


report



# Summary

#### The problem

Tourist vehicle traffic using an unformed stream bed crossing on the upper reaches of Jim Jim Creek in Kakadu National Park has caused increased turbidity of the water downstream for a number of years. A study of possible adverse effects of increased suspended solids on the biota of the stream was conducted following expression of concern by the management of Kakadu National Park, Parks Australia.

#### Study procedure

The study monitored turbidity, water chemistry, macroinvertebrate and fish community structure and condition factors of two fish species in 1996 for two months before the creek crossing was opened to tourist traffic early in the Dry season (24 June) and for 4 months afterwards. A modified BACIP experimental design was used, which included paired sites in both Jim Jim Creek (upstream and downstream of the road crossing) and Twin Falls Creek (a control stream, with analogous but undisturbed upstream and downstream sites).

#### Water chemistry results

Turbidity levels peaked one month after the road opened, reaching an average maximum of 60 NTU (or ~100 mg/L suspended solids) 200 m downstream of the crossing. The lag was due to initial erosion of a layer of clean sand deposited at the crossing during the Wet season and not to peak traffic levels at this time. Turbidity levels decreased with greater distance downstream reaching maximum average levels of 30 NTU (or ~8 mg/L suspended solids) 1000 m downstream of the crossing. Turbidity declined towards the end of the tourist season as discharge declined but remained well above background levels, even 1000 m downstream. The concentrations of total iron and aluminium increased markedly downstream of the Jim Jim Creek road crossing after the road opening, in association with increases in suspended solids. At the prevailing near-neutral pH of the creek water, these metals were present predominately in a particulate (non-toxic) form. There were some minor increases in levels of other chemical parameters downstream of the road crossing but all parameters were well within Australian water quality guideline values (ANZECC 1992).

#### Macroinvertebrate results

Macroinvertebrates were sampled in rootmat and sand-bed habitat using a standardised sweep net procedure. Two potentially impacted sites were sampled, located 200m and 1000m respectively, downstream of the Jim Jim Creek road crossing. Also sampled were three control sites, one upstream of the road crossing on Jim Jim Creek and two sites on Twin Falls Creek. The macroinvertebrate communities at all sites (both downstream and control) were characterised by a natural increase in invertebrate abundance as the Dry season progressed. Within this general trend, there was considerable variability among sampling occasions for all sites. Turbidity-related effects on macroinvertebrate communities inhabiting the rootmat substrate were strongly indicated by a general disparity of samples collected 200 m downstream of the road crossing with control sites late in the Dry season. These effects were primarily indicated by multivariate measures of overall community similarity, as well as an apparent reduction in the abundance of macroinvertebrates, particularly Chironomidae, at downstream sites in comparison to control sites. Macroinvertebrate community changes were not as distinct among samples collected 1000 m downstream, although there was some evidence for impact-related changes this far downstream in the multivariate analysis. Impact-related changes were not detected in the samples from the sand habitat, primarily a consequence of a large amount of natural variability among samples and sampling occasions, masking any effects of the road crossing.

#### Fish results

Fish were sampled by gill and seine netting on a single occasion before the road opened and again 4 months later, from paired upstream and downstream sites either side of the Jim Jim Creek crossing, as well as in Twin Falls Creek.. There were consistent differences between the two streams in their fish assemblages. Community structure changed in both streams between sample times but the direction of change of the two sites differed between streams in multivariate ordination. In the control stream, both sites moved in the same direction in the ordination space whereas in the disturbed stream the sites moved in different directions indicating that the dissimilarity between sites increased much more in the disturbed Jim Jim Creek. Both turbidity and the numerically dominant fish species, *Craterocephalus marianae*, were significantly correlated with the ordination space. Numbers of *C. marianae* declined by 90% downstream of the road crossing whereas they increased at all other sites.

Condition factors of the two most abundant fish species, C. marianae and Amniataba percoides, showed no significant difference between sites in the same stream so there was no evidence that the invertebrate food supply was impaired. Spawning of C. marianae occurred in the period between samples. Length frequency analysis of C. marianae populations indicated that there was a decline in numbers of larger fish downstream of the road crossing but that the reproduction and recruitment process may not have been impaired.

#### **Recommendations**

It was considered that the annual scouring of the stream bed during the Wet season would remove fine sediments deposited downstream of the Jim Jim Creek crossing, allowing the normal assemblage of stream biota to re-establish each year. Consequently more severe and longer term effects on biota than those reported are unlikely to occur.

However, the distribution of *C. marianae* is restricted to the west Arnhemland region and much of its known range is within Kakadu National Park. Given the present adverse effects of the road crossing on this species in particular, the adverse effects on other species of fish and invertebrates, as well as the high conservation value of the area, consideration should be given to alleviating effects of the road crossing. A low level engineered structure is recommended.

The study indicated that a threshold level of turbidity for effects on invertebrates and fish would be at, or less than, 30 NTU. Management strategies should aim to achieve levels well below this value and should include a monitoring program for measurement of turbidity to evaluate the effectiveness of remedial measures.

# Contents

| SUMMARY                             | II |
|-------------------------------------|----|
| ACKNOWLEDGEMENTS                    | IX |
| 1 INTRODUCTION                      | 1  |
| 2 PROCEDURES                        | 2  |
| 2.1 Study design                    | 2  |
| 2.2 Macroinvertebrate studies       | 3  |
| 2.3 Fish studies                    | 6  |
| 2.4 Environmental variables         | 9  |
| 3 RESULTS                           | 10 |
| 3.1 Environmental variables         | 10 |
| 3.2 Macroinvertebrates              | 16 |
| 3.3 Fish                            | 21 |
| 4 DISCUSSION                        | 30 |
| 4.1 Physical and chemical variables | 30 |
| 4.2 Macroinvertebrates              | 31 |
| 4.3 Fish                            | 36 |
| 5 RECOMMENDATIONS                   | 40 |
| 5.1 Thresholds of effects           | 40 |
| 5.2 Alleviating effects             | 40 |
| REFERENCES                          | 41 |

APPENDIX A: Macroinvertebrate community structure at sampling sites during the study

APPENDIX B: Fish community structure at sampling sites during the study

APPENDIX C: Results of multivariate analysis of fish community structure data

# FIGURES

- Figure 1.1 Sampling locations on Jim Jim and Twin Falls creeks, Kakadu National Park
- Figure 2.1 Idealised result of BACIP experiment with present design.
- Figure 3.1
   Weekly traffic counts for Jim Jim Falls Road and Twin Falls Road
- Figure 3.2
   Mean turbidity levels at different study sites
- Figure 3.3 Total suspended solids measurements at different study sites
- Figure 3.4 Correlation of turbidity and total suspended solids for Jim JimCreek
- **Figure 3.5** Temporal change in site dissimilarities through time for the *rootmat* habitat, as measured by the difference in total invertebrate abundance
- **Figure 3.6** Temporal change in site dissimilarities through time for the *sand* habitat, as measured by the difference in total invertebrate abundance
- **Figure 3.7** Temporal change in Bray-Curtis multivariate dissimilarities for the *rootmat* habitat calculated using untransformed data
- **Figure 3.8** Temporal change in Bray-Curtis multivariate dissimilarities for the *rootmat* habitat using log<sub>10</sub>(x+1) transformed data
- Figure 3.9 Relationship between discharge and Bray-Curtis dissimilarity of macroinvertebrate community structure between upstream and downstream sites for (a) the upper reaches of the South Alligator River using species level data and (b) Jim Jim and Twin Falls Creeks using family level data.
- Figure 3.10 Temporal change in Bray-Curtis multivariate for the sand habitat calculated using untransformed data
- **Figure 3.11** Temporal change in Bray-Curtis multivariate for the *sand* habitat calculated using log<sub>10</sub>(x+1) transformed data
- **Figure 3.12** HMDS ordination of macroinvertebrate community structure in the rootmat samples from the 'before' period (prior to the opening of the road crossing) based on log<sub>10</sub>(x+1) transformed data.
- Figure 3.13 Principle axis correlation of (a)environmental variables and (b) taxa for the 'before' period ordination of rootmat samples appearing in figure 3.12
- **Figure 3. 14** HMDS ordination of macroinvertebrate community structure in the rootmat samples from the 'after' period (subsequent to the opening of the road crossing) based on log<sub>10</sub>(x+1) transformed data.
- **Figure 3.15** Principle axis correlation of (a) environmental variables (b) and taxa for the 'after' period ordination of rootmat samples appearing in figure 3.14.
- **Figure 3.16** HMDS ordination of macroinvertebrate community structure in sand samples from the 'before' period (prior to the opening of the road crossing) based on  $log_{10}(x+1)$  transformed data
- **Figure 3.17** Principle axis correlation of (a) environmental variables and (b) taxa for the 'before' period ordination of sand samples appearing in figure 3.16.
- **Figure 3.18** HMDS ordination of macroinvertebrate community structure in sand samples from the 'after' period (subsequent to the opening of the road crossing) based on log<sub>10</sub>(x+1) transformed data
- Figure 3.19 Principle axis correlation of (a) environmental variables and (b) taxa for the 'after' period ordination of sand samples appearing in figure 3.18.

- Figure 3.20 Ordination of artificial substrate samples (a) in the 'before' period (prior to the opening of the road crossing) and (b) 'after' period (subsequent to the opening of the road crossing).
- Figure 3.21 Temporal change in total macroinvertebrate abundance (all taxa) in rootmat samples
- Figure 3.22 Temporal change in Chironomid (non-biting midge) larvae abundance in rootmat samples
- Figure 3.23 Temporal change in Elmid beetle larvae abundance in rootmat samples
- Figure 3.24 Temporal change in Acarina (aquatic mite) abundance in *rootmat* samples, throughout the study period.
- **Figure 3.25** Temporal change in Caenid mayfly abundance in *rootmat* samples, throughout the study period.
- **Figure 3.26** Temporal change in Baetid mayfly abundance in *rootmat* samples, throughout the study period.
- Figure 3.27 Temporal change in total macroinvertebrate abundance (all taxa) in sand samples, throughout the study period.
- Figure 3.28 Temporal change in Chironomid (non-biting midge) larvae abundance in sand samples
- **Figure 3.29** SSHMDS ordination of fish community structure in Jim Jim Creek and Twin Falls Creek using log<sub>10</sub> transformed data.
- **Figure 3.30** Principal axis correlation of (a) individual fish species and (b) physico-chemical parameters with the ordination space of fish community structure (log<sub>10</sub> transformed data) in figure 3.29.
- Figure 3.31 SSHMDS ordination of fish community structure in Jim Jim Creek and Twin Falls Creek using untransformed data.
- Figure 3.32 Principal axis correlation of (a) individual fish species and (b) physico-chemical parameters with the ordination space of fish community structure using untransformed data.
- **Figure 3.33** Condition factors of *Craterocephalus marianae* before and after the opening of the road crossing on Jim Jim Creek.
- Figure 3.34 Condition factors of *Amniataba percoides* before and after the opening of the road crossing on Jim Jim Creek.
- Figure 3.35 Effect of preservation in 70% alcohol on length of *Craterocephalus marianae* specimens collected from the upstream and downstream sampling sites
- Figure 3.36 Length frequency distributions for *Craterocephalus marianae* at each site before (a) and after (b) the opening of the road crossing at Jim Jim Creek

| TABLES     |                                                                                                                                                                                                                                                               |          |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Table 2.1  | Location and GPS coordinates (WGS 84) of sampling sites                                                                                                                                                                                                       | 3        |
| Table 2.2  | Specifications of nets used for sampling fish at Jim Jim and Twin Falls Creeks                                                                                                                                                                                | 8        |
| Table 3.1a | Water quality variables, including some major ions, measured<br>in water from Jim Jim and Twin Falls creeks, 1996.                                                                                                                                            | 13       |
| Table 3.1b | Nutrients and other major ions in water from Jim Jim and<br>Twin Falls creeks, 1996.                                                                                                                                                                          | 14       |
| Table 3.1c | Heavy metals in water from Jim Jim and Twin Falls creeks in 1996.                                                                                                                                                                                             | 15       |
| Table 3.2  | Comparison of fish numbers detected by gill-netting, seine-netting, and visual count methods.                                                                                                                                                                 | 22       |
| Table 3.3  | Fish species observed in Jim Jim Creek and Twin Falls Creek before and after the opening of Jim Jim Creek Crossing.                                                                                                                                           | 23       |
| Table 3.4  | Numbers of fish sampled by gill-netting at sites before and after the opening of the road crossing on Jim Jim Creek                                                                                                                                           | 25       |
| Table 3.5  | Numbers of fish sampled by seine net from each site before and after the opening of the road crossing on Jim Jim Creek.                                                                                                                                       | 26       |
| Table 3.6  | Bray Curtis dissimilarity values for fish community structure<br>based on combined data from gill net and seine samples using<br>both untransformed abundance data and log transformed data<br>from 4 sites on Jim Jim and Twin Falls Creeks before and after |          |
| Table 3.7  | the opening of a road crossing on Jim Jim Creek.<br>Principle axis correlation coefficients (R) for fish species<br>variables significantly correlated with the fish ordination<br>community space using either untransformed or log10 (x+1)                  | 27       |
| Table 3.8  | transformed fish abundance data.<br>Principle axis correlation coefficients (R) for water physico-<br>chemical variables significantly correlated with the fish<br>community ordination space using either untransformed                                      | 28       |
| Table 3.9  | or log10 (x+1) transformed fish abundance data.<br>Results of 2-way ANOVA examining the effect of time<br>(before and after the opening of the road crossing) and site<br>(upstream and downstream sites on 2 streams) on the condition                       | 28       |
| Table 3.10 | factor of the fish <i>Craterocephalus marianae</i> .<br>Results of 2-way ANOVA examining the effect of time<br>(before and after the opening of the road crossing) and site<br>(upstream and downstream sites on 2 streams) on the condition                  | 29       |
| Table 4.1  | factor of the fish Amniataba percoides.<br>Summary of observations reported by selected studies on<br>the effects of suspended sediment on stream macroinvertebrate<br>communities.                                                                           | 30<br>35 |
| Table B1   | Fish sampled at Jim Jim Creek upstream site on 29/05/96 & 30/05/96, before the opening of the Jim Jim Creek crossing                                                                                                                                          |          |
| Table B2   | Fish sampled at Jim Jim Creek upstream site on 7/10/96 & 8/10/96, after the opening of the Jim Jim Creek crossing                                                                                                                                             |          |

| Table B3 | Fish sampled at Jim Jim Creek downstream site on 23/05/96 & 24/05/96, before the opening of the Jim Jim Creek crossing                                                                                                                                                        |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table B4 | Fish sampled at the Jim Jim Creek downstream site on 7/10/96<br>& 8/10/96, after the opening of the Jim Jim Creek crossing                                                                                                                                                    |
| Table B5 | Fish sampled at the Twin Falls Creek upstream site on 30/05/96 & 31/05/96, before the opening of the Jim Jim Creek crossing                                                                                                                                                   |
| Table B6 | Fish sampled at the Twin Falls Creek upstream site on 9/10/96<br>& 10/10/96, after the opening of the Jim Jim Creek crossing                                                                                                                                                  |
| Table B7 | Fish sampled at the Twin Falls Creek downstream site on 12/06/96 & 13/06/96, before the opening of the Jim Jim Creek crossing                                                                                                                                                 |
| Table B8 | Fish sampled at the Twin Falls Creek downstream site on<br>10/10/96 & 11/10/96, after the opening of the Jim Jim<br>Creek crossing                                                                                                                                            |
| Table C1 | Principle axis correlation coefficients (R) and associated<br>Monte-Carlo probability (p) derived from a PCC analysis<br>of physico-chemical parameters against the SSH ordination<br>space of fish community data (Log10 transformed;<br>Bray-Curtis dissimillarity values). |
| Table C2 | Principle axis correlation coefficients (R) and associated<br>Monte-Carlo probability (p) derived from a PCC analysis<br>of physico-chemical parameters against the SSH ordination<br>space of fish community data (untransformed; Bray-Curtis<br>dissimillarity values).     |

,

-

viii

# Acknowledgements

This study was undertaken by staff of the Environmental Research Institute of the Supervising Scientist at Jabiru, NT, on behalf of the management of Kakadu National Park, Parks Australia, who provided some funding for the work. The report is the joint intellectual property of *eriss* and Parks Australia.

The authors gratefully acknowledge the following people for their contribution to the project:

Parks Australia staff, in particular, Scott Suridge for initiating the project, Ross Grant of Jim Jim district (constant provider and general coordination) and other staff of the Jim Jim district.

Jabiru Town Council for the loan of a vehicle counter.

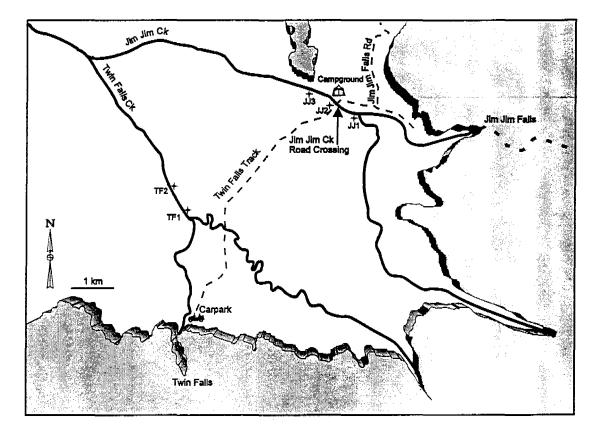
Macroinvertebrate study: Rebecca Bennett (field assistance, water chemistry analysis, sorting of macroinvertebrate samples), Ruth O'Connor (advice and statistical analysis), David Norton, Cate Lynch, Barbara Klessa, Abbie Spiers (sorting, water chemistry preparation, and document editing), Stacey Braund, Bill Macfarlane and numerous other volunteers (field assistance).

Fish study: Bill Macfarlane, Graham Loewenthal, Otto Campion, Hadley Brien, Mabi Dukawa and Origen Mogelu (field assistance and fish measurements).

Chemistry: Peter Cusbert and staff of the eriss Analytical Chemistry laboratory undertook most of the water chemistry analyses. Chris leGras provided critical comment on interpretation of water chemistry results.

# **1** Introduction

Jim Jim and adjacent Twin Falls lie at the escarpment of the Arnhemland plateau in Kakadu National Park and are managed by Parks Australia as major tourist destinations. Access to both waterfalls is available to 4WD vehicles only in the Dry season by way of an unsealed road from the Kakadu Highway. Access to Twin Falls is via a road which crosses Jim Jim Creek adjacent to the Jim Jim Falls camp-ground (Fig 1.1). There are presently no engineered road structures at the road crossing on Jim Jim Creek, a factor resulting in recent years, in erosion of the clay creek-bed and localised increases in turbidity. This contrasts markedly with the high clarity waters upstream. There is anecdotal evidence that the severity of downstream turbidity has worsened over recent tourist seasons, with turbid water being observed for several kilometres downstream of the road crossing in 1995.


Increased loads of suspended solids are a common result of human activity on aquatic ecosystems and have been studied intensively elsewhere. There are, however, no well-established principles developed which characterise the environmental effects of suspended sediment on aquatic biota (Newcombe & MacDonald, 1991). In addition to the measurable level of suspended solids, site specific factors such as sediment characteristics and duration of exposure appear to be determinants of the biological response. Previous studies have indicated that in situations where there is normally high water clarity, elevated suspended solids, even at low concentrations (eg 10-30 mg/L), can have adverse effects on aquatic biota. As these conditions appeared to be occurring in Jim Jim Creek, the management of the park was concerned to establish whether any significant, adverse ecological effects resulted from this activity and if corrective action was appropriate.

Suspended sediment is capable of affecting biota in a number of ways. For example, the sediment may directly affect animals such as invertebrates by clogging filter feeding or respiratory structures or in severe cases, by smothering organisms inhabiting the creek-bed. Turbid water may also evoke behavioural responses such as invertebrate drift or avoidance by fish. Suspended sediment may inhibit algal growth by reducing light penetration, having consequences for the wide variety of organisms which rely on algae as a food source.

Benthic macroinvertebrates are the small (visible to the naked eye) invertebrate organisms inhabiting the creek-bed. Macroinvertebrates are widely used as biological indicators in freshwater ecosystems. They have inherent properties which make them highly suitable for this role: in particular, their abundance in all freshwater environments and a generally high taxonomic diversity that ensures a comprehensive array of different levels of sensitivity to environmental stress. The sedentary nature of these organisms means localised effects of pollution can be determined at various sites. Macroinvertebrates react quickly to stress but also have sufficiently long life-cycles that, in measurement of attributes of community structure, longer-term effects may be detected (Rosenberg & Resh, 1993).

The deposition of fine sediment that accompanies increases in turbidity can also affect freshwater fishes in ways other than the general biotic effects mentioned above, eg adverse physical changes to habitat, especially of riffle species, and smothering of the eggs of demersal spawners. Unfortunately, most of the information available on effects of turbidity and siltation on fish relates to northern hemisphere species and the applicability of these effects to most

1



ł

Figure 1.1. Sampling locations on Jim Jim and Twin Falls creeks, Kakadu National Park,

Australian species is unknown. As there is little information on the levels of sediment and duration of exposure that might induce these effects in Australian freshwater fish species, it was not possible to predict potential effects from simple measurements of sediment load. Consequently, in Australia any evaluation of whether an increase in turbidity is large enough to have such adverse effects requires direct examination of the fish community.

In response to the concerns of the management of Kakadu National Park about the possible turbidity problem in Jim Jim Creek, *eriss* has undertaken a study to determine the effects, and their extent, of vehicle-induced disturbance downstream of the Jim Jim Creek road crossing. Sampling of macroinvertebrate and fish communities, as well as comprehensive water chemistry analysis, were conducted at a number of sites in Jim Jim and Twin Falls creeks before and after the opening of the Jim Jim Creek crossing to the general public in the 1996 tourist season. This information would assist with future management of the Jim Jim and Twin Falls district and would be used to evaluate the need for a hard road crossing that would significantly reduce the turbidity and its effects on aquatic biota.

# 2 Procedures

# 2.1 Study design

Macroinvertebrate and fish data were collected according to a statistically rigorous BACIP (Before, After, Control, Impact, Paired difference) design. This involves sampling of both potentially impacted and undisturbed (control) sites before and after the disturbance thereby using a form of 'temporal' control. This design makes the assumption that there would always be natural differences in measured biological parameters between any two sites. Consequently, an impact may be indicated if the size of the *difference* in biotic response between control sites and impact sites changes significantly (- as determined by a Student t-test -) after the onset of disturbance (figure 2.1). This is shown schematically using hypothetical data in figure 2.1. For the current study, control and impact sites were located upstream and downstream of the Jim Jim Creek road crossing respectively. Two significant modifications to BACIP designs include (Faith et al 1995, Humphrey et al 1995):

- 1. Multivariate extension of the design using dissimilarity measures as the measure of difference between 2 sites; and
- 2. Incorporation of control data for all phases of impact assessment ('before' and 'after') that would increase inferences made about impact. Such control data, in the case of streams, comprise 'differences' derived from similarly paired sites in (a) stream(s) adjacent to the stream of interest. Incorporation of an additional control is also displayed in figure 2.1. In this case, the design is based on a symmetrical ANOVA, using single control stream and single impact stream. A test for interaction is conducted within a 2-factor ANOVA ('before' vs 'after' impact, 'control'-stream vs 'impact'-stream).

Both modifications were employed in the current study. In the case of 2. above, measurements were made on a similar stream which was unimpacted by a road crossing, Twin Falls Creek - providing a further control situation against which to compare before and after changes in biotic parameters.

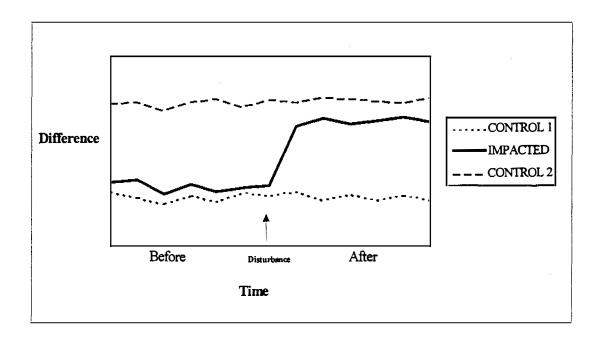



Figure 2.1 Idealised result of BACIP experiment with present design.

[Note that sites need not be identical in the undisturbed state. An impact is indicated when a significant change is observed in the *difference* between un-impacted (control sites) and impacted sites, after the onset of the disturbance.]

One of the important assumptions behind BACIP designs includes the need for independence of the temporal difference values over time. If this assumption cannot be met, modelling of the temporal variation by way of covariates may be required, the data analysis then employing trend analysis (regression) or analysis of covariance.

Measurements of physical and chemical parameters of the creek water were made at the same sampling sites at which the biota were sampled.

# 2.2 Macroinvertebrate studies

#### 2.2.1 Frequency of sampling

Sampling of sites in Jim Jim and Twin Falls creeks was undertaken over a period of five and a half months, encompassing a pre-impact period of two months - between first possible access and the opening of the Jim Jim Creek crossing to the general public (June 24, 1996) - and a three-and-a-half month period of impact data. Macroinvertebrate samples were collected on a fortnightly basis prior to the crossing being opened and on a monthly basis after the opening of the road crossing. Sampling extended until mid October when the flow of Jim Jim and Twin Falls creeks had receded to near-cessation.

#### 2.2.2 Sampling locations

Sampling was conducted at five creek sites (figure 1.1). On Jim Jim Creek, two potentially impacted sites, 200 m and 1000 m downstream of the road crossing were selected together with one control site 200 m upstream of the crossing. Two additional 'independent' control sites were selected on nearby Twin Falls Creek, the locations of which were selected to correspond with the 200 m upstream and 1000 m downstream sites of Jim Jim Creek (in terms of their creek-line distance from the escarpment), thus incorporating a similar spatial gradient as the sites on Jim Jim Creek. All sample locations contained similar habitats and were of similar depth, width and flow rate.

| Site code | Location                             | Longtitude   | Latitude    |
|-----------|--------------------------------------|--------------|-------------|
| JJ1       | 200 m upstream from road crossing    | 132.81603688 | 13.27098484 |
| JJ2       | 200 m downstream from road crossing  | 132.80972625 | 13.26690914 |
| 5LL       | 1000 m downstream from road crossing | 132.80219371 | 13.26435003 |
| TF1       | 3800 m downstream from Twin Falls    | 132.77873185 | 13.29604692 |
| TF2       | 1200 m downstream from TF1           | 132.77921687 | 13.28533337 |

Table 2.1 Location and GPS coordinates (WGS 84) of sampling sites

#### 2.2.3 Collection of samples

Macroinvertebrates are found in abundance among the physical structures within the creek such as the sand creek-bed, leaf-litter, submerged edges, aquatic plants etc. Hereafter, such habitats colonised by macroinvertebrates are referred to as *substrates*. Invertebrates were collected from two natural substrates and from artificial substrates placed in the stream at each site. A different sampling procedure was used for each substrate type.

#### Natural substrates

The major natural substrates identified in Jim Jim and Twin Falls creeks were sand, root mat and aquatic plant edge. Whilst initially, sampling of all three habitats was conducted, aquatic plant sampling was abandoned during the study as this habitat was lost with receding water levels. Consequently, methods for sampling this habitat are not described here.

# Sand

The predominant substrate in the main channel of Jim Jim and Twin Falls creeks is a mediumgrained sand. An organic floc, supporting a rich macroinvertebrate fauna, forms over this sand as flow recedes during the Dry season.

Sampling of the sand habitat was performed by lightly drawing a 250  $\mu$ m kick net (basal width of 25 cm) across a pre-marked 5 m transect of the sand. The creek-bed surface immediately in front of the net was agitated by hand to suspend any organic matter and invertebrates, this material then being swept into the net. Only sand upon which an organic floc had formed (as opposed to clean-swept sand in areas of stronger stream flow) was sampled. Transects of suitable habitat were selected at random and sampled in a direction parallel to, and against, the direction of flow of the creek; so that any suspended matter was washed downstream into the net.

The contents of the net were transferred into a 20 L bucket half-filled with clean creek water, on the creek bank. Macroinvertebrates and organic matter were elutriated and separated by vigorous stirring by hand of the contents of the bucket, followed by pouring off of organic material into a 250  $\mu$ m sieve. This process of elutriation was conducted three times with each sample. The sample retained by the sieve was preserved immediately in 70% ethanol for transport back to the laboratory.

At each of the sampling sites and on each sampling occasion, three replicate sand samples were collected. Each replicate represented a total sampling area of  $\sim 1.25$  m<sup>2</sup> of sand habitat.

#### Root Mat

The root mat habitat consisted of a dense mat of fine fibrous roots usually belonging to *Pandanus aquaticus* and *Melaleuca* spp. growing at the creek edge. Replicate two-metre transects of this habitat were sampled at random in a similar manner to the sand substrate, ie by lightly drawing a 250  $\mu$ m kick net along the substrate, against the flow of the creek whilst vigorously agitating the substrate by hand. Again the macroinvertebrates and organic matter were elutriated from the sample by washing three times in half-buckets of creek water, pouring off the sample into a 250 $\mu$ m sieve. Samples were preserved in 70% ethanol for transport back to the laboratory.

At each of the sampling sites and on each sampling occasion, three replicate rootmat samples were collected. Each replicate represented a total sampling area of  $\sim 0.5 \text{ m}^2$  of rootmat habitat.

#### Artificial substrates

Artificial substrates are a method of sampling macroinvertebrates whereby a suitable artificial habitat is placed in the creek for a predetermined period to be colonised by macroinvertebrates. Although not representative of natural substrates present in Jim Jim Creek, rock aggregate artificial substrates provide diverse and highly consistent sampling. Artificial substrates have been successfully employed in the Kakadu region previously (Faith *et al.* 1995) and were initially considered useful in this study due to the uncertainty associated with natural substrates in such a seasonal environment.

Artificial substrates consisted of cylinders of plastic mesh (approximately 200 mm x 100 mm basal diam.) filled with coarse 'blue metal' aggregate. The aggregate could be readily removed and replaced by cutting and reinserting cable ties holding the ends of the cylinder in place.

At each sampling site, ten artificial substrates were placed in a regular arrangement in shallowflowing water on the sand creek bed, with the length perpendicular to the flow of the creek.

After a two-week exposure period in the creek, the substrates were removed successively from the creek bed by placing a 250  $\mu$ m sweep net immediately downstream of the substrate and lifting the substrate whilst sliding the net in underneath. The net containing the substrate was then taken to the creek bank where the substrate and any material in the net was transferred to a 20 L bucket half filled with creek water. The aggregate was then released from the substrate cage and swirled vigorously by hand. The suspended organic material and invertebrates were collected by pouring through a 250  $\mu$ m sieve. This elutriation procedure was conducted three times for each substrate.

Macroinvertebrates and associated organic matter were preserved on site in 70% ethanol and sealed in plastic containers for transport to the laboratory where they were stored until further processing.

Environmental variables recorded in association with each macroinvertebrate sample were water depth and flow, the latter measured by timing a float over a distance of 2 m.

# 2.2.4 Laboratory processing of samples

#### Subsampling

Samples that were considered too large to process in their entirety were subsampled using a 'riffler' (geological splitting device). Subsampling was achieved by suspension of the sample in a jug of water then pouring evenly through the riffler to split the sample into two equal portions Successive splitting was performed until the desired quantity of sample was obtained. The required subsample was collected onto a 250  $\mu$ m sieve and placed in ethanol for subsequent 'sorting'.

## Sample processing and identification

Invertebrates were sorted from the organic residues using a stereomicroscope and then identified to family level using keys developed for the Alligator Rivers Region.

#### 2.2.5 Data analysis

Changes in the macroinvertebrate community downstream of the Jim Jim Creek road crossing, were evaluated using a number of approaches: comparison of univariate 'difference' measures, comparison of multivariate dissimilarity measures (both directly and with creek discharge as a covariate), multivariate ordination and simple comparison of the abundance of major taxa.

# Univariate 'difference' measures

Univariate analysis (based on one community summary variable) was performed using site differences based on total macroinvertebrate abundance, as well as the differences based on major taxa (Chironomidae, Caenidae, Baetidae, Elmidae and Acarina). All community summaries were measured as the difference between the upstream and downstream sites for the combined total abundance of the three replicate samples.

#### Multivariate dissimilarity

Multivariate community dissimilarities (using abundance data of all taxa as variables) were calculated using the Bray-Curtis dissimilarity index (on a continuous scale from 0 = identical to 1 = totally dissimilar), in the statistical analysis package PATN (Belbin 1994). Separate multivariate comparisons of site data were made using raw (untransformed) data, transformed (log<sub>10</sub> (x+1)) data (which emphasises the influence of rarer taxa), and rank order abundance data. Regression analysis of dissimilarity/ stream discharge data was performed using the SAS package (SAS Institute 1995).

#### Multivariate ordination

Ordination is a method of data analysis which separates biological samples containing an array of taxa, on the basis of overall similarity. Samples which are most similar will be represented on axes as close together, conversely, those far apart are less similar. For a given sampling occasion, control and downstream sites located relatively close to one another (and similar in every way as well as not being affected by human disturbance) would generally be expected to be represented in ordination space by points interspersed with one another (due to their similarity). Should community changes have occurred (ie an impact), the difference between control and impact samples will be indicated, in ordination space, by separation among points.

Ordinations of all samples (before and after), based on both raw (untransformed) and transformed  $(\log_{10}(x + 1))$  data, were performed with the statistical package PATN (Belbin 1994) using Semi-Strong-Hybrid Multi-dimensional Scaling (SSH) based on the Bray-Curtis Dissimilarity Index. Significant taxa and environmental parameters correlating with the ordinations were determined using Principle Axis Correlation (PCC) and Monte-Carlo evaluation. All ordinations were performed with 100 'random starts'. Three dimensions were required to reduce the 'stress' value for the ordination pattern below an acceptable level of 0.2 (Belbin 1994).

Additionally, ordinations and correlation analysis (as outlined above) were performed on the 'before crossing opening' and 'after crossing opening' rootmat substrate data independently.

#### Observed community changes

Simple comparisons were made among sites of total taxa abundance and abundances of major taxa (Chironomidae, Caenidae, Baetidae, Elmidae and Acarina) individually to indicate how and to what extent these taxa had been affected downstream of the road crossing.

## 2.3 Fish studies

#### 2.3.1 Study design

The study of effects on fish involved the same spatial design of sampling sites as the BACIP design for the macroinvertebrate study with the exception of the absence of the site 1000 m downstream from the road crossing (JJ3) for fish study. The temporal design of the fish study differed from the invertebrate study by involving only a single sampling at each of the 4 sites before the opening of the Jim Jim Creek crossing and a single sampling 3 months after the opening. The sampling was undertaken in the largest and deepest pools at the sample points.

