
| Disposal                                                      |                   |                    |                      |           |                                            |         |  |  |
| Hazardous waste landfill facility                             | 235               | 201                | 0                    | 2018      | 2018                                       | 2018    |  |  |
| Landfill facility (NEPM codes N, T)                           | 2,875             |                    |                      | no inf.   | no inf.                                    | no inf. |  |  |
| Persistent organic pollutants thermal<br>destruction facility | 5                 | CIC                | CIC                  | 2020      | 2020                                       | 2020    |  |  |
| Clinical waste facility thermal destruction                   | 21                | 33                 | 6                    | >2037     | >2037                                      | >2037   |  |  |
| Short-term storage or transfer                                |                   |                    |                      |           |                                            |         |  |  |
| Transfer facility                                             | 551               | 145                | 0                    | 2018      | 2018                                       | 2018    |  |  |
| Long-term storage                                             |                   |                    |                      |           |                                            |         |  |  |
| Long-term on-site storage                                     | 0                 |                    |                      | no inf.   | no inf.                                    | no inf. |  |  |
| Long-term isolation facility                                  | 0                 | 0                  | CIC                  | no inf.   | no inf.                                    | no inf. |  |  |

#### Table G1 National assessment of projected arisings vs infrastructure capacity

Notes: Shaded grey infrastructure groups have coverage limitations or are excluded.

#### Recommendations

**Recommendation 1:** Qld, NT and Tas governments should consider completing feasibility studies to determine the viability of establishing additional hazardous waste packaging capacity in their jurisdiction.

**Recommendation 2:** NT, Tas and WA governments should consider completing feasibility studies to determine the viability of establishing e-waste recycling capacity in their jurisdiction.

**Recommendation 3:** The potential hazards posed by lithium ion batteries, and the best means of managing these hazards, needs further assessment. Subsequently, an assessment should be completed of the collection and processing infrastructure needs for lithium ion batteries in Australia. This recommendation was made in 2015 and is supported by a CSIRO (2018) study.

**Recommendation 4:** NSW, NT, Qld and Tas governments should consider completing feasibility studies to determine the viability of establishing additional oil waste capacity in their jurisdiction.

**Recommendation 5:** WA government should consider completing a feasibility study to determine the viability of establishing lead waste recycling capacity in their jurisdiction.

**Recommendation 6:** Qld, NSW, Vic and Tas governments and DoEE should continue to actively engage with aluminium smelting companies regarding current SPL stockpiles to ensure that stockpiles continue to be drawn down each year until they are removed.







**Recommendation 7:** DoEE and/or NSW and Qld EPAs should consult with the CSG industry to develop a strategic plan for managing its waste, in particular waste in remote areas. This recommendation was made in 2015 and remains current.

**Recommendation 8:** DoEE and/or Tas EPA should further investigate the supply of CPT capacity for hazardous waste in Tas. This recommendation was made in 2015 and remains current.

**Recommendation 9:** ACT, NSW, Qld, and Vic governments should consider completing feasibility studies to determine the viability of establishing clinical waste recycling capacity in their jurisdiction.

**Recommendation 10:** State regulators that are operating waste tracking systems complete ongoing auditing of waste treated through bioremediation to ensure that only appropriate hazardous waste is sent to composting operations. This may already be occurring.

**Recommendation 11:** NT, Qld, and SA governments should consider completing feasibility studies to determine the viability of establishing contaminated soil treatment capacity in their jurisdiction.

**Recommendation 12:** DoEE should work with the jurisdictions to complete a detailed assessment of the likely closure year of the identified hazardous waste landfill facility infrastructure including a risk assessment of site capacity being impacted by issues such as extreme weather events. The anticipated closure of the only hazardous waste landfill in NSW in 2030 presents a medium-term infrastructure risk that needs detailed assessment to understand where the materials currently sent to Elizabeth Drive can be sent for recovery or disposal.

**Recommendation 13:** DoEE should work with jurisdictions and industry to agree an approach to determine the upper limit for tonnages/concentrations that can be received at the high temperature thermal soil treatment facilities, cement kilns and clinical waste thermal destruction units that will ensure thermal destruction of PFAS, POP-BDE, HBCD and HCB wastes. This information is required to better understand how much additional dedicated POP thermal destruction capacity (from technologies such as plasma arc) may be required in future.

**Recommendation 14:** The process requirements and contaminant thresholds that need to be met for PFAS-impacted water clean-up should be defined. DoEE may be best placed to lead the development of a recommended process and threshold that the jurisdictions could choose to adopt. This work may already be underway.

**Recommendation 15:** The management requirements of PFAS-contaminated filter media should be reviewed to ensure a nationally consistent approach.

**Recommendation 16:** DoEE and/or Tas EPA should further investigate the need for clinical waste treatment or thermal destruction facilities in Tas.

**Recommendation 17:** DoEE and/or WA and Qld governments should complete a detailed assessment and consultation with industry regarding the need for and (where required) best location(s) for additional hazardous waste transfer station/temporary storage infrastructure. This recommendation was made in 2015 and remains current.

**Recommendation 18**: DoEE should work with state and territory governments to assess the appropriate management of reverse osmosis brine wastes from the CSG industry and determine the likelihood that offsite disposal requirements will be needed in future.

**Recommendation 19:** DoEE and the jurisdictions should continue to improve the consistency and completeness of tracking system data and work towards systems that enable reporting of energy recovery separately from recycling.







## **Summary**

#### Introduction

The Australian Government Department of the Environment and Energy (DoEE) is responsible for administering the *Hazardous Waste (Regulation of Exports and Imports) Act 1989* (the Act), which implements Australia's international agreements on managing hazardous waste including the *Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal* (the Basel Convention).

DoEE is also the lead agency responsible for the implementation of the current *National Waste Policy: Less Waste, More Resources*. The policy contains a commitment to assess Australia's current and future hazardous waste infrastructure capacity and needs. This is intended to provide guidance to regulators and industry on where additional investment may be needed.

In 2014, DoEE commissioned the first such assessment. The results, published in 2015, were well received by industry and government stakeholders and seen as valuable for planning Australia's current and future hazardous waste infrastructure needs.

In 2017, DoEE commissioned Blue Environment (lead consultant), Ascend Waste and Environment and Randell Environmental Consulting (the same consortium that undertook the 2015 assessment) to review and update the 2015 assessment. This revised assessment is reported here.

This report is supported by two important Microsoft Excel files:

- The *Hazwaste infrastructure database 2018* which details Australia's hazardous waste infrastructure capability and capacity data by site. The database has been built via an extensive industry consultation program completed during the development of the 2015 and 2018 assessments.
- The *Hazardous waste needs vs capacity model* which projects Australia's future quantities of hazardous waste and compares these with the currently available management infrastructure in Australia in order to identify infrastructure development needs. The projections cover the period 2018 to 2037 under best estimate, high estimate and low estimate scenarios. This model also includes data on the historical arisings (trends) of hazardous waste arisings (see the Proj. methods tab).

The revised assessment has the same three parts as the 2015 assessment:

- 1. prepare projections of hazardous waste arisings and fates<sup>1</sup> over the coming 20 years (yr)
- 2. consult with industry to estimate Australia's current hazardous waste infrastructure capacity, its distribution and expected future
- 3. identify the extent to which current infrastructure meets future needs, considering the nature and locations of particular infrastructure.

The revised assessment also contains important expansions of the scope of the infrastructure assessment, including an analysis of cement kiln infrastructure capacity to receive hazardous waste.

Each of the three project parts are discussed below.

<sup>&</sup>lt;sup>1</sup> For a discussion on these terms, see Section 1.2.







#### Limitations and uncertainty

This assessment of projected hazardous waste infrastructure need vs capacity is affected by the limitations and levels of uncertainty in relation to:

- 1. the projected arisings of hazardous waste
- 2. the apportioning of projected waste across the different type of infrastructure
- 3. the assessment of the current hazardous waste infrastructure capacity.

The limitations and uncertainty of the assessment of projected need vs capacity included in this report needs to be carefully considered. See Section 4.2 for detailed analysis of uncertainty.

#### Projections of hazardous waste

Thirty-three hazardous waste groups were defined for use in the projections, an increase of four compared with the previous 2015 version of this report. These closely corresponded with the *National Environment Protection (Movement of Controlled Waste between States and Territories) Measure 1998* (NEPM). Some categories were disaggregated where a component waste was of particular interest. The waste groups are listed in Table S1. The selection and formation of the waste groups is discussed in detail in Sections 1 and 2 of this report. An important aspect of the project context is the potential for new hazardous waste streams to arise due mainly to changes under the Stockholm Convention on Persistent Organic Pollutants.

|    | Waste group                           | Closest<br>NEPM<br>category | The aspect(s) of particular interest                                                                                                                   |
|----|---------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Plating & heat treatment              | А                           |                                                                                                                                                        |
| 2  | Acids                                 | В                           |                                                                                                                                                        |
| 3  | Alkalis                               | С                           |                                                                                                                                                        |
| 4  | Inorganic fluorine (SPL)              | D110                        | Significant stockpiles in Australia                                                                                                                    |
| 5  | Mercury & compounds                   | D120                        | Mercury waste                                                                                                                                          |
| 6  | Lead & compounds                      | D220                        | Lead waste and waste lead acid batteries                                                                                                               |
| 7  | Zinc compounds                        | D230                        | Large tonnages produced. Almost entirely a lead-rich<br>zinc waste that is generated by Nyrstar in Hobart and<br>transported to Nyrstar in Port Pirie. |
| 8  | Non-toxic salts                       | D300                        | Coal seam gas waste                                                                                                                                    |
| 9  | Other inorganic chemicals             | Other D                     | SPL waste from aluminium industry                                                                                                                      |
| 10 | Reactive chemicals                    | E                           |                                                                                                                                                        |
| 11 | Paints, resins, inks, organic sludges | F                           |                                                                                                                                                        |
| 12 | Organic solvents                      | G                           |                                                                                                                                                        |
| 13 | Pesticides                            | Н                           |                                                                                                                                                        |
| 14 | Oils                                  | J100 & 160                  | Waste is produced in particularly large quantities                                                                                                     |
| 15 | Waste oil/water mixtures              | J120                        | Waste is produced in particularly large quantities                                                                                                     |
| 16 | Grease trap waste                     | К110                        | Large tonnage low hazard organic waste                                                                                                                 |

#### Table S1: Waste groups and wastes of particular interest

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018







| Waste group |                                     | Closest<br>NEPM<br>category | The aspect(s) of particular interest                                                                                                 |
|-------------|-------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 17          | Other putrescible/organic waste     | Other K                     |                                                                                                                                      |
| 18          | РСВ                                 | M100                        |                                                                                                                                      |
| 19          | POP-BDEs and HBCD                   | M160a & b                   | Polybrominated diphenyl ether (PBDE) and<br>hexabromocyclododecane (HBCD), including biosolids<br>contaminated with these substances |
| 20          | НСВ                                 | M160c                       | Orica stockpile of hexachlorobenzene                                                                                                 |
| 21          | PFOS contaminated biosolids         | M270a                       | Biosolids contaminated with perfluorooctane sulfonate,<br>future quantities and available infrastructure are highly<br>uncertain     |
| 22          | PFAS contaminated soils             | M270b                       | Soils containing per- and poly-fluoroalkyl substances from use of firefighting foams                                                 |
| 23          | AFFF concentrates                   | M270c                       | Aqueous film forming foams (used for fire-fighting) containing PFAS                                                                  |
| 24          | Other organic chemicals             | Other M                     |                                                                                                                                      |
| 25          | Contaminated soils                  | N120                        | Contaminated soils                                                                                                                   |
| 26          | Other contaminated biosolids        | N205a                       | Biosolids contaminated with inorganics                                                                                               |
| 27          | Other industrial treatment residues | N205b                       |                                                                                                                                      |
| 28          | Asbestos                            | N220                        | Waste asbestos                                                                                                                       |
| 29          | Other soil/sludges                  | Other N                     |                                                                                                                                      |
| 30          | Clinical & pharmaceutical           | R                           |                                                                                                                                      |
| 31          | Tyres                               | T140                        | End-of-life tyres                                                                                                                    |
| 32          | Other miscellaneous                 | Other T                     |                                                                                                                                      |
| 33          | Lithium ion batteries               | -                           | Waste lithium ion batteries                                                                                                          |

Projections were built on the basis of a wide range of data (documented in Table 2 of the report). The most important input was from data reports from the states and territories. Waste tracking systems in Queensland (Qld), New South Wales (NSW), South Australia (SA), Victoria (Vic) and Western Australia (WA) require companies generating, transporting and treating or disposing hazardous waste to provide a record to government of each transaction to which they are a party. Data from these systems was collected, collated and analysed, together with other jurisdictional waste data.<sup>2</sup>

A baseline tonnage figure was established for each of 33 waste groups in each jurisdiction, typically based on the most recent datum available. Three scenarios (best, high and low estimates) of future quantities of each waste group until 2037 were developed based on considerations that varied with the waste group. Providing three scenarios reflects the highly uncertain nature of projecting future quantities of hazardous wastes. In most cases, the projections were linked to apparent trends, projected economic and population growth, and the anticipated prospects of the industries generating the waste.

<sup>&</sup>lt;sup>2</sup> NSW, Qld, SA, Vic and WA have waste tracking systems for <u>intra</u>state and <u>inter</u>state waste movements, whilst ACT, NT, and Tas, currently only have <u>inter</u>state waste tracking systems.







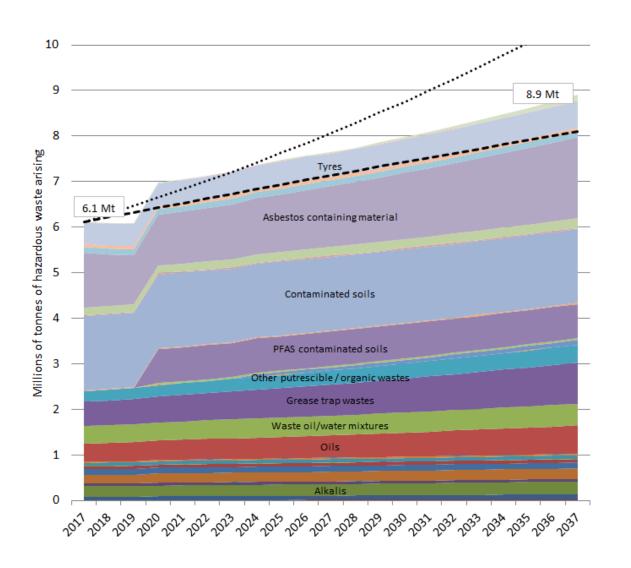
The best estimates of projected waste arisings for each waste group are shown in Figure S1. The overall quantity of hazardous waste is projected to rise from 6.1 Mt in 2016-17 to 8.9 Mt in 2036-37. This represents an average growth rate of 1.9% per year, larger than the projected average growth rate for population (1.4%), which is illustrated on the chart, but less than the long-term projected economic growth rate (2.8%).

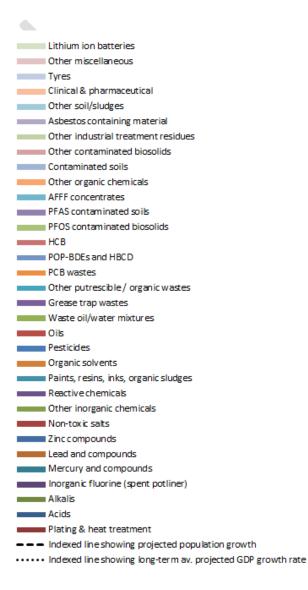
The top six groups in terms of tonnes arising – in order, contaminated soils, asbestos, grease trap waste, PFAS contaminated soils, tyres and oils – represent about 70% of the total at both the start and end of the projection period. In some cases, the best estimate provides for some clearing of waste stockpiles and storages.

A few waste groups are projected to become much more significant at the end of the period than at the start. Waste lithium ion batteries are projected to grow at an average rate of 19% per year. Three other waste groups (POP-BDEs and HBCD, PFOS contaminated biosolids and PFAS contaminated soils) are recorded at zero at the start of the period but reach tens or hundreds of thousands of tonnes at the end, following the implementation of the *PFAS National Environmental Management Plan* and the assumed ratification of additions to the Stockholm Convention. All other waste streams are projected to grow at less than 3% per year on average. Five are projected to decline, three reducing by 1-2% per year on average (other inorganic chemicals, reactive chemicals, PCBs) and two disappearing entirely (HCB and AFFF concentrates).

Section 2.7 provides an account for each waste group of industry sources, considerations and factors applied in developing the projections, the arithmetical methods used, and a figure showing the projected quantities in the best, high and low estimate scenarios.

#### The management of hazardous waste


Data on the management of hazardous waste in 2016-17 was compiled from NSW, Qld, SA, WA and Vic tracking system data. This provided a basis for estimating the management methods for Northern Territory (NT), Australian Capital Territory (ACT) and Tasmania (Tas), for which management data was not available. The overall tonnage data by management method is presented in Figure S2. See Section 2.8 for detailed analysis of available management data.





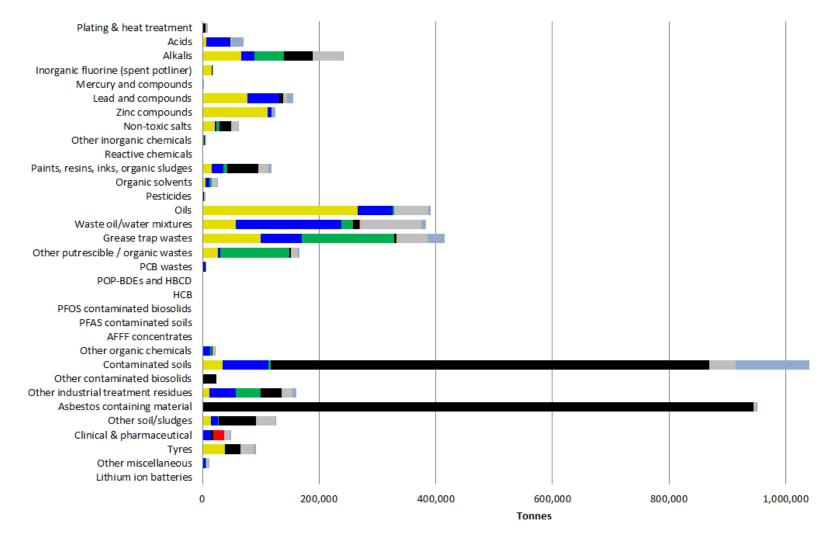



#### *Figure S1:* Best estimate of national projections for all hazardous waste to 2037





Assessment of hazardous waste infrastructure needs and capacities in Australia 2018 (non-confidential version)








#### Figure S2: The management method of reported tracked hazardous waste in NSW, Qld, SA, Vic and WA, 2016-17 (tonnes)

■ Recycling ■ Chemical/physical treatment ■ Biodegradation ■ Landfill ■ Thermal destruction ■ Short-term storage or transfer ■ Other



Assessment of hazardous waste infrastructure needs and capacities in Australia 2018 (non-confidential version)







#### Hazardous waste infrastructure assessment

This project involved extensive consultation with industry to update and validate the information from the original 2015 assessment and, importantly, to collate capability and capacity data for some additional infrastructure groups.

To enable the assessment of projected infrastructure need vs capacity, it was necessary to group the infrastructure included in the *Hazwaste infrastructure database 2018*. The infrastructure was grouped based on the waste received and the waste management method of the infrastructure, e.g. e-waste recycling, POP thermal destruction, clinical waste treatment and clinical waste thermal destruction.

The infrastructure groups were then used to compare waste group arisings and management to infrastructure capacity. The infrastructure groups are listed in S2 below, which is ordered following the waste hierarchy<sup>3</sup>. New infrastructure groups for the 2018 assessment are marked with an asterisk. The scope and coverage limitations for each infrastructure are also flagged below.

| Hazardous waste<br>management<br>method | Hazardous waste<br>infrastructure group    | Description and coverage                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | Hazardous waste packaging<br>facility      | Facilities that recycle industrial packing that contains residual hazardous waste. Containers are typically refurbished and reused or materials are recycled.                                                                                                                                                                             |
|                                         | E-waste facility                           | Major e-waste physical/chemical and manual<br>disassembly processing facilities. Facilities receive<br>inorganic hazardous waste, such as copper, cobalt, and<br>lead.                                                                                                                                                                    |
| Recycling                               | Oil re-refining facility                   | Facilities that re-refine (recycle) waste oil. Facilities that dewater and filter waste oil are included in oil/water treatment (OWT), see below.                                                                                                                                                                                         |
|                                         | Lead facility                              | Facilities that recycle lead. Typically, the lead is from used lead acid batteries.                                                                                                                                                                                                                                                       |
|                                         | Zinc facility*                             | Currently this group is limited to the Nyrstar Port Pirie<br>multi-metals recovery plant (which processes lead rich<br>concentrates and smelting industry by-products)<br>including waste generated by Nyrstar's zinc smelter in<br>Hobart.                                                                                               |
|                                         |                                            | Note: due to this group being limited to the Nyrstar Port<br>Pirie facility which is treating waste mostly from Nyrstar<br>Hobart, no needs versus capacity assessment is provided<br>for this infrastructure group. Nyrstar Port Pirie reports<br>unconstrained capacity to recycle all lead-rich waste from<br>their Hobart operations. |
|                                         | Mercury facility                           | Facilities that recycle mercury from used fluorescent light fittings and or oil and gas mining spent catalysts.                                                                                                                                                                                                                           |
|                                         | Solvents/paints/organic chemicals facility | Facilities that recycle paints, resins, inks, organic sludges and/or organic solvents, but not for energy recovery.                                                                                                                                                                                                                       |

 Table S2:
 Infrastructure groups description and coverage

<sup>&</sup>lt;sup>3</sup> The waste hierarchy expresses a policy preference in which recovery of waste is seen as preferable to treatment, and treatment is seen as preferable to untreated disposal.







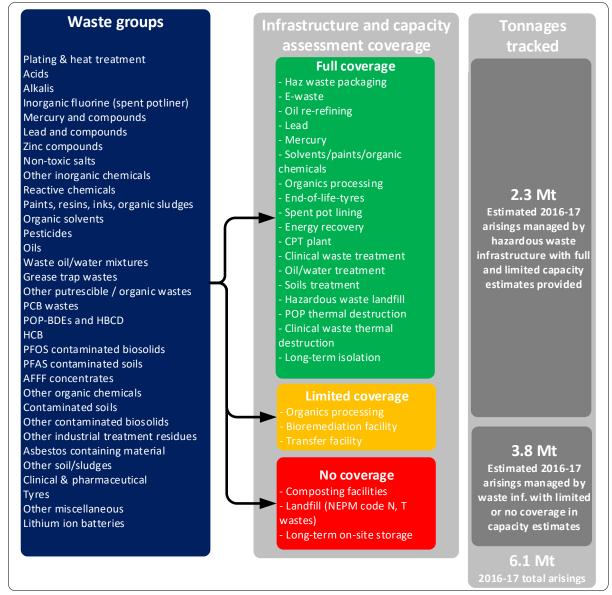
| Hazardous waste<br>management<br>method | Hazardous waste<br>infrastructure group       | Description and coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|-----------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                         | Organics processing facility                  | Facilities that recycle a range of low hazard organic waste<br>such as grease trap waste, cooking oil, animal effluents,<br>etc.<br>Capacity data coverage limitation: composting facilities<br>are excluded from the database. This group refers to<br>facilities that treat grease trap waste and other similar<br>waste.                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                         | EOLT facility*                                | Facilities that recycle end-of-life-tyres (EOLT) including facilities that partially process EOLT for export and processing overseas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                         | SPL facility                                  | Facilities that recycle SPL waste from the aluminium industry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Energy recovery                         | Energy recovery                               | Facilities that recover or use solvents, paints or other<br>hazardous waste with calorific value for energy recovery<br>on-site or elsewhere (e.g. a cement facility).                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                         | Chemical or physical treatment<br>(CPT) plant | Sophisticated facilities developed with significant capital<br>to apply chemical and physical treatments to a broad<br>range of waste. Often licensed to receive almost all<br>NEPM 15 waste codes. Processes can include many<br>chemical treatments (e.g. oxidation, reduction,<br>precipitation, neutralisation, etc.) and physical<br>treatments (e.g. sedimentation, filtration, adsorption,<br>immobilisation, etc.)                                                                                                                                                                                                               |  |  |  |
|                                         | Clinical waste treatment facility             | Facilities that treat clinical waste typically using an autoclave.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Treatment                               | Bioremediation facility*                      | Temporary or permanent facilities that treat hazardous<br>waste by land-farming or bioremediation. Often does not<br>generate a useful product for sale. Capacity data<br>coverage limitation: composting facilities are excluded<br>from the database. This group is intended to refer to<br>facilities that treat hazardous waste through<br>biodegradation that are not generating compost for sale.<br>However, many commercial composting facilities are<br>licenced to receive low level hazardous waste which is<br>effectively bioremediated in the composting process and<br>these facilities are not within the project scope. |  |  |  |
|                                         | Oil/water treatment (OWT)<br>facility*        | Facilities that treat waste oil/water, hydrocarbons/water<br>mixtures or emulsions. Recovered oils are then typically<br>sent on to an oil re-refining facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                         | Soils treatment facility                      | Facilities that treat contaminated soils. Treatment processes include biodegradation and thermal destruction of contaminants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Disposal                                | Hazardous waste landfill<br>facility          | A small number of landfill facilities that are licensed to<br>dispose of a wide range of hazardous wastes many of<br>which can only be landfilled at these sites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                         | Landfill facility (NEPM codes N,<br>T)        | Landfill facilities licensed to dispose of low-risk hazardous<br>waste such as low-level contaminated soils, asbestos, and<br>tyres (NEPM 15 codes N and T). These landfills also<br>generally dispose of non-hazardous waste, which<br>typically represents the majority of their inputs.                                                                                                                                                                                                                                                                                                                                               |  |  |  |







| Hazardous waste<br>management<br>method | Hazardous waste<br>infrastructure group                    | Description and coverage                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                                                            | Capacity data for this group is excluded from database.<br>This infrastructure group is excluded from the <i>Hazwaste</i><br><i>infrastructure database 2018</i> . Many landfills around<br>Australia dispose of low-level contaminated soils,<br>asbestos and tyres. These landfills are not classified as<br>hazardous waste landfills and are beyond the scope of<br>this assessment.                                 |
|                                         | Persistent organic pollutants thermal destruction facility | Facilities able to destroy persistent organic compounds or pollutants (POP) by thermal destruction.                                                                                                                                                                                                                                                                                                                      |
|                                         | Clinical waste facility thermal destruction                | Facilities that dispose of medical waste by thermal destruction.                                                                                                                                                                                                                                                                                                                                                         |
| Short-term<br>storage or<br>transfer    | Transfer facility                                          | Facilities that transfer or temporarily store hazardous<br>waste. Some of these facilities receive a wide range of<br>waste, others only specific waste.<br>Capacity data coverage limitation: not all transfer<br>facilities are covered in the database and some<br>infrastructure groups operate in part as a transfer facility.                                                                                      |
| Long-term<br>storage                    | Long-term on-site storage*                                 | Pre-approved on-site (or near site) long-term storages of<br>hazardous waste in designated area/s.<br>Capacity data coverage limitation: long-term on-site<br>storage facilities are excluded from the database and the<br>needs vs capacity assessment. The infrastructure group<br>has been included recognising that some hazardous<br>waste is managed in on-site infrastructure that is often<br>for the long term. |
|                                         | Long-term isolation facility*                              | Facilities licensed to store hazardous waste for long periods (≥10 years), typically until an economically viable treatment or disposal solution is developed.                                                                                                                                                                                                                                                           |


Notes: \* new infrastructure groups added in 2018 assessment

The scope and coverage of the infrastructure database constrains the assessment of infrastructure capacity against projected arisings. Some hazardous waste is managed in facilities that are not included in the infrastructure database, while others are sent to infrastructure with limited coverage in the database. For these wastes, a comparison of future arisings vs processing capacity using the available data may not produce an accurate result. Figure S3 illustrates which infrastructure groups are out of the capacity assessment scope or have limited coverage and the total tonnages of hazardous waste reported in 2016-17.





#### Figure S3: Waste groups arisings, coverage in capacity database, and extent of assessment



The capacity of each infrastructure group was compiled by jurisdiction. Data gaps were filled through estimates based on EPA licence limits and average capacity reported by survey respondents in the relevant group. Section 4.2 provides detailed analysis of the limitations and uncertainty associated with the infrastructure capacity assessment and an overall estimate of uncertainty for each infrastructure group.

The national capacity is summarised in Table S3, including the overall estimates of uncertainty for each infrastructure group capacity assessment. The difference between overall arisings (6.1 Mt) and overall capacity (2.3 Mt) is mainly attributable to the limits on the scope of the hazardous waste infrastructure database, as illustrated in Figure S3.

'Mobile' waste treatment technology that is moved from one site clean-up to another is included in the scope of the assessment where the technology is providing the waste treatment (onsite). Mobile equipment that is used to simply collect, concentrate, or transport hazardous wastes simply to enable treatment off-site is not included.







Table S3:

#### National capacity estimate of hazardous waste infrastructure

|                                                            |                             |                                |                                  | Expected                      | Dat      | a qualit | y is: |
|------------------------------------------------------------|-----------------------------|--------------------------------|----------------------------------|-------------------------------|----------|----------|-------|
| Hazardous waste infrastructur                              |                             | Current<br>receipts<br>(kt/yr) | Installed<br>capacity<br>(kt/yr) | capacity<br>change<br>(kt/yr) | Good     | Ok       | Poor  |
| Recycling and energy recover                               | y .                         |                                |                                  |                               |          |          |       |
| Hazardous waste packaging facilit                          |                             | 19                             | 19                               | 0                             | 21%      | 0%       | 79%   |
| E-waste facilit                                            |                             | 58                             | 106                              | 12                            | 92%      | 0%       | 8%    |
| Oil re-refining facilit                                    | y 10                        | 387                            | 526                              | 0                             | 60%      | 30%      | 10%   |
| Lead facilit                                               |                             | 110                            | 124                              | 71                            | 67%      | 33%      | 0%    |
| Mercury facilit                                            | y 7                         |                                | CIC                              |                               | 100%     | 0%       | 0%    |
| Solvents/paints/organic chemicals facilit                  | y 4                         | 11                             | 14                               | 0                             | 75%      | 0%       | 25%   |
| Organics processing facilit                                | y 4                         | 99                             | 106                              | 0                             | 50%      | 50%      | 0%    |
| End-of-life tyres facilit                                  | y 14                        | 83                             | 100                              | 9                             | 93%      | 0%       | 0%    |
| Spent potlining facilit                                    | y 4                         |                                | CIC                              |                               | 100%     | 0%       | 0%    |
| Energy recovery                                            | / 5                         |                                | CIC                              |                               | 60%      | 20%      | 20%   |
| Treatmen                                                   | t                           |                                |                                  |                               |          |          |       |
| CPT plar                                                   | t 36                        | 857                            | 1,129                            | 4                             | 78%      | 22%      | 0%    |
| Clinical waste treatment facility                          | / 9                         | 24                             | 25                               | 0                             | 33%      | 22%      | 44%   |
| Bioremediation facilit                                     | y 0                         | 0                              | 0                                | 0                             |          |          |       |
| Oil/water treatment (OWT) facility                         | 27                          | 148                            | 199                              | 0                             | 37%      | 30%      | 33%   |
| Soils treatment facilit                                    | y 6                         | 97                             | 178                              | 296                           | 67%      | 33%      | 0%    |
| Disposi                                                    | il .                        |                                |                                  |                               |          |          |       |
| Hazardous waste landfill facility                          | / 7                         | 167                            | 201                              | 0                             | 43%      | 0%       | 43%   |
| Landfill facility (NEPM codes N, 1                         | ) Not ir                    | ncluded in                     | assessme                         | nt of arisin                  | gs versu | s capac  | ity   |
| Persistent organic pollutants thermal destruction facility | 7                           |                                | CIC                              |                               | 86%      | 0%       | 14%   |
| Clinical waste facility thermal destructio                 | n 6                         | 20                             | 33                               | 6                             | 100%     | 0%       | 0%    |
| Short-term storage or transfe                              |                             |                                |                                  |                               |          |          |       |
| Transfer facilit                                           |                             | 114                            | 145                              | 0                             | 79%      | 16%      | 5%    |
|                                                            | ·                           | 114                            | 145                              | U                             | 13/0     | 10%      | 570   |
| Long-term storag                                           |                             |                                |                                  |                               |          |          |       |
| Long-term on-site storag                                   |                             | ncluded in                     | assessme                         | nt of arisin                  | gs versu |          | ity   |
| Long-term isolation facilit                                | y 2                         | 0                              | 0                                | CIC                           | 100%     | 0%       | 0%    |
| Tota                                                       | al 202                      | 2,336                          | 3,092                            | 945                           | 67%      | 15%      | 18%   |
| Indu                                                       | stry respons                | se receive                     | d Proces                         | ssing licer                   | Ised ar  | hd       |       |
|                                                            | lled capacit                |                                |                                  | -                             |          |          |       |
| No re                                                      | esponse. Ma                 | aximum li                      | censed p                         | rocessing                     | capacit  | v data   |       |
|                                                            | ified in lice               |                                |                                  | •                             | •        |          |       |
|                                                            | esponse. Lic<br>verage of t |                                | -                                |                               |          |          |       |
| Poor same                                                  | inf. group                  |                                |                                  |                               |          |          |       |

*Notes: Infrastructure groups that are shaded grey have coverage limitations or are excluded.* 

#### Assessment of projected need vs capacity of hazardous waste infrastructure

The assessment of need against capacity involved four main steps (refer to Section 4.1 for detail):

- 1. The management of 2016-17 waste arisings were expressed in proportions (percentages) and adjusted to remove anomalies.
- 2. For each waste group, the management methods were mapped to an infrastructure group.
- 3. The tonnes of each waste sent to each infrastructure group were projected for each year and scenario, assuming waste is sent to the various infrastructure groups in the same proportions as 2016-17 (i.e. the recovery rate of each waste group remains constant over the period).
- 4. The projected tonnages sent to each infrastructure group were compared with capacity.

The results of the comparison are shown in Table S5 on a national basis. Estimates shaded grey are considered inaccurate due mainly to the infrastructure group having limited coverage in the capacity assessment. Separate jurisdictional assessments were undertaken (see Table 52 to Table 59).







## Table S5: National assessment of projected arisings vs infrastructure capacity

| Infrastructure group                                       | 16-17<br>arisings | Installed<br>capacity | Expected<br>capacity<br>change | Uncertainty<br>of needs vs<br>capacity<br>assessment | instal     | year arisi<br>led capao<br>scenario | city by    |
|------------------------------------------------------------|-------------------|-----------------------|--------------------------------|------------------------------------------------------|------------|-------------------------------------|------------|
|                                                            | (kt/yr)           | (kt/yr) (kt/yr)       |                                | low - very<br>high                                   | Best       | High                                | Low        |
| Recycling and energy recovery                              |                   |                       |                                |                                                      |            |                                     |            |
| Hazardous waste packaging facility                         | 15                | 19                    | 0                              | High                                                 | >2037      | 2033                                | >2037      |
| E-waste facility                                           | 4                 | 106                   | 12                             | High                                                 | 2037       | 2035                                | >2037      |
| Oil re-refining facility                                   | 325               | 526                   | 0                              | Moderate                                             | >2037      | 2034                                | >2037      |
| Lead facility                                              | 119               | 124                   | 71                             | Moderate                                             | 2023       | 2018                                | >2037      |
| Mercury facility                                           | 0.2               | C                     | IC                             | Low                                                  | >2037      | >2037                               | >2037      |
| Solvents/paints/organic chemicals<br>facility              | 26                | 14                    | 0                              | Very high                                            | 2018       | 2018                                | 2018       |
| Organics processing facility                               | 600               | 106                   | 0                              | Very high                                            | 2018       | 2018                                | 2018       |
| EOLT facility                                              | 47                | 100                   | 9                              | High                                                 | >2037      | >2037                               | >2037      |
| SPL facility                                               | 46                | CIC                   |                                | Low                                                  | >2037      | 2020                                | >2037      |
| Energy recovery                                            | 2                 | С                     | IC                             | Very high                                            | >2037      | >2037                               | >2037      |
| Treatment                                                  |                   |                       |                                |                                                      |            |                                     |            |
| CPT plant                                                  | 395               | 1,129                 | 4                              | Moderate                                             | >2037      | >2037                               | >2037      |
| Clinical waste treatment facility                          | 23                | 25                    | 0                              | High                                                 | 2026       | 2023                                | >2037      |
| Bioremediation facility                                    | 192               | 0                     | 0                              | Very high                                            | no<br>inf. | no<br>inf.                          | no<br>inf. |
| OWT facility                                               | 187               | 199                   | 0                              | Very high                                            | 2025       | 2019                                | >2037      |
| Soils treatment facility                                   | 131               | 178                   | 296                            | Moderate                                             | >2037      | 2018                                | >2037      |
| Disposal                                                   |                   |                       |                                |                                                      |            |                                     |            |
| Hazardous waste landfill facility                          | 235               | 201                   | 0                              | High                                                 | 2018       | 2018                                | 2018       |
| Landfill facility (NEPM codes N, T)                        | 2,875             |                       |                                | n/a                                                  | no<br>inf. | no<br>inf.                          | no<br>inf. |
| Persistent organic pollutants thermal destruction facility | 5                 | С                     | IC                             | Very high                                            | 2020       | 2020                                | 2020       |
| Clinical waste facility thermal destruction                | 21                | 33 6                  |                                | Low                                                  | >2037      | >2037                               | >2037      |
| Short-term storage or transfer                             |                   |                       |                                |                                                      |            |                                     |            |
| Transfer facility                                          | 551               | 145                   | 0                              | Very high                                            | 2018       | 2018                                | 2018       |
| Long-term storage                                          |                   |                       |                                |                                                      |            |                                     |            |
| Long-term on-site storage                                  | 0                 |                       |                                | n/a                                                  | no<br>inf. | no<br>inf.                          | no<br>inf. |
| Long-term isolation facility                               | 0                 | 0                     | CIC                            | n/a                                                  | no<br>inf. | no<br>inf.                          | no<br>inf. |

Notes: Shaded grey infrastructure groups have coverage limitations or are excluded.







## **Conclusions and recommendations**

#### Hazardous waste arisings and management and current issues

In 2016-17, 6.1 Mt of hazardous waste arose in Australia. Around 2.3 Mt of these wastes were managed by the 185 operational sites, which have an installed capacity to manage 3.1 Mt of hazardous waste. The remaining 3.8 Mt of hazardous waste arisings were managed by other infrastructure such as composting facilities and landfills typically licenced to receive only asbestos and low-level contaminated soils.

Hazardous waste arisings are projected to increase to between 5.5 and 15.4 Mt by 2036-37 with the 'best' estimate of arisings of 8.9 Mt. In the high scenario hazardous waste quantities are projected to grow due to:

- an initial jump in quantities as contaminated soils and asbestos step from 2016-17 levels to the highest end of their range
- releases from storage/stockpiling
- the assumption that in 2023 non-toxic salts from the CSG industry are no longer stored onsite
- projected large-scale growth PFAS contaminated soil and PFOS contaminated biosolids, from 2020.

Over the next few years an increase of around 1 Mt of capacity is expected to be added to Australia's capacity across the infrastructure groups of:

- e-waste, lead, mercury, EOLT and SPL recycling facilities
- CPT and soil treatment facilities
- POP and clinical waste thermal destruction facilities
- long-term isolation facilities.

Regarding hazardous waste infrastructure sites in Australia: NSW and Vic dominate in the provision of infrastructure sites each with approximately 30% of the sites. Qld and WA follow both with around 15% of the sites. SA has 8% of the sites, followed by NT, ACT, and Tas which all have less than 5% of Australia's hazardous waste infrastructure sites.

Regarding management of 2016-17 arisings: NSW managed 34% of the waste arisings. Qld, Vic and WA follow with each managing around 20% of arisings. SA managed around 7% of arisings and NT, ACT and Tas all managed less than 2% of 2016-17 arisings.

Regarding installed hazardous waste infrastructure capacity: NSW has 32% of the waste arisings. Qld, Vic and WA follow, each having around 20% of installed capacity. SA has 6% of installed capacity and NT, ACT and Tas all have less than 1% of total installed capacity.

Industry raised many important issues during consultation which are listed below:

- Falling demand for hazardous waste infrastructure risks a non-viable core infrastructure supply
- Stockpiles of SPL, mercury waste and EOLT are a significant issue and risk
- Inconsistent landfill levies driving interstate disposal of hazardous wastes
- Inconsistent landfill levies undermining investment in recovery or treatment of hazardous wastes
- Inconsistent landfilling pre-treatment requirements create unfair advantage between jurisdictions







- Regulatory settings generally need to support large infrastructure investment that is required
- Additional CSG waste infrastructure needed
- Asbestos disposal costs are high and access to disposal points is getting harder
- Significant POP destruction infrastructure coming online in 2018 and beyond in response to PFAS waste arisings and risks
- PFAS contaminated waters: contaminant threshold requirements need
- PFAS contaminated waters: filtration media destruction requirements are inconsistent
- WA: distance and low tonnages of hazardous waste is a major challenge.

#### Hazardous waste packaging recycling facilities

The national assessment indicates that under the best and low scenarios over the next 20 years the installed capacity of Australia's current hazardous waste packaging recycling infrastructure will be able to recycle waste arisings. Under the high scenario, the current installed capacity would be exceeded in 2033. The infrastructure need vs capacity assessment for this group has high uncertainty due to a low response rate during 2018 consultation and the highly diffuse nature of this infrastructure group.

Contaminated hazardous waste packaging may seem like a minor issue in the hazardous waste context. This is a problematic waste stream that often has highly concentrated hazardous product residuals. The contaminated containers are voluminous, cannot be cost-effectively transported and are not able to be processed by non-hazardous waste packaging infrastructure.

Some survey respondents commented on a broader need for improved recovery options for small hazardous waste packaging and small packages of waste hazardous goods. Planned infrastructure flagged in the 2015 assessment has not proceeded and this waste stream will likely continue to be problematic and require dedicated infrastructure.

**Recommendation 1:** Qld, NT and Tas governments should consider completing feasibility studies to determine the viability of establishing additional hazardous waste packaging capacity in their jurisdiction.

#### E-waste major physical/chemical & disassembly facilities

The national assessment indicates that under the best and low scenarios over the next 20 years the current installed capacity of Australia's e-waste (major physical/chemical and manual disassembly processing) infrastructure will be able to recycle waste arisings. If e-waste arisings grow very strongly (high scenario), capacity could become constrained by 2035. However, expected increases in capacity of 12 kt/yr should provide sufficient national capacity to cater for higher growth.

The needs vs capacity assessment for this group has high uncertainty due to the waste arisings reported in tracking system data (4 kt in 2016-17) being much lower than the reported tonnages received (58 kt in 2016-17). This large difference is due to the fact that most e-waste is not transported and tracked as a hazardous waste. Considering the reporting receipts of 58 kt in 2016-17 and the current installed capacity of 106 kt/yr it is still likely that there is sufficient capacity over the projection period.

Installed capacity is concentrated in NSW, with significant capacity also in Vic and SA and some capacity in Qld and ACT. A shortfall in current capacity is apparent in NT, Tas and WA. E-waste in these jurisdictions is likely sent interstate or is sent to landfill.







For e-waste it is important to consider that the assessment assumes no change in the management methods of e-waste. Changes to product stewardship agreements or landfill bans on e-waste could significantly change current e-waste management and increase the recycling capacity required.

**Recommendation 2:** NT, Tas and WA governments should consider completing feasibility studies to determine the viability of establishing e-waste recycling capacity in their jurisdiction.

#### Lithium ion batteries infrastructure

The potential arisings of lithium ion batteries, which are not currently regulated as hazardous waste<sup>4</sup>, are assessed in this report due to their potential to have a significant impact on hazardous and non-hazardous waste infrastructure. Waste lithium ion batteries are projected to grow at an average rate of 19% per year (under best estimate scenario), and if not appropriately managed, represent a safety hazard due to risks of causing explosions and or fire (ABRI 2014).

While this assessment does not indicate a shortfall in the overall e-waste processing capacity in Australia, at the time of writing only one e-waste facility recycles lithium ion batteries in Australia (Envirostream Victoria). Most lithium ion batteries recovered are still likely to be exported overseas for recycling. In addition, Australia has no specific lithium ion battery collection/transfer infrastructure (lithium ion batteries that are recovered are collected with other battery types). The collection of potentially flammable lithium ion batteries without appropriate infrastructure could create a fire hazard within the collection infrastructure for other batteries.

**Recommendation 3:** The potential hazards posed by lithium ion batteries, and the best means of managing these hazards, needs further assessment. Subsequently, an assessment should be completed of the collection and processing infrastructure needs for lithium ion batteries in Australia. This recommendation was made in 2015 and is supported by a CSIRO (2018) study.

#### **Oil re-refining facilities**

The national assessment indicates that, under the low and best scenarios, over the next 20 years the installed capacity of Australia's current oil re-refining infrastructure will be able to recycle waste arisings. Under the high scenario, the current installed capacity would be exceeded in 2034.

The infrastructure need vs capacity assessment for this group has moderate uncertainty due to a moderate response rate during consultation and the potential under-reporting of waste oil in NSW and Vic data resulting in an under-estimate of 2016-17 arisings. In addition, some waste oils recycling may actually be sent for energy recovery, which would result in an over-estimate of waste oil re-refining demand.

The 2018 assessment for this infrastructure group is a significant improvement on the 2015 assessment due to separation of the projections of the NEPM J waste codes of J100 and J160 from J120 Waste oil/water, hydrocarbons/water mixtures or emulsions. The J120 waste arisings are now mapped to the new infrastructure group of OWT facilities. This has increased the accuracy of the assessment and resulted in a change of expected exceedance of installed capacity in 2023, in the 2015 assessment, to >2037 in this assessment.

Installed capacity is concentrated (in the following order) in WA, Qld and NSW, with some capacity also in SA and Vic. No oil re-refining capacity was identified in ACT, NT and Tas. Oil waste in these jurisdictions is likely sent interstate.

<sup>&</sup>lt;sup>4</sup> Waste lithium ion batteries are regulated as hazardous waste for international transport, but currently not for domestic transport







Jurisdictional analysis indicates that ACT, NSW, NT, Qld, Tas all either lack oil re-refining capacity or do not have capacity in the jurisdiction.<sup>5</sup> Capacity in SA and WA appear to be sufficient.

**Recommendation 4:** NSW, NT, Qld and Tas governments should consider completing feasibility studies to determine the viability of establishing additional oil waste capacity in their jurisdiction.

#### Lead recycling facilities

In the best estimate scenario, lead waste arisings are projected to increase at a rate equivalent to 20-year average population growth rate (1.4%) in all jurisdictions except Tas (where lead waste is projected to follow trends in global zinc prices). On this basis, the installed lead recycling infrastructure capacity could be met by 2023.

Under the low scenario projection, of flat trend for 10 years and decline for the next 10 years due to replacement of battery technology, installed capacity is not expected to be exceeded over the next 20 years.

Under the high estimate projection, of arisings increasing at the 20-year average rate of economic growth (2.8%) for all jurisdictions except Tas, capacity would be exceeded in 2018. The high scenario also includes a 20 kt/yr release of jarosite waste from a stockpile at Nyrstar Hobart to Nyrstar in Port Pirie<sup>6</sup>. The Nyrstar Port Pirie site is included in the e-waste infrastructure group due to the site's defined capacity to process e-wastes such as CRT TVs and the site's unconstrained capacity to take lead waste from the Hobart zinc smelter. Nyrstar Port Pirie's lead recycling capacity is not included in the 124 kt/yr installed capacity estimate. There is also an additional 71 kt/yr of lead acid battery smelting capacity under construction that would add significant additional capacity along the east coast. As Nyrstar Port Pirie can manage all of the lead-rich waste from the Nyrstar Hobart zinc smelter and the significant additional lead acid battery processing capacity coming on-line, there is likely to be sufficient lead recycling capacity under all scenarios.

The lead recycling assessment has moderate level of uncertainty due to the:

- lack of industry response for the 2018 assessment
- lack of a clearly defined upper limit on Nyrstar Port Pirie's ability to manage all of the lead waste from Nyrstar operations, in addition to lead waste from other sectors.

Recycling capacity for lead acid batteries is almost all located in NSW, with some capacity now in Qld so lead acid batteries are transported from other jurisdictions to NSW or Qld or exported overseas under an export permit. The transport costs from WA in particular may result in significant battery stockpiling in WA.

**Recommendation 5:** WA government should consider completing a feasibility study to determine the viability of establishing lead waste recycling capacity in their jurisdiction.

#### **Mercury recycling facilities**

At a national level, the assessment indicates that over the next 20 years the currently installed capacity of Australia's current mercury waste recycling infrastructure will be able to recycle waste arisings.

<sup>&</sup>lt;sup>5</sup> Despite NSW and Qld both having significant capacity (as noted above) the projected waste oil sent for re-refining exceeds capacity over the projection period.

<sup>&</sup>lt;sup>6</sup> Port Pirie is understood to have unconstrained capacity to process waste from the Hobart Zinc smelting operations.







Industry reported around 10 times more receipts than was reported in the waste tracking systems, reflecting that some of the mercury waste (such as unprocessed light fittings) does not require tracking. Text withheld to maintain commercial confidentiality

The mercury recycling assessment has a low level of uncertainty, with excellent industry input and a clearly defined infrastructure group targeting mercury recycling as their core business.

#### Solvents/paints/organic chemicals recycling facilities

At a national level, the assessment indicates that the current capacity of solvents/paints/organic chemicals recycling is being exceeded. This is unlikely to be accurate due to the high level of uncertainty in the capacity assessment for this group. A number of factors need to be considered:

- 1. it is likely that some materials sent to energy recovery are recorded as recycled (resulting in over estimate of arisings to recycling and underestimate to energy recovery)
- 2. some solvent/paint recycling capacity is likely to be within the CPT infrastructure group
- 3. some smaller operators that recycle solvents/paint may not have not been captured in the infrastructure database.

Based on industry consultation and this assessment, a national shortage of this infrastructure over the next 20 years is considered unlikely. Solvent/paints recycling infrastructure was identified only on the east coast (NSW, Qld, Vic). ACT, NT, SA, Tas and WA had no sites identified. In these jurisdictions, solvents/paint waste is sent interstate, managed within other infrastructure groups or taken to sites not identified in the capacity database.

#### **Organics recycling (NEPM K code wastes) facilities**

At a national level, projections indicate that under all scenarios the current capacity of organics recycling infrastructure (for NEPM K code organics) is being exceeded. This is inaccurate and is linked to the very high uncertainty of the assessment of needs vs capacity.

The majority of the 600 kt arisings in 2016-17 of NEPM K code waste is sent to composting sites that are not included in the infrastructure capacity assessment. To complete a quantitative analysis of projected arisings of NEPM K code organics against infrastructure capacity, extensive data would be required on non-hazardous waste infrastructure that accepts only a relatively small amount of low-level hazardous waste as part of much larger non-hazardous waste volumes. In addition, some smaller operators that specialise in hazardous organic waste may not be within the infrastructure database due to the diffuse nature of this infrastructure group.

Based on industry consultation and our assessment of organics recycling infrastructure (for NEPM code N) we do not believe a national shortage of this infrastructure group is likely over the next 20 years. This assessment is supported by the industry consultation results presented in Table 45. It is estimated that the sites within the scope of this infrastructure group received 99 kt of waste in 2016-17 (not 600 kt) and have an installed capacity to manage 106 kt/yr.

#### End-of-life-tyre recycling facilities

The national assessment of need vs capacity indicates that over the next 20 years the currently installed capacity of Australia's EOLT recycling infrastructure (100 kt/yr) will be able to recycle waste arisings (44 kt/yr in 2016-17). However, the EOLT recycling industry reported around 90 kt of EOLT received which is more than double the 44 kt waste arisings recycled in 2016-17. The difference is related to EOLT recyclers receiving EOLT and exporting them with minimal processing to international energy recovery or reuse markets (the 44 kt relates to full on-shore processing).







Whilst there is good capacity in Australia to collect and partly process tyres for export, there is a lack of well-developed on-shore markets for tyre-derived products. Around 60% of Australian EOLTs are sent to landfill, stockpiled or go to unknown fates. For Australia to increase the recovery of these lost EOLTs there will need to be strong developments in processing technology in Australia. However, these investments cannot occur without further development of offtake markets for the tyre-derived products and enforcement to ensure tyres are not sent to landfill, stockpiled, dumped or exported to low value management options.

EOLTs are the only Australian controlled waste that is exported in significant tonnages to other countries. India is the largest export market for Australian EOLTs. India may restrict EOLT imports in an effort to get local EOLT collected and recycled. This would follow recent trends such as <u>India</u> <u>banning plastic imports</u>. Should India or other countries receiving large tonnages of EOLTs from Australia (e.g. Malaysia) restrict or ban this flow of EOLTs, it is likely that Australia's EOLTs processing capacity would be insufficient.

#### **SPL recycling facilities**

An estimated 46 kt of spent pot liner (SPL) arose in 2016-17 which suggests that the aluminium industry is processing all of the current SPL being generated and some of a significant stockpile of SPL. REC (2016) estimated Australia's annual SPL generation at around 30 kt/yr (based on aluminium production rates). REC (2016) estimated the stockpile of SPL to be around 700,000 tonnes, of which around 390,000 tonnes are in on-site landfills at aluminium smelters around Australia.

Under the best and low scenarios, the currently installed capacity is likely to be adequate. Under the high scenario, capacity would be exceeded, as not quite all of the stockpile would be processed in 10 years. This is consistent with the REC (2016) finding that capacity is available to treat Australian SPL stockpiles over around a 10-year period, whilst treating current arisings. REC (2016) also notes that the treatment of SPL that has been landfilled has not yet been demonstrated and may require additional or different infrastructure installation.

The uncertainty of the SPL assessment is low, due mainly to the recent and detailed study (REC 2016) of SPL processing capacity, generation and stockpiles in Australia providing the necessary data.

**Recommendation 6:** Qld, NSW, Vic and Tas governments and DoEE should continue to actively engage with aluminium smelting companies regarding current SPL stockpiles to ensure that stockpiles continue to be drawn down each year until they are removed.

#### Hazardous waste energy recovery facilities

At a national level, the assessment indicates that capacity has increased significantly since the 2015 assessment, due to the inclusion of cement kilns within the project scope and the allocation of these energy recovery tonnages to this group. The estimated arisings for this infrastructure group (2 kt) are incorrect. Industry reported CIC of waste currently received. The reasons for this are:

- 1. Some of the 26 kt of solvents/paints recycling tonnages may actually be sent to energy recovery infrastructure. Currently, the jurisdictional waste tracking systems do not support the separate reporting of tonnages sent to recycling vs energy recovery, which limits the ability to assess energy recovery infrastructure need.
- 2. Some of the waste that is sent for energy recovery does not require tracking in some jurisdictions, for example waste oil in NSW and EOLT in NSW, SA and Vic.

Currently Australia's energy recovery from hazardous waste relies upon cement kilns as the offtake market. Whilst current installed capacity exceeds the CIC estimated as received, this does not allow





for significant increases without either amendment to cement kiln licences (if technically feasible) or the development of additional energy recovery infrastructure apart from cement kilns.

#### Chemical and physical treatment (CPT) plant facilities

CPT plants are the archetypal hazardous waste facility, treating a range of waste types using a range of processes. Many of these operations are currently suffering from falling demand as manufacturing activity declines. Across the country, industry reported falling amounts of hazardous manufacturing waste sent for treatment. In some instances, sharp declines were reported. This issue was reported in 2015 and remains current for this 2018 assessment. Our analysis, based on waste tracking data, estimated tonnages of waste sent to CPT of 700 kt in 2015 to just 400 kt in 2018, a fall of around 43% over three years.

This project is focused on identifying where Australia's hazardous waste industry may become constrained over the next 20 years. CPT operators flagged that undersupply of waste could cause infrastructure shortages due to closure of key infrastructure that may no longer be viable as demand falls for processing of key high-volume waste.

However, the overall tonnages of hazardous waste are projected to increase from around 6 Mt currently to almost 10 Mt in 2038, so while tonnages of some waste are declining and projected to continue doing so, other hazardous waste types are projected to increase significantly. The challenge for industry and government is to plan for and implement infrastructure changes that can manage the rapidly changing composition and generating sectors/ locations of hazardous waste.

At a national level, based on the best, high and low projections of arisings, CPT infrastructure is estimated to be able to meet national demand over the next 20 years. For all three scenarios, the projections are based on varying degrees of decline in some waste groups, such as B Acids and E Reactive chemicals, and growth in other waste groups, such as D300 Non-toxic salts and C Alkalis that are projected to increase driven by oil and gas, particularly coal seam gas (CSG), industry developments.

CPT current installed capacity is projected to be sufficient under all scenarios for NSW, Qld, SA, Vic and WA. ACT, NT and Tas have no local CPT capacity. Tas in particular appears to have a shortage of CPT capacity with no CPT capacity identified and estimated arisings of 16 kt.

**Recommendation 7:** DoEE and/or NSW and Qld EPAs should consult with the CSG industry to develop a strategic plan for managing its waste, in particular waste in remote areas. This recommendation was made in 2015 and remains current.

**Recommendation 8:** DoEE and/or Tas EPA should further investigate the supply of CPT capacity for hazardous waste in Tas. This recommendation was made in 2015 and remains current.

#### **Clinical waste treatment facilities**

In the best estimate, clinical waste quantities will grow at the projected 20-year average annual growth rate of population growth (1.4% pa). At this rate, the installed capacity of clinical waste treatment could be exceeded by 2024. Based on the high projection, with growth of 2.0 to 2.1% growth based on Thornton (2014), national capacity could be exceeded in 2022. Under the low scenario where the waste arisings trend is flat, capacity is projected to meet demand over the next 20 years.

The infrastructure needs vs capacity assessment for this group has high uncertainty due to a poor response rate from industry. Despite this uncertainty, the assessment indicates that Australia's







clinical waste treatment capacity will soon become constrained and investment in additional infrastructure may be required.

NT, SA, Tas and WA all appear to have sufficient clinical waste treatment capacity. ACT, NSW, Qld, and Vic all appear to have insufficient local supply of clinical waste treatment capacity and are likely to be exporting significant quantities interstate. Based on the national assessment, interstate capacity will soon become constrained.

**Recommendation 9:** ACT, NSW, Qld, and Vic governments should consider completing feasibility studies to determine the viability of establishing clinical waste recycling capacity in their jurisdiction.

#### **Bioremediation facilities**

There is limited coverage of the capacity of this infrastructure group. Composting facilities are excluded from the database. This group is intended to refer to facilities that treat hazardous waste though biodegradation. Many commercial composting facilities are licenced to receive low level hazardous waste which is effectively bioremediated in the composting process and these facilities are not within the project scope.

Some 200 kt of hazardous waste were reported in tracking data as bioremediated. Most, if not all, of this material would be processed by commercial composting facilities licenced to take a range of low hazard organic waste such as grease trap. These composting facilities are not included in this database. Whilst it is worth maintaining transparency on the amount of hazardous waste being reported as bioremediated by the composting industry, it is beyond the project scope to assess the capacity of bioremediation capacity in Australia.

**Recommendation 10:** State regulators that are operating waste tracking systems complete ongoing auditing of waste treated through bioremediation to ensure that only appropriate hazardous waste is sent to composting operations. This may already be occurring.

#### **Oily water treatment (OWT) facilities**

This is a new infrastructure group for the 2018 assessment. Under the best estimate projection capacity would be exceeded in 2025, or as soon as 2019 under the high scenario estimate. Under the low projection, estimated capacity is not expected to be exceeded over the 20-year projection period. The reported 2016-17 arisings of 187 kt are more than the estimated receipts of around 150 kt which may be due to a lack of response from industry and the need to use averages for around a third of sites, or it could be due to the database not including all sites from this diffuse infrastructure group.

The uncertainty of the needs vs capacity assessment is very high due to the capacity assessment relying on average installed capacity for around a third of the sites and the high risk that small OWT plants are not included in the database.

Noting the above, the assessment indicates that capacity for OWT in Australia could become constrained over the next 10 years and some additional capacity may be required.

The jurisdictional assessment indicates that all jurisdictions, apart from Qld, Tas and Vic, lack OWT capacity. However, OWT facilities are typically relatively simple operations that could be established quickly and in response to market demand, and is an infrastructure group that should not require government involvement.







#### **Contaminated soils treatment facilities**

At a national level, under the best estimate projection, arisings would not exceed installed capacity over the next 20 years, but would do so under the high scenario. Under the low scenario, capacity would not be exceeded over the projection period.

Significant additional soil treatment capacity is under construction/commissioning in Vic that will add around 300 kt of additional installed capacity and provide sufficient capacity for the long-term for Vic. The significant Vic treatment capacity may also be utilised to treat soil from interstate, with appropriate approvals in place.

The uncertainty of the needs vs capacity assessment is moderate due to the highly fluctuating generation rates of contaminated soil and the difficulty that contaminated soil facilities face in securing the contaminated soil for treatment. Industry report onsite management, contamination dilution with clean soil and landfill disposal as serious threats to their investments, which reduces the certainty in infrastructure capacity investment. Importantly, these estimates assume no change to the current fate patterns of contaminated soil, which, based on the national average, is estimated to be 87% to landfill. If the treatment proportions are higher in other jurisdictions, the above assessment of no national capacity constraints would be affected.

Noting the above, the assessment indicates that there may be a need for additional soil treatment capacity in Australia if contaminated soil generation rates are high, except for Vic which has significant capacity coming online.

Installed capacity is concentrated in Vic, with some capacity also in NSW, Tas and WA. A shortfall in current capacity is apparent in NT, Qld, and SA. Contaminated soil in these jurisdictions is likely disposed to landfill.

**Recommendation 11:** NT, Qld, and SA governments should consider completing feasibility studies to determine the viability of establishing contaminated soil treatment capacity in their jurisdiction.

#### Hazardous waste landfill facilities

At a national level, for all three scenarios, the current 2016-17 arisings exceed the current installed annual capacity. The modelling assessment for this infrastructure group is incorrect. The response rate from site operators was only 50%, meaning infrastructure group averages were used, and generally the responses provided data only on waste currently received with little information on the installed capacity (i.e. how much waste the landfill can receive annually). This is understandable as, unlike other infrastructure types, landfills are usually able to cater to varying capacity demands (within reason) and a site's installed annual capacity can be difficult to define.

Perhaps more important than the above analysis are industry comments regarding the expected life (i.e. amount of airspace remaining and the number of years of operation before this capacity is consumed) of the seven landfill sites included in this infrastructure group.<sup>7</sup> Landfill operators were asked how much waste could be received at the site before the site's airspace was consumed. Where the operator responded, they all responded with an estimate of the expected year of closure or simply stated that the site had more than 20 years capacity remaining.

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018

<sup>&</sup>lt;sup>7</sup> The Mount Walton Intractable Waste facility in WA is included in the seven hazardous waste landfills. It has historically only operated on a campaign basis and Tellus Holdings are building a long-term isolation facility five km from site. The future operation of the Mount Walton Intractable waste facility is assumed unlikely following establishment of the Tellus Holdings site next-door.







Text withheld to maintain commercial confidentiality. No other sites surveyed in this category responded with a definitive response of planned closure within the new 20 years. Apart from Suez Elizabeth Drive, responses were generally vague on the expected closure year and it is recommended that more detailed investigation of the likely closure date of the landfills in this category be completed. Given the small number of sites and the extreme difficulty some jurisdictions have experienced in establishing new hazardous waste landfills, it is important to better understand the risk profile of each site in terms of its likelihood of closure due to: a lack of airspace, regulatory non-compliance, community concern and sudden airspace consumption due to extreme weather events such as cyclone or fire.

**Recommendation 12:** DoEE should work with the jurisdictions to complete a detailed assessment of the likely closure year of the identified hazardous waste landfill facility infrastructure including a risk assessment of site capacity being impacted by issues such as extreme weather events. Text withheld to maintain commercial confidentiality

#### Landfill facilities (NEPM code N, T)

This infrastructure group is not in the scope of hazardous waste database. As discussed in Section 3.2, a significant number of landfills are licensed to take hazardous waste NEPM codes N and T only (asbestos, EOLT, low level contaminated soil) and these facilities are not included in the infrastructure database. This is reflected in the almost 3 Mt of hazardous and controlled waste estimated to be sent to this infrastructure group, by far the largest portion of hazardous waste (almost half of the estimated 6 Mt of arisings). Based on industry consultation and our assessment of landfill infrastructure for NEPM codes N and T only, we do not believe there is likely to be a national shortage of this infrastructure group over the next 20 years.

#### Landfills for asbestos disposal

Unlike most waste, it is commonly accepted that the most appropriate fate for asbestos waste is landfill, where it can be safely removed from the environment for the long term. Across Australia, state and local governments are working towards a gradual rationalisation in the number of landfills in order to minimise the environmental and human health risks that landfills can create. As small regional landfills close, they are often replaced with transfer stations that consolidate waste and enable higher rates of resource recovery, reduce long term liabilities and risks, and transport bulk waste loads to a regional landfill. However, few transfer stations in Australia accept asbestos. This creates a potentially serious problem of lack of local access to disposal options for waste asbestos. Consultation suggests this is a current issue and it is likely to worsen.

#### **POP thermal destruction facilities**

At a national level, under all scenarios the current and expected future POP capacity would be greatly exceeded in 2020 when, under the best estimate scenario, arisings are projected to increase to over 400 kt and increase to 450 kt by 2037. The major increases in arisings in 2020 are mostly PFAS contaminated waste (soils, AFFF, biosolids) in 2020 and greater quantities of POP-BDEs and HBCD waste starting in 2023. Whilst this identifies a major gap in Australia's dedicated POP thermal destruction capacity, the capacity assessment uncertainty for this group is very high. POP destruction capacity could turn out to be adequate due to:

1. POP thermal destruction capacity within soils treatment facilities. By 2020, as noted above, Australia should have soil treatment facilities, that are able to receive POP, with a total installed capacity of over 300 kt. The capacity of these facilities to receive POP is not yet clear and for this assessment a conservative estimate is made of less than CIC of POP waste capacity within these facilities. It is possible that PFAS contaminated waste (soil and biosolids in particular) may be treated by these facilities in much larger tonnages sufficient to manage the projected arisings.