Effects on fish were evaluated using two attributes: fish community structure and fish relative condition (body weights). Changes in fish community structure could arise from a decline in

numbers of some species caused by reduced breeding success and subsequent lack of recruitment, increased mortality and/or avoidance responses, although it is possible some species could be favoured by the altered conditions and increase in numbers. Impairment of feeding could result in a loss of condition of fish. The condition of two sufficiently large-bodied and abundant fish species was examined. These species were Mariana's hardyhead (*Craterocephalus marianae*) and banded grunter (*Amniataba percoides*). *C. marianae* is a carnivorous bottom feeder preying on meio- and macroinvertebrates in the sandy stream bed (Bishop *et al.* in press, Macfarlane 1996). *A. percoides* is omnivorous, feeding on benthic macroinvertebrates and plant material. The exposure period of this study did not coincide with the main breeding period for fish in this region (late Dry-early Wet season, Bishop *et al.* in press) and so significant adverse effects on fish breeding success were not expected. Nevertheless, length measurements of the abundant *C. marianae* enabled effects on recruitment to be examined.

# 2.3.2 Sampling methods

Sampling sites were large pools up to 30 m wide and up to 4 m deep. The pools had a sand substrate and contained numerous logs and branches. In the pools there were extensive shallow sandy areas less than 1 m deep at all sites. Sampling was confined to a 200 m section of each pool. Because of the high turbidity of water in Jim Jim Creek, visual sampling was not possible after the road crossing was opened. Consequently, fish were captured using nets. Larger fish were sampled by gill nets and smaller-growing fish species by seine netting in shallow sandy areas of the pools.

## Gill netting

Multi-panel gill nets containing 7 different mesh sizes were used (Table 2.2). The nets were 21 m long with each panel 3 m long and with a 2 m drop. The gill-nets were weighted so that the float line remained at the water surface while the weighted line remained suspended above the bottom in situations where water depth exceeded 2 m. Three gill nets were used at each site. The nets were set by attaching one end to the bank on the deepest side of the stream and stretching the net diagonally across the stream.

The nets were fished for 3 hours: 2 hours before dark and one hour after dark. They were checked at least 3 times in this period to enable the removal alive of as many fish as possible. Fish were held in water-filled containers until measured and weighed as soon as possible after capture. To avoid re-catching the fish, processed fish were enclosed in a 'corral' made of 12 mm mesh, until the gill nets were removed from the pool.

All fish were identified and their length (LCF = length to caudal fork) measured. When possible, fish were also weighed alive on spring balances. All *A. percoides* captured in gill nets were retained for re-weighing and measuring in the laboratory. Specimens were preserved in 70% alcohol.

#### Seine netting

A seine net was used to capture small fish inhabiting shallow sandy areas of the pools. The net was 16 m long, 2 m deep and made of 12 mm stretched mesh. Three hauls of the net were carried out at each site. The net was tethered by one end on the shallow bank and then run out to half its length. It was then moved upstream parallel to the bank until fully extended and then dragged to the shallow bank to enclose a semi-circle. Both ends were then hauled in together to

the shore. All fish were collected from the net and placed in buckets of water. All fish except *C. marianae* and *A. percoides* were measured, weighed alive and returned to the stream. All *A. percoides* and either a subsample or the entire sample of *C. marianae* were retained as preserved specimens for measurement in the laboratory.

| Net type<br>Seine-net              |         | Length<br>(m) | Depth (m) | Mesh type           | Mesh ∳<br>(mm) | <b>Mes</b> h size<br>(mm) |
|------------------------------------|---------|---------------|-----------|---------------------|----------------|---------------------------|
|                                    |         | 16            | 2         | nylon multifilament | 0.65           | 12.6                      |
| Multipanel gill-net <sup>1</sup> : | panel 1 | 3             | 2         | monofilament        | 0.2            | 26                        |
|                                    | panel 2 | 3             | 2         | monofilament        | 0.2            | 44                        |
|                                    | panel 3 | 3             | 2         | monofilament        | 0.3            | 58                        |
|                                    | panel 4 | 3             | 2         | monofilament        | 0.4            | 76                        |
|                                    | panel 5 | 3             | 2         | monofilament        | 0.4            | 100                       |
|                                    | panel 6 | 3             | 2         | monofilament        | 0.5            | 132                       |
|                                    | panel 7 | 3             | 2         | nylon multifilament | 0.7            | 150                       |
| Total length & depth (m):          |         | 21            | 2         | •                   |                |                           |

Table 2.2 Specifications of nets used for sampling fish at Jim Jim and Twin Falls Creeks

<sup>1</sup>The gill-net was weighted so that the float line remained at the waters surface while the weighted line remained suspended above the bottom in situations where water depth > 2m

# Visual sampling

Prior to the opening of the road crossing, fish at each site were counted by observation from a cance aided by polarised sunglasses. These data were used to assess the selectivity of the netting procedures.

#### 2.3.3 Data analysis

#### Community structure

Changes in community structure were examined using measures of species richness (number of species present at a site on each sample occasion), changes in numerical abundance of each species and a multivariate measure of the dissimilarity of the community between paired sites (based on number of individuals of each species present in each sample). The multivariate dissimilarity measure used was the Bray-Curtis index.

The Bray-Curtis index and other multivariate procedures were calculated using the statistical package, PATN (Belbin 1994). The calculation was conducted using the total number of each fish species combined from both standard gill- and seine-net samples. Data for species recorded only once over all sampling occasions and sites were excluded (only one species, *Arius midgleyi*). Calculations were made for both raw data and  $log_{10}$  (x+1) transformed data. Ordination analysis using the Semi-Strong-Hybrid Multidimensional Scaling (SSH MDS) procedure was then carried out using 2 dimensions (vectors) and 999 random starts. Only two dimensions were required to reduce the 'stress' value for the ordination pattern below an acceptable level of 0.2. Correlation analysis of individual fish species and water physico-chemical variables with the fish ordination pattern was conducted using the PCC and Monte-Carlo evaluation methods to determine species and water quality variables contributing significantly to the ordination pattern.

#### Condition factor

The condition of each fish was calculated as the ratio of observed weight of fish divided by the predicted weight of the fish, the latter derived from a predictive relationship between length and weight (data from all sites and occasions combined). The relationship was based on measurements of specimens preserved in alcohol and was calculated by least squares regression using log transformation of both variables. Calculations were made using the statistical package *Statistica* (StatSoft 1995).

#### Length frequency analysis

Length frequency analysis of samples of the most abundant species, *C. marianae*, was undertaken by grouping the fish into 5 mm size classes. The number of fish in each size class was then plotted as a percentage of the total number of fish in the sample. Evaluation of differences in population structure were made by visual examination of these plots.

# 2.4 Environmental variables

# 2.4.1 Turbidity

Laboratory and field measurements of turbidity were made from samples collected fortnightly at each of the five sampling sites on Jim Jim/ Twin Falls Creeks. In addition, a Hydrolab Datasonde 3 data logger was permanently secured in Jim Jim Creek 200 m downstream of the road crossing. Turbidity measurements were made at hourly intervals, 24 hours a day by the data logger, for the duration of the study. An additional Hydrolab data logger was available periodically and was placed for a two week period at each of the other sites at least once during the study to indicate the short term variability of the baseline condition.

#### 2.4.2 Suspended solids

Samples for gravimetric determination of suspended solids were collected monthly. Additional samples were collected downstream of the road crossing at random for determination of the correlation between turbidity and suspended solids in Jim Jim Creek (thus enabling inference of suspended solid levels from the continuous turbidity measurements).

# 2.4.3 Chemical variables

Water samples were collected at regular intervals at each of the five Jim Jim/ Twin Falls Creek sites. The basic parameters of turbidity, pH and conductivity were measured fortnightly. Samples were collected monthly for comprehensive water chemistry analysis including suspended solids, turbidity, pH, alkalinity, conductivity, total and dissolved organic carbon, orthophosphate, total phosphate, alkali metals (Na, K, Ca, Mg), heavy metals (Cu, Pb, Cd, U, Zn, Mn, Fe, Cr, Ni, Al - total unfiltered) and other major ions (Cl, NO<sub>3</sub>, SO<sub>4</sub>, NH<sub>4</sub>). All samples were analysed by the *eriss* analytical chemistry laboratory.

#### 2.4.4 Chlorophyll analysis

Water samples were collected at each sampling site on a monthly basis for determination of chlorophyll a, b and c. Samples of 500 mL of creek water were filtered on site and the retained sample stored on ice then frozen until processed. Samples were emulsified in 10 mL of 90 percent acetone and their optical densities measured at 750 nm, 664 nm and 645 nm and 630 nm with a spectrophotometer, the measurement at 750 nm being a correction for turbidity. Calculations of chlorophyll a, b and c levels were performed using a computer spreadsheet template developed by the *eriss* Environmental Chemistry section for this purpose.

# 2.4.5 Vehicle movements

Vehicle counters were installed in two locations: one on Jim Jim road before the crossing and another on Twin Falls road, the latter recording the number of vehicles crossing the creek.

# 2.4.6 Stream discharge

Accompanying the monthly sampling of invertebrates at each site, measurements were made for calculation of instantaneous stream discharge. For this, a transect was placed across the creek and water velocity measured at 1.0 m intervals on the cross-section; each measurement was made at a depth of 0.6 x total water depth. Water velocity was measured using a miniature current meter (Hydrological Services, Model OSS PC1). At the laboratory, cross-sectional area was determined graphically using water depth measurements made at the same (0.5 m) intervals across the section. Discharge values were derived from the product of average water velocity along the transect and the cross-sectional area of the river.

# 3 Results

# 3.1 Environmental variables

# 3.1.1 Vehicle counts

Traffic counter data for the Jim Jim Falls Road (adjacent to the 'Jump Up') and the Twin Falls Track are presented in figure 3.1. The absence of data for some periods is a result of the traffic counters being non-operational. The Twin Falls counter was damaged by fire, resulting in loss of much of the data.

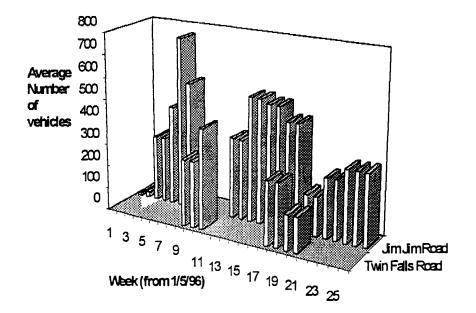
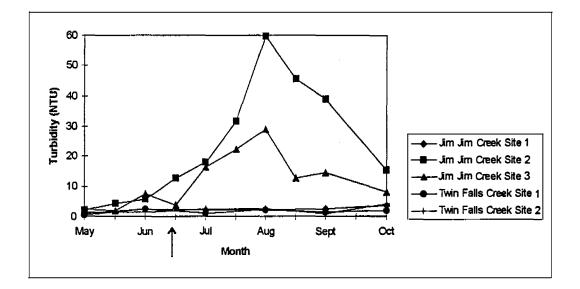
In the 7 weeks for which data were collected on the Twin Falls track, there were 200-300 vehicles per week crossing the creek. In the 4 weeks for which there were vehicle counts on both roads the number of vehicles visiting Twin Falls was less than that visiting Jim Jim Falls. The present crossing, by way of its depth and substrate is a limitation to the accessibility of Twin Falls.

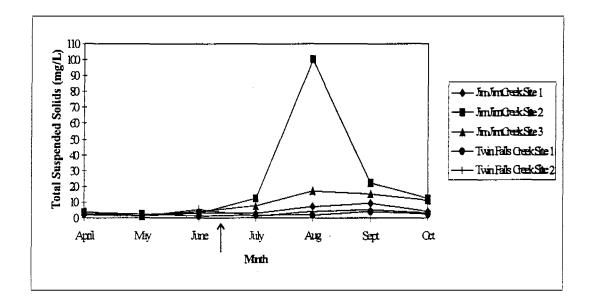
# 3.1.2 Turbidity

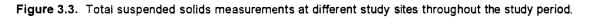
The natural Dry season levels of turbidity in the Jim Jim / Twin Falls Creek system are very low, averaging less than 3 NTU. Elevated levels of turbidity were experienced downstream of the road crossing subsequent to its opening to the public on June 24th 1996. A delay in the rise and subsequent peak of turbidity was evident, with the levels measured 200 m downstream of the crossing (site JJ2) peaking at an average of 60 NTU in late August (figure 3.2).

Turbidity measurements made 1000 m downstream of the crossing (site JJ3) were consistently lower than those immediately downstream of the crossing. Nevertheless, the turbidity recorded this distance downstream was well above the natural levels for this creek system, reaching 27 NTU (figure 3.2).

Turbidity downstream of the Jim Jim Creek crossing began to decline in early September, with receding creek flow, but remained elevated for the duration of the tourist season. The discolouration of creek water downstream of the road crossing was visually apparent for at least 1000 m downstream, from July until the end of the study period in mid October when creek flow this far downstream (1 km) had ceased.



Figure 3.1. Weekly traffic counts for Jim Jim and Twin Falls Roads throughout the tourist season.


Twin Falls Road was opened to the general public on 24th June 1996 (from week 8). Periods without values were due to traffic counters being out of service.





Values for Jim Jim site 2 are the means of continuous datalogger measurements for the preceding period. Other values are derived from water samples collected on the indicated date. Arrow indicates opening of the Jim Jim road crossing to the general public.



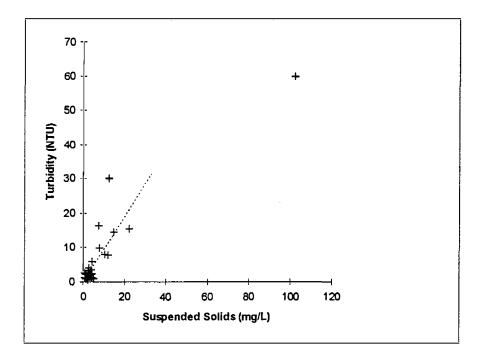


Arrow indicates opening of the Jim Jim road crossing to the general public.

# 3.1.3 Suspended solids

Suspended solids measured in Jim Jim Creek (figure 3.3) followed a similar pattern to turbidity. In late August, levels of total suspended solids immediately downstream of the Jim Jim Road Crossing (site JJ2) reached 100 mg/L. As was also indicated by turbidity levels, suspended solids concentrations declined after late August but remained substantially elevated above background levels for the duration of the study (until mid October). Levels of suspended solids 1000 m downstream of the road crossing (at site JJ3) had a considerably lower peak (17 mg/L) than at JJ2 upstream, however, the measurements still represented a level markedly higher than background concentrations upstream of the crossing (figure 3.3).

An approximately linear relationship was determined between total suspended solids and nephelometric turbidity in Jim Jim Creek (figure 3.4). Consequently, the temporal pattern for changes in suspended solids should closely resemble that for the turbidity measurements which were made continuously (hourly readings) rather than monthly. However, the different units of measurement should be borne in mind.


# 3.1.4 General water quality variables

Water quality in the two streams was shown to be typical of waters draining the sandstone portions of the Arnhemland plateau by being very low in dissolved solids (as shown by electrical conductivity), poorly buffered (low alkalinity) and with very low levels of nutrients commonly associated with human activities (nitrogen and phosphorus compounds and organic carbon) (table 3.1a). A small degree of natural temporal change was observed throughout the study period in some parameters (eg. conductivity, bicarbonate and alkalinity), as may be expected with receding creek discharge with its associated reduction in dilution. The general water chemistry parameters, exclusive of turbidity and suspended solids, lie well within ANZECC water quality guidelines.

The levels of most general water quality variables in table 3.1a, other than turbidity and suspended solids, were very low and their pattern of variation did not indicate any effect of the road crossing. An exception to this was chlorophyll which showed an increase downstream of the road crossing. The measurement of chlorophyll a, b and c quantifies phytoplanktonic productivity in the creek system. Levels observed for Jim Jim and Twin Falls creeks were extremely low (table 3.1a) and below detection limits in most cases. Measurements made downstream of the road crossing (specifically at site JJ2, 200 m downstream) were lower than at JJ1 before the road opened, but after its opening they were slightly higher than those observed at other sites. These values, however, were not elevated to a level to warrant concern, and may in fact be a consequence of the turbidity of the samples (despite a correction factor being used in the determination). In higher algal productivity systems elsewhere, turbidity may be expected to cause a decrease in productivity (due to reduction in light penetration), but this was clearly not a limiting factor to productivity in the Jim Jim Creek system.

#### 3.1.5 Major ions and other elements

In accordance with the low levels of dissolved solids characteristic of these waters, the concentrations of most other ions were very low and well within established water quality guidelines (tables 3.1b & 3.1c). However, the pattern of variation in some of these variables resulted in the appearance of these as significant correlates with changes in community structure in the multivariate analyses on the biota. Calcium showed a slight decline in



**Figure 3.4.** Correlation of turbidity and total suspended solids for Jim Jim Creek samples. (R<sup>2</sup>=0.839, p<0.0001; regression line excludes the extreme value).

concentration downstream of the crossing while levels of some other parameters increased. The concentrations of potassium, chloride and manganese had a tendency to increase throughout the study period, across all sites (table 3.1b&c). This observation is most likely a natural consequence of declining creek discharge throughout the study period and the associated reduction in dilution, as discussed above for other water quality variables. Copper, lead, uranium and zinc increased slightly downstream in Jim Jim Creek and levels of aluminium and iron increased considerably by the late Dry season (table 3.1c). The increase in these constituents is probably a result of their mobilisation by the disturbance to the sediments at the road crossing rather than contamination by vehicles.

There was a large amount of variability in the measured levels of iron and aluminium between sites and sampling occasions, even in the undisturbed condition. For example the range of measurements throughout the study period among undisturbed sites (JJ1, TF1, TF2) was 10-810  $\mu$ g/L for iron and 11-49  $\mu$ g/L for aluminium. Against these background levels, there was a marked elevation in the levels of iron and aluminium downstream of the road crossing on Jim Jim Creek. With the near-neutral pH of Jim Jim Creek water (table 3.1a), these metals would be present predominately as a colloidal suspension or as insoluble fine particles - ie in a non-toxic form. These metals were almost certainly associated with the increased suspended solids load emanating from the road crossing; their concentrations began to rise, to a small extent, even before the opening of the road crossing to the general public, when use was limited to occasional crossings by park management vehicles and *eriss* workers.

| Varlable <sup>1</sup> | Site        |      | ANZECC guidelines |      |             |        |             |             |                                 |
|-----------------------|-------------|------|-------------------|------|-------------|--------|-------------|-------------|---------------------------------|
|                       |             | Apr  | May               | Jun  | Jul         | Aug    | Sep         | Oct         |                                 |
| EC (µS/cm)            | JJ1         | 8.1  | 10                | 12   | 14          | 15     | 16          | 17          | -                               |
|                       | JJ2         | 9    | 12                | 13   | 12          | 12     | 12          | 24          |                                 |
|                       | JJ3         | 9.1  | 12                | 13   | 12          | 12     | 12          | 24          |                                 |
|                       | TF1         | 9.9  | 12                | 12   | 12          | 12     | 14          | 14          |                                 |
|                       | TF2         | 9.9  | 12                | 12   | 12          | 12     | 14          | 14          |                                 |
| pН                    | JJ1         | 5.7  | 6.0               | 6.1  | 6.1         | 6.2    | 6.3         | 6.2         | 6.5 - 9.0                       |
| •                     | JJ2         | 6.0  | 6.1               | 6.3  | 6.2         | 6.2    | 6.4         | 6.3         |                                 |
|                       | JJ3         | 6.1  | 6.2               | 6.4  | 6.3         | 6.4    | 6.4         | 6.3         |                                 |
|                       | TF1         | 6.3  | 6.3               | 6.4  | 6.2         | 6.4    | 6.4         | 6.4         |                                 |
|                       | TF2         | 6.3  | 6.3               | 6.1  | 6.2         | 6.5    | 6.5         | 6.3         |                                 |
| Tot SS (µg/L )        | JJ1         | 2200 | 1300              | 3100 | 2800        | 6900   | 9300        | 3900        | <10% change in<br>seasonal mean |
|                       | JJ2         | 3500 | 2500              | 3100 | 12000       | 100000 | 22000       | 12000       |                                 |
|                       | JJ3         | 3500 | 1000              | 4300 | 7500        | 7900   | 15000       | 11000       |                                 |
|                       | TF1         | 2500 | 2300              | 1000 | 1900        | 1700   | 4200        | 2500        |                                 |
|                       | TF2         | 1700 | 1000              | 5300 | 1000        | 4100   | 5000        | 2800        |                                 |
| Turb (NTU)            | JJ1         | 0.97 | 0.95              | 2.35 | 2.05        | 2.13   | 2.37        | 3.49        | <10% change in<br>seesonal mean |
|                       | JJ2         | 1.25 | 2.04              | 5.67 | 18.06       | 59.8   | 38.92       | 15.28       |                                 |
|                       | JJ3         | 1.89 | 2.54              | 7.58 | 16.45       | 28.97  | 14.56       | 8.03        |                                 |
|                       | TF1         | 1.96 | 0.64              | 2.45 | 1.13        | 2.18   | 1.26        | 1.76        |                                 |
|                       | TF2         | 0.87 | 1.24              | 1.26 | 2.38        | 2.46   | 0.93        | 4.01        |                                 |
| Chia (mg/L)           | JJ1         | 0.01 | 0.01              | 0    | 0.1         | 0      | 0.03        | 0.02        | -                               |
|                       | JJ2         | 0    | 0                 | Ō    | 0.02        | 0.01   | 0.02        | 0.03        |                                 |
|                       | JJ3         | 0    | Ō                 | 0    | 0.02        | 0      | 0.02        | 0.02        |                                 |
|                       | TF1         | 0.01 | 0                 | 0.01 | 0.01        | Ō      | 0           | 0.02        |                                 |
|                       | TF2         | 0.04 | 0                 | 0    | 0           | 0      | 0.01        | 0.07        |                                 |
| Chib (mg/L)           | JJ1         | 0.01 | 0.02              | 0.1  | 0.1         | 0      | 0.02        | 0           | -                               |
|                       | JJ2         | 0    | 0                 | 0    | 0.04        | 0.02   | 0.02        | 0.04        |                                 |
|                       | <b>JJ3</b>  | Ō    | Ō                 | ō    | 0.02        | 0      | 0.02        | 0.02        |                                 |
|                       | TF1         | 0.02 | Ō                 | ō    | 0           | ō      | 0           | 0.01        |                                 |
|                       | TF2         | 0.01 | Ō                 | Ō    | Ō           | Ō      | Ō           | 0.09        |                                 |
| Chic (mg/L)           | JJ1         | 0    | 0.03              | 0    | 0           | 0      | 0.03        | 0           | -                               |
|                       | JJ2         | ō    | 0                 | ŏ    | 0.05        | 0.02   | 0.03        | 0.06        |                                 |
|                       | JJ3         | ŏ    | Ō                 | 0.1  | 0.03        | 0      | 0.03        | 0.03        |                                 |
|                       | TF1         | 0.03 | ō                 | 0    | 0.01        | Ō      | 0           | 0.01        |                                 |
|                       | TF2         | 0.01 | Ō                 | Ō    | 0           | Ō      | Ō           | 0.11        |                                 |
| DOC (mg/L )           | JJ1         | 1.1  | 0.9               | 0.9  | 1.9         | 0.3    | 1.0         | 2.3         | _                               |
| 000 (mg/c )           | JJ2         | 1.0  | 1.1               | 0.9  | 0.3         | 0.5    | 0.3         | 1.7         | -                               |
|                       | JJ3         | 1.0  | 1.1               | 1.0  | 0.1         | 0.2    | 0.2         | 1.5         |                                 |
|                       | TF1         | 1.1  | 1.2               | 0.9  | 1.6         | <0.1   | 0.1         | <0.1        |                                 |
|                       | TF2         | 1.2  | 1.0               | 0.9  | 0.1         | <0.1   | 1.0         | <0.1        |                                 |
| TOC (mg/L)            | JJ1         | 1.2  | 1.0               | 1.9  | 0.1         | 0.2    | 2.0         | <b>3</b> .1 |                                 |
|                       | JJ2         | 1.3  | 1.2               | 2.0  | 0.1         | 0.2    | 0.1         | 2.0         |                                 |
|                       | JJ3         | 1.2  | 1.2               | 2.0  | <0.1        | <0.1   | 0.1         | 1.6         |                                 |
|                       | TF1         | 1.2  | 1.0               | 1.4  | 1.0         | <0.1   | 0.1         | 0.1         |                                 |
|                       | TF2         | 1.2  | 1.1               | 1.4  | <0.1        | <0.1   | 0.5         | 0.1         |                                 |
| Aik (mg/L)            | JJ1         | 0.5  | 0.9               | 1.8  | 2.7         | 3.2    | 3.3         | 8.4         | -                               |
|                       | JJ2         | 1.0  | 1.8               | 2.6  | 2.5         | 2.7    | 2.8         | 8.2         |                                 |
|                       | <b>JJ</b> 3 | 1,1  | 1.7               | 2.6  | 2.9         | 2.7    | 2.5         | 7.7         |                                 |
|                       | TF1         | 1.4  | 1.7               | 2.4  | 2.0         | 1.7    | 2.6         | 3.4         |                                 |
|                       | TF2         | 1.3  | 2.0               | 2.1  | 1. <b>6</b> | 1.8    | 2.3         | 1.5         |                                 |
| Bicarb (mg/L)         | JJ1         | 0.6  | 1.1               | 2.2  | 3.3         | 3.9    | 4.0         | 10          | -                               |
|                       | JJ2         | 1.2  | 2.2               | 3.2  | 3.1         | 3.3    | 3.4         | 10          |                                 |
|                       | JJ3         | 1.3  | 2.0               | 3.2  | 3.6         | 3.2    | 3.1         | 9.5         |                                 |
|                       | TF1         | 1.7  | 2.1               | 2.9  | 2.4         | 2.1    | <b>3</b> .1 | 4.2         |                                 |
|                       | TF2         | 1.6  | 2.5               | 2.6  | 2.0         | 2.2    | 2.8         | 1.9         |                                 |

**Table 3.1a** Water quality variables, including some major ions, measured in water from Jim Jim and Twin Falls creeks, 1996. Site codes are given in table 2.2.

<sup>1</sup> EC = electrical conductivity; Tot SS = total suspended solids; Turb = turbidity Chi a, b, c = chlorophyll a, b, c resp.; DOC & TOC= dissolved and total organic carbon resp.; Alk = alkalinity (CaCO<sub>3</sub>); Bicarb = bicarbonate (HCO<sub>3</sub>).

| Total P J<br>J<br>J<br>NH4+-N J<br>J<br>NO3-N J<br>T<br>Calcium J<br>J<br>T<br>T<br>T                                                                                                        | JJ1<br>JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2<br>JJ3<br>TF1<br>JJ2<br>JJ3<br>TF1<br>JJ2<br>JJ3<br>TF1<br>JJ2<br>JJ3<br>TF1<br>JJ2<br>JJ3                                           | Apr<br>8<br>9<br>2<br>3<br>~2<br>9<br>9<br>39<br>NR<br>13<br>NR<br>30<br>30<br>30<br>30<br>30 | May<br><2<br><2<br><2<br><2<br><2<br><5<br><5<br><5<br><5<br><5<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | Jun<br><2<br><2<br><2<br><2<br><2<br><2<br>12<br>10<br>47<br>72<br>19<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jul<br>22<br>22<br>3<br>22<br>3<br>25<br>55<br>11<br>25<br>18<br>30 | Aug<br>5<br>7<br>9<br>7<br>3<br><5<br>22<br>45<br><5<br>24 | Sep<br><2<br>5<br>4<br>2<br>5<br>20<br>19<br>16<br><5<br>10 | Oct<br><2<br>5<br>3<br><2<br><2<br>15<br>27<br><5<br>NR |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|--------------|
| Total P J<br>J<br>J<br>NH4*-N J<br>J<br>NO3-N J<br>T<br>Calcium J<br>J<br>T<br>T                                                                                                             | JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2<br>JJ3<br>TF1<br>JJ2<br>JJ3<br>TF1<br>JJ2<br>JJ3<br>JJ3<br>JJ3<br>JJ3<br>JJ3<br>JJ3<br>JJ3<br>JJ3<br>JJ3 | 9<br>2<br>3<br>~2<br>9<br>9<br>39<br>NR<br>13<br>NR<br>30<br>30<br>30                         | <2<2<2<2<5<5<5303030                                                                                                        | <ul> <li></li> <li></li></ul> <li></li> < | <pre>&lt;2 3 &lt;2 3 &lt;5 &lt;5 11 &lt;5 18 30</pre>               | 5<br>7<br>9<br>7<br>3<br>5<br>22<br>45<br>5                | 5<br>4<br>2<br>5<br>20<br>19<br>16<br><5                    | 5<br>3<br><2<br><2<br>15<br>27<br><5<br>NR              | -<br><10     |
| J<br>Total P<br>J<br>J<br>NH₄+-N<br>J<br>J<br>NO <sub>3</sub> -N<br>J<br>T<br>T<br>Calcium<br>J<br>J<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                             | JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2<br>JJ1<br>JJ2                                                                | 2<br>3<br><2<br>9<br>9<br>39<br>NR<br>13<br>NR<br>30<br>30                                    | <2<br><2<br><2<br><5<br><5<br><5<br><5<br><5<br><5<br>30<br>30<br>30<br>30                                                  | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3<br><2<br>3<br><5<br><5<br>11<br><5<br>18<br>30                    | 9<br>7<br>3<br><5<br>22<br>45<br><5                        | 4<br>2<br>5<br>20<br>19<br>16<br>√5                         | 3<br><2<br><2<br>15<br>27<br><5<br>NR                   | <10          |
| Total P J<br>J<br>J<br>NH4+-N J<br>J<br>NO3-N J<br>T<br>Calcium J<br>J<br>T<br>T<br>T<br>T                                                                                                   | TF1<br>TF2<br>JJ1<br>JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2<br>JJ3<br>TF1<br>JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2                                                                | 2<br>3<br><2<br>9<br>9<br>39<br>NR<br>13<br>NR<br>30<br>30                                    | <2<br><2<br><2<br><5<br><5<br><5<br><5<br><5<br><5<br>30<br>30<br>30<br>30                                                  | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>&lt;2 3 &lt;5 &lt;5 11 &lt;5 18 30</pre>                       | 9<br>7<br>3<br><5<br>22<br>45<br><5                        | 4<br>2<br>5<br>20<br>19<br>16<br>√5                         | 3<br><2<br><2<br>15<br>27<br><5<br>NR                   | <10          |
| Total P J<br>J<br>J<br>NH4+-N J<br>J<br>NO3-N J<br>T<br>Calcium J<br>J<br>T<br>T                                                                                                             | TF1<br>TF2<br>JJ1<br>JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2<br>JJ3<br>TF1<br>JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2                                                                | 3<br><2<br>9<br>39<br>39<br>NR<br>13<br>NR<br>30<br>30                                        | <2<br><5<br><5<br><5<br><5<br><5<br>30<br>30<br>30<br>30                                                                    | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>&lt;2 3 &lt;5 &lt;5 11 &lt;5 18 30</pre>                       | 7<br>3<br><5<br>22<br>45<br><5                             | 2<br>5<br>20<br>19<br>16<br><5                              | <2<br><2<br>15<br>27<br><5<br>NR                        | <10          |
| Total P J<br>J<br>J<br>NH₄≁-N J<br>J<br>NO <sub>3</sub> -N J<br>T<br>Calcium J<br>J<br>T<br>T<br>T<br>T                                                                                      | TF2<br>JJ1<br>JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2<br>JJ3<br>TF1<br>JJ2<br>JJ3<br>TF1<br>JJ2<br>JJ3<br>TF1<br>JJ2                                                                | <2<br>9<br>39<br>NR<br>13<br>NR<br>30<br>30<br>30                                             | <2<br><5<br><5<br><5<br><5<br><5<br>30<br>30<br>30<br>30                                                                    | <2<br>12<br>10<br>47<br>72<br>19<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3<br><5<br>11<br><5<br>18<br>30                                     | 3<br><5<br>22<br>45<br><5                                  | 5<br>20<br>19<br>16<br><5                                   | <2<br>15<br>27<br><5<br>NR                              | <10          |
| J<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                             | JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2                                                                                                          | 9<br>39<br>NR<br>13<br>NR<br>30<br>30<br>30                                                   | <5<br><5<br><5<br>30<br>30<br>30<br>30                                                                                      | 10<br>47<br>72<br>19<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <5<br>11<br><5<br>18<br>30                                          | 22<br>45<br><5                                             | 19<br>16<br><5                                              | 27<br><5<br>NR                                          | <10          |
| J<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                             | JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2                                                                                                          | 9<br>39<br>NR<br>13<br>NR<br>30<br>30<br>30                                                   | <5<br><5<br><5<br>30<br>30<br>30<br>30                                                                                      | 10<br>47<br>72<br>19<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <5<br>11<br><5<br>18<br>30                                          | 22<br>45<br><5                                             | 19<br>16<br><5                                              | 27<br><5<br>NR                                          |              |
| J<br>1<br>1<br>1<br>1<br>1<br>J<br>J<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                             | JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2                                                                                                                 | 39<br>NR<br>13<br>NR<br>30<br>30<br>30                                                        | <5<br><5<br><5<br>30<br>30<br>30<br>30                                                                                      | 47<br>72<br>19<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11<br><5<br>18<br>30                                                | 45<br><5                                                   | 16<br><\$                                                   | <5<br>NR                                                |              |
| T<br>NH₄+-N J<br>J<br>J<br>NO3-N J<br>T<br>T<br>Calcium J<br>J<br>T<br>T<br>T                                                                                                                | TF1<br>TF2<br>JJ1<br>JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2                                                                                                                        | NR<br>13<br>NR<br>30<br>30<br>30                                                              | <5<br><5<br>30<br>30<br>30<br>30                                                                                            | 72<br>19<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <5<br>18<br>30                                                      | <5                                                         | <                                                           | NR                                                      |              |
| ר אוא,≮-א<br>אוא,≮-א<br>אוס,-א<br>אוס,-א<br>ז<br>גakcium<br>ז<br>גakcium<br>ז<br>ד<br>גמוגועת<br>ז<br>ד<br>ד<br>ז<br>ז<br>ז<br>ז<br>ז<br>ז<br>ז<br>ז<br>ז<br>ז<br>ז<br>ז<br>ז<br>ז<br>ז<br>ז | TF2<br>JJ1<br>JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2                                                                                                                               | 13<br>NR<br>30<br>30<br>30                                                                    | <5<br>30<br>30<br>30<br>30                                                                                                  | 19<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18<br>30                                                            |                                                            |                                                             |                                                         |              |
| J<br>J<br>J<br>T<br>T<br>J<br>J<br>J<br>Calcium J<br>J<br>T<br>T<br>T<br>T<br>T<br>T                                                                                                         | JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2                                                                                                                                             | NR<br>30<br>30<br>30                                                                          | 30<br>30<br>30                                                                                                              | 30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                            |                                                             | 20                                                      |              |
| J<br>J<br>J<br>T<br>T<br>J<br>J<br>J<br>Calcium J<br>J<br>T<br>T<br>T<br>T<br>T<br>T                                                                                                         | JJ2<br>JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2                                                                                                                                             | 30<br>30<br>30                                                                                | 30<br>30<br>30                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |                                                            |                                                             |                                                         | <b>00</b> aa |
| J<br>1<br>7<br>7<br>3<br>J<br>3<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                   | JJ3<br>TF1<br>TF2<br>JJ1<br>JJ2                                                                                                                                                    | 30<br>30                                                                                      | 30<br>30                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     | 30                                                         | 30                                                          | 30                                                      | 20 - 30      |
| 1<br>7<br>3<br>3<br>3<br>3<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                             | TF1<br>TF2<br>JJ1<br>JJ2                                                                                                                                                           | 30                                                                                            | 30                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                                                  | 30                                                         | 30                                                          | 30                                                      |              |
| T<br>NO3-N J<br>J<br>J<br>T<br>T<br>T<br>Calcium J<br>J<br>J<br>T<br>T                                                                                                                       | TF2<br>JJ1<br>JJ2                                                                                                                                                                  |                                                                                               |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30                                                                  | 30                                                         | 30                                                          | 30                                                      |              |
| NO3-N J<br>J<br>T<br>T<br>Calcium J<br>J<br>J<br>T                                                                                                                                           | JJ1<br>JJ2                                                                                                                                                                         | 30                                                                                            | 20                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                                                  | 30                                                         | 30                                                          | 30                                                      |              |
| J<br>J<br>T<br>T<br>T<br>Calcium J<br>J<br>J<br>T<br>T                                                                                                                                       | JJ2                                                                                                                                                                                |                                                                                               | 30                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                                                  | 30                                                         | 30                                                          | 30                                                      |              |
| J<br>J<br>T<br>T<br>T<br>Calcium J<br>J<br>J<br>T<br>T                                                                                                                                       | JJ2                                                                                                                                                                                | NR                                                                                            | 10                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                  | 10                                                         | 10                                                          | 10                                                      | <100         |
| J<br>T<br>T<br>Calcium J<br>J<br>J<br>T<br>T                                                                                                                                                 |                                                                                                                                                                                    | 10                                                                                            | 10                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                  | 10                                                         | 10                                                          | 10                                                      |              |
| T<br>T<br>Calcium J<br>J<br>J<br>T<br>T                                                                                                                                                      | JJ3                                                                                                                                                                                | 10                                                                                            | 10                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                  | 10                                                         | 10                                                          | 10                                                      |              |
| T<br>Calcium J<br>J<br>J<br>T<br>T                                                                                                                                                           | TF1                                                                                                                                                                                | 10                                                                                            | 10                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                  | 10                                                         | 10                                                          | 10                                                      |              |
| L<br>L<br>T                                                                                                                                                                                  | TF2                                                                                                                                                                                | 10                                                                                            | 10                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                  | 10                                                         | 10                                                          | 10                                                      |              |
| L<br>L<br>T                                                                                                                                                                                  | JJ1                                                                                                                                                                                | NR                                                                                            | 120                                                                                                                         | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 440                                                                 | 380                                                        | 350                                                         | 460                                                     | _            |
| Ц<br>Т                                                                                                                                                                                       | JJ2                                                                                                                                                                                | 120                                                                                           | 150                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 160                                                                 | 120                                                        | 100                                                         | 310                                                     | -            |
| Т                                                                                                                                                                                            | JJ3                                                                                                                                                                                | 120                                                                                           | 120                                                                                                                         | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 130                                                                 | 150                                                        | 130                                                         | 320                                                     |              |
|                                                                                                                                                                                              | TF1                                                                                                                                                                                | 130                                                                                           |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |                                                            |                                                             |                                                         |              |
|                                                                                                                                                                                              | TF2                                                                                                                                                                                | 90                                                                                            | 130<br>170                                                                                                                  | 140<br>NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 170<br>180                                                          | 140<br>110                                                 | 190<br>130                                                  | 190<br>180                                              |              |
| <sup>o</sup> otassium J                                                                                                                                                                      |                                                                                                                                                                                    |                                                                                               | 50                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>5</b> 0                                                          |                                                            |                                                             |                                                         |              |
|                                                                                                                                                                                              | JJ1                                                                                                                                                                                | NR                                                                                            | 50                                                                                                                          | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50                                                                  | 60<br>70                                                   | 70                                                          | 230                                                     | -            |
|                                                                                                                                                                                              | JJ2                                                                                                                                                                                | 50                                                                                            | 50                                                                                                                          | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                                                                  | 70                                                         | 70                                                          | 880                                                     |              |
|                                                                                                                                                                                              | JJ3                                                                                                                                                                                | 50                                                                                            | 50                                                                                                                          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70                                                                  | 60                                                         | 80                                                          | 730                                                     |              |
|                                                                                                                                                                                              | TF1                                                                                                                                                                                | 50                                                                                            | 50                                                                                                                          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 130                                                                 | 100                                                        | 140                                                         | 140                                                     |              |
| т                                                                                                                                                                                            | TF2                                                                                                                                                                                | 50                                                                                            | 50                                                                                                                          | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50                                                                  | 110                                                        | 180                                                         | 180                                                     |              |
|                                                                                                                                                                                              | JJ1                                                                                                                                                                                | NR                                                                                            | 1200                                                                                                                        | 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1400                                                                | 1300                                                       | 1200                                                        | 1400                                                    | 5000 *       |
|                                                                                                                                                                                              | JJ2                                                                                                                                                                                | 1000                                                                                          | 1300                                                                                                                        | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1100                                                                | 1000                                                       | 1000                                                        | 1600                                                    |              |
| J.                                                                                                                                                                                           | JJ3                                                                                                                                                                                | 1100                                                                                          | 1100                                                                                                                        | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1400                                                                | 900                                                        | 1000                                                        | 1700                                                    |              |
| т                                                                                                                                                                                            | TF1                                                                                                                                                                                | 1100                                                                                          | 1200                                                                                                                        | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000                                                                | 1200                                                       | 1300                                                        | 1500                                                    |              |
| т                                                                                                                                                                                            | rf2                                                                                                                                                                                | 1200                                                                                          | 1400                                                                                                                        | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1600                                                                | 1200                                                       | 1500                                                        | 1400                                                    |              |
| <b>lagnesi</b> um J.                                                                                                                                                                         | IJ1                                                                                                                                                                                | NR                                                                                            | 250                                                                                                                         | 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 510                                                                 | 620                                                        | 660                                                         | 660                                                     | -            |
| •                                                                                                                                                                                            | JJ2                                                                                                                                                                                | 300                                                                                           | 430                                                                                                                         | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 560                                                                 | 590                                                        | 580                                                         | 1100                                                    |              |
|                                                                                                                                                                                              | JJ3                                                                                                                                                                                | 320                                                                                           | 430                                                                                                                         | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 560                                                                 | 570                                                        | 560                                                         | 1200                                                    |              |
|                                                                                                                                                                                              | ΓF1                                                                                                                                                                                | 340                                                                                           | 390                                                                                                                         | 430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 440                                                                 | 400                                                        | 470                                                         | 440                                                     |              |
|                                                                                                                                                                                              | TF2                                                                                                                                                                                | 350                                                                                           | 410                                                                                                                         | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 490                                                                 | 420                                                        | 470                                                         | 460                                                     |              |
| hioride J.                                                                                                                                                                                   | IJ1                                                                                                                                                                                | NR                                                                                            | 1900                                                                                                                        | 2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2100                                                                | 2100                                                       | 1900                                                        | 2900                                                    | -            |
|                                                                                                                                                                                              | J2                                                                                                                                                                                 | 1700                                                                                          | 1900                                                                                                                        | 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1600                                                                | 1600                                                       | 1300                                                        | 4400                                                    |              |
|                                                                                                                                                                                              | 13                                                                                                                                                                                 | 1700                                                                                          | 1800                                                                                                                        | 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1500                                                                | 1500                                                       | 1200                                                        | 4500                                                    |              |
|                                                                                                                                                                                              | 55<br>F1                                                                                                                                                                           | 1800                                                                                          | 1900                                                                                                                        | 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1900                                                                |                                                            | 1200                                                        | 4500<br>2500                                            |              |
|                                                                                                                                                                                              | F2                                                                                                                                                                                 | 1800                                                                                          | 1900                                                                                                                        | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000                                                                | 1900<br>2000                                               | 2100                                                        | 2300                                                    |              |
|                                                                                                                                                                                              |                                                                                                                                                                                    |                                                                                               |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |                                                            |                                                             |                                                         |              |
| •                                                                                                                                                                                            | J1                                                                                                                                                                                 | NR                                                                                            | 240                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200                                                                 | 30                                                         | 30                                                          | 200                                                     | -            |
|                                                                                                                                                                                              | J2                                                                                                                                                                                 | 550                                                                                           | 280                                                                                                                         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200                                                                 | 30                                                         | 30                                                          | 200                                                     |              |
|                                                                                                                                                                                              | J3                                                                                                                                                                                 | 270                                                                                           | 140                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 400                                                                 | 30                                                         | 30                                                          | 30                                                      |              |
|                                                                                                                                                                                              | F1<br>F2                                                                                                                                                                           | 350<br>140                                                                                    | 170<br>500                                                                                                                  | 30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400                                                                 | 200                                                        | 200                                                         | 400                                                     |              |

Table 3.1b Nutrients and other major ions in water from Jim Jim and Twin Falls creeks, 1996. All units in  $\mu$ g/L. Site codes are given in table 2.2.

Ortho-P = Orthophosphate; Total P = Total phosphorous; NH4+-N = Ammonium-N; NO3-N = Nitrate-N.

\* Interim guide only.

4

| Variable <sup>1</sup> | Site       | ANZECC guideline |              |              |              |              |              |              |          |
|-----------------------|------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|----------|
|                       |            | Apr              | May          | Jun          | Month<br>Jul | Aug          | Sep          | Oct          |          |
| Manganese             | JJ1        | 3                | 5            | 5            | 5            | 4            | 10           | NR           | -        |
|                       | JJ2        | 4                | 5            | 3            | 7            | 5            | 12           | NR           |          |
|                       | JJ3        | 5                | 5            | 2            | 5            | 7            | 11           | NR           |          |
|                       | TF1        | 4                | 5            | 4            | 10           | ,<br>12      | 6            | NR           |          |
|                       | TF2        | 4                | 4            | 5            | 9            | 6            | 6            | NR           |          |
|                       | 174        | -                | 4            | 3            | 3            | 0            | 0            | INIK         |          |
| Iron                  | JJ1        | 10               | 190          | 410          | 400          | 420          | 490          | NR           | <1000    |
|                       | JJ2        | 370              | 530          | 670          | 110          | 980          | 1300         | NR           |          |
|                       | JJ3        | 360              | 540          | 660          | 760          | 1100         | 1400         | NR           |          |
|                       | TF1        | 200              | 220          | 280          | 360          | 810          | 230          | NR           |          |
|                       | TF2        | 240              | 180          | 390          | 390          | 290          | 210          | NR           |          |
| Aluminium             | JJ1        | 17               | 22           | 40           | 29           | 24           | 40           |              | Æ        |
|                       |            |                  | 22           | 49<br>~~     | 38           | 24           | 42           | NR           | <5       |
|                       | JJ2        | 33               | 48           | 23           | 40           | 760          | 270          | NR           |          |
|                       | <b>JJ3</b> | 32               | 42           | 86           | 14           | 980          | 420          | NR           |          |
|                       | TF1        | 16               | 12           | 12           | 24           | 25           | 12           | NR           |          |
|                       | TF2        | 16               | 12           | 21           | 23           | 49           | 11           | NR           |          |
| Chromium              | JJ1        | NR               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | 10       |
|                       | JJ2        | NR               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |          |
|                       | 113        | NR               | <0.5         | <0.5         | <0.5         | <0.5         | 1.4          | <0.5         |          |
|                       | TF1        | NR               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |          |
|                       | TF2        |                  | <0.5         | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5         |          |
|                       | 162        | NR               | -0.5         | <b>NU.5</b>  | ~0.5         | <b>~0.5</b>  | <b>NU.5</b>  | -0.5         |          |
| Copper                | JJ1        | NR               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | 2-5      |
|                       | JJ2        | NR               | <0.5         | <0.5         | 1            | 1.2          | 0.7          | 0.6          |          |
|                       | JJ3        | NR               | <0.5         | <0.5         | <0.5         | 0.6          | 1            | 0.5          |          |
|                       | TF1        | NR               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |          |
|                       | TF2        | NR               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |          |
| Nickel                | JJ1        | NR               | <1           | <1           | <1           | <1           | <1           | <1           | 15 - 150 |
|                       | JJ2        | NR               | <1           | <1           | <1           | <1           | <1           | <1           | 10 - 100 |
|                       | JJ3        | NR               | <1           |              |              |              |              |              |          |
|                       |            |                  |              | <1           | <1           | <1           | <1           | <1           |          |
|                       | TF1<br>TF2 | NR<br>NR         | <1<br><1     | <1<br><1     | <1<br><1     | <1<br><1     | <1<br><1     | <1<br><1     |          |
|                       |            |                  |              |              |              |              |              |              |          |
| ead                   | JJ1        | NR               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | 1 - 5    |
|                       | JJ2        | NR               | <0.5         | <0.5         | 0.6          | 0.8          | <0.5         | <0.5         |          |
|                       | JJ3        | NR               | <0.5         | <0.5         | <0.5         | <0.5         | 0.6          | <0.5         |          |
|                       | TF1        | NR               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |          |
|                       | TF2        | NR               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |          |
| Jranium               | JJ1        | NR               | <0.02        | <0.02        | <0.02        | <0.02        | <0.02        | <0.02        | <5       |
|                       | JJ2        | NR               | <0.02        | 0.03         | 0.07         | 0.09         | 0.08         | 0.04         |          |
|                       | JJ3        | NR               | <0.02        | <0.02        | 0.05         | 0.03         | 0.08         | 0.05         |          |
|                       | TF1        | NR               | <0.02        | <0.02        | <0.02        | <0.02        | <0.02        | <0.02        |          |
|                       | TF2        | NR               | <0.02        | <0.02        | <0.02        | <0.02        | <0.02        | < 0.02       |          |
| Tine                  | 1.14       |                  | -05          | 0.5          | -0.5         | -0.5         | -0 5         | -0 F         | E 50     |
| Linc                  | JJ1<br>JJ2 | NR<br>NR         | <0.5<br><0.5 | 0.8<br><0.5  | <0.5<br>0.7  | <0.5<br>1.4  | <0.5<br><0.5 | <0.5<br><0.5 | 5 - 50   |
|                       | JJ2        |                  |              |              |              |              |              |              |          |
|                       |            | NR               | <0.5         | <0.5         | 0.8          | <0.5         | <0.5         | <0.5         |          |
|                       | TF1<br>TF2 | NR<br>NR         | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 |          |
|                       |            |                  |              |              |              |              |              |              |          |
| Cadmium               | JJ1        | NR               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | 0.2 - 2  |
|                       | JJ2        | NR               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |          |
|                       | JJ3        | NR               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |          |
|                       | TF1        | NR               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |          |
|                       | TF2        | NR               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |          |

Table 3.1cHeavy metals in water from Jim Jim and Twin Falls creeks in 1996. All units in  $\mu$ g/L. Sitecodes are given in table 2.2.

# 3.2 Macroinvertebrates

# 3.2.1 BACIP site dissimilarities

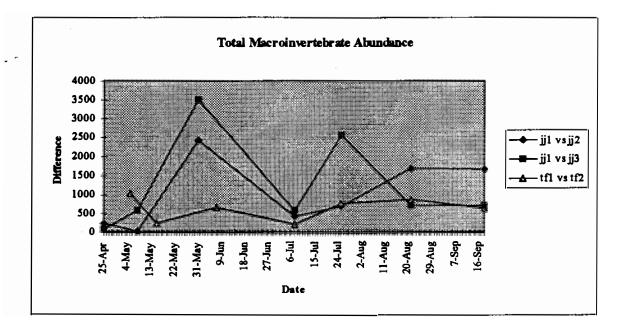
Observation of site dissimilarities throughout the study period was made for both sand and rootmat habitats. Preliminary results (Stowar *et al.*, 1996) indicated that the fauna colonising the artificial substrates was less sensitive to any impacts than that in the natural substrates of sand and rootmat, and hence further analysis was based only on the natural substrates.

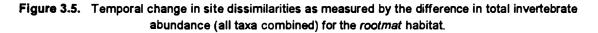
In studying site dissimilarities, particular attention was paid to observed changes occurring in site differences present before the opening of the crossing when compared to after, noting the trends in potentially impacted sites in relation to those of unimpacted (control) sites.

Various measures of site difference, both univariate and multivariate, were examined in the assessment of impact-related community change on the basis of paired site differences or (multivariate) dissimilarity. Both rootmat and sand samples displayed very high variability with regard to all measures of difference/dissimilarity. This variability was reduced to some extent by log-transforming the data. A temporal trend, however, persisted in the dissimilarity values throughout the study period, preventing the conventional statistical testing of 'before' versus 'after' in the BACIP design using t-tests which assumes no temporal trend. There were, however, some discernible trends and analyses of these trends that enabled conclusions to be drawn about impacts at the downstream sites. Complimenting these observations are previous studies on other streams which have indicated that macroinvertebrate communities at adjacent sites in Alligator Rivers Region streams tend to become more similar as flow recedes (Humphrey, unpublished data; figure 3.9).

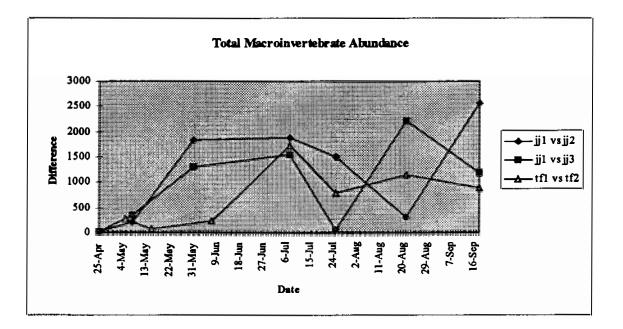
# 3.2.2 Univariate measures of site 'differences'

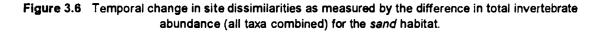
The univariate measures examined for both sand and rootmat included total macroinvertebrate abundances, as well as the abundances of all major taxa individually (Chironomidae, Caenidae, Baetidae, Elmidae and Acarina). The total macroinvertebrate abundance site 'differences' revealed a high degree of variability among all sample sites (including control sites) throughout the study period, in both the sand and rootmat habitat.


The rootmat habitat, although variable (- particularly early in the season), showed a divergence in the difference between JJ1 and JJ2 (potentially impacted) when compared to Twin Falls control sites or JJ1 and JJ3, in the latter part of the study (figure 3.5). Although in itself not conclusive evidence for an impact, it compliments similar observations made in the multivariate comparisons described below.


The total macroinvertebrate abundance of the sand habitat is particularly 'noisy', indicative of high patch variability and preventing any observation of possible impact-related changes with regard to total taxa abundance (figure 3.6).

In both sand and rootmat habitats, the univariate site differences based on individual taxa are similarly noisy, with no distinct differences among downstream sites evident. Thus no BACIP analysis on these data was conducted and hence results are not presented here.


## 3.2.3 Multivariate measures of dissimilarity


Multivariate analysis of site dissimilarity provides an overall comparison of macroinvertebrate samples between upstream-downstream sites, in terms of both taxa present and the abundances





Three replicate samples were collected at each site and time.





Three replicate samples were collected at each site and time.

of these taxa. Multivariate analyses have been presented using both transformed and untransformed data. The effect of transforming the data is to lessen the 'weight' of the most common taxa and thus increase sensitivity to impacts where such changes occur among the less common taxa. As with univariate analysis, multivariate comparison revealed a large amount of natural variability associated with the inter-site comparisons, as indicated by the variation observed among sites before the opening of the road crossing, and also in the Twin Falls Creek sites throughout the season.

#### Rootmat

The site dissimilarities based on untransformed rootmat data show a marked departure of the JJ1/JJ2 data for the August and September sampling occasions in relation to the independent control, TF1/TF2, and JJ1/JJ3 data comparison. This increase in dissimilarity, although within a background of high variability, is at a time when undisturbed sites would be expected to be become more similar (as is the general trend throughout the season for the Twin Falls sites) (figure 3.7).

Site dissimilarities based on log transformed rootmat data show less variability than those based on untransformed data. The departure of the JJ1/JJ2 comparison, relative to the Twin Falls control stream is clearly evident in the last two sampling ocasions. There also a slight divergence of the JJ1/JJ3 comparison late in the season - contrasting with the TF1/TF2 comparison which follows the expected trend of increasing similarity (figure 3.8).

The observed departures in dissimilarity of potentially impacted sites late in the tourist season, particularly involving the 200 m downstream site (JJ2), indicates impact-related changes to macroinvertebrate communities in the latter part of the study downstream of the road crossing. No formal statistical ANOVA test for interaction of data 'before' and 'after' impact, and between 'control' and 'impact' stream, was possible using the results of the present study because of lack of independence (= serial correlation) of the temporal dissimilarity values. Modelling of the temporal variation by way of covariates, using regression analysis, was used to draw statistical inference. These results are described below.

The observation of decreasing dissimilarity in community structure between adjacent stream sites was used to corroborate the inferences drawn from the dissimilarity-time relationships described above. Thus, regression relationships describing the (positive) association between dissimilarity and stream discharge for paired sites in the upper South Alligator River River (as an example from a previous study; Humphrey, unpublished data) and Twin Falls and Jim Jim creeks (this study) are presented in figure 3.9a & b, respectively. Only the dissimilarity data for the unimpacted condition (JJ1/JJ2 and JJ1/JJ3 paired site dissimilarity data prior to opening of the Jim Jim road crossing and all TF I/TF2 data) were incorporated in regression analysis. The creek discharge value used in he regression was the average instantaneous (Twin Falls/ Jim Jim) or daily discharge over the preceding 20 days (South Alligator River) value for the two sites. Dissimilarity values were calculated on log transformed macroinvertebrate data in both cases.

Figure 3.9 a & b clearly show strong relationships between macroinvertebrate community dissimilarity and discharge from paired undisturbed sites of ARR streams. When paired site dissimilarity values for JJ1/JJ2 and JJ1/JJ3 after vehicle access to the crossing are superimposed upon the Twin Falls/ Jim Jim undisturbed regression, it is clearly apparent that

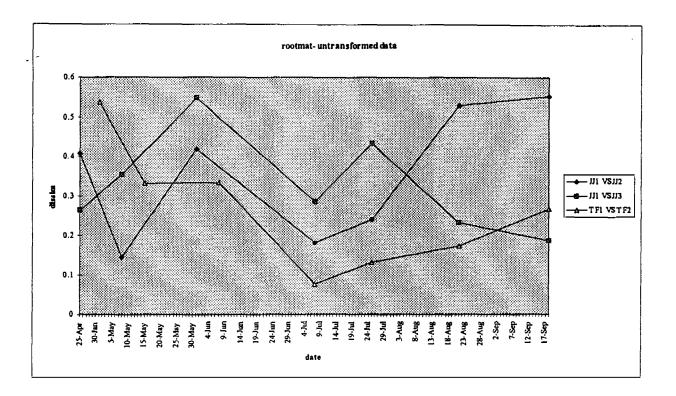



Figure 3.7 Temporal change in Bray-Curtis multivariate dissimilarities for the *rootmat* habitat calculated using *untransformed* data.

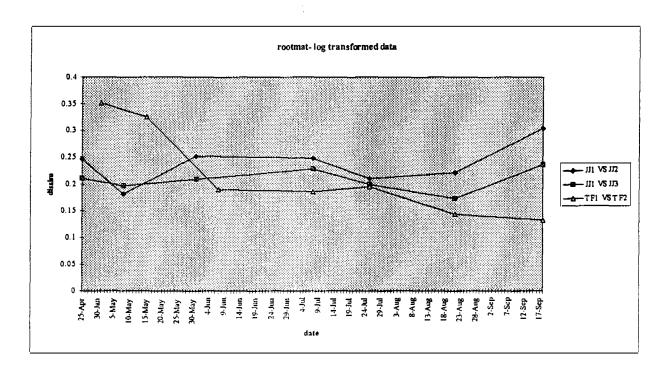
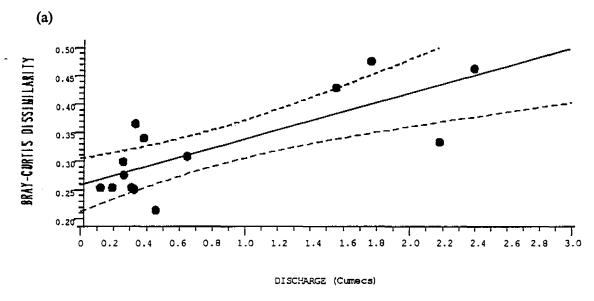
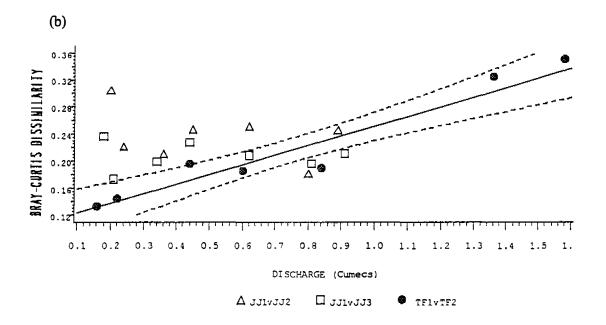





Figure 3.8. Temporal change in Bray-Curtis multivariate dissimilarities for the *rootmat* habitat calculated using log<sub>10</sub>(x+1) *transformed* data.





UNIMPACTED SITES ON SOUTH ALLIGATOR R.



**Figure 3.9.** Relationship between discharge and Bray-Curtis dissimilarity of macroinvertebrate community structure between upstream and downstream sites for (a) the upper reaches of the South Alligator River using species level data and (b) Jim Jim and Twin Falls Creeks using family level data.

Shaded symbols indicate the unimpacted sites (ie all South Alligator River and Twin Falls Creek sites and all Jim Jim creek sites BEFORE the opening of the Jim Jim Creek road crossing to the public).

Open symbols indicate potentially impacted sites (ie Jim Jim Creek sites AFTER after the opening of the Jim Jim Creek road crossing to the public).

The regression line and 95 percent confidence interval relates to all 'unimpacted' (shaded) samples and creek discharge at the time of sampling.  $R^2$  values for regressions (a) and (b) are respectively 0.600 and 0.804.

this Jim Jim Ck data falls increasingly outside of the 95% confidence limits of the regression relationship with decreasing creek flow (= increasing time after crossing opening). These observations indicate disturbance to macroinvertebrate communities downstream of the Jim Jim road crossing following vehicle access.

## Sand

In contrast to the rootmat communities, the trends in dissimilarity values for sand communities, based on untransformed data, indicate there are no exceptional differences observed in downstream sites compared with control sites (including Twin Falls Creek), in the 'after' period (figure 3.10). Again, as expected of undisturbed sites, there is a general downward trend with time in all site comparisons (indicating increasing paired-site similarity). The slight increase in the JJ1/JJ2 comparison for the last sampling occasion does not provide strong inference for an impact-related community change, particularly considering the variability observed amongst comparisons in the previous sampling occasion.

Using transformed data, the JJ1/JJ2 comparison shows a slight departure for the last two sampling occasions (figure 3.11). However, this still represents a general trend of increasing site similarity over time, combined with natural site variation.

Unlike rootmat macroinvertebrate data, no significant relationship was observed for paired site dissimilarity and discharge data for undisturbed sites in Twin Falls and Jim Jim creeks.

# 3.2.4 Multivariate ordination

Ordination of both sand and rootmat macroinvertebrate data indicates there is a strong temporal trend among *all* sites - as might be expected with changing characteristics of the habitat with receding flow etc. To draw stronger inferences about turbidity-related changes, without the influence of natural temporal changes, ordinations were performed separately on data gathered prior to, and after, the crossing opening to traffic.

#### Rootmat

The rootmat samples in the 'before' period show the similarity of samples among sites by the interspersion of represented data points in ordination space (figure 3.12). Significant environmental correlates included conductivity, alkalinity, bicarbonate, turbidity and orthophosphate (figure 3.13a) and are most likely a reflection of natural temporal changes associated with similar temporal change in the macroinvertebrate communities. Notably, one such significant environmental correlate is turbidity. However, all measurements for this period are in the 'low' range (<5NTU) and the correlation of this parameter for the before period is most likely, again, a consequence of temporal differences among samples (water clarity decreased slightly in undisturbed sites with receding creek flow). Most major taxa, namely Chironomidae, Baetidae, Caenidae, Ceratopogonidae and Acarina, are also seen to be correlated with the ordination (figure 3.13b), again a consequence of overall changes through time rather than site specific differences. No separation of particular sites is seen to follow these taxa correlations. Importantly, there is no overall separation of sites in the before period, indicating a general similarity of all the sites in the undisturbed state.

Rootmat sample ordination in the 'after' period shows a clear separation of the JJ2 samples (200 m downstream) from the samples from other sites, particularly the six points which represent the last two (August and September) sampling occasions (figure 3.14). To a lesser

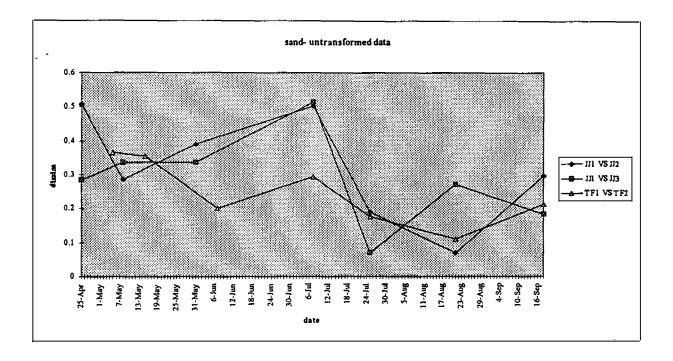
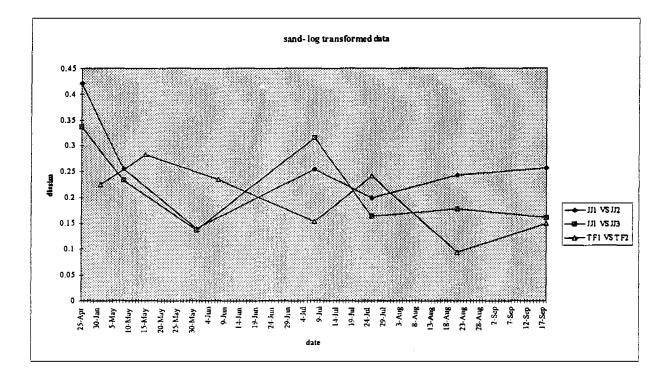
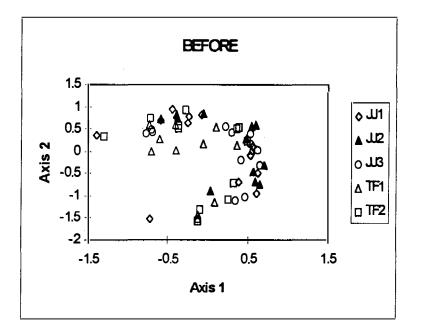
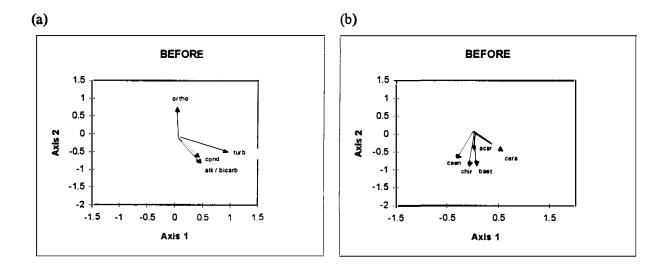
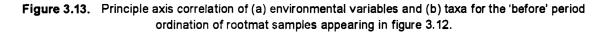





Figure 3.10. Temporal change in Bray-Curtis multivariate dissimilarities for the sand habitat calculated using untransformed data.





**Figure 3.11.** Temporal change in Bray-Curtis multivariate dissimilarities for the sand habitat calculated using  $log_{10}(x+1)$  transformed data.



**Figure 3.12** HMDS ordination of macroinvertbrate community stucture in the rootmat samples from the 'before' period (prior to the opening of the road crossing) using log<sub>10</sub>(x+1) transformed data.

3 dimensions; stress= 0.11.





Only significant (P<0.01) variables are shown.

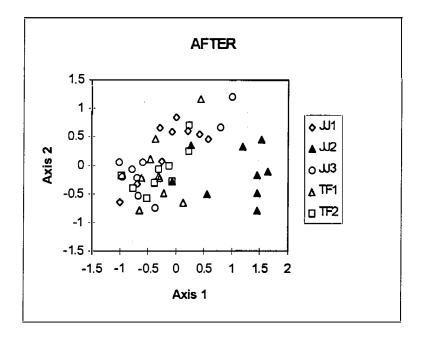
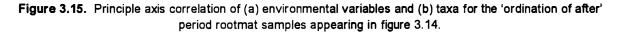




Figure 3.14. HMDS ordination of macroinvertebrate community structure in rootmat samples from the 'after' period (subsequent to the opening of the road crossing) based on log<sub>10</sub>(x+1) transformed data.





Only significant (P<0.01) variables are shown.

<sup>3</sup> dimensions; stress= 0.12.

extent, two or the three JJ3 replicates from the last sampling occasion also fall in the vicinity of the separated JJ2 samples referred to above. All other samples, including most of those from the disturbed site 1000 m downstream, constitute a separate cluster and are interspersed in ordination space. Additionally in the after period, there are significant correlations of turbidity and suspended solids in the same direction as the JJ2 site samples, indicating the macroinvertebrate separation of these sites is along a gradient in these parameters (figure 3.15a). Alkalinity and bicarbonate were also significantly correlated with the ordination in the after period, but ran in a direction distinct from the JJ2 site separation. The taxa correlated in the ordination space of 'after samples' included Chironomidae, Ceratopogonidae, Baetidae, Caenidae and Acarina. Of these, Chironomidae and Ceratopogonidae are correlated in a similar but *opposite* direction to the JJ2 site separation (figure 3.15b), with Chironomidae having a particularly strong correlation coefficient value of 0.89. Thus, these taxa were reduced in abundance at the JJ2 site and also the JJ3 site on the last sampling occasion.