- 2. POP thermal destruction capacity within cement kilns. Cement kilns in Australia are currently destroying some POP including PFOS. The capacity of Australia's cement kilns to destroy POP is estimated to be **CIC**. The capacity of cement kilns to destroy additional POP tonnages is unknown and there may be additional capacity if the appropriate testing and license approvals were successfully completed.
- 3. POP thermal destruction capacity within clinical waste thermal destruction (TD) facilities. Daniels (Toxfree) Laverton facility is licenced to process highly contaminated PCB waste. Daniels (Toxfree) did not state the potential tonnages of POP that could be destroyed at the facility.

It may be the case that the current and planned suite of infrastructure that is able to destroy POPs can manage the projected tonnages of POP waste. This will depend on the ability of the soil treatment, cement kilns and clinical waste destruction facilities' ability to demonstrate the destruction of POP at the currently licensed limits. Future increases in POP waste may be able to be managed in the current infrastructure subject to demonstration of POP destruction and the approval of large increases in licensed capacities for POP waste.

**Recommendation 13:** DoEE should work with jurisdictions and industry to agree an approach to determine the upper limit for tonnages/concentrations that can be received at the high temperature thermal soil treatment facilities, cement kilns and clinical waste thermal destruction units that will ensure thermal destruction of the PFAS, POP-BDE, HBCD and HCB wastes. This information is required to better understand how much additional dedicated POP thermal destruction capacity (from technologies such as plasma arc) may be required in future.

#### Thermal destruction of PFAS in contaminated water

Industry commented that it urgently needs further direction from regulators regarding the process requirements and contaminant thresholds for PFAS-impacted water clean-up. There is inconsistency between the jurisdictions and reliance on existing guidelines that do not specify PFAS limits.

**Recommendation 14:** The process requirements and contaminant thresholds that need to be met for PFAS-impacted water clean-up should be defined. DoEE may be best placed to lead the development of a recommended process and threshold that the jurisdictions could choose to adopt. This work may already be underway.

PFAS-contaminated groundwater is being cleaned up using activated carbon filtration processes to remove PFAS. Once the filtration media's capacity to adsorb PFAS is exhausted, the contaminated material needs to be renewed. Industry commented that in Qld this material is able to be sent to landfill whereas in other jurisdictions the PFAS-contaminated material must be thermally treated to destroy PFAS. If PFAS-contaminated filtration media is being sent to landfill, rather than being thermally destroyed, it would seem to defeat the efforts in removing PFAS from the groundwater in the first place (i.e. in landfill PFAS will presumably make its way back to the environment).

**Recommendation 15:** The management requirements of PFAS-contaminated filter media should be reviewed to ensure a nationally consistent approach.

#### **Clinical waste thermal destruction facilities**

At a national level, based on the best, high and low projections of arisings, clinical waste thermal destruction infrastructure is estimated to meet national demand over the next 20 years.

The estimated 2016-17 arisings of 21 kt aligns with the 20 kt of waste received as reported by industry. With a currently capacity of 33 kt/yr and an expected increase of 3 kt, there appears to be sufficient clinical waste thermal destruction capacity in Australia.







The spare capacity of this infrastructure group has the potential to be impacted by the demand for POP thermal destruction where the site currently has or gains a licence for POP destruction.

There is also reasonable national coverage with facilities in all jurisdictions apart from ACT, NT and Tas. The NT is serviced by a clinical waste treatment facility (autoclave). Tas has no clinical waste facilities (treatment or thermal destruction) in the 2018 database, which indicates a gap in capacity in Tas.

**Recommendation 16:** DoEE and/or Tas EPA should further investigate the need for clinical waste treatment or thermal destruction facilities in Tas.

#### Transfer station or temporary storage facilities

Projections indicate that under all scenarios the current national transfer/temporary storage capacity of hazardous waste infrastructure is exceeded. These projections are not accurate due mainly to the capacity database having limited coverage of this group. Whilst some transfer facilities are included in this dataset, it is recognised that there are other facilities which deal with hazardous waste that are not included in the dataset, such as smaller storage facilities and transfer stations.

Transfer capacity estimates are also incomplete due to limited infrastructure coverage and some capacity being provided within other infrastructure groups. The capacity of transfer infrastructure is also not fixed (i.e. capacity can be scaled up and down by simply increasing the rate of load transfers).

The project team surveyed industry asking respondents to flag any major transport constraints. Very long transport distances particularly in WA were raised several times as a major barrier to treating/recovering hazardous waste. WA has four of the 19 transfer station facilities in the 2018 database. For such a large state this appears low. If not already being undertaken, further investigation of strategic locations for transfer station facilities in WA is recommended. Consultation with industry on establishing joint venture transfer stations to consolidate waste from a range of waste companies and generators should be explored for WA and potentially Qld (to reduce costs of transporting coal-seam gas waste).

**Recommendation 17:** DoEE and/or WA and Qld governments should complete a detailed assessment and consultation with industry regarding the need for and (where required) best location(s) for additional hazardous waste transfer station/temporary storage infrastructure. This recommendation was made in 2015 and remains current.

#### Long-term isolation facilities

Two long-term isolation facilities are currently under development and aim to be operational in around five years' time. Assuming that both become operational, they would provide capacity for up to CIC for highly intractable waste that lacks viable treatment or destruction options. This would provide good mitigation for the risks associated with having only six (operational) hazardous waste landfills in Australia, with the main NSW site due to close in CIC.

CSG reverse osmosis brine wastes and long-term isolation capacity: under the high projection scenario, it is assumed that, after five years new arisings of CSG reverse osmosis brine wastes will be required to be managed offsite and would be sent to long-term isolation facilities (rather than being stored onsite). Historical stockpiles are assumed to remain onsite.







This results in a very large increase, 2.5 Mt/yr, in 2023 increasing to 3.2 Mt/yr by 2037 that is projected to need long-term isolation facility capacity. This presents a shortfall of **CIC** Mt of capacity in 2023, even when the currently planned facilities are built and operating at capacity.

**Recommendation 18**: DoEE should work with state and territory governments to assess the appropriate management of CSG RO brine wastes and determine the likelihood that offsite disposal requirements will be needed in future.

## Uncertainty in assessing need vs capacity

Future scenarios are inherently uncertain. The arisings of hazardous waste are influenced by industrial markets, development activities, social licences, government regulations and technological innovations that are all unpredictable. The infrastructure servicing this waste is changeable and difficult to characterise, and information on its activities is limited and hard to obtain. The language of the jurisdictional data (e.g. NEPM codes) differs from that of the industry, creating problems and uncertainties in matching the two. As a result of these uncertainties, the key conclusions of this analysis should be taken as indicative.

Since the 2015 assessment, significant work has been undertaken by DoEE and the jurisdictions to better understand, document and rationalise hazardous waste tracking systems and the recording of hazardous waste arisings and management methods. However, there are still challenges in compiling the data required to complete this assessment. For example, it is still not possible to determine from the tracking system data the tonnages of hazardous waste sent to energy recovery (it is hidden in the recycling tonnages).

**Recommendation 19:** DoEE and the jurisdictions should continue to improve the consistency and completeness of tracking system data and work towards systems that enable reporting of energy recovery separately from recycling.







## 1. Introduction

## **1.1 Project origins and scope**

The Australian Government Department of the Environment and Energy (DoEE) is responsible for administering the *Hazardous Waste (Regulation of Exports and Imports) Act 1989* (the Act), which implements Australia's international agreements on managing hazardous waste including the *Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal* (the Basel Convention).

DoEE is also the lead agency responsible for the implementation of the current *National Waste Policy: Less Waste, More Resources.* The policy contains a commitment to assess Australia's current and future hazardous waste infrastructure capacity and needs. This is intended to provide guidance to regulators and industry on where additional investment may be needed.

In 2014, DoEE commissioned the first such assessment. The results, published in 2015, were well received by industry and government stakeholders and seen as valuable for planning Australia's current and future hazardous waste infrastructure needs.

In 2017, DoEE commissioned Blue Environment (lead consultant), Ascend Waste and Environment and Randell Environmental Consulting (the same consortium that undertook the 2015 assessment) to review and update of the 2015 assessment. This revised assessment is reported here.

The revised assessment has the same three parts as the 2015 assessment:

- 1. prepare projections of hazardous waste arisings and fates<sup>8</sup> over the coming 20 years
- 2. consult with industry to estimate Australia's current hazardous waste infrastructure capacity, its distribution and expected future
- 3. identify the extent to which current infrastructure meets future needs, considering the nature and locations of particular infrastructure.

The revised assessment also contains important expansions of the scope of the infrastructure assessment, including an analysis of cement kiln infrastructure capacity to receive hazardous wastes.

## **1.2** Project context and key definitions

## **1.2.1** Hazardous waste

Waste that, by its characteristics, poses a threat or risk to public health, safety or to the environment<sup>9</sup>. In national reporting this term is taken to correspond with:

- wastes that cannot be imported or exported from Australia without a permit under the *Hazardous Waste (Regulation of Exports and Imports) Act 1989*
- wastes that any jurisdiction regulates as requiring particularly high levels of management and control, namely: regulated waste (Queensland); trackable waste (New South Wales); prescribed waste (Victoria); listed waste (South Australia and NT); or controlled waste (ACT, Tasmania and Western Australia)

<sup>&</sup>lt;sup>8</sup> For a discussion on these terms, see Section 1.2.

<sup>&</sup>lt;sup>9</sup> From AS/NZS 3831:1998 Waste Management – Glossary of Terms.

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018







• additional wastes nominated as hazardous by the Australian Government<sup>10</sup>.

In addition, waste that has hazardous characteristics and has been stored on a site for more than one year should be considered hazardous waste.

NSW (along with the ACT<sup>11</sup>, due to their adoption of NSW classification procedures) uses the term 'hazardous waste' in a specific regulatory sense. The NSW *Protection of the Environment Operations (Waste) Regulation 2005* and associated guidance defines 'hazardous waste' as one of six classes of waste – and it typically cannot be disposed at landfill without hazard reduction treatment such as immobilisation. 'Hazardous waste' in this strict NSW (ACT) regulatory interpretation is equivalent only to those *hazardous wastes* (in national reporting terminology) that would be categorised at the higher hazard end of the range.

## 1.2.2 Regulating and tracking hazardous waste in Australia

Whereas the Australian Government has responsibilities in relation to hazardous waste under the Act and the National Waste Policy, regulation of hazardous waste management is the responsibility of the states and territories. In order to ensure appropriate management of this waste, the five largest jurisdictions (NSW, Qld, SA, Vic and WA) operate systems for 'cradle to grave' tracking of the movement of each consignment of hazardous waste from point of generation to treatment or disposal. Tracking certificates include the type and quantity of waste, the dates, and the producer, transporter and details of the receiving facility. A copy is sent to the relevant environmental authority. The jurisdictions agreed to allow the use of the large data sets generated by their tracking systems in this study, under confidentiality agreements.

There is some variation in the waste that is regulated and tracked as hazardous waste between the jurisdictions. Refer to Appendix A for analysis of waste that is tracked/not tracked in NSW, Qld, SA, Vic and WA tracking systems.

## **1.2.3** The meaning of waste arisings

In this project, hazardous waste is said to arise when it is delivered to processing, storage, treatment or disposal infrastructure. This is distinct from 'waste generation', a term commonly used in waste reporting, in that if waste is transported to more than one site it may 'arise' more than once. The projections developed in this report are of waste arising, which is consistent with data from the jurisdictional tracking systems. It should be noted that until a waste is moved off-site, it does not arise. Waste that is created on a site and remains stored there has not arisen.

## **1.2.4** The potential for new hazardous wastes

An important aspect of the context for this project is the potential for new hazardous waste streams to arise. Australia is a party to the Stockholm Convention on persistent organic pollutants (POP), which aims to protect human health and the environment from the effects of these chemicals. Australia is in the process of deciding whether to ratify the chemicals added since 2009. Should it decide to do so, significant quantities of additional waste, such as POP-contaminated biosolids, might need to be managed as hazardous, some of which are not currently managed in this way. This could have major implications for the demand for hazardous waste infrastructure. The new Stockholm hazardous wastes that this project provides analysis of include:

<sup>&</sup>lt;sup>10</sup> For example, the Australian Government has considered waste lithium ion batteries as hazardous in assessing the adequacy of hazardous waste infrastructure. Lithium ion batteries are regulated as hazardous waste for the purposes of international movement, but not at the moment for domestic movement

<sup>&</sup>lt;sup>11</sup> Environment ACT (2000) ACT Environmental Standards: Assessment and Classification of Liquid & Non-liquid Wastes, June, available from: <u>http://www.environment.act.gov.au/\_\_data/assets/pdf\_file/0005/585500/wastestandards.pdf</u>







- polybrominated diphenyl ethers (POP-BDE)
- hexabromocyclododecane (HBCD)
- per- and poly-fluoroalkyl substances, including PFOS

Apart from new Stockholm wastes this project also analysed potential arisings of lithium ion batteries which are not currently regulated as hazardous waste<sup>12</sup>. Although lithium ion batteries are not regulated as hazardous waste, they are assessed in this report because of their potential to have a significant impact on hazardous waste infrastructure. Lithium ion battery use has been increasing strongly and, if not appropriately managed, represents a safety hazard due to risks of causing explosions or fire (ABRI 2014).

## 1.2.5 The NEPM and its waste classification systems

Hazardous waste produced in a particular jurisdiction may move to another for storage, treatment or disposal. The *National Environment Protection (Movement of Controlled Waste between States and Territories) Measure 1998* (NEPM) was established to ensure that hazardous waste transported between jurisdictions is properly identified, transported and otherwise handled. Among other things, the NEPM established a coding system to be used for this waste. Many of the jurisdictions' own waste classification systems have been subsequently updated to fully or mostly mirror the NEPM list. The NEPM classification system has two levels:

- the 'NEPM 75' list contained in Schedule A, List 1 of the NEPM
- the 'NEPM 15' list, which aggregates the NEPM 75 and is used for reporting purposes.

The NEPM 15 and 75 lists provide the foundation for the waste groups used in this project (see Section 2.2).

## 1.2.6 Grouping of waste and infrastructure applied in this project

To assess infrastructure need and capacity, grouping of both waste and infrastructure types was needed. Pre-existing classification systems provided a basis for this, but did not fully cover the project needs.

The project team defined 33 'waste groups' that are mostly consistent with the 'NEPM 15' list, but with some categories disaggregated where a component waste was of particular interest to DoEE. In developing the waste groups for analysis in the project, DoEE provided direction on the waste that was of particular interest, typically due to large or highly uncertain arisings or particular management requirements. The wastes of particular interest and the waste groups containing them are summarised in Table 1.

Similarly, infrastructure was allocated into one of 23 'infrastructure groups' based on the main wastes received and the primary function<sup>13</sup>. Infrastructure group examples include 'oil re-refining', 'POP thermal destruction', 'clinical waste treatment' and 'clinical waste thermal destruction'. See Table 43 for a description of the infrastructure groups.

<sup>&</sup>lt;sup>12</sup> Waste lithium ion batteries are regulated as hazardous waste for international transport, but currently not for domestic transport

<sup>&</sup>lt;sup>13</sup> The 'primary function' of the infrastructure refers to the waste management that the infrastructure provides (e.g. recycling, treatment, disposal).

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018







## **1.2.7** Limitations and uncertainty

This assessment of projected hazardous waste infrastructure need vs capacity is affected by the limitations and levels of uncertainty in relation to:

- 1. the projected arisings of hazardous waste
- 2. the apportioning of projected waste across the different type of infrastructure
- 3. the assessment of the current hazardous waste infrastructure capacity.

The limitations and uncertainty of the assessment of projected need vs capacity included in this report need to be carefully considered. See Section 4.2 for detailed analysis of uncertainty.

## 1.2.8 Confidentiality

The tracking system data used in this project for developing waste projections is submitted to the jurisdictions under legal commitments to protect commercial confidentiality. The jurisdictions, in turn, agreed to provide tracking system data for this project under agreements that required the project team to maintain commercial confidences. Tracking system data was analysed to examine tonnages of waste arisings by waste code, year, jurisdiction, source and fate. The risk is that some of this information could be used by companies to work out the scale of rival's operations.

The project team examined jurisdictional data by waste code to assess the extent to which waste was produced by small numbers of companies. We also reviewed the information that was already publicly available, particularly annual Basel report data. We determined that data for only one waste group – tannery & wool scouring waste – presented a confidentiality risk. Tonnage data for this group is not presented. The names of companies named on transport certificates are also avoided except where the information presented is widely known.

The information and data gathered during consultation with industry (to estimate infrastructure capacity) also contains confidential information. No company specific information from the consultation is presented in this report. Where a small number of industry providers service a part of the hazardous waste market, the capacity information has been flagged and replaced with the 'Text withheld to maintain commercial confidentiality' or simply CIC.

## **1.3** The structure of this document

Following this introduction, the report has four sections as follows:

- Section two describes the method and result of the projections of waste arisings and management
- Section three describes the consultation and estimation processes that led to the estimates of installed and expected capacity change infrastructure data, and displays these estimated capacities
- Section four compares the findings of the previous two sections.
- Section five draws conclusions from these findings.

## **1.4 Other project outputs**

This report was submitted to DoEE together with two Microsoft Excel files:

• The *Hazwaste infrastructure database 2018* which details Australia's hazardous waste infrastructure capability and capacity data by site. The database has been built via an extensive







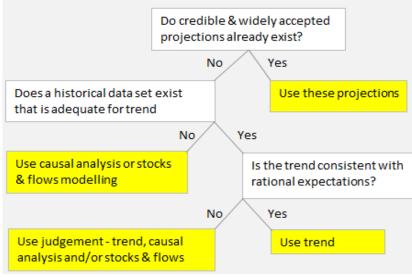
industry consultation program completed during the development of the 2015 and 2018 assessments.

• The Hazardous waste needs vs capacity model which projects Australia's future quantities of hazardous waste and compares these with the currently available management infrastructure in Australia in order to identify infrastructure development needs. The projections cover the period 2018 to 2037 under best estimate, high estimate and low estimate scenarios. This model also includes data on the historical arisings (trends) of hazardous waste arisings (see the Proj. methods tab).

The key outputs of these analyses are presented as tables and figures in this report.






# 2. Projections of hazardous waste infrastructure needs

The project team developed projections of future arisings of hazardous waste that infrastructure will need to service. This section describes the methods for generating the projections and displays the results. It also presents information on the how waste is currently managed.

## 2.1 Overview of the approach to the projections

Wastes were classified for the purpose of the projections into 'waste groups' that closely correspond with the NEPM. A starting quantity of tonnes was established from which to project future quantities, typically based on 2016-17 data. An understanding of how these quantities may change over the required 20-year projection period was then developed, following the hierarchy of potential approaches illustrated in Figure 1.





Notes:

- A stocks and flow' model attempts to project material flows such as waste arisings through reference to consumption data and retention lifespans of materials and products in society.
- Causal analysis involves linking the future arisings of a waste type to factors likely to influence these arisings, for which credible projections already exist.
- Rational expectations refers to the ability to explain and understand apparent trends so that any assumption of their continuation can be made with confidence.

## 2.2 Waste groups

Thirty-three waste groups were defined for use in the projections, an increase of four compared with the previous 2015 version of this report. The waste groups followed the NEPM 15 list (see Section 1.2) with some disaggregation where a component waste is of particular interest. Wastes were typically of particular interest where:

- the future quantities and available infrastructure are highly uncertain (e.g. the new Stockholm wastes POP-BDE, HBCD, HCB, PFOS contaminated materials, PFAS contaminated soil and AFFF concentrates)
- the waste has been stockpiled significantly in the past which could be due to a lack of infrastructure options, processing costs or other barriers
- there are very specific concerns relating to health or the environment (e.g. lead, mercury, asbestos)
- the waste is associated with a source industry with unusually strong growth projections (e.g. non-toxic salts, which are produced in large volumes by the coal seam gas industry)







• the waste is produced in particularly large quantities (e.g. grease trap waste, contaminated soil).

The thirty-three waste groups used in the projections are set out in Table 1. Appendix B details how each of the relevant NEPM 75 codes fall under the waste groups.

#### Table 1:Waste groups and components of particular interest

|    | Waste group                                        | Closest<br>NEPM<br>category | The aspect(s) of particular interest                                                                                                             |
|----|----------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Plating & heat<br>treatment                        | А                           |                                                                                                                                                  |
| 2  | Acids                                              | В                           |                                                                                                                                                  |
| 3  | Alkalis                                            | С                           |                                                                                                                                                  |
| 4  | Inorganic fluorine (SPL)                           | D110                        | Significant stockpiles in Australia                                                                                                              |
| 5  | Mercury & compounds                                | D120                        | Mercury waste                                                                                                                                    |
| 6  | Lead & compounds                                   | D220                        | Lead waste and waste lead acid batteries                                                                                                         |
| 7  | Zinc compounds <sup>1</sup>                        | D230                        | Large tonnages produced. Almost entirely a lead-rich zinc waste that is generated by Nyrstar in Hobart and transported to Nyrstar in Port Pirie. |
| 8  | Non-toxic salts                                    | D300                        | Coal seam gas waste                                                                                                                              |
| 9  | Other inorganic chemicals                          | Other D                     | SPL waste from aluminium industry                                                                                                                |
| 10 | Reactive chemicals                                 | E                           |                                                                                                                                                  |
| 11 | Paints, resins, inks, organic sludges              | F                           |                                                                                                                                                  |
| 12 | Organic solvents                                   | G                           |                                                                                                                                                  |
| 13 | Pesticides                                         | Н                           |                                                                                                                                                  |
| 14 | Oils                                               | J100 & 160                  | Waste is produced in particularly large quantities                                                                                               |
| 15 | Waste oil/water<br>mixtures <sup>1</sup>           | J120                        | Waste is produced in particularly large quantities                                                                                               |
| 16 | Grease trap waste                                  | K110                        | Large tonnage low hazard organic waste                                                                                                           |
| 17 | Other<br>putrescible/organic<br>waste <sup>2</sup> | Other K                     |                                                                                                                                                  |
| 18 | PCB <sup>1</sup>                                   | M100                        |                                                                                                                                                  |
| 19 | POP-BDEs and HBCD <sup>2</sup>                     | M160a & b                   | Polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD), including biosolids contaminated with these substances                   |
| 20 | НСВ                                                | M160c                       | Orica stockpile of hexachlorobenzene                                                                                                             |
| 21 | PFOS contaminated biosolids                        | M270a                       | Biosolids contaminated with perfluorooctane sulfonate, future quantities and available infrastructure are highly uncertain                       |







|    | Waste group                          | Closest<br>NEPM<br>category | The aspect(s) of particular interest                                                 |
|----|--------------------------------------|-----------------------------|--------------------------------------------------------------------------------------|
| 22 | PFAS contaminated soils <sup>1</sup> | M270b                       | Soils containing per- and poly-fluoroalkyl substances from use of firefighting foams |
| 23 | AFFF concentrates <sup>1</sup>       | M270c                       | Aqueous film forming foams (used for fire-fighting) containing PFAS                  |
| 24 | Other organic chemicals              | Other M                     |                                                                                      |
| 25 | Contaminated soils                   | N120                        | Contaminated soils                                                                   |
| 26 | Other contaminated biosolids         | N205a                       | Biosolids contaminated with inorganics                                               |
| 27 | Other industrial treatment residues  | N205b                       |                                                                                      |
| 28 | Asbestos                             | N220                        | Waste asbestos                                                                       |
| 29 | Other soil/sludges                   | Other N                     |                                                                                      |
| 30 | Clinical & pharmaceutical            | R                           |                                                                                      |
| 31 | Tyres                                | T140                        | End-of-life tyres                                                                    |
| 32 | Other miscellaneous                  | Other T                     |                                                                                      |
| 33 | Lithium ion batteries                | -                           | Waste lithium ion batteries                                                          |

Notes on changes in the waste groups compared with the previous 2015 version of this report:

- *1 Previously formed part of a broader waste group.*
- 2 Combines wastes that previously formed a distinct waste group.

Three waste groups were added that did not have an obvious allocation under the NEPM 15 groups:

- Food processing wastes were included because they are regulated as hazardous in some states. These were included in Other K.
- Other contaminated biosolids: Biosolids are the solid residues of sewage treatment, and are not regulated as hazardous in jurisdictional tracking systems. However, it is widely accepted that some biosolids are contaminated with heavy metals, particularly those generated in treatment plants servicing industrial areas. Contaminated soils or industrial treatment residues are regulated as hazardous, so contaminated biosolids that are understood to have a similar contaminant profile are also included as a subsection of *N205 Industrial treatment residues* (N205a Other contaminated biosolids). These are referred to here as 'other' to distinguish them from M270a PFOS contaminated biosolids. See Section 2.6 for further discussion regarding the formation of this waste group.
- Lithium ion batteries are currently not regulated as hazardous waste<sup>14</sup>. They are assessed in this report because of their potential to have a significant impact on hazardous waste infrastructure. Lithium ion battery use has been increasing strongly. If not appropriately managed, this waste represents a safety hazard due to risks of causing explosions or fire (ABRI 2014, CSIRO 2018).

<sup>&</sup>lt;sup>14</sup> Waste lithium ion batteries are regulated as hazardous waste for international transport, but currently not for domestic transport







## 2.3 Data inputs to the projections

## 2.3.1 Overview of data sources

The data and information sources underpinning the projections are summarised in Table 2. A list of the literature and on-line materials examined is included in the bibliography. The most important data source for this part of the project – state and territory waste data – is displayed in bold italics.

 Table 2:
 Information and data underpinning the projections and how it was used

| Information or data                                                                            | Method for obtaining the info or data | Contribution to the projections                                                                                    |  |
|------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| State and territory waste tracking and<br>other data<br>(see Section 2.3.2)                    | Provided by the<br>jurisdictions      | Establishment of starting points<br>Understanding of industry<br>sources and management<br>Understanding of trends |  |
| Pre-existing waste projections (see Section 2.3.3)                                             | Desktop research and                  | Considered or directly reused in building the projections                                                          |  |
| Planned or recent policies or developments                                                     | discussions                           | Potential impacts on future hazardous waste arisings                                                               |  |
| Waste industry and regulator views and information                                             | Consultation                          | Causal factors and trends                                                                                          |  |
| Projected long-term growth in national population & economic activity                          |                                       |                                                                                                                    |  |
| Industry activity, trends, analyses and activity or employment projections (see Section 2.3.4) | Desktop research                      | Causal factors for waste arisings                                                                                  |  |
| Current stores of hazardous waste that may require management                                  | Other departmental studies            |                                                                                                                    |  |

## 2.3.2 State and territory data

Data from jurisdictional tracking systems was foundational in establishing starting points for each waste group and in providing an understanding of trends. Waste tracking systems in NSW, Qld, SA, Vic and WA require companies generating, transporting and treating or disposing of hazardous waste to provide a record to EPAs of each transaction to which they are a party. These systems were established to ensure that hazardous waste is appropriately managed.

'Data dumps' from these systems encompassing several million transactions over several years was collected, collated and analysed. Qld data was available until 2015-16 only – this was extrapolated to 2016-17 assuming increases proportional to population growth. Various other adjustments were made where the data was known to be incomplete – these will be documented in the forthcoming report *Hazardous Waste in Australia 2019.* In general, tracking system data suffers from various data quality flaws. Data on source sectors, in particular, is poorly recorded in jurisdictional data sets.

The tracking system was supplemented by collated data from the other states and territories, primarily from of interstate transport (i.e. NEPM reports, see Section 1.2). Additional data from landfill reports was provided in some cases where a hazardous waste is not tracked, as shown in the table.







| Jurisdiction | Date range | Waste type   | Quantity     | Source industry | Fate         | Jurisdiction of<br>generation apparent? | Comments                                                                               |
|--------------|------------|--------------|--------------|-----------------|--------------|-----------------------------------------|----------------------------------------------------------------------------------------|
| ACT          | 2017       | $\checkmark$ | $\checkmark$ |                 |              | $\checkmark$                            | Data collated by waste type. Asbestos data from landfill reports.                      |
| NSW          | 2010-2017  | $\checkmark$ | $\checkmark$ | $\checkmark$    | ~            | ~                                       | Full data dump. Asbestos, waste tyres<br>& contaminated soil data from<br>WasteLocate. |
| NT           | 2017       | $\checkmark$ | $\checkmark$ |                 |              | $\checkmark$                            | Data collated by waste type                                                            |
| Qld          | 1999-2016  | $\checkmark$ | $\checkmark$ | $\checkmark$    | ~            | $\checkmark$                            | Full data dump. Contaminated soil data from landfill reports.                          |
| SA           | 2006-2017  | $\checkmark$ | $\checkmark$ | $\checkmark$    | $\checkmark$ | $\checkmark$                            | Full data dump                                                                         |
| Tas          | 2017       | $\checkmark$ | $\checkmark$ |                 |              | $\checkmark$                            | Data collated by waste type                                                            |
| Vic          | 2004-2017  | $\checkmark$ | $\checkmark$ |                 | ~            |                                         | Full data dump                                                                         |
| WA           | 2006-2017  | $\checkmark$ | $\checkmark$ |                 | ~            | $\checkmark$                            | Full data dump. Asbestos from landfill reports.                                        |

## Table 3: Metadata for the state and territory hazardous waste data received

As Table 3 shows, there was significant variability in the characteristics of the data received. A range of other challenges with the data set affected its quality and the ease of interpretation, as listed below:

- the methods used by jurisdictions to classify waste types vary
- some wastes are counted more than once in tracking system data
- the data includes potential 'spikes' due to periodic releases from storage
- there are definitional challenges such as whether to report on-site disposal
- data is received with varying measurement methods (mass, volume, numbers of items)
- states classify management types and source industries differently
- there are apparent differences in the way reporters classify similar wastes.

These challenges have been considered and responded to in previous DoEE projects. The <u>Australian</u> <u>Hazardous Waste Data and Reporting Standard</u> describes how they have been addressed.

Despite the challenges, the data provides a far-reaching insight into the trends in hazardous waste data arisings and the sources and management of the different waste types.







## 2.3.3 Pre-existing waste projections

Four useful pre-existing waste projections were identified. These are summarised in Table 4.

 Table 4:
 Pre-existing waste projections used in building our projections

| Information<br>source | Relevant waste group          | Use in projections?                                                     |
|-----------------------|-------------------------------|-------------------------------------------------------------------------|
| BE (2016)             | E-waste                       | Used as a proxy for POP-BDE waste (M160a), best, high and low estimates |
| REC (2017)            | Tyres (T140)                  | Best estimate                                                           |
| REC 2018              | Lithium ion batteries         | Best, high and low estimates                                            |
| Thornton (2014)       | Clinical & pharmaceutical (R) | High estimate                                                           |

## 2.3.4 Industry activity and employment projections and analyses

Information about particular industries was used to inform projections of some wastes that are strongly associated with particular industry types. These are summarised in Table 5.

| Industry                 | Related wastes                                                  | Primary information source(s)                                                                         |
|--------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Manufacturing employment | Other inorganic chemicals, reactive chemicals, organic solvents | Department of Jobs and Small<br>Business employment projections<br>(Departmental website)             |
| Mining production        | Waste oil/water mixtures                                        | Office of the Chief Economist (2018)                                                                  |
| Oil and gas production   | Mercury                                                         | Office of the Chief Economist (2018)                                                                  |
| Meat production          | Other organic/putrescible wastes                                | ABARES (2018)                                                                                         |
| CSG production           | Alkalis, non-toxic salts                                        | ACIL Tasman (2012), Australian<br>Petroleum Production & Exploration<br>Association, pers. comm. 2018 |
| Aluminium smelting       | SPL                                                             | Office of the Chief Economist (2017)                                                                  |
| Nyrstar                  | Zinc                                                            | Nyrstar (2015)                                                                                        |
| Orica                    | НСВ                                                             | Orica (2017)                                                                                          |
| Sewage treatment         | Biosolids                                                       | PSD (2017)                                                                                            |

| Table Fr | Inducting activity | projections and | analyses and t | their use in the projections |
|----------|--------------------|-----------------|----------------|------------------------------|
| Table 5: | πουsιτν ασινιίν    | DIDIPCTIONS AND | anaivses ana i | their use in the projections |
|          |                    | p. 0,000.0.00   |                |                              |

## 2.4 Establishing the starting point

A starting point or baseline tonnage figure was established for each waste group in each state and territory based on the most recent data, as shown in Table 6. The most common data source was the jurisdictional data, but other sources were used in some cases as shown in the footnotes to Table 6.







# Table 6:Projection starting points for each waste group by jurisdiction (see Table 1 for full waste<br/>group descriptions)

| group descriptions)                                                                            |              |                |                |               |               |              |                |               |
|------------------------------------------------------------------------------------------------|--------------|----------------|----------------|---------------|---------------|--------------|----------------|---------------|
|                                                                                                | ACT          | NSW            | NT             | Qld           | SA            | Tas          | Vic            | WA            |
| Plating & heat treatment                                                                       | 0            | 18             | 0              | 5,395         | 41            | 1            | 7              | 2,558         |
| Acids                                                                                          | 0            | 25,698         | 188            | 11,674        | 1,833         | 0            | 29,041         | 2,162         |
| Alkalis                                                                                        | 0            | 5,833          | 607            | 115,665       | 17,176        | 24           | 6,297          | 92,430        |
| Inorganic fluorine                                                                             | 0            | <u>13,019</u>  | 0              | 12,832        | 2             | 3,972        | 16,342         | 61            |
| Mercury                                                                                        | 2            | 178            | 19             | 170           | 60            | 0            | 99             | 206           |
| Lead                                                                                           | 0            | 69,613         | 0              | 20,239        | 55,964        | 40,333       | 8,936          | 1,180         |
| Zinc                                                                                           | 0            | 194            | 0              | 539           | 123,598       | 0            | 296            | 453           |
| Non-toxic salts                                                                                | 0            | 26,132         | 300            | 19,551        | 556           | 2            | 1,723          | 14,035        |
| Other inorg. chemicals                                                                         | 0            | 631            | 0              | 3,631         | 183           | 159          | 675            | 386           |
| Reactive chemicals                                                                             | 0            | 81             | 0              | 53            | 15            | 7            | 72             | 48            |
| Paints, resins etc.                                                                            | 20           | 12,716         | 229            | 15,056        | 5,645         | 12           | 29,290         | 10,000        |
| Organic solvents                                                                               | 22           | 3,287          | 4              | 5,671         | 414           | 34           | 7,050          | 9,629         |
| Pesticides                                                                                     | 0            | 219            | 0              | 825           | 223           | 0            | 1,470          | 1,032         |
| Oils                                                                                           | 1,368        | <u>182,497</u> | 1,922          | 59,216        | 15,625        | 68           | 28,096         | 107,402       |
| Oil/water mixtures                                                                             | 352          | 70,717         | 1,846          | 175,209       | 25,965        | 141          | 58,021         | 56,711        |
| Grease trap waste                                                                              | 6,243        | 96,824         | 3 <i>,</i> 048 | 135,040       | 74,832        | 6,436        | 114,750        | 84,038        |
| Other organic wastes                                                                           | 0            | 58,543         | 1,843          | 95,768        | 5,021         | 3,891        | 36,899         | 30,498        |
| PCB wastes                                                                                     | 9            | 1,803          | 0              | 2,282         | 54            | 1            | 1,456          | 39            |
| POP BDEs and HBCD                                                                              | 0            | 0              | 0              | 0             | 0             | 0            | 0              | 0             |
| HCB                                                                                            | 0            | 0              | 0              | 0             | 0             | 0            | 0              | 0             |
| PFOS contam. biosolids                                                                         | 0            | 0              | 0              | 0             | 0             | 0            | 0              | 0             |
| PFAS contam. soils                                                                             | 0            | 0              | 0              | 0             | 0             | 0            | 0              | 0             |
| AFFF concentrates                                                                              | <u>2</u>     | <u>37</u>      | <u>1</u>       | <u>25</u>     | <u>8</u>      | <u>2</u>     | <u>30</u>      | <u>14</u>     |
| Other organic chemicals                                                                        | 5            | 9,227          | 13             | 8,291         | 652           | 2            | 764            | 1,133         |
| Contaminated soils                                                                             | 23           | 348,377        | 8,646          | 567,533       | 227,638       | 6,660        | 452,153        | 5,043         |
| Other contam. biosolids                                                                        | 0            | 311,429        | 31,143         | 342,571       | 124,571       | 31,143       | 482,714        | 140,143       |
| Other ind. t'ment residues                                                                     | 5            | 14,550         | 0              | 84,467        | 26,160        | 0            | 25,799         | 11,394        |
| Asbestos                                                                                       | 5,856        | 675,398        | 5 <i>,</i> 913 | 148,030       | 11,770        | 15,228       | 118,626        | 39,000        |
| Other soil/sludges                                                                             | 16           | 32,025         | 211            | 22,854        | 2,132         | 0            | 66,866         | 2,895         |
| Clinical & pharmaceutical                                                                      | 206          | 12,768         | 198            | 19,883        | 9,264         | 30           | 16,326         | 2,763         |
| Tyres                                                                                          | <u>7,244</u> | <u>136,509</u> | <u>4,507</u>   | <u>88,605</u> | <u>30,553</u> | <u>9,200</u> | <u>107,635</u> | <u>49,664</u> |
| Other miscellaneous                                                                            | 49           | 4,219          | 116            | 1,970         | 522           | 26           | 1,396          | 310           |
| Lithium ion batteries                                                                          | <u>65</u>    | <u>1,230</u>   | <u>41</u>      | <u>798</u>    | <u>275</u>    | <u>83</u>    | <u>970</u>     | <u>447</u>    |
| Totals (tonnes x 1000)                                                                         | 95           | 2,197          | 42             | 1,796         | 650           | 204          | 1,208          | 669           |
| Data from 2016 17 avcent Old (avtrapolated from 2015, 16 accuming fixed concration per capita) |              |                |                |               |               |              |                |               |

Data from 2016-17 except Qld (extrapolated from 2015-16 assuming fixed generation per capita) Code for data types:

- Normal font 2016-17 tracking data (NSW, SA, Vic & WA data adjusted to remove multiple-counts)
- Italics extrapolated from 2015-16 data (with adjustments to remove multiple-counts)
- Red font not tracked; value assumed
- <u>Underlined</u> estimated from industry data, national study or calculations
- Grey shading adjusted to take into account unrepresentative flows in the starting point year
- Black shading derived from other jurisdictions' data assuming identical arisings per capita.

The 2016-17 starting point for the projections summed to 6.0 Mt<sup>15</sup>.

<sup>&</sup>lt;sup>1515</sup> This differs from the tonnage reported in Australia's report to the Basel Convention because: the Basel report conservatively includes all biosolids; in this project some adjustments were made to make tonnages more representative (the grey shading in Table 6); and the Basel reports are by calendar year rather than financial year.







## 2.5 Scenarios for hazardous wastes arising

This section describes the projection scenarios and shows the collated national arisings projected under each scenario. The projections for individual waste groups are presented in Section 2.6.

There are significant uncertainties in projecting future waste arisings over a 20-year period, for example in relation to:

- factors that influence the quantities of hazardous waste generated, such as the scale of economic and population growth, the levels of activity of waste-producing industries in Australia, and whether they become more efficient in their waste generation
- the extent to which some waste will be classified as hazardous
- the extent to which current contaminated soil and waste stores will arise through release into the waste stream, whether through decisions by site owners or regulators.

Reflecting the uncertainty, projections were developed under best estimate, low estimate and high estimate scenarios. Each scenario encompasses a projection for each waste group, jurisdiction and year from 2017-18 to 2036-37. The scenarios were qualitatively defined as follows:

- best estimate the most likely estimate of waste arisings
- high estimate the highest, credible estimate of waste arisings
- low estimate the lowest, credible estimate of waste arisings.

Several perspectives and considerations were applied in developing the scenarios, including, to the extent available: existing data and trends; industry sources; factors that may cause quantities to grow or diminish; and discussion with experts including those in the waste industry. The arithmetical approaches comprised one or more of the following:

- application of a percentage annual growth rate, which sometimes was projected to change over time
- addition of absolute tonnages, for example where a storage/stockpile of waste is envisaged to be released into the waste stream
- estimating a percentage margin on either side of a best estimate for asbestos and contaminated soils, which vary unpredictably depending on particular projects and do not cumulatively increase or decrease like other waste groups.

There is pronounced uncertainty in projecting the quantities of some very large, or potentially very large, streams of hazardous waste. These include soil contaminated with PFAS and other contaminants, asbestos, PFOS contaminated biosolids and non-toxic salts from the coal seam gas industry. Because of this uncertainty, the projections span a large range – the overall tonnages projected under the high estimate in 2036-37 are about 2.8 times those in the low estimate.

## 2.5.1 Best estimate

The best estimate is the one considered most likely to occur. Each projection was based on different considerations but, in general, the best estimate is often linked to: projected growth rates of particular source industries; long-term projections of economic growth; apparent trends in the available data; or, in a few cases, population growth. Most waste groups are projected to grow (or occasionally shrink) at an exponential rate, adding (or losing) between 2.8% and -2% annually.







The combined best estimate for all waste groups is illustrated in Figure 2, see page 16. The quantity of hazardous waste rises from 6.1 Mt in 2016-17 to 8.9 Mt in 2036-37. This represents an average growth rate of 1.9% per year, larger than the projected average growth rate for population (1.4%), which is illustrated on the chart, but less than the long-term projected economic growth rate (2.8%).

The top six groups in terms of tonnes arising – in order, contaminated soil, asbestos, grease trap waste, PFAS contaminated soil, tyres and oils – represent about 70% of the total at both the start and end of the projection period. In some cases, the best estimate provides for some clearing of waste stockpiles and storages.

A few waste groups are projected to become much more significant at the end of the period than at the start. Waste lithium ion batteries are projected to grow at an average rate of 19% per year. Three other waste groups (POP-BDE and HBCD, PFOS contaminated biosolids and PFAS contaminated soil) are recorded at zero at the start of the period but reach tens or hundreds of thousands of tonnes at the end, following the assumed implementation of the *PFAS National Environmental Management Plan* and the ratification of additions to the Stockholm Convention.

All other waste streams are projected to grow at less than 3% per year on average. Five are projected to decline, three reducing by 1-2% per year on average (other inorganic chemicals, reactive chemicals, PCBs) and two disappearing entirely (HCB and AFFF concentrates).

## 2.5.2 High estimate

A highest credible estimate of waste arising was made for each waste group. The combined high estimate is illustrated in Figure 3, see page 17.

The high scenario is consistent with high economic and population growth and high rates of waste entering the waste management stream from storage. In many cases growth rates are assumed to equal projected economic growth; in others specific estimates were made based on industry growth rates or other factors. The major waste streams contaminated soils and asbestos are projected at the high end of a wide range, generating about 4.7 Mt/yr in 2036-37 rather than 3.4 Mt/yr under the best estimate. Lithium ion batteries are projected to become a major technology, producing a waste stream that grows from a current total of about 4,000 tonnes to 197,000 tonnes, an average growth rate of 22% per year.

Significantly, the high scenario assumed that in five years, non-toxic salts from coal seam gas operations are no longer allowed to be treated and disposed on-site but are taken to long-term isolation facilities offsite. These very large new arisings are estimated at 2.5 Mt in 2023 and 3.3 Mt/yr by 2036-37. See Section 4.3 for this discussion of these arisings versus infrastructure capacity.

The high scenario also assumes large-scale clearing of existing waste stockpiles and storages during the projection period, including:

- inorganic fluorine (SPL in NSW, Qld, Tas and Vic)
- mercury and compounds (NT, Qld, SA, Vic and WA)
- other inorganic chemicals (arsenic speiss waste in SA)
- pesticides (dieldrin-impregnated timber in WA)
- other contaminated biosolids (Vic)
- tyres (all jurisdictions).

Overall, in the high scenario hazardous waste quantities are projected to grow by an average of 4.6% per year, reaching 15.4 Mt by 2036-37. However, the growth is uneven due to:







- an initial jump in quantities as contaminated soils and asbestos step from 2016-17 levels to the highest end of their range
- releases from storage (as listed above)
- the assumption that in 2023 non-toxic salts from the CSG industry are no longer stored onsite
- projected large-scale growth in the new Stockholm Convention wastes, PFAS contaminated soil and PFOS contaminated biosolids, from 2020 (under this scenario, the new Stockholm wastes reach 1.5 Mt/yr by 2037).

The top six groups in terms of tonnes arising are different from the best estimate. They are, in order, contaminated soil, non-toxic salts, asbestos, PFAS contaminated soil, grease trap waste and tyres.

No waste groups are projected to decline under the high scenario.

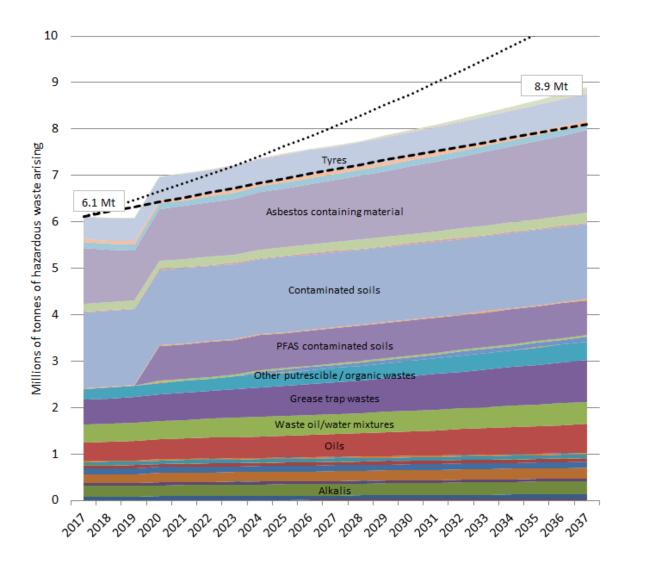
## 2.5.3 Low estimate

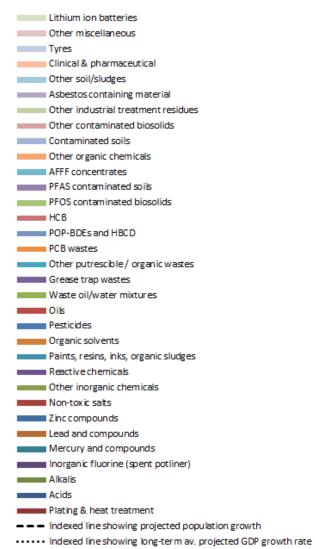
A lowest credible estimate of waste arising was made for each group. The combined low estimate is illustrated in Figure 4, see page 18.

The low scenario is consistent with low economic and population growth, decline in the manufacturing sector and low rates of waste entering the waste management stream from storage. In many cases growth rates are assumed to equal projected population growth (less than economic growth); in others, specific estimates were made based on industry growth rates or other factors. The instances where wastes are assumed to be taken out of stockpiles and storages into the waste management system are fewer, and in smaller quantities, than in the other scenarios.

Overall, hazardous waste tonnages under the low scenario are projected to decline by an average of 0.5% per year, falling to 5.53 Mt in 2036-37. The top six waste groups amount for over 70% of the total. They are, in order, asbestos, contaminated soil, grease trap, tyres, oils and oil/water mixtures.

The major waste streams (contaminated soil and asbestos) are projected at the low end of a wide range, generating about 2.1 Mt/yr in 2036-37 rather than 3.4 Mt/yr under the best estimate. The quantities of PFAS-contaminated soil and PFOS-contaminated biosolids are much lower than in the best case. In the case of soil, this represents high levels of uncertainty; in the case of biosolids it represents lower assumed levels of contamination and higher definitional thresholds.


Strong growth is still projected for lithium ion batteries (average growth of 17% per year) and six other waste groups are projected to grow. Sixteen are projected to decline, including acids, alkalis, inorganic fluorine, lead, non-toxic salts, other inorganic chemicals, reactive chemicals, paints etc., organic solvents, waste oil/water mixtures, HCB, contaminated soil, other contaminated biosolids, other industrial treatment residues and other soil/sludges.

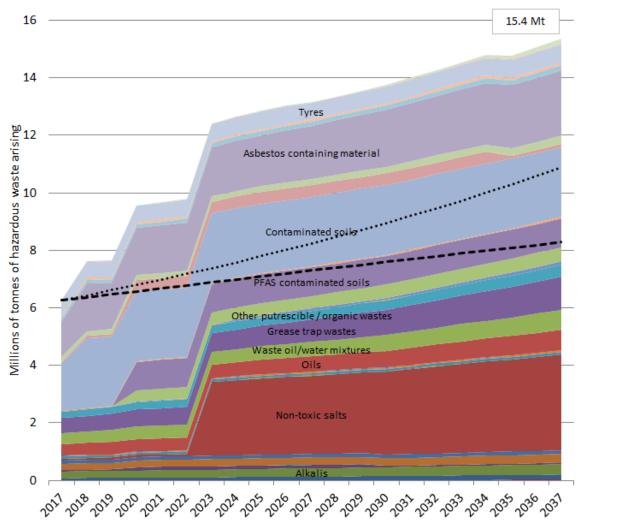


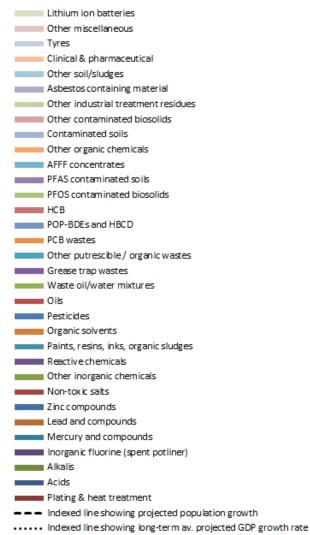








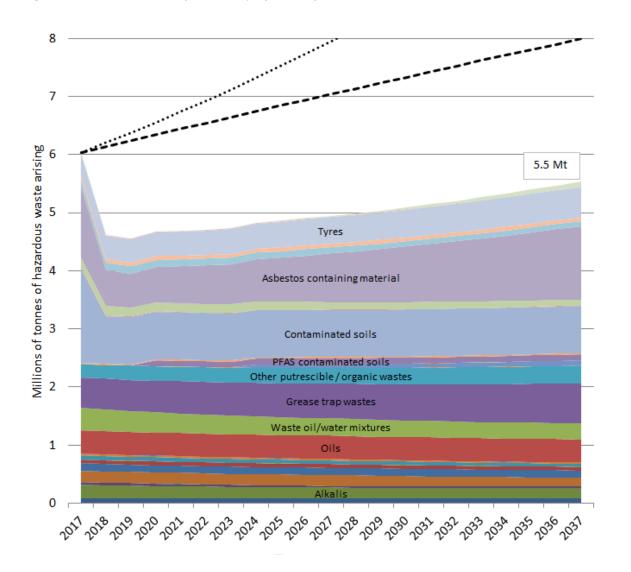








#### *Figure 3:* High estimate of national projections for all hazardous waste to 2036-37












#### *Figure 4: Low estimate of national projections for all hazardous waste to 2036-37*











# 2.6 Comparison of the differences between these projections and those prepared in 2014-15

The assumptions underpinning the projections of hazardous waste arisings in Section 2.7 present a comprehensive review of the 2015 infrastructure assessment projections. The review of projections takes into account the significant lessons learnt in the ensuing three years working with national hazardous waste data, the market and consulting with key market operators. This has resulted in a stronger basis for waste volume projection, but also some significant changes in outcomes.

A comparison of our approach to projecting each waste group this year, compared to the 2015 assessment, is provided in Table 7. As a general rule, in a growth scenario when limited other information was available, the 2018 projections used population growth as a best case default and economic growth as a high case default, which is more conservative than the default approach in 2015.

|      | Waste group                 | Sign | ficant changes in projection assumptions? <sup>16</sup>                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|-----------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А    | Plating & heat treatment    | No   | Simplification of approach, limited change to projection                                                                                                                                                                                                                                                                                                                                                                                                        |
| В    | Acids                       | Yes  | Previously assumed that aluminium smelting was the main driver<br>– assumptions now based on steel/other metals industry as main<br>sources. This has changed best projection from a decline (based<br>on declining aluminium industry) to growth, based on average<br>economic growth from major contributing states (Vic, NSW, Qld).                                                                                                                          |
| С    | Alkalis                     | Yes  | Waste is driven by the CSG industry in Qld and alumina refining in WA (red mud). Previously ABC (2014) was used to predict CSG industry growth, but this appears to be a simple extrapolation of CSG well numbers and has been discounted, which has led to a significant flattening in projections of this waste.                                                                                                                                              |
| D110 | Inorganic fluorine<br>(SPL) | Yes  | Waste group was not projected separately from 'Other D' in 2015, so 2018 projections are new.                                                                                                                                                                                                                                                                                                                                                                   |
| D120 | Mercury &<br>compounds      | Yes  | 2015 projections assumed major driver was fluorescent lamps,<br>but we now believe that conventional oil & gas processing (spent<br>catalysts) will overtake this in future, particularly following the<br>implementation of the Minamata Convention on mercury.<br>Starting point has been corrected to a more representative<br>estimate. Net result is a lower starting point but inclining<br>projection profile.                                           |
| D220 | Lead & compounds            | Yes  | While waste lead acid batteries continue to be a major source,<br>the 2018 projections have incorporated both waste stockpile and<br>arising considerations from zinc refining in Tas, transported to<br>metal refining in SA for processing, which occurs in large<br>volumes. These Tas arisings have been separately modelled to<br>lead acid batteries. Overall, this has increased the starting point<br>arisings but slightly flattened the growth trend. |
| D230 | Zinc compounds              | Yes  | Waste group was not split out and separately modelled in 2015, so 2018 projections are new.                                                                                                                                                                                                                                                                                                                                                                     |
| D300 | Non-toxic salts             | Yes  | Waste is driven by the CSG industry in Qld and to a lesser extent<br>dross, slag and salt cake from various metal smelting/refining.<br>Previously ABC (2014) was used to predict CSG industry growth,<br>but this has been discounted (see "C"). New information has                                                                                                                                                                                           |

# Table 7: Significant differences in approach between 2018 and 2015 projection assumptions Waste group Significant changes in projection assumptions?<sup>16</sup>

<sup>16</sup> Comparison is between the current (2018) approach and that used in the 2015 projections. Only those assumptions that have resulted in significant changes to projections are discussed.







|               | Waste group                              | Signi | ficant changes in projection assur                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |  |
|---------------|------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|               |                                          |       | been obtained on CSG reverse-or<br>which have dramatically altered<br>projection.                                                                                                                                                                                                        | -                                                                                                                                                                                                                             |  |
| Other D       | Other inorganic chemicals                | Yes   | With the splitting of D110 and D230, this waste group has reduced to a much smaller volume, and is therefore a different projection to 2015.                                                                                                                                             |                                                                                                                                                                                                                               |  |
| E             | Reactive chemicals                       | Yes   | 2018 projection based on traditional manufacturing rate of decline; previously little was known of this waste given its low volume. This has resulted in the best case changing from a flat to declining trend.                                                                          |                                                                                                                                                                                                                               |  |
| F             | Paints, resins, inks,<br>organic sludges | Yes   | Flatter best projection based on lower demand due to declines in key user industries such as car manufacturing and the chemical industry, but higher starting point due to much higher recent WA arisings.                                                                               |                                                                                                                                                                                                                               |  |
| G             | Organic solvents                         | No    | Limited change to projection                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                               |  |
| Н             | Pesticides                               | Yes   | Stockpiles of dieldrin-impregnate<br>in projections, causing a significa                                                                                                                                                                                                                 | _                                                                                                                                                                                                                             |  |
| J100 &<br>160 | Oils                                     | Yes   | Waste group was not split out (fr<br>modelled in 2015, so 2018 projec                                                                                                                                                                                                                    |                                                                                                                                                                                                                               |  |
| J120          | Waste oil/water<br>mixtures              | Yes   | Waste group was not split out (fr<br>modelled in 2015, so 2018 projec                                                                                                                                                                                                                    |                                                                                                                                                                                                                               |  |
| K110          | Grease trap waste                        | No    | Limited change to projection                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                               |  |
| Other K       | Other<br>putrescible/organic<br>wastes   | No    | Limited change to projection                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                               |  |
| M100          | РСВ                                      | Yes   | Waste group was not split out (fr<br>modelled in 2015, so 2018 projec                                                                                                                                                                                                                    |                                                                                                                                                                                                                               |  |
|               |                                          |       | Previously, POP were expressed a<br>have been a number of developr<br>the establishment of a new code<br>the NEMP process, the listing of<br>Convention and the restart of ex<br>Orica's HCB stockpile. A ready-re<br>structuring of POP wastes and th<br>necessary to accommodate these | as M160a-d. Since then there<br>nents in terms of POP, such as<br>for PFAS wastes (M270) through<br>decaBDE on the Stockholm<br>ports of significant volumes of<br>ckoner below shows the re-<br>e projections that have been |  |
| M160a &       |                                          |       | 2015                                                                                                                                                                                                                                                                                     | 2018                                                                                                                                                                                                                          |  |
| b             | POP-BDEs and HBCD                        | Yes   | M160a PFOS                                                                                                                                                                                                                                                                               | M270 PFAS wastes, split up as:<br>M270a (PFAS soils), M270b<br>(PFOS biosolids) & M270c<br>(AFFF concentrates)                                                                                                                |  |
|               |                                          |       | M160b POP-BDEs                                                                                                                                                                                                                                                                           | M160a POP-BDEs <sup>17</sup>                                                                                                                                                                                                  |  |
|               |                                          |       | M160c HBCD                                                                                                                                                                                                                                                                               | M160b HBCD <sup>17</sup>                                                                                                                                                                                                      |  |
|               |                                          |       | M160d HCB                                                                                                                                                                                                                                                                                | M160c HCB                                                                                                                                                                                                                     |  |
| M160c         | НСВ                                      | Yes   | See M160a & b above                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                               |  |
| M270a         | PFOS contaminated<br>biosolids           | Yes   | See M160a & b above                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                               |  |

<sup>&</sup>lt;sup>17</sup> Note that M160a and M160b have been combined in modelling to M160 a&b because their infrastructure needs are the same.







|         | Waste group                         | Signi | ficant changes in projection assumptions? <sup>16</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------|-------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M270b   | PFAS contaminated<br>soil           | Yes   | See M160a & b above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| M270c   | AFFF concentrates                   | Yes   | See M160a & b above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Other M | Other organic<br>chemicals          | Yes   | New group due to splitting out of M100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| N120    | Contaminated soils                  | No    | Limited change to projection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N205a   | Other contaminated biosolids        | Yes   | New Australian & New Zealand Biosolids Partnership (ANZBP)<br>data provides tonnages of biosolids contaminated in those<br>contaminants jurisdictional biosolids guidelines list, and specific<br>fates in each jurisdiction. This data was previously unavailable. In<br>light of this data we have moved from assuming all biosolids<br>could be contaminated (in the high case) to using ANZBP<br>provided data. This has lowered projection volumes due to a<br>tighter definition of the proportion of biosolids that are<br>contaminated, and therefore likely to be hazardous waste. Also,<br>the waste group heading has changed from 'contaminated<br>biosolids' to 'other contaminated biosolids' to differentiate<br>between PFAS contamination (M270b) and 'traditional pollutant'<br>contamination (other). |
| N205b   | Other industrial treatment residues | No    | Limited change to projection, other than more conservative growth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N220    | Asbestos                            | No    | Limited change to projection, other than the group's name change from 'asbestos' to 'Asbestos containing material'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Other N | Other soil/sludges                  | Yes   | Reliance on fly ash from new EfW removed from assumptions since current volumes are dominated not by fly ash but other wastes, such as N160 (encapsulated waste), N100 (drums) and N190 (filter cake).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| R       | Clinical & pharmaceutical           | No    | Limited change to projection, other than more conservative growth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| T140    | Tyres                               | Yes   | New tyres projections completed (REC 2016) and stockpiles are also included in projections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Other T | Other miscellaneous                 | No    | Limited change to projection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -       | Lithium ion batteries               | Yes   | A significant increase in AEMO projections of electric vehicle<br>uptake results in higher projected tonnages <u>in the long term</u> . The<br>20-year projection actually decreases due to improved data on<br>the average life of EV batteries which is longer than previously<br>assumed. This results in a more delayed generation of waste<br>batteries than previously projected.                                                                                                                                                                                                                                                                                                                                                                                                                                  |







## 2.7 Projections of hazardous waste arising by group

This section provides, for each waste group, an account of:

- 1. The waste types (at a NEPM 75 level) that are included in the waste group.
- 2. The analysis completed for each waste group projection including
  - the industry sectors shown to be producing the largest amounts of the waste in either Qld, SA or Vic<sup>18</sup>
  - team considerations and comments related to the development of the projection
  - the approach applied for the group, following the hierarchy set out in Figure 1.
- 3. The 2016-17 data and the arithmetical methods used for estimating how this quantity might change in the future under best, high and low scenarios.
- 4. A figure illustrating the three projection scenarios.

Projections are considered on a jurisdiction-specific basis in the assessment against infrastructure capacity in Section 4.4.

## 2.7.1 A Plating and heat treatment

This group includes the following.

- A100 Waste resulting from surface treatment of metals and plastics
- A110 Waste from heat treatment and tempering operations containing cyanides
- A130 Cyanides (inorganic).

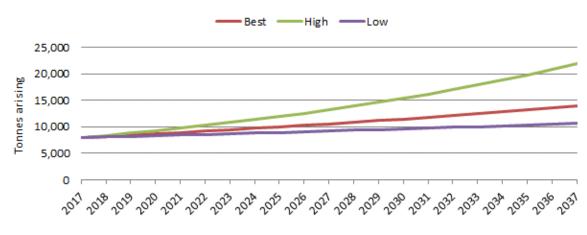
A100, overspray and excess coating material removed in cleaning of equipment, makes up almost all of the group. Vic does not track A100 (Waste resulting from surface treatment of metals and plastics).

## **Summary analysis**

| Industry sources                                                                                                                                                                                                                                  | Considerations                                                                                                                                                                                                                          | Comments                                                                   | Approach                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| <ul> <li>Marine fishing<br/>(abrasive cleaning/<br/>sandblasting of ships)</li> <li>Mining, including coal<br/>and gold mining</li> <li>Oil &amp; gas extraction</li> <li>Metal manufacturing</li> <li>Metal coating and<br/>finishing</li> </ul> | No sufficiently credible pre-<br>existing projections were<br>identified<br>Qld arisings dominant, WA<br>next, others negligible<br>Discernible increasing trend<br>for last 10 years in WA and<br>Qld (likely due to mining<br>growth) | High storage % waste<br>in Qld & WA - could<br>explain spikes in<br>trends | Use judgement -<br>trend (compound<br>annual growth rate<br>(CAGR) guided) and<br>causal analysis. |

## Table 8: Best, high and low projected rates of change for plating & heat treatment waste to 2037

|      | Applies to   | Approach                                 | 2018 | 2037     |
|------|--------------|------------------------------------------|------|----------|
| Best | ACT, NSW,    | 20-year average annual economic growth   | 2.8% | <br>2.8% |
| High | NT, Qld, SA, | National compound annual growth rate     | 5.1% | <br>5.1% |
| Low  | Tas, Vic, WA | 20-year average annual population growth | 1.4% | <br>1.4% |


<sup>18</sup> The data obtained from these three jurisdictions included ANZSIC codes, allowing this level of analysis. Other jurisdictions did not provide this data.











## 2.7.2 B Acid waste

This group includes only the single NEPM 75 code *B100 Acidic solutions or acids in solid form*. It can take a large variety of forms including, but not limited to, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, chromic acid, hydrofluoric acid, mixed inorganic and organic acids.

## **Summary analysis**

| Industry sources                                                                                                                                                                                                   | Considerations                                                                                                                                                  | Comments                                                                                                                                                                                                                                          | Approach                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| <ul> <li>Copper refining</li> <li>Petroleum refining</li> <li>Primary metal<br/>manufacturing</li> <li>Chemical product<br/>manufacturing</li> <li>Metal coating and<br/>finishing</li> <li>Coal mining</li> </ul> | No sufficiently credible pre-<br>existing projections were<br>identified<br>Discernible flat to increasing<br>trend for last 10 years in Vic,<br>Qld, WA and SA | Steel & other metals are main<br>industry drivers<br>NSW arisings under-reported due<br>to spent pickle liquor exemption<br>(from steel manufacturing)<br>Much of B100 goes to NSW -<br>interstate tracking can also result<br>in under-reporting | Use<br>judgement -<br>trend (CAGR-<br>guided) and<br>causal<br>analysis. |

#### Table 9:Best, high and low projected rates of change for acid waste to 2037

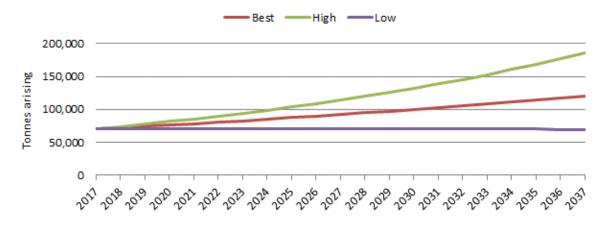

|      | Applies to           | Approach                                             | 2018  |     | 2037  |
|------|----------------------|------------------------------------------------------|-------|-----|-------|
| Best |                      | 20-year average economic growth                      | 2.8%  |     | 2.8%  |
| High | NSW, Qld, Vic,<br>WA | Average of Vic, NSW, Qld CAGR (rounded to 5%)        | 5.0%  | ••• | 5.0%  |
| Low  |                      | Assume NSW flat trend is accurate and applies to all | 0.0%  | ••• | 0.0%  |
| Best |                      | SA 12-year CAGR (-1.6%)                              | -1.6% |     | -1.6% |
| High | SA                   | 20-year average economic growth                      | 2.8%  | ••• | 2.8%  |
| Low  |                      | More rapidly declining industry                      | -3.0% | ••• | -3.0% |
| Best |                      | Between high and low                                 | 1.4%  |     | 1.4%  |
| High | ACT, NT, Tas         | 20-year average economic growth                      | 2.8%  | ••• | 2.8%  |
| Low  |                      | Flat trend                                           | 0.0%  | ••• | 0.0%  |







Figure 6: Best, high and low national projection estimates of acid waste to 2037



## 2.7.3 C Alkali waste

This group includes only the single NEPM 75 code *C100 Basic solutions or bases in solid form*. Alkali wastes arise in significant quantities in Australia, predominantly in Qld (mostly as CSG drilling muds) and in WA (as alumina refining's red mud).

## **Summary analysis**

| Industry sources                                                                                                                                                                               | Considerations                                                                                                                                                                                                                                        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                              | Approach                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Oil and gas<br/>extraction<br/>(including<br/>CSG)</li> <li>Aluminium<br/>refining</li> <li>Cement and<br/>lime<br/>manufacturing</li> <li>Metal coating<br/>and finishing</li> </ul> | No specific pre-<br>existing projections<br>were identified,<br>although ACIL Tasman<br>(2012) projects CSG<br>production and IBIS<br>World project CSG<br>revenue<br>ACIL Tasman (2012)<br>and IBIS World project<br>CSG growth to<br>strongly taper | Any onsite storages of drilling muds in<br>evaporation ponds are not included in<br>tracking data<br>Missing Qld data post 15-16 is<br>problematic for near-term trend<br>confidence<br>ABC (2014), which was used in the original<br>(2015) set of projections, appears to be a<br>simple extrapolation of CSG well numbers<br>and has been discounted, which has led to<br>a significant flattening in projections of<br>this waste | Qld 'best'<br>based on ACIL<br>Tasman (2012)<br>projections of<br>CSG production<br>All other states<br>show flat to<br>decreasing<br>trend over last<br>5 years, Best =<br>flat trend |

#### Table 10: Best, high and low projected rates of change for alkali waste to 2037


|      | Applies to              | Approach                                          | 2018  |     | 2037  |
|------|-------------------------|---------------------------------------------------|-------|-----|-------|
| Best | Qld                     | Based on ACIL Tasman (2012)                       | -0.3% |     | 1.8%  |
| High |                         | 20-year average annual economic growth            | 2.8%  | ••• | 2.8%  |
| Low  |                         | 20-year average annual population growth          | 1.4%  | ••• | 1.4%  |
| Best | ACT, NSW,               | Flat trend                                        | 0.0%  |     | 0.0%  |
| High | NT, SA, Tas,<br>Vic, WA | 20-year average annual population growth          | 1.4%  | ••• | 1.4%  |
| Low  |                         | Compound average growth rate (national excl. Qld) | -7.4% | ••• | -7.4% |







Figure 7: Best, high and low national projection estimates of alkali waste to 2037



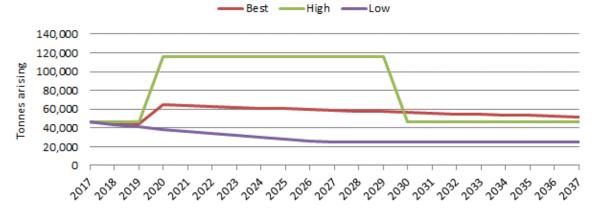
## 2.7.4 D110 Inorganic fluorine (SPL)

This group comprises the single NEPM code *D110 Inorganic fluorine compounds excluding calcium fluoride*, that was not projected in separate waste group in 2015, but presented within the broader catch-all group 'Other D – Other inorganic compounds'. This NEPM code is used in the Australian dataset virtually exclusively to describe SPL, a waste material generated from aluminium smelters, of which there are four in current operation (in Vic, NSW, Qld and Tas) and two recently closed (in Vic and NSW).

## **Summary analysis**

| Industry<br>sources   | Considerations                                                                                                                                                                                                                                                                                                                                                            | Comments                                                                                                                                                                                                                                                                                                                   | Approach                                                                                                                                                                                                                                                                                        |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aluminium<br>smelting | No specific pre-existing<br>projections were identified,<br>although SPL is produced<br>proportionate to aluminium<br>production. DISS 2017 provide<br>historical trends and short-term<br>future projections of aluminium<br>production.<br>Projections depend in part on<br>regulators approach to requiring<br>clearance of SPL onsite storages,<br>from sheds onsite. | Australian aluminium<br>industry outlook (DISS 2017)<br>not as dire as JCP 2012<br>predicted (used in 2015<br>projections) - short-term<br>fluctuations indicated, long-<br>term slow decline.<br>No relevant trend data;<br>tracking data does not<br>reflect SPL arisings due to<br>the practice of on-site<br>storages. | Informed by DISS 2017-<br>reported for last decade<br>& long-term commentary<br>High-case additional:<br>assume release of all<br>onsite stored volumes to<br>the market over 10 years<br>Low-case: assume original<br>outlook reported by JCP<br>2012 is correct plus zero<br>storage releases |








## Table 11: Best, high and low projected rates of change for Inorganic fluorine (SPL) waste to 2037

|        | Applies to            | Approach                                                                                      | 2018  |     | 2027   |     | 2037  |
|--------|-----------------------|-----------------------------------------------------------------------------------------------|-------|-----|--------|-----|-------|
| Arisin | gs                    |                                                                                               |       |     |        |     |       |
| Best   |                       | Slow Al industry decline in Aust: -2%                                                         | -2.0% |     | -2.0%  |     | -2.0% |
| High   | NSW, Qld,<br>Tas, Vic | Al production steady                                                                          | 0.0%  |     | 0.0%   | ••• | 0.0%  |
| Low    | 100, 110              | Significant closures of local Al industry over 10 yrs                                         | -6.0% |     | -6.0%  | ••• | 0.0%  |
| On-sit | e storage rele        | eases (absolute tonnes pa)                                                                    |       |     |        |     |       |
| Best   |                       | 30% reduction in storages over 10 yrs from policy intervention (linear bleed) start in 2 yrs  | 0     |     | 5,378  |     | 5,378 |
| High   | NSW                   | 100% reduction in storages over 10 yrs from policy intervention (linear bleed) start in 2 yrs | 0     |     | 17,928 |     | 0     |
| Low    |                       | No storage releases                                                                           | 0     |     | 0      |     | 0     |
| Best   |                       | 30% reduction in storages over 10 yrs from policy intervention (linear bleed) start in 2 yrs  | 0     |     | 2,700  |     | 2,700 |
| High   | Qld                   | 100% reduction in storages over 10 yrs from policy intervention (linear bleed) start in 2 yrs | 0     |     | 9,000  | ••• | 0     |
| Low    |                       | No storage releases                                                                           | 0     |     | 0      | ••• | 0     |
| Best   |                       | 30% reduction in storages over 10 yrs from policy intervention (linear bleed) start in 2 yrs  | 0     |     | 4,980  |     | 4,980 |
| High   | Tas                   | 100% reduction in storages over 10 yrs from policy intervention (linear bleed) start in 2 yrs | 0     | ••• | 16,600 | ••• | 0     |
| Low    |                       | No storage releases                                                                           | 0     |     | 0      | ••• | 0     |
| Best   |                       | 30% reduction in storages over 10 yrs from policy intervention (linear bleed) start in 2 yrs  | 0     |     | 7,900  |     | 7,900 |
| High   | Vic                   | 100% reduction in storages over 10 yrs from policy intervention (linear bleed) start in 2 yrs | 0     |     | 26,334 | ••• | 0     |
| Low    |                       | No storage releases                                                                           | 0     |     | 0      |     | 0     |

## Figure 8: Best, high and low national projection estimates of inorganic fluorine (SPL) waste to 2037



The peculiar shape of the high estimate is due to releases of SPL from the current large stockpiles







## 2.7.5 D120 Mercury; mercury compounds

This group includes only the single NEPM code *D120 Mercury; mercury compounds*. While volumes are very small, this waste has been singled out due to its inherent hazard, as evidenced by the *Minamata Convention on Mercury*<sup>19</sup>.

## Mercury from the oil and gas industry

In addition to the CSG industry in Qld, there has been a longer-standing 'conventional' oil and gas exploration and extraction industry presence in Australia, with large operators offshore from the north-west coast of WA.

Mercury is present in all hydrocarbon reservoirs at trace levels, and can arise most significantly as waste from mercury removal units (MRUs) in the form of spent mercury adsorbents (usually activated carbon) or contaminated hydrocarbon sludges. Other mercury wastes from the oil and gas sector include process waters, contaminated soils and contaminated worker personal protective equipment (PPE).

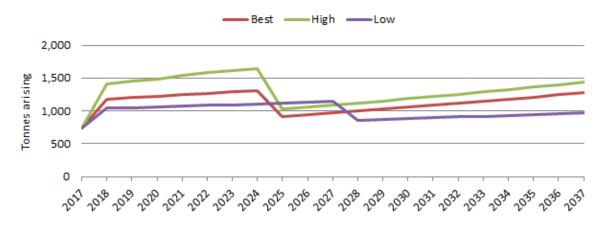
Apart from the obvious environmental and worker health and safety concerns about mercury, there is a specific risk that mercury entrained petroleum feedstock can damage metal components of processing plant equipment (particularly aluminium), through a form of corrosion, which can lead to catastrophic equipment failure. The latter is the likely reason for the use of MRUs over the long-term, but with the *Minamata Convention coming into force in August 2016* and Australia very close to ratification of it, historically stored or otherwise managed MRU residues will come under increased regulatory scrutiny for more environmentally sound management.

## **Summary analysis**

| Industry sources                                                                                                                                                                              | Considerations                                                                                                                                                                                                                                             | Comments                                                                                                                                                                                                                                                                                                       | Approach                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Oil &amp; gas<br/>extraction</li> <li>Petroleum<br/>refining</li> <li>Mining</li> <li>Lighting,<br/>electricity<br/>supply,<br/>chemical<br/>manufacturing,<br/>dentistry</li> </ul> | No specific pre-existing<br>projections were<br>identified.<br>Trend unreliable due to<br>contaminated soil<br>classified as D120 in<br>NSW (instead of N120),<br>and a one-off stockpile<br>clearance.<br>Minamata Convention<br>came into force in 2017. | 2015 projections incorrectly<br>assumed major driver was<br>fluoro lamps.<br>Oil & gas processing mercury<br>recovery unit (MRU) spent<br>absorbents is major source –<br>not clear if this comes through<br>tracking systems<br>Assume large scale on-site<br>stockpiling for Oil & gas<br>processing mercury | Assume Minamata<br>drives arisings growth<br>but at lower rate -<br>with reducing<br>stockpiling behaviour.<br>Assume stockpiles<br>cleared over seven<br>years, starting<br>immediately, due to<br>Minamata.<br>High case - assume<br>larger stockpile. |

<sup>&</sup>lt;sup>19</sup> <u>http://www.mercuryconvention.org/Convention</u>








| Table 12: | Best, high and low projected rates of change for mercury; mercury compounds waste to |
|-----------|--------------------------------------------------------------------------------------|
|           | 2037                                                                                 |

|        | 2037                 |                                                                                 |      |     |      |     |      |
|--------|----------------------|---------------------------------------------------------------------------------|------|-----|------|-----|------|
|        | Applies to           | Approach                                                                        | 2018 |     | 2027 |     | 2037 |
| Arisin | gs                   |                                                                                 |      |     |      |     |      |
| Best   | ACT, NSW,            | Minamata drives more D120 to market, assume economic growth                     | 2.8% |     | 2.8% |     | 2.8% |
| High   | NT, Qld,<br>SA, Tas, | Av. projected ann. growth in oil & gas production 2018-23, then economic growth | 5.3% | ••• | 2.8% | ••• | 2.8% |
| Low    | Vic, WA              | 20-year average annual population growth                                        | 1.4% | ••• | 1.4% |     | 1.4% |
|        |                      | On-site storage releases (absolute tonnes pa)                                   | _    | -   | -    |     |      |
| Best   | NT, Qld,             | Best estimate stockpile takes seven years to clear                              | 84   |     |      |     | 0    |
| High   | SA, Vic,<br>WA       | High estimate stockpile takes seven years to clear                              | 126  | ••• |      | ••• | 0    |
| Low    |                      | Best estimate stockpile takes 10 years to clear                                 | 59   | ••• | 59   | ••• | 0    |

*Figure 9:* Best, high and low national projection estimates of mercury, mercury compounds waste to 2037



## 2.7.6 D220 Lead; lead compounds

This group includes only the single NEPM code *D220 Lead; lead compounds*. The majority arising in Australia is a lead-rich by-product from zinc refining. A further significant component is from end of life (used) lead acid batteries (ULABs), while leaded glass from the e-waste recycling industry, where CRT glass contains large quantities of lead, make up most of the remainder.

Australia has the world's largest deposits of both lead and zinc and as a result, both are mined and used locally and exported<sup>20</sup>.

<sup>&</sup>lt;sup>20</sup> Geoscience Australia (2015). Zinc-Lead-Silver. Accessed April 14, 2015 from <a href="http://www.ga.gov.au/scientific-topics/minerals/mineral-resources/aimr/zinc-lead-silver">http://www.ga.gov.au/scientific-topics/minerals/mineral-resources/aimr/zinc-lead-silver</a>







## Summary analysis

| Industry<br>sources                                                                                   | Considerations                                                                                                                                                                                                                                                                                                                                                                                    | Comments                                                                                                                                                                                                                                                                                                  | Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Zinc<br/>refining</li> <li>Lead acid<br/>batteries</li> <li>e-waste<br/>recycling</li> </ul> | Tas lead waste (going to<br>SA) swamps all else & is<br>likely to trend with Zn<br>production estimates.<br>Tas lead waste is likely<br>to be arisings of lead<br>sulphate leach<br>concentrate (LSLC), plus<br>stockpile releases of<br>jarosite.<br>No sufficiently credible<br>pre-existing projections<br>were identified,<br>although Zn \$ forecast<br>2018-2030 is instructive<br>for LSLC | ULABs should trend<br>with population (car<br>usage growth).<br>NSW has tracking<br>exemption for ULABs<br>for reuse – therefore<br>NSW tracking data<br>under-reports<br>Total jarosite<br>stockpile was<br>200,000t in 2012;<br>assume all has been<br>processed 2012-2017<br>(EPA Tas 2009,<br>TT2012) | Tas Lead projection: assume only LSLC<br>(not jarosite stockpile releases) arise<br>going forward, at average 2012-14<br>reported LSLC production.Low case: Growth follows Nyrstar<br>Hobart Zn production trend (Nyrstar<br>2017)Best case: Growth follows world zinc<br>price forecast for 2018-2030 (WB 2017)High case: 200kt jarosite stockpile<br>available and will be released at<br>additional 20kt paULABs projection (all jurisdictions):<br>In line with pop growth (as surrogate<br>for vehicle usage growth).China has signalled withdrawal from<br>lead acid battery manufacture in favour<br>of newer technologies (low case). |

## Table 13:Best, high and low projected rates of change for lead, lead compounds waste to 2037

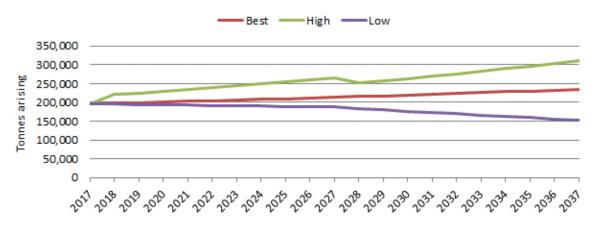

|        | Applies to                 | Approach                                                                      | 2018   |     | 2028  |     | 2037  |
|--------|----------------------------|-------------------------------------------------------------------------------|--------|-----|-------|-----|-------|
| Arisin | gs                         |                                                                               |        |     |       |     |       |
| Best   |                            | World Bank forecast Zn price growth (2018-2030)                               | -1.7%  |     | -1.7% |     | -1.7% |
| High   | Tas                        | Flat trend                                                                    | 0.0%   |     | 0.0%  |     | 0.0%  |
| Low    |                            | Nyrstar Hobart Zn production trend (Nyrstar 2017)                             | -2.2%  |     | -2.2% |     | -2.2% |
| Best   | ACT, NSW,                  | 20-year average annual population growth                                      | 1.4%   |     | 1.4%  |     | 1.4%  |
| High   | NT, Qld,<br>SA, Vic,<br>WA | 20-year average annual economic growth                                        | 2.8%   | ••• | 2.8%  | ••• | 2.8%  |
| Low    |                            | Flat trend 10 yrs, decline 10 yrs due to<br>replacement of battery technology | 0.0%   |     | -2.0% |     | -2.0% |
| On-sit | te storage rele            | eases (absolute tonnes pa)                                                    |        | -   |       |     |       |
| Best   |                            |                                                                               |        |     |       |     |       |
| High   | Tas                        | 200 kt historical jarosite stockpile will be released at additional 20 kt pa  | 20,000 |     | 0     |     | 0     |
| Low    |                            |                                                                               |        |     |       |     |       |







Figure 10: Best, high and low national projection estimates of lead, lead compounds waste to 2037



## 2.7.7 D230 Zinc compounds

This group comprises the single NEPM code *D230 zinc compounds*, previously not provided as its own waste group in 2015, but presented within the broader group 'Other D – Other inorganic compounds'. D230 was separated out because of the significant tonnage it has generated in recent years.

The vast majority of this waste (87%) was generated in Tas and accepted into management infrastructure in SA in 2016-17, while a further 12% is produced and managed within SA.

| Industry sources                                                            | Considerations                                                                                                                                                                                                                                                                                                              | Comments                                                                                                                                                                         | Approach                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Zn refining</li> <li>Iron &amp; steel<br/>manufacturing</li> </ul> | Zn waste from Tas appears to be<br>paragoethite, a by-product of<br>Nyrstar Hobart's zinc refining<br>process.<br>No sufficiently credible pre-<br>existing projections were<br>identified, but Zn \$ forecast<br>2018-2030 is instructive, and<br>paragoethite is produced at<br>~29% of zinc production<br>(Nyrstar 2015) | Paragoethite is<br>rich in Zn and<br>is routinely<br>sent to Nyrstar<br>Port Pirie's<br>lead smelter,<br>presumably<br>due to its<br>relatively high<br>lead content<br>as well. | Tas paragoethite projection:Low case: Growth followsNyrstar Hobart Zn productiontrend (Nyrstar 2017)Best case: Growth followsobserved Nyrstar Hobartparagoethite trend of 29%(Nyrstar 2015)High case: Flat trendOther states' Zn waste: Genericindustry projections |

#### **Summary analysis**

| Table 14: | Best, high and lov | projected rates of | of change | for zinc com | pounds waste to 2037 |
|-----------|--------------------|--------------------|-----------|--------------|----------------------|
|           |                    |                    |           |              |                      |

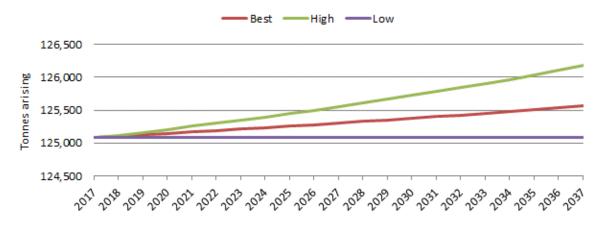

|      | Applies to   | Approach                                          | 2018  | 2037      |
|------|--------------|---------------------------------------------------|-------|-----------|
| Best |              | Nyrstar Hobart paragoethite trend (2011-17)       | -1.4% | <br>-1.4% |
| High | Tas          | Flat trend                                        | 0.0%  | <br>0.0%  |
| Low  |              | Nyrstar Hobart Zn production trend (Nyrstar 2017) | -2.2% | <br>-2.2% |
| Best | ACT, NSW,    | 20-year average annual population growth          | 1.4%  | <br>1.4%  |
| High | NT, Qld, SA, | 20-year average economic growth                   | 2.8%  | <br>2.8%  |
| Low  | Vic, WA      | Flat trend                                        | 0.0%  | <br>0.0%  |







Figure 11: Best, high and low national projection estimates of zinc compounds waste to 2037



## 2.7.8 D300 Non-toxic salts

This group includes only the single NEPM code *D300 Non-toxic salts*. The main source of this waste is the CSG extraction industry's brine, waters and sludges, some of which is from reverse osmosis desalination. There is also aluminium dross/salt cake waste produced from aluminium smelting and recycling, as well as significant volumes of salt waste that presents as furnace slags from other types of metals smelting and refining, including ULAB smelting. The CSG wastes are discussed in the breakout box below.

## CSG brine wastes

CSG mining occurs predominantly in Qld, in the Bowen and Surat Basins. CSG in Qld is usually liquefied to allow easier transport, such as by ship, which means it is also referred to as LNG. The CSG industry is often placed within the ANZSIC category Oil and gas extraction.

The CSG extraction process produces a range of wastes, but in volume terms there are three (all salty) wastes that are the most prevalent:

- extraction waters, otherwise known as co-produced water or CSG water

- brine solutions, sludges and salts, produced as a concentrated waste product from reverse osmosis desalination of salty extraction waters

- drilling muds (a combination waste of drilling fluids and earth materials), which arise from the drilling of a well.

Drilling muds are nominally captured in waste tracking systems as C100 alkalis (and also D300 non-toxic salts), reverse osmosis brine waste as D300 non-toxic salts and extraction waters are typically not tracked as hazardous waste.

Water is extracted as part of the CSG mining process because the gas – methane – is in the coal seam and held there at great pressure by water and other sediment layers. To release the gas, the water needs to be pumped out of this coal seam and up to the surface in a process known as dewatering. The water that is pumped out as part of the CSG mining process is very salty and contains a range of petroleum and mineral based chemical compounds, such as heavy metals and hydrocarbons.

CSG wastes are interesting as an emerging waste because, a) very large tonnages are involved, and b) salty waters, brines or solid salts are a difficult problem for the waste industry, which often relies on landfill. Water penetrating a landfill will mobilise any stored salt in the leachate stream, which creates a risk of groundwater infiltration, especially given the volumes to be managed. Consequently, landfill design is critical for this form of management to be successful. The enormous volumes also mean that treatment to reduce the salt levels, such as reverse osmosis, are expensive and energy-intensive.







Qld's *Coal Seam Gas Water (CSG) Management Policy 2012* and associated guidance that followed it effectively banned the practice of placing extraction waters in evaporation ponds or dams, in a form of indefinite storage. Since 2014, the industry has installed significant reverse osmosis desalination capacity to treat large volumes of extraction waters, which then allows various forms of reuse of desalinated water, leaving behind a salt brine or solid salt waste as a by-product.

Because of these management difficulties, large quantities of these reverse osmosis wastes are temporarily stored on site in brine ponds, awaiting a more definitive management fate. These volumes are very large, but because they do not leave the treatment site, they do not typically show up in hazardous waste tracking data.

Considering the management difficulty and tonnages, CSG waste is a current and future waste management concern and hence an area of focus for this report.

## **Summary analysis**

| Industry sources                                                                                                                                                           | Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                     | Approach                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>CSG<br/>extraction</li> <li>Aluminium<br/>dross<br/>processing<br/>and<br/>aluminium<br/>recycling</li> <li>Other metals<br/>smelting and<br/>refining</li> </ul> | No specific pre-existing projections were<br>identified, although ACIL Tasman (2012)<br>projects CSG production and IBIS World<br>project CSG revenue.<br>There has been an emergence of reverse<br>osmosis desalination in the industry, due<br>to regulatory phase-out of the use of<br>evaporation ponds and requirements for<br>water reuse. This has created many<br>reuse opportunities for large volumes of<br>water, but has also resulted in large RO<br>salt/brine wastes that are typically<br>stored on-site, creating a new waste<br>problem.<br>Consequently, a large stockpile has built<br>up – estimated 9.5 Mt – since around<br>2014 when the first large-scale RO plant<br>came online.<br>A stockpile also exists of aluminium and<br>aluminium dross recycling salt cake. | On-site storages in<br>evaporation ponds<br>are not included in<br>tracking data.<br>ABC (2014), which<br>was used in the<br>original (2015) set of<br>projections, appears<br>to be a simple<br>extrapolation of CSG<br>well numbers and<br>has been discounted,<br>which has led to a<br>significant flattening<br>in projections of this<br>waste.<br>Missing Qld data post<br>15-16 is problematic<br>for near-term trend<br>confidence. | Base <u>Qld</u> best on<br>ACIL Tasman<br>(2012) projections<br>of CSG production<br>(as per C100)<br><u>NSW</u> : Mostly ULAB<br>smelting slags - use<br>same assumptions<br>as for ULABs<br><u>Other</u> : Assume flat<br>for best, economic<br>growth for high,<br>negative for low |

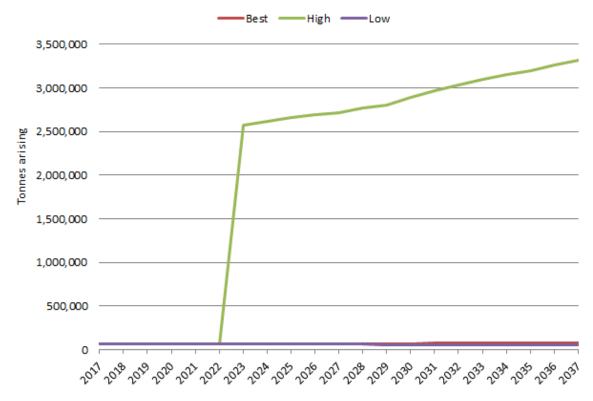






|        | Applies        | Approach                                                                                                  | 2018  |     | 2023   |     | 2037   |
|--------|----------------|-----------------------------------------------------------------------------------------------------------|-------|-----|--------|-----|--------|
|        | to             |                                                                                                           |       |     |        |     |        |
|        |                | Arising                                                                                                   | S     |     |        |     |        |
| Best   |                | Based on ACIL Tasman (2012)                                                                               | -0.3% |     | 1.5%   |     | 1.8%   |
| High   | Qld            | 20-year average annual economic growth                                                                    | 2.8%  | ••• | 2.8%   | ••• | 2.8%   |
| Low    |                | 20-year average annual population growth                                                                  | 1.4%  |     | 1.4%   |     | 1.4%   |
| Best   |                | 20-year average population growth                                                                         | 1.4%  |     | 1.4%   |     | 1.4%   |
| High   | 1              | 20-year average economic growth                                                                           | 2.8%  |     | 2.8%   |     | 2.8%   |
| Low    | NSW            | Flat trend 10yrs, decline 10 yrs due<br>to replacement of battery<br>technology                           | 0.0%  |     | 0.0%   |     | -2.0%  |
| Best   | ACT, NT,       | Flat trend                                                                                                | 0.0%  |     | 0.0%   |     | 0.0%   |
| High   | SA, Vic,<br>WA | 20-year average annual population growth                                                                  | 1.4%  |     | 1.4%   |     | 1.4%   |
| Low    |                | -2% annual decline                                                                                        | -2.0% | ••• | -2.0%  | ••• | -2.0%  |
| On-sit | te storage re  | leases (absolute tonnes pa)                                                                               |       |     | ·      |     |        |
| Best   |                | Long-term dross stockpile remains                                                                         | 0     |     | 0      |     | 0      |
| High   | Vic            | Dross stockpile clears in 5 years, at a linear rate, beginning in 2020                                    | 0     | ••• | CIC    | ••• | 0      |
| Low    |                | Long-term dross stockpile remains                                                                         | 0     | ••• | 0      |     | 0      |
| On-si  | te storage re  | leases (absolute tonnes pa)                                                                               |       |     |        |     |        |
| Best   |                | CSG salt brines continue to be stockpiled onsite indefinitely                                             | 0     |     | 0      |     | 0      |
| High   | Qld            | After 5 yrs CSG salt brines taken to<br>long-term isolation facility. Pre-<br>existing stockpiles remain. | 0     | ••• | 2,5 Mt | ••• | 3,2 Mt |
| Low    |                | CSG salt brines continue to be stockpiled onsite indefinitely                                             | 0     | ••• | 0      | ••• | 0      |

## Table 15: Best, high and low projected rates of change for non-toxic salt waste to 2037


The standout feature of Figure 12 overleaf is very large volumes of stockpiled CSG industry salt/brine waste as an output from reverse osmosis desalination of the waters extracted from wells. These dominate all other features of the projection graph. Under the best and low scenarios, it is assumed that CSG reverse osmosis brine wastes are permitted to remain stored onsite. Under the high scenario, it is assumed that after five years new arisings of CSG reverse osmosis brine wastes are required to be managed offsite and are sent to long-term isolation facilities. Historical stockpiles are assumed to remain onsite. This results in a very large increase (2.5 Mt) in 2023 increasing to 3.2 Mt by 2037. See section 4.3 for a discussion on arisings versus infrastructure capacity for this waste.











## 2.7.9 Other D Other inorganic chemicals

This group includes waste and wastes contaminated with: metal carbonyls; inorganic sulphides; perchlorates; chlorates; arsenic<sup>21</sup>, cadmium<sup>21</sup>, beryllium<sup>21</sup>, antimony<sup>21</sup>, thallium<sup>21</sup>, selenium<sup>21</sup> and tellurium<sup>21</sup>; compounds of copper, cobalt, nickel, vanadium, boron, barium (excl. barium sulphate), chromium (hexavalent & trivalent) and phosphorus (excl. mineral phosphates).

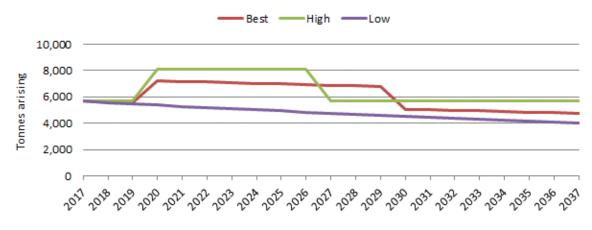
There is limited information on this group – it is a collection of low volume wastes from a variety of traditional manufacturing sources.

## **Summary analysis**

| Industry sources                                                                                                                                                                                                                                                                                                                                                                                               | Considerations                                                                                                                                 | Comments                                                                                                                         | Approach                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| <ul> <li>Fossil fuel electricity generation</li> <li>Motor vehicle parts manufacturing</li> <li>Petroleum refining</li> <li>Leather tanning, fur dressing and<br/>leather product manufacturing</li> <li>Chemical product manufacturing</li> <li>Metal coating and finishing</li> <li>Port and water transport terminal<br/>operations</li> <li>Professional, scientific and technical<br/>services</li> </ul> | No sufficiently credible<br>pre-existing projections<br>were identified<br>Historical data set exists,<br>not usable for discerning<br>trends. | D230 (Zn) and D110<br>(SPL) are high volume<br>wastes that have been<br>split out of this group<br>since the 2015<br>projections | Assume<br>traditional<br>manufacturing<br>industry<br>decline |

<sup>&</sup>lt;sup>21</sup> Also including compounds containing these elements.








| Table 16. | Rest high and low | projected rates of | f change for other in | organic chemical waste to 2037  |
|-----------|-------------------|--------------------|-----------------------|---------------------------------|
| TUDIE 10. | Dest, myn unu iow | projecteu rutes oj | i chunge jor other m  | iorgunic chemical waste to 2057 |

|        | Applies<br>to         | Approach                                                                     | 2018  |     | 2020  |     | 2037  |
|--------|-----------------------|------------------------------------------------------------------------------|-------|-----|-------|-----|-------|
| Arisin | gs                    |                                                                              |       |     |       |     |       |
| Best   | ACT, NSW,<br>NT, Qld, | Projected annual growth in manufacturing employment 2017-22                  | -0.9% |     | -0.9% |     | -0.9% |
| High   | SA, Tas,<br>Vic, WA   | Flat trend - traditional industry remains<br>competitive                     | 0.0%  | ••• | 0.0%  | ••• | 0.0%  |
| Low    |                       | Hazwaste from traditional manufacturing declines at double the best estimate | -1.7% |     | -1.7% | ••• | -1.7% |
| On-sit | e storage rele        | ases (absolute tonnes pa)                                                    | -     |     |       |     |       |
| Best   |                       | Stockpile cleared in 10 years, at a linear rate, (starting 2020)             | 1,700 |     | 1,700 |     | 0     |
| High   | Vic                   | Stockpile cleared in seven years, at a linear rate, (starting 2020)          | 2,429 | ••• | 2,429 | ••• | 0     |
| Low    |                       | Stockpile remains (status quo)                                               | 0     |     | 0     |     | 0     |





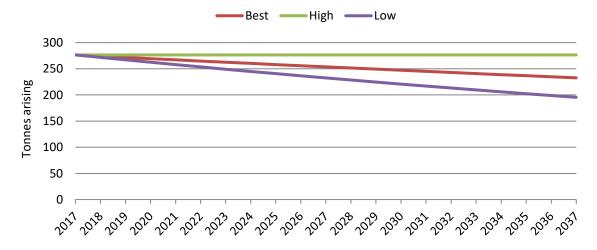






# **2.7.10 E Reactive chemicals**

This waste group includes only one NEPM 75 code: *E100 Waste containing peroxides other than hydrogen peroxide*, although it shares similar strong oxidising properties to D340 Perchlorates and D350 Chlorates, which were not grouped together in this category to preserve NEPM E reporting alignment and because the contributions from D340 and D350 are similarly small.


## **Summary analysis**

| Industry sources                                                                                                                                                                                                                                                  | Considerations                                                              | Approach                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------|
| <ul> <li>Chemical manufacturing</li> <li>Metal product manufacturing</li> <li>Water supply drainage &amp; sewerage</li> <li>Oil and gas extraction</li> <li>Soap and other detergent manufacturing</li> <li>Potato, corn and other crisp manufacturing</li> </ul> | No sufficiently<br>credible pre-<br>existing projections<br>were identified | Assume traditional manufacturing industry decline |

## Table 17: Best, high and low projected rates of change for reactive chemical waste to 2037

|      | Applies to                   | Approach                                                                     | 2018  | 2037      |
|------|------------------------------|------------------------------------------------------------------------------|-------|-----------|
| Best | ACT, NSW,                    | Projected annual growth in manufacturing employment 2017-22                  | -0.9% | <br>-0.9% |
| High | NT, Qld, SA,<br>Tas, Vic, WA | Flat trend - traditional industry remains competitive                        | 0.0%  | <br>0.0%  |
| Low  |                              | Hazwaste from traditional manufacturing declines at double the best estimate | -1.7% | <br>-1.7% |

#### *Figure 14:* Best, high and low national projection estimates of reactive chemical waste to 2037



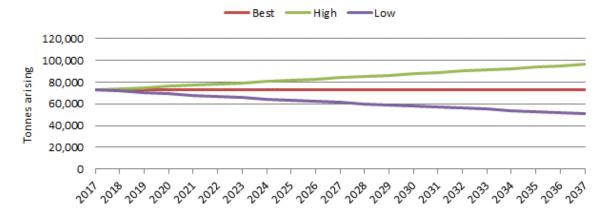






# 2.7.11 F Paints, resins, inks, organic sludges

This group includes: F100 Waste from the production and use of inks, dyes, pigments, paints, lacquers & varnish and F110 Waste from the production & use of resins, latex, plasticisers, glues and adhesives.


# **Summary analysis**

| Industry sources                                                                                                                                                                                                                                                         | Considerations                                                                                                                                                   | Comments                                                                                                                                                                          | Approach                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Paint ink and resin<br/>manufacturing</li> <li>Chemical and<br/>chemical product<br/>manufacturing</li> <li>Printing</li> <li>Machinery and<br/>equipment<br/>manufacturing</li> <li>Motor vehicle<br/>manufacturing</li> <li>Aircraft manufacturing</li> </ul> | No sufficiently credible<br>pre-existing projections<br>were identified<br>Historical data shows<br>relatively flat trend,<br>excluding WA 2016-17<br>data point | Main influence in trends<br>is 2016-17 WA F100 data<br>point - almost 10-fold<br>increase in long-term<br>baseline<br>The data record suggests<br>it is a release from<br>storage | Exclude the apparent WA<br>storage release<br>Use population growth<br>for the best estimate<br>High = flat<br>Low = CAGR |

# Table 18:Best, high and low projected rates of change for paints, resins, inks and organic sludge<br/>waste to 2037

|      | Applies to   | Approach                                 | 2018  | <br>2037  |
|------|--------------|------------------------------------------|-------|-----------|
| Best | ACT, NSW,    | Flat trend                               | 0.0%  | <br>0.0%  |
| High | NT, Qld, SA, | 20-year average annual population growth | 1.4%  | <br>1.4%  |
| Low  | Tas, Vic, WA | National compound average growth rate    | -1.7% | <br>-1.7% |

# *Figure 15:* Best, high and low national projection estimates of paints, resins, inks and organic sludge waste to 2037







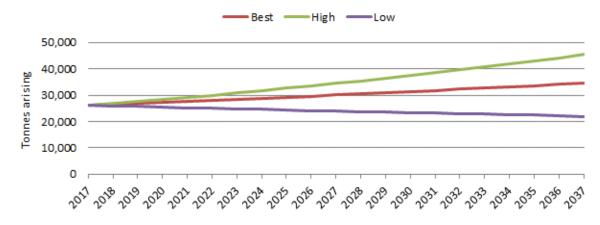


# 2.7.12 G Organic solvents

This waste group includes:

- G100 ethers
- G110 organic solvents excluding halogenated solvents
- G150 halogenated organic solvents
- *G160 waste from the production, formulation and use of organic solvents.*

Solvents have three principal areas of use; as cleaning agents, as a raw material or feedstock in the production and manufacture of other substances, and as a carrying and/or dispersion medium in chemical synthetic processes.


## **Summary analysis**

| Industry sources                                                                                                                                                                      | Considerations                                                                                                                                                                                        | Comments                                                                                                      | Approach                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Motor vehicle<br/>manufacturing</li> <li>Dry cleaning</li> <li>Chemical and<br/>chemical product<br/>manufacturing</li> <li>Printing</li> <li>Paint manufacturing</li> </ul> | No sufficiently credible<br>pre-existing projections<br>were identified<br>Large rises and falls in<br>trend data<br>High storage waste across<br>the board - can lead to<br>storage & release spikes | Removing major spike<br>years from Qld/Vic/WA<br>appears to still show<br>positive trend; negative<br>for NSW | Use population growth<br>for the best estimate<br>High = economic growth<br>Low = projected<br>manufacturing growth |

#### Table 19: Best, high and low projected rates of change for organic solvent waste to 2037

|      | Applies to                   | Approach                                              | 2018  | 2037      |
|------|------------------------------|-------------------------------------------------------|-------|-----------|
| Best | 107 NO.4                     | 20-year average annual population growth              | 1.4%  | <br>1.4%  |
| High | ACT, NSW,                    | 20-year average annual economic growth                | 2.8%  | <br>2.8%  |
| Low  | NT, Qld, SA,<br>Tas, Vic, WA | Projected ann. growth in manufact. employment 2017-22 | -0.9% | <br>-0.9% |

#### Figure 16: Best, high and low national projection estimates of organic solvent waste to 2037









# 2.7.13 H Pesticides

This group includes three potentially diverse types of waste:

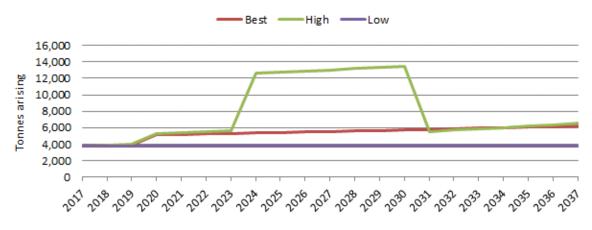
- H100 waste from the production, formulation and use of biocides & phytopharmaceuticals
- H110 organic phosphorous compounds
- H170 waste from manufacture, formulation and use of wood-preserving chemicals.

H100 is the major pesticide heading (biocide means pesticide) although it also includes the relatively unrelated phytopharmaceuticals, which are plant-derived pharmaceutical products such as alkaloids. H110 includes waste from organic phosphorus compounds used as lubricants, plasticisers, flame retardants and, most notably, as organophosphate pesticides. H170 is different again in that it covers waste from timber preservation which in Australia has historically been dominated by chromated copper arsenate (CCA) treatment.

#### **Summary analysis**

| Industry sources                                                         | Considerations                                                                                                                        | Comments                                                                        | Approach                                                                                                                        |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Services to agriculture;<br>wood product<br>manufacture; waste<br>sector | No sufficiently credible pre-<br>existing projections were<br>identified                                                              | This is a high-storage waste;<br>spikes are consistent with<br>storage releases | Use causal analysis -<br>Assume default<br>economic growth                                                                      |
| sector                                                                   | No historical data set exists<br>that is adequate for<br>discerning trends (several<br>spikes in data)<br>Dieldrin impregnated timber | Spikes aside there is<br>typically growth in the<br>trends, except for NSW      | Stockpile releases<br>are considered in<br>the 'best' case (slow<br>release) and the<br>'high' case (cleared<br>via new thermal |
|                                                                          | sleepers are stockpiled in<br>significant volumes in WA                                                                               |                                                                                 | infrastructure from 2024 onwards)                                                                                               |

## Table 20: Best, high and low projected rates of change for pesticide waste to 2037


|        | Applies to      | Approach                                                                                    | 2018 |     | 2024  |     | 2037  |
|--------|-----------------|---------------------------------------------------------------------------------------------|------|-----|-------|-----|-------|
| Arisin | gs              |                                                                                             |      |     |       |     |       |
| Best   | ACT, NSW,       | Based on ACIL Tasman (2012)                                                                 | 1.4% |     | 1.4%  |     | 1.4%  |
| High   | NT, Qld,        | 20-year average annual economic growth                                                      | 2.8% | ••• | 2.8%  | ••• | 2.8%  |
| Low    | SA, Tas,<br>Vic | 20-year average annual population growth                                                    | 0.0% |     | 0.0%  |     | 0.0%  |
| On-sit | te storage rele | eases (absolute tonnes pa)                                                                  |      |     |       |     |       |
| Best   |                 | Stockpile slowly reduced at 2% pa, through existing infrastructure, (starting 2020)         | 0    |     | 1,200 |     | 1,200 |
| High   | WA              | As for best, but thermal infrastructure on-line in 2024 and clears stockpile in seven years | 0    | ••• | 8,057 | ••• | 0     |
| Low    |                 | Stockpile remains (status quo)                                                              | 0    |     | 0     |     | 0     |











## 2.7.14 J100 & J160 Oils

This waste group includes:

- J100 waste mineral oils unfit for their original intended use; waste oil/water (predominantly)
- *J160 waste tarry residues arising from refining, distillation, and any pyrolytic treatment* (minor contribution).

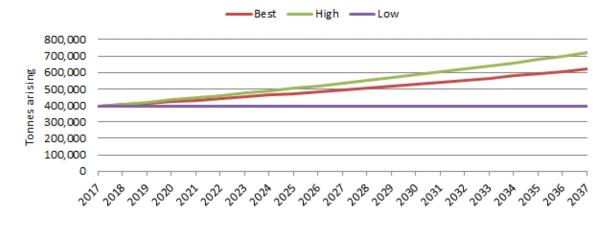
J100 is dominated by used oil from vehicles. J160 is produced in the refining of petroleum, rerefining of lubricating oils, production of metallurgical coke or town gas by pyrolysis of coal.

Oil waste arisings are distributed across industries in jurisdictions quite similarly, with differences being more to do with jurisdictional industrial mix variations, such as the prevalence of mining in WA and Qld.

Since the 2015 report, *J120 hydrocarbons/water mixtures or emulsions* has been split out into its own group (see Section 2.6) due to the different management and infrastructure used for oils and oily waters.

| Industry sources                                                                                            | Considerations                                                               | Comments                                                                                                                                                                                                                   | Approach                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Mining</li> <li>Transport</li> <li>Retail (vehi-<br/>servicing sh</li> <li>Waste sector</li> </ul> | ops)                                                                         | Consultation suggests mining<br>oils are being increasingly<br>managed on-site (poorly) - last<br>five years<br>Historical tracking trends<br>(ignoring NSW) generally show<br>growth, also this has slowed<br>since ~2012 | Best: Qld/WA =<br>pop growth; other<br>= econ growth<br>High: WA/Qld =<br>econ growth;<br>others = Vic long-<br>term CAGR |
|                                                                                                             | PSO program (DoEE 2017)<br>volume data used to estimate<br>national arisings |                                                                                                                                                                                                                            | Low: assume<br>recent flat growth<br>to continue                                                                          |








### Table 21: Best, high and low projected rates of change for oil waste to 2037

|      | Applies to                       | Approach                                                   | 2018 | 2037     |
|------|----------------------------------|------------------------------------------------------------|------|----------|
| Best |                                  | 20-year average annual population growth                   | 1.4% | <br>1.4% |
| High | Qld, WA                          | 20-year average annual economic growth                     | 2.8% | <br>2.8% |
| Low  |                                  | Recent flat trend continues                                | 0.0% | <br>0.0% |
| Best |                                  | 20-year average annual economic growth                     | 2.8% | <br>2.8% |
| High | ACT, NSW,<br>NT, SA,<br>Tas, Vic | Long-term Vic CAGR (excl. adjustment - tracking data only) | 3.2% | <br>3.2% |
| Low  |                                  | Flat trend                                                 | 0.0% | <br>0.0% |

## *Figure 18:* Best, high and low national projection estimates of oil waste to 2037

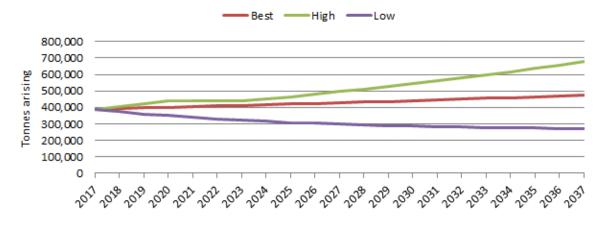


## 2.7.15 J120 Waste oil/water mixtures

This waste group includes the single NEPM code *J120 hydrocarbons/water mixtures or emulsions*. J120 is typically wastewater that has been contaminated with oil, such as truck and vehicle washwater, skimmer and interceptor water, vehicle coolant water and potentially shipping bilge water.

| Industry sources                                                                                              | Considerations                                                                                                                        | Comments                                                                                                                                                                                                                                                                                                             | Approach                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Mining</li> <li>Transport</li> <li>Retail (vehicle servicing shops)</li> <li>Waste sector</li> </ul> | No sufficiently<br>credible pre-existing<br>projections were<br>identified<br>Expected to have<br>sources much in<br>common with J100 | Very high storage waste nationally<br>(30%) - practice most common in<br>Qld<br>Historical tracking trends suggest<br>long-term flat to growth, with Qld<br>the most notable rise until 2013-<br>14, when volumes dropped<br>slightly. Last five years shows<br>Vic/NSW decline and Qld/WA<br>relatively flat trend. | Best: NSW & Vic flat;<br>others population<br>growth<br>High: Qld & WA - mining<br>growth; NSW & Vic<br>population growth;<br>others economic<br>growth.<br>Low: Vic/ NSW CAGR<br>declining rates<br>averaged, others flat |








#### Table 22: Best, high and low projected rates of change for oily water waste to 2037

|      | Applies to          | Approach                                                   | 2018   |     | 2037   |
|------|---------------------|------------------------------------------------------------|--------|-----|--------|
| Best |                     | 20-year average annual population growth                   | 0.0%   |     | 0.0%   |
| High | NSW, Vic            | 20-year average annual economic growth                     | 1.4%   |     | 1.4%   |
| Low  |                     | Recent flat trend continues                                | -11.6% | ••• | -11.6% |
| Best |                     | 20-year average annual economic growth                     | 1.4%   |     | 1.4%   |
| High | Qld, WA             | Long-term Vic CAGR (excl. adjustment - tracking data only) | 6.0%   |     | 4.0%   |
| Low  |                     | Flat trend                                                 | 0.0%   |     | 0.0%   |
| Best |                     | 20-year average annual economic growth                     | 1.4%   |     | 1.4%   |
| High | ACT, NT,<br>SA, Tas | Long-term Vic CAGR (excl. adjustment - tracking data only) | 2.8%   | ••• | 2.8%   |
| Low  | 5, 105              | Flat trend                                                 | 0.0%   |     | 0.0%   |

## Figure 19: Best, high and low national projection estimates of oily water waste to 2037

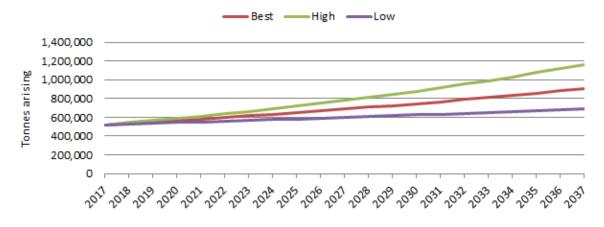


#### 2.7.16 K110 Grease trap waste

*K110 Grease trap waste*, or grease interceptor trap waste, is waste from a grease interceptor used for the capture of food, grease and solids before entry to the sewer. This waste includes any solids that are derived from the treatment of this waste. It is primarily sourced from retail food business, such as restaurants and fast food outlets. Grease trap is not tracked in NSW or SA.

| Industry sources                                                                                                                                                                                                        | Considerations                                                                                                                     | Comments                                     | Approach                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Food product<br/>manufacturing</li> <li>Cafes and restaurants</li> <li>Supermarkets and grocery<br/>stores</li> <li>Waste sector (as collectors<br/>and aggregators from cafes<br/>and restaurants)</li> </ul> | No sufficiently credible<br>pre-existing projections<br>were identified<br>Vic and WA trends are<br>indicative of steady<br>growth | This waste is not<br>tracked in NSW or<br>SA | Best: use economic<br>growth as causal analysis<br>High: use Vic CAGR (4.1%)<br>growth as causal analysis<br>Low: use population<br>growth as causal analysis |








#### Table 23: Best, high and low projected rates of change for grease trap waste to 2037

|      | Applies to   | Approach                                   | 2018 | <br>2037 |
|------|--------------|--------------------------------------------|------|----------|
| Best | ACT, NSW,    | 20-year average annual economic growth     | 2.8% | <br>2.8% |
| High |              | Vic long-term CAGR as indicative of others | 4.1% | <br>4.1% |
| Low  | Tas, Vic, WA | 20-year average annual population growth   | 1.4% | <br>1.4% |

# Figure 20: Best, high and low national projection estimates of grease trap waste to 2037



# 2.7.17 Other K Other putrescible/organic waste

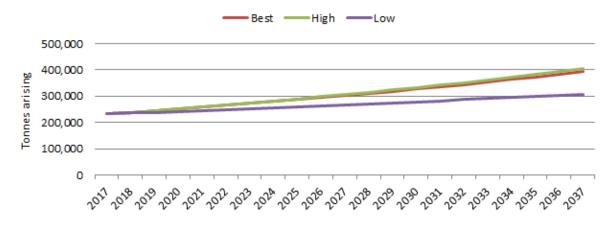
This waste group represents the NEPM codes:

- *K100 Animal effluent and residues (abattoir effluent, poultry and fish processing wastes),* plus the wastes unique to Qld: *Liquid food processing waste* and Vic/WA: *Food and beverage processing wastes,* including animal and vegetable oils and derivatives, all three described by their respective state tracking systems as 'K200'
- K140 Tannery wastes (including leather dust, ash, sludges and flours)
- K190 Wool scouring wastes.

K100 Animal effluent and residues (and K200 within it) makes up the bulk of this group and includes abattoir wastes such as manure from the stockyards and the partly digested paunch or stomach content, as well as similar waste components from poultry and fish processing activities. It is notable that NSW does not track this waste group.

| Industry sources                                                                                               | Considerations                                                           | Comments                               | Approach                                  |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------|-------------------------------------------|
| <ul> <li>Meat and meat product<br/>manufacturing;</li> <li>Food &amp; beverage</li> </ul>                      | No sufficiently credible pre-<br>existing projections were<br>identified | This waste is not tracked in NSW or SA | Best: meat production<br>projected growth |
| product manufacturing<br>(meat, poultry, dairy,<br>vegetable, fruit, beer,                                     | Vic and WA trends are indicative of flat and steady                      |                                        | High: economic<br>growth                  |
| <ul> <li>wine, soft drinks)</li> <li>Waste sector</li> <li>Leather &amp; textiles<br/>manufacturing</li> </ul> | growth respectively                                                      |                                        | Low: Population<br>growth                 |








#### Table 24: Best, high and low projected rates of change for other putrescible/organic waste to 2037

|      | Applies to   | Approach                                             | 2018 | 2037     |
|------|--------------|------------------------------------------------------|------|----------|
| Best | ACT, NSW,    | Av. projected ann. growth in meat production 2018-23 | 2.7% | <br>2.7% |
| High | NT, Qld, SA, | 20-year average annual economic growth               | 2.8% | <br>2.8% |
| Low  | Tas, Vic, WA | 20-year average annual population growth             | 1.4% | <br>1.4% |





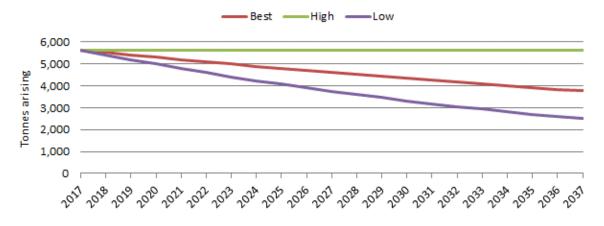
## 2.7.18 M100 PCB waste

This waste group includes the single NEPM code: *M100 waste substances and articles containing or contaminated with polychlorinated biphenyls, polychlorinated naphthalenes, polychlorinated terphenyls and/or polybrominated biphenyls.* 

M100 was previously included in the broad catch-all of Other organic chemicals (Other M), but has been split out in this report as it is a specific Stockholm Convention POP with its own management requirements.

| Industry sources                                                     | Considerations                                                                                                                                                                                                                                                             | Comments                                                                                                                                                    | Approach                                                                                                                                                                                                                |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Electricity<br/>supply</li> <li>Waste<br/>sector</li> </ul> | No sufficiently credible pre-<br>existing projections were<br>identified<br>There is a major spike in Vic 2014-<br>15 tracking data (due to miscoded<br>PCB-contaminated soil).<br>Ignoring this, NSW & WA are<br>declining, while Vic and Qld appear<br>to be increasing. | Overall national<br>trend is relatively<br>flat and<br>somewhat<br>sporadic, given<br>the low volumes<br>of this waste<br>relative to other<br>waste groups | Best: PCB-containing waste<br>disappearing from waste stream<br>High: Flat trend due to ongoing<br>dismantling of aging infrastructure<br>Low: PCB-containing waste<br>disappearing from waste stream<br>at higher rate |








| Table 25: | Best. hiah and low | projected rates o | of chanae for | PCB waste to 2037  |
|-----------|--------------------|-------------------|---------------|--------------------|
| 10010 20. | Dest, mgn ana iow  | projected rates o | j change jor  | 1 CD Waste to 2007 |

|      | Applies to   | Approach           | 2018  |     | 2037  |
|------|--------------|--------------------|-------|-----|-------|
| Best | ACT, NSW,    | -2% annual decline | -2.0% |     | -2.0% |
| High | NT, Qld, SA, |                    | 0.0%  |     | 0.0%  |
| Low  | Tas, Vic, WA | -4% annual decline | -4.0% | ••• | -4.0% |

## Figure 22: Best, high and low national projection estimates of PCB waste to 2037



## 2.7.19 M160a POP-BDEs

*M160 Organohalogen compounds—other than substances referred to in this Table or Table 2 comprises:* 

- M160a POP-BDEs (Persistent Organic Pollutant Brominated Diphenyl Ethers)
- M160b HBCD (hexabromocyclododecane)
- M160c HCB (Hexachlorobenzene).

Each of these sub-groups is considered separately within this section. Along with PFAS waste, which is also discussed separately under *M270 Per- and poly-fluoroalkyl substances (PFAS) contaminated materials, including waste PFAS- containing products and contaminated containers*, M160a-c waste is collectively referred to as POP.

PBDEs have been used globally since the late 1970s for their flame-retarding properties and have been applied as an additive to a range of products including electrical and electronic equipment, furniture upholstery, automobile interiors, mattresses, carpet underlay and other items that are required to be flame-retardant. In May 2009 the Stockholm Convention's Conference of Parties agreed to add nine new POP to the Convention's annexes, including certain congeners contained in commercial pentabromodiphenyl ether (c-pentaBDE) and commercial octabromodiphenyl ether (coctaBDE) and together referred to as POP-BDEs.

DecaBDE, another POP-BDE more recently added to the Stockholm Convention, also sits within M160a and is discussed in the breakout box overleaf.

Under the domestic treaty-making process, Australia must determine whether to ratify listing of the POP-BDEs after having taken into consideration the costs and benefits of the feasible technical options that it would need to implement to satisfy ratification. This decision has not yet been made.







# DecaBDE, an emerging issue

While the production of commercial pentaBDE and octaBDE has long stopped, the production of decaBDE continues, as it has reduced toxicity compared to the lower brominated BDEs. Hard plastics used in electrical and electronic equipment in Australia had almost totally phased out the use of octaBDE as a flame-retardant by the year 2000. These were replaced by others like decaBDE, tetrabromobisphenol A (TBBPA) and decabromodiphenyl ethane (DBDPE).

The potential environmental impact of decaBDE has been under review over the last few years due to evidence that it can degrade in thermal processes, environmental processes and in biota to more dangerous lower brominated PBDEs, including POP-BDEs such as pentaBDE. In 2013, Norway drafted a proposal to list commercial decaBDE on the Stockholm Convention. After consideration at various stages of the Convention-listing process, decaBDE was formally listed on the Stockholm Convention at the eighth meeting of the Conference of the Parties to the Stockholm Convention held in Brussels in May 2017.

While there is likely to be a significant time-lag between this decision and an Australian regulatory response, this decision has far greater implications for the e-waste recycling industry in Australia than the listing of octaBDE, where large volumes of e-waste plastics are likely to be contaminated in high concentrations.







## **Summary analysis**

| Industry sources                                                                                                                                                                                                       | Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comments                                                                                                                                                                                                                           | Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brominated flame<br>retardants are found in e-<br>waste ABS plastics,<br>furniture upholstery<br>(polyurethane foam foams)<br>and biosolids (downstream<br>from industrial and<br>domestic uses of these<br>chemicals) | <ul> <li>Australian biosolids are unlikely to exhibit POP-BDEs above 1,000 mg/kg (the Stockholm Convention's level of concern)</li> <li>WEEE that presents for landfill disposal (not recycling) is the major source of POP-BDEs</li> <li>Biggest issue is decaBDE, since it is still used for flame retardancy in manufactured EEE today (octa and penta were phased out in the late 1990s to mid-2000s)</li> <li>This means decaBDE will be a waste legacy issue for much longer than octa- and pentaBDE</li> <li>Although penta/octaBDE have not been intentionally added to WEEE since this time, some penta/octa could still be present &gt;1000 mg/kg due to unintentional addition (contaminated recyclate)</li> </ul> | BE et al 2017 e-waste<br>projections up to 2035 can<br>be used in POP-BDE (from<br>e-waste) projections. These<br>indicate rapid e-waste<br>growth.<br>These projections are<br>informed by good historical<br>e-product use data. | Use e-waste only, since other waste streams<br>are likely to be below 1,000mg/kg.<br><u>decaBDE</u> :<br>Assume growth directly follows national e-<br>waste projected growth (BE et al 2017.<br><u>octa- &amp; pentaBDE</u> :<br>Assume zero end of life (intentionally<br>added) penta- & octaBDE items (KMH 2013)<br>Assume some unintentional POP-BDEs will<br>be above 1,000 due to contaminated<br>recyclate plastic (BE et al 2017)<br>Assume Aust ratification occurs in 2020 |

## Starting point arising estimate

Penta-, octa- and decaBDE wastes are not currently represented in hazardous waste tracking data, primarily because their addition to the Stockholm Convention has not been ratified yet. Consequently, assumptions must be used to estimate a feasible starting-point tonnage that describes what might become available to the hazardous waste market once ratification occurs. These are as follows:

- pentaBDE = 0 tonnes arising in 2018 (KMH 2013), and remains that way throughout the projection period
- octaBDE = 131 tonnes (BE et al 2017), arising in 2020, when Australian ratification is assumed to occur
- decaBDE = 57,689 tonnes, arising in 2024, when Australian ratification is assumed to occur. DecaBDE starting point assumptions are:
  - BE (2016) (best) predicts 2024 Aust e-waste generation
  - DecaBDE is in widespread use assume 30% of all e-waste plastic contains it
  - Assume decaBDE-containing plastic is dismantled & is 30% by weight of whole item
  - (30% is the average weight proportion of TVs and computers (UNEP 2012)).

= 192,295 tonnes = 57,689 tonnes

= 640,985 tonnes







## Table 26: Best, high and low projected tonnes for POP-BDEs waste to 2037

|         | Applies to        | Approach                         | 2017 2018         | 2019 | 2020 | 2021 | 2022 | 2023 | 2024   | 2025   | 2026   | 2027   | 2028   | 2029           | 2030   | 2031   | 2032   | 2033   | 2034   | 2035   | 2036   | 2037   |
|---------|-------------------|----------------------------------|-------------------|------|------|------|------|------|--------|--------|--------|--------|--------|----------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Arising | s - rate          |                                  |                   |      |      |      |      |      |        |        |        |        |        |                |        |        |        |        |        |        |        |        |
| Best    | ACT, NSW, NT,     | Av. projected ann. growth in e-w | vaste 2021-35, be | est  |      | 4.2% | 4.2% | 4.2% | 4.2%   | 4.2%   | 4.2%   | 4.2%   | 4.2%   | 4.2%           | 4.2%   | 4.2%   | 4.2%   | 4.2%   | 4.2%   | 4.2%   | 4.2%   | 4.2%   |
| High    | Qld, SA, Tas,     | Av. projected ann. growth in e-w | vaste 2021-35, hi | igh  |      | 4.8% | 4.8% | 4.8% | 4.8%   | 4.8%   | 4.8%   | 4.8%   | 4.8%   | 4.8%           | 4.8%   | 4.8%   | 4.8%   | 4.8%   | 4.8%   | 4.8%   | 4.8%   | 4.8%   |
| Low     | Vic, WA           | Av. projected ann. growth in e-w | vaste 2021-35, lo | w    |      | 3.4% | 3.4% | 3.4% | 3.4%   | 3.4%   | 3.4%   | 3.4%   | 3.4%   | 3.4%           | 3.4%   | 3.4%   | 3.4%   | 3.4%   | 3.4%   | 3.4%   | 3.4%   | 3.4%   |
| Arising | s – absolute tonn | es pa                            | Proportions       |      |      |      |      |      |        |        |        |        |        |                |        |        |        |        |        |        |        |        |
| Best    | ACT               |                                  | 2%                |      | 2    | 2    | 2    | 2    | 971    | 1,012  | 1,054  | 1,098  | 1,144  | 1,192          | 1,242  | 1,294  | 1,349  | 1,405  | 1,464  | 1,526  | 1,590  | 1,657  |
|         | NSW               |                                  | 31%               |      | 41   | 42   | 44   | 46   | 17,982 | 18,736 | 19,523 | 20,342 | 21,196 | 22,086         | 23,012 | 23,978 | 24,985 | 26,033 | 27,126 | 28,264 | 29,451 | 30,687 |
|         | NT                |                                  | 1%                |      | 1    | 1    | 1    | 2    | 600    | 625    | 652    | 679    | 708    | 737            | 768    | 800    | 834    | 869    | 906    | 944    | 983    | 1,024  |
|         | Qld               | Best estimate (absolute) +       | 21%               |      | 27   | 28   | 29   | 31   | 11,906 | 12,406 | 12,927 | 13,469 | 14,034 | 14,623         | 15,237 | 15,877 | 16,543 | 17,237 | 17,961 | 18,714 | 19,500 | 20,318 |
|         | SA                | 50%                              | 7%                |      | 9    | 9    | 10   | 10   | 3,993  | 4,161  | 4,335  | 4,517  | 4,707  | 4,904          | 5,110  | 5,325  | 5,548  | 5,781  | 6,024  | 6,276  | 6,540  | 6,814  |
|         | Tas               |                                  | 2%                |      | 3    | 3    | 3    | 3    | 1,187  | 1,237  | 1,289  | 1,343  | 1,400  | 1,458          | 1,520  | 1,583  | 1,650  | 1,719  | 1,791  | 1,867  | 1,945  | 2,026  |
|         | Vic               |                                  | 25%               |      | 33   | 34   | 35   | 37   | 14,360 | 14,963 | 15,591 | 16,245 | 16,927 | 17,637         | 18,378 | 19,149 | 19,952 | 20,790 | 21,662 | 22,572 | 23,519 | 24,506 |
|         | WA                |                                  | 12%               |      | 15   | 16   | 17   | 18   | 6,836  | 7,123  | 7,422  | 7,733  | 8,058  | 8,396          | 8,749  | 9,116  | 9,498  | 9,897  | 10,312 | 10,745 | 11,196 | 11,666 |
| High    | ACT               |                                  |                   |      | 2    | 2    | 2    | 3    | 971    | 1,017  | 1,065  | 1,116  | 1,169  | 1,225          | 1,283  | 1,344  | 1,408  | 1,475  | 1,546  | 1,619  | 1,696  | 1,777  |
|         | NSW               |                                  |                   |      | 41   | 43   | 45   | 47   | 17,983 | 18,839 | 19,736 | 20,675 | 21,660 | 22,691         | 23,771 | 24,902 | 26,088 | 27,330 | 28,631 | 29,994 | 31,422 | 32,918 |
|         | NT                |                                  |                   |      | 1    | 1    | 1    | 2    | 600    | 629    | 659    | 690    | 723    | 757            | 794    | 831    | 871    | 912    | 956    | 1,001  | 1,049  | 1,099  |
|         | Qld               |                                  |                   |      | 27   | 28   | 30   | 31   | 11,907 | 12,474 | 13,068 | 13,690 | 14,341 | 15,024         | 15,739 | 16,489 | 17,273 | 18,096 | 18,957 | 19,860 | 20,805 | 21,795 |
|         | SA                |                                  |                   |      | 9    | 9    | 10   | 10   | 3,993  | 4,183  | 4,383  | 4,591  | 4,810  | 5 <i>,</i> 039 | 5,279  | 5,530  | 5,793  | 6,069  | 6,358  | 6,661  | 6,978  | 7,310  |
|         | Tas               |                                  |                   |      | 3    | 3    | 3    | 3    | 1,188  | 1,244  | 1,303  | 1,365  | 1,430  | 1,498          | 1,570  | 1,644  | 1,723  | 1,805  | 1,891  | 1,981  | 2,075  | 2,174  |
|         | Vic               |                                  |                   |      | 33   | 34   | 36   | 37   | 14,361 | 15,045 | 15,761 | 16,511 | 17,297 | 18,120         | 18,983 | 19,887 | 20,834 | 21,825 | 22,864 | 23,953 | 25,093 | 26,288 |
|         | WA                |                                  |                   |      | 15   | 16   | 17   | 18   | 6,837  | 7,162  | 7,503  | 7,860  | 8,234  | 8,626          | 9,037  | 9,467  | 9,918  | 10,390 | 10,885 | 11,403 | 11,946 | 12,514 |
| Low     | ACT               |                                  |                   |      | 2    | 2    | 2    | 2    | 971    | 1,004  | 1,038  | 1,074  | 1,110  | 1,148          | 1,187  | 1,228  | 1,270  | 1,313  | 1,358  | 1,404  | 1,452  | 1,502  |
|         | NSW               |                                  |                   |      | 41   | 42   | 44   | 45   | 17,980 | 18,594 | 19,229 | 19,886 | 20,565 | 21,268         | 21,994 | 22,745 | 23,522 | 24,325 | 25,156 | 26,015 | 26,903 | 27,822 |
|         | NT                |                                  |                   |      | 1    | 1    | 1    | 2    | 600    | 621    | 642    | 664    | 687    | 710            | 734    | 759    | 785    | 812    | 840    | 868    | 898    | 929    |
|         | Qld               | Post ostimata (absoluta) 50%     |                   |      | 27   | 28   | 29   | 30   | 11,905 | 12,312 | 12,732 | 13,167 | 13,617 | 14,082         | 14,563 | 15,060 | 15,574 | 16,106 | 16,656 | 17,225 | 17,813 | 18,422 |
|         | SA                | Best estimate (absolute) - 50%   |                   |      | 9    | 9    | 10   | 10   | 3,993  | 4,129  | 4,270  | 4,416  | 4,567  | 4,723          | 4,884  | 5,051  | 5,223  | 5,402  | 5,586  | 5,777  | 5,974  | 6,178  |
|         | Tas               |                                  |                   |      | 3    | 3    | 3    | 3    | 1,187  | 1,228  | 1,270  | 1,313  | 1,358  | 1,404          | 1,452  | 1,502  | 1,553  | 1,606  | 1,661  | 1,718  | 1,777  | 1,837  |
|         | Vic               |                                  |                   |      | 33   | 34   | 35   | 36   | 14,359 | 14,849 | 15,356 | 15,881 | 16,423 | 16,984         | 17,564 | 18,164 | 18,784 | 19,426 | 20,089 | 20,775 | 21,485 | 22,219 |
|         | WA                |                                  |                   |      | 15   | 16   | 17   | 17   | 6,836  | 7,069  | 7,310  | 7,560  | 7,818  | 8,085          | 8,361  | 8,647  | 8,942  | 9,248  | 9,564  | 9,890  | 10,228 | 10,577 |

Final (non-confidential version)

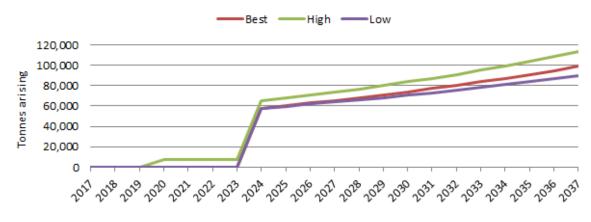







Figure 23 below charts the combined estimates for POP-BDEs (M160a) and HBCD (M160b), discussed below, on the basis that the infrastructure they could be managed by are the same. Consequently, their projections are also modelled together as M160a,b. Alternatively, M160c HCB is modelled separately on the basis that its historical management has been via export, to overseas infrastructure.