### Sand

The ordinations based on the *sand* samples, collected in the 'before' period show a general interspersion of points corresponding with different sites, again indicating their similarity in the 'pre-impact' (undisturbed) state (figure 3.16). As with rootmat, a number of environmental variables (pH, conductivity, alkalinity, bicarbonate and orthophosphate; figure 3.17a) and taxa (Baetidae, Chironomidae, Caenidae, Ceratopogonidae, Elmidae, Leptoceridae, Acarina and Ecnomidae; figure 3.17b) are significantly correlated with the ordination in the before period, with the temporal influence and the corresponding changes to these parameters and macroinvertebrate communities a likely cause for these correlations. No individual sites are separated out along these correlation gradients in the before period.

There is a similar interspersion of samples from all sites observed in the after period, indicating an overall similarity among sites, even after elevated suspended solids were experienced downstream. In contrast to the results for rootmat samples, the JJ2 samples fall within, and are interspersed throughout, the space occupied by the unimpacted sites (figure 3.18). Thus there is no evidence for community changes during the after period in samples from this substrate. Two environmental correlates, orthophosphate and pH, are significantly correlated with the after period sand ordination (figure 3.19a), again a likely consequence of the natural temporal changes. Taxa significantly correlated with the ordination include Chironomidae larvae, Dytiscidae and Ecnomidae (figure 3.19b). No site separation is seen with these environmental and taxonomic correlates.

### 3.2.5 Artificial substrates

Ordination was performed on a limited number (two sampling occasions in each period) of 'before' and 'after' artificial substrate samples to give a preliminary indication of the sensitivity of these substrates to any downstream effects. The ordination revealed interspersion of downstream sites in both the 'before' and 'after' periods (figure 3.20), suggesting no disturbance effect on these assemblages of macroinvertebrates. This was in contrast to a similar preliminary analysis of natural substrate samples (see Stowar *et al* 1996). In view of this, a decision was made to focus the sample processing effort on the more sensitive natural substrates and to discontinue further processing of artificial substrate samples.

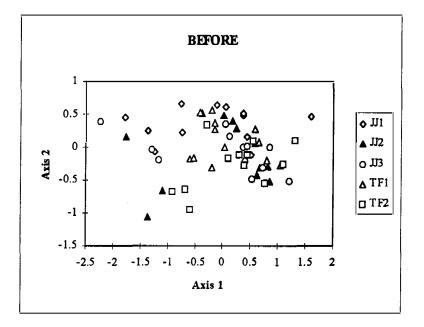
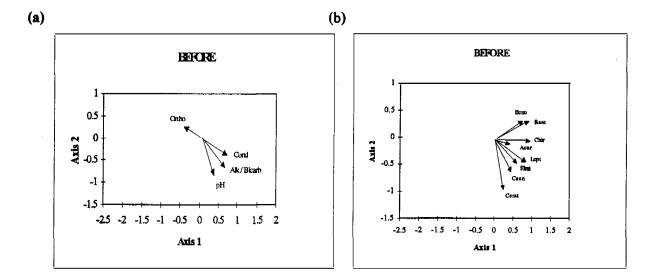
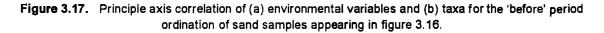




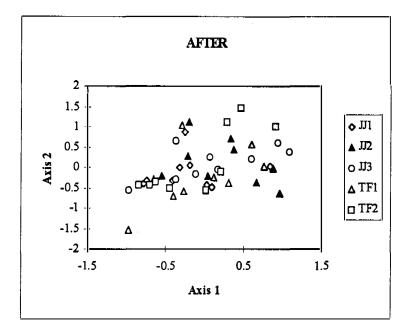
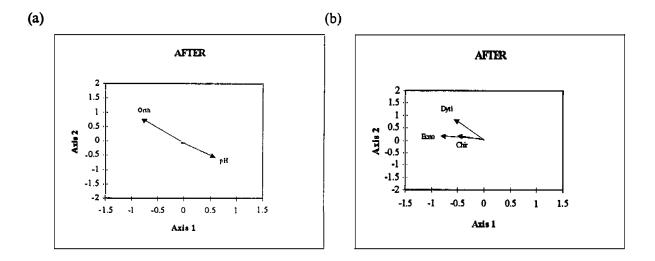
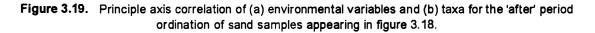

Figure 3.16. HMDS ordination of macroinvertebrate community structure in sand samples from the 'before' period (prior to the opening of the road crossing) based on log<sub>10</sub>(x+1) transformed data.

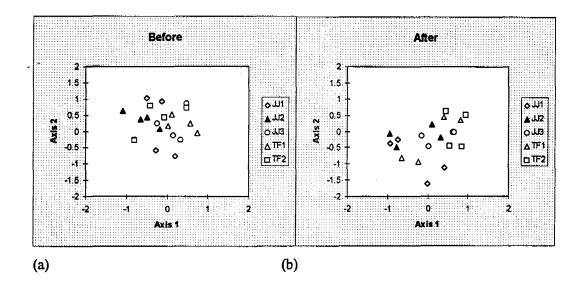
3 dimensions, stress= 0.11.

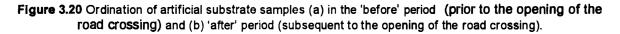




Only significant (P<0.01) variables are shown.



Figure 3.18. HMDS ordination of macroinvertebrate community structure in sand samples from the 'after' period (subsequent to the opening of the road crossing) based on log<sub>10</sub>(x+1) transformed data.


3 dimensions, stress= 0.096.





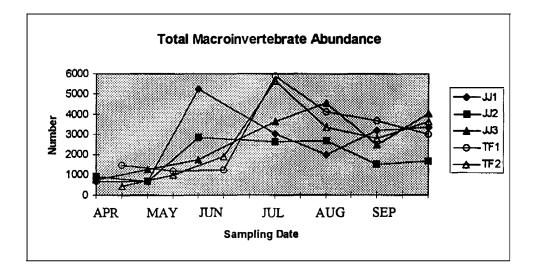
Only significant (P<0.01) variables are shown.



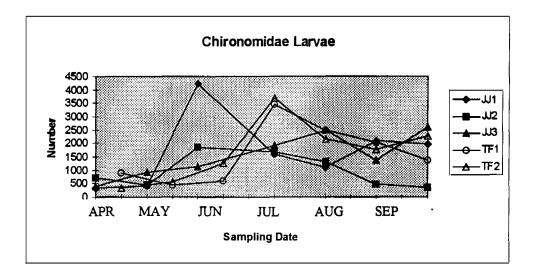


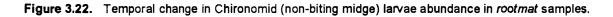
Ordination performed using 3 dimensions, stress = 0.19 for both (a) and (b).

### 3.2.6 Observed macroinvertebrate changes


Having established community differences in rootmat samples collected 200 m downstream of the road crossing in the late Dry season, the actual changes to macroinvertebrate community structure were examined. There were no apparent changes in the presence /absence of taxa observed at any of the sites, with all major taxa being observed both prior to and after the opening of the road crossing at all sites. Changes in macroinvertebrate abundance were, therefore, responsible for the observed community changes.

Observation of total macroinvertebrate abundance in rootmat samples, for each site individually (as opposed to paired-site differences in total abundance which were discussed previously) shows quite clearly that the total abundance of macroinvertebrates (all taxa combined) is distinctly less in the rootmat samples from Jim Jim Creek site 2 than in samples from other sites collected in August and September (figure 3.21). This corresponds with the latter part of the period when elevated levels of turbidity and suspended solids were present. When a similar comparison is made using each of the most common taxa individually, it is apparent that chironomid (non-biting midge) larvae, consistently the most common macroinvertebrate in all samples, showed a marked decline in JJ2 samples in the latter part of the study period (figure 3.22). Similar site comparisons were made with regard to the abundance of Elmidae larvae (an aquatic beetle), Acarina (aquatic mites), Caenidae nymphs (a family of mayfly) and Baetidae nymphs (another family of mayfly), all of which constituted the most frequently-observed taxa in the rootmat samples. None of these other taxa displayed site specific trends in potentially impacted sites that are outside the variability observed among control sites (figures 3.23, 3.24, 3.25 & 3.26). Thus, chironomid larvae appear to be the major contributor to community changes, in the form of a decline in abundance at site JJ2. No such decline in either total macroinvertebrate abundance nor chironomid abundance was apparent 1000 m downstream of the road crossing (site JJ3).


The sand habitat, which by all indications did not experience discordant community changes downstream of the road crossing relative to other sites, did not display any conclusive trend in the 'after' period of a decline in total macroinvertebrate (figure 3.27) or chironomid abundance figure 3.28). Similarly, other major taxa appear not to have been affected in the sand habitat.


### 3.2.7 Summary of macroinvertebrate results

There is a large amount of variability among all samples collected, which to some degree masks the ability to detect disturbance related impacts on macroinvertebrate communities. However, the results indicate community changes immediately (200 m) downstream of the Jim Jim road crossing, with some evidence for less distinct changes 1000 m downstream of the road crossing, in the rootmat substrate samples collected late in the Dry season (August and September). These changes are associated with elevated turbidity and suspended solids. The changes observed in communities inhabiting the rootmat were most strongly associated with changes to overall community structure (ie involving overall taxa composition and abundance), though reductions in downstream abundances of chironomid (non-biting midge) larvae were particularly influential in the multivariate response. No community changes were detected downstream in samples collected at the same time and sites from the sand habitat.









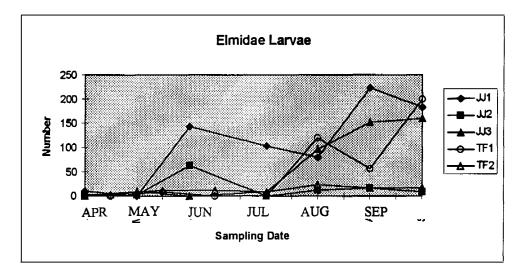



Figure 3.23. Temporal change in Elmid beetle larvae abundance in rootmat samples

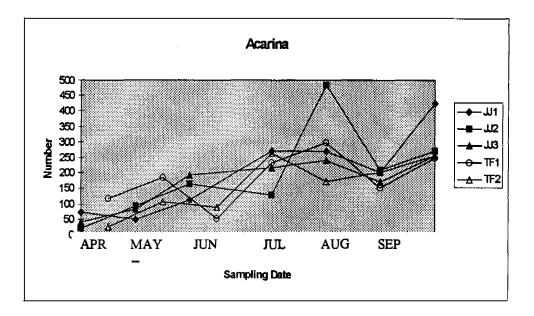



Figure 3.24. Temporal change in Acarina (aquatic mite) abundance in rootmat samples.

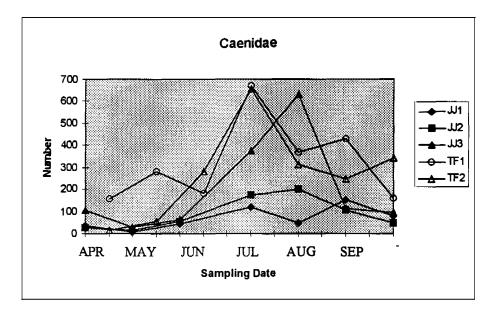



Figure 3.25. Temporal change in Caenid mayfly abundance in rootmat samples.

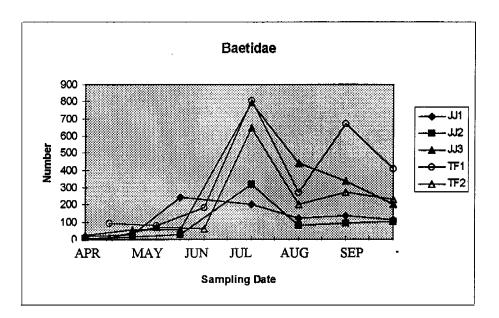



Figure 3.26. Temporal change in Baetid mayfly abundance in *rootmat* samples.

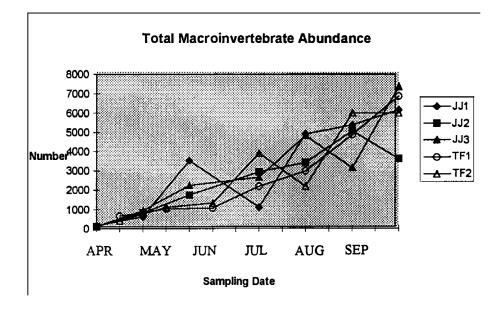



Figure 3.27. Temporal change in total macroinvertebrate abundance (all taxa) in sand samples.

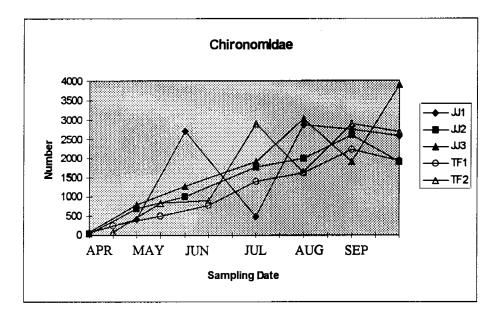



Figure 3.28. Temporal change in Chironomid (non-biting midge) larvae abundance in sand samples.

# 3.3 Fish

### 3.3.1 Comparison of sampling methods

The number of fish detected by different sampling methods is shown on table 3.2. The gill net and seine net procedures caught very different assemblages of fish. Gill nets caught both largergrowing fish species and more species (19 species) than the seine nets (14 species). Further, there were only 7 species in common that were captured by the two procedures. Of the 7 species captured by seine nets that were not captured in the gill nets, 3 were probably the most abundant species in the two streams, Jim Jim and Twin Falls creeks.

The visual count carried out before the road crossing opened revealed only one extra species not captured by the other methods, the penny fish (*Denariusa bandata*) (table 3.2). On the other hand, the visual procedure did detect most of the more common species captured by the two netting procedures. A number of the species not detected in the visual counts listed here were, however, observed at other times during the study: fork-tailed catfish (*Arius* spp.) saratoga (*Scleropages jardini*) and boney bream (*Nematalosa erebi*). Thus, when they can be conducted, visual census techniques for fish are probably more effective than other sampling methods. As noted earlier, this was not possible for a study in which poor visibility from increased turbidity was certain to occur.

As well as the biases of different sampling procedures, the different sampling efforts and the different units of measurement of each method present a potential problem when combining data from different procedures to represent community structure as a whole. The different units of measure were as follows:

| gill-netting data  | refers to number of fish per unit effort (duration and length of net set);                                                                                                                 |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| seine netting data | refer to either numbers per unit effort (i.e. No. per 3 hauls which is a different <i>effort</i> to the gill nets), or number per unit area (from the total area enclosed by 3 net hauls); |
| visual counts      | can refer to number per unit area (from the total area surveyed), or number per unit effort (again different effort to the other procedures).                                              |

Whilst it would be possible to adjust and convert number-per-unit-area data to common units (and therefore combine them in an ecologically meaningful way), this is not possible for catch per unit effort data using different procedures. Consequently, it has been common practice to accept this limitation in fish biodiversity studies and simply combine the different forms of data for the analysis of community structure indices. This procedure was followed for the calculation of multivariate community measures.

## **3.3.2** Species richness

The different fish species recorded at the different sites, a total of 27 species, are presented in table 3.3. Twenty species were common to both Jim Jim and Twin Falls creeks while 7 species occurred in only one or other of the streams. Before the road crossing opened, the number of species was similar in both streams (21 species in Jim Jim Creek and 19 species in Twin Falls Creek) and there was little difference in species composition between the upstream and downstream sites. Four months after the road opened there was almost no change in the number

of species present in Jim Jim Creek and only a small change in the species composition. In contrast, in Twin Falls Creek there was a considerable decline in the number of species present and the downstream site had fewer species (12) than the upstream site (15). Note that these data refer to the presence or absense of species and do not take the abundances recorded into account.

| Scientific Name                 | Gill-<br>netting | Seine-<br>netting | Visual count <sup>e</sup> |
|---------------------------------|------------------|-------------------|---------------------------|
| Neosilurus ater                 | 92               | 0                 | 25                        |
| Nematalosa erebi                | 76               | 0                 | 6                         |
| Syncomistes butleri             | 24               | 0                 | 35                        |
| Megalops cyprinoides            | 29               | 0                 | 0                         |
| Scieropages jardini             | 27               | 0                 | 0                         |
| Anodontiglanis dahli            | 25               | 0                 | 44                        |
| Neosiluris hyrtii               | 22               | 0                 | 5                         |
| Hephaestus fuliginosus          | 5                | 0                 | 38                        |
| Arius leptaspis                 | 4                | 0                 | 0                         |
| Lates calcarifer                | 3                | 0                 | 11                        |
| Toxotes chatareus               | 4                | 0                 | 0                         |
| Arius midgleyi                  | 1                | 0                 | 0                         |
| Pingalla midgleyi               | 64               | 2                 | 45                        |
| eiopotherapon unicolor          | 45               | 5                 | 28                        |
| Amniataba parcoides             | 122              | 17                | 45                        |
| Strongylura kreifti             | 23               | 1                 | 2                         |
| Ambassis macleayi               | 8                | 5                 | 0                         |
| Glossamia aprion                | 5                | 1                 | 1                         |
| Nelanotaenia spiendida inomata  | 62               | 375               | 289                       |
| Craterocephalus marianae        | 0                | 2367              | 439                       |
| Melanotaeni a nigrans           | 0                | 343               | 106                       |
| Craterocephaius stercusmuscarum | 0                | 253               | 267                       |
| Amba <b>ssis</b> agrammus       | 0                | 34                | 24                        |
| Glossogobius giuris             | 0                | 18                | 0                         |
| Mogumda mogumda                 | 0                | 3                 | 1                         |
| Pseudomugil gertrudae           | 0                | 3                 | 7                         |
| Denarlusa bandata               | 0                | 0                 | 1                         |
| fotal No. of Species            | 19               | 14                | 20                        |

 Table 3.2. Comparison of fish numbers detected by gill-netting, seine-netting, and visual count methods.

\*only made before road opened

| Scientific Name                 | Gundjeinmi Name                               | Common Name               | Jim Jim U |       |        | Downstream |        | •     |         | Downstream |
|---------------------------------|-----------------------------------------------|---------------------------|-----------|-------|--------|------------|--------|-------|---------|------------|
|                                 |                                               |                           | Before    | After | Before | After      | Before | After | Before  | Afler      |
| Nematalosa erebi                | Na-bardebarde or Gartalba                     | Boney bream               | +         | +     | +      | +          |        |       | · · · · |            |
| Ambassis macleayi               | Na-manggi                                     | Sail-fin perchlet         | +         | +     |        | +          |        |       |         |            |
| Toxotes chatareus               | Njarigan                                      | Common archerfish         |           | +     |        | +          |        |       |         |            |
| Arius midgle yi                 | Almakkawam?                                   | Shovel-head catfish       |           |       | +      |            |        |       |         |            |
| Anodontiglanis dahli            | Ganbakijdja (J), Barrabarra<br>or Na-guri (A) | Toothless Catfish         | +         | +     | +      | +          | +      |       |         |            |
| Arius leptaspis                 | Almakawahi                                    | Salmon catfish            | +         |       | +      | +          |        | +     |         |            |
| Ambassis agrammus               | Na-manggi                                     | Reticulated perchiet      | +         | +     | +      | +          | +      |       | +       |            |
| Amniataba percoides             | Mandidi                                       | Banded gounter            | +         | +     | +      | +          | +      | +     | +       | +          |
| Craterocephalus marianaa        | Dilebang or Dolbo                             | Mariana's hardyhead       | +         | +     | +      | +          | +      | +     | +       | +          |
| Craterocephalus stercusmuscarum | Dilebang or Dolbo                             | Fly-Specked hardyhead     | +         | +     | +      | +          | +      | +     | +       | +          |
| Giossamia aprion                | Na-manggi or Djabelh                          | Mouth-almighty            |           |       |        | +          |        | +     | +       | +          |
| Glossogobius giuri <del>s</del> | ?                                             | Flathead goby             | +         | +     | +      | +          | +      |       | +       |            |
| Haphaestus fuliginosus          | Ne-gerdml or Dumbuhmanj                       | Sooty grunter             | +         | +     | +      | +          |        | +     | +       |            |
| Lates caicarifer                | Malarlalk(J), Na-mamgarl (A)                  | Barramundi                | +         |       |        |            | +      | +     | +       |            |
| Leiopothe rapon unicolor        | Burd                                          | Spangled grunter          | +         | +     | +      | +          | +      | +     | +       | +          |
| Megelops cyprinoides            | Gertaibe                                      | Ox-eye herring or Tarpon  | +         | +     | +      | +          | +      | +     | +       |            |
| Melanotaenia spiendida inomala  | Dilebang or Dolbo                             | Chequered rainbowfish     | +         | +     | +      | +          | +      | +     | +       | +          |
| Melanolaenia nigrans            | Dilebang or Dolbo                             | Black-Striped rainbowfish | +         | +     | +      | +          | +      | +     | +       | +          |
| Neosiluris hyrtili              | Binjdjarrang                                  | <b>Hyrtil's catfish</b>   |           |       | +      | +          | +      |       | +       | +          |
| Pingala midgleyi                | Dumbulymanj??                                 | Black-anal-fin grunter    | +         | +     | +      | +          | +      | +     | +       | +          |
| Syncomistes butleri             | Na-gerdmi or Dumbuhmanj                       | Sharp-nosed grunter       | +         | +     | +      | +          |        | +     |         |            |
| Scleropages jardini             | Yinmamarra (j), Guluibhr (A)                  | Saratoga                  | +         | +     | +      |            | +      | +     | +       | +          |
| Neosilurus ater                 | Binjdjarrang or Ganbaldj <b>dja</b>           | Black catfish             | +         | +     | +      | +          | +      | +     | +       | +          |
| Strongylura kreffti             | Burrugulung                                   | Longtom                   | +         | +     | +      |            | +      |       | +       | +          |
| Pseudomugil gertrudae           | Dilebang or Dolbo                             | Spotted blue-eye          |           |       |        |            | +      |       | +       |            |
| Denariusa bandalla              | Na -manggi                                    | Penny Fish                |           |       |        |            | +      |       |         |            |
| Mogumda mogumda                 | Djagok or Gomboh                              | Purple-spotted gudgeon    |           |       |        |            | +      |       | +       |            |
| Total No. Species               |                                               |                           | 21        | 19    | 20     | 20         | 19     | 15    | 19      | 12         |

 Table 3.3.
 Fish species observed in Jim Jim Creek and Twin Falls Creek before and after the opening of Jim Jim Creek Crossing. (+ indicates species present.)

...

# **3.3.3 Fish abundance**

The abundance of the different species captured by the two sampling methods is shown separately in table 3.4 (gill nething) and table 3.5 (seine nething).

### Gill net samples

In Jim Jim Creek, the total number of fish captured at the upstream and downstream sites (table 3.4) was very similar prior to the opening of the road crossing (104 and 92 fish respectively). Three months after the road was opened the number of fish captured at the upstream site increased by 18% to 123 while at the downstream site there was a considerable decline in the catch by 62% to 35 fish. The two species that declined the most at the downstream site were the banded grunter (*Amniataba percoides*) and boney bream (*Nematalosa erebi*). Numbers of the black catfish (*Neosiluris ater*), one of the more abundant species before the road opened, had declined during the sample interval at all sites.

In Twin Falls Creek prior to the road opening, the total number of fish caught at the upstream site (69) was less than that caught at the downstream site (106). After the road opening, the catch at the upstream site changed very little whereas at the downstream site the catch declined by 39% to 64 fish. The main species that declined here was the chequered rainbowfish (*Melanotaenia splendida inormata*). However, this species actually increased in the seine net samples (see below) suggesting that the decline was only in the larger individuals of this species that were susceptible to the gill nets and not in the total population size of that species.

### Seine net samples

As with the gill netting, in Jim Jim Creek prior to the opening of the road crossing the total number of fish captured by seine nets (table 3.5) at the upstream and downstream sites was very similar (367 and 301 fish respectively). Four months after the road was opened, the number of fish captured at the upstream site changed very little (+ 8%) while at the downstream site there was a considerable decline in the catch by 47% to 159 fish. The two species that declined the most at the downstream site, Mariana's hardyhead (*Craterocephalus marianae*) and black-striped rainbowfish (*Melanotaenia nigrans*) were reduced to only 10% of their numbers prior to the opening. Prior to the road opening, these species comprised 76% of the total seine net catch but only 16% afterwards. Conversely at the upstream site, the numbers of *C. marianae* increased after the road opened whilst abundances of *M. nigrans* had declined only slightly (table 3.5).

In Twin Falls Creek prior to the road opening, the number of fish caught by seine net at the upstream site (379) was greater than that caught at the downstream site (202). After the road opening the opposite was the case. The catch at the upstream site increased by 14% to 432 in spite of a reduction in species richness, largely due to an increase in the number of C. *marianae*. However, at the downstream site there was an even larger recruitment of young C. *marianae* so that the seine net catch increased dramatically, by 457%, to 1125 fish. Although three other species also increased in numbers here, this large change was mostly a result of C. *marianae* recruitment.

|                                |          |       | Jim Jim Creek |       |          | T۱    | win Falls Creek |       |
|--------------------------------|----------|-------|---------------|-------|----------|-------|-----------------|-------|
|                                | upstream |       | downstream    | n     | upstream |       | downstream      |       |
| Scientific Name                | Before   | After | Before        | After | Before   | Afler | Before          | After |
| Neositurus ater                | 33       | 9     | 16            | 2     | 13       | 9     | 6               | 4     |
| Amniataba percoldes            | 25       | 27    | 23            | 3     | 11       | 11    | 15              | 7     |
| Nematalosa erebi               | 10       | 46    | 15            | 5     | 0        | 0     | 0               | 0     |
| Anodontiglanis dahli           | 7        | 6     | 7             | 3     | 2        | 0     | 0               | 0     |
| Syncomistes butleri            | 7        | 8     | 4             | 4     | 0        | 1     | 0               | 0     |
| Ambassis macleayi              | 7        | 1     | 2             | 0     | 0        | 0     | 0               | 0     |
| Strongylura krafiti            | 5        | 3     | 2             | 0     | 5        | 0     | 7               | 1     |
| Pingala midgleyi               | 4        | 6     | 6             | 2     | 1        | 4     | 19              | 22    |
| Megalops cyprinoides           | 2        | 9     | 1             | 2     | 8        | 5     | 2               | 0     |
| Melanotaenia spiendida inomata | 1        | 0     | 4             | 3     | 5        | 4     | 38              | 7     |
| Leiopotherapon unicolor        | t        | 3     | 5             | 4     | 15       | 5     | 3               | 9     |
| Scleropages jardini            | 1        | 1     | 2             | 0     | 6        | 7     | 2               | 8     |
| Arius leptaspis                | 1        | 0     | 1             | 1     | 0        | 1     | 0               | 0     |
| Neosiluris hyrtiil             | 0        | 0     | 2             | 1     | 2        | 0     | 11              | 6     |
| Hephaestus fuliginosus         | 0        | 1     | 1             | 1     | 0        | 1     | 1               | 0     |
| Glossamia aprion               | 0        | 0     | 0             | 0     | 0        | 2     | 2               | 1     |
| Letes calcarifer               | 0        | 0     | 0             | 0     | 1        | 2     | 0               | 0     |
| Toxotes chatareus              | 0        | 3     | 0             | 1     | 0        | 0     | 0               | 0     |
| Anius midgleyi                 | 0        | 0     | 1             | 0     | 0        | 0     | 0               | 0     |
| Total no. fish                 | 104      | 123   | 92            | 35    | 69       | 52    | 106             | 65    |
| Total Species                  | 13       | 13    | 16            | 13    | 11       | 12    | 11              | 9     |

••

١,

Table 3.4. Numbers of fish sampled by gill-netting at sites before and after the opening of the road crossing on Jim Jim Creek

|                                 | Jim Jim C | reek  |          |       | Twin Fail | s Creek |           |       |
|---------------------------------|-----------|-------|----------|-------|-----------|---------|-----------|-------|
|                                 | upstream  |       | downstre | an    | upstream  | 1       | downstrea | ጠ     |
| Scientific Name                 | Before    | After | Before   | After | Before    | After   | Before    | After |
| Crateroce phalus marianae       | 189       | 301   | 124      | 13    | 284       | 383     | 135       | 938   |
| Melanotaenia nigrens            | 57        | 36    | 106      | 11    | 28        | 7       | 32        | 66    |
| Cralerocephalus stercusmuscerum | 57        | 63    | 38       | 52    | 13        | 1       | 5         | 24    |
| Melanotaenia splendida inomata  | 48        | 24    | 29       | 40    | 57        | 35      | 53        | 89    |
| Amniataba percoides             | 8         | 0     | 0        | 3     | 2         | 4       | 0         | 0     |
| Glossogobius giuris             | 6         | 2     | 5        | 1     | 3         | 0       | 1         | 0     |
| Leiopotherapon unicolor         | 2         | 2     | 0        | 0     | 0         | 1       | 0         | 0     |
| Ambassis agrammus               | 0         | 1     | 0        | 33    | 0         | 0       | 0         | 0     |
| Ambassis madeayi                | 0         | 0     | 0        | 5     | 0         | 0       | 0         | 0     |
| Pseudomugii gertrudae           | 0         | 0     | 0        | 0     | 2         | 0       | 1         | 0     |
| Mogumda mogumda                 | 0         | 0     | 0        | 0     | 2         | 0       | 1         | 0     |
| Pingala midgleyi                | 0         | 0     | 0        | 0     | 1         | 1       | 0         | 0     |
| Strongylura kreffi              | 0         | 0     | 0        | 0     | 1         | 0       | 0         | 0     |
| Glossamia aprion                | 0         | 0     | 0        | 1     | 0         | 0       | 0         | 0     |
| Total no. fish                  | 367       | 429   | 302      | 159   | 393       | 432     | 228       | 1117  |
| Total No. of Species            | 7         | 7     | 6        | 9     | 10        | 7       | 7         | 4     |

+.

٠,

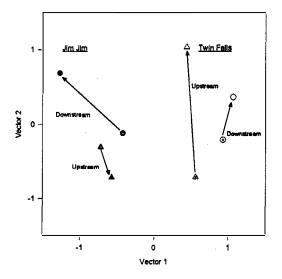
Table 3.5. Numbers of fish sampled by seine net from each site before and after the opening of the road crossing on Jim Jim Creek.

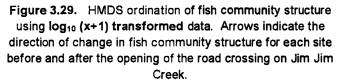
### 3.3.4 Multivariate measures of paired-site dissimilarity of fish community structure

For calculating an overall measure of the structure of the fish community, the numerical data from both gill netting and seine netting were combined (added together). Bray-Curtis dissimilarity measures comparing the structure of the fish community between upstream and downstream sites in each stream were calculated using both raw abundance and logtransformed abundance data. This transformation reduces the influence of the more abundant fish in favour of the less abundant species in the computation of dissimilarity.

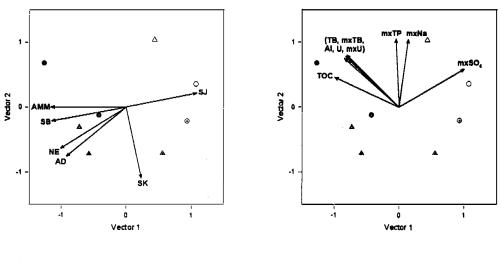
The dissimilarity index provided a convenient measure of the overall difference in fish community structure between the upsteam and downstream sites before and after the opening of the road crossing. These data are shown in table 3.6. Dissimilarity values for the raw, untransformed dataset were higher than for the transformed data, but the dissimilarity derived from both datasets showed similar patterns. The dissimilarity between the upstream and downstream sites increased in both streams after the road opened. However, the size of the increase was considerably larger in Jim Jim Creek, 0.17 or 155% for the transformed data set, compared to only 0.07, or 35%, in Twin Falls Creek.

**Table 3.6.** Bray Curtis dissimilarity values for fish community structure based on combined data from gill net and seine samples using both untransformed abundance data and log transformed data from 4 sites on Jim Jim and Twin Falls Creeks before and after the opening of a road crossing on Jim Jim Creek.


|            | Untransf                            | ormed data                             | Transformed data                    |                                        |  |
|------------|-------------------------------------|----------------------------------------|-------------------------------------|----------------------------------------|--|
|            | Jim Jim - upstream<br>vs downstream | Twin Falls - upstream<br>vs downstream | Jim Jim - upstream<br>vs downstream | Twin Falls - upstream<br>vs downstream |  |
| Before     | 0.23                                | 0.32                                   | 0.10                                | 0.21                                   |  |
| After      | 0.64                                | 0.45                                   | 0.29                                | 0.28                                   |  |
| Difference | 0.41                                | 0.13                                   | 0.19                                | 0.07                                   |  |
| % change   | +178                                | + 41                                   | + 190                               | + 33                                   |  |


### 3.3.5 Multivariate ordination

The relationship of the different fish samples to one another is shown graphically by a 2 dimensional SSH MDS ordination of the log transformed data in figure 3.29 and the untransformed data in figure 3.31. In both analyses there is a clear separation of the communities in the two streams, this being more pronounced with the transformed data. These figures also show how the communities at the sites changed in the ordination space during the sampling interval. The community structure of the two Twin Falls Creek sites moved largely in the same direction so that there was not a large increase in the dissimilarity between the two sites. In contrast, the two Jim Jim Creek sites moved in different directions (opposite with the transformed data and at right angles with the untransformed data) and this resulted in a large increase in the dissimilarity between the two Jim Jim Ck sites.


The fish species that were significantly correlated with the ordination space in the principal axis correlation analysis are shown in table 3.7 and their direction of influence on the ordination pattern is shown in figures 3.30 & 3.32. Seven species were significantly correlated at p<0.05 with at least one of the ordination patterns. The influence of most of these species was directed at the separation of the communities in the two streams. The influence of only two

27

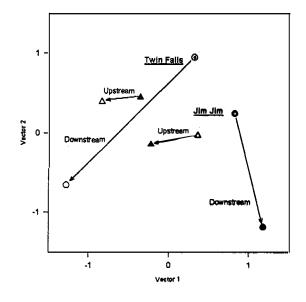


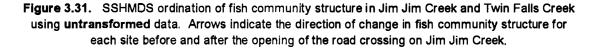


Solid symbols - Jim Jim Creek; Open symbols - Twin Falls Creek; Triangle symbol - upstream site; Circle symbol - downstream site; 2 dimensions; stress = 0.16

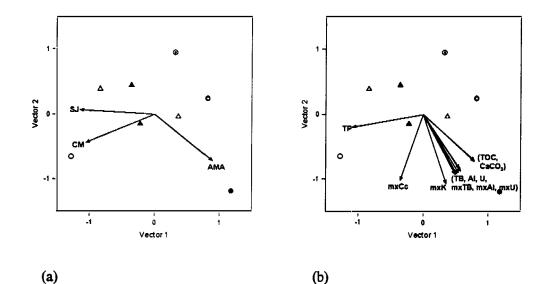


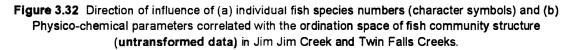
(a)


(b)


**Figure 3.30** Principal axis correlation of (a) individual fish species and (b) Physico-chemical parameters for the ordination space of fish community structure (log<sub>10</sub> transformed data) in figure 3.29. Only significant variables (p<0.05) are shown.