# 2.7.20 M160b HBCD

A subset of the waste group *M160 Organohalogen compounds—other than substances referred to in this Table or Table 2, M160b Hexabromocyclododecane (HBCD)* is also a brominated flame retardant, but its historical application for flame retardancy in extruded and expanded polystyrene foams (used in building insulation) is quite different to the applications of the POP-BDE flame retardants.

HBCD was added to Annex B of the Stockholm Convention in May 2013 with specific exemptions and allowed uses. Under the domestic treaty-making process, Australia must determine whether to ratify listing of the HBCD after having taken into consideration the costs and benefits of the feasible technical options that it would need to implement to satisfy ratification. This decision has not yet been made.

| Industry<br>sources                                                                                                          | Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Approach                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| End of life EPS/<br>XPS building<br>insulation<br>panels/<br>materials from<br>demolition or<br>retrofitting of<br>buildings | <ul> <li>Australian biosolids are unlikely to<br/>exhibit HBCD above 1,000 mg/kg (the<br/>Stockholm Convention's level of<br/>concern)</li> <li>Currently presenting as part of<br/>construction and demolition (C&amp;D)<br/>waste (not hazardous) since not under<br/>regulatory control yet</li> <li>No historical data set exists, although<br/>BE et al 2017 estimated theoretical<br/>annual arisings (if the waste was<br/>managed as hazardous)</li> </ul> | <ul> <li>High: assume 7.2 kt as calculated (BE et al 2017)</li> <li>Best: zero - assume no change in the quantity of materials requiring management</li> <li>Low: zero - assume no change in management</li> <li>Assume no growth - too many variables to predict</li> <li>Note that this means the best and low estimates are the same at zero tonnes pa in practical terms</li> </ul> |

<sup>&</sup>lt;sup>22</sup> Combined projections for M160a and M160b







# Starting point arising estimate

HBCD waste is not currently represented in hazardous waste tracking data, because the addition to the Stockholm Convention has not been ratified yet, and the fact that it arises within the C&D waste stream, and are currently managed as non-hazardous waste.

Consequently, assumptions must be used to estimate a feasible starting-point tonnage that describes what might become available to the hazardous waste market once ratification occurs. This has been done by BE et al 2017 - HBCD = 7,200 tonnes. This has been estimated to arise in 2020, when Australian ratification is assumed to occur.

|            | Applies to      | Approach                                                    | 2020  |     | 2037  |
|------------|-----------------|-------------------------------------------------------------|-------|-----|-------|
| Arisings – | absolute tonnes | s pa                                                        |       |     |       |
| Best       | All             | No change in the quantity of materials requiring management | 0     |     | 0     |
| High       | ACT             |                                                             | 121   |     | 121   |
| High       | NSW             |                                                             | 2,238 |     | 2,238 |
| High       | NT              |                                                             | 75    |     | 75    |
| High       | Qld             | Absolute projections, no growth rate                        | 1,482 |     | 1,482 |
| High       | SA              | Absolute projections, no growth rate                        | 497   |     | 497   |
| High       | Tas             |                                                             | 148   |     | 148   |
| High       | Vic             |                                                             | 1,787 |     | 1,787 |
| High       | WA              |                                                             | 851   | ••• | 851   |
| Low        | All             | No change in current management requirements                | 0     |     | 0     |

 Table 27:
 Best, high and low projected tonnes for HBCD waste to 2037\*

\* Jurisdictional proportions of HBCD are distributed based on relative population, as was the case for POP-BDEs (in converting from a national estimate of 7,200 t/yr to jurisdiction-level breakdown).

Figure 23 (above) charts the combined estimates for POP-BDEs (M160a) and HBCD (M160b) on the basis that the infrastructure they could be managed by are the same. Consequently, their projections are also modelled together as M160a,b. Alternatively, M160c HCB is modelled separately on the basis that its historical management has been via export to overseas infrastructure.

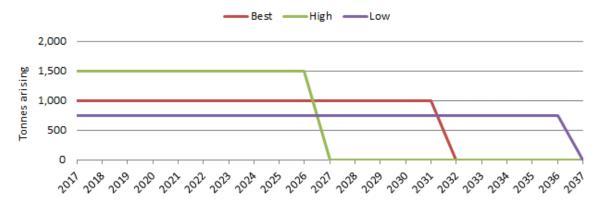
## 2.7.21 M160c HCB

A subset of the waste group *M160 Organohalogen compounds—other than substances referred to in this Table or Table 2, M160c Hexachlorobenzene (HCB)* has been used historically as a pesticide and industrial by-product. HCB was one of the 12 POP originally listed in annexes to the Stockholm Convention in 2004, when Australia ratified its inclusion and became a party to the Convention. Its significance to hazardous waste in Australia is the single, well-documented stockpile, estimated to be 15,000 tonnes, stored at Orica's Port Botany facility in Sydney, for which a more permanent acceptable destruction or other management solution has not been found.








## Summary analysis

| Industry<br>sources                                                                                    | Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sydney's<br>Orica Port<br>Botany<br>stockpile is<br>the only<br>source of<br>HCB waste<br>in Australia | <ul> <li>Stockpile is currently 15,000 t (ORICA 2017)</li> <li>This is made up of 10,300 t of concentrated waste and ~5,000 t of contaminated packaging material</li> <li>The concentrated waste is re-packaged periodically (ORICA 2017)</li> <li>This was estimated to be 10% (SIA 2008) but we will assume 5% due to new purpose-built repackaging plant (ORICA 2017)</li> <li>Two shipments were successfully sent to Finland and destroyed by high temperature incineration in 2017</li> <li>These shipments totalled 1,635 t, and are envisaged to continue</li> </ul> | There are no new arisings of the concentrated<br>waste – only this stockpile is under<br>consideration.<br><u>High</u> : Assume 2017 treatment rate will become<br>an annual rate of destruction, noting 5% re-<br>packaging based annual stockpile growth rate.<br>Round 1,635 t to 1,500 tpa.<br><u>Best</u> : Assume 2/3 of 2017 treatment rate will<br>become the annual rate of destruction, noting<br>5% re-packaging based annual stockpile growth<br>rate. Rounding this becomes 1,000 tpa<br>destroyed.<br><u>Low</u> : Assume ½ of 2017 treatment rate will<br>become the annual rate of destruction, noting<br>5% re-packaging based annual stockpile growth<br>rate. Rounding this becomes 1,000 tpa<br>destroyed. |

| Table 20. | Post  | high | and | low   | nro     | incted | tonnoc | for | UCD | wasto | to | 2027 |
|-----------|-------|------|-----|-------|---------|--------|--------|-----|-----|-------|----|------|
| Table 28: | Desi, | myn  | unu | 10 00 | $\mu 0$ | jecteu | tonnes | וטן | псь | wuste | ω  | 2037 |

|        | Applie   | es to Approach                                                           | 2018  | 2037  |
|--------|----------|--------------------------------------------------------------------------|-------|-------|
| Arisin | ngs – ab | solute tonnes pa                                                         |       |       |
| Best   | NSW      | Conc. stockpile treated, packaging reduced. 1,000 tpa (2/3 of 2017 rate) | 1,000 | <br>0 |
| High   | NSW      | Conc. Stockpile & packaging fully treated - at 1,500 tpa (2017 rate)     | 1,500 | <br>0 |
| Low    | NSW      | Conc. stockpile only treated. Destruction at 750 tpa (half of 2017 rate) | 750   | <br>0 |

#### *Figure 24:* Best, high and low national projection estimates of HCB waste to 2037



#### 2.7.22 M270a PFOS contaminated biosolids

The waste group M270 Per- and poly-fluoroalkyl substances (PFAS) contaminated materials, including waste PFAS- containing products and contaminated containers, has been split into three sub-groups for projection purposes, on the basis that each type of PFAS waste is different in how it arises and poses different management challenges:

- M270a perfluorooctanesulfonic acid or perfluorooctane sulfonate (PFOS) contaminated biosolids
- M270b per- and poly-fluoroalkyl substances (PFAS) contaminated soils
- M270c AFFF concentrates (containing PFOS).







The environmental and potential human health impacts from exposure to a group of manufactured chemicals known as PFAS are of increasing concern worldwide. The Heads of EPAs Australia and New Zealand (HEPA) and DoEE have collaborated to develop the PFAS National Environmental Management Plan (NEMP). The NEMP is designed to achieve a clear, effective coherent and nationally consistent approach to the environmental regulation of PFAS.

PFAS have been widely used for many decades in household products such as non-stick cookware, stain protection and food packaging as well as industrial and commercial applications, such as firefighting foams, mist suppressants and coatings. PFAS are persistent and highly resistant to physical, chemical and biological degradation. Consequently, they are found in humans, animals and the environment around Australia.

PFOS, the PFAS compound of most concern, was the key ingredient in Scotchguard, a fabric protector made by 3M, and numerous stain repellents and is currently used in an industrial context as a mist dispersant in surface coating and in firefighting foams. It was added to Annex B of the Stockholm Convention in May 2009. Under the domestic treaty-making process, Australia must determine whether to ratify listing of the PFOS after having taken into consideration the costs and benefits of the feasible technical options that it would need to implement to satisfy ratification. This decision has not yet been made.

*M270a perfluorooctanesulfonic acid or perfluorooctane sulfonate (PFOS) contaminated biosolids* is the subject of this section – the focus is more specifically on PFOS rather than the broader PFAS because the former is Stockholm-listed and the focus of more direct concern in a biosolids context.

Biosolids are a product of sewage sludge (the sludge collected from wastewater treatment) once it has undergone further treatment to reduce disease-causing pathogens and volatile organic matter, producing a stabilised product. Biosolids are typically 75-80% water in their wet state, compared to sewage sludge which is approximately 97% water. Biosolids have significant potential for beneficial reuse, which currently occurs throughout Australia.

All of the Stockholm Convention POP are potentially problematic in biosolids because of its propensity to act as a sink for pollutants that are non-polar or hydrophobic (tending to repel or fail to mix with water); in other words, these POP have a strong tendency to avoid water and adhere to organic solids in the wastewater stream. There is further complexity with PFOS because it is not non-polar *per se*; its long-chain perfluorinated structure means it can be both hydrophobic and lipophobic (tending to repel or fail to mix with oils). PFOS tends to bind to proteins (the most likely mode of adherence to biosolids) but it is also much more leachable in the environment than the other POP, due to its unusual hydrophobic/lipophobic properties.

The Stockholm Convention, and a number of individual European countries, either regulate now or are proposing to regulate PFOS specifically in biosolids, at much more stringent levels of concentration than in other materials/wastes.

PFOS, M160a-c wastes (POP-BDEs, HBCD and HCB), plus other chemicals listed on the Stockholm Convention (such as various organochlorine and organophosphorus pesticides), are collectively referred to as POP.







#### **Summary analysis**

| Industry<br>sources                                                        | Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Biosolids -<br>newly<br>produced from<br>wastewater<br>treatment<br>plants | <ul> <li>Australian biosolids are unlikely to exhibit PFOS &gt;50<br/>mg/kg (the Stockholm Convention's level of concern), but<br/>a much lower biosolids-specific limit is likely (many<br/>overseas examples). Biosolids limit of 0.1 mg/kg applies<br/>in Germany; 0.39 (all PFAS) for biosolids in Qld (BE et al<br/>2017)</li> <li>Based on limited data (Gallen et al 2016) a 0.1 mg/kg<br/>limit could mean as much as 370 kt of biosolids in<br/>Australia are contaminated</li> <li>PFOS-contaminated biosolids above Stockholm levels will<br/>no longer be allowed to be applied to land (post-PFOS<br/>ratification). They will require environmentally sound<br/>management.</li> </ul> | A PFAS NEMP was agreed across Australian<br>states and territories in 2018. It is<br>understood that biosolids-specific issues,<br>limits and actions will be the subject of the<br>next iteration of the NEMP.<br>The NEMP makes Stockholm POP ratification<br>somewhat redundant, since the NEMP's<br>existence provides the policy settings for<br>dealing with PFAS contamination and waste<br>issues. The new NEPM code M270, and its<br>requirement for tracking, is proof of this. | Assume regulatory implementation of<br>NEMP begins 2020<br>Scenarios are based on what PFOS biosolids-<br>specific limits may be applied in future<br><u>Best</u> : Limit of 1 mg/kg results in 2% of total<br>Australian biosolids contaminated<br><u>High</u> : Limit of 0.1 mg/kg results in 25% of<br>total Australian biosolids contaminated<br><u>Low</u> : Limit of 50 mg/kg (current, non-<br>biosolids specific limit) results in 0.1% of<br>total Australian biosolids contaminated. |

## Starting point arising estimate

PFOS-contaminated biosolids are not represented in hazardous waste tracking data. Consequently, assumptions must be used to estimate a feasible starting-point tonnage that describes what might become available to the hazardous waste market once ratification occurs, or a subsequent revision of the NEMP instigates a lower, biosolids-specific limit. These are as follows:

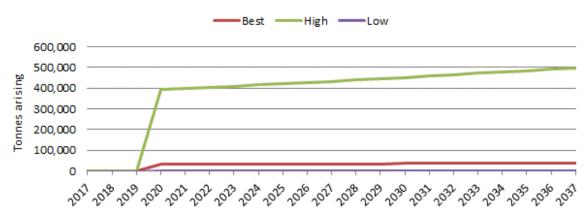
- PFOS-contaminated biosolids are produced by states and territories in proportion to their population (except ACT incinerates on-site)
- Scenarios based on potential biosolids regulatory limits of 1 mg/kg (best); 0.1 mg/kg (high) and the existing LPCL of 50 mg/kg (low). These produce the following tonnages (on a dewatered biosolids basis), beginning to arise in 2020:
  - Best = 31,143 tpa
  - High = 389,286 tpa
  - Low = 1,557 tpa.







#### Table 29: Best, high and low projected tonnes for PFOS contaminated biosolids waste to 2037


|        |             |                    |      |         |      | ΤΟJELLEU |         | -       | .5 contu   | mutet   | . 5.55011 | us wusi |         |         |         |         |         |         |         |         |         |         |         |
|--------|-------------|--------------------|------|---------|------|----------|---------|---------|------------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|        |             | Approach           | 2017 | 2018    | 2019 | 2020     | 2021    | 2022    | 2023       | 2024    | 2025      | 2026    | 2027    | 2028    | 2029    | 2030    | 2031    | 2032    | 2033    | 2034    | 2035    | 2036    | 2037    |
|        | to          |                    |      |         |      |          |         |         |            |         |           |         |         |         |         |         |         |         |         |         |         |         |         |
|        | igs - rate  |                    |      |         |      |          |         |         |            |         |           |         |         |         |         |         |         |         |         |         |         |         |         |
| Best   |             | 20 yr av. annual   | 1.4% | 1.4%    | 1.4% | 1.4%     | 1.4%    | 1.4%    | 1.4%       | 1.4%    | 1.4%      | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    |
| High   | All         | population growth  | 1.4% | 1.4%    | 1.4% | 1.4%     | 1.4%    | 1.4%    | 1.4%       | 1.4%    | 1.4%      | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    |
| Low    |             |                    | 1.4% | 1.4%    | 1.4% | 1.4%     | 1.4%    | 1.4%    | 1.4%       | 1.4%    | 1.4%      | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    | 1.4%    |
| Arisir | igs – absol | ute tonnes pa      | Prop | ortions |      |          |         |         |            |         |           |         |         |         |         |         |         |         |         |         |         |         |         |
| Best   | ACT         |                    |      | -       |      | 0        | 0       | 0       | 0          | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
|        | NSW         |                    |      | 31%     |      | 9,957    | 10,097  | 10,240  | 10,385     | 10,531  | 10,680    | 10,831  | 10,984  | 11,139  | 11,296  | 11,456  | 11,617  | 11,781  | 11,948  | 12,117  | 12,288  | 12,461  | 12,637  |
|        | NT          |                    |      | 1%      |      | 332      | 337     | 342     | 347        | 352     | 357       | 362     | 367     | 372     | 377     | 382     | 388     | 393     | 399     | 404     | 410     | 416     | 422     |
|        | Qld         | 2% of Australian   |      | 21%     |      | 6,593    | 6,686   | 6,780   | 6,876      | 6,973   | 7,071     | 7,171   | 7,273   | 7,375   | 7,479   | 7,585   | 7,692   | 7,801   | 7,911   | 8,023   | 8,136   | 8,251   | 8,367   |
|        | SA          | biosolids          |      | 7%      |      | 2,211    | 2,242   | 2,274   | 2,306      | 2,339   | 2,372     | 2,405   | 2,439   | 2,474   | 2,508   | 2,544   | 2,580   | 2,616   | 2,653   | 2,691   | 2,729   | 2,767   | 2,806   |
|        | Tas         |                    |      | 2%      |      | 658      | 667     | 676     | 686        | 695     | 705       | 715     | 725     | 736     | 746     | 756     | 767     | 778     | 789     | 800     | 811     | 823     | 835     |
|        | Vic         |                    |      | 25%     |      | 7,951    | 8,064   | 8,178   | 8,293      | 8,410   | 8,529     | 8,649   | 8,771   | 8,895   | 9,021   | 9,148   | 9,278   | 9,409   | 9,541   | 9,676   | 9,813   | 9,951   | 10,092  |
|        | WA          |                    |      | 12%     |      | 3,785    | 3,839   | 3,893   | 3,948      | 4,004   | 4,060     | 4,118   | 4,176   | 4,235   | 4,294   | 4,355   | 4,417   | 4,479   | 4,542   | 4,606   | 4,671   | 4,737   | 4,804   |
| High   | ACT         |                    |      |         |      | 0        | 0       | 0       | 0          | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
|        | NSW         |                    |      |         |      | 124,460  | 126,218 | 128,000 | 129,807    | 131,640 | 133,499   | 135,385 | 137,296 | 139,235 | 141,201 | 143,195 | 145,217 | 147,268 | 149,347 | 151,456 | 153,595 | 155,764 | 157,964 |
|        | NT          |                    |      |         |      | 4,155    | 4,213   | 4,273   | 4,333      | 4,394   | 4,457     | 4,519   | 4,583   | 4,648   | 4,714   | 4,780   | 4,848   | 4,916   | 4,986   | 5,056   | 5,127   | 5,200   | 5,273   |
|        | Qld         | 25% of Australian  |      |         |      | 82,408   | 83,572  | 84,752  | 85,949     | 87,162  | 88,393    | 89,641  | 90,907  | 92,191  | 93,493  | 94,813  | 96,152  | 97,510  | 98,887  | 100,283 | 101,699 | 103,135 | 104,592 |
|        | SA          | biosolids          |      |         |      | 27,638   | 28,028  | 28,424  | 28,825     | 29,232  | 29,645    | 30,064  | 30,488  | 30,919  | 31,356  | 31,798  | 32,247  | 32,703  | 33,165  | 33,633  | 34,108  | 34,589  | 35,078  |
|        | Tas         | ***                |      |         |      | 8,219    | 8,335   | 8,453   | 8,572      | 8,693   | 8,816     | 8,940   | 9,067   | 9,195   | 9,325   | 9,456   | 9,590   | 9,725   | 9,863   | 10,002  | 10,143  | 10,286  | 10,432  |
|        | Vic         | ***                |      |         |      | 99,393   | 100,796 | 102,219 | 103,663    | 105,127 | 106,611   | 108,117 | 109,643 | 111,192 | 112,762 | 114,354 | 115,969 | 117,606 | 119,267 | 120,951 | 122,659 | 124,391 | 126,148 |
|        | WA          |                    |      |         |      | 47,316   | 47,984  | 48,662  | 49,349     | 50,046  | 50,752    | 51,469  | 52,196  | 52,933  | 53,680  | 54,438  | 55,207  | 55,987  | 56,777  | 57,579  | 58,392  | 59,217  | 60,053  |
| Low    | ACT         |                    | -    |         |      | 0        | 0       | 0       | 0          | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
|        | NSW         |                    |      |         |      | 498      | 505     | 512     | 519        | 527     | 534       | 542     | 549     | 557     | 565     | 573     | 581     | 589     | 597     | 606     | 614     | 623     | 632     |
|        | NT          |                    |      |         |      | 17       | 17      | 17      | 17         | 18      | 18        | 18      | 18      | 19      | 19      | 19      | 19      | 20      | 20      | 20      | 21      | 21      | 21      |
|        | Qld         | 0.1% of Australian |      |         |      | 330      | 334     | 339     | 344        | 349     | 354       | 359     | 364     | 369     | 374     | 379     | 385     | 390     | 396     | 401     | 407     | 413     | 418     |
|        | SA          | biosolids          |      |         |      | 111      | 112     | 114     | 115        | 117     | 119       | 120     | 122     | 124     | 125     | 127     | 129     | 131     | 133     | 135     | 136     | 138     | 140     |
|        | Tas         |                    |      |         |      | 33       | 33      | 34      | 34         | 35      | 35        | 36      | 36      | 37      | 37      | 38      | 38      | 39      | 39      | 40      | 41      | 41      | 42      |
|        | Vic         |                    |      |         |      | 398      | 403     | 409     | 415        | 421     | 426       | 432     | 439     | 445     | 451     | 457     | 464     | 470     | 477     | 484     | 491     | 498     | 505     |
|        | WA          |                    |      |         |      | 189      | 403     | 405     | 415<br>197 | 200     | 203       | 206     | 209     | 212     | 215     | 218     | 221     | 224     | 227     | 230     | 234     | 237     | 240     |
|        | WA          |                    |      |         |      | 199      | 192     | 192     | 197        | 200     | 203       | 200     | 209     | 212     | 215     | 219     | 221     | 224     | 227     | 230     | 234     | 237     | 240     |











#### 2.7.23 M270b PFAS contaminated soils

The waste group M270 Per- and poly-fluoroalkyl substances (PFAS) contaminated materials, including waste PFAS- containing products and contaminated containers, has been split into three sub-groups for projection purposes, on the basis that each type of PFAS waste is different in how it arises and poses different management challenges. M270b Per- and poly-fluoroalkyl substances (PFAS) contaminated soils is the subject of this section – the focus is more generally on PFAS rather than PFOS alone because the former is the subject of the PFAS NEMP, which triggers management actions for PFAS beyond just PFOS.

Soils contaminated in PFOS and broader PFAS chemicals are a major concern and driver of the PFAS NEMP process. Volumes are likely to be very large, due to the widespread historical use of PFOSbased firefighting foams, particularly at military, airport, major hazard facilities and other sites where firefighting training, testing and actual fire management has taken place.

## PFAS contaminated soils – a large, new and current addition to the market

Aqueous film forming foams (AFFF) that contain PFOS have been widely used at sites such as airports, oil refineries, military bases, firefighting training facilities and other major hazard facilities (as defined in workplace health and safety legislation) for emergency and training purposes. Training exercises may occur on a weekly basis or even several times per week depending on the site. At sites where fire training drills occur, these are usually conducted on concrete slab training pads. Hydrocarbon-fuel (e.g. kerosene) is ignited and firefighters are then employed to extinguish the fire. The resultant exposure has led to the training ground infrastructure being contaminated by residual chemicals from the fuels used and most significantly from the fire-fighting foams.

PFOS contamination at these fire training grounds has bled into surrounding soil with run-off to surface water and seepage to groundwater causing large plumes of contamination. This contaminated soil has gained vastly increased regulatory attention in the last 2-3 years, as media reports of environmental and potential human health impacts from PFOS use have increased, starting with Oakey Army facility in Qld in 2010 and the Williamtown RAAF Base near Newcastle NSW in 2012.

Total estimates of PFOS-contaminated soil that may be present in Australia have not yet been made, or at least not on the public record. However, given the vast extent of the use of these foams, and the emerging large numbers of sites under investigation, volumes of PFAS-contaminated soil are likely to arise in large quantities over the next decade.

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018







#### **Summary analysis**

| Industry<br>sources                                                                                    | Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sources are<br>widespread,<br>particularly<br>from<br>previous<br>use of AFFF<br>firefighting<br>foams | <ul> <li>PFAS-contaminated soil, concrete and other materials are the subject of current regulator attention, via the NEMP and subsequent state/ territory actions</li> <li>Soil contaminated in PFAS is likely to be very high volume, given environmental values (HEPA 2018) are &lt;&lt;50 mg/kg</li> <li>Volumes are uncertain since the number of potentially affected sites is likely to be at least in the hundreds</li> <li>Potential volumes arising depend on levels of contaminated waters would likely be remediated on-site using granular activated carbon (GAC) or similar media, creating waste GAC.</li> </ul> | A PFAS National Environmental<br>Management Plan (NEMP) was<br>agreed across Australian states<br>and territories and the<br>Commonwealth in 2018.<br>Contaminated soils and their<br>remediation/management are a<br>major focus of the NEMP.<br>The NEMP makes Stockholm POP<br>ratification somewhat redundant,<br>since the NEMP's existence<br>provides the policy settings for<br>dealing with PFAS contamination<br>and waste issues. The new NEPM<br>code M270, and its requirement<br>for tracking, is proof of this. | <ul> <li>Assume regulatory implementation of NEMP begins 2020.<br/>Scenarios are based on arisings estimates (see Starting point arising estimate below.</li> <li>A single stockpile in WA has 900,000 m<sup>3</sup>. NT report four known stockpiles of 100,000 m<sup>3</sup>, plus &gt;100 sites of unknown scale</li> <li>Hundreds of defence, airports, fire-fighting facilities and major hazard facilities exist in Australia</li> <li>All are likely to have held AFFF stocks and many used them in training drills in previous years</li> <li>Standard N120 contaminated soils are reported at ~ 1.5 Mtpa nationally</li> <li>Assume PFAS soil arisings to be in a similar order to N120, each year, once regulatory implementation of PFAS NEMP is up and running</li> </ul> |

## Starting point arising estimate

PFOS-contaminated soils are not represented in hazardous waste tracking data. Consequently, assumptions must be used to estimate a feasible startingpoint tonnage that describes what might become available to the hazardous waste market once ratification occurs, or upon implementation of the NEMP. These are as follows:

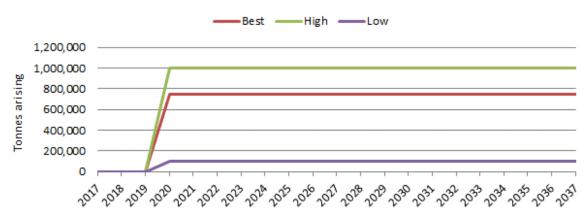
- PFOS contaminated soils are produced by states and territories in proportion to their population
- Scenarios are simply an estimate of the amount of PFAS contaminated soils likely to present as a hazardous waste arising since N120 contaminated soils arise consistently around 1.5 Mtpa, the best case is estimated to be approximately ½ of this figure; the high case 2/3 of this figure and the low case 1/10 of the high case figure
  - Best = 750,000 tpa
  - High = 1,000,000 tpa
  - Low = 100,000 tpa.
- Given the number of variables, no attempt has been made to model annual growth in these figures.







## Table 30: Best, high and low projected tonnes for PFOS contaminated soils waste to 2037


|       | Applies      | Approach                             | 2017   | 2018 | 2019 | 2020    | 2021    | 2022    | 2023    | 2024    | 2025    | 2026    | 2027    | 2028    | 2029    | 2030    | 2031    | 2032    | 2033    | 2034    | 2035    | 2036    | 2037    |
|-------|--------------|--------------------------------------|--------|------|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|       | to           |                                      |        |      |      |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| Arisi | ngs – absoli | ute tpa                              | Propor |      |      |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| Best  | -            |                                      |        | 2%   |      | 12,587  | 12,587  | 12,587  | 12,587  | 12,587  | 12,587  | 12,587  | 12,587  | 12,587  | 12,587  | 12,587  | 12,587  | 12,587  | 12,587  | 12,587  | 12,587  | 12,587  | 12,587  |
|       | NSW          |                                      |        | 31%  |      | 233,154 | 233,154 | 233,154 | 233,154 | 233,154 | 233,154 | 233,154 | 233,154 | 233,154 | 233,154 | 233,154 | 233,154 | 233,154 | 233,154 | 233,154 | 233,154 | 233,154 | 233,154 |
|       | NT           | 1/2 of the dition of                 |        | 1%   |      | 7,783   | 7,783   | 7,783   | 7,783   | 7,783   | 7,783   | 7,783   | 7,783   | 7,783   | 7,783   | 7,783   | 7,783   | 7,783   | 7,783   | 7,783   | 7,783   | 7,783   | 7,783   |
|       | Qld          | 1/2 of traditional contaminated soil |        | 21%  |      | 154,377 | 154,377 | 154,377 | 154,377 | 154,377 | 154,377 | 154,377 | 154,377 | 154,377 | 154,377 | 154,377 | 154,377 | 154,377 | 154,377 | 154,377 | 154,377 | 154,377 | 154,377 |
|       | SA           | arisings                             |        | 7%   |      | 51,775  | 51,775  | 51,775  | 51,775  | 51,775  | 51,775  | 51,775  | 51,775  | 51,775  | 51,775  | 51,775  | 51,775  | 51,775  | 51,775  | 51,775  | 51,775  | 51,775  | 51,775  |
|       | Tas          |                                      |        | 2%   |      | 15,397  | 15,397  | 15,397  | 15,397  | 15,397  | 15,397  | 15,397  | 15,397  | 15,397  | 15,397  | 15,397  | 15,397  | 15,397  | 15,397  | 15,397  | 15,397  | 15,397  | 15,397  |
|       | Vic          |                                      |        | 25%  |      | 186,195 | 186,195 | 186,195 | 186,195 | 186,195 | 186,195 | 186,195 | 186,195 | 186,195 | 186,195 | 186,195 | 186,195 | 186,195 | 186,195 | 186,195 | 186,195 | 186,195 | 186,195 |
|       | WA           |                                      |        | 12%  |      | 88,638  | 88,638  | 88,638  | 88,638  | 88,638  | 88,638  | 88,638  | 88,638  | 88,638  | 88,638  | 88,638  | 88,638  | 88,638  | 88,638  | 88,638  | 88,638  | 88,638  | 88,638  |
| High  | ACT          |                                      |        |      |      | 16,783  | 16,783  | 16,783  | 16,783  | 16,783  | 16,783  | 16,783  | 16,783  | 16,783  | 16,783  | 16,783  | 16,783  | 16,783  | 16,783  | 16,783  | 16,783  | 16,783  | 16,783  |
|       | NSW          |                                      |        |      |      | 310,872 | 310,872 | 310,872 | 310,872 | 310,872 | 310,872 | 310,872 | 310,872 | 310,872 | 310,872 | 310,872 | 310,872 | 310,872 | 310,872 | 310,872 | 310,872 | 310,872 | 310,872 |
|       | NT           |                                      |        |      |      | 10,378  | 10,378  | 10,378  | 10,378  | 10,378  | 10,378  | 10,378  | 10,378  | 10,378  | 10,378  | 10,378  | 10,378  | 10,378  | 10,378  | 10,378  | 10,378  | 10,378  | 10,378  |
|       | Qld          | 2/3 of traditional                   |        |      |      | 205,836 | 205,836 | 205,836 | 205,836 | 205,836 | 205,836 | 205,836 | 205,836 | 205,836 | 205,836 | 205,836 | 205,836 | 205,836 | 205,836 | 205,836 | 205,836 | 205,836 | 205,836 |
|       | SA           | contaminated soil<br>arisings        |        |      |      | 69,033  | 69,033  | 69,033  | 69,033  | 69,033  | 69,033  | 69,033  | 69,033  | 69,033  | 69,033  | 69,033  | 69,033  | 69,033  | 69,033  | 69,033  | 69,033  | 69,033  | 69,033  |
|       | Tas          |                                      |        |      |      | 20,529  | 20,529  | 20,529  | 20,529  | 20,529  | 20,529  | 20,529  | 20,529  | 20,529  | 20,529  | 20,529  | 20,529  | 20,529  | 20,529  | 20,529  | 20,529  | 20,529  | 20,529  |
|       | Vic          |                                      |        |      |      | 248,259 | 248,259 | 248,259 | 248,259 | 248,259 | 248,259 | 248,259 | 248,259 | 248,259 | 248,259 | 248,259 | 248,259 | 248,259 | 248,259 | 248,259 | 248,259 | 248,259 | 248,259 |
|       | WA           |                                      |        |      |      | 118,184 | 118,184 | 118,184 | 118,184 | 118,184 | 118,184 | 118,184 | 118,184 | 118,184 | 118,184 | 118,184 | 118,184 | 118,184 | 118,184 | 118,184 | 118,184 | 118,184 | 118,184 |
| Low   | ACT          |                                      | 1      |      |      | 1,678   | 1,678   | 1,678   | 1,678   | 1,678   | 1,678   | 1,678   | 1,678   | 1,678   | 1,678   | 1,678   | 1,678   | 1,678   | 1,678   | 1,678   | 1,678   | 1,678   | 1,678   |
|       | NSW          |                                      |        |      |      | 31,087  | 31,087  | 31,087  | 31,087  | 31,087  | 31,087  | 31,087  | 31,087  | 31,087  | 31,087  | 31,087  | 31,087  | 31,087  | 31,087  | 31,087  | 31,087  | 31,087  | 31,087  |
|       | NT           |                                      |        |      |      | 1,038   | 1,038   | 1,038   | 1,038   | 1,038   | 1,038   | 1,038   | 1,038   | 1,038   | 1,038   | 1,038   | 1,038   | 1,038   | 1,038   | 1,038   | 1,038   | 1,038   | 1,038   |
|       | Qld          | 10% of high                          |        |      |      | 20,584  | 20,584  | 20,584  | 20,584  | 20,584  | 20,584  | 20,584  | 20,584  | 20,584  | 20,584  | 20,584  | 20,584  | 20,584  | 20,584  | 20,584  | 20,584  | 20,584  | 20,584  |
|       | SA           | scenario                             |        |      |      | 6,903   | 6,903   | 6,903   | 6,903   | 6,903   | 6,903   | 6,903   | 6,903   | 6,903   | 6,903   | 6,903   | 6,903   | 6,903   | 6,903   | 6,903   | 6,903   | 6,903   | 6,903   |
|       | Tas          |                                      |        |      |      | 2,053   | 2,053   | 2,053   | 2,053   | 2,053   | 2,053   | 2,053   | 2,053   | 2,053   | 2,053   | 2,053   | 2,053   | 2,053   | 2,053   | 2,053   | 2,053   | 2,053   | 2,053   |
|       | Vic          |                                      |        |      |      | 24,826  | 24,826  | 24,826  | 24,826  | 24,826  | 24,826  | 24,826  | 24,826  | 24,826  | 24,826  | 24,826  | 24,826  | 24,826  | 24,826  | 24,826  | 24,826  | 24,826  | 24,826  |
|       | WA           |                                      |        |      |      | 11,818  | 11,818  | 11,818  | 11,818  | 11,818  | 11,818  | 11,818  | 11,818  | 11,818  | 11,818  | 11,818  | 11,818  | 11,818  | 11,818  | 11,818  | 11,818  | 11,818  | 11,818  |











## 2.7.24 M270c AFFF concentrates (containing PFOS)

The waste group M270 Per- and poly-fluoroalkyl substances (PFAS) contaminated materials, including waste PFAS- containing products and contaminated containers, has been split into three sub-groups for projection purposes, on the basis that each type of PFAS waste is different in how it arises and poses different management challenges. M270c AFFF concentrates (containing PFOS) is the subject of this section.

AFFF containing very high (parts per hundred) level PFOS were used extensively in fire training and actual firefighting situations until relatively recent. Training drills conducted on concrete fire pads are routine at fire-risk sites such as defence facilities, airports, fire training facilities, fuel storage facilities and major hazard facilities. These activities are one of the major reasons for legacy PFOS contamination of the concrete pads, surrounding soil and waterways, both above and below ground. Since AFFF containing PFOS have been typically withdrawn from use there are significant quantities of the original foam concentrates still present at these sites. These are expected to arise in more significant quantities as a waste for disposal, once NEMP implementation/Stockholm ratification occurs.







#### Summary analysis

| Industry sources                                                                                                                                                                                                                                                      | Considerations                                                                                                                                                                                                                                                                                                                                                                                     | Comments                                                                                                                                                                                                                                                                                                                                                    | Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sources are widespread<br>throughout Australia at<br>locations such as<br>defence facilities,<br>airports, fire training<br>facilities, fuel storage<br>facilities and major<br>hazard facilities, the<br>latter inclusive of large<br>industrial and mining<br>sites | <ul> <li>While AFFF stocks no longer to<br/>be used are not likely to be of<br/>the same scale as PFAS<br/>contaminated soils, the key<br/>issue with this waste is that it is<br/>extremely high in PFOS –<br/>typically 2-4% as a concentrate</li> <li>This makes handling and<br/>management of the waste<br/>high-risk in terms of the<br/>potential for contamination to<br/>occur</li> </ul> | A PFAS NEMP was agreed across<br>Australian states and territories in 2018.<br>The NEMP makes Stockholm POP<br>ratification somewhat redundant, since<br>the NEMP's existence provides the<br>policy settings for dealing with PFAS<br>contamination and waste issues. The<br>new NEPM code M270, and its<br>requirement for tracking, is proof of<br>this. | <ul> <li>Assume regulatory implementation of NEMP begins 2020.</li> <li>Scenarios are based on arisings estimates (see Starting point arising estimate below.</li> <li>BE et al 2014 suggests 1,507 t of AFFF stocks were likely to be present at that time</li> <li>Since Defence have been progressively destroying AFFF stocks since this time, assume this is all of the AFFF available</li> <li>2010-2013 destruction of stocks reported to be ~ -8% pa</li> <li>Assume this continues (best); increases due to PFAS regulator attention &amp; the stocks are actually double what we think they are and arise at the higher rate of 8% due to regulatory pressure (high) and in the low case the stocks are lower than we think they are (1,000 t) and continue to be destroyed at 8% pa.</li> </ul> |

### Starting point arising estimate

AFFF concentrates (containing PFOS) are possibly represented in tracking data, although their identification is very difficult because the M270 classification has only been adopted in 2018. Prior to this a number of NEPM codes appear to have been used, such as M160, D110 and possibly M250, and it is not easy to distinguish between what may have been AFFF concentrates and other types of waste in these categories. Consequently, assumptions must be used to estimate a feasible starting-point tonnage that describes what might become available to the hazardous waste market once ratification occurs, or upon implementation of the NEMP. These are as follows:

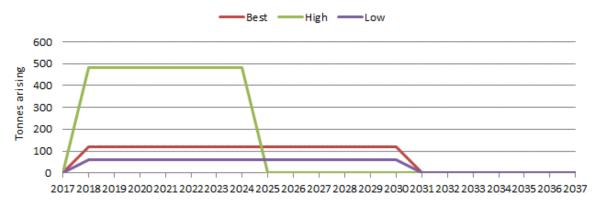
- AFFF concentrates (containing PFOS) arising as waste are produced by states and territories in proportion to their population
- BE et al 2014 suggests 1,507 t of AFFF were in stocks, noting that Defence data was not included in this figure
- The best scenario assumes that 1,507 t is an accurate reflection of all AFFF concentrates, including Defence, on the basis that Defence have historically taken steps ahead of other AFFF holders to progressively destroy their stocks
- The high scenario assumes that 1,507 t is not an accurate reflection of AFFF stocks, and that about as much again is present within Defence facilities
- The low scenario assumes that 1,507 t is a significant overestimate due to accelerated destruction of AFFF concentrates in the last 3-4 years, and that it is only half this figure (approximately 750 t).







# Table 31: Best, high and low projected tonnes for AFFF concentrates to 2037


|                | Applies<br>to     | Approach                                 | 2017    | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 | 2035 | 2036 | 2037 |
|----------------|-------------------|------------------------------------------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Arisir<br>abso | ngs –<br>lute tpa | Prop                                     | ortions |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Best           | ACT               |                                          | 2%      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | NSW               |                                          | 31%     | 37   | 37   | 37   | 37   | 37   | 37   | 37   | 37   | 37   | 37   | 37   | 37   | 37   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | NT                | Best: Assume rate                        | 1%      | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | Qld               | of destruction                           | 21%     | 25   | 25   | 25   | 25   | 25   | 25   | 25   | 25   | 25   | 25   | 25   | 25   | 25   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | SA                | continues at the 2010-2013 rate          | 7%      | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | Tas               | (8%)                                     | 2%      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | Vic               |                                          | 25%     | 30   | 30   | 30   | 30   | 30   | 30   | 30   | 30   | 30   | 30   | 30   | 30   | 30   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | WA                |                                          | 12%     | 14   | 14   | 14   | 14   | 14   | 14   | 14   | 14   | 14   | 14   | 14   | 14   | 14   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| High           | ACT               |                                          |         | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | NSW               | High: Assume rate                        |         | 150  | 150  | 150  | 150  | 150  | 150  | 150  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | NT                | of destruction<br>continues at double    |         | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | Qld               | the 2010-2013 rate                       |         | 99   | 99   | 99   | 99   | 99   | 99   | 99   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | SA                | (16%) and there is                       |         | 33   | 33   | 33   | 33   | 33   | 33   | 33   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | Tas               | double the volume<br>in stocks (starting |         | 10   | 10   | 10   | 10   | 10   | 10   | 10   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | Vic               | point)                                   |         | 120  | 120  | 120  | 120  | 120  | 120  | 120  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | WA                |                                          |         | 57   | 57   | 57   | 57   | 57   | 57   | 57   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Low            | ACT               |                                          |         | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | NSW               | Low: Assume rate<br>of destruction       |         | 19   | 19   | 19   | 19   | 19   | 19   | 19   | 19   | 19   | 19   | 19   | 19   | 19   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | NT                | continues at the                         |         | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | Qld               | 2010-2013 rate but                       |         | 12   | 12   | 12   | 12   | 12   | 12   | 12   | 12   | 12   | 12   | 12   | 12   | 12   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | SA                | the starting point is much lower due to  |         | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | Tas               | higher destruction                       |         | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | Vic               | rates in the recent                      |         | 15   | 15   | 15   | 15   | 15   | 15   | 15   | 15   | 15   | 15   | 15   | 15   | 15   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | WA                | past                                     |         | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |







#### Figure 27: Best, high and low national projection estimates of AFFF concentrates waste to 2037



## 2.7.25 Other M Other organic chemicals

This waste group includes the broad catch-all of the following NEPM codes:

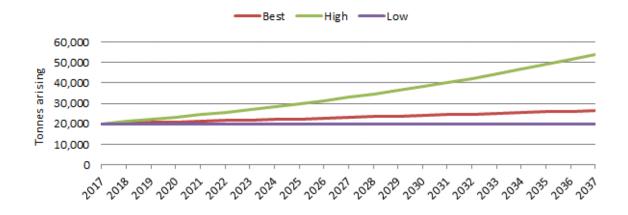
- M150 phenols, phenol compounds including chlorophenols
- M170 & M180 polychlorinated dibenzo-furan and polychlorinated dibenzo-p-dioxin, respectively
- M210 cyanides (organic)
- M220 isocyanate compounds
- M230 triethylamine catalysts for setting foundry sands
- M250 surface active agents (surfactants) containing principally organic constituents
- M260 highly odorous organic chemicals (including mercaptans and acrylates).

Two waste codes have been split out of Other M since the 2015 edition of this report:

- M100 PCBs and M160 organohalogens, due to their own unique characteristics and regulatory interest.
- M250 surfactants as it is the dominant waste stream within Other M by volume.

## Summary analysis

| Industry sources                                                                                                                                            | Considerations                                                                                                                                                                                                                    | Approach                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Soap and detergent<br/>manufacturing</li> <li>Chemical manufacturing</li> <li>Various other<br/>manufacturing</li> <li>Airline industry</li> </ul> | No sufficiently credible pre-existing<br>projections were identified<br>Historical data set is not adequate for clear<br>trends to be identified – some decline in<br>NSW, recent growth in Qld and reasonably<br>flat for others | Best: CAGR (-1%) in NSW, modest<br>growth (+1%) in others<br>High: Flat in NSW, economic growth<br>in others<br>Low: More significant decline in<br>NSW, flat in others |


| rable ber best, high and for projected rates of change for other organic chemical waste to 2007 | Table 32: | Best, high and low projected rates of | change for other organic chemical waste to 2037 |  |
|-------------------------------------------------------------------------------------------------|-----------|---------------------------------------|-------------------------------------------------|--|
|-------------------------------------------------------------------------------------------------|-----------|---------------------------------------|-------------------------------------------------|--|

|      | Applies to          | Approach                                 | 2018 | 2037     |
|------|---------------------|------------------------------------------|------|----------|
| Best | ACT, NSW,           | 20-year average annual population growth | 1.4% | <br>1.4% |
| High | NT, Qld,            | National compound annual growth rate     | 5.1% | <br>5.1% |
| Low  | SA, Tas,<br>Vic, WA | Flat trend                               | 0.0% | <br>0.0% |

*Figure 28: Best, high and low national projection estimates of other organic chemical waste to 2037* 





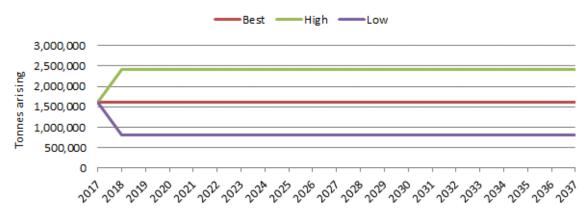


# 2.7.26 N120 Contaminated soils

This group comprises *N120 Soils contaminated with a controlled waste*. NSW and Qld do not specifically track contaminated soils, but both were able to report data from landfill records. Note that projections of PFAS-contaminated soil are dealt with separately in Section 2.7.23 due to their unique and emerging management requirements compared to other forms of contaminants.

| Industry<br>sources                                                | Considerations                                                                                                                                                                                                 | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Approach                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Construction,<br>mining, retail<br>trade,<br>electricity<br>supply | No sufficiently credible<br>pre-existing<br>projections were<br>identified<br>Vic and SA have a<br>relatively reliable and<br>longstanding historical<br>data set that is<br>adequate for<br>discerning trends | Vic and SA show a<br>reasonably steady long-<br>term trend<br>Soils arisings tend to be<br>sporadic from year to<br>year, based on the<br>extent of development<br>projects and their<br>contamination levels<br>Historical arisings data<br>for contaminated soils is<br>based upon the<br>tonnages that are<br>managed off-site (from<br>the generating site).<br>Where contaminated<br>soils are managed<br>onsite, the tonnages are<br>not included in tracking<br>system data, resulting in<br>an underestimate of<br>contaminated soils<br>tonnages. | Best: Flat<br>High: Flat trend but volume is significantly<br>higher<br>Low: Flat trend but volume is significantly<br>lower.<br>This creates a wide band of projection<br>scenarios, which reflects uncertainty and<br>the lack of coherent trend from one year to<br>the next |








|         | Applies to      | Approach                                    | 2018     |     | 2037     |
|---------|-----------------|---------------------------------------------|----------|-----|----------|
| Arising | s - rate        |                                             |          |     |          |
| Best    | ACT, NSW,       | Flat trend                                  | 0.0%     |     | 0.0%     |
| High    |                 | As per best estimate, with adjustment below | 0.0%     |     | 0.0%     |
| Low     | Tas, Vic, WA    | As per best estimate, with adjustment below | 0.0%     |     | 0.0%     |
| Arising | s – absolute to | nnes pa                                     |          |     |          |
|         | ACT             |                                             | 11       |     | 11       |
|         | NSW             |                                             | 174,188  | ••• | 174,188  |
|         | NT              |                                             | 4,323    | ••• | 4,323    |
| ⊔iah    | Qld             | Post actimate (absolute) + E0%              | 283,767  | ••• | 283,767  |
| High    | SA              | Best estimate (absolute) + 50%              | 113,819  |     | 113,819  |
|         | Tas             |                                             | 3,330    |     | 3,330    |
|         | Vic             |                                             | 226,076  |     | 226,076  |
|         | WA              |                                             | 2,521    |     | 2,521    |
|         | ACT             |                                             | -11      |     | -11      |
|         | NSW             |                                             | -174,188 | ••• | -174,188 |
|         | NT              |                                             | -4,323   | ••• | -4,323   |
| 1.004   | Qld             | Post actimate (absolute) 50%                | -283,767 |     | -283,767 |
| Low     | SA              | Best estimate (absolute) - 50%              | -113,819 | ••• | -113,819 |
|         | Tas             |                                             | -3,330   |     | -3,330   |
|         | Vic             |                                             | -226,076 |     | -226,076 |
|         | WA              |                                             | -2,521   |     | -2,521   |

## Table 33: Best, high and low projected rates of change for contaminated soil waste to 2037











# 2.7.27 N205a. Other contaminated biosolids

Biosolids are a product of sewage sludge once it has undergone further treatment, producing a stabilised product. Like fly ash, biosolids have significant potential for beneficial reuse, which currently occurs throughout Australia. Suitable quality biosolids can be applied as a fertiliser to improve and maintain productive soils and stimulate plant growth.

Biosolids are not a controlled waste under the NEPM and consequently are not tracked in all jurisdictions. However, it is widely accepted that some biosolids – particularly those generated in treatment plants servicing industrial areas – are contaminated with heavy metals at levels exceeding criteria set to protect environmental and human health values. Other organic pollutants may also be present. Consequently, and conservatively, biosolids have been included in Australia's annual hazardous waste reporting to the Basel Convention as a precaution. In the 2012 and 2013 Basel report, biosolids were included under the NEPM category *N205 Residues arising from industrial waste treatment/disposal operations*, along with other wastes that are reported to tracking systems under this category.

Biosolids guidelines exist in all jurisdictions that allow appropriate beneficial uses of biosolids matched to their inherent hazard (with respect to chemical contaminants such as heavy metals like cadmium, lead and mercury). While it is conservative to classify all biosolids as hazardous waste, it is logical that biosolids containing pollutants at concentrations exceeding the highest classification levels outlined in biosolids guidelines may be deemed to be hazardous waste: soil or other waste so contaminated would be regulated as hazardous. Consequently, the hazardous waste group contaminated biosolids was created for this project, with arisings estimates modelled from total national biosolids tonnages.

Biosolids mostly fall outside of the tracking process, although some states appear to track movements of sewage sludge (the raw state of biosolids), presumably based on issues such as odour and pathogenicity. The lack of tracking means biosolids are often missing from hazardous waste consideration; their inclusion for Basel reporting purposes is a recent development. They are not typically considered as hazardous waste, or even waste at all by some, but, like fly ash, they can contain contaminants such as heavy metals and even POP, that would make them a hazardous waste based on NSW or Vic waste contaminant classification concentrations.

While a hazard risk vs resource value tension exists for biosolids, the application of state-based biosolids guideline chemical contaminant concentration levels should ensure that beneficial reuse applications match the quality of the biosolids in a 'fit for purpose' way. This appears to be predominantly what occurs, although the authors were not able to obtain publicly available data to provide transparency to this evaluation process. The major exception to his was the two major Vic biosolids stockpiles (for Eastern and Western Treatment Plants), which have detailed analysis data in the public domain.

Apart from the scale of the waste stream (the largest of all reported to Basel), an emerging problem is that many biosolids guidelines applied by states and territories have varied coverage of hazardous chemicals. For example, SA and WA guidelines do not consider arsenic, mercury or lead, although these are the heavy metals within much of Vic's historical Western Treatment Plant biosolids stockpile that exceed hazardous waste concentration thresholds.

A bigger issue is the potential presence of chemicals only relatively recently determined to be an environmental concern, such as the new Stockholm Convention listings of POP, which are known to be present in biosolids. Should these chemicals be present at levels high enough to cause concern, legislative change is foreseeable that could lead to a quite different set of biosolids management requirements in the near future. Note as detailed in Table 1, the projections for PFOS contaminated







biosolids are included with the projections for M270 (above) and to avoid double counting are not included in the projection for contaminated biosolids below.

#### Summary analysis

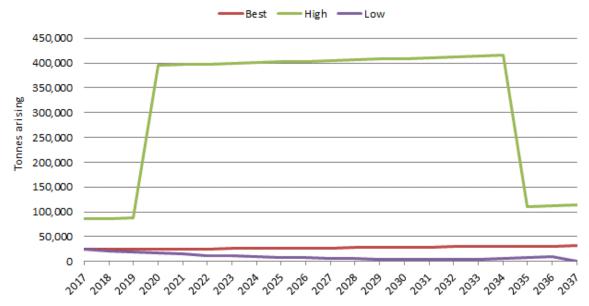
| Industry<br>sources     | Considerations                                                                                                                                                                                                                                                                                            | Comments                                                                                                                                                                                                                                                                    | Approach                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wastewater<br>treatment | Credible projections exist<br>(see DoE 2012b) but these<br>are of CO <sub>2</sub> -e emissions for<br>a climate change context<br>Expected to increase in<br>line with population<br>growth, assuming stability<br>of infrastructure<br>ACT has no biosolids –<br>sewage sludge is<br>incinerated on-site | <ul> <li>PSD (2017) classifies</li> <li>biosolids production by</li> <li>contamination</li> <li>thresholds</li> <li>Contaminant grades used</li> <li>for this waste group are:</li> <li>grade 'unsuitable</li> <li>for use' or grades D</li> <li>or E (NSW, Qld)</li> </ul> | In all cases, assume all biosolids quantities<br>grow proportionally with population<br>Best case: PSD (2017) contaminated<br>proportions are correct and remain<br>constant<br>Low case: PSD (2017) contaminated<br>proportions are correct and decline to<br>zero in 2038<br>High case: include all biosolids; Vic<br>stockpile bleeds into infrastructure over<br>15 years, starting in 3<br>ACT is zero in all cases |

## Table 34: Best, high and low projected rates of change for contaminated biosolid waste to 2037

| TUDIC 34. |                       | Approach                                                                                         | 2018     |     |          |     | 2037     |
|-----------|-----------------------|--------------------------------------------------------------------------------------------------|----------|-----|----------|-----|----------|
|           |                       |                                                                                                  | 2010     | ••• | 2020     | ••• | 2057     |
| Deet      | Arisings - ra         | 1                                                                                                | 4 40/    |     | 4 40/    |     | 4 40/    |
| Best      | ACT, NSW,<br>NT, Qld, |                                                                                                  | 1.4%     | ••• | 1.4%     | ••• | 1.4%     |
| High      | SA, Tas,              | 20-year average annual population growth                                                         | 1.4%     | ••• | 1.4%     | ••• | 1.4%     |
| Low       | Vic, WA               | 20-year average annual population growth                                                         | 1.4%     |     | 1.4%     |     | 1.4%     |
|           | Arisings – a          | bsolute tonnes pa                                                                                |          |     |          |     |          |
|           | ACT                   |                                                                                                  | 0        |     | 0        |     | 0        |
|           | NSW                   | PSD (2017) national contaminated proportion                                                      | -312,466 |     | -321,353 |     | -407,858 |
|           | NT                    | is correct for each state and territory, and                                                     | -31,583  |     | -32,481  |     | -41,224  |
| Best      | Qld                   | (Biosolids contaminated with M270 assumed to be distinct, and are therefore counted separately.) | -326,564 | ••• | -335,852 | ••• | -426,260 |
| везі      | SA                    |                                                                                                  | -126,331 |     | -129,924 |     | -164,898 |
|           | Tas                   |                                                                                                  | -31,583  |     | -32,481  |     | -41,224  |
|           | Vic                   |                                                                                                  | -489,531 |     | -503,454 |     | -638,978 |
|           | WA                    |                                                                                                  | -142,122 |     | -146,164 |     | -185,510 |
|           | ACT                   | Contaminated proportion for each jurisdiction is the highest of the PSD (2017) proportion        | 0        |     | 0        |     | 0        |
|           | NSW                   |                                                                                                  | -303,193 |     | -311,816 |     | -395,754 |
|           | NT                    | reported as unsuitable for use or the proportion sent to landfill, stockpile, other or           | -22,739  |     | -23,386  |     | -29,682  |
|           | Qld                   | unspecified. (This proportions remains                                                           | -326,564 |     | -335,852 |     | -426,260 |
| High      | SA                    | constant.)                                                                                       | -126,331 | ••• | -129,924 |     | -164,898 |
| riigii    | Tas                   |                                                                                                  | -31,583  |     | -32,481  |     | -41,224  |
|           | Vic                   | (Biosolids contaminated with M270 assumed to be distinct, and are therefore counted              | -484,635 |     | -498,419 | ••• | -632,588 |
|           | WA                    | separately.)                                                                                     | -102,328 |     | -105,238 |     | -133,567 |
|           | Vic                   | Vic stockpile bleeds into waste mgt infrastructure over 15 years starting in 3                   | 0        |     | 306,222  |     | 0        |
|           | ACT                   | PSD (2017) national contaminated proportion                                                      | 0        |     | 0        |     | 0        |
| Low       | NSW                   | is correct for each state and territory in 2017,                                                 | -313,322 | ••• | -323,735 |     | -412,244 |
|           | NT                    | and declines to zero in 2038.                                                                    | -31,583  |     | -32,481  |     | -41,224  |

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018






# blue environment

| Applies to | Approach                                                                                               | 2018     |     | 2020     | <br>2037     |
|------------|--------------------------------------------------------------------------------------------------------|----------|-----|----------|--------------|
| Qld        | (Biosolids contaminated with M270 assumed<br>to be distinct, and are therefore counted<br>separately.) | -328,590 |     | -341,735 | <br>-453,468 |
| SA         |                                                                                                        | -126,331 |     | -129,924 | <br>-164,898 |
| Tas        |                                                                                                        | -31,583  | ••• | -32,481  | <br>-41,224  |
| Vic        |                                                                                                        | -489,531 |     | -503,454 | <br>-638,978 |
| WA         |                                                                                                        | -142,122 |     | -146,164 | <br>-185,510 |

Growth rates given above are applied to an absolute baseline figure for each scenario.

*Figure 30:* Best, high and low national projection estimates of other contaminated biosolid waste to 2037



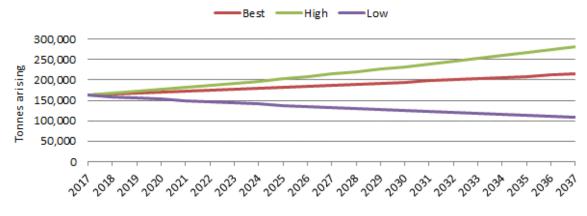
Note: the large increase in 2020 under the high scenario is a result of the assumed treatment of the Victorian contaminated biosolids stockpile over a 15-year period.

## 2.7.28 N205b Other industrial treatment residues

This category covers the single NEPM code N205 Residues from industrial waste treatment/disposal operations. For this project we rebadge this material as N205b Other industrial treatment residues to distinguish it from contaminated biosolids, which are not typically reported in jurisdictional tracking systems, and which we characterise as N205a. This NEPM group considers N205b, industrial treatment residues, not including any biosolids (contaminated or not contaminated).

| Industry sources                                                         | Considerations                                                       | Approach                                         |
|--------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|
| <ul> <li>Waste treatment and disposal<br/>services</li> </ul>            | No sufficiently credible pre-existing projections were identified    | Best: population growth<br>High: economic growth |
| <ul><li>Electricity supply</li><li>Wastewater treatment plants</li></ul> | No historical data set exists that is adequate for discerning trends | Low: -2% annual decline                          |








# Table 35:Best, high and low projected rates of change for other industrial treatment residue waste<br/>to 2037

|      | Applies to   | Approach                                 | 2018  | <br>2037  |
|------|--------------|------------------------------------------|-------|-----------|
| Best | ACT, NSW,    | 20-year average annual population growth | 1.4%  | <br>1.4%  |
| High |              | 20-year average annual economic growth   | 2.8%  | <br>2.8%  |
| Low  | Tas, Vic, WA | 2% annual decline                        | -2.0% | <br>-2.0% |

# *Figure 31:* Best, high and low national projection estimates of other industrial treatment residue waste to 2037



## 2.7.29 N220 Asbestos

This waste group captures the single NEPM code of *N220 Asbestos*. Asbestos is the name given to a group of naturally occurring minerals found in rock formations. Asbestos-containing building products are classified as either friable (soft, crumbly) or bonded (solid, rigid, non-friable). Friable asbestos products may be as much as 100% asbestos fibres and can become airborne and inhalable very easily. Bonded products such as asbestos cement sheet (otherwise known as fibro) contain approximately 15% asbestos fibres, bonded with cement and do not normally release fibres into the air when in good condition.

Houses built before the mid-1980s are highly likely to have asbestos-containing products, between mid-1980s and 1990 likely, and after 1990 unlikely.

Asbestos is one of the largest flows of hazardous waste in Australia and poses significant health risks.

The Centre for International Economics 2017, <u>Headline economic value for waste and materials</u> <u>efficiency in Australia</u>, page 30, includes analysis of the human health and economic costs of asbestosrelated disease in Australia. Key findings include:

- in 2015 there were an estimated 4,152 deaths in Australia due to asbestos-related diseases, and 10,444 prevalent cases of disease
- hospital and primary healthcare costs associated with treating asbestos-related disease are an estimated \$185 million for 2015-16
- productivity losses were an estimated \$321 million in 2015-16, with 85 per cent of losses due to disease caused by occupational exposure (distributed evenly across paid and unpaid work) to asbestos
- in 2015 there were an estimated 58,754 Disability-Adjusted Life Years lost due to asbestos-related disease, excluding asbestosis (for which prevalence data was not available).







Asbestos waste includes both end-of-life asbestos-containing building materials as well as soil that has been tested to demonstrate asbestos contamination. Since the latter may involve very low asbestos fibre concentrations and very high soil volumes, this can greatly contribute to reported asbestos waste volumes. Jurisdictional tracking systems do not currently differentiate between asbestos-containing building materials and asbestos-contaminated soils. Sources of asbestos are C&D related as well as any residential, commercial or industrial buildings that are involved in removal of asbestos containing material.

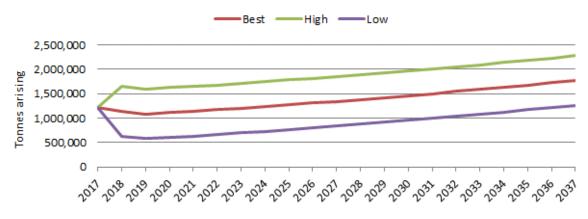
#### Summary analysis

| Industry sources                                                                                                                                                                                                             | Considerations                                                                                                                                                                     | Comments                                                                                                                                                                                                                                                                                                                                                                                 | Approach                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Industry sources<br>• C&D (including<br>asbestos removal<br>services)<br>• Property<br>development<br>• Hospitals<br>• Schools<br>• Defence<br>• Numerous sectors<br>involved in asbestos<br>removal from their<br>buildings | Considerations<br>No sufficiently<br>credible pre-existing<br>projections were<br>identified<br>There may be<br>historical data set<br>which are adequate<br>for discerning trends | Comments<br>No evidence to suggest the supply<br>of waste asbestos peaking or<br>slowing<br>Average 60-year lifespan of<br>buildings suggests increasing<br>quantities in the coming years<br>NSW does not generally track<br>asbestos<br>Combined Vic, SA, Qld data between<br>05-06 and 12-13 is consistent with<br>average 17% annual increase<br>Estimates of >1,000 Mr Fluffy homes | Approach<br>Use judgement - trend and<br>causal analysis<br>Assume additional Mr Fluffy<br>waste in the ACT over five<br>years<br>See range estimates in<br>Belot 2014 |
|                                                                                                                                                                                                                              |                                                                                                                                                                                    | in ACT and NSW may need demolition (~30-60 kt)                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                        |

#### Table 36:Best, high and low projected rates of change for asbestos waste to 2037

|         | Applies to       | Approach                                         | 2018     |     | 2037     |
|---------|------------------|--------------------------------------------------|----------|-----|----------|
| Arising | gs - rate        |                                                  |          |     |          |
| Best    | ACT, NSW,        | 20-year average annual economic growth           | 2.8%     |     | 2.8%     |
| High    | NT, Qld, SA,     | As per best estimate, with adjustment below      | 2.8%     |     | 2.8%     |
| Low     | Tas, Vic, WA     | As per best estimate, with adjustment below      | 2.8%     |     | 2.8%     |
| Arising | gs – absolute to | nnes pa                                          |          |     |          |
| Best    | ACT              | Mr Fluffy disposal estimate provided by ACT Govt | 93,000   |     | 0        |
| High    | ACT              | Best estimate + 10%                              | 102,300  |     | 0        |
| Low     | ACT              | Best estimate - 10%                              | 83,700   |     | 0        |
|         | NSW              | Best estimate (absolute) + 50%                   | 337,699  |     | 337,699  |
|         | NT               |                                                  | 2,956    |     | 2,956    |
|         | Qld              |                                                  | 74,015   |     | 74,015   |
| High    | SA               |                                                  | 5,885    |     | 5,885    |
|         | Tas              |                                                  | 7,614    |     | 7,614    |
|         | Vic              |                                                  | 59,313   |     | 59,313   |
|         | WA               |                                                  | 19,500   |     | 19,500   |
|         | NSW              |                                                  | -337,699 |     | -337,699 |
|         | NT               |                                                  | -2,956   |     | -2,956   |
|         | Qld              |                                                  | -74,015  |     | -74,015  |
| Low     | SA               | Best estimate (absolute) - 50%                   | -5,885   | ••• | -5,885   |
|         | Tas              |                                                  | -7,614   | ••• | -7,614   |
|         | Vic              |                                                  | -59,313  | ••• | -59,313  |
|         | WA               |                                                  | -19,500  |     | -19,500  |

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018


Final (non-confidential version)











# 2.7.30 Other N Other soil/sludge

This waste group contains those remaining N group NEPM codes including:

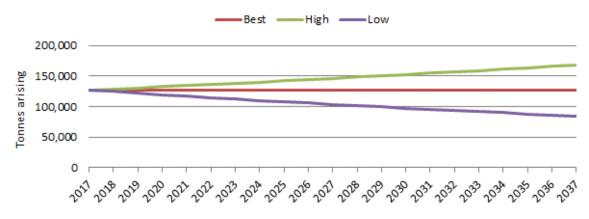
- N100 containers & drums contaminated with residues of substances referred to in the NEPM 15 list
- N140 fire debris and fire wash waters
- N150 fly ash, excluding fly ash generated from Australian coal fired power stations
- N160 encapsulated, chemically-fixed, solidified or polymerised wastes referred to in the NEPM 15 list
- *N190 filter cake contaminated with residues of substances referred to in the NEPM 15 list*
- *N230 ceramic-based fibres with physico-chemical characteristics similar to those of asbestos.*

N160 is the largest contributor, as an output stream from CPT (including immobilisation), followed by N100 & N190. Other soil/sludge contains a waste of particular interest – fly ash.

## Summary analysis

| Industry sources                                          | Considerations                              | Comments                                                              | Approach                   |
|-----------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------|----------------------------|
| <ul><li>Waste industry</li><li>Chemical product</li></ul> | No sufficiently<br>credible pre-existing    | 'Other soil/sludges' is not the ideal name but is consistent with the | Best: Flat trend overall   |
| manufacturing                                             | projections were                            | NEPM                                                                  | High: Small growth +1%     |
| <ul> <li>Metals</li> </ul>                                | identified                                  | Trend supports anecdotal evidence                                     |                            |
| manufacturing                                             |                                             | from the waste industry that there is                                 | Low: Vic decline reflects  |
| • Petroleum refining                                      | Although spikes exist,                      | a decline in traditional CPT feedstock                                | all (declining traditional |
| <ul> <li>Paper &amp; paper</li> </ul>                     | Vic dataset indicates                       | Energy-from-waste facilities likely to                                | wastes into CPT). Vic      |
| product                                                   | steady decline -                            | grow, initially in WA, producing 3%                                   | CAGR (excluding start/end  |
| manufacturing                                             | others relatively flat over last 5-10 years | fly ash (Kalogirou et al. 2010)                                       | year spikes) = -3.1%       |

## Table 37: Best, high and low projected rates of change for other soil/sludge waste to 2037


|      | Applies to   | Approach                                 | 2018  | 2037      |
|------|--------------|------------------------------------------|-------|-----------|
| Best | ACT, NSW,    | Flat trend                               | 0.0%  | <br>0.0%  |
| High | NT, Qld, SA, | 20-year average annual population growth | 1.4%  | <br>1.4%  |
| Low  | Tas, Vic, WA | Vic decline in CPT indicative for all    | -2.0% | <br>-2.0% |







#### Figure 33: Best, high and low national projection estimates of other soil/sludge waste to 2037



## 2.7.31 R Clinical and pharmaceutical

This waste group is made up of:

- R100 Clinical and related wastes
- R120 Waste pharmaceuticals, drugs and medicines
- *R140 Waste from the production and preparation of pharmaceutical products.*

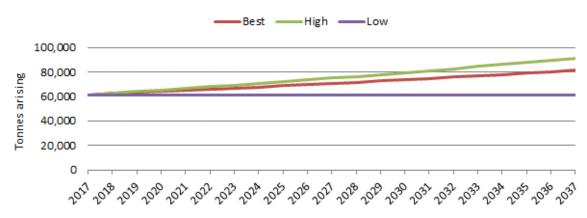
Clinical and related wastes are wastes arising from medical, nursing, dental, veterinary, laboratory, pharmaceutical, podiatry, tattooing, body piercing, brothels, emergency services, blood banks, mortuary practices and other similar practices, and wastes generated in healthcare facilities or other facilities during the investigation or treatment of patients or research projects, which have the potential to cause disease, injury, or public offence, and includes sharps and non-sharps clinical waste.

Other wastes are also generated within health care settings. Waste pharmaceuticals, drugs and medicines are waste pharmaceutical products that have passed their recommended shelf life, been discarded as off-specification batches or been returned by patients or discarded. These wastes are often generated directly from pharmacies, hospitals, medical centres and hospital dispensaries.

## Summary analysis

| Industry sources                                                                                                                                     | Considerations                                                                                         | Comments                                                                                                                                                   | Approach                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Hospitals, health care centres and clinics</li> <li>Nursing homes and aged care facilities</li> <li>Dentists</li> <li>Pharmacies</li> </ul> | Credible projection<br>exists (Thornton<br>2014)<br>Vic, SA & WA<br>10+ year trends<br>seem reasonable | Waste not tracked in<br>NSW due to regulatory<br>exemption<br>There is potential to<br>reduce hazardous waste<br>by better separation in<br>hospitals etc. | Best: Flat trend overall<br>High: Thornton 2014 growth<br>Low: -2% from best case, due to<br>improved waste segregation,<br>miniaturisation and mgt practices |

#### Table 38: Best, high and low projected rates of change for clinical and pharmaceutical waste to 2037


|      | Applies to   | Approach                                 | 2018 | 2020     |
|------|--------------|------------------------------------------|------|----------|
| Best | ACT, NSW,    | 20-year average annual population growth | 1.4% | <br>1.4% |
| High | NT, Qld, SA, | Thornton 2014 growth rate (2.0 - 2.1%)   | 2.0% | <br>2.0% |
| Low  | Tas, Vic, WA | Flat trend                               | 0.0% | <br>0.0% |











## 2.7.32 T140 Tyres

This group is the sole NEPM category *T140 Tyres*. Waste tyres are used, discarded or rejected tyres that have reached the end of their useful life, i.e., when they can no longer be used for their original purpose, and are subsequently removed from a vehicle.

Tyres are only tracked in Qld and WA and the recorded arisings indicate that they are significantly under-reported in tracking data, when compared with credible recent estimates of arisings produced by REC (2016)<sup>23</sup>. Consequently, in reporting to Basel and the 2012-13 dataset for this report, data from the Hyder report was used to estimate arisings.

| Industry sources                    | Considerations                                                                                                                                                                             | Comments                                                                                                                                                                              | Approach                                   |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Motor vehicle<br>servicing industry | REC (2016a) provides credible<br>and recent projections.<br>No historical data set exists that<br>is adequate for discerning<br>trends – limited tracking data is<br>patchy and unreliable | Only Qld & WA have<br>historically tracked tyres,<br>although NSW have recently<br>begun doing so<br>Tracking data has been<br>replaced by more<br>comprehensive data (Hyder<br>2015) | Use REC (2016a)<br>Best + 10%<br>Best -10% |

#### Summary analysis

#### Table 39: Best, high and low projected rates of change for tyre waste to 2037

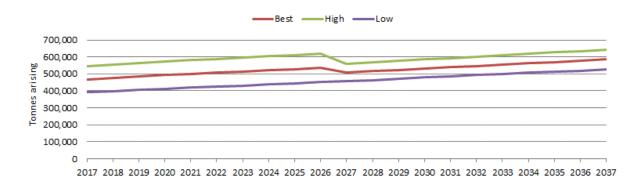
|         | Applies to      | Approach               | 2018    | <br>2037    |
|---------|-----------------|------------------------|---------|-------------|
| Arising | s – absolute to | onnes pa               |         |             |
| Best    | ACT             | REC (2017) projections | 7,398   | <br>10,060  |
|         | NSW             |                        | 138,612 | <br>171,903 |
|         | NT              |                        | 4,594   | <br>6,102   |
|         | Qld             |                        | 90,581  | <br>125,161 |

<sup>23</sup> REC (Randell Environmental Consulting 2016) National market development strategy for used tyres, produced for Tyre Stewardship Australia and various others, available at: <u>https://www.accc.gov.au/system/files/public-</u> <u>registers/documents/AA1000409%20-%20Tyre%20Stewardship%20Australia%20Limited%20-%20Annexure%203%20-</u> <u>%20Appendix%20F%20-%20National%20Market%20Development%20Strategy%20for%20Used%20Tyres%20-</u> <u>%2005.12.17%20-%20PR.pdf</u>

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018






|        | Applies to       | Approach                                                         | 2018    |     | 2037    |
|--------|------------------|------------------------------------------------------------------|---------|-----|---------|
|        | SA               |                                                                  | 30,941  |     | 36,571  |
|        | Tas              |                                                                  | 9,278   | ••• | 10,098  |
|        | Vic              |                                                                  | 109,769 |     | 145,465 |
|        | WA               |                                                                  | 51,196  |     | 79,426  |
|        | ACT              |                                                                  | 8,138   |     | 11,066  |
|        | NSW              |                                                                  | 152,473 |     | 189,093 |
|        | NT               |                                                                  | 5,053   | ••• | 6,712   |
| 1 liak | Qld              |                                                                  | 99,639  | ••• | 137,677 |
| High   | SA               | Best estimate (REC 2017) + 10%                                   | 34,035  | ••• | 40,229  |
|        | Tas              |                                                                  | 10,206  | ••• | 11,107  |
|        | Vic              |                                                                  | 120,746 |     | 160,011 |
|        | WA               |                                                                  | 56,316  | ••• | 87,368  |
|        | ACT              |                                                                  | 6,659   |     | 9,054   |
|        | NSW              |                                                                  | 124,751 |     | 154,712 |
|        | NT               |                                                                  | 4,134   |     | 5,492   |
|        | Qld              |                                                                  | 81,523  | ••• | 112,644 |
| Low    | SA               | Best estimate (REC 2017) - 10%                                   | 27,847  |     | 32,914  |
|        | Tas              |                                                                  | 8,350   |     | 9,088   |
|        | Vic              |                                                                  | 98,792  |     | 130,918 |
|        | WA               |                                                                  | 46,077  |     | 71,483  |
| Stockp | oiles – absolute | tonnes pa                                                        |         |     |         |
| Low    | All              | Stockpiles - no new additions and no releases                    | -       |     | -       |
|        | ACT              |                                                                  | 363     |     | 0       |
|        | NSW              |                                                                  | 10,038  |     | 0       |
|        | NT               |                                                                  | 550     |     | 0       |
| Deet   | Qld              | Stockpiles - no new additions and 5% per annum                   | 8,075   | ••• | 0       |
| Best   | SA               | cleared to recycling infrastructure from 2018 until 50% cleared  | 1,500   |     | 0       |
|        | Tas              |                                                                  | 1,100   |     | 0       |
|        | Vic              |                                                                  | 7,138   |     | 0       |
|        | WA               |                                                                  | 6,050   |     | 0       |
|        | ACT              |                                                                  | 725     |     | 0       |
|        | NSW              |                                                                  | 20,075  | ••• | 0       |
|        | NT               |                                                                  | 1,100   | ••• | 0       |
|        | Qld              | Stockpiles - no new additions and 10% per annum                  | 16,150  | ••• | 0       |
| High   | SA               | cleared to recycling infrastructure from 2018 until 100% cleared | 3,000   |     | 0       |
|        | Tas              |                                                                  | 2,200   | ••• | 0       |
|        | Vic              |                                                                  | 14,275  | ••• | 0       |
|        |                  |                                                                  |         |     |         |







## *Figure 35: Best, high and low national projection estimates of tyre waste to 2037*



# 2.7.33 Other T Other miscellaneous

This waste group includes:

- T100 waste chemicals from research and development or teaching activities
- T120 waste from the production & use of photographic chemicals and processing materials
- T200 waste of an explosive nature not subject to other legislation.

This waste group is a collection of relatively unrelated wastes that are produced in small quantities and are made up of mostly T100, from schools, universities and other laboratory facilities such as those related to mining.

## Summary analysis

| Industry sources                                                                                                                                                                                                  | Considerations                                                                                                                                                                        | Approach                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| <ul> <li>Waste sector</li> <li>Public administration &amp; other education</li> <li>Mining</li> <li>Explosives manufacturing</li> <li>Printing</li> <li>Water supply, sewerage &amp; drainage services</li> </ul> | No sufficiently credible pre-existing<br>projections were identified<br>Vic historical data set shows a long-<br>term decline curve, with other<br>jurisdictions generally increasing | All: Use general<br>rates of growth<br>with flat as the<br>low case |

## Table 40: Best, high and low projected rates of change for other miscellaneous waste to 2037

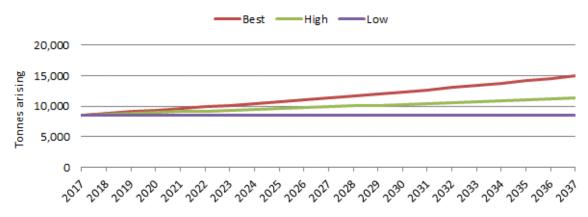

|      | Applies to   | Approach                                 | 2018 | 2037     |
|------|--------------|------------------------------------------|------|----------|
| Best | ACT, NSW,    | 20-year average annual population growth | 2.8% | <br>2.8% |
| High |              | 20-year average annual economic growth   | 1.4% | <br>1.4% |
| Low  | Tas, Vic, WA | Flat trend                               | 0.0% | <br>0.0% |







Figure 36: Best, high and low national projection estimates of other miscellaneous waste to 2037



# 2.7.34 Lithium ion batteries (not regulated as hazardous waste)

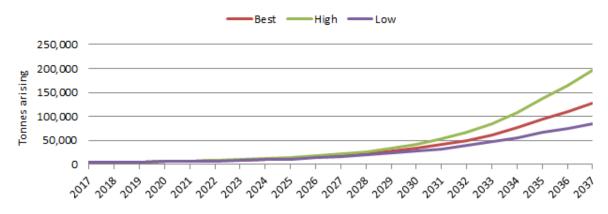
Although lithium ion batteries are not regulated as hazardous waste<sup>24</sup>, they are assessed in this report because of their potential to have a significant impact on hazardous waste infrastructure. Lithium ion battery use has been increasing strongly and, if not appropriately managed, represents a safety hazard due to risks of causing explosions and or fire (ABRI 2014).

## **Summary analysis**

| Considerations                                                                                                                                                                                                                                                                                   | Comments                                                                                                                                                                                                                                                                                                             | Approach                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| <ul> <li>Projections for lithium ion batteries are considered<br/>for three differing sizes:</li> <li>handheld batteries</li> <li>automotive batteries</li> <li>large and industrial batteries.</li> <li>Recent projections exist: REC (2018) - lithium ion<br/>waste report for DoEE</li> </ul> | Sales of rechargeable lithium ion batteries<br>account for about 24% of all batteries by<br>weight and 7% by unit. They have grown<br>strongly since 2003–04, and are forecast to<br>continue to do so as they enable new<br>applications and replace other chemistries<br>in existing applications (NC & SRU 2014). | Use REC<br>(2018)<br>projections |

<sup>&</sup>lt;sup>24</sup> Waste lithium ion batteries are regulated as hazardous waste for international transport, but currently not for domestic transport








|         | Applies to      | Approach                             | 2018  |     | 2037   |
|---------|-----------------|--------------------------------------|-------|-----|--------|
| Arising | gs – absolute t | onnes pa                             |       |     |        |
|         | ACT             |                                      | 65    |     | 2,194  |
| Best    | NSW             |                                      | 1,230 |     | 37,484 |
|         | NT              |                                      | 41    |     | 1,331  |
|         | Qld             | REC (2018) projections best estimate | 798   | ••• | 27,292 |
|         | SA              | Rec (2018) projections best estimate | 275   |     | 7,975  |
|         | Tas             |                                      | 83    | ••• | 2,202  |
|         | Vic             |                                      | 970   | ••• | 31,719 |
|         | WA              |                                      | 447   |     | 17,319 |
|         | ACT             |                                      | 65    | ••• | 3,38   |
|         | NSW             |                                      | 1,230 | ••• | 57,889 |
|         | NT              |                                      | 41    | ••• | 2,05   |
| High    | Qld             | REC (2018) projections high estimate | 798   | ••• | 42,149 |
| i ligit | SA              | REC (2018) projections high estimate | 275   | ••• | 12,310 |
|         | Tas             |                                      | 83    |     | 3,400  |
|         | Vic             |                                      | 970   | ••• | 48,98  |
|         | WA              |                                      | 447   |     | 26,747 |
|         | ACT             |                                      | 65    |     | 1,466  |
|         | NSW             |                                      | 1,230 |     | 25,054 |
|         | NT              |                                      | 41    |     | 889    |
|         | Qld             | REC (2018) projections low estimate  | 798   |     | 18,243 |
| Low     | SA              | Rec (2018) projections low estimate  | 275   |     | 5,330  |
|         | Tas             |                                      | 83    |     | 1,472  |
|         | Vic             |                                      | 970   |     | 21,20  |
|         | WA              |                                      | 447   |     | 11,576 |

| Table 11.  | Deat high and law  | and the stand washing a | Cale and a Care little to a | ten hetten under te 2024  |
|------------|--------------------|-------------------------|-----------------------------|---------------------------|
| 1 abie 41: | Best, nign and low | ' projectea rates o     | j change for lithiun        | ion battery waste to 2034 |

Figure 37: Best, high and low national projection estimates of lithium ion battery waste to 2037









# 2.8 Management of hazardous waste

The states with tracking systems (NSW, Qld, SA, Vic and WA) all record in their tracking data how each load of hazardous waste was managed (the management method). The management methods are classified differently across the states but DoEE has established a standard for converting to the lowest common denominator set of management data represented by NSW and SA, see BE *et al.* 2017 Appendix F.

The project team analysed jurisdictional tracking system data to determine the management methods for each waste group. The overall tonnage by management method in these jurisdictions was compiled for 2016-17 and is presented in Figure 38.

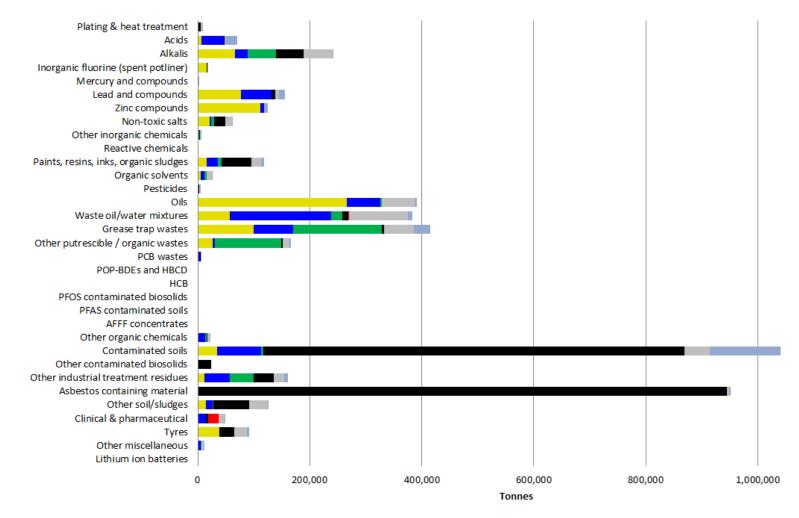
The tracking system data presented covers some waste groups partially (e.g. tyres), or not at all because the wastes are not required to be tracked (e.g. lithium ion batteries). Some wastes, such as PFAS contaminated soils, were not tracked separately in 2016-17 and therefore there is no data to report separately.

The management methods presented in Figure 38 are not always accurate or comprehensive. The reported management method required a number of adjustments for several reasons, including that:

- some smaller allocations of waste fates are apparently mistaken (e.g. a small amount of asbestos was recorded under recycling)
- the CPT infrastructure group is broad, and likely to include some waste fates apart from treatment (e.g. some recycling or biodegradation)
- similarly, some waste allocated to treatment is better considered recycling
- some allocations are very small and not material to this assessment
- exports are not accounted for.

The management method 'other' was excluded and gaps were filled through estimates. A full and transparent account of the adjustments made to the reported management methods for each waste group, for each jurisdiction, is included in the *Hazardous waste needs vs capacity model*, see 'waste mgt' tab column N.

The adjusted management methods by jurisdiction and waste group are included in Figure 39 to Figure 44. These estimates were applied in comparing future demand with infrastructure capacity, see Section 4.

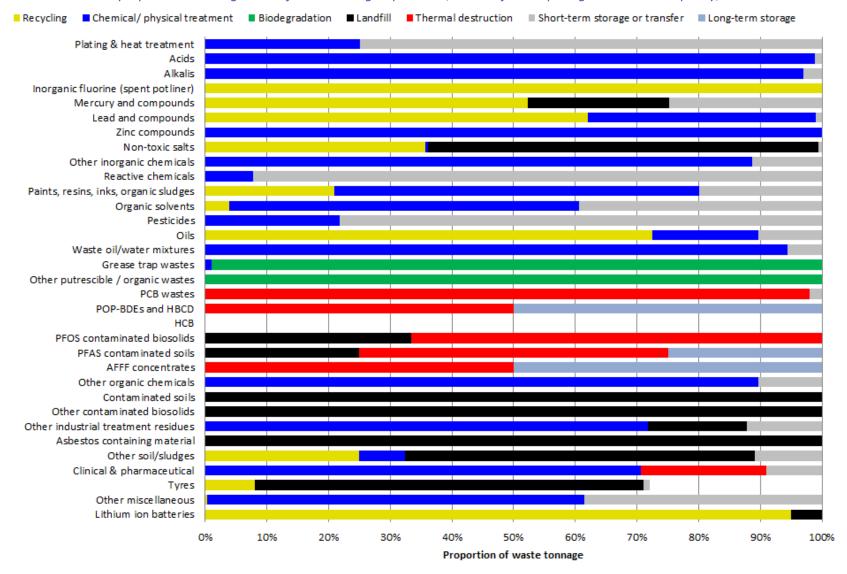







#### *Figure 38:* The management method of reported tracked hazardous waste in NSW, Qld, SA, Vic and WA, 2016-17 (tonnes)



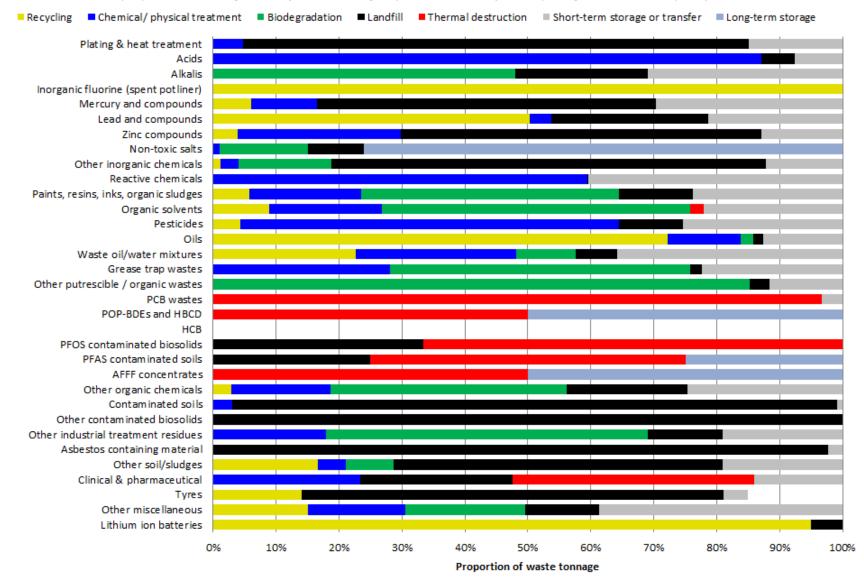









#### *Figure 39:* The assumed proportional management of each waste group in NSW, as used for comparing demand and capacity,



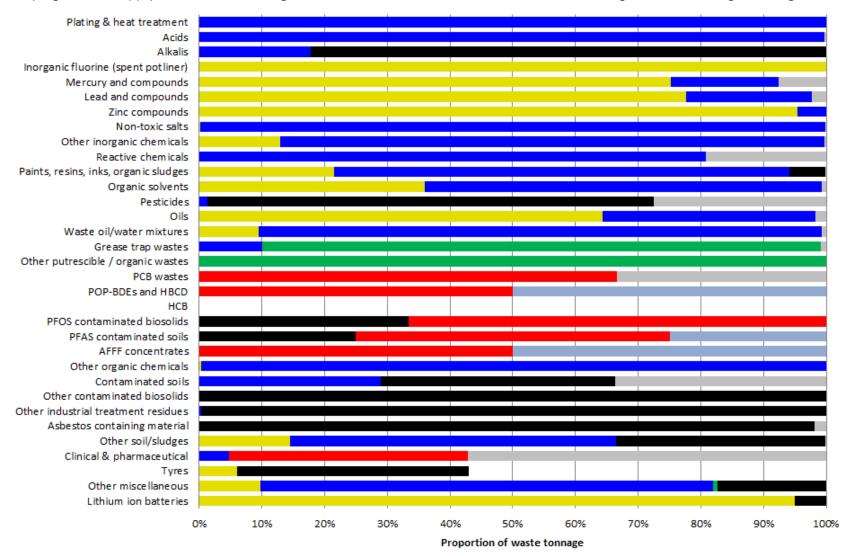







#### *Figure 40:* The assumed proportional management of each waste group in Qld, as used for comparing demand and capacity,



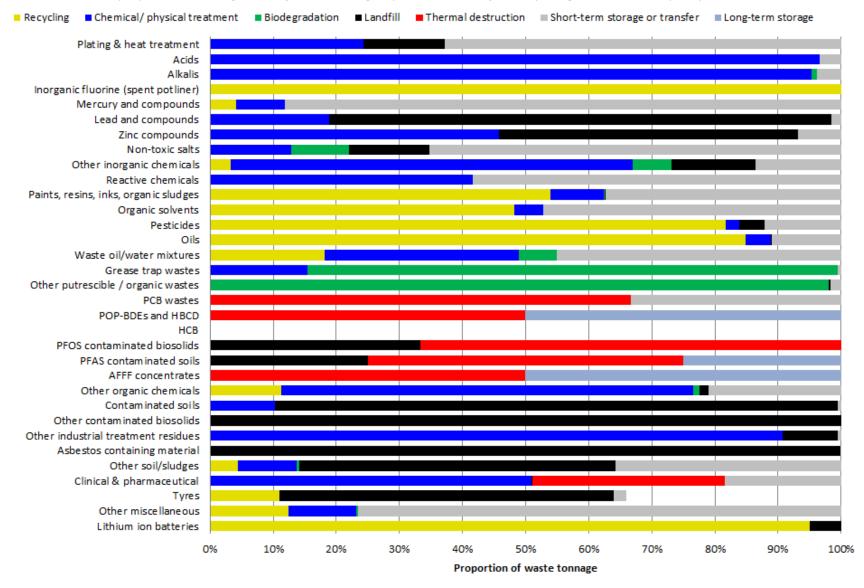







#### *Figure 41:* The assumed proportional management of each waste group in SA, as used for comparing demand and capacity,

Recycling Chemical / physical treatment Biodegradation Landfill Thermal destruction Short-term storage or transfer Long-term storage

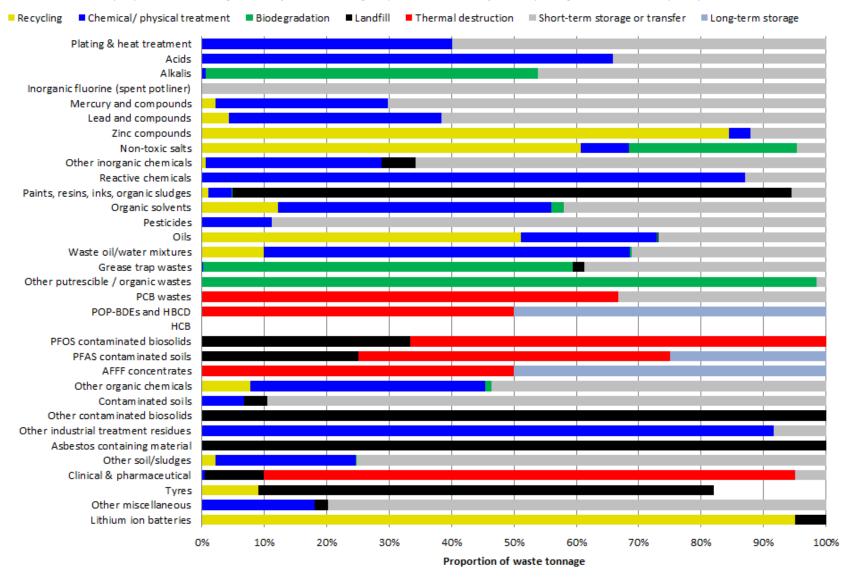









#### *Figure 42:* The assumed proportional management of each waste group in Vic, as used for comparing demand and capacity

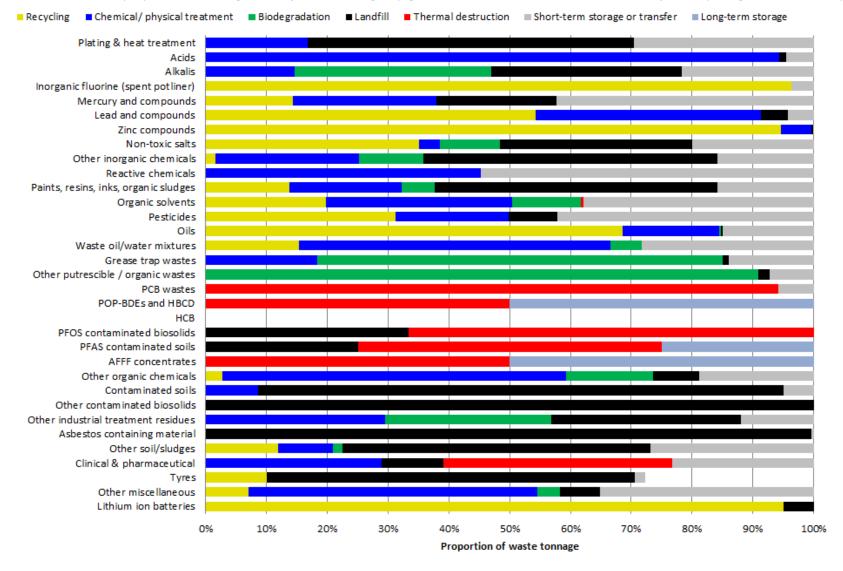









#### Figure 43: The assumed proportional management of each waste group in WA, as used for comparing demand and capacity










#### Figure 44: The assumed proportional management of each waste group generated in the ACT, NT and Tas, as used for comparing demand and capacity







# 3. Hazardous waste infrastructure assessment

This section reports on an assessment of the current installed<sup>25</sup> capacity of Australia's hazardous waste infrastructure which is included in the *Hazwaste infrastructure database 2018*. This was undertaken primarily through consultation with the waste industry. This section discusses the scope, method and result of the assessment. The results of the assessment are followed by a discussion of the key issues raised by industry during consultation, Section 3.6. The purpose of the assessment was to allow comparison with projected arisings, see Section 2.5.

# 3.1 Scope of infrastructure assessment

The 2015 infrastructure assessment scope was set by a preceding project that produced a database of hazardous waste infrastructure (Rawtec 2014)<sup>26</sup>. This previous scope definition is important and is included below:

"The dataset developed for this project is focused on identifying key sites and facilities across Australia which receive, store (major facilities only), process, treat and dispose of hazardous wastes, whether these are in liquid, solid or sludge forms. It comprises commercial facilities that stand in the market to treat third party hazardous wastes. For example, a facility that generates hazardous waste and processes the hazardous waste onsite but does not process third party wastes is excluded from the dataset.

The dataset does not include sites where hazardous wastes are originally generated (such as manufacturing sites). It does not include smelters and cement kilns which may undertake processing of wastes considered hazardous. This is because smelters and cement kilns are not usually considered as hazardous waste treatment or disposal facilities. It does not include sites and facilities that manage grease trap, sewerage and industrial wash waters (e.g. composting facilities, sewerage treatment plants) or sites that dispose of asbestos and tyres (e.g. landfills), except where those sites also manage other hazardous wastes. This is because those sites are not usually considered as hazardous waste treatment or disposal facilities. Quarantine waste facilities are excluded from the scope. A number of e-waste facilities are included, focussed on major facilities that undertake physical/chemical treatment or disassembly. It is recognised that there are other facilities which deal with hazardous wastes that are not included in the dataset, such as smaller storage facilities and transfer stations. To the extent possible, multi-use facilities that also handle hazardous waste are included in the dataset. This includes landfill sites." Rawtec (2014 p.7)

Rawtec 2014 tabulated the scope limitations as shown in the table below.

 <sup>&</sup>lt;sup>25</sup> Refers to the maximum capacity that the current installed infrastructure <u>could</u> process on an annual basis. For some sites, an EPA licence or planning permit amendments may be required to process the installed capacity tonnage.
 <sup>26</sup> Available from: <u>http://www.environment.gov.au/protection/publications/hazardous-waste-infrastructure-australia</u>







# Table 42:Limitations to the scope of the 2015 and Rawtec (2014 p.8) database of hazardous waste<br/>infrastructure in Australia

| Waste item                                                                          | Comments                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original points of hazardous<br>waste generation (e.g.<br>manufacturing facilities) | This dataset focuses on facilities or sites that treat or dispose of hazardous wastes<br>and therefore does not include original points of generation.                                                                                               |
| Intermediate storage and transfer facilities                                        | Some intermediate storage facilities are included in this dataset. It is recognised that there are other facilities which deal with hazardous wastes that are not included in the dataset, such as smaller storage facilities and transfer stations. |
| Smelters and cement kilns                                                           | Smelters and cement kilns are not considered as hazardous waste treatment facilities and therefore are not captured in this dataset; however, it is still acknowledged that they may process some hazardous wastes. <sup>27</sup>                    |
| Tyres                                                                               | Tyre processing and disposal facilities were excluded from the scope.                                                                                                                                                                                |
| Grease trap                                                                         | Grease trap was captured where the treatment facility also treated other hazardous wastes. Grease trap to composting facilities was not included.                                                                                                    |
| Sewerage and industrial wash waters                                                 | Sewerage and industrial wash water treatment facilities were excluded from the scope.                                                                                                                                                                |
| E-waste                                                                             | Only major e-waste physical/chemical and manual disassembly processing facilities were included in the scope.                                                                                                                                        |
| Quarantine wastes                                                                   | Quarantine waste processing facilities were excluded from the scope, except where these facilities also treated other hazardous waste such as clinical waste.                                                                                        |
| Asbestos                                                                            | Asbestos disposal facilities were excluded from the scope, except where these sites also disposed other hazardous wastes.                                                                                                                            |

An important expansion was made to the 2018 assessment to include the capacity of cement kilns' hazardous waste management capacity.<sup>28</sup> Where infrastructure additional to the 2015 database was identified by the project team, it was added to the database. See Section 3.3.2 for further discussion on this infrastructure.

'Mobile' waste treatment technology that is moved from one site clean-up to another is included in the scope of the assessment where the technology is providing the waste treatment (onsite). Mobile equipment that is used to simply collect, concentrate, or transport hazardous wastes simply to enable treatment off-site is typically not included.

# 3.2 Infrastructure groups

To enable the assessment of projected infrastructure need vs capacity, it was necessary to group the infrastructure included in the *Hazwaste infrastructure database 2018*. The infrastructure was grouped based on the waste received and the waste management method<sup>29</sup> of the infrastructure. For example, e-waste recycling, POP thermal destruction, clinical waste treatment and clinical waste thermal destruction.

The infrastructure groups were then used to compare waste group arisings and management to infrastructure capacity. The infrastructure groups are listed in Table 43, which is ordered following

<sup>&</sup>lt;sup>27</sup> Cement kilns were excluded from the 2015 assessment but are included in the 2018 assessment.

<sup>&</sup>lt;sup>28</sup> Smelters (i.e. iron smelting operations) are not included in the scope expansion as it is understood these sites do not take significant amounts of hazardous wastes or provide important hazwaste management capacity.

<sup>&</sup>lt;sup>29</sup> The waste 'management method' of the infrastructure refers to the waste management provided at the site (e.g. recycling energy recovery, treatment, disposal, short-term storage or transfer, long-term storage). Some sites provide more than one waste management method, in which case, where significant, the site has more than one entry in the database.







the waste hierarchy.<sup>30</sup> See Section 4.1 for further discussion of how the infrastructure groups were used in the assessment. New infrastructure groups for the 2018 assessment are shaded in grey.

The scope and coverage limitations for each infrastructure are also flagged in Table 43 below. The implications of the database scope and coverage limitations are discussed further in Section 4.2.

|            | Hazardous waste                            | Description and coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| management | infrastructure group                       | Description and toverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| method     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | Hazardous waste packaging<br>facility      | Facilities that recycle industrial packing that contains residual hazardous waste. Containers are typically refurbished and reused or materials are recycled.                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | E-waste facility                           | Major e-waste physical/chemical and manual<br>disassembly processing facilities. Facilities receive<br>inorganic hazardous waste, such as copper, cobalt, and<br>lead.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | Oil re-refining facility                   | Facilities that re-refine (recycle) waste oil. Facilities that<br>dewater and filter waste oil are included in oil/water<br>treatment (OWT), see below.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | Lead facility                              | Facilities that recycle lead. Typically, the lead is from used lead acid batteries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Recycling  | Zinc facility*                             | Currently this group is limited to the Nyrstar Port Pirie<br>multi-metals recovery plant (which processes lead rich<br>concentrates and smelting industry by-products)<br>including waste generated by Nyrstar's zinc smelter in<br>Hobart.<br>Note: due to this group being limited to the Nyrstar Port<br>Pirie facility which is treating waste mostly from Nyrstar<br>Hobart, no needs versus capacity assessment is provided<br>for this infrastructure group. Nyrstar Port Pirie reports<br>unconstrained capacity to recycle all lead-rich waste from<br>their Hobart operations. |
|            | Mercury facility                           | Facilities that recycle mercury from used fluorescent light fittings and or oil and gas mining spent catalysts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | Solvents/paints/organic chemicals facility | Facilities that recycle paints, resins, inks, organic sludges and/or organic solvents, but not for energy recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | Organics processing facility               | Facilities that recycle a range of low hazard organic waste<br>such as grease trap waste, cooking oil, animal effluents,<br>etc.<br>Capacity data coverage limitation: composting facilities<br>are excluded from the database. This group refers to<br>facilities that treat grease trap waste and other similar<br>waste.                                                                                                                                                                                                                                                              |
|            | EOLT facility*                             | Facilities that recycle end-of-life-tyres (EOLT) including facilities that partially process EOLT for export and processing overseas.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | SPL facility                               | Facilities that recycle SPL waste from the aluminium industry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

 Table 43:
 Infrastructure groups and coverage

<sup>&</sup>lt;sup>30</sup> The waste hierarchy expresses a policy preference in which recovery of waste is seen as preferable to treatment, and treatment is seen as preferable to untreated disposal.







| Hazardous waste | Hazardous waste                                            | Description and coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| management      | infrastructure group                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| method          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Energy recovery | Energy recovery                                            | Facilities that recover or use solvents, paints or other<br>hazardous waste with calorific value for energy recovery<br>on-site or elsewhere (e.g. a cement facility).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | Chemical or physical treatment<br>(CPT) plant              | Sophisticated facilities developed with significant capital<br>to apply chemical and physical treatments to a broad<br>range of waste. Often licensed to receive almost all<br>NEPM 15 waste codes. Processes can include many<br>chemical treatments (e.g. oxidation, reduction,<br>precipitation, neutralisation, etc.) and physical<br>treatments (e.g. sedimentation, filtration, adsorption,<br>immobilisation, etc.)                                                                                                                                                                                                                                                             |
|                 | Clinical waste treatment facility                          | Facilities that treat clinical waste typically using an autoclave.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Treatment       | Bioremediation facility*                                   | Temporary or permanent facilities that treat hazardous<br>waste by land-farming or bioremediation. Often does not<br>generate a useful product for sale. Capacity data<br>coverage limitation: composting facilities are excluded<br>from the database. This group is intended to refer to<br>facilities that treat hazardous waste through<br>biodegradation that are not generating compost for sale.<br>However, many commercial composting facilities are<br>licenced to receive low level hazardous waste which is<br>effectively bioremediated in the composting process and<br>these facilities are not within the project scope.                                               |
|                 | Oil/water treatment (OWT)<br>facility*                     | Facilities that treat waste oil/water, hydrocarbons/water<br>mixtures or emulsions. Recovered oils are then typically<br>sent on to an oil re-refining facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | Soils treatment facility                                   | Facilities that treat contaminated soils. Treatment processes include biodegradation and thermal destruction of contaminants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | Hazardous waste landfill<br>facility                       | A small number of landfill facilities that are licensed to dispose of a wide range of hazardous wastes many of which can only be landfilled at these sites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Disposal        | Landfill facility (NEPM codes N,<br>T)                     | Landfill facilities licensed to dispose of low-risk hazardous<br>waste such as low-level contaminated soils, asbestos, and<br>tyres (NEPM 15 codes N and T). These landfills also<br>generally dispose of non-hazardous waste, which<br>typically represents the majority of their inputs.<br>Capacity data for this group is excluded from database.<br>This infrastructure group is excluded from the <i>Hazwaste</i><br><i>infrastructure database 2018</i> . Many landfills around<br>Australia dispose of low-level contaminated soils,<br>asbestos and tyres. These landfills are not classified as<br>hazardous waste landfills and are beyond the scope of<br>this assessment. |
|                 | Persistent organic pollutants thermal destruction facility | Facilities able to destroy persistent organic compounds<br>or pollutants (POP) by thermal destruction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | Clinical waste facility thermal destruction                | Facilities that dispose of medical waste by thermal destruction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |







| Hazardous waste<br>management<br>method | Hazardous waste<br>infrastructure group | Description and coverage                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Short-term<br>storage or<br>transfer    | Transfer facility                       | Facilities that transfer or temporarily store hazardous<br>waste. Some of these facilities receive a wide range of<br>waste, others only specific waste.<br>Capacity data coverage limitation: not all transfer<br>facilities are covered in the database and some<br>infrastructure groups operate in part as a transfer facility.                                                                                      |
| Long-term<br>storage                    | Long-term on-site storage*              | Pre-approved on-site (or near site) long-term storages of<br>hazardous waste in designated area/s.<br>Capacity data coverage limitation: long-term on-site<br>storage facilities are excluded from the database and the<br>needs vs capacity assessment. The infrastructure group<br>has been included recognising that some hazardous<br>waste is managed in on-site infrastructure that is often<br>for the long term. |
|                                         | Long-term isolation facility*           | Facilities licensed to store hazardous waste for long periods (≥10 years), typically until an economically viable treatment or disposal solution is developed.                                                                                                                                                                                                                                                           |

Notes: \* new infrastructure groups added in 2018 assessment

# 3.3 Industry consultation and database updates

The 2015 infrastructure capacity assessment involved a major industry consultation program to gather details of sites that accept hazardous waste throughout Australia and contained information such as facility or site name, company name, facility address, state, treatment activities and technologies, waste types received (by NEPM 15 category) and information on current and expected future infrastructure capacities<sup>31</sup>.

The 2018 assessment also involved extensive consultation with industry to update and validate the information from the 2015 assessment and to collate capability and capacity data for the additional infrastructure groups that are marked in and Table 43.

Stakeholders were asked to validate and update information provided in the 2015 assessment. For each company, an extract of the 2015 database was issued for review and updating. For newly added infrastructure groups/sites, each site was provided an introduction to the project and the project objectives and requested to provide input to the 2018 assessment.

Thirty-six new sites where added to the database during the 2018 assessment to account for the expanded scope of assessment and new infrastructure groups.

A total of 27 landfill facilities (NEPM code N, T) were removed from the 2018 database. This infrastructure group is excluded from the 2018 database. Many landfills around Australia dispose of low-level contaminated soil, asbestos and tyres. These landfills are not classified as hazardous waste landfills and are beyond the scope of this assessment.

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018

<sup>&</sup>lt;sup>31</sup> Expected future infrastructure capacity refers to infrastructure projects that are close to operational and will add additional capacity to the current installed capacity in Australia in the near future (advanced planning and construction or commissioning). It could also make reference to the planned closure of a facility that will reduce the infrastructure capacity in Australia.







In total, operators of 226 <u>sites</u> across Australia were consulted. Thirty-one sites/ capacities were closed or no longer taking hazardous waste. These sites remain in the 2018 database, but are noted as not operational and they do not contribute to the needs vs capacity assessment in Section 4. One-hundred and eighty-five sites are currently operational and 10 new sites are planned and expected to be operational in the near future.

A total of 234 hazardous waste management <u>capacities</u> were assessed across the 185 sites. Some sites provided more than one capacity (i.e. the site provided capacity for more than one infrastructure group). A total of 192 capacities were currently operational and 11 new capacities are planned and expected to be operational in near future. A total of 203 current and planned capacities were assessed across all the infrastructure groups assessed.

# Table 44: Summary of numbers of sites and capacities assessed in 2018 assessment

| Total <u>sites</u> asses            | ssed | Closed                | sites           | (  | Operational sites | Planned sites                      |
|-------------------------------------|------|-----------------------|-----------------|----|-------------------|------------------------------------|
|                                     | 226  |                       | 31              |    | 185               | 10                                 |
| Total <u>capacities</u><br>assessed |      | erational<br>pacities | Plann<br>capaci |    | Closed capacities | Total current & planned capacities |
| 234                                 |      | 192                   |                 | 11 | 31                | 203                                |

# **3.3.1** The survey questions

All companies were asked to update or provide additional data for 13 questions relating to the operations and capacity of each of their sites, as listed in Table 45. Companies with several sites answered the questions several times, once for each site.

## Table 45: Questions asked of industry consultation survey respondents

| # | Question                                                                                                         | Guidance notes provided                                                                                                                                                                                                                                                                 |
|---|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Briefly describe the plant, processes & equipment used at the site                                               |                                                                                                                                                                                                                                                                                         |
| 2 | Estimate of average annual quantity of hazardous waste received over the last three years (tonnes by waste type) |                                                                                                                                                                                                                                                                                         |
| 3 | Licensed waste processing capacity for the site, in tonnes and by waste type (see note 1)                        | This is to help us understand if the existing<br>infrastructure could receive additional<br>annual tonnages if your licence allowed it                                                                                                                                                  |
| 4 | The installed annual capacity of the infrastructure at the site, in tonnes and by waste type                     |                                                                                                                                                                                                                                                                                         |
| 5 | Details of expected future increases or decreases in the quantities of hazardous waste you receive (see note 2)  | This is to help us understand expected<br>additional infrastructure capacity or<br>alternatively plans to reduce the capacity of,<br>or shut down, infrastructure. For landfill<br>operators estimate the amount of hazardous<br>waste you expect to receive before the site<br>closes. |
| 6 | For treatment and processing facilities only, detail the final fate of the hazardous waste received              |                                                                                                                                                                                                                                                                                         |







| #   | Question                                                                                                                                                                                      | Guidance notes provided                                                              |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 7   | Are there any major transport constraints and risks for wastes delivered to, or removed from, the site?                                                                                       |                                                                                      |
| 8   | Are you aware of any stockpiles of hazardous waste?                                                                                                                                           | Stockpiles could be located on the site or on another site                           |
| 9   | Are you able to process any the following stockpiles of hazardous waste that are included in the attached list (Hazwaste stockpiles tab)? If so please list.                                  | This is to help us develop projections of future hazardous waste generation and fate |
| 10  | What are your thoughts regarding future hazardous<br>waste generation and management in Australia? This is<br>to help us develop projections of future hazardous waste<br>generation and fate |                                                                                      |
| 11. | Would you like to bring to government attention any concerns or issues affecting the market for the hazardous wastes you deal with?                                                           |                                                                                      |
| 12. | Is this database of significant hazardous waste<br>infrastructure complete? Are you aware of any significant<br>sites that should be included?                                                |                                                                                      |
| 13. | DoEE would like to maintain a current database of<br>hazardous waste infrastructure. How would you prefer<br>DoEE to engage with you to achieve this?                                         |                                                                                      |

## 3.3.2 Infrastructure assessment survey results

Individual industry responses to the survey are commercially confidential and are not included in this report, in accordance with commitments given to respondents by DoEE and the project team.

For the 2018 assessment, we updated or gathered new data for 66% of the 232 sites. In total, the *Hazwaste infrastructure database 2018* includes capacity and capability information for 87% of the sites collated from either the 2015 or 2018 assessments or from other public data sources, see Section 3.4.1.

The 2018 assessment provided updated or new data for 98% of the sites that were assessed as providing important infrastructure for a hazardous waste management in Australia. Where no response was received from a company, the infrastructure capacity was assumed to be equal to the average capacity of other sites within the same infrastructure group.

# **3.4** National capacity estimates of hazardous waste infrastructure

The overall national results of the hazardous waste infrastructure assessment are set out in Table 46. For each infrastructure group, the table states the number of capacities<sup>32</sup>, the amount of waste currently received<sup>33</sup>, the installed capacity and the expected capacity change<sup>34</sup>. It includes an assessment of the quality of the capacity data based on the definitions at the foot of the table.

<sup>&</sup>lt;sup>32</sup> This includes the 11 capacities that are still under construction or commissioning.

<sup>&</sup>lt;sup>33</sup> Derived from industry consultation (not from jurisdictions' waste tracking system data).

<sup>&</sup>lt;sup>34</sup> The expected capacity change presents: 1. additional capacity coming on-line from new sites / capacity that is under construction or commissioning, and 2. likely decreases in capacity from infrastructure closures or capacity reductions (presented as a negative value). No reductions in capacity are identified in the 2018 assessment.







## Table 46: National capacity estimate of hazardous waste infrastructure

|                                                         |                                                                                                                  |                                |                                  | Expected                      | Dat        | a qualit | y is: |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------|-------------------------------|------------|----------|-------|--|
| Hazardous waste infrastructu                            | No.<br>Ire capacities                                                                                            | Current<br>receipts<br>(kt/yr) | Installed<br>capacity<br>(kt/yr) | capacity<br>change<br>(kt/yr) | Good       | Ok       | Poor  |  |
| Recycling and energy recover                            | ery                                                                                                              |                                |                                  |                               |            |          |       |  |
| Hazardous waste packaging faci                          | ity 19                                                                                                           | 19                             | 19                               | 0                             | 21%        | 0%       | 79%   |  |
| E-waste faci                                            |                                                                                                                  | 58                             | 106                              | 12                            | 92%        | 0%       | 8%    |  |
| Oil re-refining faci                                    |                                                                                                                  | 387                            | 526                              | 0                             | 60%        | 30%      | 10%   |  |
| Lead faci                                               |                                                                                                                  | 110                            | 124                              | 71                            | 67%        | 33%      | 0%    |  |
| Mercury faci                                            | ity 7                                                                                                            |                                | CIC                              |                               | 100%       | 0%       | 0%    |  |
| Solvents/paints/organic chemicals faci                  | ity 4                                                                                                            | 11                             | 14                               | 0                             | 75%        | 0%       | 25%   |  |
| Organics processing faci                                | ity 4                                                                                                            | 99                             | 106                              | 0                             | 50%        | 50%      | 0%    |  |
| End-of-life tyres faci                                  | ity 14                                                                                                           | 83                             | 100                              | 9                             | 93%        | 0%       | 0%    |  |
| Spent potlining faci                                    | ity 4                                                                                                            |                                | CIC                              |                               | 100%       | 0%       | 0%    |  |
| Energy recover                                          | ry 5                                                                                                             |                                | CIC                              |                               | 60%        | 20%      | 20%   |  |
| Treatme                                                 | nt                                                                                                               |                                |                                  |                               |            |          |       |  |
| CPT pla                                                 | ant 36                                                                                                           | 857                            | 1,129                            | 4                             | 78%        | 22%      | 0%    |  |
| Clinical waste treatment facil                          | ity 9                                                                                                            | 24                             | 25                               | 0                             | 33%        | 22%      | 44%   |  |
| Bioremediation faci                                     | ity 0                                                                                                            | 0                              | 0                                | 0                             |            |          |       |  |
| Oil/water treatment (OWT) facili                        | ty 27                                                                                                            | 148                            | 199                              | 0                             | 37%        | 30%      | 33%   |  |
| Soils treatment faci                                    | ity 6                                                                                                            | 97                             | 178                              | 296                           | 67%        | 33%      | 0%    |  |
| Dispo                                                   | sal                                                                                                              |                                |                                  |                               |            |          |       |  |
| Hazardous waste landfill facil                          | ity 7                                                                                                            | 167                            | 201                              | 0                             | 43%        | 0%       | 43%   |  |
| Landfill facility (NEPM codes N                         |                                                                                                                  | ncluded in                     | assessme                         | nt of arisin                  | gs versu   | s capac  | ity   |  |
| Persistent organic pollutants thermal destruction facil | ity 7                                                                                                            |                                | CIC                              |                               | 86%        | 0%       | 14%   |  |
| Clinical waste facility thermal destruct                |                                                                                                                  | 20                             | 33                               | 6                             | 100%       | 0%       | 0%    |  |
| Short-term storage or trans                             |                                                                                                                  |                                |                                  |                               |            |          |       |  |
| Transfer faci                                           |                                                                                                                  | 114                            | 145                              | 0                             | 79%        | 16%      | 5%    |  |
|                                                         | ·                                                                                                                | 114                            | 145                              | U                             | 13/0       | 10%      | 370   |  |
| Long-term store                                         | -                                                                                                                |                                |                                  |                               |            |          |       |  |
| Long-term on-site store                                 | -                                                                                                                | ncluded in                     |                                  | nt of arisin                  |            |          |       |  |
| Long-term isolation faci                                | ity 2                                                                                                            | 0                              | 0                                | CIC                           | 100%       | 0%       | 0%    |  |
| То                                                      | tal 202                                                                                                          | 2,336                          | 3,092                            | 945                           | 67%        | 15%      | 18%   |  |
| In                                                      | dustry respo                                                                                                     | nse receiv                     | ed Proc                          | essing lice                   | ensed a    | and      |       |  |
|                                                         | stalled capac                                                                                                    |                                |                                  |                               |            |          |       |  |
| Ν                                                       | o response. I                                                                                                    | Maximum                        | licensed                         | processin                     | g canac    | ity dat  | а     |  |
|                                                         | entified in lic                                                                                                  |                                |                                  | •                             | 0 1        | ,        | u     |  |
| Ν                                                       | o response. l                                                                                                    | icensed p                      | rocessin                         | g capacity                    | assume     | ed to b  | е     |  |
|                                                         | No response. Licensed processing capacity assumed to be<br>the average of the tonnage processed by inf. with the |                                |                                  |                               |            |          |       |  |
|                                                         | -                                                                                                                |                                |                                  | Joed by II                    | II. WVILII | the      |       |  |
| <b>Poor</b> sa                                          | me inf. grou                                                                                                     | h                              |                                  |                               |            |          |       |  |

Notes:

- Shaded grey infrastructure groups have coverage limitations or are excluded.
- Total numbers of capacities are 202, not 203 as stated in table 44, due to the exclusion of two PFAS contaminated groundwater clean-up operations. Whilst these operations are important, they provide only removal of the PFAS from the groundwater, using relatively simple activated carbon filtration technology that was not seen as 'hazardous waste infrastructure'. The important infrastructure, in this example, is that used to destroy the PFAS removed from the groundwater.

The quality assessment details for each infrastructure group the percentages of site data that were derived from industry survey responses, EPA licence data or by the infrastructure group average. In the public version of this report, data for infrastructure groups that are serviced by less than three sites or companies is removed to protect commercial confidentiality.

There are 202 operational hazardous waste capacities in Australia and 11 capacities under construction or commissioning. In 2016/17, around 2.3 Mt of waste were managed by the 185 operational sites, which have an installed capacity to manage 3.1 Mt of hazardous waste.







Over the next few years an increase of around 1 Mt of capacity is expected to be added to Australia's capacity across the infrastructure groups of:

- e-waste, lead, mercury, EOLT and SPL recycling facilities
- CPT and soil treatment facilities
- POP and clinical waste thermal destruction facilities
- long-term isolation facilities.

# **3.4.1** Compiling capacity estimates

The infrastructure capacity estimates were compiled primarily by summing the data provided by survey respondents by infrastructure groups. As shown in Table 46, no response was received in relation to 33% of the sites so their capacity needed estimating. For 15% of these sites, an EPA licence was publicly available containing a defined limit to the quantity of waste that could be processed annually. In those cases, that value was used as a proxy for current and installed capacity. Where this was not the case (18% of sites), current and potential capacity was assumed to equal the average of the sites that provided data for that infrastructure group.

# **3.4.2** Comparing total capacity and total arisings

In Section 2.4, the current arisings of hazardous waste in Australia were discussed. The best estimate of current arisings (6.1 Mt) is much higher than the approximately 2.3 Mt of waste shown above as currently received.

The difference between overall arisings and estimated capacity is mainly attributable to the limits on the scope and coverage of the infrastructure database discussed in Section 3.2. Many sites that receive hazardous waste are not included because they are not primarily hazardous waste infrastructure. In particular, many low hazard wastes such as grease trap waste, animal effluent and contaminated soil (which are generated in large volumes) are sent to sites that are not included in the database.

# **3.5** Jurisdictional capacity estimates of hazardous waste infrastructure

Table 47 shows the assessment of 2016-17 receipts and installed capacity broken down by jurisdiction.

To protect commercial confidentiality, in the public version of this report the infrastructure group data for tonnages of waste currently received and installed capacity have been redacted (see black cells). While there may be more than three sites included in the capacity data that is removed, the number of companies that operate these sites may be less than three. To ensure commercial confidentiality is protected, no infrastructure group capacity data is included in the public report at a jurisdictional level.

The table includes analysis of the percentage of Australia's hazardous waste infrastructure included in each jurisdiction (by the number of sites, current tonnage received and installed capacity).

The table also includes colour coding of jurisdictions that have greater that 50% of Australia's:

- total number of sites in an infrastructure group
- currently received capacity in an infrastructure group
- installed capacity in an infrastructure group.







The analysis shows the following:

- Regarding hazardous waste infrastructure sites in Australia: NSW and Vic dominate in the provision of infrastructure sites each with approximately 30% of the sites. Qld and WA follow both with around 15% of the sites. SA has 8% of the sites, followed by NT, ACT, and Tas which all have less than 5% of Australia's hazardous waste infrastructure sites.
- Regarding management of 2016-17 arisings: NSW managed 34% of the waste arisings. Qld, Vic and WA follow with each managing around 20% of arisings. SA managed around 7% of arisings and NT, ACT and Tas all managed less than 2% of 2016-17 arisings.
- Regarding installed hazardous waste infrastructure capacity: NSW has 32% of the waste arisings. Qld, Vic and WA follow, each having around 20% of installed capacity. SA has 6% of installed capacity and NT, ACT and Tas all have less than 1% of total installed capacity.

Regarding the infrastructure group capacity concentrations (locations):

- NSW has over 50% of the lead sites. NSW managed over 50% and has more than 50% of the installed capacity for lead, e-waste, SPL and energy recovery infrastructure.
- Qld managed over 50% of POP and has over 50% of POP installed capacity.
- Vic has over 50% of the sites, waste managed and installed capacity for hazardous waste packaging, and soil treatment infrastructure. Vic also managed more than 50% of mercury and organics waste.
- WA has over 50% of the sites, waste managed and installed capacity for bioremediation facilities.
- The 2018 assessment also identified three types of mobile infrastructure that is in planning stage for CPT (CIC kt capacity) and POP thermal destruction (CIC kt capacity). Note: the capacity for this mobile infrastructure is modular and scalable and defined by the site clean-up needs.







#### Table 47: Jurisdictional capacity estimate of hazardous waste infrastructure

|                                                            | АСТ |    |      | NSW |     |     | NT |    |    | Old |     |     | SA |     |     | Tas |    |    | Vic |     |     | WA  |     |     | Mobile |    |    |
|------------------------------------------------------------|-----|----|------|-----|-----|-----|----|----|----|-----|-----|-----|----|-----|-----|-----|----|----|-----|-----|-----|-----|-----|-----|--------|----|----|
|                                                            |     |    |      |     |     |     |    |    |    | Qiu |     |     | 54 |     |     | 143 |    |    | •   |     |     |     |     |     | moone  |    |    |
| Hazardous waste infrastructure groups                      | A   | в  | с    | A   | в   | с   | А  | в  | с  | A   | в   | с   | A  | в   | с   | A   | в  | с  | А   | в   | с   | A   | в   | с   | А      | в  | с  |
| Recycling and energy recovery                              |     |    |      |     |     |     |    |    |    |     |     |     |    |     |     |     |    |    |     |     |     |     |     |     |        |    |    |
| Hazardous waste packaging facility                         | - 1 | -  | -    | 4   |     |     | -  | -  | -  | 1   |     |     | 2  |     |     | -   | -  | -  | 11  |     |     | 1   |     |     | -      | -  | -  |
| E-waste facility                                           | 1   |    |      | 4   |     |     | -  | -  | -  | 2   |     |     | 2  |     |     | -   | -  | -  | 4   |     |     | -   | -   | -   | -      | -  | -  |
| Oil re-refining facility                                   | - 1 | -  | -    | 4   |     |     | -  | -  | -  | 1   |     |     | 1  |     |     | -   | -  | -  | 2   |     |     | 2   |     |     | -      | -  | -  |
| Lead facility                                              | - 1 | -  | -    | 2   |     |     | -  | -  | -  | 1   |     |     | -  | -   | -   | -   | -  | -  | -   | -   | -   | -   | -   | -   | -      | -  | -  |
| Mercury facility                                           | - 1 | -  | -    | 1   |     |     | -  | -  | -  | 1   |     |     | 1  |     |     | 1   |    |    | 1   |     |     | 2   |     |     | -      | -  | -  |
| Solvents/paints/organic chemicals facility                 | - 1 | -  | -    | 2   |     |     | -  | -  | -  | 1   |     |     | -  | -   | -   | -   | -  | -  | 1   |     |     | -   | -   | -   | -      | -  | -  |
| Organics processing facility                               | - 1 | -  | -    | 2   |     |     | -  | -  | -  | -   | -   | -   | -  | -   | -   | -   | -  | -  | 2   |     |     | -   | -   | -   | -      | -  | -  |
| End-of-life tyres facility                                 | - 1 | -  | -    | 4   |     |     | -  | -  | -  | 1   |     |     | 2  |     |     | 1   | -  | -  | 5   |     |     | 1   |     |     | -      | -  | -  |
| Spent potlining facility                                   | - 1 | -  | -    | 2   |     |     | -  | -  | -  | 1   |     |     | -  | -   | -   | 1   |    |    | -   | -   | -   | -   | -   | -   | -      | -  | -  |
| Energy recovery                                            | -   | -  | -    | 2   |     |     | -  | -  | -  | 1   |     |     | 1  |     |     | -   | -  | -  | 1   |     |     | -   | -   | -   | -      | -  | -  |
| Treatment                                                  |     |    |      |     |     |     |    |    |    |     |     |     |    |     |     |     |    |    |     |     |     |     |     |     |        |    |    |
| CPT plan                                                   | - 1 | -  | -    | 10  |     |     | -  | -  | -  | 5   |     |     | 2  |     |     | -   | -  | -  | 6   |     |     | 12  |     |     | 1      | -  | -  |
| Clinical waste treatment facility                          | -   | -  | -    | 2   |     |     | 1  |    |    | 1   |     |     | 1  |     |     | 1   |    |    | 2   |     |     | 1   |     |     | -      | -  | -  |
| Bioremediation facility                                    | - 1 | -  | -    | -   | -   | -   | -  | -  | -  | -   | -   | -   | -  | -   | -   | -   | -  | -  | -   | -   | -   | -   | -   | -   | -      | -  | -  |
| Oil/water treatment (OWT) facility                         | -   | -  | -    | 9   |     |     | -  | -  | -  | 6   |     |     | 1  |     |     | 2   |    |    | 8   |     |     | 1   |     |     | -      | -  | -  |
| Soils treatment facility                                   | - 1 | -  | -    | 1   |     |     | -  | -  | -  | -   | -   | -   | -  | -   | -   | 1   |    |    | 3   |     |     | 1   |     |     | -      | -  | -  |
| Disposa                                                    | 1   |    |      |     |     |     |    |    |    |     |     |     |    |     |     |     |    |    |     |     |     |     |     |     |        |    |    |
| Hazardous waste landfill facility                          | -   | -  | -    | 1   |     |     | 1  |    |    | 1   |     |     | -  | -   | -   | 1   |    |    | 1   |     |     | 2   |     |     | -      | -  | -  |
| Landfill facility (NEPM codes N, T                         | -   | -  | -    | -   | -   | -   | -  | -  | -  | -   | -   | -   | -  | -   | -   | -   | -  | -  | -   | -   | -   | -   | -   | -   | -      | -  | -  |
| Persistent organic pollutants thermal destruction facility | -   | -  | -    | -   | -   | -   | -  | -  | -  | 2   |     |     | -  | -   | -   | -   | -  | -  | 3   | -   |     | -   | -   | -   | 2      | -  | -  |
| Clinical waste facility thermal destruction                | - 1 | -  | -    | 1   |     |     | -  | -  | -  | 1   |     |     | 1  |     |     | -   | -  | -  | 2   |     |     | 1   |     |     | -      | -  | -  |
| Short-term storage or transfer                             |     |    |      |     |     |     |    |    |    |     |     |     |    |     |     |     |    |    |     |     |     |     |     |     |        |    |    |
| Transfer facility                                          | 1   |    |      | 5   |     |     | 1  |    |    | 3   |     |     | 2  |     |     | 1   |    |    | 2   |     |     | 4   |     |     | -      | -  | -  |
| Long-term storage                                          |     |    |      |     |     |     |    |    |    |     |     |     |    |     |     |     |    |    |     |     |     |     |     |     |        |    |    |
| Long-term on-site storage                                  | -   | -  | -    | -   | -   | -   | -  | -  | -  | -   | -   | -   | -  | -   | -   | -   | -  | -  | -   | -   | -   | -   | -   | -   | -      | -  | -  |
| Long-term isolation facility                               | - 1 | -  | -    | -   | -   | -   | 1  | -  | -  | -   | -   | -   | -  | -   | -   | -   | -  | -  | -   | -   | -   | 1   | -   | -   | -      | -  | -  |
| Tota                                                       |     |    |      | 56  | 785 | 944 | 4  | 37 | 39 | 29  | 428 | 559 | 16 | 160 | 201 | 9   | 23 | 24 | 54  | 428 | 636 | 29  | 473 | 684 | 3      | -  | -  |
| Percentage of national total                               | 1%  | 0% | 6 0% | 28% | 34% | 31% | 2% | 2% | 1% | 14% | 18% | 18% | 8% | 7%  | 6%  | 4%  | 1% | 1% | 27% | 18% | 21% | 14% | 20% | 22% | 1%     | 0% | 0% |

A = Number of sites (includes the 10 sites that are under construction and commissioning)

B = Quantity currently received (kt/yr) (i.e. the reported 3-year average receipts or, if unavailable, the licensed processing capacity or, if unavailable, the mean reported 3-year average receipts for the infrastructure group)

C = Installed capacity (kt/yr) (i.e. the reported installed capacity or, if unavailable, the licensed processing capacity or, if unavailable, the reported 3-year average receipts or, if unavailable, the mean reported 3-year average receipts for the infrastructure group).