Solid arrows indicate direction of influence of variables


Refer to figure 3.27 for description of symbols (shapes) indicating site and time.


Fish species codes are shown in table 3.9 and codes for physico-chemical parameters are shown in table 3.10.





Solid symbol - indicates Jim Jim Creek; Open symbols - indicates Twin Falls Creek; Triangle symbol - indicates upstream site; Circle symbol - indicates downstream site; Ordination performed using 2 dimensions; stress = 0.13





Solid arrows indicate parameters significant at  $p \le 0.05$ ; Refer to figure 7.27 for description of symbols (shapes) indicating site and time. Fish species codes are shown in table 7.9 and codes for physico-chemical parameters are shown in table 7.10. species, C. marianae and S. kreffti, appeared to be mainly related to the temporal changes in community structure.

In the analysis of correlation of physico-chemical parameters, the corresponding values for the downstream site on Jim Jim Creek were taken as the mean of the values recorded for macroinvertebrate sites JJ2 and JJ3 in the two periods, before and after the road opened. Also included in the analysis was the maximum value of each physico-chemical parameter recorded in each period (from section 3.1 above) as an indication of a pulse event.

**Table 3.7** Principle axis correlation coefficients (R) for fish species variables significantly correlated with the fish ordination community space using either untransformed or log10 (x+1) transformed fish abundance data. Monte Carlo probability derived from 100 random starts is indicated by 'p'. \* indicates  $p \le 0.05$ 

| Fish species             | Code | Untransfo | med ordination | Transform | ed ordination |
|--------------------------|------|-----------|----------------|-----------|---------------|
|                          |      | R         | Р              | R         | P             |
| Scleropages jardini      | SJ   | 0.87      | 0.03 *         | 0.86      | 0.03 *        |
| Craterocephalus marianae | СМ   | 0.93      | 0.03 *         | 0.72      | 0.12          |
| Ambassis agrammus        | AMA  | 0.87      | 0.05 *         | 0.75      | 0.09          |
| Ambassis macleayi        | AMM  | 0.74      | 0.12           | 0.90      | 0.01 *        |
| Strongylura kreffti      | SK   | 0.69      | 0.13           | 0.92      | 0.04 *        |
| Anodontiglanis dahli     | AD   | 0.54      | 0.42           | 0.95      | 0.01 *        |
| Syncomistes butleri      | SB   | 0.50      | 0.45           | 0.91      | 0.02 *        |
| Nematalosa erebi         | NE   | 0.17      | 0.90           | 0.87      | 0.03 *        |

Table 3.8Principle axis correlation coefficients (R) for water physico-chemical variables significantly<br/>correlated with the fish community ordination space using either untransformed or log10 (x+1)<br/>transformed fish abundance data. Monte Carlo probability derived from 100 random starts is indicated<br/>by 'p'. \* indicates  $p \le 0.05$ 

| Parameter                     | Code   | Untransfo | rmed ordination | Transform | ed ordination |
|-------------------------------|--------|-----------|-----------------|-----------|---------------|
|                               |        | R         | Р               | R         | P             |
| Mean Aluminium                | Al     | 0.89      | 0.02 *          | 0.76      | 0.03*         |
| Mean Total Organic Carbon     | TOC    | 0.92      | 0.02 *          | 0.78      | 0.04 *        |
| Maximum Uranium               | mxU    | 0.88      | 0.03 *          | 0.76      | 0.05 *        |
| Mean Uranium                  | U      | 0.88      | 0.04 *          | 0.76      | 0.05 *        |
| Mean Turbidity                | тв     | 0.87      | 0.04 *          | 0.75      | 0.05*         |
| <b>Mean</b> CaCO <sub>3</sub> | CaCO3  | 0.85      | 0.02 *          | 0.74      | 0.08          |
| Maximum Chlorophyll-c         | mxCc   | 0.90      | 0.03 *          | 0.30      | 0.68          |
| Maximum Turbidity             | mxTB   | 0.87      | 0.04 *          | 0.74      | 0.06          |
| Maximum Potassium             | m×K    | 0.86      | 0.04 *          | 0.74      | 0.08          |
| Mean Total Phosphate          | ТР     | 0.87      | 0.04 *          | 0.71      | 0.15          |
| Maximum Aluminium             | ino:Al | 0.87      | 0.05 *          | 0.75      | 0.07          |

Eleven physico-chemical parameters were significantly correlated with the ordination pattern (table 3.8). In both ordinations the direction of influence of turbidity, total organic carbon, aluminium, uranium and alkalinity (CaCO<sub>3</sub>) was in the direction of the temporal change in the fish community of the downstream Jim Jim site (figures 3.30 and 3.32). Maximum values of chlorophyl c, sodium and sulphate and total phosphorus were also significantly correlated and in a direction associated with temporal change in community structure rather than difference between the two streams. These patterns lend support to the inference of an effect of increased turbidity, and possible related effects (eg Al), on fish community structure.

# 3.3.6 Condition factors

#### C. marianae

The relationship between length and weight calculated for C. marianae from all sites and times combined was:

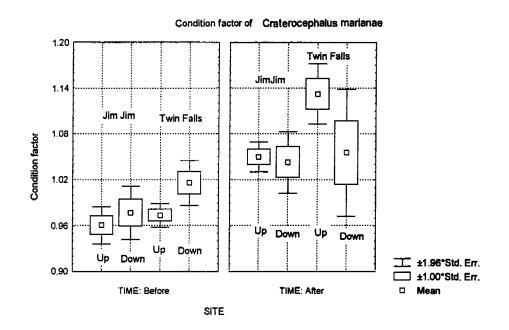
# Log weight (g) = -11.9352 + 3.1332 Log Length (mm); $R^2 = 0.982$ , p<0.001.

Condition factors were calculated using this regression equation to predict the expected weight of each fish. The condition factors for each sample are compared in figure 3.33 which shows the mean, standard error and 95% confidence limits of the mean. Samples for which the 95% confidence limits overlap are not significantly different from one another. The effect of location and sample time on condition were examined by ANOVA (table 3.9). Although there was a significant increase in condition of this species between the sample times, there was no difference in condition between the upstream and downstream sites on either occasion. The ANOVA also indicated a significant interaction between the effects (site and time) but this was unrelated to the potential effect of the road crossing.

There was thus no evidence of impaired nutrition (food availability) for *C marianae* downstream of the road crossing after it was opened to traffic. The increase in condition during the sample interval was apparently related to the reproductive cycle with increased gonad size late in the Dry season. Although gonads were not examined in this study, many gravid females were observed in Jim Jim Creek samples in October.

**Table 3.9**. Results of 2-way ANOVA examining the effect of time (before and after the opening of the road crossing) and site (upstream and downstream sites on 2 streams) on the condition factor of the fish *Craterocephalus marianae*. Design: 1-SITE, 2-TIME.

| Effect | df<br>Effect | MS<br>Effect | df<br>Error | MS<br>Error | F        | p-level |
|--------|--------------|--------------|-------------|-------------|----------|---------|
| 1      | 3            | .096078      | 1202        | .084746     | 1.13372  | .334265 |
| 2      | 1            | .945196      | 1202        | .084746     | 11.15333 | .000865 |
| 1,2    | 3            | .179962      | 1202        | .084746     | 2.12356  | .095497 |


### A. percoides

The relationship between length and weight calculated for A. percoides from all sites and times combined was:

Log weight (g) = -11.1922 + 3.0392 Log length (mm);  $R^2 = 0.984$ , p< 0.01.

Condition factors were calculated using the regression equation to predict the expected weight of each fish, and are compared in figure 3.34. Results of ANOVA examining the effects of location and sample time on condition are shown in table 3.10. In this species, there was no significant increase in condition between the sample times. There were significant effects of site in the October samples with the condition of fish at the upstream Twin Falls Creek site being higher than that at the upstream site on Jim Jim Creek. However, there were no significant differences between the upstream and downstream sites in the same stream on either occasion. There was no significant interaction between the effects, site and time.

There was, therefore, no evidence of impaired nutrition for A. percoides following the opening of the road crossing.



÷

Figure 3.33 Condition factors of *Craterocephalus marianae* before and after the opening of the road crossing on Jim Jim Creek.

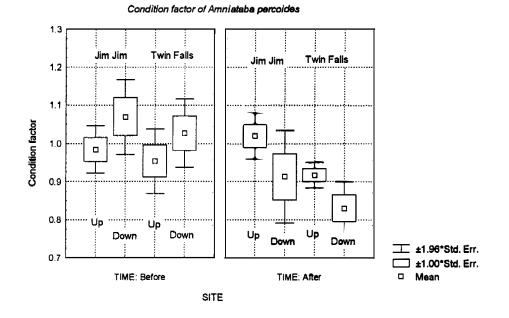



Figure 3.34. Condition factors of *Amniataba percoides* before and after the opening of the road crossing on Jim Jim Creek.

|     | df     | MS      | df    | MS      |          |         |  |  |
|-----|--------|---------|-------|---------|----------|---------|--|--|
|     | Effect | Effect  | Error | Error   | F        | p-level |  |  |
| 1   | 3      | .042335 | 123   | .028291 | 1.496400 | .218892 |  |  |
| 2   | 1      | .196546 | 123   | .028291 | 6.947277 | .009476 |  |  |
| 1,2 | 3      | .084656 | 123   | .028291 | 2.992296 | .033568 |  |  |

Table 3.10. Results of 2-way ANOVA examining the effect of time (before and after the opening of the road crossing) and site (upstream and downstream sites on 2 streams) on the condition factor of the fish *Amniataba percoides*. Design: 1-SITE, 2-TIME

# 3.3.7 Length frequency distribution

Comparison of the length frequency distribution of measurements made on fresh specimens and specimens of C. marianae preserved in 70% alcohol showed that preservation had little impact on fish length (figure 3.35) and the pattern of length frequency. Nevertheless, for consistency the length frequency distribution of C. marianae was examined using only preserved specimens (figure 3.36). Before the opening of the road crossing, the size distribution at all sites was very similar with a major peak in abundance of fish in the 30-45 mm LCF range and very few fish less than 25 mm. The only difference between streams was a higher proportion of fish larger than 50 mm in Jim Jim Creek.

Three months after the opening of the road crossing the size distribution of C. marianae changed with the presence of a much larger proportion of small fish less than 30 mm LCF (figure 3.36). This indicated significant recruitment of young fish during the sample interval at all sites. At the three sites unaffected by the road crossing (JJ1, TF1 & TF2) the distribution pattern was bimodal indicating the continued presence of high numbers of the 30-40 mm size class that was dominant in the June sample and which was now roughly 5 mm larger. However, at site JJ2 downstream of the crossing there were very few larger fish >50mm and the proportion of the 30-40 mm size class present in June was much lower than at the upstream site JJ1 (figure 3.36).

Thus, as well as a dramatic decline in the density of C. marianae downstream of the crossing there was also a change in the population structure to one which contained a lower proportion of older fish.

# **4** Discussion

# 4.1 Physical and chemical variables

Turbidity, resulting from suspended sediment derived from the Jim Jim Creek road crossing was observed to rise to levels averaging 60 NTU immediately downstream of the crossing against a high water clarity background (averaging less than 5 NTU) for this system. Observed turbidity levels were strongly correlated with inorganic suspended solids in the water, the levels of which peaked at 100 mg/L. Such elevated levels are cause for concern, particularly in view of the apparent biological changes detected downstream.

A gradient of turbidity and suspended solids was observed downstream of the road crossing, with the highest concentrations occurring immediately downstream of the crossing. Measurements taken 1 km downstream of the road crossing indicate that the levels of turbidity experienced this far downstream (averaging approximately 30 NTU), although not as high as immediately downstream from the crossing, were still well above background.

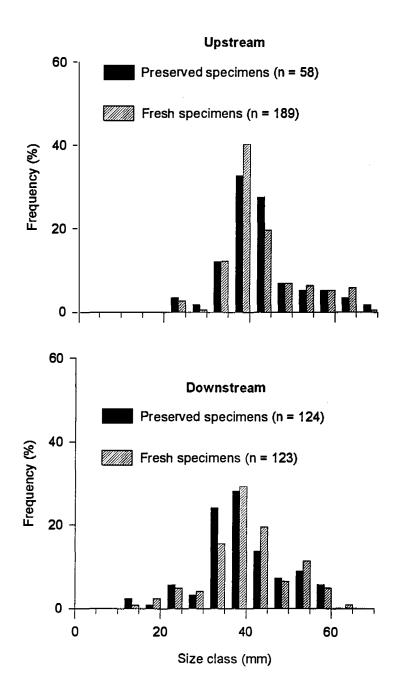
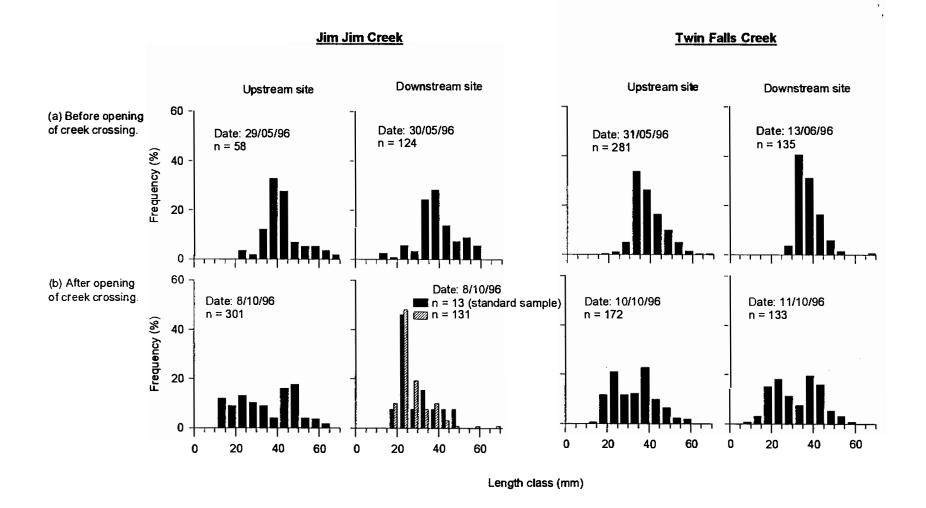
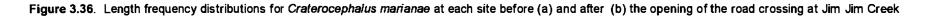





Figure 3.35 Effect of preservation in 70% alcohol on length of *Craterocephalus marianae* specimens collected from the upstream and downstream sampling sites at Jim Jim Creek on 29-30 May, 1996.

Preserved specimens were taken from the same sample as the fresh specimens at both sites.





There was a delay in the rise and subsequent peak of turbidity levels after the opening of the crossing which may be attributed to the time taken for the relatively clean scoured sand deposited on the creek-bed during the Wet season to be eroded away from sections of the crossing to expose the finer sediment that underlies the sand. After peaking in August, the turbidity and suspended solids steadily declined but remained elevated until the end of the study in October - collectively incorporating the duration of the main tourist season. Unfortunately it was not possible to directly determine how this pattern related to traffic levels on the creek crossing because of equipment (traffic count) malfunction. However, if a consistent proportion of traffic to Jim Jim, for which there were data, also visited Twin Falls then it can be concluded that the decline in turbidity was associated to some extent with lower traffic levels later in the Dry season. As well as less traffic, there was also a decline in water level at this time and the lower water velocity associated with this would also reduce the distance suspended particles would be transported.

Associated with the increased suspended solids load arising in Jim Jim Creek downstream of the crossing and after the road opening, was a marked elevation in the levels of iron and aluminium. Given that these metals would be present predominately in particulate and nontoxic form, they are assumed to have had little effect, if any, on changes to biotic communities observed downstream of the crossing late in the Dry season.

The discolouration of the water due to suspended sediment was readily apparent for at least 1 km downstream of the crossing from July, and was still obvious at the conclusion of the study (and tourist season) in October, impacting considerably on the aesthetic value of the creek. The ecological significance of this observed increase in suspended solids is best assessed by the biotic changes that occur in response to the disturbance (see below). Nevertheless, it is worth noting that the levels of optical turbidity and suspended solids observed for a distance of 1000 m downstream of the Jim Jim Creek road crossing substantially exceed the guidelines set for Australian waters (ANZECC 1992). These guidelines recommend that seasonal mean turbidity of a waterway should not change by more than 10 percent (when measured nephelometrically, as in this study), whereas increases of up to 1200 and 600 percent were observed 200 m and 1000 m downstream of the road crossing, respectively.

# 4.2 Macroinvertebrates

# 4.2.1 Macroinvertebrate communities of Jim Jim Creek and Twin Falls creeks

The major macroinvertebrate habitats present throughout the Dry season and sampled in this study were sand and edge rootmat. Also present during the Wet season and early Dry season were edge macrophyte (aquatic plant) habitats, which were left exposed due to receding water levels by July 1996. The macroinvertebrate fauna colonising the rootmat habitat and sand habitat were quite similar in terms of taxa richness at the family level, although there was some evidence for greater patch variability in the sand habitat.

The high seasonality in creek flow was strongly reflected in the macroinvertebrate communities. The most significant natural change observed was the increase in abundance of macroinvertebrates, in both sand and rootmat habitats, between the months of April and August. This was readily apparent as the creek-bed, clean-scoured by Wet season flows and characterised by low macroinvertebrate abundance in April, gradually developed an abundant

macroinvertebrate community as flow receded. Changes in the taxonomic richness and diversity (at the family level) throughout the season were not apparent, although patchiness was observed among samples and sites in this regard. This patchiness resulted in relatively high variability among samples even in the undisturbed control sites. The natural patchiness of the habitats and a background of temporal change were important factors in assessing possible downstream macroinvertebrate community changes arising from suspended sediment. (Thus, the detection of such changes may be masked to some extent by the large amount of natural variation present.)

# 4.2.2 Impact-related changes to downstream macroinvertebrate communities

### Nature of macroinvertebrate community changes

Distinct macroinvertebrate community changes downstream of the Jim Jim road crossing that could be attributed to turbidity and/or suspended solids were observed in the rootmat habitat immediately downstream of the road crossing (at site JJ2) late in the Dry season (August and September). There was also some evidence of macroinvertebrate community changes occurring 1000 m downstream of the road crossing. The impact detected in rootmat samples was most apparent using multivariate analysis (which measures overall community structure). However, there was a distinct reduction in abundance of macroinvertebrates downstream of the road crossing, particularly of the family Chironomidae - this taxon being consistently the most numerically abundant at all sites, impacted and control.

No changes, outside that explained by natural variability, were observed in the sand habitat. The sand habitat proved extremely variable, possibly masking any impacts upon the fauna of this habitat.

### Temporal and spatial extent of impacts downstream

The macroinvertebrate changes observed downstream of the road crossing in the rootmat habitat were only apparent late in the Dry season (and hence study period), with the samples collected in August and September most obviously indicating an impact. This impact-related change occurred approximately 6 weeks after the peak of turbidity and suspended solids.

The delay in the onset of changes to macroinvertebrate communities arising from turbidity could be attributable to a number of factors:

Firstly, previous studies of suspended solids have indicated the duration of exposure to be an important factor in determining biological effects (Newcombe & MacDonald, 1991). It is likely that many invertebrates would withstand a single or brief pulse of suspended sediment without any adverse effects. In contrast, prolonged exposure to suspended sediment, with its associated adverse physiological effects and alteration of habitat characteristics, will often result in mortality or emmigration of aquatic invertebrates.

Secondly, the observed delay in biological response may be a result of suspended sediment affecting reproduction or recruitment rather than causing direct mortality of the resident macroinvertebrate community. In these circumstances, community changes may only be detected after there has been sufficient time for natural 'turnover' of the macroinvertebrate community.

The fact that macroinvertebrate communities were affected in the latter part of the Dry season may also be a consequence of the recoding discharge (and hence flow rates) throughout the Dry

season. The higher flows in the early stages of the crossing being open may have been sufficient to keep sediment mobile and thus prevent its smothering effects, whereas later in the season there is more potential for deposition of sediment, to the detriment of benthic macroinvertebrate communities.

Impacts on macroinvertebrate communities were detacted 200 m downstream of the road crossing, with only slight evidence of any significant impact 1000 m downstream of the crossing by the conclusion of the macroinvertebrate sampling in mid September. Thus it would appear the levels of suspended sediment experienced 1000 m downstream (despite being elevated and visually obvious) were insufficient to instigate as marked detectable change to macroinvertebrate communities. Nevertheless, despite such localised effects, consideration must be made of the fact that this disturbance constitutes a barrier to the continuity of the escarpment reaches of Jim Jim Creek, possibly impinging on the use of this area of the creek by other fauna (eg. presenting a barrier to migration).

Overseas studies have indicated the occurrence of long-term macroinvertebrate community changes associated with suspended sediment (Campbell & Doeg, 1989). However, considering the seasonality of the Jim Jim Creek system, it would be expected that any macroinvertebrate community changes observed are limited to 'within season', with high Wet season flow flushing the turbid water and subsequent turnover of macroinvertebrates restoring the creek to an undisturbed condition. This was reinforced by observations made prior to the opening of the Jim Jim road crossing, when the downstream sites were observed to be biologically similar to undisturbed sites.

One of the long term effects of elevated sediment on streams in less seasonal environments has been suggested to be habitat alteration by the deposition of sediment. In the case of Jim Jim Creek, the high flows experienced in the Wet season and the resulting 're-sorting' of creek-bed sediments would negate such long term alteration to a large extent. Thus it is likely that the detected macroinvertebrate impact is limited to the late Dry season. It must be emphasised, however, that macroinvertebrates are bioindicators, and other aspects of the ecological disturbance they indicate (such as the impacts on populations of higher consumers, eg fish) may be longer term.

#### Habitat 'sensitivity'

Despite the taxonomic similarity (at family level) of the rootmat and sand habitat, the macroinvertebrates occurring in rootmat were clearly more sensitive to the suspended sediment downstream. Such differences in 'habitat sensitivity' are not uncommon in studies of macroinvertebrate studies. Furthermore, sand habitats are considered relatively depauperate habitats (Hynes 1970) and as a consequence, the probability of occurrence of taxa sensitive to a particular disturbance would not be as great in this habitat as for habitats of greater complexity and faunal diversity. (Only species-level determinations of current samples could resolve this issue.) In addition, differences in exposure of invertebrates in sand vs rootmat habitat may account for differences in responses. Thus, rootmat is more exposed to the water column and current velocities than the sand-bed where laminar flow conditions prevail. As a consequence, it is possible that rootmat communities are more directly exposed to the abrasive effects of suspended solids than sand communities.

# Magnitude of impacts downstream

The impact observed on the rootmat macroinvertebrate communities was most evident as reduced macroinvertebrate abundance, with the reduction in chironomid (non-biting midge) abundance being the most marked change in community structure. (Whilst it is possible that exposure to enhanced concentrations of suspended solids resulted in an overall reduction in abundance of macroinvertebrate taxa, this effect was most evident for chironomids given their high numerical abundances in the present study.)

Although no previous studies of suspended sediment have been reported relating directly to creek environments in the Wet-Dry tropics, numerous studies of the effects of suspended sediment in different environments have observed a reduction in macroinvertebrate abundance (Table 4.1) - eg as a result of clay discharges from a mine in New Zealand (Quinn *et al.* 1992) forestry in southern NSW (Richardson 1985) and for these and other causes reported in numerous northern-hemisphere studies (Newcombe & Macdonald 1991).

The observed downstream impacts on macroinvertebrate communities would be considered subtle as indicated by the fact that no significant changes occurred in taxa presence /absence, by the late onset of the impacts and by the relatively small degree of community change observed. However, these conclusions are pertinent only to family-level data and would probably differ had results been based upon species-level determinations. In studies from other regions, severe impacts resulting from suspended sediment on macroinvertebrate communities often involve disappearance of some taxa, marked reduction in abundance of some taxa, and increased abundance of other taxa which thrive in the high-sediment-load conditions.

In assessing the severity of the impact on macroinvertebrate communities downstream of the Jim Jim Creek road crossing, it could be postulated that the period of impact on Jim Jim Creek was perhaps sufficiently short and the suspended sediment levels sufficiently localised as to result in ecological effects of a minor nature. However, it is worth noting that chironomids are often considered to be relatively tolerant of increased sediment loads. The fact that in this study chironomids were adversely affected may be indicative of the general sensitivity of the macroinvertebrate community as a whole, ie the disturbance, being sufficient to impact on chironomids, was in fact quite large.

Table 4.1. Summary of observations reported by selected studies on the effects of suspended sediment on stream macroinvertebrate communities.

...

٠,

| Location             | Nature of Disturbance                                                                                     | Observed Impact on Invertebrates                                                                                   | Reference                     |
|----------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                      |                                                                                                           |                                                                                                                    |                               |
| Australia (SE N.S.W) | Elevated turbidity and sedimentation resulting from<br>forestry activities                                | Reduced abundances of selected taxa; increased<br>Invertebrate drift.                                              | Richardson (1985)             |
| Australia (VIC.)     | Elevated suspended sediment plus sedimentation                                                            | Reduced abundances of a range of species.                                                                          | Chessman <i>et al</i> (1987); |
|                      | associated with dam construction                                                                          |                                                                                                                    | Doeg et al (1967)             |
| Australia (SW W.A)   | Suspended inorganic solids (averaging up to<br>60mg/L, background 5-20mg/L), associated with<br>forestry. | Mean species richness decreased, mean total taxa<br>abundance decreased.                                           | Growns & Davis (1994)         |
| 7                    | 20 fold increase in suspended sediment, no appreciable sediment deposition.                               | Densities of some taxa decreased (including<br>chironomids); some increased (eg oligochates), others<br>unchanged. | Gray & Ward (1982)            |
| Australia (A.C.7)    | Elevated suspended solids (up to 560mg/L) following storms, resulting from urban development.             | Reduced species richness and macroinvertebrate density.                                                            | Hogg & Norris (1991)          |
| New Zealand          | Turbidity increases by 7-154 NTU (background of<br>.13 - 8.2 NTU) due to mining activities                | Reduced invertebrate densities downstream (by 9-45%).                                                              | Quinn (1992)                  |
| USA                  | Elevated suspended sediment, sedimentation<br>identified associated with road construction.               | Reduced species richness, abundance and biomass of filter feeding taxa.                                            | Lemly (1982)                  |
| USA                  | Pulses of suspended solids (70-500mg/L) with road construction activities.                                | Reduced density, abundance and diversity of<br>macroinvectebrate the community.                                    | Cline <i>et al</i> (1982)     |
| USA                  | Short term elevation of suspended solids (up to 1390mg/L); background levels <5mg/L.                      | Altered species composition, no change in total abundance.                                                         | Barton (1977)                 |

# 4.3 Fish

The fish study showed that there were natural differences between the streams in their fish communities and that there were natural seasonal changes in fish community structure over the Dry season. This situation indicated the importance of including a control stream to provide an adequate background against which to evaluate the changes observed in Jim Jim Creek.

### **4.3.1** Natural seasonal changes

In such a highly seasonal environment as the Wet-Dry tropics, marked seasonal changes in the community structure of fish (and other biota) are to be expected. Seasonal changes in fish communities in some other creeks in Kakadu National Park have been documented by Bishop et al. (1990). In their study of main-channel escarpment waterbodies of Magela and Nourlangie Creeks, although there was little change in the number of species present, there was a large change in community structure with the greatest change occurring between the mid Wet and the early Dry seasons; the late Dry season community was intermediate between these two structures. Consequently, the large temporal changes represented by the position of the different sites on Jim Jim and Twin Falls creeks in the ordination space in the present study are not unexpected. A potential problem of this for the present study lay in the possibility that such large natural (seasonal) changes in the fish community could mask any effects of the increase in turbidity in Jim Jim Creek, which coincided with the interval between samples (most of the Dry season).

# 4.3.2 Natural differences among sites

Natural changes in the composition of biota along the length of river systems in response to changes in stream gradient is recorded in many studies around the world. However, Bishop *et al.* (1990) found no evidence for such longitudinal changes from the upstream edge of the floodplain zone to the edge of the escarpment. They did, however, find a relationship between the size of waterbodies and species richness. Thus, although in the present study it was attempted to make all sites as similar as possible, differences in local factors such as pool dimensions could have contributed to the natural differences in the fish community structure between sites in the same stream.

The multivariate analysis using untransformed data, which emphasizes fish abundance, showed that in both streams the downstream sites changed much more than the upstream sites. It suggested that another factor also affecting fish in this section of the catchment might be differences in flow conditions resulting from the retreat of the visible flow back upstream during the late Dry season. Sites further downstream can be exposed to lower, or even zero, discharge for longer periods than sites upstream. At very low flow rates, the amount of available habitat, especially shallow sandy areas, decreases and this could easily influence total population size in pools of some species. *Craterocephalus marianae*, being a sand feeding specialist, could be particulary at risk from this drawdown effect.

This difference in pattern of fish communities between upstream and downstream sites was not the case with the transformed data which places less emphasis on fish abundance.

# 4.3.3 Differences between streams

There were clear differences in the fish assemblages of the two streams with 7 of the 27 recorded species occurring in only one of the two streams and other species being present at

quite different levels of abundance. Whilst the absence of some species may be an artefact of insufficient sampling effort at the sample site, it does at least indicate a difference between streams in the abundance of those species. Such differences among streams in the upper reaches of river systems appear to be common in this region. This can perhaps be highlighted by the occurrence in Ankarrakarkarmi Creek, a nearby tributary of Jim Jim Creek that enters Jim Jim Ck just upstream of the upstream sampling site, of two other fish species not recorded in either Twin Falls or Jim Jim creeks, the coal grunter (*Hephaestus carbo*) and the banded rainbowfish (*Melanotaenia trifasciata*) (Bishop KA, pers comm.).

It is not surprising then that in the multivariate analysis of fish community structure, the samples from each stream clustered in separate halves of the ordination space in both ordination procedures. This result should probably be seen as a natural difference rather than the result of many years of disturbance from the road crossing.

# **4.3.4 Historic changes**

The only previous data on fish community structure for these streams was for Twin Falls Creek in the main waterbody downstream of the plunge pool of the falls. This was collected in December 1979 by Bishop et al. (1990; table 2.). They recorded 19 species of which two, boney bream (*Nematalosa. erebi*) and archerfish (*Toxotes chatareus*), were not recorded in Twin Falls Creek in the present study but were commonly recorded in Jim Jim Creek. Conversely, the 23 species recorded for Twin Falls Creek in the present study included 7 additional species to the 1979 tally.

Also recorded by Bishop et al. (1990) were both subspecies of *Melanotaenia splendida*, redtailed rainbowfish (*M. s. australis*) and the chequered rainbowfish (*M. s. inornata*), with *M. s. australis* being the most abundant form. Only *M. s. inornata* was recorded in the present study. As the colour pattern of *M. s. australis* is extremely variable it is possible that this was a misidentification. On the other hand it is also possible that *M. s. australis* has declined at these sites since that time. This situation needs clarification. *M. s. australis* is the dominant subspecies in the upper South Alligator River system.

Comparison of these data suggests that, apart from the possible change in rainbowfish, there have been no major changes in the Twin Falls Creek fish fauna over the last 17 years. It is unfortunate there are no similar data for Jim Jim Creek.

### 4.3.5 Effects of road crossing traffic on fish community structure

There were major changes in the abundance of some fish species downstream of the road crossing on Jim Jim Creek after the opening of the road crossing to general traffic. Whilst these changes may have been effects of turbidity arising from the Jim Jim Creek road crossing, there is the possibility that they may have been natural events related to seasonal effects. In deciding if the changes were caused by increased suspended solids it is necessary to compare the pattern of change in the 'disturbed' Jim Jim Creek with the change in the 'undisturbed' Twin Falls Creek.

In the absense of any effects of disturbance, it would be expected that the pattern of change would be similar in both streams. However, both the changes in the most abundant species, *C. marianae*, and the multivariate analysis of community structure indicated that this clearly was not the case. This was evidenced by the following:

- Numbers of C. marianae declined dramatically downstream of the road crossing whereas they increased at all other sites;
- The fish community structure, as measured by the Bray-Curtis multivariate dissimilarity measure, showed a much larger increase in the paired (upstream-downstream) site comparison in Jim Jim Creek than in Twin Falls Creek; and
- In the ordination patterns, the Twin Falls sites both moved in the same direction while in Jim Jim Creek the two sites moved in different directions.

With such differences between the two streams, it is concluded that there was an unnatural change in the fish community of JimJim Creek as a result of the increase in suspended solids from the road crossing. Such an inference would not have been possible if a control stream had not been a part of the experimental design. However, because there was limited temporal and spatial replication of each treatment it is not possible to apply any statistical measure of confidence to these conclusions.

The only other reported study of effects of siltation from a road crossing on fish in Australia (Richardson 1985) inferred a decline of *Galaxias maculatus* by comparison of two streams, but there was no pre-disturbance data to confirm the effects.

# 4.3.6 Mechanisms for effects of turbidity on fish

Turbidity was significantly correlated with the ordination patterns of fish community structure and in both cases its influence was in the direction of change in the Jim Jim downstream site. This provided further support to the inference that changes in the fish community were related to the road crossing. However, the ordination analysis showed that a number of chemical parameters in the water were also significantly correlated with the ordination. The influence of most of these was in the same direction as the turbidity vector so it is likely that the disturbance also caused some increase in these parameters. With the exception of aluminium, the increased levels of these chemical parameters were well within ANZECC water quality guidelines and, therefore, unlikely to have been a direct cause of fish mortality. The natural concentrations of aluminium were at all times well above the guideline value for this metal. However, under the prevailing near-neutral pH of creek waters, most of the Al would be present in particulate, nontoxic form.

The mechanism by which the fish were affected by suspended solids is not clear. The study failed to show any effects, either adverse or beneficial, of the disturbance on the condition of two species of fish, *C. marianae* and *A. percoides*. Consequently it is concluded that, although the macroinvertebrate food supply of these fish was also affected by the road crossing, the changes in fish numbers were not caused by an inadequate food supply. This was also found in a study of effects of siltation in a New Zealand stream (Graynoth 1979) which showed that although the population size of the fish *Galaxias divergens* greatly declined and their diet was less diverse, the growth rate of the fish actually increased.