Greater than 50% of sites in Australia Greater than 50% of currently received

50% of currently received capacity in Australia

Greater than 50% of installed capacity in Australia

Notes: Shaded grey infrastructure groups have coverage limitations or are excluded







# **3.6** Key issues raised by industry during consultation

This section discusses the key issues raised by industry during consultation. No quotations are provided to maintain confidentiality agreements made with industry stakeholders during survey and interview.

# 3.6.1 Falling demand for hazardous waste infrastructure

As Australia's manufacturing sector slows, hazardous waste commonly generated by manufacturing in Australia is in decline. Across the country, industry reported falling amounts of hazardous manufacturing waste sent for treatment. In some instances, sharp declines were reported. This issue was reported in 2015 and remains current for the 2018 assessment. Our analysis, based on waste tracking data, estimated tonnages of waste sent to CPT of 700 kt in 2015 to just 400 kt in 2018, a fall of around 43% over three years.

This project is focused on identifying where Australia's hazardous waste industry may become constrained over the next 20 years. Industry flagged that undersupply of wastes could cause infrastructure shortages due to closure of key infrastructure that may no longer be viable as demand falls for processing of key high-volume wastes.

However, the overall tonnages of hazardous waste are projected to increase from around 6 Mt currently to almost 10 Mt in 2038. So, whilst tonnages of some wastes are declining, and are projected to continue doing so, other hazardous waste types are projected to increase significantly. The challenge for industry and government is to plan for and implement infrastructure changes that can manage the rapidly changing composition of hazardous waste.

# 3.6.2 Stockpiles of SPL, mercury waste and EOLT

This issue was raised in the 2015 assessment and remains current. REC 2016 estimated the stockpile of SPL to be around 700 kt, of which around 390 kt are landfilled on-site at aluminium smelters around Australia, with the remainder stored in sheds on-site. As the aluminium industry slows in Australia there is a risk that funding to treat/recycle these stockpiles becomes unavailable and the stockpiles become a legacy waste without funding for recovery.

Industry has commented on on-site stockpiling of mercury contaminated catalyst waste in the oil and gas industries. MRU are loaded with catalyst to draw out mercury of oil or gas stream. Each time the catalyst is spent it is reportedly stockpiled on-site in drums. MRU catalyst mercury stockpiles could be about 2% up to 10 % mercury. Recent investment in mercury recovery facilities in Australia should resolve any capacity constraints, as discussed in Section 4.

Industry and environment agencies also flagged stockpiles of tyres as a major problem. Stockpiles of EOLT create a significant environmental and human health issue if they catch fire, which is not uncommon. EPA Vic recently reported that:

"The number of used or waste tyres generated in Victoria each year is growing; approximately six million waste passenger car tyres were unaccounted for in Victoria in 2012-13, believed to be stockpiled or illegally dumped"<sup>35</sup>

Industry commented that government needs to do more to control waste stockpiling at the sites of waste generators or waste treaters to avoid the potential liabilities of legacy waste stockpiles.

<sup>&</sup>lt;sup>35</sup> Source: EPA website *EPA tightens regulations on tyre stockpiling* <u>http://www.epa.vic.gov.au/about-us/news-</u> centre/news-and-updates/news/2015/april/15/epa-tightens-regulations-on-tyre-stockpiling (June 2015)







# **3.6.3** Inconsistent landfill levies driving interstate disposal of hazardous wastes

This issue was raised in the 2015 assessment and remains current. There are large differences in the cost of landfill disposal of hazardous waste in Australia which is in large part due to landfill levy differences. In Vic the landfill levy for Category B hazardous waste is \$250/tonne and in Qld<sup>36</sup>, NT and Tas the landfill levy is currently \$0/tonne. Industry commented that transport costs could be as low as \$80/tonne from Vic to Qld. If transport costs are indeed this low, landfills in Qld (charging the same gate fee<sup>37</sup> as Vic landfills) could potentially offer tipping at \$170/tonne less that tipping costs in Vic. Several industry stakeholders commented on this as a serious policy/governance issue for hazardous waste management in Australia. The legislated changes to a landfill levy in Qld will significantly improve the current situation of waste being transported for disposal in Qld, but will not remove the price incentives altogether.

# **3.6.4** Inconsistent landfill levies undermining investment in recovery or treatment of hazardous wastes

A related issue is the importance of landfill levies to help drive investment in hazardous waste recovery or treatment infrastructure, that often struggle to compete with the low (short term) costs of sending hazardous waste to landfills. Developments such as the ResourceCo refuse derived fuel facility in SA and NSW that provide fuel for the Adelaide Brighton and Boral cement kilns respectively are understood to not be viable in Qld or Tas, which also have cement kilns, but no landfill levy in place.

# 3.6.5 Inconsistent landfilling pre-treatment requirements create unfair advantage

Another more technical inconsistency that industry raised relates to jurisdictional differences in the treatment requirements for waste before it is sent to landfill. For example, a company raised concerns that in NSW they are required to immobilise (via treatment) their waste that they send to landfill, yet a competing company in Qld can send the same waste to landfill without an immobilisation. Where this occurs, it creates unfair costs to competing industries and potentially more environmental impact and legacy costs for the state without the equivalent levels of waste pre-treatment in place.

# 3.6.6 Regulatory settings need to support infrastructure investment

Related to the above was the issue raised of regulation supporting investment into hazardous waste recovery or treatment infrastructure. Hazardous waste infrastructure is often capital intensive and as a result relies on a regulatory framework that supports recovery/treatment more than non-hazardous waste infrastructure. In addition, hazardous waste is less consistently generated than non-hazardous waste such as household waste so investments carry a higher risk and are less secure.

In the 2015 assessment, industry raised a range of concerns that it suggested were regulatory failings (listed below). These remain current. Industry argued these can undermine investment in hazardous waste infrastructure. It is beyond the scope of this project to provide detailed analysis of these issues or to validate the accuracy of industry comments.

- 1. landfilling of hazardous organic waste for which recovery options exist, including the recovery of energy
- 2. permitting the export of hazardous waste for which there is recovery infrastructure in Australia
- 3. export of unprocessed waste oil without permits as 'fuel oil', contravening the Basel Convention and undermining oil recycling (which represents higher order recovery)

 <sup>&</sup>lt;sup>36</sup> The Qld levy is proposed to be increased to \$155/tonne for Category 2 regulated waste on July 1 2019.
 <sup>37</sup> Gate fee: refers to the cost of tipping net of landfill levy.







- 4. a lack of enforcement action to prevent illegal export of hazardous waste, like the example noted above
- 5. a lack of auditing or enforcement of hazardous waste tracking systems administered by the jurisdictions to prevent hazardous waste being sent to inappropriate waste facilities
- 6. inconsistent regulation of clinical waste across Australia resulting in clinical waste being sent interstate.

# 3.6.7 Additional CSG waste infrastructure needed

This issue was raised in 2015 and remains current. A number of industry stakeholders commented on the need to improve infrastructure to service CSG industry waste, including brine waste and hydrocarbon impacted drilling mud. Industry commented that these wastes are likely to increase as Australia's gas export capabilities increase. One of the key challenges in treating brine waste is the large quantities and remote locations of the waste, which make transport costly. There have been reportable improvements in the levels of on-site treatment of brine waste using RO technology. This would greatly reduce the amount of brine waste requiring management, but also increase the concentrations of the waste. It is understood that this waste material is typically placed into holding lagoons on-site.

# 3.6.8 Asbestos disposal cost and access

A comment often made by small landfill operators in regional areas (typically local government) is the need to reduce asbestos disposal costs as it drives illegal dumping or hidden tipping of asbestos. Councils also commented on the need for asbestos collection infrastructure in remote areas where there is no landfill licensed to take asbestos. This issue was raised in 2015 and remains current.

# 3.6.9 Additional infrastructure for recovering packaging waste

A number of industry stakeholders commented on the need for improved recovery options for small hazardous waste packaging and small packages of waste hazardous goods. This issue was raised in 2015 and remains current.

# 3.6.10 Significant POP destruction infrastructure coming online

In 2015, the only capacity identified for POP destruction was the Toxfree operated plasma arc plant in Narangba, Qld. No other designated POP destruction facilities were proposed; however, additional capacity was planned within other infrastructure (soil treatment facilities, cement kilns and clinical waste thermal destruction facilities).

Since the 2015 assessment, industry has taken significant steps towards implementing this additional capacity for POP thermal destruction. Recent approvals have been granted and additional trials are underway for PFAS waste destruction at Cement Australia's cement kilns. Trials are underway for PFAS thermal destruction at RENEX and EnviroPacific soil treatment facilities in Vic. Daniels Laverton (Toxfree) also have approval to treat PCB waste. As discussed in Section 4, the upper limit of the capacity for these facilities to take POP in the future is unknown and needs further review.

RENEX and EnviroPacific have stated that they do not think their capacity will be limited beyond the overall capacity of the facility, however, this is yet to be proven.

## 3.6.11 PFAS contaminated waters: contaminant threshold requirements need

Industry have commented that they urgently need further direction from regulators regarding the process requirements and contaminant thresholds for PFAS impacted water clean-up. There is inconsistency between the jurisdictions and reliance on existing guidelines that do not specify PFAS limits.







**Recommendation:** The process requirements and contaminant thresholds that need to be met for PFAS impacted water clean-up should be defined. DoEE may be best placed to lead the development of a recommended process and threshold that the jurisdictions could choose to adopt. This work may already be underway.

# 3.6.12 PFAS contaminated waters: filtration media destruction requirements are inconsistent

PFAS contaminated groundwater is being cleaned-up using activated carbon filtration processes to remove PFAS. Once the filtration media's capacity to adsorb PFAS is exhausted, the contaminated material needs to be renewed. Industry commented that in Qld this material is able to be sent to landfill whereas in other jurisdictions PFAS-contaminated material must be thermally treated to destroy PFAS. If PFAS-contaminated filtration media is being sent to landfill, rather than being thermally destroyed, it would seem to defeat the efforts in removing PFAS from the groundwater in the first place (i.e. in landfill the PFAS will presumably make its way back to groundwater).

**Recommendation:** The management requirements of PFAS-contaminated filtration should be reviewed to ensure a nationally consistent approach.

# 3.6.13 WA: distance and low tonnages of hazardous waste is a major challenge

This issue was raised in 2015 and remains an issue. Jill Lethlean (Consilium Waste Consulting) provided the following comments regarding hazardous waste management in WA (reproduced with permission):

"Distance is a major issue for waste management in WA. In particular, a considerable amount of hazardous waste and hazardous waste packaging is generated a long way from the metropolitan area. Therefore, it is expensive to transport waste to the single facilities available for hazardous waste. This provides a strong incentive to find alternative disposal routes, or to stockpile the waste onsite.

The long distances to suitable disposal facilities appears to have led to some pragmatic solutions, where country landfills are permitted to accept medical/clinical waste and low level hazardous waste. The environmental standards at WA's rural landfills is highly variable. Therefore, most would not be suitable for hazardous waste disposal.

Overall, it appears that the low volume of hazardous waste generated in WA means that it has only been financially viable to have one of each of the most crucial types of hazardous waste facilities. This leaves the State vulnerable to a stockpiling crisis if one of these facilities closes. Further, the long distances to these single facilities, meaning limited access, has resulted in less than ideal practices for the management of hazardous waste. The size of the problem is not really known, as the data available on hazardous waste generation is limited.

The largest risk appears to be a shortage in Class IV landfill capacity. There is currently one Class IV landfill cell in the State, and it is located in Perth. This is not convenient when the waste is generated a long way from the metropolitan area... In the event that the cell closes, or a new one is not constructed when the current cell is full, then WA would be without its main disposal route for hazardous waste".

WA Department of Water and Environmental Regulation noted: proposals have been received for new class IV and V landfills in remote WA (Pilbara and Goldfields). These facilities, if established, will provide more options for hazardous waste management in remote WA. DWEP is also planning for future initiatives under the State's new Waste Strategy and proposed State Waste Infrastructure Plan.





# 4. Assessment of projected need vs capacity of hazardous waste infrastructure

Having generated projections of the arisings of hazardous waste in Section 2 and estimated infrastructure capacity in Section 3, this section of the report compares the two to identify wastes and jurisdictions where an expansion of capacity may be needed during the 20 year projection period. Before presenting the assessment of projection of need vs capacity, this section outlines the method for completing the assessment and also provides analysis of the limitations of the assessment and/or increase the levels of uncertainty.

# 4.1 Method

The assessment of need against capacity involved four main steps discussed below.

# 4.1.1 Step 1: determine the assumed management of waste groups

The assumed management methods of hazardous waste arisings now and over the projection period are discussed in Section 2.8 and presented in Figure 40 to Figure 44 (above).

# **4.1.2** Step 2: each waste group's management methods were mapped to infrastructure groups

For each waste group, the adjusted management methods were mapped to an infrastructure group (i.e. the infrastructure group most likely to receive the particular fate was selected). Examples are:

- the Plating & heat treatment waste group with a management method of CPT was mapped to CPT plant
- the Plating & heat treatment waste group with a management method of disposal was mapped to Hazardous waste landfill facility
- the Asbestos waste group with a disposal management method was mapped to the Landfill facility (NEPM codes N, T) infrastructure group.

The full mapping process is illustrated in Table 48.

# 4.1.3 Step 3: combine waste group projections, adjusted management method, and infrastructure group capacity

The tonnes of each waste group going to each infrastructure group were projected for each year and scenario (high, best and low). The management methods determined in Step 1 (above) are assumed to remain constant over the projection period of 20 years. It is likely that the management methods will change over the projection period and by varying amounts for different waste groups and in different jurisdictions. Changes in the management method will directly affect the capacity needs of the infrastructure groups. For example, an increase in recycling would require additional recycling capacity and reduce the demands on the disposal capacity. As discussed in Section 4.2 having limited data on the future management of waste groups limits the accuracy of the capacity assessment.

# 4.1.4 Step 4: assess the period when waste group projections exceed the infrastructure group capacity

The projected tonnages sent to each infrastructure group were then compared with the installed capacity of the infrastructure group to obtain an estimate of when installed capacity would be exceeded by the allocated arisings.







# Table 48: Mapping of waste management method to infrastructure group

| Management method                        | Recycling                                     | Chemical/<br>physical<br>treatment | Biodegradation             | Landfill                             | Thermal destruction              | Short-term<br>storage or<br>transfer | Long-term<br>storage          |
|------------------------------------------|-----------------------------------------------|------------------------------------|----------------------------|--------------------------------------|----------------------------------|--------------------------------------|-------------------------------|
| Waste group                              |                                               |                                    |                            | ·                                    |                                  |                                      |                               |
| Plating & heat<br>treatment              |                                               | CPT plant                          |                            | Hazardous waste<br>landfill facility |                                  | Transfer facility                    |                               |
| Acids                                    |                                               | CPT plant                          |                            | Hazardous waste<br>landfill facility |                                  | Transfer facility                    |                               |
| Alkalis                                  |                                               | CPT plant                          | Bioremediation<br>facility | Hazardous waste<br>landfill facility |                                  | Transfer facility                    |                               |
| Inorganic fluorine (SPL)                 | SPL facility                                  |                                    |                            |                                      |                                  | Transfer facility                    |                               |
| Mercury and compounds                    | Mercury facility                              | CPT plant                          |                            | Hazardous waste<br>landfill facility |                                  | Transfer facility                    |                               |
| Lead and compounds                       | Lead facility                                 | CPT plant                          |                            | Hazardous waste<br>landfill facility |                                  | Transfer facility                    |                               |
| Zinc compounds                           | Zinc facility                                 | CPT plant                          |                            | Hazardous waste<br>landfill facility |                                  | Transfer facility                    |                               |
| Non-toxic salts                          | CPT plant                                     | CPT plant                          | Bioremediation<br>facility | Hazardous waste<br>landfill facility |                                  | Transfer facility                    | Long-term on-<br>site storage |
| Other inorganic chemicals                | E-waste facility                              | CPT plant                          | Bioremediation<br>facility | Hazardous waste<br>landfill facility |                                  | Transfer facility                    |                               |
| Reactive chemicals                       |                                               | CPT plant                          |                            | Hazardous waste<br>landfill facility |                                  | Transfer facility                    |                               |
| Paints, resins, inks,<br>organic sludges | Solvents/paints/organic chemicals facility    | CPT plant                          | Bioremediation<br>facility | Hazardous waste<br>landfill facility |                                  | Transfer facility                    |                               |
| Organic solvents                         | Solvents/paints/organic<br>chemicals facility | CPT plant                          | Bioremediation<br>facility |                                      | POP thermal destruction facility | Transfer facility                    |                               |







| Management method                   | Recycling                | Chemical/<br>physical<br>treatment | Biodegradation                  | Landfill                             | Thermal destruction              | Short-term<br>storage or<br>transfer | Long-term<br>storage            |
|-------------------------------------|--------------------------|------------------------------------|---------------------------------|--------------------------------------|----------------------------------|--------------------------------------|---------------------------------|
| Pesticides                          | Energy recovery          | CPT plant                          |                                 | Hazardous waste<br>landfill facility |                                  | Transfer facility                    |                                 |
| Oils                                | Oil re-refining facility | CPT plant                          | Bioremediation<br>facility      | Hazardous waste<br>landfill facility |                                  | Transfer facility                    |                                 |
| Waste oil/water<br>mixtures         | Oil re-refining facility | OWT facility                       | Bioremediation<br>facility      |                                      |                                  | Transfer facility                    |                                 |
| Grease trap waste                   |                          | CPT plant                          | Organics processing<br>facility | Hazardous waste<br>landfill facility |                                  | Transfer facility                    |                                 |
| Other putrescible/<br>organic waste |                          |                                    | Organics processing<br>facility | Hazardous waste<br>landfill facility |                                  | Transfer facility                    |                                 |
| PCB waste                           |                          |                                    |                                 |                                      | POP thermal destruction facility | Transfer facility                    |                                 |
| POP-BDEs and HBCD                   |                          |                                    |                                 |                                      | POP thermal destruction facility |                                      | Long-term<br>isolation facility |
| НСВ                                 |                          |                                    |                                 |                                      |                                  |                                      |                                 |
| PFOS-contaminated biosolids         |                          |                                    |                                 | Hazardous waste<br>landfill facility | POP thermal destruction facility |                                      |                                 |
| PFAS-contaminated soils             |                          |                                    |                                 | Hazardous waste<br>landfill facility | POP thermal destruction facility |                                      | Long-term isolation facility    |

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018

Final (non-confidential version)







| Management method                   | Recycling                             | Chemical/<br>physical<br>treatment      | Biodegradation             | Landfill                                  | Thermal destruction                               | Short-term<br>storage or<br>transfer | Long-term<br>storage         |
|-------------------------------------|---------------------------------------|-----------------------------------------|----------------------------|-------------------------------------------|---------------------------------------------------|--------------------------------------|------------------------------|
| AFFF concentrates                   |                                       |                                         |                            |                                           | POP thermal destruction facility                  |                                      | Long-term isolation facility |
| Other organic chemicals             | Energy recovery                       | CPT plant                               | Bioremediation<br>facility | Hazardous waste<br>landfill facility      |                                                   | Transfer facility                    |                              |
| Contaminated soil                   |                                       | Soils treatment<br>facility             |                            | Landfill facility<br>(NEPM codes N,<br>T) |                                                   | Transfer facility                    |                              |
| Other contaminated biosolids        |                                       |                                         |                            | Hazardous waste<br>landfill facility      |                                                   |                                      |                              |
| Other industrial treatment residues |                                       | CPT plant                               | Bioremediation<br>facility | Hazardous waste<br>landfill facility      |                                                   | Transfer facility                    |                              |
| Asbestos containing<br>material     |                                       |                                         |                            | Landfill facility<br>(NEPM codes N,<br>T) |                                                   | Transfer facility                    |                              |
| Other soil/sludges                  | Hazardous waste<br>packaging facility | CPT plant                               | Bioremediation<br>facility | Hazardous waste<br>landfill facility      |                                                   | Transfer facility                    |                              |
| Clinical & pharmaceutical           |                                       | Clinical waste<br>treatment<br>facility |                            | Hazardous waste<br>landfill facility      | Clinical waste<br>facility thermal<br>destruction | Transfer facility                    |                              |
| EOLT                                | EOLT facility                         |                                         |                            | Landfill facility<br>(NEPM codes N,<br>T) |                                                   | Transfer facility                    |                              |
| Other miscellaneous                 | Energy recovery                       | CPT plant                               | Bioremediation<br>facility | Hazardous waste<br>landfill facility      |                                                   | Transfer facility                    |                              |
| Lithium ion batteries               | E-waste facility                      |                                         |                            | Landfill facility<br>(NEPM codes N,<br>T) |                                                   |                                      |                              |







# 4.2 Limitations and uncertainty

The assessment of projected hazardous waste infrastructure need vs capacity is affected by:

- 1. the levels of uncertainty of the projected arisings of hazardous waste
- 2. the levels of uncertainty of the assumed management methods and allocation to infrastructure (i.e. how much of each waste group's arisings will be managed by what infrastructure)
- 3. the limitations in coverage and levels of uncertainty of the assessment of the current hazardous waste infrastructure capacity.

These three dimensions of uncertainty are discussed below.

## 4.2.1 Uncertainty in projections of hazardous waste arisings

The levels of uncertainty of the projected arisings of hazardous waste are discussed in Section 2.5. The use of high, best and low scenarios reflects the levels of uncertainty and provides for a significant range in the projections.

The projected arisings (and management methods) of new hazardous waste, such as PFAS waste, are particularly uncertain as there are little or no historical arisings data to inform the baseline or trend of the projection. The range between high, best and low scenarios is greater for this waste, reflecting the increased uncertainty.

The availability and quality of the supporting jurisdictional tracking system data used to determine the baseline (starting point) for the projection are variable, see analysis in Section 2.4.

# 4.2.2 Uncertainty in the assumed management methods and mapping to infrastructure

Steps 1 and 2 of the assessment methods, discussed above, outline the method of determining the management methods for waste arisings and mapping the proportions to the infrastructure groups.

The assessment of the adequacy of infrastructure relies on the assumed management methods which are derived from the waste tracking data from NSW, Qld, SA, Vic and WA.

The assessment assumes the management methods for each waste group (see Figure 40 to Figure 44) and the mapping to the receiving infrastructure groups (see Table 48) remain constant over time. In reality, changing market conditions, innovation and policy efforts are likely to change these proportions and potentially the infrastructure that manages the waste.

This assessment has attempted to reduce uncertainty related to changes in the management methods of each waste group by consulting with DoEE and jurisdictional EPA (or equivalent) staff regarding likely changes in the management requirements of hazardous waste.

## 4.2.3 Limitations and uncertainty of the infrastructure capacity estimates

The following factors increase uncertainty in the infrastructure capacity estimates:

1. **Capacity database coverage:** Some waste groups include hazardous waste that is managed by facilities excluded from the infrastructure database. As detailed in Section 3.2, many landfills that accept low level contaminated soil, asbestos and EOLT, for example, are not included in the scope of the infrastructure database.

Some waste groups include waste that is managed by infrastructure groups with limited coverage in the infrastructure capacity database. For example, the database has limited coverage of hazardous waste organics recycling facilities and bioremediation facilities because composting facilities are excluded from the scope of database.







Incomplete coverage of an infrastructure group results in an under-estimation of the capacity of these infrastructure groups and an inaccurate estimate of the period when the capacity of these groups will be exceeded. Figure 45 illustrates which infrastructure groups are excluded from the capacity assessment or have limited coverage.

- 2. **Capacity data quality:** The infrastructure capacity data collated in this report is of varying accuracy. Table 46 details the proportions of what is assumed to be good, adequate or poor-quality data for each infrastructure group.
- 3. Infrastructure group capacity overlap: As discussed in Section 3.2, infrastructure was grouped based on the waste received and the waste management method<sup>38</sup> of the infrastructure. There is some overlap in the management provided by the infrastructure included in the groups. Some groups may provide capacity for more than the management method/s identified. For example, oil re-refining facilities often have a transfer and storage capacity. In these cases, the capacity of the management method may be overestimated. It follows that where the capacity of an infrastructure group is included within other groups (e.g. transfer station and temporary storage capacity is provided by many other groups) the capacity of the group is under-estimated.
- 4. **Diffuse infrastructure groups:** The infrastructure database may be incomplete for some infrastructure groups that are within the scope of the database due to overlooked sites. Whilst this project has added some additional sites to the database, for diffuse infrastructure groups such as waste organics or solvent recycling facilities, it is likely that some small operations have not been identified and their capacity is missing.

For each infrastructure group the limitations and uncertainties of the capacity estimates discussed above are assessed in Table 49. An overall assessment of uncertainty for capacity estimates is provided for each group (from low through to very high).

The assessment of capacity uncertainty is an important consideration when assessing the period when the waste group projections are projected to exceed the infrastructure group capacity.


<sup>&</sup>lt;sup>38</sup> The waste management method of the infrastructure refers to the waste management provided at the site (e.g. recycling energy recovery, treatment, disposal, short-term storage or transfer, long-term storage). Some sites provide more than one waste management method, in which case, where significant, the site has more than one entry in the database.







# Figure 45: Hazardous waste groups arisings, coverage in capacity database and extent of assessment









# Table 49: Infrastructure capacity estimates assessment of uncertainty

| Hazardous waste infrastructure              | 1. Coverage in<br>capacity database | 2. Ind. response for<br>capacity data | 3. Infrastructure<br>grouping overlap? (Y/N) | 4. Very diffuse<br>inf. group? | Uncertainty of<br>capacity estimate |
|---------------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------------|--------------------------------|-------------------------------------|
| Recycling and energy recovery               |                                     | capacity data                         | Broading orenabil (1/11/                     |                                |                                     |
| Hazardous waste packaging facility          |                                     | 21%                                   | Ν                                            | Y                              | High                                |
| E-waste facility                            | , Full                              | 92%                                   | Y                                            | Ν                              | Moderate                            |
| Oil re-refining facility                    | Full                                | 60%                                   | Ν                                            | Ν                              | Low                                 |
| Lead facility                               | , Full                              | 67%                                   | Ν                                            | Ν                              | Low                                 |
| Mercury facility                            | Full                                | 100%                                  | Ν                                            | Ν                              | Low                                 |
| Solvents/paints/organic chemicals facility  | Full                                | 75%                                   | Υ                                            | Y                              | Moderate                            |
| Organics processing facility                | Limited                             | 50%                                   | Υ                                            | Y                              | Very high                           |
| EOLT facility                               | Full                                | 93%                                   | Ν                                            | Ν                              | Low                                 |
| SPL facility                                | Full                                | 100%                                  | Ν                                            | Ν                              | Low                                 |
| Energy recovery                             | Full                                | 60%                                   | Υ                                            | Ν                              | Moderate                            |
| Treatmen                                    | :                                   |                                       |                                              |                                |                                     |
| CPT plan                                    | : Full                              | 78%                                   | Υ                                            | Ν                              | Moderate                            |
| Clinical waste treatment facility           | Full                                | 38%                                   | Ν                                            | Ν                              | High                                |
| Bioremediation facility                     | Limited                             | 0%                                    | Υ                                            | Y                              | Very high                           |
| OWT facility                                | Full                                | 37%                                   | Υ                                            | Y                              | High                                |
| Soils treatment facility                    | Full                                | 100%                                  | Ν                                            | Ν                              | Low                                 |
| Disposa                                     | l                                   |                                       |                                              |                                |                                     |
| Hazardous waste landfill facility           | Full                                | 50%                                   | Y                                            | Ν                              | Very high                           |
| Landfill facility (NEPM codes N, T          | None                                |                                       | Na                                           | Na                             | Na                                  |
| POP thermal destruction facility            | Full                                | 86%                                   | Ν                                            | Ν                              | Moderate                            |
| Clinical waste facility thermal destruction | Full                                | 100%                                  | Ν                                            | Ν                              | Low                                 |
| Short-term storage or transfer              | •                                   |                                       |                                              |                                |                                     |
| Transfer facility                           | Limited                             | 79%                                   | Y                                            | Y                              | Very high                           |
| Long-term storage                           | !                                   |                                       |                                              |                                |                                     |
| Long-term on-site storage                   | None                                |                                       | Na                                           | Na                             | Na                                  |
| Long-term isolation facility                | r Full                              | 100%                                  | Ν                                            | Ν                              | Low                                 |







# 4.3 National assessment of need vs capacity by infrastructure group

A national assessment of the capacity of each infrastructure groups against hazardous waste arisings in 2016-17 and in future is given in Table 50. The table includes the following for each infrastructure group:

- the estimated arisings in 2016-17 that were managed by the infrastructure group, derived from jurisdictions waste tracking system data
- the installed capacity of the infrastructure included in the group
- the expected future change in installed infrastructure capacity from new infrastructure that is currently under construction or commissioning or alternatively from planned closures of infrastructure
- the assessment of the level of uncertainty of the capacity estimate for the group (from low to very high)
- the year in which estimated arisings exceed currently installed capacity; this value is given for all three scenarios (best, high and low estimates)
- a discussion of the assessment and any specific recommendations.

#### Table 50: National assessment of projected arisings vs infrastructure capacity

| Infrastructure group                  | 16-17<br>arisings<br>(kt/yr) | Installed<br>capacity<br>(kt/yr) | Expected<br>capacity<br>change<br>(kt/yr) | Uncertainty of<br>assessment<br>low - very<br>high | Est. year arisings > installed<br>capacity<br>Best High Low |      |       | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------|------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recycling and energy rec              | overy                        |                                  |                                           |                                                    |                                                             |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Hazardous waste<br>packaging facility | 15                           | 19                               | 0                                         | High                                               | >2037                                                       | 2033 | >2037 | Analysis indicates that under the best and low scenarios over the next 20 years the installed capacity of Australia's current hazardous waste packaging recycling infrastructure will be able to recycle waste arisings. Under the high scenario, the current installed capacity would be exceeded in 2033. There may be some regional limitations (see jurisdictional analysis below).<br>The infrastructure need vs capacity assessment for this group has high uncertainty due to a low response rate during consultation and this infrastructure group being highly diffuse increasing the probability of capacity not being included in the capacity database. |







| Infrastructure group     | 16-17<br>arisings<br>(kt/yr) | Installed<br>capacity<br>(kt/yr) | Expected<br>capacity<br>change<br>(kt/yr) | Uncertainty of<br>assessment<br>low - very<br>high | -     | r arisings ><br>capacity<br>High Lo |       | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------|------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|-------|-------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E-waste facility         | 4                            | 106                              | 12                                        | High                                               | 2037  | 2035                                | >2037 | Analysis indicates that under the best and low scenarios over the next 20 years the current installed capacity of Australia's e-waste (major physical/chemical and manual disassembly processing) infrastructure will be able to recycle waste arisings. Under the high scenario, capacity could become constrained by 2035 if e-waste arisings grow very strongly, however, expected increases in capacity of 12 kt/yr should provide sufficient national capacity to cater for higher growth. There are some regional limitations (see jurisdictional analysis).<br>The needs vs capacity assessment for this group has high uncertainty due to the waste arisings reported in tracking system data (4 kt in 2016-17) being much lower than the reported tonnages received (58 kt in 2016-17). This large difference is likely due to the fact that most e-waste is not transported and tracked as a hazardous waste. Considering the reporting receipts of 58 kt in 2016-17 and the current installed capacity of 106 kt/yr, it is still likely that there is sufficient capacity over the projection period.<br>For e-waste it is important to consider that the assessment assumes no change in the management methods of e-waste. Changes to product stewardship agreements or landfill bans on e-waste could significantly change current e-waste management and increase recycling capacity required. |
| Oil re-refining facility | 325                          | 526                              | 0                                         | Moderate                                           | >2037 | 2034                                | >2037 | <ul> <li>Analysis indicates that under the low and best scenarios over the next 20 years the installed capacity of Australia's current oils re-refining infrastructure will be able to recycle waste arisings. Under the high scenario, the current installed capacity would be exceeded in 2034. There may be some regional limitations (see jurisdictional analysis below).</li> <li>The infrastructure need vs capacity assessment for this group has moderate uncertainty due to a moderate response rate during consultation and the potential under-reporting of waste oil in NSW and Vic data resulting in an under-estimate of 2016-17 arisings.</li> <li>The 2018 assessment for this infrastructure group is a significant improvement on the 2015 assessment due to separating the projections of the NEPM J waste codes of J100 and J160 from J120 waste oil/water, hydrocarbons/water mixtures or emulsions. The J120 waste arisings are now mapped to the new infrastructure group of OWT facilities (see below). This has increased the accuracy of the assessment and resulted in a change of expected exceedance of installed capacity in 2023 (in the</li> </ul>                                                                                                                                                                                                                            |

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018







| Infrastructure group | 16-17<br>arisings<br>(kt/yr) | Installed<br>capacity<br>(kt/yr) | Expected<br>capacity<br>change<br>(kt/yr) | Uncertainty of<br>assessment<br>low - very<br>high |       | Est. year arisings > installed<br>capacity<br>Best High Low |       | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------|------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|-------|-------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                              |                                  |                                           |                                                    |       |                                                             |       | 2015 assessment) to >2037 in this assessment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lead facility        | 119                          | 124                              | 71                                        | Moderate                                           | 2023  | 2018                                                        | >2037 | Assuming arisings increase at the 20-year average population growth rate (1.4%) for<br>all jurisdictions, except Tas (where lead waste is projected to follow trends in global<br>zinc prices), the installed lead recycling infrastructure capacity could be met by 2023.<br>Under a low scenario, of flat trend for 10 years and decline for the next 10 years due<br>to replacement of battery technology, installed capacity is not expected to be<br>exceeded over the next 20 years.<br>Based on the high estimate projection of arisings increasing at the 20-year average<br>rate of economic growth (2.8%) for all jurisdictions, except Tas, capacity would be<br>exceeded in 2018. The high scenario also includes a 20 kt/yr release of jarosite waste<br>from a stockpile at Nyrstar Hobart's zinc smelter to Nyrstar Port Pirie (which is<br>understood to have unconstrained capacity to process wastes from the Hobart zinc<br>smelting operations). The Nyrstar Port Pirie site is included in the e-waste<br>infrastructure group due to the site's defined capacity to process e-wastes such as<br>CRT and the site's unconstrained capacity to take lead waste from Nyrstar Hobart.<br>Nyrstar Port Pirie lead recycling capacity is not included in the 124 kt/yr current<br>installed capacity. There is also an additional 71 kt/yr of lead acid battery smelting<br>capacity under construction that would add significant additional capacity along the<br>east coast. Considering the Nyrstar Port Pirie capacity to manage all of the lead-rich<br>waste from Nyrstar Hobart and the significant additional lead acid battery processing<br>capacity coming on-line, there is likely to be sufficient lead recycling capacity under<br>all scenarios. There may be some regional limitations (see jurisdictional analysis).<br>The lead recycling assessment has moderate level of uncertainty due to a lack of<br>industry response for the 2018 assessment and due to there not being a clearly<br>defined upper limit on Nyrstar Port Pirie's ability to manage all of the lead waste<br>from Nyrstar operations in addition to lead waste from other sectors. |
| Mercury facility     | 0.2                          | CIC                              | CIC                                       | Low                                                | >2037 | >2037                                                       | >2037 | Analysis indicates that over the next 20 years the currently installed capacity of<br>Australia's current mercury waste recycling infrastructure will be able to recycle<br>waste arisings. There may be some regional limitations (see jurisdictional analysis).<br>Industry reported around 10 times more receipts than was reported in the waste<br>transport tracking systems, reflecting that some of the mercury waste (such as<br>unprocessed light fittings) do not require tracking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018







| Infrastructure group                          | 16-17<br>arisings<br>(kt/yr) | Installed<br>capacity<br>(kt/yr) | Expected<br>capacity<br>change<br>(kt/yr) | Uncertainty of<br>assessment<br>low - very<br>high | Est. ye<br>Best | ar arisings > i<br>capacity<br>High Lo |      | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------|------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|-----------------|----------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solvents/paints/organic<br>chemicals facility | 26                           | 14                               | 0                                         | Very high                                          | 2018            | 2018                                   | 2018 | Text withheld to maintain commercial confidentiality<br>The mercury recycling assessment has a low level of uncertainty, with excellent<br>industry input and a clearly defined infrastructure group targeting mercury recycling<br>as the core business.<br>Projections indicate that the current capacity of solvents/paints recycling is being<br>exceeded. This is unlikely to be accurate due to the high level of uncertainty in the<br>capacity assessment for this group. A number of factors need to be considered:<br>1. it is likely that some materials sent to energy recovery are recorded as recycled<br>(resulting in an over-estimate of arisings to recycling and under-estimate to energy<br>recovery)<br>2. some solvent/paint recycling capacity is likely to be within the CPT infrastructure<br>group<br>3. some smaller operators that recycle solvents/paint may not have not been<br>captured in the infrastructure database.<br>Based on industry consultation and this assessment, a national shortage of this                                                                                                                                                                                                                                                                                                          |
| Organics processing facility                  | 600                          | 106                              | 0                                         | Very high                                          | 2018            | 2018                                   | 2018 | <ul> <li>infrastructure over the next 20 years is considered unlikely. There may be some regional limitations (see jurisdictional analysis).</li> <li>Projections indicate that under all scenarios the current capacity of organics recycling infrastructure (for NEPM K code organics) is being exceeded. This is inaccurate and is linked to the very high uncertainty of the assessment of needs vs capacity. The majority of the 600 kt arisings in 2016-17 of NEPM K code wastes are sent to composting sites that are not included in the infrastructure capacity assessment. To complete a quantitative analysis of projected arisings of NEPM K code organics against infrastructure capacity, extensive data would be required on non-hazardous waste infrastructure that accepts only a relatively small amount of low-level hazardous waste as part of much larger non-hazardous waste way not be within the infrastructure database due to the diffuse nature of this infrastructure group.</li> <li>Based on industry consultation and our assessment of organics recycling infrastructure (for NEPM code N) we do not believe that there is likely to be a national shortage of this infrastructure group over the next 20 years. This assessment is supported by the industry consultation results presented in Table 45</li> </ul> |







| Infrastructure group | 16-17<br>arisings<br>(kt/yr) | Installed<br>capacity<br>(kt/yr) | Expected<br>capacity<br>change<br>(kt/yr) | Uncertainty of<br>assessment<br>low - very<br>high | Est. ye<br>Best | ar arisings<br>capacity<br>High I |       | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------|------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|-----------------|-----------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                              |                                  |                                           |                                                    |                 |                                   |       | with an estimate that the sites within the scope of this infrastructure group received 99 kt of waste in 2016-17 and have an installed capacity to manage 106 kt/yr. There may be some regional limitations (see jurisdictional analysis).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EOLT facility        | 44                           | 100                              | 9                                         | High                                               | >2037           | >2037                             | >2037 | <ul> <li>This is a new infrastructure group for the 2018 assessment. The assessment of need vs capacity indicates that over the next 20 years the currently installed capacity of Australia's EOLT recycling infrastructure (100 kt/yr) will be able to recycle waste arisings (44 kt/yr in 2016-17). However, the EOLT recycling industry reported around 90 kt of EOLT received which is more than double the 44 kt waste arisings recycled in 2016-17 (estimated by REC 2017). The difference is related to EOLT recyclers receiving EOLT and exporting them with minimal processing to international energy recovery or reuse markets (the 44 kt relates to full onshore processing).</li> <li>As outlined in REC 2017, whilst there is good capacity in Australia to collect and partly process tyres for export, there is a lack of well-developed on-shore markets for tyre-derived products. REC 2017 estimates that over 60% of EOLT in Australia are sent to landfill, stockpiled or go to unknown fates. To increase the recovery of these lost EOLT there will need to be strong developments in processing technology in Australia. However, these investments cannot occur without well-established offtake markets for the tyre-derived products. Whilst the lack of EOLT recycling and high rates of landfill, stockpiling and unknown management points to a lack of recycling infrastructure, the investment in this infrastructure will not happen without the development of offtake markets and strong policy and enforcement to ensure tyres are not sent to landfill, stockpiled, dumped or exported to low value management options.</li> <li>The level of uncertainty for the EOLT assessment of needs vs capacity is high due to lack of site processing information to differentiate between full on-site recycling vs minor processing and export capacity. It is also unclear how readily EOLT recyclers could scale up operations so more EOLT were recovered for processing.</li> </ul> |







| Infrastructure group | 16-17<br>arisings<br>(kt/yr) | Installed<br>capacity<br>(kt/yr) | Expected<br>capacity<br>change<br>(kt/yr) | Uncertainty of<br>assessment<br>low - very<br>high | -     | ar arising<br>capaci<br>High | s > installed<br>ty<br>Low | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|-------|------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPL facility         | 46                           | CIC                              | CIC                                       | Low                                                | >2037 | 2020                         | >2037                      | <ul> <li>An estimated 46 kt of SPL arose in 2016-17 which suggests that the aluminium industry is processing all of the current SPL being generated and some of a significant stockpile of SPL. REC 2016 estimates Australia's annual SPL generation at around 30 kt/yr (based on aluminium production rates). REC 2016 also provides a detailed analysis of the SPL stockpiles in Australia.</li> <li>REC 2016 estimates the stockpile of SPL to be around 700 kt, of which around 390 kt are landfilled on-site at aluminium smelters around Australia.</li> <li>For this assessment: <ul> <li>the best scenario assumes a 30% reduction in storage over 10 years from policy intervention (linear bleed) start in 2 years</li> <li>the high scenario assumes a 100% reduction in storage over 10 years from policy intervention (linear bleed) start in 2 years</li> <li>the low scenario assumes no release from stockpiles of the projection period.</li> </ul> </li> <li>Under the best and low scenarios, the current installed capacity is not estimated to be exceeded. Under the high scenario capacity would be exceeded, as not quite all of the stockpile would be processed in 10 years. This is consistent with the REC 2016 findings that there is capacity to treat the SPL stockpiles in Australia over around a 10-year period, whilst treating current arisings. REC 2016 also notes that the treatment of SPL that has been landfilled has not yet been demonstrated and may require additional or different infrastructure installation.</li> <li>The uncertainty of the SPL assessment is low, due mainly to the recent and detailed study (REC 2016) of SPL processing capacity, generation and stockpiles in Australia providing the necessary data.</li> </ul> |







| Infrastructure group | 16-17<br>arisings<br>(kt/yr) | Installed<br>capacity<br>(kt/yr) | Expected<br>capacity<br>change<br>(kt/yr) | Uncertainty of<br>assessment<br>low - very<br>high | -     | r arisings > i<br>capacity<br>High Lo |       | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------|------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|-------|---------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Energy recovery      | 2                            |                                  | CIC                                       | Very high                                          | >2037 | >2037                                 | >2037 | This infrastructure group's capacity has increased significantly since the 2015<br>assessment, due to the inclusion of cement kilns within the project scope and the<br>allocation of these energy recovery tonnages to this group. The estimated arisings<br>for this infrastructure group (2 kt) are incorrect. Industry reported if of waste<br>currently received. The reasons for this are:<br>- Some of the 26 kt of solvents/paints recycling may actually be sent to energy<br>recovery infrastructure. Currently, the jurisdictional waste tracking systems do not<br>support the separate reporting of tonnages sent to recycling vs energy recovery,<br>which limits the ability to assess energy recovery infrastructure need.<br>- Some of the waste that is sent for energy recovery does not require tracking in<br>some jurisdictions, for example waste oil in NSW and EOLT in NSW, SA and Vic.<br>It is also possible that tonnages of waste suitable for energy recovery are being<br>moved without the use of transport certificates, which would again lower the<br>recorded tonnages within tracking system data.<br>Currently Australia's energy recovery from hazardous waste relies upon cement kilns<br>as the offtake market. Whilst current installed capacity exceeds the 83 kt estimated<br>as received, this does not allow for significant increases without either amendment<br>to cement kiln licences (if technically feasible) or the development of additional<br>energy recovery infrastructure apart from cement kilns.<br>The uncertainty of the energy recovery assessment is very high, due mainly to<br>inaccurate data for energy recovery arisings, which are far too low. |







| Infrastructure group                 | 16-17<br>arisings<br>(kt/yr) | Installed<br>capacity<br>(kt/yr) | Expected<br>capacity<br>change<br>(kt/yr) | Uncertainty of<br>assessment<br>low - very<br>high |       | Est. year arisings > installed<br>capacity<br>Best High Low |       | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------|------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|-------|-------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Treatment                            |                              |                                  |                                           |                                                    |       |                                                             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CPT plant                            | 395                          | 1,129                            | 4                                         | Moderate                                           | >2037 | >2037                                                       | >2037 | <ul> <li>Based on the best, high and low projections of arisings, CPT infrastructure is estimated to be able to meet national demand over the next 20 years. For all three scenarios, the projections are based on varying degrees of decline in some waste groups, such as B Acids and E Reactive chemicals, and growth in other waste groups, such as D300 Non-toxic salts and C Alkalis that are projected to increase driven by oil and gas (CSG) industry developments, however, much of this waste would be more likely sent to long-term isolation (discussed below).</li> <li>Estimated arisings to CPT have decreased significantly since the 2015 assessment from around 700 kt to around 400 kt. The estimated waste received reported by industry also fell from around 1,150 kt in 2015 to 860 kt. This is partly due to the closure of around 10 CPT facilities and also reflects the declining tonnages from some industrial waste generators. This was reported as a serious concern for the waste industry in the 2015 assessment.</li> <li>The infrastructure need vs capacity assessment for CPT has moderate uncertainty due mainly to the overlapping capacity with other infrastructure groups, such as solvents/paints recycling and transfer station or temporary storage, resulting in a likely over-estimate of capacity. Offsetting this is uncertainty about the amount of CSG industry waste that will actually leave the development site and be sent to CPT facilities.</li> </ul> |
| Clinical waste<br>treatment facility | 23                           | 25                               | 0                                         | High                                               | 2026  | 2023                                                        | >2037 | <ul> <li>Based on the best estimate, current 20-year average annual population growth</li> <li>(1.4% pa) and the installed capacity of clinical waste treatment – capacity could be exceeded by 2026. Based on the high projection Thornton 2014 growth rate (2.0 - 2.1%), national capacity could be exceeded in 2023. Under the low scenario where the waste arisings trend is flat, capacity is projected to meet demand over the next 20 years.</li> <li>The infrastructure needs vs capacity assessment for this group has high uncertainty due to a poor response rate from industry. Despite this uncertainty, the assessment does indicate that Australia's clinical waste treatment capacity is soon to become constrained and investment in additional infrastructure may be required.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |







| Infrastructure group                   | 16-17<br>arisings<br>(kt/yr) | Installed<br>capacity<br>(kt/yr) | Expected<br>capacity<br>change<br>(kt/yr) | Uncertainty of<br>assessment<br>low - very<br>high |         | ar arisings ><br>capacity<br>High Lc | installed<br>ow | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------|------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|---------|--------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bioremediation facility                | 192                          | 0                                | 0                                         | Very high                                          | no inf. | no inf.                              | no inf.         | This is a new infrastructure group for the 2018 assessment. Capacity data coverage limitation: composting facilities are excluded from the database. This group is intended to refer to facilities that treat hazardous waste though biodegradation that are not generating compost for sale. However, many commercial composting facilities are licenced to receive low level hazardous waste which is effectively bioremediated in the composting process and these facilities are not within the project scope.<br>Some 200 kt of hazardous waste was reported in tracking data as bioremediated. Most, if not all, of this material would be processed by commercial composting facilities licenced to take a range of low hazard organics waste such as grease trap. These composting facilities are not included in this database. Whilst it is worth maintaining transparency on the amount of hazardous waste being reported as bioremediated by the composting industry, it is beyond the project scope to assess the capacity of bioremediation capacity in Australia.                                          |
| Oily water treatment<br>(OWT) facility | 187                          | 199                              | 0                                         | Very high                                          | 2025    | 2019                                 | >2037           | This is a new infrastructure group for the 2018 assessment. Under the best estimate projection, capacity would be exceeded in 2025, or as soon as 2019 under the high scenario estimate. Under the low projection, estimated capacity is not expected to be exceeded over the 20-year projection period. The reported 2016-17 arisings of 187 kt are more than the estimated receipts of around 150 kt which may be due do to a lack of response from industry and the need to use averages for around a third of sites or it could be due to the database not including all sites from this diffuse infrastructure group.<br>The uncertainty of the needs vs capacity assessment is very high due to the capacity assessment relying on average installed capacity for around a third of the sites and the high risk that small OWT plants are not included in the database.<br>Noting the above, the assessment indicates that capacity for OWT could become constrained over the next 10 years and some additional capacity may be required. There will be particular regional needs, see jurisdiction sections below. |







| Intrastructure group     | 16-17<br>arisings<br>(kt/yr) | Installed<br>capacity<br>(kt/yr) | Expected<br>capacity<br>change<br>(kt/yr) | Uncertainty of<br>assessment<br>low - very<br>high |       | r arisings ><br>capacity<br>High Lo |       | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|-------|-------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soils treatment facility | 131                          | 178                              | 296                                       | Moderate                                           | >2037 | 2018                                | >2037 | Under the best estimate projection arisings would not exceed installed capacity over<br>the next 20 years and would currently exceed capacity under the high scenario.<br>Under the low scenario capacity would not be exceeded over the projection period.<br>Significant additional soil treatment capacity is under construction/commissioning in<br>Vic that will add around 300 kt of additional installed capacity which will provide<br>sufficient capacity for the long term for Vic. The significant Vic treatment capacity<br>may also be used to treat soils from interstate, with appropriate approvals in place.<br>Industry reported receiving arisings of just 97 kt of contaminated soils. The reported<br>2016-17 arisings of 131 kt are significantly more than this. This may be due to low<br>level contaminated soil being received for treatment at composting facilities in some<br>jurisdictions, which are beyond the scope of the capacity assessment, or small 'low<br>tech' contaminated soils operations that have not been captured by the capacity<br>assessment.<br>The uncertainty of the needs vs capacity assessment is moderate due to the highly<br>fluctuating generation rates of contaminated soils and the difficulty that<br>contaminated soils facilities face in securing the contaminated soil for treatment.<br>Industry report on-site management, contamination dilution with clean soils and<br>landfill disposal as serious threats to their investments, which reduces the certainty<br>in infrastructure capacity in Nustralia if contaminated soils generation rates are high,<br>except for Vic which has significant capacity coming on-line. For neighbouring<br>jurisdictions, sending soils to Vic for treatment may be an option in future. There<br>may be other particular regional needs, see jurisdiction sections below. |







| Infrastructure group                 | 16-17<br>arisings<br>(kt/yr) | Installed<br>capacity<br>(kt/yr) | Expected<br>capacity<br>change<br>(kt/yr) | Uncertainty of<br>assessment<br>low - very<br>high |      | Est. year arisings > installed<br>capacity<br>Best High Low |      | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------|------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|------|-------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Disposal                             |                              |                                  |                                           |                                                    |      |                                                             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Hazardous waste<br>landfill facility | 235                          | 201                              | 0                                         | High                                               | 2018 | 2018                                                        | 2018 | This capacity assessment examined hazardous waste landfills' ability to accept<br>annual arisings of waste; this differs from the usual measure of landfill capacity,<br>which refers to total available airspace. Landfills may be constrained in relation to<br>the rate at which waste is accepted, for example due to limitations of specialist cells,<br>traffic management or licence limits. These constraints are not common and are<br>understood not to be an issue for the sites included in this group.<br>For all three scenarios the current 2016-17 arisings exceed the current installed<br>annual capacity. The modelling assessment for this infrastructure group is incorrect.<br>The response rate from site operators was only 50%, meaning infrastructure group<br>averages were used, and generally the responses provided data only on waste<br>currently received with little information on the installed capacity (annual<br>acceptance rate that is possible for the site). This is understandable as, unlike other<br>infrastructure types, landfills are usually able to cater to varying capacity demands<br>and a site's installed annual capacity can be difficult to define.<br>Perhaps more important than the above analysis are industry comments regarding<br>the expected life (i.e. amount of airspace remaining and the number of years of<br>operation before this capacity is consumed) of the seven landfill sites included in this<br>infrastructure group. <sup>39</sup> . Landfill operators were asked how much waste could be<br>received at the site before the site's airspace was consumed. Where the operator<br>responded, they all responded with an estimate of the expected year of closure or<br>simply stated that the site had more than 20 years capacity remaining. Text<br>withheld to maintain commercial confidentiality. No other sites surveyd in this<br>category responded with a definitive response of planned closure within the next 20<br>years. Apart from Suez Elizabeth Drive, responses were generally vague on the<br>expected closure year and it is recommended that more detailed investigation of the<br>likely closure date of t |

<sup>39</sup> The Mount Walton Intractable Waste facility in WA is included in the seven hazardous waste landfills. It has historically only operated on a campaign basis and Tellus Holdings are building a long-term isolation facility five km from site. The future operation of the Mount Walton Intractable waste facility is assumed unlikely following establishment of the Tellus Holdings site next-door.

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018







| Infrastructure group                   | 16-17<br>arisings<br>(kt/yr) | Installed<br>capacity<br>(kt/yr)                   | Expected<br>capacity<br>change<br>(kt/yr) | Uncertainty of<br>assessment<br>low - very<br>high |         | r arisings > i<br>capacity<br>High Lo |         | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------|------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|---------|---------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                              |                                                    |                                           |                                                    |         |                                       |         | due to extreme weather events such as cyclone or fire.<br><b>Recommendation:</b> DoEE work with the jurisdictions to complete a detailed<br>assessment of the likely closure year of the identified hazardous waste landfill facility<br>infrastructure including a risk assessment of site capacity being impacted by issues<br>such as extreme weather events.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Landfill facility (NEPM<br>codes N, T) | 2,875                        | Not incluc<br>assessmen<br>arisings ve<br>capacity | nt of                                     | n/a                                                | no inf. | no inf.                               | no inf. | Text withheld to maintain commercial confidentiality.<br>This infrastructure group is not in the scope of hazardous waste database. As<br>discussed in Section 3.2, a significant number of landfills are licensed to take<br>hazardous waste NEPM codes N and T only (asbestos, EOLT, low level contaminated<br>soils) and these facilities are not included in the infrastructure database. This is<br>reflected in the almost 3 Mt of hazardous and controlled waste estimated to be sent<br>to this infrastructure group, by far the largest portion of hazardous waste (almost<br>half of the estimated 6 Mt of arisings). To complete a quantitative analysis of<br>projected arisings of NEPM code N and T wastes vs licensed infrastructure capacity<br>would require a significant expansion of the scope of the hazardous waste capacity<br>database to cover non-hazardous waste infrastructure accepting only a relatively<br>small amount of low level hazardous waste as part of much larger non-hazardous<br>waste quantities.<br>Landfills that accept mostly municipal waste are often also able to take low level<br>contaminated soil and asbestos. Based on industry consultation and our assessment<br>of landfill infrastructure for NEPM codes N and T only, we do not believe there is<br>likely to be a national shortage of this infrastructure group over the next 20 years. |
| POP thermal<br>destruction facility    | 5                            | CIC                                                | CIC                                       | Very high                                          | 2020    | 2020                                  | 2020    | There have been significant developments in POP thermal destruction since the 2015 assessment and also the scope of the 2018 assessment includes cement kilns which are offering capacity to destroy POP. An estimated 3 kt of POP waste arose in 2016-17 and the current installed infrastructure capacity is <b>CIC</b> kt. Around <b>CIC</b> kt of the current installed capacity has only become operational in 2018 and in the past couple of years Australia's designated POP destruction capacity has been limited. An additional <b>CIC</b> kt of POP thermal destruction capacity is expected in the near future. It should be noted that around <b>CIC</b> kt of this additional capacity will be mobile and may be setup on-site for specific projects. However, under all scenarios the current and expected future POP capacity would be greatly exceeded in 2020 when, under the best estimate scenario, arisings are                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018







|                      | 16-17    | Installed | Expected | Uncertainty of | Est. y | ear arisin | gs > installed | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------|----------|-----------|----------|----------------|--------|------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Infrastructure group | arisings | capacity  | capacity | assessment     |        | capa       | city           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | (kt/yr)  | (kt/yr)   | change   | low - very     | Best   | High       | Low            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |          |           | (kt/yr)  | high           |        |            |                | <ul> <li>projected to increase to over 400 kt and increase to 450 kt by 2037. The major increases in arisings in 2020 are driven by major increases in PFAS contaminated waste (soils, AFFF, biosolids) in 2020 and by increases in POP-BDEs and HBCD waste starting in 2023. Whilst this identifies a major gap in Australia's dedicated POP thermal destruction capacity, the capacity assessment uncertainty for this group is very high. The following issues need to be considered that could provide sufficient POP destruction capacity in future:</li> <li>1. POP TD capacity within soils treatment facilities. By 2020, as noted above, Australia should have soil treatment facilities that are able to receive POP, with a total installed capacity of over 300 kt. The capacity of these facilities to receive POP is not yet clear and for this assessment a conservative estimate is made of less than if kt of POP waste capacity within these facilities. It is possible that PFAS contaminated waste (soil and biosolids in particular) may be treated by these facilities in much larger tonnages sufficient to manage the projected arisings.</li> <li>2. POP TD capacity within cement kilns. Cement kilns in Australia are currently destroying some POP including PFOS. The capacity of Australia's cement kilns to destroy POP is estimated to be <u>to</u> kt/yr. The capacity of cement kilns to destroy additional POP tonnages is unknown and there may be additional capacity if the appropriate testing and license approvals were successful.</li> <li>3. POP TD capacity within clinical waste TD facilities. Daniels (Toxfree) Laverton facility is licenced for highly contaminated PCB waste. Daniels (Toxfree) Laverton facility is licenced for highly contaminated PCB waste. Daniels (Toxfree) did not state the potential tonnages of POP that could be destroyed at the facility. It may be the case that the current and planned suite of infrastructure that is able to destroy POP can manage the projected tonnages of POP wastes. However, it will depend on the ability of the soil</li></ul> |







| Infrastructure group                           | 16-17<br>arisings<br>(kt/yr) | Installed<br>capacity<br>(kt/yr) | Expected<br>capacity<br>change<br>(kt/yr) | Uncertainty of<br>assessment<br>low - very<br>high |       | ar arisings > installed<br>capacity<br>High Low |       | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------|------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|-------|-------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                              |                                  |                                           |                                                    |       |                                                 |       | much additional dedicated POP thermal destruction capacity (from technologies such as plasma arc) may be required in future.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Clinical waste facility<br>thermal destruction | 21                           | 33                               | 6                                         | Low                                                | >2037 | >2037                                           | >2037 | <ul> <li>Based on the best, high and low projections of arisings, clinical waste thermal destruction infrastructure is estimated to be able to meet national demand over the next 20 years.</li> <li>The estimated 2016-17 arisings of 21 kt aligns with the 20 kt of waste received as reported by industry. With a currently capacity of 33 kt/y and an expected increase of 3 kt, there appears to be sufficient clinical waste thermal destruction capacity in Australia. There may be local regional needs, see each jurisdiction's section below.</li> <li>The spare capacity of this infrastructure group has the potential to be impacted by the demand for POP thermal destruction where the site is currently or gains a licence for POP destruction (see discussion under POP facilities).</li> <li>The infrastructure needs vs capacity assessment for this group has low uncertainty due to a full response rate from industry a well-defined and industry group with good coverage in the capacity database.</li> </ul>                                                                                                                                                                                                                                                        |
| Short-term storage or tra                      | 551                          | 145                              | 0                                         | Very high                                          | 2018  | 2018                                            | 2018  | Projections indicate that under all scenarios the current national transfer/temporary storage capacity of hazardous waste infrastructure is exceeded. These projections are not accurate due mainly to the capacity database having limited coverage of this group. Whilst some transfer facilities are included in this dataset it is recognised that there are other facilities which deal with hazardous waste that are not included in the dataset, such as smaller storage facilities and transfer stations. This infrastructure group is also not the focus of this project. We surveyed industry asking them to flag any major transport constraints. Very long transport distances particularly in WA were raised several times as a major barrier to treating/recovering hazardous waste. WA has 4 of the 19 transfer station facilities in the 2018 database. For such a large state this appears low. If not already being undertaken, further investigation of strategic locations for transfer station facilities in WA is recommended. Consultation with industry on establishing joint venture transfer stations to consolidate waste from a range of waste companies and generators should be explored for WA and potentially Qld (to reduce costs of CSG wastes transport). |







| Infrastructure group            | 16-17<br>arisings<br>(kt/yr) | Installed<br>capacity<br>(kt/yr) | Expected<br>capacity<br>change<br>(kt/yr) | Uncertainty of<br>assessment<br>low - very<br>high | -       | Est. year arisings > installed<br>capacity<br>Best High Low |         | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------|------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|---------|-------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                              |                                  |                                           |                                                    |         |                                                             |         | <b>Recommendation:</b> DoEE and/or WA and Qld governments complete a detailed assessment and consultation with industry regarding the need for and (where required) best location(s) for additional hazardous waste transfer station/temporary storage infrastructure. <sup>40</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Long-term storage               |                              |                                  |                                           |                                                    |         |                                                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Long-term on-site<br>storage    |                              | ded in asse<br>ersus capac       |                                           | n/a                                                | no inf. | no inf.                                                     | no inf. | This is a new infrastructure group for 2018. Long-term on-site storage facilities are excluded from the database and the needs versus capacity assessment. The infrastructure group has been included recognising that some hazardous wastes are managed in on-site infrastructure that is often for the long term (e.g. CSG RO brine wastes). No tonnages are currently mapped to this infrastructure group because the waste disposed in these sites does not leave the site and is not recorded in hazardous waste tracking data and therefore is not recorded as a waste arising in the assessment database. Data for waste stored in these storages is only available by direct consultation with industry and/or state regulators.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Long-term isolation<br>facility | 0                            | 0                                | CIC                                       | n/a                                                | no inf. | no inf.                                                     | no inf. | This is a new infrastructure group for 2018. Two long-term isolation facilities are currently under development and aim to be operational in around five years' time. Assuming that both of these facilities become operational, they would provide capacity for up to <b>CIG</b> kt/yr for highly intractable wastes that do not have viable treatment or destruction options. This would provide good risk mitigation for the risks associated with having only six (operating) hazardous waste landfills in Australia, with the main NSW site due to close in <b>CIG</b> . <b>CSG reverse osmosis brine wastes and long-term isolation capacity</b> : under the high projection scenario, it is assumed that, after five years new arisings of CSG reverse osmosis brine wastes will be required to be managed offsite and would be sent to long-term isolation facilities (rather than being stored onsite). Historical stockpiles are assumed to remain onsite. <b>This results in a very large increase</b> , <b>2.5 Mt/yr</b> , <b>in 2023 increasing to 3.2 Mt/yr by 2037 that is projected to need long-term isolation facility capacity</b> . This presents a shortfall of <b>CIG</b> Mt of capacity in 2023, even when the currently planned facilities are built and operating at capacity.  The projected needs versus capacity assessment does not identify the year of |

<sup>40</sup> WA DWER noted: State's new Waste Strategy and proposed State Waste Infrastructure Plan aim to reduce risks from long transport distances.







| Infrastructure group | 16-17<br>arisings<br>(kt/yr) | Installed<br>capacity<br>(kt/yr) | Expected<br>capacity<br>change<br>(kt/yr) | Uncertainty of<br>assessment<br>low - very<br>high | Est. yo<br>Best |  |  | Assessment discussion and recommendations                                                                                                                                                  |
|----------------------|------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|-----------------|--|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                              |                                  |                                           |                                                    |                 |  |  | exceedance (2023 under a high scenario for D300) because the CIC kt/yr capacity is not yet operational.                                                                                    |
|                      |                              |                                  |                                           |                                                    |                 |  |  | <b>Recommendation:</b> DoEE should work with state and territory governments to assess the appropriate management of CSG RO brine wastes and determine the likelihood of offsite disposal. |

#### Notes

1. Analysis assumes that the current national average proportions of fate (i.e. how much is recovered, disposed) remain static. This limits the quantitative analysis for wastes that are currently disposed but could be recovered in higher proportion in future. Consultation with government stakeholders about expected changes in regulation has been completed as well as discussing likely future trends with industry during consultation.