In general, other studies have shown that the most significant cause of declines in fish populations associated with elevated supended solids in streams is sediment deposition on eggs and the alevin stage of larval development (Campbell & Doeg 1989). In the present study it was only possible to evaluate this possibility for *C. marianae*, the most abundant species and the species most clearly affected by increased suspended solids. Length-frequency analysis of

C. marianae showed that recruitment did occur in the period between fish samples. If the early development of embryos and larvae had been impaired by increased sediment deposition downstream of the road crossing the proportion of very small fish in the sample would be expected to be lower at that site than at other sites. This was not the case and so there was no evidence that recruitment was impaired by the increased turbidity.

Conversely, the proportion of larger C. marianae downstream of the road crossing declined in comparison with the other sites. This indicated that these larger fish were the individuals affected by the turbidity. By what process the fish were affected is not clear. The decline in numbers could arise from either increased mortality or, more likely, through emigration to avoid the turbid conditions. Movement away from water that causes discomfort (avoidance) is the most obvious process. Avoidance to turbidity by fish has been demonstrated elsewhere (Bisson & Bilby 1982). A less direct avoidance process could result from changes in food supply affecting fish behaviour. Adult C. marianae feed mainly on invertebrates in the sand substrate which they extract by filtering from mouthfuls of sand (Macfarlane 1996). They do not appear to rely on vision, which would be impaired by increased turbidity, to obtain their food. Nevertheless, the possibility that qualitative and quantitative changes in those invertebrates could have stimulated the fish to move elsewhere in search of preferred food types cannot be dismissed.

### 4.3.7 Ecological significance of fish community changes

The annual prolonged flooding of Top End streams scours the stream bed and would remove the fine sediments from the road crossing deposited in Jim Jim Creek during the Dry season. The rejuvenating effect of this process on the stream means that more severe and longer term effects on the fish and invertebrates than those observed in this study are unlikely to occur. However, much longer-term monitoring would be necessary to confirm this.

The permanent waters of the upper reaches of these streams are important refuge sites for fish in the Dry season. The observed reduction in fish numbers must have some adverse effects on the productivity of the Jim Jim Creek system. However, it is not possible to evaluate the scale of such an effect. The steady decline in suspended solids observed between the two downstream sites on Jim Jim Creek suggest that adverse effects on the biota would be unlikely for more than 2 km downstream of the road crossing. An indication of the scale of the impact could be gauged by knowing what proportion of the total permanent water present at the end of the Dry season this affected area constituted. Unfortunately that information is currently lacking.

The fish species most severely affected by the road crossing was C. marianae. This species also has a highly restricted distribution, occuring only in the rivers of west Arnhemland, from the South Alligator river east to the Mann River (Larson & Martin 1990). As such it is of high conservation significance for Kakadu National Park which contains much of its known range. For this reason alone it would be appropriate for the park management to consider means of reducing the impact of the road.

## **5** Recommendations

#### 5.1 Thresholds of effects

The delayed macroinvertebrate response relative to turbidity /suspended solids concentrations, as well as the changing levels of exposure throughout the season, make it difficult to determine a threshold of suspended solids which induced biological effects. It can be concluded, however, that the levels experienced 200 m downstream (peaking at an average of 60 NTU) did result in quantifiable biological changes, whilst the levels experienced 1000 m downstream (peaking at 30 NTU) did not result in strongly evident impacts upon macroinvertebrate communities. Thus a threshold of effects on the macroinvertebrate community lies in the gradient between the levels of suspended sediment occurring at these two sites. Despite the apparently mild effects on macroinvertebrates communities 1000 m downstream, a value averaging 30 NTU should be considered undesirable in view of the very low natural levels of turbidity that would normally be characteristic of this waterway.

The delayed macroinvertebrate response relative to turbidity /suspended solids concentrations, as well as the changing levels of exposure throughout the season, make it difficult to determine a threshold of suspended solids which induced biological effects. It can be concluded, however, that the levels experienced 200 m downstream (peaking at an average of 60 NTU) did result in quantifiable biological changes, whilst the levels experienced 1000 m downstream (peaking at 30 NTU) resulted in only marginal changes to macroinvertebrate communities. Despite the apparently mild effects on macroinvertebrate communities at the Jim Jim Ck site located 1000 m downstream, it is suggested that levels of suspended sediment occurring at this site - 30 NTU or 8 mg/L suspended solids - be regarded as the threshold of effects on the macroinvertebrate communities.

#### 5.2 Alleviation of effects

Given the detection of impacts on biota downstream of the road crossing and the conservation values of the region, it is recommended that steps be taken to alleviate the suspended sediment problem arising from the Jim Jim Creek road crossing. An engineered structure would be preferable to limited crossing usage because even with the latter case, once the clay bed has been exposed, very few vehicles would be required to cause downstream turbidity.

Subsequent monitoring may be undertaken by collection of water samples for measurement of nephelometric turbidity. Turbidity above 5 NTU for any prolonged period would be considered undesirable, with levels of 60 NTU and upwards assumed to be having an adverse effect on the biota of the creek. Levels of 30 NTU or less, although undesirable, may not represent biologically detectable changes. It should be considered that any marked reduction in water clarity downstream represents significant increases in turbidity and may be cause for concern, particularly in efforts to conserve the Jim Jim Creek environment, both biologically and aesthetically.

The present crossing, by way of its depth and substrate is a limitation to the accessibility of Twin Falls. Consequently, in the design of any road crossing on Jim Jim Creek consideration should be given to the likelihood that an improvement in accessibility would result in greater visitation of Twin Falls and an increase in associated impacts on that area.

## References

- ANZECC 1992. National Water Quality Management Strategy Australian Water Quality Guidelines for Fresh and Marine waters. Australian and New Zealand Environment and Conservation Council.
- Barton BA 1977. Short term effects of highway construction on the limnology of a small stream in southern Ontario. Freshwater Biology 7, 99-108.
- Bishop KA, Allen SA, Pollard DA & Cook MG 1990. Ecological studies on the freshwater fishes of the Alligator Rivers Region, Northern Territory. Research Report 4, Vol II, Synecology. Supervising Scientist for the Alligator Rivers Region. AGPS, Canberra.
- Bishop KA, Allen SA, Pollard DA & Cook MG. In press. Ecological studies on the freshwater fishes of the Alligator Rivers Region, Northern Territory. Research Report 4, Vol III, Autecological studies. Supervising Scientist for the Alligator Rivers Region. AGPS, Canberra.
- Bisson PA & Bilby RE 1982. Avoidance of suspended sediment by juvenile coho salmon. North American Journal of Fisheries Management 2:371-374.
- Campbell IC & Doeg TJ 1989. Impact of timber harvesting and production on streams: a review. Australian Journal of Marine and Freshwater Research 40,519-39
- Chessman BC, Robinson DP & Hortle KG 1987. Changes in the riffle macroinvertebrate fauna of the Tanjil River, southeastern Australia, during construction of Blue Rock Dam. *Regulated Rivers* 1, 317-29.
- Cline LD, Short RA & Ward JV 1982. The influence of highway construction on the macroinvertebrates and epilithic algae of a high mountain stream. *Hydrobiologia* 96, 149-159.
- Doeg TJ, Davey GW & Blythe JD 1987. Response of the aquatic macroinvertebrate community to dam construction on the Thompson River, southeastern Australia. Regulated Rivers 1, 195-209.
- Faith DP, Dostine PL & Humphrey CL 1995. Detection of mining impacts on aquatic macroinvertebrate communities: results of a disturbance experiment and the design of a multivariate BACIP monitoring program at Coronation Hill, N.T. Australian Journal of Ecology 20, 167-180.
- Gray LJ & Ward JV 1982. Effects of sodiment releases from a reservoir on stream macroinvertebrates. *Hydrobiologia* 96, 177-184.
- Graynoth E 1979. Effects of logging on stream environments and faunas in Nelson. New Zealand Journal of Marine and Freshwater Research 13(1), 79-109
- Growns IO & Davis JA 1994. Effects of forestry activities (clearfelling) on stream macroinvertebrate fauna in south-western Australia. Australian Journal of Marine and Freshwater Research 45, 963-75.

- Hogg ID & Norris RH 1991. Effects of runoff from land clearing and urban development on the distribution and abundance of macroinvertebrates in pool areas of a river. *Australian Journal of Marine and Freshwater Research* 42, 507-18.
- Humphrey CL, Faith DP & Dostine PL 1995. Baseline requirements for assessment of mining impact using biological monitoring. Australian Journal of Ecology 20, 150-166.
- Hynes HBN 1970. The Ecology of Running Waters. Liverpool University Press. Liverpool, U.K.
- Larson HK & Martin KC 1990. Freshwater fishes of the Northern Territory. Northern Territory Museum of Arts and Sciences, Darwin.
- Lemly AD 1982. Modification of benthic insect communities in polluted streams: combined effects of sedimentation and nutrient enrichment. *Hydrobiologia* 87, 229-45.
- Macfarlane WJ 1996. Habitat utilisation by macroinvertebrates and fish and their trophic interactions in Magela Creek. Internal report 211, Supervising Scientist for the Alligator Rivers Region, Canberra. Unpublished paper.
- Newcombe CP & MacDonald DD 1991. Effects of suspended sediment on aquatic ecosystems. North American Journal of Fisheries Management 11, 72-82.
- Quinn JM, Davies-Colley RJ, Hickey CW, Vickers ML & Ryan PA 1992. Effects of clay discharges on streams: 2. Benthic invertebrates. *Hydrobiologia* 248, 235-247.
- Richardson BA 1985. The impact of forest road construction on the benthic invertebrate and fish fauna of a coastal stream in southern New South Wales. *Australian Society for Limnology Bulletin* 10, 65-88.
- Rosenberg DM & Resh VH 1993. Introduction to freshwater biomonitoring and benthic macroinvertebrates. In Freshwater biomonitoring and benthic macroinvertebrates, eds DM Rosenberg & Resh VH. Chapman & Hall, New York.
- SAS Institute (1995) SAS System for Windows Release 6.11. SAS Institute, Cary, USA.
- StatSoft Inc 1995. STATISTICA™ for Windows. Release 5. Tulsa, Oklahoma, USA.
- Stowar M, Pidgeon R & Humphrey C 1996. Effects of suspended solids on stream biota downstream of a road crossing on Jim Jim Creek, Kakadu National Park: Preliminary results. Internal report 230, Supervising Scientist, Canberra. Unpublished paper.

## APPENDIX A

\_ **-**

# Macroinvertebrate community structure at sampling sites during the study

| SITE/SAMP. OCCASION    |      | JJ1/1 |      |      | JJ2/1 |      |      | <b>JJ3</b> /1 |      |      | TF1/1 |      |      | TF2/1 |      |
|------------------------|------|-------|------|------|-------|------|------|---------------|------|------|-------|------|------|-------|------|
| DATE                   | 25   | April | 96   | 25   | April | 96   | 25   | April         | 96   | 1    | May   | 96   | 1    | May   | 96   |
| REPLICATE NO.          | 1    | 2     | 3    | 1    | 2     | 3    | 1    | 2             | 3    | 1    | 2     | 3    | 1    | 2     | 3    |
| ERISS SAMPLE NUMBER    | 1306 | 1307  | 1308 | 1315 | 1316  | 1317 | 1324 | 1325          | 1326 | 1352 | 1353  | 1354 | 1358 | 1359  | 1360 |
| ACARINA (INDET) (X)    | 4    | 7     | 7    | 1    | 0     | 0    | 0    | 2             | 2    | 35   | 78    | 12   | 15   | 29    | 16   |
| ANISOPTERA (INDET) (L) | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0             | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| BAETIDAE (N)           | 2    | 2     | 3    | . 4  | 0     | 0    | 0    | o             | 0    | 2    | 7     | 7    | 1    | 15    | 4    |
| CAENIDAE (N)           | 1    | ı     | 1    | 3    | 2     | 0    | 0    | 6             | 14   | 19   | 64    | 25   | 14   | 19    | 28   |
| CERATOPOGONIDAE (L)    | t    | 2     | 0    | 27   | 28    | 2    | o    | 4             | 3    | 10   | 43    | 32   | 18   | 45    | 22   |
| CHIRONOMDAE (L)        | 12   | 32    | 27   | 21   | 8     | 16   | 12   | 32            | 35   | 60   | 95    | 93   | 28   | 20    | 44   |
| CHIRONOMIDAE (P)       | 0    | 0     | 0    | 2    | 1     | 0    | o    | 0             | 0    | 4    | 8     | 0    | 0    | 4     | 4    |
| COENAGRIONIDAE (L)     | 0    | 0     | 4    | 0    | 0     | 0    | 0    | 0             | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| CORIXIDAE (N)          | 0    | 6     | 0    | 4    | 0     | 0    | 0    | 0             | 1    | 1    | 0     | 2    | 14   | 16    | 22   |
| CULICIDAE (L)          | 0    | 0     | 0    | o    | 0     | 0    | 0    | o             | 0    | O    | 0     | 0    | 0    | 0     | 0    |
| CULICIDAE (P)          | 0    | 0     | 0    | o    | 0     | Q    | 0    | o             | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| DYTISCIDAE (L)         | o    | 0     | 0    | o    | 0     | 0    | o    | 0             | 0    | O    | 1     | 0    | 0    | 0     | 0    |
| DYTISCIDAE (A)         | 0    | 0     | 0    | 0    | 0     | Q    | 0    | 0             | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| ECNOMIDAE (L)          | o    | 0     | 0    | 0,   | 0     | 0    | 0    | o             | 1    | o    | 0     | 0    | 0    | 0     | 2    |
| ELMIDAE (L)            | 2    | 4     | 2    | 1    | 0     | Q    | 0    | 4             | 3    | 1    | 1     | 0    | 0    | 0     | 2    |
| ELMIDAE (A)            | 1    | 7     | 4    | o    | 0     | 0    | o    | 2             | 4    | 13   | 11    | 9    | 0    | 0     | 0    |
| GOMPHIDAE (L)          | 0    | 0     | 0    | 0    | o     | 0    | o    | 0             | 0    | 5    | 2     | 0    | 2    | 0     | 2    |
| HYDROPTILIDAE (L)      | 1    | i     | 2    | 1    | 0     | 0    | o    | 0             | 0    | 3    | 2     | 4    | 2    | 0     | 0    |
| LEPTOCERIDAE (L)       | 1    | 0     | 2    | o    | o     | Q    | o    | 2             | 1    | 1    | 2     | 2    | 0    | 1     | 2    |
| OLIGOCHAETE (X)        | 0    | 7     | 0    | о    | 0     | 11   | o    | o             | 0    | 11   | 7     | 4    | 0    | 4     | 0    |
| PALAEMONIDAE (X)       | 0    | 0     | 0    | 0    | 0     | 0    | o    | o             | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| PHILOPOTAMIDAE (L)     | 0    | 0     | 0    | о    | 0     | 0    | o    | 0             | 0    | 1    | 0     | 0    | 0    | 0     | 0    |
| PYRALIDAE (L)          | 0    | 0     | 0    | 2    | 0     | 0    | 0,   | 0             | 0    | 1    | 0     | 0    | 0    | 0     | 0    |
| SIMULIDAE (L)          | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0             | 0    | 0    | 1     | 0    | 0    | 0     | 0    |
| TABANIDAE (L)          | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0             | 0    | 0    | 2     | 0    | 0    | 1     | 2    |
| TIPULIDAE (L)          | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0             | 0    | o    | 0     | 0    | 0    | 0     | 0    |
| ZYGOPTERA (INDET.) (L) | 0    | 0     | 0    | o    | 0     | 0    | o    | 0             | 0    | o    | 0     | 0    | 0    | 0     | 0    |
| HEBRIDAE               | 1    | 0     | 0    | o    | 0     | 0    | 0    | 0             | 0    | o    | 0     | 0    | o    | 0     | 0    |
| HYDROPHILIDAE          | o    | 0     | 0    | o    | 0     | 0    | 0    | 0             | 0    | 0    | 0     | 0    | o    | 0     | 0    |
| SCIRTIDAE              | 0    | o     | 0    | 0    | 0     | 0    | 0    | 0             | 0    | 0    | 0     | 0    | 0    | 0     | 0    |

:

| SITE/SAMP. OCCASION    |      | JJ1/2 |      | L    | JJ2/2 |      |      | JJ3/2 |             |      | TF1/2 |      |            | TF2/2 |     |
|------------------------|------|-------|------|------|-------|------|------|-------|-------------|------|-------|------|------------|-------|-----|
| DATE                   | 5    | May   | 96   | 8    | May   | 96   | 8    | May   | 96          | 15   | May   | 96   | 15         | May   | 96  |
| REPLICATE NO.          | 1    | 2     | 3    | 1    | 2     | 3    | 1    | 2     | 3           | 1    | 2     | 3    | 1          | 2     | 3   |
| ERISS SAMPLE NUMBER    | 1407 | 1408  | 1409 | 1416 | 1417  | 1418 | 1425 | 1426  | 1427        | 1705 | 1706  | 1707 | 1714       | 1715  | 171 |
| ACARINA (INDET) (X)    | 12   | 4     | 12   | 12   | 16    | 8    | 8    | 10    | 8           | 104  | 136   | 72   | 48         | 28    | 8   |
| ANISOPTERA (INDET) (L) | 0    | 0     | 0    | 0    | 2     | 0    | 0    | . 0   | 0           | o    | 0     | 0    | 0          | 0     | 0   |
| BAETIDAE (N)           | 4    | 0     | 42   | 22   | 18    | 32   | 18   | 8     | 14          | 0    | 0     | 0    | 4          | 0     | 0   |
| CAENIDAE (N)           | 12   | 0     | 4    | 0    | 0     | 0    | 4    | 0     | 4           | 4    | 8     | 0    | 12         | 0     | 32  |
| CERATOPOGONIDAE (L)    | o    | 0     | 2    | 6    | 4     | 4    | 22   | 6     | 18          | 12   | 8     | 0    | 28         | 16    | 8   |
| CHIRONOMIDAE (L)       | 156  | 76    | 178  | 262  | 188   | 228  | 336  | 218   | <u>2</u> 42 | 88   | 88    | 328  | 352        | 140   | 332 |
| CHIRONOMIDAE (P)       | 0    | 0     | 2    | 0    | 0     | 0    | 4    | 0     | 4           | o    | 0     | 0    | 8          | 4     | 0   |
| COENAGRIONIDAE (L)     | 0    | 0     | 0    | o    | 0     | 0    | 0    | 0     | 0           | 0    | 0     | 0    | 0          | 0     | 0   |
| CORIXIDAE (N)          | 2    | 6     | 0    | 0    | 0     | 0    | o    | 0     | 0           | 0    | 0     | 0    | 0          | 0     | 0   |
| CULICIDAE (L)          | 0    | 0     | 0    | o    | 0     | 0    | 0    | 0     | 0           | 0    | 0     | 0    | 0          | 0     | 0   |
| CULICIDAE (P)          | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     | 0           | 0    | 0     | 0    | 0          | 0     | 0   |
| DYTISCIDAE (L)         | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0           | 0    | 0     | 0    | 0          | 0     | 0   |
| DYTISCIDAE (A)         | 0    | 0     | 0    | 0    | 0     | 0    | 0    | Ũ     | 0           | 0    | . 0   | 0    | 0          | 0     | 0   |
| ECNOMIDAE (L)          | o    | 2     | 2    | 0    | 6     | 2    | 2    | 0     | 2           | 24   | 24    | 24   | 1 <b>6</b> | 12    | 32  |
| ELMIDAE (L)            | 34   | 8     | 18   | 4    | 6     | 0    | 6    | 4     | 8           | 12   | 8     | 8    | 0          | 0     | 40  |
| ELMIDAE (A)            | 8    | 0     | 0    | 4    | 0     | 0    | 2    | 0     | 0           | 60   | 40    | 0    | 0          | 0     | 0   |
| GOMPHIDAE (L)          | 6    | 0     | 0    | 0    | 2     | 2    | 0    | 2     | 2           | 0    | 0     | 0    | 4          | 8     | 4   |
| HYDROPTILIDAE (Ľ)      | 4    | 0     | 6    | 0    | 2     | 0    | 0    | 0     | 0           | 0    | 0     | 0    | 0          | 0     | 0   |
| LEPTOCERIDAE (L)       | 4    | 0     | 2    | 2    | 2     | 0    | 0    | 2     | 0           | 4    | 0     | 0    | 0          | 0     | 0   |
| OLIGOCHAETE (X)        | 0    | 2     | 0    | 0    | 0     | 0    | 2    | 2     | 2           | 0    | 0     | 0    | 0          | 4     | 0   |
| PALAEMONIDAE (X)       | 0    | 0     | 0    | 0    | 0     | 0    | 0    | O     | 0           | 0    | 0     | 0    | 0          | 0     | 0   |
| PHILOPOTAMIDAE (L)     | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     | 0           | 0    | 0     | 0    | 0          | 0     | 0   |
| PYRALIDAE (L)          | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     | 0           | 0    | 0     | 0    | 0          | 0     | 0   |
| SIMULIDAE (L)          | o    | 0     | 0    | o    | 0     | 0    | o    | 0     | 0           | 0    | 0     | 0    | 0          | 0     | 0   |
| TABANIDAE (L)          | o    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0           | o    | 0     | 0    | 0          | 0     | 0   |
| TIPULIDAE (L)          | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     | 0           | o    | 0     | 0    | 0          | 0     | 0   |
| ZYGOPTERA (INDET.) (L) | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     | 0           | 0    | 0     | 0    | 0          | 0     | 0   |
| HEBRIDAE               | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     | 0           | 0    | 0     | 0    | 0          | 0     | 0   |
| HYDROPHILIDAE          | o    | 0     | 0    | o    | 0     | 0    | o    | 0     | 0           | o    | 0     | 0    | 0          | 0     | · 0 |
| SCIRTIDAE              | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0           | 0    | 0     | 0    | o          | 0     | 0   |

,

| SITE/SAMP. OCCASION    |      | <b>JJ</b> 1/3 |            |        | JJ2/3 |      |      | JJ3/3 |      |      | TF1/3 |                |      | TF2/3 | _   |
|------------------------|------|---------------|------------|--------|-------|------|------|-------|------|------|-------|----------------|------|-------|-----|
| DATE                   | 31   | May           | 96         | 31     | May   | 96   | 31   | May   | 96   | 7    | June  | 96             | 7    | June  | 96  |
| REPLICATE NO.          | 1    | 2             | 3          | 1      | 2     | 3    | 1    | 2     | 3    | 1    | 2     | 3              | I    | 2     | 3   |
| ERISS SAMPLE NUMBER    | 1819 | 1820          | 1821       | 1825   | 1826  | 1827 | 1834 | 1835  | 1836 | 2072 | 2073  | 2074           | 2078 | 2079  | 208 |
| ACARINA (INDET) (X)    | 52   | 56            | 56         | 76     | 128   | 11   | 40   | 52    | 128  | 44   | 52    | 32             | 20   | 28    | 44  |
| ANISOPTERA (INDET) (L) | 0    | 0             | 0          | 0      | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0              | 0    | 0     | 0   |
| BAETIDAE (N)           | 48   | 32            | 0          | 44     | 72    | 0    | 96   | 84    | 4    | 18   | 0     | 4              | 12   | 0     | 8   |
| CAENIDAE (N)           | o    | 8             | 24         | 12     | 12    | 1    | 64   | 48    | 8    | 16   | 8     | 4              | 52   | 52    | 40  |
| CERATOPOGONIDAE (L)    | 44   | 60            | 0          | 48     | 36    | 9    | 8    | 28    | 48   | 8    | 0     | 0              | 32   | 36    | 20  |
| CHIRONOMIDAE (L)       | 304  | 284           | 2112       | 516    | 360   | 127  | 552  | 296   | 432  | 560  | 108   | 96             | 352  | 232   | 308 |
| CHIRONOMIDAE (P)       | 4    | 0             | 0          | 12     | 0     | 2    | o    | 16    | 4    | 12   | 0     | 0              | 0    | 4     | 0   |
| COENAGRIONIDAE (L)     | 4    | 0             | 0          | 0      | 0     | 0    | 0    | 4     | 0    | 0    | 0     | 0              | o    | 0     | 0   |
| CORIXIDAE (N)          | 0    | 4             | 128        | 32     | 0     | 0    | 0    | 0     | 8    | 2    | 0     | 0              | 16   | 4     | 4   |
| CULICIDAE (L)          | o    | 0             | 0          | 0      | 0     | 0    | o    | 0     | 0    | 0    | 0     | 0              | o    | 0     | 0   |
| CULICIDAE (P)          | o    | 0             | 0          | 0      | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0              | 0    | 0     | 0   |
| DYTISCIDAE (L)         | 0    | 0             | 0          | o      | 4     | 0    | o    | 0     | 0    | 0    | 0     | 0              | 0    | 0     | 0   |
| DYTISCIDAE (A)         | 8    | 0             | 0          | 0      | 0     | 0    | 8    | 4     | 0    | 0    | 0     | 0              | 0    | 0     | 0   |
| ECNOMIDAE (L)          | 32   | 32            | 8          | 40     | 44    | 5    | 56   | 48    | 0    | 24   | 28    | 12             | 24   | 0     | 8   |
| ELMIDAE (L)            | 8    | 12            | 24         | 20     | 8     | 4    | 0    | 8     | 0    | 6    | 16    | 0              | 12   | 0     | 0   |
| ELMIDAE (A)            | 0    | 8             | 16         | 4      | 8     | 0    | 16   | 12    | 0    | 0    | 12    | 1 <del>6</del> | o    | 0     | 0   |
| GOMPHIDAE (L)          | 0    | 12            | 8          | 0      | 4     | 0    | 24   | 0     | 0    | 2    | 0     | 0              | 0    | 0     | 0   |
| HYDROPTILIDAE (L)      | 12   | 8             | 32         | 8      | 12    | 0    | 48   | 8     | 4    | o    | 0     | 4              | 0    | 0     | 0   |
| LEPTOCERIDAE (L)       | 36   | 44            | 1 <b>6</b> | 24     | 28    | 7    | 32   | 24    | 24   | 4    | 0     | 0              | 0    | 8     | 4   |
| OLIGOCHAETE (X)        | 12   | 4             | 0          | 8      | 0     | 0    | 8    | 4     | 0    | o    | 0     | 12             | 16   | 0     | 8   |
| PALAEMONIDAE (X)       | o    | 4             | 0          | 0      | 4     | 0    | 0    | 4     | 0    | 0    | 0     | 0              | o    | 0     | 0   |
| PHILOPOTAMIDAE (L)     | o    | 0             | 0          | o      | 0     | 0    | o    | 0     | 0    | 0    | 0     | 0              | 0    | 0     | 0   |
| PYRALIDAE (L)          | 0    | 0             | 0          | 0      | 0     | 0    | o    | 0     | 0    | 2    | 0     | 0              | 0    | 0     | 0   |
| SIMULIDAE (L)          | 0    | 0             | 0          | 0      | O     | 0    | 0    | 4     | 0    | o    | 0     | 0              | 0    | 0     | 0   |
| TABANIDAE (L)          | 0    | 4             | 0          | 0      | 0     | 0    | 0    | 0     | 0    | 2    | 0     | 0              | o    | 0     | 0   |
| TPULIDAE (L)           | o    | 0             | 0          | o      | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0              | 0    | 0     | 0   |
| ZYGOPTERA (INDET.) (L) | o    | 0             | 0          | 0      | 0     | 0    | 0    | 8     | 0    | 0    | 0     | 0              | o    | 0     | 0   |
| HEBRIDAE               | 0    | 0             | 0          | 0      | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0              | 0    | 0     | 0   |
| HYDROPHILIDAE          | 0    | 0             | 0          | 0      | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0              | 0    | 0     | 0   |
| SCIRTIDAE              | 0    | 0             | 0          | ,<br>O | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0              | 0    | 0     | 0   |

| SAND |  |  |
|------|--|--|
|      |  |  |

| SITE/SAMP. OCCASION    |      | JJ1/4 |      | · · · | JJ2/4 |            |      | JJ3/4 |      |      | TF1/4 |      |      | TF2/4 |   |
|------------------------|------|-------|------|-------|-------|------------|------|-------|------|------|-------|------|------|-------|---|
| DATE                   | 7    | July  | 96   | 7     | July  | 96         | 7    | July  | 96   | 7    | July  | 96   | 7    | July  | 5 |
| REPLICATE NO.          | 1    | 2     | 3    | 1     | 2     | 3          | 1    | 2     | 3    | 1    | 2     | 3    | 1    | 2     |   |
| ERISS SAMPLE NUMBER    | 2166 | 2167  | 2168 | 2172  | 2173  | 2174       | 2178 | 2179  | 2180 | 2184 | 2185  | 2186 | 2190 | 2191  | 2 |
| ACARINA (INDET) (X)    | 28   | 96    | 20   | 80    | 80    | 68         | 88   | 26    | 56   | 16   | 40    | 64   | 56   | 32    |   |
| ANISOPTERA (INDET) (L) | 0    | 0     | 0    | 0     | 0     | Q          | 0    | 0     | 0    | 2    | 0     | 0    | 0    | 0     |   |
| BAETIDAE (N)           | 20   | 96    | 0    | 8     | 32    | 8          | 0    | 4     | 8    | 6    | 36    | 56   | 48   | 32    |   |
| CAENIDAE (N)           | 0    | 0     | 4    | 48    | 56    | 32         | 8    | 34    | 24   | 46   | 32    | 216  | 64   | 88    |   |
| CERATOPOGONIDAE (L)    | 12   | 48    | 8    | 72    | 16    | 52         | 48   | 26    | 16   | 16   | 4     | 32   | 16   | 32    |   |
| CHIRONOMIDAE (L)       | 244  | 196   | 38   | 736   | 568   | 472        | 1056 | 368   | 500  | 222  | 364   | 800  | 872  | 696   | I |
| CHIRONOMIDAE (P)       | 0    | 0     | 0    | 0     | 8     | 4          | 24   | б     | 0    | 0    | 0     | 16   | 0    | 0     |   |
| COENAGRIONIDAE (L)     | 0    | 0     | 0    | 0     | 0     | 0          | 0    | 0     | 0    | 0    | 0     | Q    | 0    | 0     |   |
| CORIXIDAE (N)          | 0    | 0     | 0    | 0     | 0     | 0          | 8    | 0     | 0    | 16   | 0     | 32   | 8    | 24    |   |
| CULICIDAE (L)          | 0    | 0     | 0    | 0     | 0     | 0          | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     |   |
| CULICIDAE (P)          | 0    | 0     | 0    | 0     | 0     | 0          | 8    | 0     | 12   | 0    | 8     | 0    | 0    | 0     |   |
| DYTISCIDAE (L)         | 4    | 8     | 0    | 0     | 0     | 0          | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     |   |
| DYTISCIDAE (A)         | 0    | 0     | 0    | 0     | 0     | 0          | o    | 0     | 0    | 0    | 0     | 0    | 0    | 0     |   |
| ECNOMIDAE (L)          | 16   | 16    | 0    | 0     | 32    | 20         | 0    | 2     | 4    | 6    | 32    | 32   | 48   | 0     |   |
| ELMIDAE (L)            | 84   | 48    | 55   | 160   | 184   | 92         | 200  | 10    | 72   | 14   | 48    | 16   | 112  | 24    |   |
| ELMIDAE (A)            | 28   | 0     | 15   | 8     | 24    | 4 <b>4</b> | 0    | 4     | 0    | 0    | 0     | 0    | 0    | 0     |   |
| GOMPHIDAE (L)          | o    | 0     | 1    | 8     | 0     | 4          | 0    | 0     | 0    | 0    | 8     | 0    | 8    | 0     |   |
| HYDROPTILIDAE (L)      | 4    | 8     | 0    | 0     | 0     | 0          | 0    | 0     | 0    | 0    | 0     | 0    | 8    | 0     |   |
| LEPTOCERIDAE (L)       | 4    | 4     | 0    | 16    | 8     | 20         | 24   | 10    | 0    | o    | 0     | 0    | 16   | 8     |   |
| OLIGOCHAETE (X)        | o    | 0     | 0    | 8     | 0     | 0          | 0    | 0     | 0    | 6    | 0     | 8    | 0    | 16    |   |
| PALAEMONIDAE (X)       | o    | 0     | 0    | 0     | 0     | 0          | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     |   |
| PHILOPOTAMIDAE (L)     | o    | 0     | 0    | 0     | 0     | 0          | 0    | 0     | 0    | o    | 0     | 0    | o    | 0     |   |
| PYRALIDAE (L)          | 0    | 0     | 0    | 0     | 0     | 0          | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     |   |
| SIMULIDAE (L)          | 0    | 0     | 0    | 0     | 0     | 0          | o    | 0     | 0    | 0    | 0     | 0    | o    | 0     |   |
| TABANIDAE (L)          | o    | 0     | 0    | 0     | 0     | 8          | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     |   |
| TIPULIDAE (L)          | 0    | 0     | 0    | 0     | 0     | 0          | 0    | 0     | 0    | o    | 0     | 0    | 0    | 0     |   |
| ZYGOPTERA (INDET.) (L) | 0    | 0     | 0    | 0     | 0     | 0          | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     |   |
| HEBRIDAE               | 0    | 0     | Ó    | 0     | 0     | 0          | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     |   |
| HYDROPHILIDAE          | 0    | 0     | 0    | 0     | 0     | 0          | 0    | 0     | 0    | 0    | 0     | 0    | 0    | o     |   |
| SCIRTIDAE              | 0    | 0     | 0    | o     | 0     | 0          | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     |   |