2. Landfill installed capacity refers to the potential tonnages that the site can landfill in a year. It does not refer to the amount of waste the site can receive before closure. Where the installed capacity is exceeded, it indicates that the landfill would need to increase capabilities to dispose more waste each year. This may require amendment to the site's EPA licence.







# 4.4 Jurisdictional assessment of need versus capacity

An assessment of installed capacity in each jurisdiction against estimated wastes arising is included in the sections below in Table 52 to Table 59. Each of these tables includes the following for each infrastructure group:

- the installed capacity of the infrastructure included in the group
- the estimated 2016-17 arisings assumed to be managed by each infrastructure group
- the year in which estimated waste arisings exceed installed capacity under best, high and low estimates
- a discussion.

For the jurisdictional assessments, the data is presented in tonnes (not kt) due to the small tonnages for some waste streams at a jurisdictional level. This means that for some larger tonnage waste streams, data is presented at four or five significant figures rather than the two or three significant figures that is more appropriate given high levels of uncertainty.

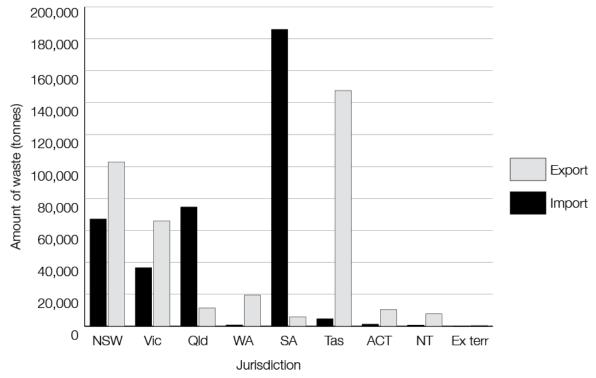
In the public version of this report, the data for infrastructure groups that are serviced by less than three sites have been removed to protect commercial confidentialities. At a jurisdictional level, this has required the redaction of a significant amount of data.

## 4.4.1 Limitation: using the national average of management method for ACT, NT and Tas

The management methods for the 2016-17 waste arisings in ACT, NT and Tas have been estimated using the average of the management methods from the combined weighted average of NSW, Qld, Vic, SA and WA (the national average). Figure 44 shows the national average for management methods by waste group.

In reality, waste in the ACT, NT and Tas may be managed differently to the states included in the national average. This issue is discussed further in the jurisdictional sections that follow.

### 4.4.2 Assessment of NEPM data for net interstate movements of hazardous wastes


The NEPM data is published in the <u>National Environment Protection Council Annual Report</u>. The NEPM data illustrates which jurisdictions are importing and exporting which types of wastes, which is important as it has a direct impact on the need for infrastructure capacity in a jurisdiction. Figure 46 and Table 51 show the NEPM data for the 2016-17 period for each jurisdiction, illustrating firstly the total imports and exports, then the net imports/exports by NEPM 15 waste code. The NEPM 2016-17 data for each jurisdiction is discussed in each of the jurisdictions' tables that follow.







#### Figure 46: NEPM 2016-17 total imports and exports by jurisdiction



#### Table 51: NEPM 2016-17 net imports/exports by jurisdiction and NEPM 15 code

|      |                                      | Net import | s/exports (to | onnes) (negat | tive values ar | e net impor | ts)     |       |       |
|------|--------------------------------------|------------|---------------|---------------|----------------|-------------|---------|-------|-------|
| Code | Description                          | NSW        | Vic           | Qld           | WA             | SA          | Tas     | ACT   | NT    |
| Α    | Plating & heat treatment             | -2         | -1            | . 1           | -16            | 1           | 1       | 0     | 16    |
| В    | Acids                                | -19,970    | 19,920        | 38            | 26             | -229        | 23      | 0     | 186   |
| С    | Alkalis                              | 46         | 137           | -198          | 7              | -725        | 11      | 1     | 720   |
| D    | Inorganic chemicals                  | -10,666    | 19,963        | 4,264         | 16,943         | -173,455    | 142,848 | 51    | 1,050 |
| E    | Reactive chemicals                   | 102        | -5            | -106          | 0              | -1          | 0       | 0     | 0     |
| F    | Paints, resins, inks organic sludges | 1,941      | -1,439        | 774           | 300            | -1,931      | -97     | 23    | 159   |
| G    | Organic solvents                     | 6,918      | -1,243        | -6,213        | 326            | 150         | 47      | 21    | 0     |
| н    | Pesticides                           | 252        | -685          | 254           | 447            | -30         | 0       | 0     | 0     |
| J    | Oils                                 | 21,783     | -215          | -25,461       | 855            | -1,819      | 109     | 2,554 | 2,159 |
| к    | Putrescible/organic waste            | -3,350     | 352           | -3,631        | -344           | 74          | -92     | 6,537 | 356   |
| L    | Industrial washwater                 | 5,484      | -980          | -4,505        | 0              | 42          | 0       | 0     | 0     |
| м    | Organic chemicals                    | 30,624     | -156          | -30,623       | -26            | 135         | 54      | 118   | 87    |
| N    | Soil/sludge                          | 2,665      | -3,720        | 106           | 61             | -363        | 307     | -495  | 129   |
| R    | Clinical & pharmaceutical            | 379        | -1,730        | 420           | 63             | -1,754      | 51      | 118   | 2,021 |
| т    | Misc.                                | -585       | 124           | 0             | 23             | -26         | 17      | 229   | 32    |
|      | TOTAL (t)                            | 35,623     | 29,322        | -70,722       | 18,664         | -179,930    | 143,278 | 9,159 | 6,915 |
|      | Net tonnage waste imported           |            |               |               |                |             |         |       |       |
|      | Not toppage experted                 |            |               |               |                |             |         |       |       |

Net tonnage exported







#### Table 52: ACT assessment of projected arisings vs infrastructure capacity

| Infrastructure group                                          | 16-17<br>arisings<br>(t/yr) | Installed<br>capacity<br>(t/yr) | Expected<br>capacity<br>change<br>(t/yr) | Capacity<br>data<br>quality<br>Good, ok, | Est. v<br>Best | year arisi<br>capacity<br>High | -       | Assessment discussion and recommendations                                                                          |
|---------------------------------------------------------------|-----------------------------|---------------------------------|------------------------------------------|------------------------------------------|----------------|--------------------------------|---------|--------------------------------------------------------------------------------------------------------------------|
|                                                               |                             |                                 |                                          | poor                                     |                |                                |         |                                                                                                                    |
| Recycling and energy recovery                                 | 2                           |                                 |                                          | 1                                        | · .            | · .                            | · .     | This assessment is based on the national average (NSW,                                                             |
| Hazardous waste packaging<br>facility                         | 2                           |                                 |                                          | n/a                                      | no inf.        | no inf.                        | no inf. | Vic, Qld, WA and SA) of waste management methods.<br>This reduces the accuracy and may result in arisings          |
| E-waste facility                                              | 62                          |                                 |                                          | Good                                     | >2037          | 2037                           | >2037   | being mapped to infrastructure that does not exist in this                                                         |
| Oil re-refining facility                                      | 993                         |                                 |                                          | n/a                                      | no inf.        | no inf.                        | no inf. | jurisdiction.                                                                                                      |
| Lead facility                                                 | 0                           |                                 |                                          | n/a                                      | no inf.        | no inf.                        | no inf. | Desueling and energy resources                                                                                     |
| Mercury facility                                              | 0                           |                                 |                                          | n/a                                      | no inf.        | no inf.                        | no inf. | Recycling and energy recovery<br>- Hazwaste packaging, oils re-refining, solvents, organics,                       |
| Solvents/paints/organic<br>chemicals facility                 | 7                           |                                 |                                          | n/a                                      | no inf.        | no inf.                        | no inf. | EOLT wastes are all sent interstate for recycling.<br>- E-waste infrastructure capacity is likely to be sufficient |
| Organics processing facility                                  | 4,166                       |                                 |                                          | n/a                                      | no inf.        | no inf.                        | no inf. | under all scenarios.                                                                                               |
| EOLT facility                                                 | 764                         |                                 |                                          | n/a                                      | no inf.        | no inf.                        | no inf. |                                                                                                                    |
| SPL facility                                                  | 0                           |                                 |                                          | n/a                                      | no inf.        | no inf.                        | no inf. | Treatment                                                                                                          |
| Energy recovery                                               | 4                           |                                 |                                          | n/a                                      | no inf.        | no inf.                        | no inf. | - All waste treatment appears to be occurring interstate                                                           |
| Treatment                                                     |                             |                                 |                                          |                                          |                |                                |         | (the Daniels ACT medical waste autoclave facility is no                                                            |
| CPT plant                                                     | 1,403                       |                                 |                                          | n/a                                      | no inf.        | no inf.                        | no inf. | longer operational).                                                                                               |
| Clinical waste treatment facility                             | 60                          |                                 |                                          | n/a                                      | no inf.        | no inf.                        | no inf. | Disposal (landfill and thermal destruction)                                                                        |
| Bioremediation facility                                       | 31                          | C                               | C                                        | n/a                                      | no inf.        | no inf.                        | no inf. | - All hazardous waste apart from NEPM codes N and T                                                                |
| OWT facility                                                  | 180                         |                                 |                                          | n/a                                      | no inf.        | no inf.                        | no inf. | (asbestos, tyres and low level contaminated soils) are                                                             |
| Soils treatment facility                                      | 2                           |                                 |                                          | n/a                                      | no inf.        | no inf.                        | no inf. | likely sent interstate for disposal.                                                                               |
| Disposal                                                      |                             |                                 |                                          |                                          |                |                                |         |                                                                                                                    |
| Hazardous waste landfill facility                             | 104                         |                                 |                                          | n/a                                      | no inf.        | no inf.                        | no inf. | Short-term storage or transfer<br>- ACT appears to have sufficient transfer station capacity                       |
| Landfill facility (NEPM codes N,<br>T)                        | 211,629                     | _                               | _                                        | n/a                                      | no inf.        | no inf.                        | no inf. | to meet projected need over the next 20 years.                                                                     |
| Persistent organic pollutants<br>thermal destruction facility | 8                           |                                 | CIC                                      | n/a                                      | no inf.        | no inf.                        | no inf. | <b>NEPM 2016-17</b> data indicates that the bulk of the estimated 10 kt of waste arisings in 2016-17, net of what  |
| Clinical waste facility thermal destruction                   | 78                          |                                 |                                          | n/a                                      | no inf.        | no inf.                        | no inf. | is managed at landfill facilities (NEPM code N,T i.e.                                                              |







| Infrastructure group<br>Short-term storage or transfer | 16-17<br>arisings<br>(t/yr) | Installed<br>capacity<br>(t/yr) | Expected<br>capacity<br>change<br>(t/yr) | Capacity<br>data<br>quality<br>Good, ok,<br>poor |         | , , , , , , , , , , , , , , , , , , , |         | Assessment discussion and recommendations<br>asbestos, tyres, low level contaminated soils) is exported                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------|-----------------------------|---------------------------------|------------------------------------------|--------------------------------------------------|---------|---------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transfer facility                                      | 2,220                       | C                               |                                          | Good                                             | >2037   | 2032                                  | >2037   | to other jurisdictions for management.                                                                                                                                                                                                                                                                                                                                                |
| Long-term storage                                      |                             |                                 |                                          |                                                  |         |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                       |
| Long-term on-site storage                              | 0                           |                                 |                                          | n/a                                              | no inf. | no inf.                               | no inf. | <b>'Mr Fluffy' Asbestos waste:</b> As per the 2015 assessment, landfill facility (NEPM code N, T) capacity is not included                                                                                                                                                                                                                                                            |
| Long-term isolation facility                           | 0                           | l                               | <b></b>                                  | n/a                                              | no inf. | no inf.                               | no inf. | in the capacity database. Asbestos is assumed to be<br>100% sent to this infrastructure group. Discussions with<br>ACT NoWaste and EPA staff indicate that there will be<br>sufficient landfill capacity available to dispose of<br>asbestos wastes (including from Mr Fluffy houses) due to<br>the expansion of the current landfill and establishment<br>of an additional landfill. |
| Total net Landfill fac. (NEPM<br>code N, T)            | 10,084                      |                                 |                                          |                                                  |         |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                       |
| NEPM 12-13 net imp./exp. (kt)                          | 9,159                       | (export)                        |                                          |                                                  |         |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                       |







#### Table 53: NSW assessment of projected arisings vs infrastructure capacity

| Infrastructure group                                       | 16-17<br>arisings<br>(t/yr) | Installed<br>capacity<br>(t/yr) | Expected<br>capacity<br>change<br>(t/yr) | Capacity<br>data<br>quality<br>Good,<br>ok, poor | Est. y<br>Best | year arisi<br>capacity<br>High | -       | Assessment discussion and recommendations                                                                                                                                      |
|------------------------------------------------------------|-----------------------------|---------------------------------|------------------------------------------|--------------------------------------------------|----------------|--------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recycling and energy recovery                              |                             |                                 |                                          |                                                  |                |                                |         | Recycling and energy recovery                                                                                                                                                  |
| Hazardous waste packaging<br>facility                      | 7,982                       | CIC                             | CIC                                      | Poor                                             | 2018           | 2018                           | 2018    | <ul> <li>NSW recycling and energy recovery infrastructure capacity is<br/>projected to be sufficient for all infrastructure groups apart</li> </ul>                            |
| E-waste facility                                           | 1,168                       |                                 |                                          | Good                                             | >2037          | >2037                          | >2037   | from hazwaste packaging, oil re-refining and organics                                                                                                                          |
| Oil re-refining facility                                   | 132,239                     | •                               |                                          | Good                                             | 2018           | 2018                           | 2018    | processing.                                                                                                                                                                    |
| Lead facility                                              | 43,160                      | •                               |                                          | Good                                             | >2037          | >2037                          | >2037   | - Organics processing capacity assessment has limited                                                                                                                          |
| Mercury facility                                           | 93                          |                                 |                                          | Good                                             | >2037          | >2037                          | >2037   | coverage as composting facilities are excluded and may not                                                                                                                     |
| Solvents/paints/organic<br>chemicals facility              | 2,800                       |                                 |                                          | Good                                             | >2037          | >2037                          | >2037   | be accurate.<br>- Hazardous waste packaging facilities capacity assessment is                                                                                                  |
| Organics processing facility                               | 154,398                     | •                               |                                          | Good                                             | 2018           | 2018                           | 2018    | poor due to a poor industry response rate. There are four                                                                                                                      |
| EOLT facility                                              | 11,724                      |                                 |                                          | Good                                             | >2037          | >2037                          | >2037   | facilities across NSW, that are likely to have sufficient capacity for this waste stream.                                                                                      |
| SPL facility                                               | 13,019                      |                                 |                                          | Good                                             | >2037          | >2037                          | >2037   | - Oil (re-refining) capacity may be constrained in NSW                                                                                                                         |
| Energy recovery                                            | 16                          |                                 |                                          | Good                                             | >2037          | >2037                          | >2037   | resulting in waste oil being exported interstate (Qld) for                                                                                                                     |
| Treatment                                                  |                             |                                 |                                          | 1                                                |                |                                |         | processing.                                                                                                                                                                    |
| CPT plant                                                  | 123,201                     | CIC                             | CIC                                      | Good                                             | >2037          | >2037                          | >2037   | Treatment                                                                                                                                                                      |
| Clinical waste treatment facility                          | 9,024                       |                                 |                                          | Poor                                             | 2018           | 2018                           | 2018    | - CPT plant capacity is likely to be sufficient and this includes                                                                                                              |
| Bioremediation facility                                    | 0                           |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | CSG mining industry waste growing very strongly and some                                                                                                                       |
| OWT facility                                               | 66,792                      |                                 |                                          | Poor                                             | 2018           | 2018                           | 2018    | volumes being sent off-site to CPT plants.                                                                                                                                     |
| Soils treatment facility                                   | 0                           |                                 |                                          | Good                                             | >2037          | >2037                          | >2037   | - Clinical waste treatment capacities could be constrained and                                                                                                                 |
| Disposal                                                   |                             |                                 |                                          | 1                                                |                |                                |         | these wastes are likely being sent interstate. NEPM 2016-17                                                                                                                    |
| Hazardous waste landfill facility                          | 40,400                      | CIC                             | CIC                                      | Good                                             | 2020           | 2018                           | >2037   | data for clinical waste confirms net exports from NSW to                                                                                                                       |
| Landfill facility (NEPM codes N,<br>T)                     | 1,116,161                   |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | other jurisdictions.<br>- Contaminated soils treatment arisings are reported as zero,                                                                                          |
| Persistent organic pollutants thermal destruction facility | 1,767                       |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | which is due to NSW not tracking contaminated soils. If NSW soils treatment capacity was to become constrained the soils may be sent to Vic for treatment (approval required). |
| Clinical waste facility thermal destruction                | 2,595                       |                                 |                                          | Good                                             | >2037          | >2037                          | >2037   | - NSW OWT capacity could be constrained currently,<br>however, the capacity estimate for this group is poor due to                                                             |
| Short-term storage or transfer                             |                             |                                 |                                          |                                                  |                |                                |         | poor industry response and a diffuse infrastructure group                                                                                                                      |
| Transfer facility                                          | 38,745                      | CIC                             | CIC                                      | Good                                             | 2018           | 2018                           | 2018    | poor maastry response and a annuse minastracture group                                                                                                                         |

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018







| Infrastructure group          | 16-17<br>arisings<br>(t/yr) | Installed<br>capacity<br>(t/yr) | Expected<br>capacity<br>change<br>(t/yr) | Capacity<br>data<br>quality<br>Good,<br>ok, poor | Est.<br>Best | year arisi<br>capacity<br>High | -       | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------|-----------------------------|---------------------------------|------------------------------------------|--------------------------------------------------|--------------|--------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Long-term storage             |                             |                                 |                                          |                                                  |              |                                |         | that may be missing sites and capacity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Long-term on-site storage     | 0                           | CIC                             | CIC                                      | n/a                                              | no inf.      | no inf.                        | no inf. | Disposal (landfill and thermal destruction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Long-term isolation facility  | 0                           |                                 |                                          | n/a                                              | no inf.      | no inf.                        | no inf. | <ul> <li>Hazwaste landfill could have insufficient annual landfill<br/>disposal capacity currently or by 2020 which could require a<br/>licence amendment or changes in site management to take<br/>more tonnages per year.</li> <li>Text withheld to maintain commercial confidentiality.</li> <li>POP (PFOS, BDEs, HBCD, HCB) will be sent interstate for<br/>thermal destruction where required.</li> <li>NSW clinical waste thermal destruction capacity is projected<br/>to provide sufficient capacity over the next 20 years.</li> <li>Transfer station or temporary storage</li> <li>NSW transfer capacity may already be exceeded, however,<br/>capacity estimates are incomplete due to limited<br/>infrastructure coverage and some capacity being provided<br/>within other infrastructure groups. The capacity of transfer<br/>infrastructure is also not fixed (i.e. capacity can be scaled up<br/>and down by simply increasing the rate of loads transferred).</li> <li>NEPM 2016-17 data showed that NSW had net exports of 36<br/>kt of hazardous wastes (organics chemicals, pesticides, oils,<br/>soils and clinical wastes) to other jurisdictions.</li> </ul> |
| Total net Landfill fac. (NEPM | 649,123                     |                                 |                                          |                                                  |              |                                |         | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| code N, T)                    |                             |                                 |                                          |                                                  |              |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NEPM 12-13 net imp./exp. (kt) | 35,623                      | (export)                        |                                          |                                                  |              |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |







#### Table 54: NT assessment of projected arisings vs infrastructure capacity

| Infrastructure group                                          | 16-17<br>arisings<br>(t/yr) | Installed<br>capacity<br>(t/yr) | Expected<br>capacity<br>change<br>(t/yr) | Capacity<br>data<br>quality<br>Good,<br>ok, poor | Est. v<br>Best | year arisi<br>capacity<br>High | -       | Assessment discussion and recommendations                                                                  |
|---------------------------------------------------------------|-----------------------------|---------------------------------|------------------------------------------|--------------------------------------------------|----------------|--------------------------------|---------|------------------------------------------------------------------------------------------------------------|
| Recycling and energy recovery                                 |                             |                                 |                                          |                                                  |                |                                |         | This assessment is based on the national average (NSW, Vio                                                 |
| Hazardous waste packaging<br>facility                         | 25                          | CIC                             | CIC                                      | n/a                                              | no inf.        | no inf.                        | no inf. | Qld, WA and SA) of waste management methods. This reduces accuracy and may result in arisings being mapped |
| E-waste facility                                              | 39                          |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | to infrastructure that does not exist in this jurisdiction.                                                |
| Oil re-refining facility                                      | 1,603                       |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. |                                                                                                            |
| Lead facility                                                 | 0                           |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | Recycling and energy recovery                                                                              |
| Mercury facility                                              | 3                           |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | - All recycling and energy recovery occurs interstate or at                                                |
| Solvents/paints/organic<br>chemicals facility                 | 32                          |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | sites not covered or missing from the hazwaste infrastructure database.                                    |
| Organics processing facility                                  | 3,708                       |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | Treetment                                                                                                  |
| EOLT facility                                                 | 508                         |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | <ul> <li>Treatment</li> <li>All hazardous waste requiring treatment appears to be</li> </ul>               |
| SPL facility                                                  | 0                           |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | sent interstate for treatment, apart from clinical waste.                                                  |
| Energy recovery                                               | 8                           |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | - Clinical waste treatment infrastructure capacity is likely t                                             |
| Treatment                                                     |                             |                                 |                                          |                                                  |                |                                |         | be sufficient under all scenarios.                                                                         |
| CPT plant                                                     | 1,269                       | CIC                             | CIC                                      | n/a                                              | no inf.        | no inf.                        | no inf. |                                                                                                            |
| Clinical waste treatment facility                             | 57                          |                                 |                                          | Good                                             | >2037          | >2037                          | >2037   | Disposal (landfill and thermal destruction)                                                                |
| Bioremediation facility                                       | 352                         |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | - Hazwaste landfill has sufficient annual disposal capacity                                                |
| OWT facility                                                  | 944                         |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | over the projection period. Note, this does not mean that                                                  |
| Soils treatment facility                                      | 738                         |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | the landfill has over 20 years life remaining, see note 2.                                                 |
| Disposal                                                      |                             |                                 |                                          |                                                  |                |                                |         | - POP (PFOS, BDEs, HBCD, HCB) will be sent interstate for                                                  |
| Hazardous waste landfill facility                             | 601                         | CIC                             | CIC                                      | Poor                                             | >2037          | >2037                          | >2037   | thermal destruction where required.<br>- Clinical waste is sent interstate for destruction where           |
| Landfill facility (NEPM codes N,<br>T)                        | 16,436                      |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | required.                                                                                                  |
| Persistent organic pollutants<br>thermal destruction facility | 0                           |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | <b>Transfer station or temporary storage</b> - Capacity is likely to be sufficient under all scenarios.    |
| Clinical waste facility thermal destruction                   | 75                          |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | The long-term isolation facility that is planned for NT woul                                               |
| Short-term storage or transfer                                |                             |                                 |                                          |                                                  |                |                                |         | provide a significant amount of additional capacity for NT                                                 |
| Transfer facility                                             | 2,296                       | CIC                             | CIC                                      | Good                                             | >2037          | >2037                          | >2037   |                                                                                                            |

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018







| Infrastructure group          | 16-17<br>arisings<br>(t/yr) | Installed<br>capacity<br>(t/yr) | Expected<br>capacity<br>change<br>(t/yr) | Capacity<br>data<br>quality<br>Good,<br>ok, poor | Est.<br>Best | year arisi<br>capacity<br>High | -       | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------|-----------------------------|---------------------------------|------------------------------------------|--------------------------------------------------|--------------|--------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Long-term storage             |                             |                                 |                                          |                                                  |              |                                |         | and would also likely result in some hazardous waste being                                                                                                                                                                                                                                                                                                                                          |
| Long-term on-site storage     | 0                           | CIC                             | CIC                                      | n/a                                              | no inf.      | no inf.                        | no inf. | imported to NT in future.                                                                                                                                                                                                                                                                                                                                                                           |
| Long-term isolation facility  | 0                           |                                 |                                          | n/a                                              | no inf.      | no inf.                        | no inf. | <b>NEPM 2016-17 data</b> indicates that around 7 kt (of the estimated 12 kt of arisings in 2018, net of landfill NEPM N,T wastes) is exported to other jurisdictions and NT imports no hazardous waste. This suggests that some of the remaining 5 kt of estimated waste arisings are managed by sites not covered/missing from the hazwaste infrastructure database or are sent to landfill in NT. |
| Total net Landfill fac. (NEPM | 12,257                      |                                 |                                          |                                                  |              |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                     |
| code N, T)                    |                             |                                 |                                          |                                                  |              |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                     |
| NEPM 12-13 net imp./exp. (kt) | 6,915                       | (export)                        |                                          |                                                  |              |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                     |







#### Table 55 Qld assessment of projected arisings vs infrastructure capacity

| arisings capacity capacity data capacit<br>Infrastructure group (t/yr) (t/yr) change quality Best High<br>(t/yr) Good,<br>ok, poor | ty<br>Low |                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                    |           |                                                                                                                         |
| Recycling and energy recovery                                                                                                      |           | Recycling and energy recovery                                                                                           |
| Hazardous waste packaging 3,799 CIC Good 2018 2018                                                                                 | 2018      | <ul> <li>Hazwaste packaging infrastructure capacity appears</li> </ul>                                                  |
| facility                                                                                                                           |           | constrained in Qld currently.                                                                                           |
| E-waste facility 799 Good 2031 2030                                                                                                | 2033      | <ul> <li>E-waste capacity is likely to be sufficient assuming no</li> </ul>                                             |
| Oil re-refining facility 82,445 Good 2031 2025                                                                                     | >2037     | change in recovery rate until around 2030.                                                                              |
| Lead facility 10,169 Good >2037 >2037                                                                                              | / >2037   | - Oil re-refining capacity could be constrained locally by 2025                                                         |
| Mercury facility 10 Good >2037 >2037                                                                                               | / >2037   | or by 2031 under the best estimate projection. However, if o                                                            |
| Solvents/paints/organic 1,370 Poor >2037 >2037                                                                                     | / >2037   | arisings do not increase the current capacity should be                                                                 |
| chemicals facility                                                                                                                 |           | sufficient over the next 20 years.                                                                                      |
| Organics processing facility 146,022 n/a no inf. no inf                                                                            | . no inf. | - Organics recycling infrastructure for Qld is missing from hazwaste capacity database. Qld has significant arisings of |
| EOLT facility 13,535 Good >2037 2025                                                                                               | >2037     | NEPM K code wastes and was a net importer of NEPM K code                                                                |
| SPL facility 12,832 Good >2037 2020                                                                                                | >2037     | wastes in 2016-17. The missing infrastructure capacity is                                                               |
| Energy recovery 572 Good >2037 >2037                                                                                               | / >2037   | likely to be composting facilities, which are out of scope of                                                           |
| Treatment                                                                                                                          |           | this assessment.                                                                                                        |
| CPT plant 78,358 CIC CIC Good >2037 >2037                                                                                          | / >2037   | - Qld's annual SPL processing capacity could be exceeded                                                                |
| Clinical waste treatment facility 4,639 Poor 2018 2018                                                                             | 2018      | under the high scenario (all SPL current arisings and                                                                   |
| Bioremediation facility 133,977 n/a no inf. no inf                                                                                 | . no inf. | stockpiles processed over 10 years), projections show it                                                                |
| OWT facility 44,702 Good >2037 2032                                                                                                | >2037     | would take more like 15 years to process the Qld stockpile of                                                           |
| Soils treatment facility 17,021 n/a no inf. no inf                                                                                 | . no inf. | SPL whilst processing current arisings.                                                                                 |
| Disposal                                                                                                                           |           |                                                                                                                         |
| Hazardous waste landfill facility 96,393 CIC CIC Poor 2018 2018                                                                    | 2018      | Treatment                                                                                                               |
| Landfill facility (NEPM codes N, 754,462 n/a no inf. no inf.                                                                       |           | - Clinical waste treatment capacity appears limited in Qld                                                              |
|                                                                                                                                    |           | under all scenarios. NEPM data shows Qld exports clinical                                                               |
| Persistent organic pollutants 2,329 Good 2020 2020                                                                                 | 2020      | wastes.                                                                                                                 |
| thermal destruction facility                                                                                                       |           | - Dedicated soils treatment capacity in Qld now appears to b                                                            |
| Clinical waste facility thermal 7,619 Good 2036 2030                                                                               | >2037     | a capacity constraint under all scenarios. Toxfree Narangba site capacity has been dedicated to POP destruction and     |
| destruction                                                                                                                        |           | OWT. NEPM data shows Qld as a net exporter of soils. With                                                               |
| Short-term storage or transfer                                                                                                     |           | limited soils treatment capacity in NSW and none in NT,                                                                 |
| Transfer facility 197,990 CIC Good 2018 2018                                                                                       | 2018      | initied sons treatment capacity in NSW and Holle II NT,                                                                 |

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018







|                               | 16-17<br>arisings | Installed capacity | Expected capacity | Capacity<br>data             | Est.    | Est. year arisings ><br>capacity |         | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------|-------------------|--------------------|-------------------|------------------------------|---------|----------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Infrastructure group          | (t/yr)            | (t/yr)             | change<br>(t/yr)  | quality<br>Good,<br>ok, poor | Best    | High                             | Low     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Long-term storage             |                   |                    |                   |                              |         |                                  |         | additional soil treatment capacity in Qld may be required,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Long-term on-site storage     | 0                 | CIC                | CIC               | n/a                          | no inf. | no inf.                          | no inf. | unless the wastes are to be transported to Vic for treatment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Long-term isolation facility  | 0                 |                    |                   | n/a                          | no inf. | no inf.                          | no inf. | <ul> <li>Around 130 kt of hazardous waste in Qld was sent to<br/>biodegradation facilities, which are understood to be mostly<br/>commercial composting facilities (capacity assessment<br/>beyond scope).</li> <li>Disposal (landfill and thermal destruction)         <ul> <li>Hazwaste landfill capacity in Qld may be insufficient to<br/>manage annual disposal tonnages currently and into the<br/>future which could require a licence amendment or changes<br/>in site management to take more tonnages per year.</li> <li>POP TD capacity could be constrained by 2020 under all<br/>scenarios, servicing Qld's POP wastes, alone.</li> </ul> </li> <li>Transfer station or temporary storage         <ul> <li>Qld's transfer capacity may already be exceeded; however,<br/>capacity estimates are incomplete due to limited<br/>infrastructure coverage and some capacity being provided<br/>within other infrastructure groups. The capacity of transfer<br/>infrastructure is also not fixed (i.e. capacity can be scaled up<br/>and down by simply increasing the rate of loads transferred).</li> <li>Long-term isolation capacity:</li> <li>Under the high projection scenario, CSG reverse osmosis<br/>brine wastes will be required to be managed offsite at long-<br/>term isolation. This results in a very large increase and a<br/>shortfall of 2.0 Mt of capacity in 2023, even when the<br/>currently planned facilities are built in NT and WA.</li> </ul> </li> <li>NEPM 2016-17 data showed a net import of 70 kt of<br/>hazwaste into Qld. Major imports were organic chemicals,<br/>oils, organic solvents, industrial wash waters and organics.</li> </ul> |
| Total net Landfill fac. (NEPM | 854,581           |                    |                   |                              | 1       |                                  | I       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| code N, T)                    |                   |                    |                   |                              |         |                                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NEPM 12-13 net imp./exp. (kt) | -70,722           | (import)           |                   |                              |         |                                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |







#### Table 56 SA assessment of projected arisings vs infrastructure capacity

| Infrastructure group                                       | 16-17<br>arisings<br>(t/yr) | Installed<br>capacity<br>(t/yr) | Expected<br>capacity<br>change<br>(t/yr) | Capacity<br>data<br>quality<br>Good,<br>ok, poor | Est. v<br>Best | year arisi<br>capacity<br>High | -       | Assessment discussion and recommendations                                                                                                                                                               |
|------------------------------------------------------------|-----------------------------|---------------------------------|------------------------------------------|--------------------------------------------------|----------------|--------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recycling and energy recovery                              |                             |                                 |                                          |                                                  |                |                                |         | Recycling and energy recovery                                                                                                                                                                           |
| Hazardous waste packaging<br>facility                      | 309                         | CIC                             | CIC                                      | Poor                                             | >2037          | >2037                          | >2037   | - Hazwaste packaging, oil re-refining, e-waste, mercury, EOL recycling capacity is likely to be sufficient over the projection                                                                          |
| E-waste facility                                           | 285                         |                                 |                                          | Good                                             | >2037          | >2037                          | >2037   | period.                                                                                                                                                                                                 |
| Oil re-refining facility                                   | 12,534                      |                                 |                                          | Poor                                             | >2037          | >2037                          | >2037   | - Lead acid batteries, solvent wastes are likely being sent                                                                                                                                             |
| Lead facility                                              | 43,439                      |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | interstate for recycling. It is unclear if Nyrstar lead smelter i                                                                                                                                       |
| Mercury facility                                           | 45                          |                                 |                                          | Good                                             | >2037          | >2037                          | >2037   | able to process lead acid batteries currently.                                                                                                                                                          |
| Solvents/paints/organic<br>chemicals facility              | 1,366                       |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | - SPL would not be generated in SA (this is likely inorganic fluorine waste from another source, not SPL).                                                                                              |
| Organics processing facility                               | 71,659                      |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | - Solvents/paints infrastructure capacity may be missing                                                                                                                                                |
| EOLT facility                                              | 1,923                       |                                 |                                          | Good                                             | >2037          | >2037                          | >2037   | from the database or capacity is provided by SA's CPT or<br>energy recovery facilities. NEPM 2016-17 data indicates SA                                                                                  |
| SPL facility                                               | 2                           |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | a net importer of solvents/paints wastes.                                                                                                                                                               |
| Energy recovery                                            | 54                          |                                 |                                          | Good                                             | >2037          | >2037                          | >2037   | - Organics processing infrastructure capacity is incomplete                                                                                                                                             |
| Treatment                                                  |                             |                                 |                                          |                                                  |                |                                |         | it excludes composting facilities.                                                                                                                                                                      |
| CPT plant                                                  | 42,045                      | CIC                             | CIC                                      | Good                                             | >2037          | >2037                          | >2037   |                                                                                                                                                                                                         |
| Clinical waste treatment facility                          | 436                         |                                 |                                          | Good                                             | >2037          | >2037                          | >2037   | Treatment                                                                                                                                                                                               |
| Bioremediation facility                                    | 5                           |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | - CPT, clinical waste and OWT capacity appear to be                                                                                                                                                     |
| OWT facility                                               | 23,291                      |                                 |                                          | Good                                             | 2018           | 2018                           | 2018    | sufficient to manage arisings over the projection period.                                                                                                                                               |
| Soils treatment facility                                   | 65,956                      |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | - Soil treatment facility capacity in SA appears to be                                                                                                                                                  |
| Disposal                                                   |                             |                                 |                                          |                                                  |                |                                |         | insufficient currently and into the future and additional soil                                                                                                                                          |
| Hazardous waste landfill facility                          | 41,499                      | CIC                             | CIC                                      | n/a                                              | no inf.        | no inf.                        | no inf. | treatment capacity may be required, unless the soils are to                                                                                                                                             |
| Landfill facility (NEPM codes N,<br>T)                     | 108,500                     |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | be transported to sites in Vic (approval required).                                                                                                                                                     |
| Persistent organic pollutants thermal destruction facility | 36                          |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | <ul> <li>Disposal (landfill and thermal destruction)</li> <li>No Hazwaste landfill fac. capacity was included in the</li> <li>capacity database for SA. The landfills listed were only liste</li> </ul> |
| Clinical waste facility thermal destruction                | 3,538                       |                                 |                                          | Good                                             | 2018           | 2018                           | 2018    | as receiving NEPM code N wastes. It is not clear which SA<br>landfills would receive the 42 kt of waste this assessment                                                                                 |
| Short-term storage or transfer                             |                             |                                 |                                          |                                                  |                |                                |         | has mapped to hazardous waste landfills.                                                                                                                                                                |
| Transfer facility                                          | 84,631                      | CIC                             | CIC                                      | Good                                             | 2018           | 2018                           | 2018    |                                                                                                                                                                                                         |







| Infrastructure group                        | 16-17<br>arisings<br>(t/yr) | Installed<br>capacity<br>(t/yr) | Expected<br>capacity<br>change<br>(t/yr) | Capacity<br>data<br>quality<br>Good,<br>ok, poor | Est.<br>Best | year arisi<br>capacity<br>High | -       | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------|-----------------------------|---------------------------------|------------------------------------------|--------------------------------------------------|--------------|--------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Long-term storage                           |                             |                                 |                                          |                                                  |              |                                |         | - Clinical TD capacity appears to be currently constrained. In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Long-term on-site storage                   | 0                           | CIC                             | CIC                                      | n/a                                              | no inf.      | no inf.                        | no inf. | 2015, industry commented that there was spare capacity for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Long-term isolation facility                | 0                           |                                 |                                          | n/a                                              | no inf.      | no inf.                        | no inf. | <ul> <li>clinical waste thermal destruction in SA. The listed installed capacity of CIC tpa may be too low as it appears SA is destroying around 3.5 kt of clinical waste currently.</li> <li>POP (PFOS, BDEs, HBCD, HCB) will be sent interstate for thermal destruction where required.</li> <li>Transfer station or temporary storage</li> <li>SA's transfer capacity may already be exceeded, however, capacity estimates are incomplete due to limited infrastructure coverage and some capacity being provided within other infrastructure groups. The capacity of transfer infrastructure is also not fixed (i.e. capacity can be scaled up and down by simply increasing the rate of loads transferred).</li> <li>NEPM 2016-17 showed a net import of around 180 kt of hazwaste into SA. The main imports were NEPM D Inorganic chemicals (175 kt) which is mostly a lead rich zinc waste from the Nyrstar Zinc smelter in Hobart being sent to Nyrstar Port Pirie.</li> </ul> |
| Total net Landfill fac. (NEPM<br>code N, T) | 393,054                     |                                 |                                          |                                                  |              |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NEPM 12-13 net imp./exp. (kt)               | -179,930                    | (import)                        |                                          |                                                  |              |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |







#### Table 57 Tas assessment of projected arisings vs infrastructure capacity

|                                                            | 16-17              | Installed          | Expected                     | Capacity                             | Est.    | year arisi       | ngs >   | Assessment discussion and recommendations                                                                                                                                       |
|------------------------------------------------------------|--------------------|--------------------|------------------------------|--------------------------------------|---------|------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Infrastructure group                                       | arisings<br>(t/yr) | capacity<br>(t/yr) | capacity<br>change<br>(t/yr) | data<br>quality<br>Good,<br>ok, poor | Best    | capacity<br>High | Low     |                                                                                                                                                                                 |
| Recycling and energy recovery                              |                    |                    |                              |                                      |         |                  |         | This assessment is based on the national average (NSW, Vic, Qld                                                                                                                 |
| Hazardous waste packaging<br>facility                      | 0                  | CIC                | CIC                          | n/a                                  | no inf. | no inf.          | no inf. | WA and SA) of waste management methods. This reduces the accuracy and may result in arisings being mapped to                                                                    |
| E-waste facility                                           | 81                 |                    |                              | n/a                                  | no inf. | no inf.          | no inf. | infrastructure that does not exist in this jurisdiction.                                                                                                                        |
| Oil re-refining facility                                   | 68                 |                    |                              | n/a                                  | no inf. | no inf.          | no inf. |                                                                                                                                                                                 |
| Lead facility                                              | 21,865             |                    |                              | n/a                                  | no inf. | no inf.          | no inf. | Recycling and energy recovery                                                                                                                                                   |
| Mercury facility                                           | 0                  |                    |                              | Good                                 | >2037   | >2037            | >2037   | - Hazardous waste recycling and energy recovery occurs                                                                                                                          |
| Solvents/paints/organic<br>chemicals facility              | 8                  |                    |                              | n/a                                  | no inf. | no inf.          | no inf. | interstate for all waste streams except mercury, EOLT and SPL<br>and there appears to be sufficient capacity for these waste                                                    |
| Organics processing facility                               | 7,830              |                    |                              | n/a                                  | no inf. | no inf.          | no inf. | streams. Organics are also likely to be processed locally, however                                                                                                              |
| EOLT facility                                              | 1,034              |                    |                              | n/a                                  | no inf. | no inf.          | no inf. | this capacity is not captured by the database. NEPM 2016-17<br>data indicates organics are not exported interstate for recovery<br><b>Treatment</b>                             |
| SPL facility                                               | 3,826              |                    |                              | Good                                 | 2020    | 2020             | >2037   |                                                                                                                                                                                 |
| Energy recovery                                            | 2                  |                    |                              | n/a                                  | no inf. | no inf.          | no inf. |                                                                                                                                                                                 |
| Treatment                                                  |                    |                    |                              |                                      |         |                  |         | - CPT plant waste capacity could be constrained currently. This is                                                                                                              |
| CPT plant                                                  | 16,247             | CIC                | CIC                          | n/a                                  | no inf. | no inf.          | no inf. | based on the national average of the percentage of arisings sent                                                                                                                |
| Clinical waste treatment facility                          | 9                  |                    |                              | Good                                 | >2037   | >2037            | >2037   | to CPT for treatment. However, with no CPT capacity identified                                                                                                                  |
| Bioremediation facility                                    | 38                 |                    |                              | n/a                                  | no inf. | no inf.          | no inf. | and estimated arisings of 16 kt there appears to be a lack of CPT                                                                                                               |
| OWT facility                                               | 72                 |                    |                              | Poor                                 | >2037   | >2037            | >2037   | capacity in Tas.                                                                                                                                                                |
| Soils treatment facility                                   | 568                |                    |                              | Good                                 | >2037   | >2037            | >2037   | - All hazardous waste except for oil/water mixtures are sent to                                                                                                                 |
| Disposal                                                   |                    |                    | 1                            |                                      |         |                  |         | the mainland for treatment. The OWT capacity is sufficient.                                                                                                                     |
| Hazardous waste landfill facility                          | 2,032              | CIC                | CIC                          | Good                                 | 2020    | 2018             | >2037   |                                                                                                                                                                                 |
| Landfill facility (NEPM codes N,<br>T)                     | 27,171             |                    |                              | n/a                                  | no inf. | no inf.          | no inf. | Disposal (landfill and thermal destruction)<br>- Hazwaste landfill could be constrained currently or by 2020,<br>under the best estimate presention, for enough disposal enough |
| Persistent organic pollutants thermal destruction facility | 1                  |                    |                              | n/a                                  | no inf. | no inf.          | no inf. | under the best estimate projection, for annual disposal capacit<br>which could require a licence amendment or changes in site                                                   |
| Clinical waste facility thermal destruction                | 11                 |                    |                              | n/a                                  | no inf. | no inf.          | no inf. | <ul> <li>management to take more tonnages per year.</li> <li>POP (PFOS, BDEs, HBCD, HCB) will be sent interstate for therm destruction where required.</li> </ul>               |
| Short-term storage or transfer                             |                    |                    |                              |                                      |         |                  |         | - Clinical waste likely to be sent interstate for thermal                                                                                                                       |
| Transfer facility                                          | 3,691              | CIC                | CIC                          | Good                                 | 2018    | 2018             | 2018    | chinear waste likely to be sent interstate for thermal                                                                                                                          |







| Infrastructure group<br>Long-term storage | 16-17<br>arisings<br>(t/yr) | Installed<br>capacity<br>(t/yr) | Expected<br>capacity<br>change<br>(t/yr) | Capacity<br>data<br>quality<br>Good,<br>ok, poor | Est. y<br>Best | year arisi<br>capacity<br>High | -       | Assessment discussion and recommendations destruction where required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------|-----------------------------|---------------------------------|------------------------------------------|--------------------------------------------------|----------------|--------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Long-term on-site storage                 | 0                           | CIC                             | CIC                                      | n/a                                              | no inf.        | no inf.                        | no inf. | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Long-term isolation facility              | 0                           |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf. | <ul> <li>Transfer station or temporary storage         <ul> <li>Tas's transfer capacity may already be exceeded, however, capacity estimates are incomplete due to limited infrastructure coverage and some capacity being provided within other infrastructure groups. The capacity of transfer infrastructure is also not fixed (i.e. capacity can be scaled up and down by simply increases the rate of loads transfers).</li> </ul> </li> <li>NEPM 2016-17 showed a net export of 143 kt of hazwaste from Tas. This is mostly NEPM code D wastes which are lead-rich zinc wastes from the Nyrstar zinc smelter in Hobart that is shipped to Nyrstar Port Pirie for recovery in the lead smelter.</li> </ul> |
| Total net Landfill fac. (NEPM             | 57,385                      |                                 |                                          |                                                  |                |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| code N, T)                                | 142 270                     | (over ort)                      |                                          |                                                  |                |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| NEPM 12-13 net imp./exp. (kt)             | 143,278                     | (export)                        |                                          |                                                  |                |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |







#### Table 58Vic assessment of projected arisings vs infrastructure capacity

| Infrastructure group                                       | 16-17<br>arisings<br>(t/yr) | Installed<br>capacity<br>(t/yr) | Expected<br>capacity<br>change<br>(t/yr) | Capacity<br>data<br>quality<br>Good,<br>ok, poor | Est. v<br>Best | year arisi<br>capacity<br>High | -                                                                        | Assessment discussion and recommendations                                                                                       |
|------------------------------------------------------------|-----------------------------|---------------------------------|------------------------------------------|--------------------------------------------------|----------------|--------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Recycling and energy recovery                              |                             |                                 |                                          |                                                  |                |                                |                                                                          | Recycling and energy recovery                                                                                                   |
| Hazardous waste packaging<br>facility                      | 2,958                       | CIC                             | CIC                                      | Ok                                               | >2037          | >2037                          | >2037                                                                    | - Hazwaste packaging, e-waste, mercury, EOLT, energy recovery infrastructure is likely to have sufficient capacity.             |
| E-waste facility                                           | 943                         |                                 |                                          | Good                                             | 2036           | 2034                           | >2037                                                                    | - Due to a significant change in the reported capacity of oil                                                                   |
| Oil re-refining facility                                   | 34,375                      |                                 |                                          | Good                                             | 2018           | 2018                           | 2018                                                                     | re-refining capacity in Vic, capacity could be constrained                                                                      |
| Lead facility                                              | 0                           |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf.                                                                  | under all scenarios and significant tonnages of oil may need                                                                    |
| Mercury facility                                           | 4                           |                                 |                                          | Good                                             | >2037          | >2037                          | >2037                                                                    | to be recovered interstate without infrastructure upgrades.                                                                     |
| Solvents/paints/organic<br>chemicals facility              | 19,181                      |                                 | Good                                     | Good                                             | 2018           | 2018                           | 2018                                                                     | - Lead wastes are likely to be sent interstate to SA or NSW for recycling.                                                      |
| Organics processing facility                               | 132,590                     |                                 |                                          | Ok                                               | 2018           | 2018                           | 2018                                                                     | <ul> <li>Solvent/paints/organic chemicals capacity could be<br/>constrained. However, a number of factors need to be</li> </ul> |
| EOLT facility                                              | 12,625                      |                                 |                                          | Good                                             | >2037          | >2037                          | >2037                                                                    | considered: 1. It is likely that some materials sent to ene                                                                     |
| SPL facility                                               | 16,342                      |                                 | n/a<br>Good                              | no inf.                                          | no inf.        | no inf.                        | recovery are recorded as recycled (resulting in over-                    |                                                                                                                                 |
| Energy recovery                                            | 1,461                       |                                 |                                          | Good                                             | >2037          | >2037                          | >2037                                                                    | estimate of arisings to recycling and under-estimate to                                                                         |
| Treatment                                                  |                             |                                 |                                          |                                                  |                |                                |                                                                          | energy recovery), 2. Some solvent/paint recycling capacity i                                                                    |
| CPT plant                                                  | 88,542                      | CIC                             | CIC                                      | Good                                             | >2037          | 2035                           | >2037                                                                    | likely to be within the CPT infrastructure group, 3. Some                                                                       |
| Clinical waste treatment facility                          | 8,322                       |                                 |                                          | Good                                             | 2024           | 2022                           | >2037                                                                    | smaller operators that recycle solvents/paint may not have                                                                      |
| Bioremediation facility                                    | 4,078                       |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf.                                                                  | not been captured in the infrastructure database.                                                                               |
| OWT facility                                               | 17,826                      |                                 |                                          | Good                                             | >2037          | >2037                          | >2037                                                                    | - Organics infrastructure capacity could be constrained                                                                         |
| Soils treatment facility                                   | 46,148                      |                                 |                                          | Good                                             | >2037          | >2037                          | >2037                                                                    | currently, however, capacity data has limited coverage in                                                                       |
| Disposal                                                   |                             |                                 |                                          |                                                  |                |                                |                                                                          | the database.                                                                                                                   |
| Hazardous waste landfill facility                          | 43,557                      | CIC                             | CIC                                      | Good                                             | 2020           | 2020                           | >2037                                                                    | Text withheld to maintain commercial confidentiality.                                                                           |
| Landfill facility (NEPM codes N,<br>T)                     | 582,811                     |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf.                                                                  | Treatment                                                                                                                       |
| Persistent organic pollutants thermal destruction facility | 972                         |                                 | Good                                     | 2020                                             | 2020           | 2020                           | - CPT plant, OWT and soil treatment capacity is likely to be sufficient. |                                                                                                                                 |
| Clinical waste facility thermal destruction                | 4,983                       |                                 |                                          | Good                                             | >2037          | >2037                          | >2037                                                                    | - Clinical waste treatment capacity could be constrained by 2024 or 2022 if clinical waste grows strongly.                      |
| Short-term storage or transfer                             |                             |                                 |                                          |                                                  |                |                                |                                                                          | Disposal (landfill and thermal destruction)                                                                                     |
| Transfer facility                                          | 81,453                      | CIC                             | CIC                                      | Good                                             | 2018           | 2018                           | 2018                                                                     | - Hazwaste landfill could be constrained by 2020, under the                                                                     |







| Infrastructure group          | 16-17<br>arisings<br>(t/yr) | Installed<br>capacity<br>(t/yr) | Expected<br>capacity<br>change | Capacity<br>data<br>quality |         | year arisi<br>capacity<br>High | -       | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------|-----------------------------|---------------------------------|--------------------------------|-----------------------------|---------|--------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                             |                                 | (t/yr)                         | Good,<br>ok, poor           |         |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Long-term storage             |                             |                                 |                                | -                           |         |                                |         | best estimate projection, for annual disposal capacity, which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Long-term on-site storage     | 0                           | CIC                             | CIC                            | n/a                         | no inf. | no inf.                        | no inf. | could require a licence amendment or changes in site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Long-term isolation facility  | 0                           |                                 |                                | n/a                         | no inf. | no inf.                        | no inf. | <ul> <li>management to take more tonnages per year.</li> <li>POP (PFOS, BDEs, HBCD, HCB) capacity is projected to be sufficient until 2020, when large tonnages of PFAS contaminated waste are projected to exceed the current permitted capacity in Vic. There may be additional and sufficient capacity within Vic's soils treatment, clinical thermal destruction and cement kiln infrastructure (via Geocycle) (subject to demonstration of POP destruction and licence amendments).</li> <li>Clinical waste TD capacity should be sufficient for projection period.</li> <li>Transfer station or temporary storage</li> <li>Vic's transfer capacity may already be exceeded, however, capacity estimates are incomplete due to limited infrastructure coverage and some capacity being provided within other infrastructure groups. The capacity of transfer infrastructure is also not fixed (i.e. capacity can be scaled up and down by simply increases the rate of loads transfers).</li> <li>NEPM 2016-17 showed a net export of 29 kt. Main exports included NEPM group acids and inorganic chemicals (lead from lead acid batteries sent to NSW for processing). Main imports included paints, solvents, soils and clinical wastes.</li> </ul> |
| Total net Landfill fac. (NEPM | 516,360                     |                                 |                                |                             |         | 1                              |         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| code N, T)                    |                             |                                 |                                |                             |         |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NEPM 12-13 net imp./exp. (kt) | 29,322                      | (export)                        |                                |                             |         |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |







#### Table 59WA assessment of projected arisings vs infrastructure capacity

| Infrastructure group                                       | 16-17<br>arisings<br>(t/yr) | Installed<br>capacity<br>(t/yr) | Expected<br>capacity<br>change<br>(t/yr) | Capacity<br>data<br>quality<br>Good,<br>ok, poor | Est. y<br>Best | year arisi<br>capacity<br>High | ngs ><br>Low | Assessment discussion and recommendations                                                                                     |
|------------------------------------------------------------|-----------------------------|---------------------------------|------------------------------------------|--------------------------------------------------|----------------|--------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------|
| Recycling and energy recovery                              |                             |                                 |                                          |                                                  |                |                                |              | Recycling and energy recovery                                                                                                 |
| Hazardous waste packaging<br>facility                      | 60                          | CIC                             | CIC                                      | Poor                                             | >2037          | >2037                          | >2037        | - Hazwaste packaging, mercury, oil refining capacities are likely to be sufficient under all scenarios.                       |
| E-waste facility                                           | 427                         |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf.      | - E-waste, solvents/paints/organic chemicals, lead waste are                                                                  |
| Oil re-refining facility                                   | 60,503                      |                                 |                                          | Good                                             | >2037          | >2037                          | >2037        | likely sent interstate for recycling. The 2015 assessment                                                                     |
| Lead facility                                              | 51                          |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf.      | included a proposal for a new lead processing facility for WA                                                                 |
| Mercury facility                                           | 4                           |                                 |                                          | Good                                             | >2037          | >2037                          | >2037        | that has not developed, which has changed the findings.                                                                       |
| Solvents/paints/organic<br>chemicals facility              | 1,274                       |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf.      | Treatment                                                                                                                     |
| Organics processing facility                               | 79,880                      |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf.      | - CPT plant, clinical waste and soil treatment capacity should                                                                |
| EOLT facility                                              | 5,014                       |                                 |                                          | Good                                             | 2020           | 2018                           | 2029         | be sufficient across projection period. It's worth noting WA's main soils facility uses bioremediation techniques to treat so |
| SPL facility                                               | 0                           |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf.      | (not a high temperature thermal treatment process), so muc                                                                    |
| Energy recovery                                            | 87                          |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf.      | of the bioremediation tonnages may be sent to the WA soil                                                                     |
| Treatment                                                  |                             |                                 |                                          |                                                  |                |                                |              | treatment facility.                                                                                                           |
| CPT plant                                                  | 44,431                      | CIC                             | CIC                                      | Good                                             | >2037          | >2037                          | >2037        | - WA's OWT capacity appears to be constrained currently and                                                                   |
| Clinical waste treatment facility                          | 11                          |                                 |                                          | Poor                                             | >2037          | >2037                          | >2037        | additional capacity may be required.                                                                                          |
| Bioremediation facility                                    | 53,523                      |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf.      |                                                                                                                               |
| OWT facility                                               | 33,317                      |                                 |                                          | Good                                             | 2018           | 2018                           | 2018         | Disposal (landfill and thermal destruction)                                                                                   |
| Soils treatment facility                                   | 336                         |                                 |                                          | Good                                             | >2037          | >2037                          | >2037        | - Hazwaste landfill annual disposal capacity could be                                                                         |
| Disposal                                                   |                             |                                 |                                          |                                                  |                |                                |              | constrained currently if waste disposal rates are high which                                                                  |
| Hazardous waste landfill facility                          | 10,902                      | CIC                             | CIC                                      | Poor                                             | 2020           | 2018                           | >2037        | could require a licence amendment or changes in site management to take more tonnages per year. The expected                  |
| Landfill facility (NEPM codes N,<br>T)                     | 79,885                      |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf.      | <b>CIC</b> tonnes of capacity at the long-term isolation facility will also provide additional capacity. <sup>41</sup>        |
| Persistent organic pollutants thermal destruction facility | 27                          |                                 |                                          | n/a                                              | no inf.        | no inf.                        | no inf.      | - POP (PFOS, BDEs, HBCD, HCB) will be sent interstate for                                                                     |

<sup>&</sup>lt;sup>41</sup> WA Department of Water and Environmental Regulation noted: Intractable Waste Disposal Facility (IWDF) at Mount Walton is currently the only Class V landfill in WA. The WA Minister for Environment approved Tellus Holdings Limited's proposal for the Sandy Ridge Facility through Part IV of the Environmental Protection Act 1986 on 27 June 2018. The proposal subsequently received Commonwealth approval through the Environment Protection and Biodiversity Act 1999 on 7 January 2019. The Sandy Ridge Facility is for a dual open cut kaolin clay mine and a near-surface geological waste repository accepting Class IV and Class V waste, approximately 75 kilometres (km) north east of Koolyanobbing and 5.5 km west of the Mount Walton IWDF. The







| Infrastructure group            | 16-17<br>arisings<br>(t/yr) | Installed<br>capacity<br>(t/yr) | Expected<br>capacity<br>change<br>(t/yr) | Capacity<br>data<br>quality<br>Good,<br>ok, poor | -       | vear arisin<br>capacity<br>High | -       | Assessment discussion and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------|-----------------------------|---------------------------------|------------------------------------------|--------------------------------------------------|---------|---------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clinical waste facility thermal | 2,353                       |                                 |                                          | Good                                             | >2037   | 2035                            | >2037   | thermal destruction where required.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| destruction                     |                             |                                 |                                          |                                                  |         |                                 |         | - Clinical waste TD capacity should be sufficient over                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Short-term storage or transfer  |                             |                                 |                                          |                                                  |         |                                 |         | projection period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Transfer facility               | 140,543                     | CIC                             | CIC                                      | Good                                             | 2018    | 2018                            | 2018    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Long-term storage               |                             |                                 |                                          |                                                  |         |                                 |         | Transfer station or temporary storage                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Long-term on-site storage       | 0                           | CIC                             | CIC                                      | n/a                                              | no inf. | no inf.                         | no inf. | - WA's transfer capacity may already be exceeded; however,                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Long-term isolation facility    | 0                           |                                 |                                          | n/a                                              | no inf. | no inf.                         | no inf. | capacity estimates are incomplete due to limited<br>infrastructure coverage and some capacity being provided<br>within other infrastructure groups. The capacity of transfer<br>infrastructure is also not fixed (i.e. capacity can be scaled up<br>and down by simply increasing the rate of loads transferred).<br><b>NEPM 2016-17</b> showed a net export of 19 kt with the main<br>export being NEPM code D Inorganic chemicals which is likely<br>to be lead acid batteries. |
| Total net Landfill fac. (NEPM   | 432,744                     |                                 |                                          |                                                  |         |                                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| code N, T)                      |                             |                                 |                                          |                                                  |         |                                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NEPM 12-13 net imp./exp. (kt)   | 18,664                      | (export)                        |                                          |                                                  |         |                                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Red Hill Waste Management Facility is a Class III and IV landfill, located in the Perth metropolitan area. The Class IV waste cells have been decommissioned, and this facility is not accepting any additional Class IV waste at this stage (but this is due to change). The Department of Water and Environmental Regulation (WA) is also aware that there may be two potential Class IV waste facilities proposed in WA in the near future.







# 5. Conclusions and recommendations

## 5.1 Hazardous waste arisings and management and current issues

In 2016-17, 6.1 Mt of hazardous waste arose in Australia. Around 2.3 Mt of these wastes were managed by 185 specialist facilities that have an installed capacity to manage 3.1 Mt of hazardous waste. The remaining 3.8 Mt of waste arisings were managed in infrastructure such as composting facilities and landfills that receive mostly non-hazardous waste but are also licensed to receive low risk hazardous wastes (asbestos, low-level contaminated soils and/or end-of-life tyres).

Hazardous waste arisings are projected to be between 5.5 and 15.4 Mt by 2036-37 with a 'best' estimate of 8.9 Mt. The wide range reflects high levels of uncertainty in projecting the quantities of several large-scale waste streams. The high scenario, in particular, assumes:

- high range estimates of the large contaminated soil and asbestos waste streams
- releases from storages/stockpiles
- that from 2023, non-toxic salts from the CSG industry are no longer stored onsite
- projected large-scale growth PFAS contaminated soil and PFOS contaminated biosolids, from 2020.

Over the next few years an increase of around 1 Mt of capacity is expected to be added to Australia's capacity across the infrastructure groups of:

- e-waste, lead, mercury, EOLT and SPL recycling facilities
- CPT and soil treatment facilities
- POP and clinical waste thermal destruction facilities
- long-term isolation facilities.

NSW and Vic dominate Australia's provision of hazardous waste infrastructure, each hosting approximately 30% of the sites. Qld and WA follow both with around 15% of the sites. SA has 8% of the sites, followed by NT, ACT, and Tas which all have less than 5% of Australia's hazardous waste infrastructure sites.

In relation to the installed capacity of this infrastructure, NSW has 32%, followed by Qld, Vic and WA, which each have about 20%. SA has 6% of installed capacity and NT, ACT and Tas each have less than 1%.

NSW managed 34% of the 2016-17 waste arisings. Qld, Vic and WA each managed about 20%. SA managed around 7% of arisings and NT, ACT and Tas all managed less than 2%.

Waste industry operators raised important issues during consultation, listed below:

- falling demand for hazardous waste infrastructure risks a non-viable core infrastructure supply
- stockpiles of SPL, mercury waste and EOLTs are a significant issue and risk
- inconsistent landfill levies drive interstate disposal of hazardous wastes
- inconsistent landfill levies undermine investment in recovery or treatment of hazardous wastes
- inconsistent landfilling pre-treatment requirements create unfair market competition across different jurisdictions
- regulatory settings should support large infrastructure investment that is required







- additional infrastructure is needed to manage reverse osmosis brine wastes from the CSG industry
- asbestos disposal costs are high and access to disposal points is getting harder
- significant infrastructure for destroying POPs is coming online in 2018 in response to PFAS risks
- for PFAS contaminated waters
  - contaminant threshold requirements are needed
  - filtration media destruction requirements are inconsistent
- distances and low tonnages of hazardous waste are a major challenge in WA, in particular
- additional infrastructure is needed for recovering hazardous packaging.

## 5.2 Hazardous waste packaging recycling facilities

The national assessment indicates that under the best and low scenarios over the next 20 years the installed capacity of Australia's current hazardous waste packaging recycling infrastructure will be able to recycle waste arisings. Under the high scenario, the current installed capacity would be exceeded in 2033. The infrastructure need vs capacity assessment for this group has high uncertainty due to a low response rate during 2018 consultation and the highly diffuse nature of this infrastructure group.

Contaminated hazardous waste packaging may seem like a minor issue in the hazardous waste context. This is a problematic waste stream that often has highly concentrated hazardous product residuals. The contaminated containers are voluminous, cannot be cost-effectively transported and are not able to be processed by non-hazardous waste packaging infrastructure.

Some survey respondents commented on a broader need for improved recovery options for small hazardous waste packaging and small packages of waste hazardous goods. Planned infrastructure flagged in the 2015 assessment has not proceeded and this waste stream will likely continue to be problematic and require dedicated infrastructure.

**Recommendation 1:** Qld, NT and Tas governments should consider completing feasibility studies to determine the viability of establishing additional hazardous waste packaging capacity in their jurisdiction.

# 5.3 E-waste major physical/chemical & disassembly facilities

The national assessment indicates that under the best and low scenarios over the next 20 years the current installed capacity of Australia's e-waste (major physical/chemical and manual disassembly processing) infrastructure will be able to recycle waste arisings. If e-waste arisings grow very strongly (high scenario), capacity could become constrained by 2035. However, expected increases in capacity of 12 kt/yr should provide sufficient national capacity to cater for higher growth.

The needs vs capacity assessment for this group has high uncertainty due to the waste arisings reported in tracking system data (4 kt in 2016-17) being much lower than the reported tonnages received (58 kt in 2016-17). This large difference is due to the fact that most e-waste is not transported and tracked as a hazardous waste. Considering the reporting receipts of 58 kt in 2016-17 and the current installed capacity of 106 kt/yr it is still likely that there is sufficient capacity over the projection period.





Installed capacity is concentrated in NSW, with significant capacity also in Vic and SA and some capacity in Qld and ACT. A shortfall in current capacity is apparent in NT, Tas and WA. E-waste in these jurisdictions is likely sent interstate or is sent to landfill.

For e-waste it is important to consider that the assessment assumes no change in the management methods of e-waste. Changes to product stewardship agreements or landfill bans on e-waste could significantly change current e-waste management and increase the recycling capacity required.

**Recommendation 2:** NT, Tas and WA governments should consider completing feasibility studies to determine the viability of establishing e-waste recycling capacity in their jurisdiction.

## 5.3.1 Lithium ion batteries infrastructure

The potential arisings of lithium ion batteries, which are not currently regulated as hazardous waste<sup>42</sup>, are assessed in this report due to their potential to have a significant impact on hazardous and non-hazardous waste infrastructure. Waste lithium ion batteries are projected to grow at an average rate of 19% per year (under best estimate scenario), and if not appropriately managed, represent a safety hazard due to risks of causing explosions and or fire (ABRI 2014).

While this assessment does not indicate a shortfall in the overall e-waste processing capacity in Australia, at the time of writing only one e-waste facility recycles lithium ion batteries in Australia (Envirostream Victoria). Most lithium ion batteries recovered are still likely to be exported overseas for recycling. In addition, Australia has no specific lithium ion battery collection/transfer infrastructure (lithium ion batteries that are recovered are collected with other battery types). The collection of potentially flammable lithium ion batteries without appropriate infrastructure could create a fire hazard within the collection infrastructure for other batteries.

**Recommendation 3:** The potential hazards posed by lithium ion batteries, and the best means of managing these hazards, needs further assessment. Subsequently, an assessment should be completed of the collection and processing infrastructure needs for lithium ion batteries in Australia. This recommendation was made in 2015 and is supported by a CSIRO (2018) study.

# 5.4 Oil re-refining facilities

The national assessment indicates that, under the low and best scenarios, over the next 20 years the installed capacity of Australia's current oil re-refining infrastructure will be able to recycle waste arisings. Under the high scenario, the current installed capacity would be exceeded in 2034.

The infrastructure need vs capacity assessment for this group has moderate uncertainty due to a moderate response rate during consultation and the potential under-reporting of waste oil in NSW and Vic data resulting in an under-estimate of 2016-17 arisings. In addition, some waste oils recycling may actually be sent for energy recovery, which would result in an over-estimate of waste oil re-refining demand.

The 2018 assessment for this infrastructure group is a significant improvement on the 2015 assessment due to separation of the projections of the NEPM J waste codes of J100 and J160 from J120 Waste oil/water, hydrocarbons/water mixtures or emulsions. The J120 waste arisings are now mapped to the new infrastructure group of OWT facilities. This has increased the accuracy of the

<sup>&</sup>lt;sup>42</sup> Waste lithium ion batteries are regulated as hazardous waste for international transport, but currently not for domestic transport







assessment and resulted in a change of expected exceedance of installed capacity in 2023, in the 2015 assessment, to >2037 in this assessment.

Installed capacity is concentrated (in the following order) in WA, Qld and NSW, with some capacity also in SA and Vic. No oil re-refining capacity was identified in ACT, NT and Tas. Oil waste in these jurisdictions is likely sent interstate.

Jurisdictional analysis indicates that ACT, NSW, NT, Qld, Tas all either lack oil re-refining capacity or do not have capacity in the jurisdiction.<sup>43</sup> Capacity in SA and WA appear to be sufficient.

**Recommendation 4:** NSW, NT, Qld and Tas governments should consider completing feasibility studies to determine the viability of establishing additional oil waste capacity in their jurisdiction.

### 5.5 Lead recycling facilities

In the best estimate scenario, lead waste arisings are projected to increase at a rate equivalent to 20-year average population growth rate (1.4%) in all jurisdictions except Tas (where lead waste is projected to follow trends in global zinc prices). On this basis, the installed lead recycling infrastructure capacity could be met by 2023.

Under the low scenario projection, of flat trend for 10 years and decline for the next 10 years due to replacement of battery technology, installed capacity is not expected to be exceeded over the next 20 years.

Under the high estimate projection, of arisings increasing at the 20-year average rate of economic growth (2.8%) for all jurisdictions except Tas, capacity would be exceeded in 2018. The high scenario also includes a 20 kt/yr release of jarosite waste from a stockpile at Nyrstar Hobart to Nyrstar in Port Pirie<sup>44</sup>. The Nyrstar Port Pirie site is included in the e-waste infrastructure group due to the site's defined capacity to process e-wastes such as CRT TVs and the site's unconstrained capacity to take lead waste from the Hobart zinc smelter. Nyrstar Port Pirie's lead recycling capacity is not included in the 124 kt/yr installed capacity estimate. There is also an additional 71 kt/yr of lead acid battery smelting capacity under construction that would add significant additional capacity along the east coast. As Nyrstar Port Pirie can manage all of the lead-rich waste from the Nyrstar Hobart zinc smelter and the significant additional lead acid battery processing capacity coming on-line, there is likely to be sufficient lead recycling capacity under all scenarios.

The lead recycling assessment has moderate level of uncertainty due to the:

- lack of industry response for the 2018 assessment
- lack of a clearly defined upper limit on Nyrstar Port Pirie's ability to manage all of the lead waste from Nyrstar operations, in addition to lead waste from other sectors.

Recycling capacity for lead acid batteries is almost all located in NSW, with some capacity now in Qld so lead acid batteries are transported from other jurisdictions to NSW or Qld or exported overseas under an export permit. The transport costs from WA in particular may result in significant battery stockpiling in WA.

<sup>&</sup>lt;sup>43</sup> Despite NSW and Qld both having significant capacity (as noted above) the projected waste oil sent for re-refining exceeds capacity over the projection period.

<sup>&</sup>lt;sup>44</sup> Port Pirie is understood to have unconstrained capacity to process waste from the Hobart Zinc smelting operations.





**Recommendation 5:** WA government should consider completing a feasibility study to determine the viability of establishing lead waste recycling capacity in their jurisdiction.

### 5.6 Mercury recycling facilities

At a national level, the assessment indicates that over the next 20 years the currently installed capacity of Australia's current mercury waste recycling infrastructure will be able to recycle waste arisings.

Industry reported around 10 times more receipts than was reported in the waste tracking systems, reflecting that some of the mercury waste (such as unprocessed light fittings) does not require tracking. Text withheld to maintain commercial confidentiality.

The mercury recycling assessment has a low level of uncertainty, with excellent industry input and a clearly defined infrastructure group targeting mercury recycling as their core business.

### 5.7 Solvents/paints/organic chemicals recycling facilities

At a national level, the assessment indicates that the current capacity of solvents/paints/organic chemicals recycling is being exceeded. This is unlikely to be accurate due to the high level of uncertainty in the capacity assessment for this group. A number of factors need to be considered:

- 1. it is likely that some materials sent to energy recovery are recorded as recycled (resulting in over estimate of arisings to recycling and underestimate to energy recovery)
- 2. some solvent/paint recycling capacity is likely to be within the CPT infrastructure group
- 3. some smaller operators that recycle solvents/paint may not have not been captured in the infrastructure database.

Based on industry consultation and this assessment, a national shortage of this infrastructure over the next 20 years is considered unlikely. Solvent/paints recycling infrastructure was identified only on the east coast (NSW, Qld, Vic). ACT, NT, SA, Tas and WA had no sites identified. In these jurisdictions, solvents/paint waste is sent interstate, managed within other infrastructure groups or taken to sites not identified in the capacity database.

### 5.8 Organics recycling (NEPM K code wastes) facilities

At a national level, projections indicate that under all scenarios the current capacity of organics recycling infrastructure (for NEPM K code organics) is being exceeded. This is inaccurate and is linked to the very high uncertainty of the assessment of needs vs capacity.

The majority of the 600 kt arisings in 2016-17 of NEPM K code waste is sent to composting sites that are not included in the infrastructure capacity assessment. To complete a quantitative analysis of projected arisings of NEPM K code organics against infrastructure capacity, extensive data would be required on non-hazardous waste infrastructure that accepts only a relatively small amount of low-level hazardous waste as part of much larger non-hazardous waste volumes. In addition, some smaller operators that specialise in hazardous organic waste may not be within the infrastructure database due to the diffuse nature of this infrastructure group.

Based on industry consultation and our assessment of organics recycling infrastructure (for NEPM code N) we do not believe a national shortage of this infrastructure group is likely over the next 20







years. This assessment is supported by the industry consultation results presented in Table 45. It is estimated that the sites within the scope of this infrastructure group received 99 kt of waste in 2016-17 (not 600 kt) and have an installed capacity to manage 106 kt/yr.

### 5.9 End-of-life-tyre recycling facilities

The national assessment of need vs capacity indicates that over the next 20 years the currently installed capacity of Australia's EOLT recycling infrastructure (100 kt/yr) will be able to recycle waste arisings (44 kt/yr in 2016-17). However, the EOLT recycling industry reported around 90 kt of EOLT received which is more than double the 44 kt waste arisings recycled in 2016-17. The difference is related to EOLT recyclers receiving EOLT and exporting them with minimal processing to international energy recovery or reuse markets (the 44 kt relates to full on-shore processing).

Whilst there is good capacity in Australia to collect and partly process tyres for export, there is a lack of well-developed on-shore markets for tyre-derived products. Around 60% of Australian EOLTs are sent to landfill, stockpiled or go to unknown fates. For Australia to increase the recovery of these lost EOLTs there will need to be strong developments in processing technology in Australia. However, these investments cannot occur without further development of offtake markets for the tyre-derived products and enforcement to ensure tyres are not sent to landfill, stockpiled, dumped or exported to low value management options.

EOLTs are the only Australian controlled waste that is exported in significant tonnages to other countries. India is the largest export market for Australian EOLTs. India may restrict EOLT imports in an effort to get local EOLT collected and recycled. This would follow recent trends such as <u>India</u> <u>banning plastic imports</u>. Should India or other countries receiving large tonnages of EOLTs from Australia (e.g. Malaysia) restrict or ban this flow of EOLTs, it is likely that Australia's EOLTs processing capacity would be insufficient.

### 5.10 SPL recycling facilities

An estimated 46 kt of spent pot liner (SPL) arose in 2016-17 which suggests that the aluminium industry is processing all of the current SPL being generated and some of a significant stockpile of SPL. REC (2016) estimated Australia's annual SPL generation at around 30 kt/yr (based on aluminium production rates). REC (2016) estimated the stockpile of SPL to be around 700,000 tonnes, of which around 390,000 tonnes are in on-site landfills at aluminium smelters around Australia.

Under the best and low scenarios, the currently installed capacity is likely to be adequate. Under the high scenario, capacity would be exceeded, as not quite all of the stockpile would be processed in 10 years. This is consistent with the REC (2016) finding that capacity is available to treat Australian SPL stockpiles over around a 10-year period, whilst treating current arisings. REC (2016) also notes that the treatment of SPL that has been landfilled has not yet been demonstrated and may require additional or different infrastructure installation.

The uncertainty of the SPL assessment is low, due mainly to the recent and detailed study (REC 2016) of SPL processing capacity, generation and stockpiles in Australia providing the necessary data.

**Recommendation 6:** Qld, NSW, Vic and Tas governments and DoEE should continue to actively engage with aluminium smelting companies regarding current SPL stockpiles to ensure that stockpiles continue to be drawn down each year until they are removed.







### 5.11 Hazardous waste energy recovery facilities

At a national level, the assessment indicates that capacity has increased significantly since the 2015 assessment, due to the inclusion of cement kilns within the project scope and the allocation of these energy recovery tonnages to this group. The estimated arisings for this infrastructure group (2 kt) are incorrect. Industry reported CIC kt of waste currently received. The reasons for this are:

- 1. Some of the 26 kt of solvents/paints recycling tonnages may actually be sent to energy recovery infrastructure. Currently, the jurisdictional waste tracking systems do not support the separate reporting of tonnages sent to recycling vs energy recovery, which limits the ability to assess energy recovery infrastructure need.
- 2. Some of the waste that is sent for energy recovery does not require tracking in some jurisdictions, for example waste oil in NSW and EOLT in NSW, SA and Vic.

Currently Australia's energy recovery from hazardous waste relies upon cement kilns as the offtake market. Whilst current installed capacity exceeds the CIC kt estimated as received, this does not allow for significant increases without either amendment to cement kiln licences (if technically feasible) or the development of additional energy recovery infrastructure apart from cement kilns.

### 5.12 Chemical and physical treatment (CPT) plant facilities

CPT plants are the archetypal hazardous waste facility, treating a range of waste types using a range of processes. Many of these operations are currently suffering from falling demand as manufacturing activity declines. Across the country, industry reported falling amounts of hazardous manufacturing waste sent for treatment. In some instances, sharp declines were reported. This issue was reported in 2015 and remains current for this 2018 assessment. Our analysis, based on waste tracking data, estimated tonnages of waste sent to CPT of 700 kt in 2015 to just 400 kt in 2018, a fall of around 43% over three years.

This project is focused on identifying where Australia's hazardous waste industry may become constrained over the next 20 years. CPT operators flagged that undersupply of waste could cause infrastructure shortages due to closure of key infrastructure that may no longer be viable as demand falls for processing of key high-volume waste.

However, the overall tonnages of hazardous waste are projected to increase from around 6 Mt currently to almost 10 Mt in 2038, so while tonnages of some waste are declining and projected to continue doing so, other hazardous waste types are projected to increase significantly. The challenge for industry and government is to plan for and implement infrastructure changes that can manage the rapidly changing composition and generating sectors/ locations of hazardous waste.

At a national level, based on the best, high and low projections of arisings, CPT infrastructure is estimated to be able to meet national demand over the next 20 years. For all three scenarios, the projections are based on varying degrees of decline in some waste groups, such as B Acids and E Reactive chemicals, and growth in other waste groups, such as D300 Non-toxic salts and C Alkalis that are projected to increase driven by oil and gas, particularly coal seam gas (CSG), industry developments.

CPT current installed capacity is projected to be sufficient under all scenarios for NSW, Qld, SA, Vic and WA. ACT, NT and Tas have no local CPT capacity. Tas in particular appears to have a shortage of CPT capacity with no CPT capacity identified and estimated arisings of 16 kt.







**Recommendation 7:** DoEE and/or NSW and Qld EPAs should consult with the CSG industry to develop a strategic plan for managing its waste, in particular waste in remote areas. This recommendation was made in 2015 and remains current.

**Recommendation 8:** DoEE and/or Tas EPA should further investigate the supply of CPT capacity for hazardous waste in Tas. This recommendation was made in 2015 and remains current.

### 5.13 Clinical waste treatment facilities

In the best estimate, clinical waste quantities will grow at the projected 20-year average annual growth rate of population growth (1.4% pa). At this rate, the installed capacity of clinical waste treatment could be exceeded by 2024. Based on the high projection, with growth of 2.0 to 2.1% growth based on Thornton (2014), national capacity could be exceeded in 2022. Under the low scenario where the waste arisings trend is flat, capacity is projected to meet demand over the next 20 years.

The infrastructure needs vs capacity assessment for this group has high uncertainty due to a poor response rate from industry. Despite this uncertainty, the assessment indicates that Australia's clinical waste treatment capacity will soon become constrained and investment in additional infrastructure may be required.

NT, SA, Tas and WA all appear to have sufficient clinical waste treatment capacity. ACT, NSW, Qld, and Vic all appear to have insufficient local supply of clinical waste treatment capacity and are likely to be exporting significant quantities interstate. Based on the national assessment, interstate capacity will soon become constrained.

**Recommendation 9:** ACT, NSW, Qld, and Vic governments should consider completing feasibility studies to determine the viability of establishing clinical waste recycling capacity in their jurisdiction.

### **5.14** Bioremediation facilities

There is limited coverage of the capacity of this infrastructure group. Composting facilities are excluded from the database. This group is intended to refer to facilities that treat hazardous waste though biodegradation. Many commercial composting facilities are licenced to receive low level hazardous waste which is effectively bioremediated in the composting process and these facilities are not within the project scope.

Some 200 kt of hazardous waste were reported in tracking data as bioremediated. Most, if not all, of this material would be processed by commercial composting facilities licenced to take a range of low hazard organic waste such as grease trap. These composting facilities are not included in this database. Whilst it is worth maintaining transparency on the amount of hazardous waste being reported as bioremediated by the composting industry, it is beyond the project scope to assess the capacity of bioremediation capacity in Australia.

**Recommendation 10:** State regulators that are operating waste tracking systems complete ongoing auditing of waste treated through bioremediation to ensure that only appropriate hazardous waste is sent to composting operations. This may already be occurring.







## 5.15 Oily water treatment (OWT) facilities

This is a new infrastructure group for the 2018 assessment. Under the best estimate projection capacity would be exceeded in 2025, or as soon as 2019 under the high scenario estimate. Under the low projection, estimated capacity is not expected to be exceeded over the 20-year projection period. The reported 2016-17 arisings of 187 kt are more than the estimated receipts of around 150 kt which may be due to a lack of response from industry and the need to use averages for around a third of sites, or it could be due to the database not including all sites from this diffuse infrastructure group.

The uncertainty of the needs vs capacity assessment is very high due to the capacity assessment relying on average installed capacity for around a third of the sites and the high risk that small OWT plants are not included in the database.

Noting the above, the assessment indicates that capacity for OWT in Australia could become constrained over the next 10 years and some additional capacity may be required.

The jurisdictional assessment indicates that all jurisdictions, apart from Qld, Tas and Vic, lack OWT capacity. However, OWT facilities are typically relatively simple operations that could be established quickly and in response to market demand, and is an infrastructure group that should not require government involvement.

### 5.16 Contaminated soils treatment facilities

At a national level, under the best estimate projection, arisings would not exceed installed capacity over the next 20 years, but would do so under the high scenario. Under the low scenario, capacity would not be exceeded over the projection period.

Significant additional soil treatment capacity is under construction/commissioning in Vic that will add around 300 kt of additional installed capacity and provide sufficient capacity for the long-term for Vic. The significant Vic treatment capacity may also be utilised to treat soil from interstate, with appropriate approvals in place.

The uncertainty of the needs vs capacity assessment is moderate due to the highly fluctuating generation rates of contaminated soil and the difficulty that contaminated soil facilities face in securing the contaminated soil for treatment. Industry report onsite management, contamination dilution with clean soil and landfill disposal as serious threats to their investments, which reduces the certainty in infrastructure capacity investment. Importantly, these estimates assume no change to the current fate patterns of contaminated soil, which, based on the national average, is estimated to be 87% to landfill. If the treatment proportions are higher in other jurisdictions, the above assessment of no national capacity constraints would be affected.

Noting the above, the assessment indicates that there may be a need for additional soil treatment capacity in Australia if contaminated soil generation rates are high, except for Vic which has significant capacity coming online.

Installed capacity is concentrated in Vic, with some capacity also in NSW, Tas and WA. A shortfall in current capacity is apparent in NT, Qld, and SA. Contaminated soil in these jurisdictions is likely disposed to landfill.







**Recommendation 11:** NT, Qld, and SA governments should consider completing feasibility studies to determine the viability of establishing contaminated soil treatment capacity in their jurisdiction.

### 5.17 Hazardous waste landfill facilities

At a national level, for all three scenarios, the current 2016-17 arisings exceed the current installed annual capacity. The modelling assessment for this infrastructure group is incorrect. The response rate from site operators was only 50%, meaning infrastructure group averages were used, and generally the responses provided data only on waste currently received with little information on the installed capacity (i.e. how much waste the landfill can receive annually). This is understandable as, unlike other infrastructure types, landfills are usually able to cater to varying capacity demands (within reason) and a site's installed annual capacity can be difficult to define.

Perhaps more important than the above analysis are industry comments regarding the expected life (i.e. amount of airspace remaining and the number of years of operation before this capacity is consumed) of the seven landfill sites included in this infrastructure group.<sup>45</sup> Landfill operators were asked how much waste could be received at the site before the site's airspace was consumed. Where the operator responded, they all responded with an estimate of the expected year of closure or simply stated that the site had more than 20 years capacity remaining.

Text withheld to maintain commercial confidentiality. No other sites surveyed in this category responded with a definitive response of planned closure within the new 20 years. Apart from Suez Elizabeth Drive, responses were generally vague on the expected closure year and it is recommended that more detailed investigation of the likely closure date of the landfills in this category be completed. Given the small number of sites and the extreme difficulty some jurisdictions have experienced in establishing new hazardous waste landfills, it is important to better understand the risk profile of each site in terms of its likelihood of closure due to: a lack of airspace, regulatory non-compliance, community concern and sudden airspace consumption due to extreme weather events such as cyclone or fire.

**Recommendation 12:** DoEE should work with the jurisdictions to complete a detailed assessment of the likely closure year of the identified hazardous waste landfill facility infrastructure including a risk assessment of site capacity being impacted by issues such as extreme weather events.

#### Text withheld to maintain commercial confidentiality.

#### 5.17.1 Landfill facilities (NEPM code N, T)

This infrastructure group is not in the scope of hazardous waste database. As discussed in Section 3.2, a significant number of landfills are licensed to take hazardous waste NEPM codes N and T only (asbestos, EOLT, low level contaminated soil) and these facilities are not included in the infrastructure database. This is reflected in the almost 3 Mt of hazardous and controlled waste estimated to be sent to this infrastructure group, by far the largest portion of hazardous waste (almost half of the estimated 6 Mt of arisings). Based on industry consultation and our assessment of landfill infrastructure for NEPM codes N and T only, we do not believe there is likely to be a national shortage of this infrastructure group over the next 20 years.

Assessment of hazardous waste infrastructure needs and capacities in Australia 2018

<sup>&</sup>lt;sup>45</sup> The Mount Walton Intractable Waste facility in WA is included in the seven hazardous waste landfills. It has historically only operated on a campaign basis and Tellus Holdings are building a long-term isolation facility five km from site. The future operation of the Mount Walton Intractable waste facility is assumed unlikely following establishment of the Tellus Holdings site next-door.







### 5.17.2 Landfills for asbestos disposal

Unlike most waste, it is commonly accepted that the most appropriate fate for asbestos waste is landfill, where it can be safely removed from the environment for the long term. Across Australia, state and local governments are working towards a gradual rationalisation in the number of landfills in order to minimise the environmental and human health risks that landfills can create. As small regional landfills close, they are often replaced with transfer stations that consolidate waste and enable higher rates of resource recovery, reduce long term liabilities and risks, and transport bulk waste loads to a regional landfill. However, few transfer stations in Australia accept asbestos. This creates a potentially serious problem of lack of local access to disposal options for waste asbestos. Consultation suggests this is a current issue and it is likely to worsen.

### 5.18 POP thermal destruction facilities

At a national level, under all scenarios the current and expected future POP capacity would be greatly exceeded in 2020 when, under the best estimate scenario, arisings are projected to increase to over 400 kt and increase to 450 kt by 2037. The major increases in arisings in 2020 are mostly PFAS contaminated waste (soils, AFFF, biosolids) in 2020 and greater quantities of POP-BDEs and HBCD waste starting in 2023. Whilst this identifies a major gap in Australia's dedicated POP thermal destruction capacity, the capacity assessment uncertainty for this group is very high. POP destruction capacity could turn out to be adequate due to:

- 1. POP thermal destruction capacity within soils treatment facilities. By 2020, as noted above, Australia should have soil treatment facilities, that are able to receive POP, with a total installed capacity of over 300 kt. The capacity of these facilities to receive POP is not yet clear and for this assessment a conservative estimate is made of less than CIC of POP waste capacity within these facilities. It is possible that PFAS contaminated waste (soil and biosolids in particular) may be treated by these facilities in much larger tonnages sufficient to manage the projected arisings.
- 2. POP thermal destruction capacity within cement kilns. Cement kilns in Australia are currently destroying some POP including PFOS. The capacity of Australia's cement kilns to destroy POP is estimated to be **CIC**. The capacity of cement kilns to destroy additional POP tonnages is unknown and there may be additional capacity if the appropriate testing and license approvals were successfully completed.
- POP thermal destruction capacity within clinical waste thermal destruction (TD) facilities. Daniels (Toxfree) Laverton facility is licenced to process highly contaminated PCB waste. Daniels (Toxfree) did not state the potential tonnages of POP that could be destroyed at the facility.

It may be the case that the current and planned suite of infrastructure that is able to destroy POPs can manage the projected tonnages of POP waste. This will depend on the ability of the soil treatment, cement kilns and clinical waste destruction facilities' ability to demonstrate the destruction of POP at the currently licensed limits. Future increases in POP waste may be able to be managed in the current infrastructure subject to demonstration of POP destruction and the approval of large increases in licensed capacities for POP waste.

**Recommendation 13:** DoEE should work with jurisdictions and industry to agree an approach to determine the upper limit for tonnages/concentrations that can be received at the high temperature thermal soil treatment facilities, cement kilns and clinical waste thermal destruction units that will ensure thermal destruction of the PFAS, POP-BDE, HBCD and HCB wastes. This information is required to better understand how much additional dedicated POP thermal destruction capacity (from technologies such as plasma arc) may be required in future.







### 5.18.1 Thermal destruction of PFAS in contaminated water

Industry commented that it urgently needs further direction from regulators regarding the process requirements and contaminant thresholds for PFAS-impacted water clean-up. There is inconsistency between the jurisdictions and reliance on existing guidelines that do not specify PFAS limits.

**Recommendation 14:** The process requirements and contaminant thresholds that need to be met for PFAS-impacted water clean-up should be defined. DoEE may be best placed to lead the development of a recommended process and threshold that the jurisdictions could choose to adopt. This work may already be underway.

PFAS-contaminated groundwater is being cleaned up using activated carbon filtration processes to remove PFAS. Once the filtration media's capacity to adsorb PFAS is exhausted, the contaminated material needs to be renewed. Industry commented that in Qld this material is able to be sent to landfill whereas in other jurisdictions the PFAS-contaminated material must be thermally treated to destroy PFAS. If PFAS-contaminated filtration media is being sent to landfill, rather than being thermally destroyed, it would seem to defeat the efforts in removing PFAS from the groundwater in the first place (i.e. in landfill PFAS will presumably make its way back to the environment).

**Recommendation 15:** The management requirements of PFAS-contaminated filter media should be reviewed to ensure a nationally consistent approach.

### 5.19 Clinical waste thermal destruction facilities

At a national level, based on the best, high and low projections of arisings, clinical waste thermal destruction infrastructure is estimated to meet national demand over the next 20 years.

The estimated 2016-17 arisings of 21 kt aligns with the 20 kt of waste received as reported by industry. With a currently capacity of 33 kt/yr and an expected increase of 3 kt, there appears to be sufficient clinical waste thermal destruction capacity in Australia.

The spare capacity of this infrastructure group has the potential to be impacted by the demand for POP thermal destruction where the site currently has or gains a licence for POP destruction.

There is also reasonable national coverage with facilities in all jurisdictions apart from ACT, NT and Tas. The NT is serviced by a clinical waste treatment facility (autoclave). Tas has no clinical waste facilities (treatment or thermal destruction) in the 2018 database, which indicates a gap in capacity in Tas.

**Recommendation 16:** DoEE and/or Tas EPA should further investigate the need for clinical waste treatment or thermal destruction facilities in Tas.

### 5.20 Transfer station or temporary storage facilities

Projections indicate that under all scenarios the current national transfer/temporary storage capacity of hazardous waste infrastructure is exceeded. These projections are not accurate due mainly to the capacity database having limited coverage of this group. Whilst some transfer facilities are included in this dataset, it is recognised that there are other facilities which deal with hazardous waste that are not included in the dataset, such as smaller storage facilities and transfer stations.







Transfer capacity estimates are also incomplete due to limited infrastructure coverage and some capacity being provided within other infrastructure groups. The capacity of transfer infrastructure is also not fixed (i.e. capacity can be scaled up and down by simply increasing the rate of load transfers).

The project team surveyed industry asking respondents to flag any major transport constraints. Very long transport distances particularly in WA were raised several times as a major barrier to treating/recovering hazardous waste. WA has four of the 19 transfer station facilities in the 2018 database. For such a large state this appears low. If not already being undertaken, further investigation of strategic locations for transfer station facilities in WA is recommended. Consultation with industry on establishing joint venture transfer stations to consolidate waste from a range of waste companies and generators should be explored for WA and potentially Qld (to reduce costs of transporting coal-seam gas waste).

**Recommendation 17:** DoEE and/or WA and Qld governments should complete a detailed assessment and consultation with industry regarding the need for and (where required) best location(s) for additional hazardous waste transfer station/temporary storage infrastructure. This recommendation was made in 2015 and remains current.

### 5.21 Long-term isolation facilities

#### Long-term isolation facilities

Two long-term isolation facilities are currently under development and aim to be operational in around five years' time. Assuming that both become operational, they would provide capacity for up to CIC for highly intractable waste that lacks viable treatment or destruction options. This would provide good mitigation for the risks associated with having only six (operational) hazardous waste landfills in Australia, with the main NSW site due to close in CIC.

CSG reverse osmosis brine wastes and long-term isolation capacity: under the high projection scenario, it is assumed that, after five years new arisings of CSG reverse osmosis brine wastes will be required to be managed offsite and would be sent to long-term isolation facilities (rather than being stored onsite). Historical stockpiles are assumed to remain onsite.

This results in a very large increase, 2.5 Mt/yr, in 2023 increasing to 3.2 Mt/yr by 2037 that is projected to need long-term isolation facility capacity. This presents a shortfall of **CIC** Mt of capacity in 2023, even when the currently planned facilities are built and operating at capacity.

**Recommendation 18**: DoEE should work with state and territory governments to assess the appropriate management of CSG RO brine wastes and determine the likelihood that offsite disposal requirements will be needed in future.

### 5.22 Uncertainty in assessing need vs capacity

Future scenarios are inherently uncertain. The arisings of hazardous waste are influenced by industrial markets, development activities, social licences, government regulations and technological innovations that are all unpredictable. The infrastructure servicing this waste is changeable and difficult to characterise, and information on its activities is limited and hard to obtain. The language of the jurisdictional data (e.g. NEPM codes) differs from that of the industry, creating problems and uncertainties in matching the two. As a result of these uncertainties, the key conclusions of this analysis should be taken as indicative.







Since the 2015 assessment, significant work has been undertaken by DoEE and the jurisdictions to better understand, document and rationalise hazardous waste tracking systems and the recording of hazardous waste arisings and management methods. However, there are still challenges in compiling the data required to complete this assessment. For example, it is still not possible to determine from the tracking system data the tonnages of hazardous waste sent to energy recovery (it is hidden in the recycling tonnages).

**Recommendation 19:** DoEE and the jurisdictions should continue to improve the consistency and completeness of tracking system data and work towards systems that enable reporting of energy recovery separately from recycling.





# Bibliography

The following documents were used in this project, including in developing projections of future quantities of hazardous waste. They are cited in either or both of this report or its accompanying *Hazardous waste needs vs capacities model 2018*.

ABARES (Australian Bureau of Agricultural and Resource Economics and Sciences 2018) Agricultural commodities and trade data, March Quarter 2018, available at:

<u>http://www.agriculture.gov.au/abares/research-topics/agricultural-commodities/agricultural-commodities-trade-data#agricultural-commodities</u>

ABC News, 19 October 2017: Forrestfield Airport Link toxic soil dump creates headache for WA Government, available at: <u>http://www.abc.net.au/news/2017-10-19/forrestfield-tunnel-toxic-pfas-soil-dump-future-uncertain/9066212</u>

ABS (Australian Bureau of Statistics 2013) 3222.0 - *Population Projections, Australia, 2012 (base) to 2101*, available at:

http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3222.02012%20(base)%20to%202101?Op enDocument

ACIL Tasman (June 2012) *Economic significance of Coal Seam Gas in Queensland*, prepared for the Australian Petroleum Production & Exploration Association, available at: <u>https://acilallen.com.au/projects/economic-analysis/economic-significance-of-coal-seam-gas-in-gueensland</u>

Australian Government (2017) Australian Budget 2017-18 - Mid-Year Economic and Fiscal Outlook - Part 2: Economic outlook, available at: <u>http://www.budget.gov.au/2017-18/content/myefo/html/</u>

Batteries International (2015) *Problems for China's Lead Acid Tax*, available at: <u>http://www.batteriesinternational.com/problems-for-chinas-lead-acid-tax/</u>

BE (Blue Environment 2016) Model of e-waste generation, prepared for Sustainability Victoria (used with permission)

BE *et al.* (Blue Environment, Randell Environmental Consulting and Ascend Waste and Environment 2014) 'New' Wastes: Stockholm Chemical Waste Arisings, position paper prepared for the Department of the Environment (unpublished).

BE *et al.* (Blue Environment, Ascend Waste and Environment and Randell Environmental Consulting 2017), *Australian hazardous waste data and reporting standard,* prepared for the Department of Environment and Energy, available at: <u>http://www.environment.gov.au/protection/waste-resource-recovery/publications/australian-hazardous-waste-data-reporting-standard</u>

BE *et al.* (Blue Environment, Randell Environmental Consulting and Ascend Waste and Environment 2018) *Hazardous waste in Australia 2017*, prepared for the Department of the Environment and Energy, available at: <u>http://www.environment.gov.au/protection/hazardous-waste</u>

Centre for International Economics 2017, <u>Headline economic value for waste and materials efficiency</u> <u>in Australia</u>

CSIRO (2018) Lithium battery recycling in Australia Current status and opportunities for developing a new industry, available at <u>https://www.csiro.au/en/Research/EF/Areas/Energy-storage/Battery-recycling</u>

Deloitte Access Economics (2011) Long Term Economic and Demographic Projections, ADF Posture Review, prepared for the Department of Defence, November, available at: http://www.defence.gov.au/oscdf/adf-posture-review/docs/interim/AttachD.pdf







Department of Jobs and Small Business, employment projections, downloaded August 2018 from: <u>http://lmip.gov.au/default.aspx?LMIP/EmploymentProjections</u>

DoE (Department of the Environment 2012) Waste Emissions Projections, <u>http://www.climatechange.gov.au/sites/climatechange/files/files/climate-change/projections/aep-waste.pdf</u>

DoEE (Department of the Environment and Energy 2017) *Annual Report 2016-17* (Appendix: Operation of the Product Stewardship (Oil) Act 2000), available at: <u>http://www.environment.gov.au/system/files/resources/00a9e787-a1a6-4d80-9ab7-</u> f44e6896110c/files/annual-report-2016-17-appendices.pdf

Environment Protection Authority Tasmania (2009) *Environment Protection Notice EPN 7043/3*, issued 18/3/2009, available at: <u>https://nyrstarhobart.com/wp-content/uploads/2015/10/NH-12-14-Public-Env-Report.pdf</u>

Gallen *et al* (2016) Occurrence and distribution of brominated flame retardants and perfluoroalkyl substances in Australian landfill leachate and biosolids, *Journal of Hazardous Materials* 312 (2016) 55–64

Glinin et al (2013) Outotec<sup>®</sup> Ausmelt Technology for Treating Zinc Residues, available at: <u>https://www.researchgate.net/publication/270048746\_Ausmelt\_Technology\_for\_Treating\_Zinc\_Residues</u>

Heads of EPAs (2018) *PFAS National Environmental Management Plan*, available at: <u>http://www.epa.vic.gov.au/~/media/Files/Your%20environment/Land%20and%20groundwater/PFA</u> <u>\$%20in%20Victoria/PFAS%20NEMP/FINAL\_PFAS-NEMP-20180110.pdf</u>

Hyder Consulting (2015) *Stocks and Fate of End of Life Tyres - 2013-14 Study*, prepared for the National Environment Protection Council, available at: <u>http://www.nepc.gov.au/resource/stocks-and-fate-end-life-tyres-2013-14-study</u>

KMH (2013) Reducing releases of POP-BDEs to the environment - Option impact analysis (not public)

Lewis H, CEO Australian Battery Recycling Initiative (ABRI 2014) Battery stewardship and recycling update, presentation to *Waste Expo 2014*, Melbourne, 16 May 2014

Melbourne Water (2010) *Expressions of Interest: Implementation of a research and development project for energy, nutrient, metal, fuel or chemical extraction, geotechnical reuse, building material extender, decontamination, stabilisation, or other conversion leading to 'Beneficial Use' of biosolids.* Available from: <u>http://www.icnvic.org.au/media/documents/water%20industry/melb%20water%20-%20eoi%20-%20beneficial%20use%20of%20biosolids.pdf</u>

NICNAS (National Industrial Chemicals Notification and Assessment Scheme 2014) National Assessment of Chemicals Associated with Coal Seam Gas Extraction in Australia, available from: <a href="http://www.nicnas.gov.au/communications/issues/fracking-hydraulic-fracturing-coal-seam-gas-extraction/information-sheet">http://www.nicnas.gov.au/communications/issues/fracking-hydraulic-fracturing-coal-seam-gas-extraction/information-sheet</a>

Nolan Consulting & SRU (Nolan Consulting and Sustainable Resource Use 2014) *Study into stocks and flows, market analysis and processing capacity of waste paint, prepared for the National Environment Protection Council Service Corporation,* available from:

http://www.sustainability.vic.gov.au/~/media/resources/documents/services%20and%20advice/busi ness/paint%20product%20stewardship/study%20into%20stocks%20and%20flows\_%20market%20an alysis%20and%20processing%20capacity%20of%20waste%20paint%20in%20australia.pdf

Nyrstar (2015) Nyrstar Public Environment Report 2012-2014, available at: <u>https://nyrstarhobart.com/wp-content/uploads/2015/10/NH-12-14-Public-Env-Report.pdf</u>







Nyrstar (2017) Nyrstar fact sheet 2017, available at:

<u>https://www.nyrstar.com/~/media/Files/N/Nyrstar/resources-and-materials/factsheets/fact-sheet-hobart.pdf</u>

Nyrstar (2018) Nyrstar fact sheet 2018, available at:

<u>https://www.nyrstar.com/~/media/Files/N/Nyrstar/operations/melting/2018%20Fact%20Sheet%20-</u> <u>%20Hobart.pdf</u>

Office of the Chief Economist (2017) *Resources and Energy Quarterly (Sept 2017)*, available at: <u>https://industry.gov.au/Office-of-the-Chief-</u> <u>Economist/Publications/ResourcesandEnergyQuarterlySeptember2017/documents/Resources-and-</u> Energy-Quarterly-September-2017-Aluminium-alumina-and-bauxite.pdf

Office of the Chief Economist (2018) *Resources and Energy Quarterly (March 2018)*, available at: <u>https://industry.gov.au/Office-of-the-Chief-</u> Economist/Publications/ResourcesandEnergyQuarterlyMarch2018/index.html

Orica (2017) HCB Fact Sheet Nov 2017, available at: <u>http://www.orica.com/ArticleDocuments/775/20171204\_Updated%20HCB%20Fact%20Sheet.pdf.as</u> <u>px</u>

PSD (Pollution Solutions and Designs 2017) *Biosolids Production in Australia 2017*, available to Biosolids Partnership Members only, December

Randell Environmental Consulting (2017) *National market development strategy for used tyres 2017-2022,* developed for Sustainability Victoria, available at: *https://www.sustainability.vic.gov.au/Business/Market-development/Tyre-stewardship* 

Randell Environmental Consulting (2018) Waste lithium ion battery projections, produced for the Department of Environment and Energy, June, available at:

<u>https://www.environment.gov.au/system/files/resources/dd827a0f-f9fa-4024-b1e0-5b11c2c43748/files/waste-lithium-battery-projections.pdf</u>

Randell Environmental Consulting 2016 Spent pot lining project (feasibility of an agreement based approach to clear stockpiles), available at:

<u>http://www.environment.gov.au/protection/publications/spent-pot-lining-project-feasibility-agreement-based-approach-clear-stockpiles-final</u>

SIA (Sustainable Infrastructure Australia 2008) Orica Hexachlorobenzene waste stockpile - Independent assessment report

Tasmanian Government (2016) *The mining and mineral processing industry in Tasmania*, <u>https://www.cg.tas.gov.au/ data/assets/pdf file/0020/123374/Investment\_Guide -</u> *Mining\_and\_Minerals\_INVEST14205.pdf* 

Tasmanian Times (2012) *Riding roughshod over a local community ... ?* Available at: <u>http://tasmaniantimes.com/index.php?/weblog/article/more-than-20-years-planning-for-a-c-cell-in-tasmania/</u>

Thornton T (2014) Estimates for Victorian Public Hospital Waste Generation, pers comm

UNEP (United Nations Environment Program 2012) Guidance for the inventory of polybrominated diphenyl ethers (PBDEs) listed under the Stockholm Convention on Persistent Organic Pollutants, available at:

<u>http://www.unido.org/fileadmin/user\_media/Services/Environmental\_Management/Stockholm\_Con</u> <u>vention/Guidance\_Docs/UNEP-POP-GUID-NIP-2012-PBDEs-Inventory.En.pdf</u>

WB (2017) World Bank Zinc Price Forecast, available at: <u>https://knoema.com/ftmgyvg/zinc-prices-forecast-long-term-2017-to-2030-data-and-charts</u>







# Appendix A Wastes that are tracked in tracking systems







The following diagram shows wastes that are not tracked in intra-state tracking systems by states that run such systems. Emerging wastes such as Li-ion batteries are not yet tracked by any jurisdiction. Status of waste tracking by jurisdiction tracking system

|   | de & description                                                 | 75 code and description (NEPM Schedule A, List 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |     | ,        | ully tracked |   |  |
|---|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|----------|--------------|---|--|
|   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NSW      | Qld | SA       | Vic          | W |  |
| Α | Plating and heat                                                 | A100 Waste resulting from surface treatment of metals & plastics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     |          |              |   |  |
|   | treatment                                                        | A110 Waste from heat treatment & tempering operations containing cyanides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |          |              |   |  |
|   |                                                                  | A130 Cyanides (inorganic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |          |              |   |  |
| В | Acids                                                            | B100 Acidic solutions or acids in solid form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |          |              |   |  |
| С | Alkalis                                                          | C100 Basic solutions or bases in solid form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |          |              |   |  |
| D | Inorganic chemicals                                              | D100 Metal carbonyls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |     |          |              |   |  |
|   |                                                                  | D110 Inorganic fluorine compounds excluding calcium fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |          |              |   |  |
|   |                                                                  | D120 Mercury; mercury compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u> |     | <u> </u> |              | ⊢ |  |
|   |                                                                  | D130 Arsenic; arsenic compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |     |          |              | ⊢ |  |
|   |                                                                  | D140 Chromium compounds (hexavalent & trivalent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     |          |              | ┝ |  |
|   |                                                                  | D150 Cadmium; cadmium compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u> |     |          |              | ⊢ |  |
|   |                                                                  | D160 Beryllium; beryllium compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        |     |          |              | ⊢ |  |
|   |                                                                  | D170 Antimony; antimony compounds D180 Thallium; thallium compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |     |          |              | ⊢ |  |
|   |                                                                  | D190 Copper compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |     |          |              | ⊢ |  |
|   |                                                                  | D200 Cobalt compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |     |          |              | ⊢ |  |
|   |                                                                  | D210 Nickel compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u> |     |          |              | ┢ |  |
|   |                                                                  | D220 Lead; lead compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hiinii   |     |          |              | ⊢ |  |
|   |                                                                  | D230 Zinc compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |     |          |              | ⊢ |  |
|   |                                                                  | D240 Selenium; selenium compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -        |     |          |              | ⊢ |  |
|   |                                                                  | D250 Tellurium; tellurium compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |     |          |              | F |  |
|   |                                                                  | D270 Vanadium compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |     |          |              |   |  |
|   |                                                                  | D290 Barium compounds (excluding barium sulphate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |     |          |              | F |  |
|   |                                                                  | D300 Non-toxic salts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |     |          |              | t |  |
|   |                                                                  | D310 Boron compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |     |          |              | t |  |
|   |                                                                  | D330 Inorganic sulfides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |     |          |              | t |  |
|   |                                                                  | D340 Perchlorates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |     |          |              | t |  |
|   |                                                                  | D350 Chlorates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |     |          |              | t |  |
|   |                                                                  | D360 Phosphorus compounds excluding mineral phosphates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |     |          |              | t |  |
| Е | Reactive chemicals                                               | E100 Waste containing peroxides other than hydrogen peroxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |          |              | T |  |
| F | Paints, resins, inks,                                            | F100 Waste from production, formulation & use of inks, dyes, pigments, paints, lacquers & varnish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |     |          |              | F |  |
|   | organic sludges                                                  | F110 Waste from the production, formulation & use of resins, latex, plasticisers, glues & adhesives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |     |          |              | T |  |
| G | Organic solvents                                                 | G100 Ethers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |          |              | T |  |
|   | -                                                                | G110 Organic solvents excluding halogenated solvents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |     |          |              | Γ |  |
|   |                                                                  | G150 Halogenated organic solvents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |     |          |              | Γ |  |
|   |                                                                  | G160 Waste from the production, formulation & use of organic solvents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |     |          |              |   |  |
| н | Pesticides                                                       | H100 Waste from the production, formulation & use of biocides & phytopharmaceuticals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |     |          |              |   |  |
|   |                                                                  | H110 Organic phosphorous compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |     |          |              |   |  |
|   |                                                                  | H170 Waste from manufacture, formulation & use of wood-preserving chemicals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |          |              |   |  |
| J | Oils                                                             | J100 Waste mineral oils unfit for their original intended use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |     |          |              |   |  |
|   |                                                                  | J120 Waste oil/water, hydrocarbons/water mixtures or emulsions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |     |          |              |   |  |
|   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |     |          |              |   |  |
|   |                                                                  | J160 Waste tarry residues arising from refining, distillation, & any pyrolytic treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |     |          |              |   |  |
| к | Putrescible/ organic                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |     |          |              |   |  |
| к | Putrescible/ organic waste                                       | J160 Waste tarry residues arising from refining, distillation, & any pyrolytic treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |     |          |              |   |  |
| к |                                                                  | J160 Waste tarry residues arising from refining, distillation, & any pyrolytic treatment<br>K100 Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |     |          |              |   |  |
| K |                                                                  | J160         Waste tarry residues arising from refining, distillation, & any pyrolytic treatment           K100         Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)           K110         Grease trap waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |     |          |              |   |  |
|   |                                                                  | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r        |     |          |              |   |  |
|   | waste                                                            | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r        |     |          |              |   |  |
|   | waste                                                            | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds including chlorophenols         M160       Organo halogen compounds—other than substances referred to in this Table or Table 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r        |     |          |              |   |  |
|   | waste                                                            | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds including chlorophenols         M160       Organo halogen compounds—other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |     |          |              |   |  |
|   | waste                                                            | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds including chlorophenols         M160       Organo halogen compounds—other than substances referred to in this Table or Table 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |     |          |              |   |  |
|   | waste                                                            | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M100       Phenols, phenol compounds including chlorophenols         M150       Organo halogen compounds—other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M180       Polychlorinated dibenzo-p-dioxin (any congener)         M210       Cyanides (organic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |     |          |              |   |  |
|   | waste                                                            | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds including chlorophenols         M160       Organo halogen compounds—other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M180       Polychlorinated dibenzo-p-dioxin (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |     |          |              |   |  |
|   | waste                                                            | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M100       Phenols, phenol compounds including chlorophenols         M150       Organo halogen compounds—other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M180       Polychlorinated dibenzo-p-dioxin (any congener)         M210       Cyanides (organic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |     |          |              |   |  |
|   | waste                                                            | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds including chlorophenols         M160       Organo halogen compounds—other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M180       Polychlorinated dibenzo-p-dioxin (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds         M230       Triethylamine catalysts for setting foundry sands         M250       Surface active agents (surfactants), containing principally organic constituents & which may contain                                                                                                                                                                                                                                                                                                                                                                                              |          |     |          |              |   |  |
|   | waste                                                            | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds including chlorophenols         M160       Organo halogen compounds — other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M180       Polychlorinated dibenzo-p-dioxin (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds         M230       Triethylamine catalysts for setting foundry sands         M250       Surface active agents (surfactants), containing principally organic constituents & which may conta         M260       Highly odorous organic chemicals (including mercaptans & acrylates)                                                                                                                                                                                                                                                                                                       |          |     |          |              |   |  |
| М | waste                                                            | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds including chlorophenols         M160       Organo halogen compounds—other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M180       Polychlorinated dibenzo-p-dioxin (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds         M230       Triethylamine catalysts for setting foundry sands         M240       Highly odorous organic chemicals (including mercaptans & acrylates)         N100       Containers & drums that are contaminated with residues of substances referred to in this list                                                                                                                                                                                                                                                                                                              |          |     |          |              |   |  |
| М | waste<br>Organic chemicals                                       | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Prenols, phenol compounds – other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M180       Polychlorinated dibenzo-p-dioxin (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds         M230       Triethylamine catalysts for setting foundry sands         M250       Surface active agents (surfactants), containing principally organic constituents & which may conta         M260       Highly odorous organic chemicals (including mercaptans & acrylates)         N100       Containers & drums that are contaminated with residues of substances referred to in this list         N120       Soils contaminated with a controlled waste                                                                                                                                                                                            |          |     |          |              |   |  |
| М | waste<br>Organic chemicals                                       | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds including chlorophenols         M160       Organo halogen compounds—other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M180       Polychlorinated dibenzo-p-dioxin (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds         M230       Triethylamine catalysts for setting foundry sands         M250       Surface active agents (surfactants), containing principally organic constituents & which may conta         M250       Surface active agents (surfactants), containing principally organic constituents & which may conta         M260       Highly odorous organic chemicals (including mercaptans & acrylates)         N100       Containers & drums that are contaminated with residues of substances referred to in this list         N102       Soils contaminated with a controlled was      |          |     |          |              |   |  |
|   | waste<br>Organic chemicals                                       | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds including chlorophenols         M160       Organo halogen compounds—other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M180       Polychlorinated dibenzo-p-dioxin (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds         M230       Triethylamine catalysts for setting foundry sands         M250       Surface active agents (surfactants), containing principally organic constituents & which may conta         M250       Surface active agents (surfactants), containing mercaptans & acrylates)         N100       Containers & drums that are contaminated with residues of substances referred to in this list         N120       Soils contaminated with a controlled waste         N140       Fire debris & fire wash waters         N150       Fily as                                         |          |     |          |              |   |  |
| M | waste<br>Organic chemicals                                       | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds including chlorophenols         M160       Organo halogen compounds—other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M180       Polychlorinated dibenzo-p-dioxin (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds         M230       Triethylamine catalysts for setting foundry sands         M250       Surface active agents (surfactants), containing principally organic constituents & which may conta         M260       Highly odorous organic chemicals (including mercaptans & acrylates)         N100       Containers & drums that are contaminated with residues of substances referred to in this list         N140       Fire debris & fire wash waters         N140       File debris & fire wash waters         N150       Fily ash, excluding fly                                         |          |     |          |              |   |  |
| M | waste<br>Organic chemicals                                       | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds including chlorophenols         M160       Organo halogen compounds—other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M180       Polychlorinated dibenzo-p-dioxin (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds         M230       Triethylamine catalysts for setting foundry sands         M260       Highly odorous organic chemicals (including mercaptans & acrylates)         N100       Containers & drums that are contaminated with residues of substances referred to in this list         N120       Soils contaminated with a controlled waste         N140       Fire debris & fire wash waters         N150       Ely ash, excluding fly ash generated from Australian coal fired power stations         N160       Encapsulated, chemically-fixed,                                         |          |     |          |              |   |  |
| М | waste<br>Organic chemicals                                       | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds – other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds         M230       Triethylamine catalysts for setting foundry sands         M230       Surface active agents (surfactants), containing principally organic constituents & which may conta         M230       Surface active agents (surfactants), containing principally organic constituents & which may conta         M240       Fire debris & fire wash waters         N140       Fire debris & fire wash waters         N140       Fire debris & fire wash waters         N150       Fiy ash, excluding fly ash generated from Australian coal fired power stations         N150       Fily ash, excluding fly ash generated from Australian coal fired power stations         N150                                       |          |     |          |              |   |  |
| M | waste<br>Organic chemicals                                       | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds including chlorophenols         M160       Organo halogen compounds—other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M180       Polychlorinated dibenzo-p-dioxin (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds         M230       Triethylamine catalysts for setting foundry sands         M230       Triethylamine catalysts for setting foundry sands         M230       Surface active agents (surfactants), containing principally organic constituents & which may conta         M260       Highly odorous organic chemicals (including mercaptans & acrylates)         N100       Containers & drums that are contaminated with residues of substances referred to in this list         N120       Soils contaminated with a controlled waste         N140                                        |          |     |          |              |   |  |
| N | waste<br>Organic chemicals<br>Soil/ sludge                       | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds including chlorophenols         M160       Organo halogen compounds—other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M180       Polychlorinated dibenzo-p-dioxin (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds         M230       Triethylamine catalysts for setting foundry sands         M230       Surface active agents (surfactants), containing principally organic constituents & which may conta         M240       Highly odorous organic chemicals (including mercaptans & acrylates)         N100       Containers & drums that are contaminated with residues of substances referred to in this list         N120       Soils contaminated with a controlled waste         N140       Fire debris & fire wash waters         N150       Fily ash, e                                         |          |     |          |              |   |  |
| M | waste Organic chemicals Soil/ sludge Clinical and                | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M160       Organo halogen compoundsother than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M180       Polychlorinated dibenzo-p-dioxin (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds         M220       Isocyanate compounds         M230       Triethylamine catalysts for setting foundry sands         M250       Surface active agents (surfactants), containing principally organic constituents & which may conta         M250       Surface active agents (surfactants), containing mercaptans & acrylates)         N100       Containers & drums that are contaminated with residues of substances referred to in this list         N120       Soils contaminated with a controlled waste         N140       Fire debris & fire wash waters         N150       Fly ash, excluding fly ash generat                                            |          |     |          |              |   |  |
| N | waste<br>Organic chemicals<br>Soil/ sludge                       | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlo         M150       Phenols, phenol compounds including chlorophenols         M160       Organo halogen compounds—other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M180       Polychlorinated dibenzo-dioxin (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds         M230       Triethylamine catalysts for setting foundry sands         M250       Surface active agents (surfactants), containing principally organic constituents & which may conta         M260       Highly odorous organic chemicals (including mercaptans & acrylates)         N100       Containers & drums that are contaminated with residues of substances referred to in this list         N120       Soils contaminated with a controlled waste         N140       Fire debris & fire wash waters       N150         N150                                                   |          |     |          |              |   |  |
| N | waste Organic chemicals Soil/ sludge Clinical and pharmaceutical | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds – other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds         M220       Isocyanate compounds         M220       Isocyanate compounds         M230       Triethylamine catalysts for setting foundry sands         M230       Surface active agents (surfactants), containing principally organic constituents & which may conta         N100       Containers & drums that are contaminated with residues of substances referred to in this list         N120       Soils contaminated with a controlled waste         N140       Fire debris & fire wash waters         N150       Fly ash, excluding fly ash generated from Australian coal fired power stations         N140       Fire debris & fire wash waters <tr< td=""><td></td><td></td><td></td><td></td><td></td></tr<> |          |     |          |              |   |  |
| N | waste Organic chemicals Soil/ sludge Clinical and                | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds – other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M180       Polychlorinated dibenzo-p-dioxin (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds         M230       Triethylamine catalysts for setting foundry sands         M230       Triethylamine catalysts for setting foundry sands         M230       Surface active agents (surfactants), containing principally organic constituents & which may conta         M260       Highly odorous organic chemicals (including mercaptans & acrylates)         N100       Containers & drums that are contaminated with residues of substances referred to in this list         N120       Soils contaminated with a controlled waste         N140       Fire debris & fire wash waters         N150       Fly ash,                                         |          |     |          |              |   |  |
| N | waste Organic chemicals Soil/ sludge Clinical and pharmaceutical | J160       Waste tarry residues arising from refining, distillation, & any pyrolytic treatment         K100       Animal effluent & residues (abattoir effluent, poultry & fish processing wastes)         K110       Grease trap waste         K140       Tannery wastes (incl. leather dust, ash, sludges & flours)         K190       Wool scouring wastes         M100       Waste substances & articles containing or contaminated with polychlorinated biphenyls, polychlor         M150       Phenols, phenol compounds – other than substances referred to in this Table or Table 2         M170       Polychlorinated dibenzo-furan (any congener)         M210       Cyanides (organic)         M220       Isocyanate compounds         M220       Isocyanate compounds         M220       Isocyanate compounds         M230       Triethylamine catalysts for setting foundry sands         M230       Surface active agents (surfactants), containing principally organic constituents & which may conta         N100       Containers & drums that are contaminated with residues of substances referred to in this list         N120       Soils contaminated with a controlled waste         N140       Fire debris & fire wash waters         N150       Fly ash, excluding fly ash generated from Australian coal fired power stations         N140       Fire debris & fire wash waters <tr< td=""><td></td><td></td><td></td><td></td><td></td></tr<> |          |     |          |              |   |  |







# Appendix B NEPM 75 codes links to waste groups







| NEPM         |                                                                    | Waste          | Waste group                  |
|--------------|--------------------------------------------------------------------|----------------|------------------------------|
| code         | NEPM waste description                                             | group          | description                  |
| A100         | Waste resulting from surface treatment of metals and               |                |                              |
| AIOO         | plastics                                                           | А              |                              |
| A110         | Waste from heat treatment and tempering operations                 |                | Plating & heat treatment     |
|              | containing cyanides                                                | А              |                              |
| A130         | Cyanides (inorganic)                                               | A              |                              |
| B100         | Acidic solutions or acids in solid form                            | В              | Acids                        |
| C100         | Basic solutions or bases in solid form                             | С              | Alkalis                      |
| D100         | Metal carbonyls                                                    |                | Other inorganic              |
|              |                                                                    | Other D        | chemicals                    |
| D110         | Inorganic fluorine compounds excluding calcium fluoride            | D110           | Inorganic fluorine (SPL)     |
| D120         | Mercury; mercury compounds                                         | <b>B</b> 4 8 8 | Mercury and                  |
| 5420         |                                                                    | D120           | compounds                    |
| D130         | Arsenic; arsenic compounds                                         | Other D        |                              |
| D140         | Chromium compounds (hexavalent and trivalent)                      | Other D        |                              |
| D150         | Cadmium; cadmium compounds                                         | Other D        |                              |
| D160         | Beryllium; beryllium compounds                                     | Other D        | Other inorganic              |
| D170         | Antimony; antimony compounds                                       | Other D        | chemicals                    |
| D180         | Thallium; thallium compounds                                       | Other D        |                              |
| D190         | Copper compounds                                                   | Other D        |                              |
| D200         | Cobalt compounds                                                   | Other D        |                              |
| D210         | Nickel compounds                                                   | Other D        | _<br>Lood and                |
| D220         | Lead; lead compounds                                               | 0220           | Lead and                     |
| 0220         | Zine compounds                                                     | D220           | compounds                    |
| D230         | Zinc compounds                                                     | D230           | Zinc compounds               |
| D240         | Selenium; selenium compounds                                       | Other D        | Oth on in one reaction       |
| D250         | Tellurium; tellurium compounds                                     | Other D        | Other inorganic<br>chemicals |
| D270         | Vanadium compounds<br>Barium compounds (excluding barium sulphate) | Other D        | Chemicais                    |
| D290         |                                                                    | Other D        | Nex toxic colto              |
| D300         | Non-toxic salts                                                    | D300           | Non-toxic salts              |
| D310         | Boron compounds                                                    | Other D        |                              |
| D330         | Inorganic sulfides                                                 | Other D        | Other inorganic              |
| D340         | Perchlorates                                                       | Other D        | chemicals                    |
| D350         | Chlorates                                                          | Other D        |                              |
| D360         | Phosphorus compounds excluding mineral phosphates                  | Other D        | Depativo                     |
| E100         | Waste containing peroxides other than hydrogen peroxide            | E              | Reactive<br>chemicals        |
|              | Waste from the production, formulation and use of inks,            |                | CHEIIICAIS                   |
| F100         | dyes, pigments, paints, lacquers and varnish                       | F              | Paints, resins, inks,        |
|              | Waste from the production, formulation and use of resins,          |                | organic sludges              |
| F110         | latex, plasticisers, glues and adhesives                           | F              | organie sladges              |
| G100         | Ethers                                                             | G              |                              |
| G110         | Organic solvents excluding halogenated solvents                    | G              |                              |
| G110<br>G150 | Halogenated organic solvents                                       | G              | Organic solvents             |
|              | Waste from the production, formulation and use of                  | 0              | 0                            |
| G160         | organic solvents                                                   | G              |                              |
|              | Waste from the production, formulation and use of                  | -              |                              |
| H100         | biocides and phytopharmaceuticals                                  | Н              |                              |
| H110         | Organic phosphorous compounds                                      | Н              | Pesticides                   |
|              | Waste from manufacture, formulation and use of wood-               |                |                              |
| H170         | preserving chemicals                                               | Н              |                              |
|              |                                                                    |                |                              |







| NEPM    |                                                                                      | Waste   | Waste group             |
|---------|--------------------------------------------------------------------------------------|---------|-------------------------|
| code    | NEPM waste description                                                               | group   | description             |
| 14.00   |                                                                                      | J100 &  | -                       |
| J100    | Waste mineral oils unfit for their original intended use                             | J160    | Oils                    |
| 14.20   | Waste oil/water, hydrocarbons/water mixtures or                                      |         | Waste oil/water         |
| J120    | emulsions                                                                            | J120    | mixtures                |
| 14.60   | Waste tarry residues arising from refining, distillation, and                        | J100 &  |                         |
| J160    | any pyrolytic treatment                                                              | J160    | Oils                    |
| 1/4 0.0 | Animal effluent and residues (abattoir effluent, poultry and fish processing wastes) |         | Other putrescible /     |
| K100    |                                                                                      | Other K | organic wastes          |
| K110    | Crease has weath                                                                     |         | Grease trap             |
| K110    | Grease trap waste                                                                    | K110    | wastes                  |
| K140    | Tannery wastes (including leather dust, ash, sludges and                             |         |                         |
| K140    | flours)                                                                              | Other K | Other putrescible /     |
| K190    | Wool scouring wastes                                                                 | Other K | organic wastes          |
|         | Waste substances and articles containing or contaminated                             |         | _                       |
|         | with polychlorinated biphenyls, polychlorinated                                      |         |                         |
| M100    | napthalenes, polychlorinated terphenyls and/or                                       |         |                         |
|         | polybrominated biphenyls                                                             | M100    | PCB wastes              |
|         |                                                                                      |         | Other organic           |
| M150    | Phenols, phenol compounds including chlorophenols                                    | Other M | chemicals               |
|         |                                                                                      | M160a&  | POP BDEs and            |
| M160    | Organo halogen compounds—other than substances                                       | b       | HBCD                    |
|         | referred to in this Table or Table 2                                                 | M160c   | НСВ                     |
| M170    | Polychlorinated dibenzo-furan (any congener)                                         | Other M |                         |
| M180    | Polychlorinated dibenzo-p-dioxin (any congener)                                      | Other M |                         |
| M210    | Cyanides (organic)                                                                   | Other M |                         |
| M210    | Isocyanate compounds                                                                 | Other M |                         |
| -       | Triethylamine catalysts for setting foundry sands                                    | Other M |                         |
| M230    | Surface active agents (surfactants), containing principally                          | Other M | Other organic chemicals |
| M250    | organic constituents and which may contain metals and                                |         |                         |
| 101230  | inorganic constituents and which may contain metals and                              | Other M |                         |
|         | Highly odorous organic chemicals (including mercaptans                               | Other M |                         |
| M260    | and acrylates)                                                                       | Other M |                         |
|         | and acrylates)                                                                       |         | PFOS                    |
|         |                                                                                      |         | contaminated            |
|         |                                                                                      | M270a   | biosolids               |
|         |                                                                                      | 1012700 | PFAS                    |
| M270    | PFAS contaminated materials                                                          |         | contaminated            |
|         |                                                                                      | M270b   | soils                   |
|         |                                                                                      | 1012/05 | AFFF                    |
|         |                                                                                      | M270c   | concentrates            |
|         | Containers and drums that are contaminated with                                      |         |                         |
| N100    | residues of substances referred to in this list                                      | Other N | Other soil/sludges      |
|         |                                                                                      |         | Contaminated            |
| N120    | Soils contaminated with a controlled waste                                           | N120    | soils                   |
| N140    | Fire debris and fire wash waters                                                     | Other N | 55115                   |
| 11140   | Fly ash, excluding fly ash generated from Australian coal                            | othern  |                         |
| N150    | fired power stations                                                                 | Other N |                         |
|         | Encapsulated, chemically-fixed, solidified or polymerised                            | othern  | Other soil/sludges      |
| N160    | wastes referred to in this list                                                      | Other N | other sony studges      |
|         | Filter cake contaminated with residues of substances                                 | othern  |                         |
| N190    | referred to in this list                                                             | Other N |                         |
|         |                                                                                      | other N |                         |







| NEPM |                                                                                                                                                                      | Waste                                                | Waste group         |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------|
| code | NEPM waste description                                                                                                                                               | group                                                | description         |
|      | -                                                                                                                                                                    | -                                                    | Other               |
|      | Residues from industrial waste treatment/disposal                                                                                                                    | rom industrial waste treatment/dispesal contaminated | contaminated        |
| N205 | operations                                                                                                                                                           | N205a                                                | biosolids           |
|      |                                                                                                                                                                      |                                                      | Other industrial    |
|      |                                                                                                                                                                      | N205b                                                | treatment residues  |
|      | Asbestos                                                                                                                                                             |                                                      | Asbestos            |
| N220 |                                                                                                                                                                      |                                                      | containing          |
|      |                                                                                                                                                                      | N220                                                 | material            |
| N230 | Ceramic-based fibres with physico-chemical                                                                                                                           |                                                      |                     |
|      | characteristics similar to those of asbestos                                                                                                                         | Other N                                              | Other soil/sludges  |
| R100 | Clinical and related wastes                                                                                                                                          | R                                                    |                     |
| R120 | Waste pharmaceuticals, drugs and medicines                                                                                                                           | R                                                    | Clinical &          |
| R140 | Waste from the production and preparation of                                                                                                                         |                                                      | pharmaceutical      |
| 1140 | pharmaceutical products                                                                                                                                              | R                                                    |                     |
| T100 | Waste chemical substances arising from research and development or teaching activities, including those which are not identified and/or are new and whose effects on |                                                      | Othermiseelleneeue  |
|      | human health and/or the environment are not known                                                                                                                    | Other T                                              | Other miscellaneous |
| T120 | Waste from the production, formulation and use of                                                                                                                    |                                                      |                     |
|      | photographic chemicals and processing materials                                                                                                                      | Other T                                              | _                   |
| T140 | Tyres                                                                                                                                                                | T140                                                 | Tyres               |
| T200 | Waste of an explosive nature not subject to other                                                                                                                    |                                                      | Other               |
| 1200 | legislation                                                                                                                                                          | Other T                                              | miscellaneous       |