•

| SA | ND |
|----|----|
|    |    |

| SITE/SAMP. OCCASION    |             | JJ1/5 |      |      | JJ2/5 |      |      | JJ3/5 |      |      | <b>TF</b> 1/5 |      |      | TF2/5 |     |
|------------------------|-------------|-------|------|------|-------|------|------|-------|------|------|---------------|------|------|-------|-----|
| DATE                   | 25          | July  | 96   | 25   | July  | 96   | 25   | July  | 96   | 25   | July          | 96   | 25   | July  | 96  |
| REPLICATE NO.          | 1           | 2     | 3    | 1    | 2     | 3    | 1    | 2     | 3    | 1    | 2             | 3    | 1    | 2     | 3   |
| ERISS SAMPLE NUMBER    | 2254        | 2255  | 2256 | 2260 | 2261  | 2262 | 2266 | 2267  | 2268 | 2272 | 2273          | 2274 | 2278 | 2279  | 228 |
| ACARINA (INDET) (X)    | 152         | 88    | 64   | 152  | 24    | 24   | 28   | 168   | 152  | 104  | 48            | 32   | 48   | 24    | 24  |
| ANISOPTERA (INDET) (L) | 0           | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0             | 0    | 0    | 0     | 0   |
| BAETIDAE (N)           | 48          | 24    | 24   | 0    | 8     | 20   | 36   | 0     | 0    | 8    | 8             | 8    | 0    | 16    | 32  |
| CAENIDAE (N)           | 0           | 4     | 24   | o    | 16    | 8    | 4    | 0     | 0    | 40   | 56            | 24   | 0    | 20    | 12  |
| CERATOPOGONIDAE (L)    | 88          | 88    | 24   | 88   | 40    | 72   | 68   | 24    | 0    | 24   | 32            | 8    | 4    | 40    | 28  |
| CHIRONOMIDAE (L)       | 64 <b>8</b> | 1336  | 896  | 808  | 304   | 892  | 1456 | 704   | 864  | 528  | 836           | 264  | 424  | 484   | 73  |
| CHIRONOMIDAE (P)       | 0           | 28    | 32   | 16   | 0     | 16   | 0    | 16    | 8    | 8    | 8             | 0    | 8    | 12    | 0   |
| COENAGRIONIDAE (L)     | 0           | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0             | 0    | 0    | 0     | 0   |
| CORIXIDAE (N)          | 16          | 0     | 0    | 0    | 0     | 0    | 8    | 0     | 8    | 0    | 8             | 0    | 4    | 4     | 4   |
| CULICIDAE (L)          | 0           | 0     | 24   | 0    | 8     | 0    | 0    | 0     | 16   | 16   | 8             | 0    | 0    | 4     | 0   |
| CULICIDAE (P)          | 16          | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0             | 8    | 0    | 0     | 0   |
| DYTISCIDAE (L)         | 0           | 0     | 0    | o    | 0     | 0    | 12   | 0     | 0    | 0    | 8             | 0    | 0    | 0     | C   |
| DYTISCIDAE (A)         | o           | 4     | 0    | 0    | 0     | 0    | 4    | 0     | 0    | 0    | 8             | 0    | 0    | 0     | c   |
| ECNOMIDAE (L)          | 0           | 44    | 56   | 24   | 0     | 52   | 76   | 32    | 8    | 16   | 32            | 24   | 20   | 16    | 0   |
| ELMIDAE (L)            | 336         | 484   | 160  | 208  | 496   | 48   | 184  | 344   | 504  | 376  | 92            | 184  | 120  | 12    | 92  |
| ELMIDAE (A)            | 16          | 60    | 0    | 8    | 0     | 0    | 0    | 8     | 0    | 24   | 36            | 48   | 0    | 0     | 0   |
| GOMPHIDAE (L)          | 16          | 4     | 8    | o    | 0     | 0    | 0    | 8     | 0    | 0    | 16            | 0    | 0    | 0     | 0   |
| HYDRÖPTILIDAE (L)      | 16          | 4     | 0    | 0    | 8     | 0    | 12   | 0     | 0    | 0    | 12            | 0    | 0    | 8     | C   |
| LEPTOCERIDAE (L)       | 8           | 4     | 0    | 24   | 8     | 12   | 36   | 0     | 8    | 0    | 28            | 16   | 0    | 0     | 8   |
| OLIGOCHAETE (X)        | 0           | 20    | 16   | 16   | 0     | 0    | 0    | 24    | 0    | 0    | 0             | 0    | 4    | 8     | 0   |
| PALAEMONIDAE (X)       | 0           | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0             | 0    | 0    | 0     | 0   |
| PHILOPOTAMIDAE (L)     | 0           | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0             | 0    | 0    | 0     | 0   |
| PYRALIDAE (L)          | o           | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 4             | 0    | 0    | 0     | 0   |
| SIMULIDAE (L)          | o           | 0     | 8    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0             | 0    | 0    | 0     | 0   |
| TABANIDAE (L)          | 0           | 0     | 8    | o    | 0     | 0    | 4    | 0     | 0    | o    | 0             | 0    | 0    | 0     | C   |
| TIPULIDAE (L)          | 0           | 4     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0             | 0    | 0    | 0     | 0   |
| ZYGOPTERA (INDET.) (L) | o           | 0     | 0    | 0    | 0     | 0    | 8    | 0     | 0    | o    | 0             | 0    | 0    | 0     | Q   |
| HEBRIDAE               | 0           | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0             | 0    | 0    | 0     | Q   |
| HYDROPHILIDAE          | 0           | 0     | 0    | 0    | 0     | 0    | o    | 0     | 0    | o    | 0             | 0    | 0    | 0     | Q   |
| SCIRTIDAE              | 0           | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0             | 0    | 0    | 1     | 0   |

•

i

| SITE/SAMP. OCCASION    |      | <b>TF</b> 1/6 |      | ļ    | TF2/6 |      |      | JJ1/6 |      |      | JJ2/6 |      | ļ    | JJ3/6 | _ |
|------------------------|------|---------------|------|------|-------|------|------|-------|------|------|-------|------|------|-------|---|
| DATE                   | 21   | Aug           | 96   | 21   | Aug   | 96   | 21   | Aug   | 96   | 21   | Aug   | 96   | 21   | Aug   |   |
| REPLICATE NO.          | I    | 2             | 3    | 1    | 2     | 3    | 1    | 2     | 3    | 1    | 2     | 3    | 1    | 2     |   |
| ERISS SAMPLE NUMBER    | 2342 | 2343          | 2344 | 2348 | 2349  | 2350 | 2354 | 2355  | 2356 | 2360 | 2361  | 2362 | 2366 | 2367  |   |
| ACARINA (INDET) (X)    | 48   | 48            | 72   | 72   | 32    | 48   | 48   | 56    | 64   | 16   | 24    | 8    | 72   | 16    |   |
| ANISOPTERA (INDET) (L) | 0    | 0             | 0    | o    | 0     | 8    | 0    | 0     | 0    | 8    | 0     | 0    | 0    | 0     |   |
| BAETIDAE (N)           | 8    | 16            | 16   | 16   | 8     | 8    | 16   | 0     | 8    | 40   | 8     | 8    | 16   | 0     |   |
| CAENIDAE (N)           | 16   | 8             | 32   | 16   | 32    | 16   | 8    | 8     | 24   | 32   | 56    | 24   | 40   | 0     |   |
| CERATOPOGONIDAE (L)    | 16   | 24            | 8    | 32   | 16    | 0    | 24   | 72    | 32   | 16   | 16    | 24   | 40   | 8     |   |
| CHIRONOMIDAE (L)       | 696  | 976           | 560  | 928  | 704   | 1264 | 688  | 1168  | 904  | 976  | 880   | 752  | 1088 | 400   |   |
| CHIRONOMIDAE (P)       | 8    | 16            | 8    | 16   | 16    | 0    | Q    | 0     | 0    | 32   | 0     | 0    | 8    | 8     |   |
| COENAGRIONIDAE (L)     | Ó    | 0             | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     |   |
| CORIXIDAE (N)          | 8    | 8             | 0    | 16   | 0     | 0    | 16   | 0     | 0    | 0    | 0     | 8    | 8    | 0     |   |
| CULICIDAE (L)          | 0    | 0             | 0    | 0    | 0     | 8    | 0    | 0     | 0    | o    | 0     | 0    | 0    | 8     |   |
| CULICIDAE (P)          | 8    | 8             | 0    | 8    | 8     | 0    | 0    | 8     | 0    | 24   | 8     | 8    | 16   | 0     |   |
| DYTISCIDAE (L)         | o    | 0             | Q    | o    | 0     | 0    | 0    | 0     | 0    | 8    | 0     | 0    | o    | 0     |   |
| DYTISCIDAE (A)         | o    | 0             | 0    | 0    | 0     | 0    | 0    | 0     | 16   | 0    | 0     | 0    | 0    | 0     |   |
| ECNOMIDAE (L)          | 32   | 64            | 16   | 0    | 32    | 64   | 40   | 48    | 56   | 8    | 40    | 24   | 0    | 16    |   |
| ELMIDAE (L)            | 608  | 928           | 584  | 1016 | 536   | 984  | 696  | 712   | 552  | 472  | 864   | 624  | 344  | 224   |   |
| ELMIDAE (A)            | o    | 0             | 32   | 48   | 0     | 0    | 0    | 16    | 0    | 0    | 8     | 0    | 8    | 0     |   |
| GOMPHIDAE (L)          | o    | 0             | 0    | 0    | 8     | 0    | 8    | 0     | 0    | 0    | 0     | 0    | 8    | 0     |   |
| HYDRÖPTILIDAE (L)      | 0    | 0             | 0    | 0    | 0     | 8    | 0    | 0     | 24   | 0    | 0     | 0    | 0    | 0     |   |
| LEPTOCERIDAE (L)       | 0    | 8             | 0    | 24   | 0     | 24   | 0    | 24    | 48   | 16   | 16    | 0    | 16   | 8     |   |
| OLIGOCHAETE (X)        | o    | 0             | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 16   | 8     | 0    | 0    | 0     |   |
| PALAEMONIDAE (X)       | 0    | 0             | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     |   |
| PHILOPOTAMIDAE (L)     | O    | 0             | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     |   |
| PYRALIDAE (L)          | o    | 0             | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     |   |
| SIMULIDAE (L)          | o    | 0             | 0    | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     | 0    | o    | 0     |   |
| TABANIDAE (L)          | Ó    | 0             | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     |   |
| TIPULIDAE (L)          | o    | 0             | 0    | o    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     |   |
| ZYGOPTERA (INDET.) (L) | o    | 0             | 0    | 0    | 0     | 0    | 8    | 0     | 0    | 0    | 0     | 0    | 0    | 0     |   |
| HEBRIDAE               | 0    | 0             | 0    | 0    | 0     | 0    | 4    | 0     | 0    | 0    | 0     | 0    | 0    | 0     |   |
| HYDROPHILIDAE          | o    | 0             | 0    | 0    | 1     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     |   |
| SCIRTIDAE              | 0    | 0             | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     |   |

| SITE/SAMP. OCCASION    | <b> </b> | JJI/7 |      | ┞─── | JJ2/7 |      |      | JJ3/7        |              | <b> </b> | TF1/7 |      |      | TF2/7 |      |
|------------------------|----------|-------|------|------|-------|------|------|--------------|--------------|----------|-------|------|------|-------|------|
| DATE                   | 18       | Sept  | 96   | 18   | Sept  | 96   | 18   | Sept         | 96           | 18       | Sept  | 96   | 18   | Sept  | 96   |
| REPLICATE NO.          | 1        | 2     | 3    | - 1  | 2     | 3    | 1.   | 2            | 3            | 1        | 2     | 3    | 1    | 2     | 3    |
| ERISS SAMPLE NUMBER    | 2458     | 2459  | 2460 | 2464 | 2465  | 2466 | 2469 | 2470         | 2471         | 2475     | 2476  | 2477 | 2481 | 2482  | 2483 |
| ACARINA (INDET) (X)    | 72       | 56    | 48   | 48   | 16    | 8    | 48   | 152          | 144          | 48       | 88    | 256  | 176  | 72    | 72   |
| ANISOPTERA (INDET) (L) | 8        | 0     | 0    | 0    | 0     | 0    | 0    | 0            | 0            | 0        | 0     | 0    | 8    | 0     | 0    |
| BAETIDAE (N)           | 24       | 0     | 24   | o    | 16    | 16   | 8    | 32           | 0            | 0        | 8     | 16   | 16   | 8     | 8    |
| CAENIDAE (N)           | 24       | 24    | 24   | 0    | 0     | 8    | 16   | 32           | 0            | 16       | 16    | 0    | 16   | 24    | 16   |
| CERATOPOGONIDAE (L)    | 24       | 64    | 72   | 56   | 112   | 88   | 32   | 56           | 96           | 24       | 48    | 64   | 16   | 56    | 64   |
| CHIRONOMIDAE (L)       | 672      | 1072  | 840  | 768  | 624   | 520  | 1344 | 12 <b>96</b> | 124 <b>8</b> | 544      | 696   | 688  | 1232 | 584   | 864  |
| CHIRONOMIDAE (P)       | 8        | 24    | 16   | 16   | 0     | 0    | o    | 24           | 32           | 8        | 0     | 16   | 16   | 8     | 8    |
| COENAGRIONIDAE (L)     | 0        | 0     | 0    | 0    | 0     | 0    | 0    | 0            | 0            | 0        | 0     | 0    | 0    | 0     | 0    |
| CORIXIDAE (N)          | 24       | 16    | 8    | 0    | 0     | 0    | 0    | 0            | 16           | 8        | 0     | 0    | 8    | 8     | 16   |
| CULICIDAE (L)          | 0        | 24    | 0    | 0    | 0     | 0    | 0    | 0            | 0            | 0        | 0     | 0    | 0    | 8     | 0    |
| CULICIDAE (P)          | 8        | 0     | 0    | o    | 0     | 0    | 0    | 0            | 0            | o        | 0     | 0    | 0    | 0     | 0    |
| BYTISCIDAE (L)         | 0        | 0     | 0    | 0    | 0     | 0    | 0    | 0            | 0            | 0        | 0     | 0    | 0    | 0     | 0    |
| DYTISCIDAE (A)         | o        | 0     | 0    | 0.   | 0     | 0    | 0    | 0            | 0            | 0        | 0     | 0    | 0    | 0     | 0    |
| ECNOMIDAE (L)          | 40       | 48    | 32   | o    | 0     | 24   | 56   | 88           | 112          | 16       | 0     | 32   | 24   | 32    | 48   |
| ELMIDAE (L)            | 688      | 936   | 1136 | 320  | 368   | 504  | 624  | 1200         | 464          | 1048     | 880   | 2256 | 776  | 760   | 968  |
| ELMIDAE (A)            | 8        | 32    | 48   | o    | 0     | 0    | 24   | 0            | 0            | 32       | 48    | 0    | 8    | 0     | 48   |
| GOMPHIDAE (L)          | o        | 0     | 0    | 0    | 16    | 8    | 0    | 8            | 0            | 0        | 0     | 0    | 0    | 0     | 0    |
| HYDROPTILIDAE (L)      | 8        | 0     | 0    | 0    | 32    | 8    | 0    | 0            | 176          | 0        | 0     | 0    | 0    | 0     | 0    |
| LEPTOCERIDAE (L)       | 16       | 8     | 0    | 24   | 16    | 0    | 0    | 0            | 48           | 0        | 16    | 16   | 0    | 0     | 0    |
| OLIGOCHAETE (X)        | 0        | 0     | 8    | 8    | 0     | 0    | 0    | 0            | 0            | 0        | 0     | 0    | 0    | 0     | 16   |
| PALAEMONIDAE (X)       | 0        | 0     | 0    | 0    | 0     | 0    | 0    | 0            | 0            | 0        | 0     | 0    | 0    | 0     | 0    |
| PHILOPOTAMIDAE (L)     | 0        | 0     | 0    | 0    | 0     | 0    | 0    | 0            | 0            | 0        | 0     | 0    | 0    | 0     | 0    |
| PYRALIDAE (L)          | 0        | 0     | 0    | 0    | 0     | 0    | 0    | 0            | 0            | 0        | 0     | 0    | 0    | 0     | 0    |
| SIMULIDAE (L)          | 0        | 0     | 0    | 0    | 0     | 0    | o    | 0            | 0            | 0        | 0     | 0    | 0    | 0     | 0    |
| TABANIDAE (L)          | 0        | 0     | 0    | 0    | 0     | 0    | 0    | 0            | 0            | 0        | 0     | 0    | 0    | 8     | 0    |
| TIPULIDAE (L)          | 0        | 0     | 0    | 0    | 0     | 0    | 0    | 0            | 0            | 0        | 0     | 0    | 0    | 0     | 0    |
| ZYGOPTERA (INDET.) (L) | 0        | 0     | 0    | 0    | 0     | 0    | 0    | 0            | 0            | 0        | 0     | 0    | 0    | 0     | 0    |
| HEBRIDAE               | 0        | 0     | 0    | 0    | 0     | 0    | 0    | 0            | 0            | 0        | 0     | 0    | 0    | 0     | 0    |
| HYDROPHILIDAE          | 0        | 0     | 0    | 0    | 0     | 0    | 0    | 0            | 0            | 0        | 0     | 0    | o    | 0     | 0    |
| SCIRTIDAE              | 0        | 0     | 0    | 0    | 0     | 0    | 0    | 0            | 0            | 0        | 0     | 0    | 0    | 0     | 0    |

| SITE/SAMP. OCCASION    |      | JJ1/1 |      |      | JJ2/1 |      |      | JJ3/1 |      |      | TF1/1 |      |      | TF2/1 |      |
|------------------------|------|-------|------|------|-------|------|------|-------|------|------|-------|------|------|-------|------|
| DATE                   | 25   | April | 96   | 25   | April | 96   | 25   | April | 96   | 1    | May   | 96   | 1    | May   | 96   |
| REPLICATE NO.          | 1    | 2     | 3    | 1    | 2     | 3    | 1    | 2     | 3    | 1    | 2     | 3    | I    | 2     | 3    |
| ERISS SAMPLE NUMBER    | 1309 | 1310  | 1311 | 1318 | 1319  | 1320 | 1326 | 1327  | 1328 | 1349 | 1350  | 1351 | 1361 | 1362  | 1363 |
|                        |      |       |      |      |       |      |      |       |      |      |       |      |      |       |      |
| ACARINA (INDET) (X)    | 30   | 28    | 16   | 6    | 6     | 8    | 14   | 10    | 18   | 36   | 20    | 60   | 4    | 10    | 11   |
| ANISOPTERA (INDET) (L) | 0    | 0     | 0    | 0    | 1     | 0    | 0    | 0     | 0    | 4    | 0     | 0    | 0    | 0     | 0    |
| BAETIDAE (N)           | 12   | 6     | 0    | 5    | 1     | 0    | 8    | 8     | 8    | 28   | 44    | 24   | 3    | 2     | 6    |
| CAENIDAE (N)           | 8    | 22    | 6    | 1    | 7     | 18   | 44   | 34    | 28   | 44   | 64    | 48   | 4    | 6     | 5    |
| CERATOPOGONIDAE (L)    | 2    | 2     | 4    | 15   | 19    | 0    | 14   | 12    | 12   | 0    | 4     | 20   | 8    | 16    | 3    |
| CHIRONOMIDAE (L)       | 132  | 48    | 156  | 113  | 293   | 308  | 132  | 136   | 118  | 424  | 104   | 372  | 68   | 156   | 108  |
| CHIRONOMIDAE (P)       | 6    | 2     | 0    | 2    | 5     | 0    | 6    | 0     | 0    | 4    | 16    | 4    | 3    | 0.    | 0    |
| COENAGRIONIDAE (L)     | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| CORDULIDAE (L)         | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 2    | 0    | 0     | 0    | 0    | 0     | 0    |
| CORIXIDAE (N)          | 0    | 0     | 0    | 1    | 1     | 4    | 0    | 0     | 0    | 0    | 0     | 4    | 2    | 2     | 0    |
| CULICIDAE (L)          | o    | 0     | 0    | 0    | 0     | 0    | 0    | 2     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| CULICIDAE (P)          | 0    | 0     | 0    | 0    | 0     | 0    | 2    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| DYTISCIDAE (L)         | 0    | 0     | 0    | 0    | 0     | 0    | 0    | Q     | 0    | 4    | 0     | 12   | 0    | 0     | 0    |
| DYTISCIDAE (A)         | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     | 0    | 0    | 4     | 4    | 0    | 0     | 0    |
| ECNOMIDAE (L)          | 2    | 0     | 0    | 0    | 2     | 0    | 0    | 2     | 0    | 8    | 8     | 0    | 0    | 0     | 0    |
| ELMIDAE (L)            | 2    | 4     | 4    | 2    | 0     | 2    | 0    | 0     | 0    | o    | 0     | 0    | 0    | 0     | 3    |
| ELMIDAE (A)            | 4    | 70    | 28   | 2    | 0     | 0    | 6    | 8     | 2    | 8    | 0     | 16   | 4    | 6     | 0    |
| GOMPHIDAE (L)          | 4    | 2     | 2    | 2    | 8     | 6    | 10   | 4     | 6    | 0    | 16    | 12   | 6    | 0     | 0    |
| HYDROPSYCHIDAE (L)     | 0    | 12    | 0    | 1    | 0     | 2    | 4    | 0     | 0    | 4    | 12    | 0    | 0    | 0     | 0    |
| HYDROPTILIDAE (L)      | 2    | 2     | 4    | 2    | I     | 4    | 2    | 4     | 0    | 12   | 8     | 8    | 2    | 6     | 1    |
| LEPTOCERIDAE (L)       | 10   | 14    | 4    | I    | 18    | 22   | 20   | 42    | 16   | 12   | 0     | 12   | 6    | 2     | 2    |
| LEPTOPHLEBIIDAE (N)    | 0    | 0     | 0    | 1    | 0     | 0    | 0    | 0     | 2    | 0    | 0     | 0    | o    | 0     | 0    |
| LIBELLULIDAE (L)       | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     | 0    |
| OLIGOCHAETE (X)        | 8    | 6     | 2    | 7    | 2     | 0    | 2    | 8     | 2    | 0    | 4     | 0    | 0    | 0     | 0    |
| PALAEMONIDAE (X)       | 0    | 0     | 0    | Q    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | Q    | 0     | 0    |
| PROTONEURIDAE (L)      | 0    | 0     | 0    | 1    | Q     | 0    | 0    | 2     | 0    | o    | 0     | 0    | o    | 0     | o    |
| PYRALIDAE (L)          | 2    | 2     | 4    | O    | 0     | 0    | 4    | 2     | 0    | o    | 0     | 0    | o    | 0     | o    |
| TABANIDAE (L)          | 0    | 0     | 0    | 0    | o     | 0    | 0    | 2     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| TIPULIDAE (L)          | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     | 0    | 0    | 0     | 0    |
| ZYGOFTERA (INDET.) (L) | 0    | 0     | 0    | 1    | 0     | 0    | 0    | 0     | 2    | 0    | 0     | 0    | 0    | 0     | 0    |

| SITE/SAMP. OCCASION        |      | JJ1/2 | <u></u> |      | JJ2/2 |      |      | JJ3/2 |      |              | TF1/2 |      |      | TF2/2 |      |
|----------------------------|------|-------|---------|------|-------|------|------|-------|------|--------------|-------|------|------|-------|------|
| DATE                       | 8    | May   | 96      | 8    | May   | 96   | 8    | May   | 96   | 15           | May   | 96   | 15   | May   | %    |
| REPLICATE NO.              | 1    | 2     | 3       | 1    | 2     | 3    | 1    | 2     | 3    | 1            | 2     | 3    | 1    | 2     | 3    |
| <i>ERISS</i> SAMPLE NUMBER | 1410 | 1411  | 1412    | 1419 | 1420  | 1421 | 1428 | 1429  | 1430 | 170 <b>2</b> | 1703  | 1704 | 1711 | 1712  | 1713 |
| ACARINA (INDET) (X)        | 16   | 20    | 14      | 34   | 24    | 36   | 18   | 38    | 28   | 40           | 64    | 80   | 24   | 20    | 64   |
| ANISOPTERA (INDET) (L)     | 0    | 0     | 0       | 0    | 2     | 0    | 0    | • 0   | 0    | 0            | 0     | 0    | 0    | 0     | 0    |
| BAETIDAE (N)               | 4    | 16    | 6       | 8    | 6     | 2    | 14   | 22    | 22   | 40           | 8     | 32   | 24   | 24    | 24   |
| CAENIDAE (N)               | 6    | 2     | 0       | 4    | 8     | 2    | 18   | 12    | 0    | 32           | 8     | 240  | 32   | 0     | 24   |
| CERATOPOGONIDAE (L)        | 22   | 22    | 24      | 16   | 16    | 22   | 12   | 18    | 14   | 0            | 8     | 16   | 16   | 0     | 8    |
| CHIRONOMIDAE (L)           | 142  | 108   | 160     | 138  | 134   | 182  | 422  | 286   | 216  | 160          | 128   | 152  | 288  | 120   | 168  |
| CHIRONOMIDAE (P)           | 0    | 4     | 0       | 0    | 0     | 0    | 0    | 0     | 2    | 8            | 0     | 0    | 16   | 0     | 0    |
| COENAGRIONIDAE (L)         | o    | 0     | 0       | 0    | 0     | 0    | 0    | 0     | 0    | 0            | 0     | 0    | 0    | 0     | 0    |
| CORDULIDAE (L)             | 0    | o     | 0       | 0    | 0     | 0    | 0    | 0     | 0    | 0            | 0     | 0    | 0    | 0     | 0    |
| CORIXIDAE (N)              | o    | o     | 0       | 0    | 0     | 0    | 8    | 2     | 2    | 0            | 0     | 0    | 32   | 0     | 0    |
| CULICIDAE (L)              | o    | 0     | 0       | 0    | 0     | 0    | 0    | 0     | o    | 8            | 0     | 0    | 0    | 0     | 0    |
| CULICIDAE (P)              | o    | 0     | 0       | 0    | 2     | 0    | 0    | 0     | 0    | 0            | 0     | 0    | 0    | 0     | 0    |
| DYTISCIDAE (L)             | 0    | 0     | 0       | 0    | 0     | 0    | 0.   | 0     | 0    | 0            | 0     | 0    | 0    | 0     | 0    |
| DYTISCIDAE (A)             | о    | 4     | 0       | 2    | 2     | 2    | 0    | 0     | 4    | 0            | 0     | 0    | 0    | 0     | 0    |
| ECNOMIDAE (L)              | 16   | 16    | 18      | 2    | 6     | 6    | 8    | 10    | 22   | 0            | 0     | 0    | 0    | 8     | 56   |
| ELMIDAE (L)                | o    | 0     | 0       | 0    | 0     | 2    | 4    | 0     | 6    | 8            | 0     | 0    | 0    | 4     | 8    |
| ELMIDAE (A)                | 2    | 0     | 0       | 0    | 0     | 4    | 2    | 8     | 0    | 8            | 16    | 24   | 0    | 0     | 16   |
| GOMPHIDAE (L)              | 0    | 0     | o       | 0    | 2     | 0    | 2    | 0     | 0    | 0            | 0     | 24   | 0    | 0     | 0    |
| HYDROPSYCHIDAE (L)         | o    | 0     | z       | 0    | 0     | 0    | 0    | 0     | 0    | 0            | 0     | 0    | 0    | 0     | 0    |
| HYDROPTILIDAE (L)          | 2    | 4     | 6       | 4    | 4     | 2    | 0    | 8     | 6    | 0            | 0     | 0    | 0    | 0     | 8    |
| LEPTOCERIDAE (L)           | 8    | 6     | 6       | 2    | 4     | 2    | 6    | 12    | 0    | 16           | 24    | 48   | 0    | 0     | 0    |
| LEPTOPHLEBIIDAE (N)        | o    | 0     | 0       | 0    | 0     | 0    | 0    | 2     | 0    | 0            | 0     | 0    | 0    | 0     | 0    |
| LIBELLULIDAE (L)           | o    | 0     | 0       | 0    | 0     | 0    | 0    | 0     | 0    | 0            | 0     | 0    | 0    | 0     | 0    |
| OLIGOCHAETE (X)            | o    | 4     | 0       | 0    | 0     | 0    | 2    | 0     | 2    | 0            | 0     | 8    | 0    | 0     | 0    |
| PALAEMONIDAE (X)           | 4    | 2     | 4       | 0    | 4     | 0    | 2    | 2     | 2    | 0            | 0     | 8    | 0    | 0     | 0    |
| PROTONEURIDAE (L)          | 0    | 0     | 0       | 0    | 0     | 0    | 0    | 0     | 0    | 0            | 0     | 0    | 0    | 0     | 0    |
| PYRALIDAE (L)              | о    | 0     | 2       | 4    | 0     | 0    | 0    | 0     | 0    | 0            | 0     | 0    | 0    | 0     | 0    |
| TABANIDAE (L)              | o    | 0     | 2       | 0    | 2     | 0    | 0    | 0     | 0    | 0            | 0     | o    | 0    | 0     | 0    |
| TIPULIDAE (L)              | 0    | 0     | 0       | 0    | 0     | 0    | 0    | 0     | 0    | 0            | 0     | o    | 0    | 0     | o    |
| ZYGOPTERA (INDET.) (L)     | 0    | 0     | · 0     | 0    | 0     | 0    | 0    | 0     | 2    | 0            | 0     | 0    | 0    | 0     | 0    |

| SITE/SAMP. OCCASION    |      | JJ1/3 |      |      | JJ2/3        |      |      | JJ3/3 |      |      | TF1/3 |      |      | TF2/3 |      |
|------------------------|------|-------|------|------|--------------|------|------|-------|------|------|-------|------|------|-------|------|
| DATE                   | 31   | May   | 96   | 31   | JJ2/3<br>May | 96   | 31   | May   | 96   | 7    | June  | 96   | 7    | June  | 96   |
| REPLICATE NO.          | 1    | 2     | 3    | 1    | 2            | 3    | 1    | 2     | 3    | 1    | 2     | 3    | 1    | 2     | 3    |
| ERISS SAMPLE NUMBER    | 1819 | 1820  | 1821 | 1828 | 1829         | 1830 | 1834 | 1835  | 1836 | 2075 | 2076  | 2077 | 2081 | 2082  | 2083 |
|                        |      |       | ,    |      |              |      |      |       |      |      |       |      |      |       |      |
| ACARINA (INDET) (X)    | 40   | 48    | 24   | 36   | 56           | 72   | 32   | 30    | 132  | 12   | 24    | 16   | 16   | 28    | 44   |
| ANISOPTERA (INDET) (L) | 0    | 0     | 0    | Q    | 8            | 0    | 0    | 0     | 0    | 0    | 4     | 0    | 0    | 0     | 0    |
| BAETIDAE (N)           | 28   | 200   | 16   | 28   | 0            | 0    | 52   | 4     | 0    | 16   | 156   | 12   | 36   | 16    | 8    |
| CAENIDAE (N)           | 12   | 24    | 8    | 16   | 16           | 24   | 8    | 6     | 48   | 44   | 108   | 32   | 12   | 0     | 268  |
| CERATOPOGONIDAE (L)    | 56   | 48    | 24   | 44   | 80           | 120  | 8    | 42    | 44   | 12   | 24    | 4    | 16   | 16    | 16   |
| CHIRONOMIDAE (L)       | 368  | 720   | 3152 | 316  | 648          | 896  | 352  | 308   | 472  | 248  | 224   | 116  | 336  | 272   | 648  |
| CHIRONOMIDAE (P)       | 0    | 16    | 48   | 0    | 1 <b>6</b>   | 0    | 0    | 4     | 16   | 4    | 0     | 4    | 8    | 0     | 0    |
| COENAGRIONIDAE (L)     | 0    | 0     | 0    | o    | 0            | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| CORDULIDAE (L)         | 0    | 0     | 0    | 0    | 0            | 0    | 0    | 0     | 0    | 4    | 0     | 0    | 0    | 0     | 0    |
| CORIXIDAE (N)          | 0    | 84    | 32   | o    | 0            | 0    | o    | 0     | 12   | 0    | 0     | o    | 0    | 0     | 16   |
| CULICIDAE (L)          | 0    | 8     | 0    | Q    | 0            | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| CULICIDAE (P)          | 0    | 0     | 0    | o    | 0            | 0    | o    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| DYTISCIDAE (L)         | 0    | 0     | o    | 0    | 0            | 0    | 0    | 0     | Ó    | 0    | 4     | 0    | 0    | 0     | 0    |
| DYTISCIDAE (A)         | 0    | 0     | 0    | 8    | 0            | 0    | 0    | 0     | o    | o    | 0     | 0    | o    | 0     | 0    |
| ECNOMIDAE (L)          | 24   | 8     | 8    | 28   | 56           | 40   | 16   | 4     | 12   | 24   | 64    | 32   | 28   | 32    | 28   |
| ELMIDAE (L)            | 8    | 64    | 72   | Q    | 48           | 16   | . 0  | 0     | o    | 0    | 0     | 0    | o    | 0     | 12   |
| ELMIDAE (A)            | 0    | 12    | 0    | 4    | 56           | 24   | 4    | 6     | 24   | 16   | 8     | 8    | 4    | 0     | 0    |
| GOMPHIDAE (L)          | 4    | 0     | 16   | o    | 8            | 16   | 0    | 4     | o    | o    | 0     | 4    | 0    | 0     | 4    |
| HYDROPSYCHIDAE (L)     | 0    | 0     | 0    | 0    | 0            | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| HYDRÖPTILIDAE (L)      | 4    | 28    | 8    | 0    | 0            | 0    | 12   | 0     | 12   | 0    | 0     | 4    | 0    | 0     | 8    |
| LEPTOCERIDAE (L)       | 12   | 8     | Q    | 8    | 72           | 64   | 16   | 4     | 48   | 8    | 8     | 0    | 12   | 12    | 0    |
| LEPTOPHLEBIIDAE (N)    | 0    | 0     | 0    | 0    | 0            | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| LIBELLULIDAE (L)       | 0    | 0     | 0    | 0    | 0            | 0    | 0    | 0     | o    | 4    | 0     | 0    | 0    | 0     | 0    |
| OLIGOCHAETE (X)        | 0    | 16    | 0    | 8    | 0            | o    | 4    | 10    | 0    | 4    | 0     | 0    | 8    | 0     | 8    |
| PALAEMONIDAE (X)       | 0    | 0     | 0    | 4    | 0            | 0    | 0    | 0     | o    | 0    | 4     | 0    | 4    | 0     | o    |
| PROTONEURIDAE (L)      | 0    | 0     | 0    | 0    | 0            | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| PYRALIDAE (L)          | 0    | 0     | 0    | 0    | 0            | 0    | 0    | 0     | o    | 0    | 0     | Q    | o    | 0     | 0    |
| TABANIDAE (L)          | 0    | 0     | 0    | 0    | 0            | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| TIPULIDAE (L)          | 0    | 0     | 0    | o    | 0            | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| ZYGOPTERA (INDET.) (L) | 0    | 8     | 0    | 4    | 0            | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |

| SITE/SAMP. OCCASION    |        | JJ1/4 |      |      | JJ2/4 | _    |      | JJ3/4 |      |      | TF1/4 |      |      | TF2/4 |             |
|------------------------|--------|-------|------|------|-------|------|------|-------|------|------|-------|------|------|-------|-------------|
| DATE                   | 7      | July  | 96   | 7    | July  | 96   | 7    | July  | 96   | 7    | Juiy  | 96   | 7    | July  | 96          |
| REPLICATE NO.          | 1      | 2     | 3    | 1    | 2     | 3    | 1    | 2     | 3    | 1    | 2     | 3    | 1    | 2     | 3           |
| ERISS SAMPLE NUMBER    | 2169   | 2170  | 2171 | 2175 | 2176  | 2177 | 2181 | 2182  | 2183 | 2187 | 2188  | 2189 | 2193 | 2194  | 2195        |
|                        |        |       |      |      |       |      |      |       |      |      |       |      |      |       |             |
| ACARINA (INDET) (X)    | 96     | 136   | 40   | 40   | 40    | 48   | 96   | 88    | 32   | 48   | 64    | 120  | 128  | 88    | 48          |
| ANISOPTERA (INDET) (L) | 0      | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 8     | 0    | 0    | 0     | 0           |
| BAETIDAE (N)           | 72     | 56    | 72   | 72   | 104   | 144  | 328  | 360   | 104  | 224  | 224   | 360  | 216  | 280   | 152         |
| CAENIDAE (N)           | 32     | 24    | 64   | 32   | 32    | 112  | 160  | 128   | 88   | 248  | 168   | 256  | 280  | 112   | 2 <b>64</b> |
| CERATOPOGONIDAE (L)    | 240    | 64    | 112  | 56   | 64    | 80   | 40   | 72    | 24   | 24   | 104   | 0    | 0    | 72    | 0           |
| CHIRONOMIDAE (L)       | 656    | 400   | 528  | 688  | 568   | 432  | 784  | 680   | 464  | 856  | 1392  | 1208 | 1096 | 856   | 1736        |
| CHIRONOMIDAE (P)       | 0      | 8     | 0    | 8    | 0     | 0    | 8    | 40    | 16   | 16   | 16    | 32   | 0    | 0     | 0           |
| COENAGRIONIDAE (L)     | 0      | 0     | 0    | 8    | 0     | 0    | o    | 0     | 0    | o    | 0     | 0    | 0    | 0     | 0           |
| CORDULIDAE (L)         | 0      | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | Q    | 0     | 0    | 0    | 0     | 0           |
| CORIXIDAE (N)          | 0      | 8     | 0    | o    | 0     | 0    | o    | 0     | 8    | o    | 8     | 48   | 16   | 0     | 0           |
| CULICIDAE (L)          | 0      | 0     | 0    | o    | 0     | 0    | 0    | 0     | 0    | o    | 0     | 8    | o    | 0     | 0           |
| CULICIDAE (P)          | 0      | 8     | 0    | o    | 0     | 0    | o    | 0     | 0    | o    | 8     | 0    | 8    | 0     | 0           |
| DYTISCIDAE (L)         | 8      | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 16   | 0     | 0           |
| DYTISCIDAE (A)         | 0      | 0     | 8    | 0    | 0     | 8    | 0    | 0     | 0    | 8    | 0     | 0    | 0    | 0     | 0           |
| ECNOMIDAE (L)          | 40     | 32    | 40   | 8    | 0     | 8    | 16   | 24    | 24   | 72   | 80    | 48   | 48   | 32    | 72          |
| ELMIDAE (L)            | 56     | 24    | 24   | 0    | 0     | 0    | 8    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 8           |
| ELMIDAE (A)            | 56     | 24    | 24   | 0    | 8     | 0    | o    | 0     | 8    | 0    | 0     | 0    | 0    | 24    | 24          |
| GOMPHIDAE (L)          | o      | 16    | 0    | 0    | 0     | o    | 8    | 8     | 0    | o    | O     | 0    | 0    | 0     | 0           |
| HYDROPSYCHIDAE (L)     | 0      | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0           |
| HYDROPTILIDAE (L)      | 0      | 8     | 8    | 0    | 0     | 8    | o    | 0     | 0    | 24   | 16    | 8    | 0    | 16    | o           |
| LEPTOCERIDAE (L)       | 0      | 8     | 8    | 0    | 16    | 8    | O    | 0     | 0    | 56   | 48    | 56   | 0    | 24    | 24          |
| LEPTOPHLEBIIDAE (N)    | 0      | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     | 0    | 0    | 0     | 0           |
| LIBELLULIDAE (L)       | 0      | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0           |
| OLIGOCHAETE (X)        | 8      | 0     | 16   | 24   | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0           |
|                        | o<br>o | 8     | 0    | 0    | 0     | 0    | 8    | 0     | 0    | o    | 0     | 8    | 8    | 0     | 0           |
| PALAEMONIDAE (X)       |        |       |      |      | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | ů<br>o      |
| PROTONEURIDAE (L)      | 0      | 0     | 0    | 0    |       |      |      |       |      |      | 0     | 0    | 0    | o     | 0           |
| PYRALIDAE (L)          | 0      | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    |       |      |      |       |             |
| TABANIDAE (L)          | 0      | 0     | 0    | 8    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0           |
| TIPULIDAE (L)          | 0      | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0           |
| ZYGOPTERA (INDET.) (L) | 8      | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 8    | Q    | 0     | 0    | 0    | 0     | 0           |

| SITE/SAMP. OCCASION        |      | JJ1/5 |      |      | JJ2/5 |      |      | JJ3/5 |      |      | TF1/5 |      |      | TF2/5 |      |
|----------------------------|------|-------|------|------|-------|------|------|-------|------|------|-------|------|------|-------|------|
| DATE                       | 25   | July  | 96   |
| REPLICATE NO.              | 1    | 2     | 3    | I    | 2     | 3    | 1    | 2     | 3    | 1    | 2     | 3    | 1    | 2     | 3    |
| <i>ERISS</i> SAMPLE NUMBER | 2257 | 2258  | 2259 | 2263 | 2264  | 2265 | 2269 | 2270  | 2271 | 2275 | 2276  | 2277 | 2281 | 2282  | 2283 |
| ACARINA (INDET) (X)        | 96   | 76    | 96   | 248  | 188   | 48   | 104  | 48    | 88   | 56   | 144   | 96   | 80   | 44    | 48   |
| ANISOPTERA (INDET) (L)     | o    | 0     | 0    | 0    | 12    | 0    | o    | 0     | 0    | 0    | 0     | 0    | o    | 0     | 8    |
| BAETIDAE (N)               | 80   | 28    | 16   | 32   | 24    | 24   | 120  | 248   | 72   | 88   | 128   | 56   | 112  | 72    | 16   |
| CAENIDAE (N)               | 16   | 16    | 16   | 128  | 40    | 32   | 272  | 152   | 208  | 24   | 168   | 176  | 248  | 16    | 48   |
| CERATOPOGONIDAE (L)        | 56   | 40    | 24   | 40   | 96    | 64   | 136  | 168   | 48   | 40   | 16    | 32   | 16   | 72    | 24   |
| CHIRONOMIDAE (L)           | 348  | 348   | 400  | 336  | 584   | 412  | 712  | 864   | 904  | 728  | 680   | 1072 | 784  | 384   | 992  |
| CHIRONOMIDAE (P)           | 0    | 0     | 8    | o    | 0     | 16   | 24   | 8     | 8    | o    | 8     | 16   | 8    | 4     | 8    |
| COENAGRIONIDAE (L)         | 0    | o     | o    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| CORDULIDAE (L)             | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 8    | 0     | 0    | 0    | 0     | 0    |
| CORIXIDAE (N)              | 8    | 0     | 0    | 0    | 0     | 20   | 24   | 0     | 24   | 16   | 24    | 8    | 16   | 12    | 0    |
| CULICIDAE (L)              | o    | 0     | 0    | o    | 0     | 0    | 24   | 8     | 0    | 0    | 0     | 0    | o    | 12    | 0    |
| CULICIDAE (P)              | 0    | 0     | 8    | o    | 0     | 0    | o    | 0     | 0    | o    | 0     | 8    | 0    | 0     | 0    |
| DYTISCIDAE (L)             | 0    | Q     | 0    | o    | 0     | 0    | 8    | 0     | 0    | 0    | 8     | 0    | 16   | 0     | 0    |
| DYTISCIDAE (A)             | 0    | 0     | 8    | 16   | 0     | 0    | 8    | 0     | 0    | 0    | 0     | 0    | o    | 0     | 0    |
| ECNOMIDAE (L)              | 16   | 16    | 8    | 8    | 4     | 40   | 24   | 24    | 0    | 32   | 8     | 40   | 48   | 12    | 56   |
| ELMIDAE (L)                | 32   | 8     | 40   | o    | 8     | 4    | 0    | 96    | 0    | 48   | 64    | 8    | 0    | 24    | 0    |
| ELMIDAE (A)                | 24   | 28    | 48   | 16   | 4     | 8    | 0    | 8     | 0    | 8    | 0     | 8    | 0    | 0     | 0    |
| GOMPHIDAE (L)              | 4    | 4     | 0    | o    | 8     | 4    | 0    | 24    | 0    | 8    | 8     | 8    | 0    | 0     | 0    |
| HYDROPSYCHIDAE (L)         | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| HYDROPTILIDAE (L)          | 8    | 16    | 8    | o    | 0     | 4    | 24   | 24    | 8    | 32   | 40    | 48   | 32   | 8     | 8    |
| LEPTOCERIDAE (L)           | 12   | 28    | 8    | 64   | 56    | 16   | 0    | 16    | 16   | 16   | 32    | 56   | 32   | 24    | 24   |
| LEPTOPHLEBIIDAE (N)        | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     | 0    |
| LIBELLULIDAE (L)           | 0    | 0     | 0    | 8    | 0     | 0    | o    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| OLIGOCHAETE (X)            | o    | 0     | 8    | 0    | 0     | 4    | 0    | 8     | 0    | 0    | 0     | Q    | o    | 0     | 8    |
| PALAEMONIDAE (X)           | 0    | 4     | 0    | 24   | 8     | 4    | 8    | 8     | 0    | 0    | 8     | 8    | 0    | 0     | 8    |
| PROTONEURIDAE (L)          | 0    | 0     | 0    | 8    | 0     | 4    | 0    | 0     | 0    | 0    | 0     | 8    | o    | 0     | 0    |
| PYRALIDAE (L)              | o    | 0     | 0    | o    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | 8    | 12    | Ó    |
| TABANIDAE (L)              | 0    | 0     | 0    | Q    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     | 0    |
| TIPULIDAE (L)              | 4    | 0     | 0    | 0    | 8     | 0    | 0    | 0     | 0    | 0    | 0     | Ô    | o    | 0     | 0    |
| ZYGOPTERA (INDET.) (L)     | 0    | 4     | o    | 0    | 12    | 16   | 0    | 8     | 0    | 0    | 0     | 16   | 0    | 0     | 8    |

| SITE/SAMP. OCCASION    |      | <b>TF1/6</b> |      |      | TF2/6 |            |      | JJ1/6 |      |      | JJ2/6 |      |      | JJ3/6 |      |
|------------------------|------|--------------|------|------|-------|------------|------|-------|------|------|-------|------|------|-------|------|
| DATE                   | 21   | Aug          | 96   | 21   | Aug   | 96         | 21   | Aug   | 96   | 21   | Aug   | 96   | 21   | Aug   | 96   |
| REPLICATE NO.          | 1    | 2            | 3    | 1    | 2     | 3          | 1    | 2     | 3    | 1    | 2     | 3    | 1    | 2     | 3    |
| ERISS SAMPLE NUMBER    | 2345 | 2346         | 2347 | 2351 | 2352  | 2353       | 2357 | 2358  | 2359 | 2363 | 2364  | 2365 | 2369 | 2370  | 2371 |
|                        |      |              |      |      |       |            |      |       |      |      |       |      |      |       |      |
| ACARINA (INDET) (X)    | 96   | 32           | 24   | 40   | 72    | 88         | 72   | 88    | 40   | 112  | 56    | 40   | 40   | 8     | 120  |
| ANISOPTERA (INDET) (L) | 0    | 0            | 0    | 0    | 0     | 0          | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| BAETIDAE (N)           | 208  | 168          | 296  | 64   | 88    | 120        | 32   | 64    | 40   | 48   | 40    | 8    | 80   | 8     | 248  |
| CAENIDAE (N)           | 136  | 128          | 168  | 104  | 80    | 64         | 0    | 16    | 136  | 24   | 56    | 24   | 40   | 24    | 48   |
| CERATOPOGONIDAE (L)    | 0    | 8            | 24   | 16   | 8     | 24         | 32   | 56    | 80   | 40   | 24    | 0    | 16   | 16    | 64   |
| CHIRONOMIDAE (L)       | 656  | 776          | 608  | 456  | 632   | 688        | 528  | 392   | 1192 | 168  | 216   | 96   | 240  | 224   | 928  |
| CHIRONOMIDAE (P)       | 0    | 16           | 40   | o    | Ô     | 24         | 0    | 0     | 8    | 0    | 16    | 0    | 0    | 0     | 8    |
| COENAGRIONDAE (L)      | 0    | Ô            | 0    | 0    | Q     | 0          | 0    | 0     | 0    | o    | 0     | 0    | o    | 0     | 0    |
| CORDULIDAE (L)         | 0    | 0            | 0    | o    | 0     | 0          | 8    | 0     | 0    | 0    | 0     | Q    | 0    | 0     | 0    |
| CORIXIDAE (N)          | 8    | 8            | 16   | 0    | 16    | 16         | 0    | 16    | 0    | 152  | 48    | 32   | 0    | 0     | 8    |
| CULICIDAE (L)          | 0    | 0            | 0    | o    | 8     | 8          | 0    | 8     | 0    | 0    | 0     | 0    | 0    | 8     | 16   |
| CULICIDAE (P)          | 0    | 0            | 0    | 8    | 8     | 0          | 0    | 0     | 0    | o    | 0     | 0    | 0    | 0     | 8    |
| DYTISCIDAE (L)         | 0    | 0            | 0    | o    | 0     | 0          | 0    | 0     | 0    | o    | 0     | 0    | 0    | 8     | 16   |
| DYTISCIDAE (A)         | 0    | 0            | 0    | o    | 0     | 0          | 8    | 0     | 8    | 80   | 16    | 16   | o    | 0     | 8    |
| ECNOMIDAE (L)          | 8    | 8            | 48   | 16   | 8     | 1 <b>6</b> | 0    | 0     | 32   | 8    | 8     | 8    | 16   | 32    | 16   |
| ELMIDAE (L)            | 24   | 8            | 24   | 8    | 8     | 0          | 80   | 128   | 16   | 8    | 0     | 8    | 32   | 0     | 120  |
| ELMIDAE (A)            | 8    | 16           | 8    | 8    | 16    | 8          | 32   | 8     | 8    | 24   | 0     | 0    | 8    | 16    | 0    |
| GOMPHIDAE (L)          | 0    | 0            | 16   | 8    | 0     | 16         | 0    | 0     | 0    | o    | 8     | 0    | o    | 0     | 0    |
| HYDROPSYCHIDAE (L)     | 0    | 0            | 0    | 0    | 0     | 0          | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| HYDROPTILIDAE (L)      | 8    | 16           | 8    | 8    | 8     | 0          | 0    | 0     | 16   | o    | 0     | 0    | 24   | 0     | 0    |
| LEPTOCERIDAE (L)       | 8    | 0            | 0    | 8    | 24    | 8          | 8    | 8     | 32   | 56   | 16    | 24   | 16   | 8     | 8    |
| LEPTOPHLEBIIDAE (N)    | 0    | 0            | 0    | 0    | 0     | 0          | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| LIBELLULIDAE (L)       | 0    | 0            | 0    | 0    | 0     | 0          | 0    | 0     | 0    | 0    | 0     | 0    | o    | 0     | o    |
| OLIGOCHAETE (X)        | 0    | 8            | 8    | 0    | 0     | 0          | 0    | 8     | 0    | 0    | 0     | 8    | 0    | 0     | 0    |
|                        | 8    | 0            | 16   | 8    | 0     | 0          | 0    | 0     | 0    | 16   | 0     | 8    | 0    | 0     | 0    |
| PALAEMONIDAE (X)       | 0    | 0            | 0    | 0    | 0     | 0          | 0    | 16    | 0    | 0    | 0     | 8    | 0    | 0     | 0    |
| PROTONEURIDAE (L)      |      |              |      | 0    | 0     | 0          | 0    | 0     | 0    | o    | 0     | 0    | o    | o     | 0    |
| PYRALIDAE (L)          | 0    | 0            | 0    |      |       |            | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| TABANIDAE (L)          | 0    | 0            | 0    | 0    | 0     | 0          | ŀ    |       |      |      |       |      |      |       |      |
| TIPULIDAE (L)          | 0    | 0            | 0    | 0    | 0     | 0          | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0     | 0    |
| ZYGOPTERA (INDET.) (L) | 0    | 0            | 0    | 0    | 0     | 0          | 0    | 0     | 0    | 0    | 0     | 0    | 8    | 8     | 0    |

| STTE/SAMP. OCCASION    |      | JJ1/7 |             |      | JJ2/7 |             |      | JJ3/7  |      |        | <b>TF1/7</b> |      |      | TF2/7 |        |
|------------------------|------|-------|-------------|------|-------|-------------|------|--------|------|--------|--------------|------|------|-------|--------|
| DATE                   | 18   | Sept  | 96          | 18   | Sept  | 96          | 18   | Sept   | 96   | 18     | Sept         | 96   | 18   | Sept  | 96     |
| REPLICATE NO.          | I    | 2     | 3           | 1    | 2     | 3           | 1    | 2      | 3    | 1      | 2            | 3    | 1    | 2     | 3      |
| ERISS SAMPLE NUMBER    | 2461 | 2462  | 2463        | 2466 | 2467  | 2468        | 2472 | 2473   | 2474 | 2478   | 2479         | 2480 | 2484 | 2485  | 2486   |
|                        |      |       |             |      |       |             |      |        |      |        |              |      |      |       |        |
| ACARINA (INDET) (X)    | 184  | 144   | 96          | 56   | 64    | 152         | 64   | 120    | 72   | 56     | 80           | 112  | 56   | 104   | 96     |
| ANISOPTERA (INDET) (L) | 0    | 0     | 8           | 0    | Q     | 0           | 0    | 0      | 0    | 0      | 0            | 8    | 0    | 0     | 0      |
| BAETIDAE (N)           | 16   | 32    | 64          | 32   | 56    | 16          | 104  | 56     | 40   | 32     | 176          | 200  | 128  | 8     | 96     |
| CAENIDAE (N)           | 32   | 16    | 32          | 8    | 16    | 24          | 24   | 40     | 32   | 0      | 16           | 144  | 112  | 88    | 144    |
| CERATOPOGONIDAE (L)    | 24   | 96    | 48          | 16   | 24    | 24          | 112  | 120    | 72   | 24     | 24           | 96   | 16   | 64    | 16     |
| CHIRONOMIDAE (L)       | 432  | 904   | 65 <b>6</b> | 112  | 120   | 13 <b>6</b> | 904  | 928    | 776  | 264    | 576          | 528  | 728  | 928   | 624    |
| CHIRONOMIDAE (P)       | 0    | 16    | 0           | 8    | 0     | 24          | 0    | 24     | 40   | 0      | 8            | 40   | 8    | 24    | 0      |
| COENAGRIONIDAE (L)     | 8    | 0     | 0           | 0    | 0     | 0           | 0    | 0      | 0    | 0      | 0            | 0    | 0    | 0     | 0      |
| CORDULIDAE (L)         | 0    | Ó     | 0           | 0    | 0     | 0           | 0    | 0      | 0    | o      | 0            | 0    | 0    | 0     | 8      |
| CORIXIDAE (N)          | 0    | 0     | 0           | 40   | 80    | 144         | 8    | 24     | 0    | 16     | 32           | 16   | 8    | 0     | 16     |
| CULICIDAE (L)          | 8    | 0     | 8           | o    | 0     | 0           | 8    | 0      | 0    | 8      | 8            | 16   | 0    | 0     | 16     |
| CULICIDAE (P)          | 8    | 0     | 0           | 8    | 0     | 0           | 0    | 0      | 0    | o      | 0            | 0    | 0    | 0     | 0      |
| DYTISCIDAE (L)         | 0    | 0     | 0           | 0    | 8     | 8           | 0    | 8      | 16   | 0      | 16           | 0    | o    | 0     | 8      |
| DYTISCIDAE (A)         | 0    | 0     | 0           | 88   | 0     | 0           | 0    | 8      | 8    | 0      | 16           | 40   | 16   | 0     | 0      |
| ECNOMIDAE (L)          | 8    | 0     | 40          | 8    | 8     | 16          | 24   | 24     | 48   | 0      | 0            | 56   | 24   | 16    | 24     |
| ELMIDAE (L)            | 88   | 40    | 56          | 0    | 8     | 0           | 32   | 80     | 48   | 104    | 88           | 8    | 0    | 0     | 16     |
| ELMIDAE (A)            | 16   | 0     | 56          | 0    | 40    | 72          | 8    | 8      | 8    | 8      | 8            | 0    | 0    | 32    | 8      |
| GOMPHIDAE (L)          | 0    | 24    | 8           | 16   | Ó     | 8           | 0    | 0      | 0    | o      | 0            | 16   | o    | 0     | 8      |
| HYDROPSYCHIDAE (L)     | 0    | 0     | 0           | 0    | 0     | 0           | 0    | 0      | 0    | 0      | 0            | 0    | 0    | 0     | 0      |
| HYDROPTILIDAE (L)      | 8    | 32    | 16          | Ó    | 8     | 8           | 16   | 16     | 16   | 8      | 16           | 8    | 24   | 16    | 8      |
| LEPTOCERIDAE (L)       | 0    | 56    | 32          | 40   | 48    | 40          | 24   | 48     | 16   | 8      | 0            | 80   | 32   | 0     | 40     |
| LEPTOPHLEBIIDAE (N)    | 0    | 0     | 0           | 0    | 0     | 0           | 0    | 8      | 0    | 0      | 0            | 0    | 0    | 0     | 0      |
| LIBELLULIDAE (L)       | 0    | o     | 0           | o    | 0     | 0           | 0    | 0      | 0    | 0      | 0            | 0    | 0    | 0     | 0      |
|                        | 8    | 0     | 0           | 0    | 0     | 0           | 0    | 8      | 0    | 8      | 0            | 0    | 16   | 0     | 8      |
| OLIGOCHAETE (X)        |      |       | 0           |      | 48    | 8           | 0    | •<br>0 | 8    | 0<br>0 | 0            | 8    | 8    | 8     | 8      |
| PALAEMONIDAE (X)       | 0    | 0     |             | 8    |       |             |      |        |      |        | 0            | o    | 0    | o     | °<br>0 |
| PROTONEURIDAE (L)      | 0    | 0     | 8           | 0    | 24    | 8           | 0    | 0      | 0    | 0      |              |      |      | 0     |        |
| PYRALIDAE (L)          | 0    | 0     | 0           | 0    | 0     | 0           | 0    | 0      | 0    | . 0    | 0            | 0    | 0    |       | 0      |
| TABANIDAE (L)          | 0    | 16    | 0           | 0    | 0     | 0           | 0    | 0      | 0    | 0      | 0            | 0    | 0    | 0     | 0      |
| TIPULIDAE (L)          | 0    | 0     | 0           | 0    | 0     | 0           | 0    | 0      | 0    | 0      | 0            | 0    | 0    | 0     | 0      |
| ZYGOPTERA (INDET.) (L) | 0    | 0     | 0           | 0    | 0     | 16          | 8    | 0      | Q    | 0      | 0            | 8    | 0    | 0     | 16     |

## APPENDIX B

Fish community structure at sampling sites during the study

| Species                         | <sup>1</sup> No. 0<br>fish. | f Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|---------------------------------|-----------------------------|-------------------------|----------------|---------------|----------------|---------------|
| Amniataba percoides             | 25                          | *Gill-netting           | 74             | 6.930         | 93             | 12.670        |
|                                 | 20                          | om nøtong               | 139            | 41,600        | 70             | 5.190         |
|                                 |                             |                         | 110            | 23.700        | 76             | 6.790         |
|                                 |                             |                         | 120            | 32.030        | 123            | 28.800        |
|                                 |                             |                         | 120            | 42.680        | 140            | 47.500        |
|                                 |                             |                         | 122            | 31.170        | 76             | 7.480         |
|                                 |                             |                         | 134            | 38.240        | 108            | 21.830        |
|                                 |                             |                         | 109            | 21.490        | 73             | 6.090         |
|                                 |                             |                         | 92             | 12.780        | 89             | 11            |
|                                 |                             |                         | 70             | 5.380         | 84             | 9.520         |
|                                 |                             |                         | 88             | 10.360        | 99             | 14.730        |
|                                 |                             |                         | 98             | 16,110        | 139            | 44.540        |
|                                 |                             |                         | 82             | 9.060         | 159            | 44.540        |
| An adaptialania dahli           | 7                           | Gill-netting            | 365            | nd            | 311            | 168           |
| Anodontiglanis dahli            | /                           | Our-netting             | 350            | nđ            | 385            | nd            |
|                                 |                             |                         |                |               | 463            |               |
|                                 |                             |                         | 348            | nd            | 403            | nd            |
|                                 |                             |                         | 424            | nd            |                |               |
| Arius leptaspis                 | 1                           | Gill-netting            | 330            | nd            |                |               |
| Ambassis macleayi               | 7                           | Gill-netting            | 69             | 7             | 57             | 4             |
|                                 |                             |                         | 73             | 9             | 59             | 5             |
|                                 |                             |                         | 67             | 6             | 64             | 6             |
|                                 |                             |                         | 68             | 7             |                |               |
| Leiopotherapon unicolor         | 1                           | Gill-netting            | 105            | 18            |                |               |
| Megalops cyprinoides            | 2                           | Gill-netting            | 202            | 9 <b>8</b>    | 312            | 400           |
| Melanotaenia splendida inornata | 1                           | Gill-netting            | 90             | 10            |                |               |
|                                 | (40)                        | *Seine-netting          | nd             | nd            | 45             | 0.743         |
|                                 |                             | _                       | 32             | 0.273         | 45             | 0.880         |
|                                 |                             |                         | 33             | 0.295         | 47             | 0.991         |
|                                 |                             |                         | 33             | 0.343         | 52             | 1.298         |
|                                 |                             |                         | 34             | 0.344         | 53             | 1,312         |
|                                 |                             |                         | 34             | 0.358         | 54             | 1.295         |
|                                 |                             |                         | 35             | 0.365         | 54             | 1.361         |
|                                 |                             |                         | 35             | 0.388         | 54             | 1.422         |
|                                 |                             |                         | 35             | 0.401         | 55             | 1.440         |
|                                 |                             |                         | 36             | 0.387         | 55             | 1.471         |
|                                 |                             |                         | 36             | 0.556         | 55             | 1.647         |
|                                 |                             |                         | 37             | 0.497         | 55             | 1.848         |
|                                 |                             |                         | 39             | 0.519         | 56             | 1.710         |
|                                 |                             |                         | 39             | 0.528         | 56             | 1.796         |
|                                 |                             |                         | 39             | 0.568         | 56             | 1.927         |

Table B1Fish sampled at Jim Jim Creek upstream site on 29/05/96 & 30/05/96, before the openingof the Jim Jim Creek crossing.

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

nd indicates no available data.

. -

| Species                                  | <sup>1</sup> No. of | Sampling      | Length                                        | Weight                                    | Length                         | Weight                     |
|------------------------------------------|---------------------|---------------|-----------------------------------------------|-------------------------------------------|--------------------------------|----------------------------|
|                                          | fish.               | technique     | (mm)                                          | (g)                                       | <u>(mm)</u>                    | <u>(g)</u>                 |
| M. splendida inornata (cont.)            |                     |               | 40                                            | 0.561                                     | 60                             | 1.921                      |
|                                          |                     |               | 40                                            | 0.534                                     | 57                             | 1.610                      |
|                                          |                     |               | 40                                            | 0.564                                     | 66                             | 2.556                      |
|                                          |                     |               | 40                                            | 0.574                                     | 74                             | 4.275                      |
|                                          |                     |               | 40                                            | 0.648                                     | 78                             | 5.381                      |
|                                          | 48 5                | Seine-netting | 43                                            | nd                                        | 38                             | nd                         |
|                                          |                     |               | 38                                            | nd                                        | 38                             | nd                         |
|                                          |                     |               | 38                                            | nd                                        | 38                             | nd                         |
|                                          |                     |               | 38                                            | nd                                        | 37                             | nd                         |
|                                          |                     |               | 37                                            | nđ                                        | 37                             | nd                         |
|                                          |                     |               | 37                                            | nd                                        | 35                             | nd                         |
|                                          |                     |               | 35                                            | nd                                        | 50                             | nd                         |
|                                          |                     |               | 50                                            | nd                                        | 46                             | nd                         |
|                                          |                     |               | 57                                            | nd                                        | 57                             | nd                         |
|                                          |                     |               | 41                                            | nd                                        | 41                             | nd                         |
|                                          |                     |               | 34                                            | nd                                        | 41                             | nd                         |
|                                          |                     |               | 39                                            | nd                                        | 34                             | nd                         |
|                                          |                     |               | 39                                            | nđ                                        | 39                             | nd                         |
|                                          |                     |               | 31                                            | nd                                        | 39                             | nd                         |
|                                          |                     |               | 55                                            | nd                                        | 31                             | nd                         |
|                                          |                     |               | 79                                            | nd                                        | 55                             | nd                         |
|                                          |                     |               | 32                                            | nd                                        | 79                             | nd                         |
|                                          |                     |               | 46                                            | n <b>d</b>                                | 32                             | nd                         |
|                                          |                     |               | 37                                            | nd                                        | 46                             | nd                         |
|                                          |                     |               | 38                                            | nd                                        | 37                             | nd                         |
|                                          |                     |               | 34                                            | nd                                        | 38                             | nd                         |
|                                          |                     |               | 30                                            | nd                                        | 34                             | nd                         |
|                                          |                     |               | 39                                            | nd                                        | 30                             | nd                         |
|                                          |                     |               | 42                                            | nd                                        | 31                             | nd                         |
| Nematalosa erebi                         | 10 C                | Gill-netting  | 225                                           | 184                                       | 185                            | 10 <b>0</b>                |
|                                          |                     |               | 197                                           | 98                                        | 195                            | 102                        |
|                                          |                     |               | 165                                           | 70                                        | 165                            | nd                         |
|                                          |                     |               |                                               |                                           |                                | 90                         |
|                                          |                     |               | 173                                           | 72                                        | 182                            |                            |
|                                          |                     |               | 173<br>210                                    | 72<br>nd                                  | 182<br>198                     | 112                        |
| Pingalla midalevi                        | 4 0                 | till-netting  | 210                                           | nd                                        | 198                            | 112                        |
| Pingalla midgleyi                        | 4 (                 | Gill-netting  | 210<br>125                                    | nd<br>42                                  | 198<br>108                     | 112<br>26                  |
| Pingalla midgleyi                        | 4 (                 | Gill-netting  | 210                                           | nd                                        | 198                            | 112                        |
| Pingalla midgleyi<br>Syncomistes butleri |                     | Gill-netting  | 210<br>125<br>100<br>210                      | nd<br>42<br>20<br>163                     | 198<br>108                     | 112<br>26                  |
|                                          |                     | -             | 210<br>125<br>100<br>210<br>233               | nd<br>42<br>20                            | 198<br>108<br>72<br>275<br>345 | 112<br>26<br>7<br>nd<br>nd |
|                                          |                     | -             | 210<br>125<br>100<br>210<br>233<br>184        | nd<br>42<br>20<br>163<br>240<br>115       | 198<br>108<br>72<br>275        | 112<br>26<br>7<br>nd       |
|                                          |                     | -             | 210<br>125<br>100<br>210<br>233               | nd<br>42<br>20<br>163<br>240              | 198<br>108<br>72<br>275<br>345 | 112<br>26<br>7<br>nd<br>nd |
| Syncomistes butleri                      | 7 (                 | -             | 210<br>125<br>100<br>210<br>233<br>184        | nd<br>42<br>20<br>163<br>240<br>115       | 198<br>108<br>72<br>275<br>345 | 112<br>26<br>7<br>nd<br>nd |
|                                          | 7 C                 | Gill-netting  | 210<br>125<br>100<br>210<br>233<br>184<br>144 | nd<br>42<br>20<br>163<br>240<br>115<br>50 | 198<br>108<br>72<br>275<br>345 | 112<br>26<br>7<br>nd<br>nd |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

nd indicates no available data.

Table B1 (cont.)

, **-**

| Species                  | <sup>1</sup> No. of<br>fish. | Sampling technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|--------------------------|------------------------------|--------------------|----------------|---------------|----------------|---------------|
| S. kreffti(cont.)        |                              |                    | 314            | 52            | ()             |               |
| Neosiluris ater          | 33                           | Gill-netting       | 330            | nd            | 405            | nd            |
|                          |                              | 8                  | 210            | 76            | 259            | nd            |
|                          |                              |                    | 390            | nd            | 325            | nd            |
|                          |                              |                    | 268            | nd            | 263            | nd            |
|                          |                              |                    | 340            | nd            | 328            | nd            |
|                          |                              |                    | 325            | 300           | 295            | nd            |
|                          |                              |                    | 340            | nd            | 310            | nd            |
|                          |                              |                    | 298            | nd            | 280            | nd            |
|                          |                              |                    | 355            | nd            | 295            | nd            |
|                          |                              |                    | 325            | nd            | 235            | nd            |
|                          |                              |                    | 265            | nd            | 243            | nd            |
|                          |                              |                    | 270            | nd            | 275            | nd            |
|                          |                              |                    | 290            | nd            | 268            | nd            |
|                          |                              |                    | 295            | nd            | 217            | nd            |
|                          |                              |                    | 370            | nd            | 225            | nd            |
|                          |                              |                    | 325            | nd            | 178            | 38            |
|                          |                              |                    | 340            | nd            |                |               |
| Craterocephalus marianae | 189                          |                    |                | nd            | 55             | nd            |
| -                        |                              |                    | 56             | nd            | 57             | nd            |
|                          |                              |                    | 52             | nd            | 41             | nd            |
|                          |                              |                    | 63             | nd            | 34             | nd            |
|                          |                              |                    | 58             | nd            | 39             | nd            |
|                          |                              |                    | 64             | nd            | 40             | nd            |
|                          |                              |                    | 45             | nd            | 37             | nd            |
|                          |                              |                    | 42             | nd            | 55             | nd            |
|                          |                              |                    | 34             | nd            | 62             | nd            |
|                          |                              |                    | 44             | nd            | 40             | nd            |
|                          |                              |                    | 39             | nd            | 23             | nd            |
|                          |                              |                    | 40             | nd            | 43             | nd            |
|                          |                              |                    | 37             | nd            | 37             | nd            |
|                          |                              |                    | 41             | nd            | 54             | nd            |
|                          |                              |                    | 39             | n <b>d</b>    | 53             | nd            |
|                          |                              |                    | 41             | nd            | 49             | nd            |
|                          |                              |                    | 35             | nd            | 48             | nd            |
|                          |                              |                    | 39             | nd            | 58             | nd            |
|                          |                              |                    | 34             | nd            | 64             | nd            |
|                          |                              |                    | 39             | nd            | 49             | nd            |
|                          |                              |                    | 34             | nd            | 65             | nd            |
|                          |                              |                    | 36             | nd            | 46             | nd            |
|                          |                              |                    | 34             | nd            | 62             | nd            |
|                          |                              |                    | 41             | nd            | 45             | nd            |
|                          |                              |                    | 44             | nd            | 42             | nd            |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

- 1

| Species             | <sup>1</sup> No. of<br>fish.           | Sampling<br>technique | Length<br>(mm) | Weight | (g) Length<br>(mm) | Weight<br>(g) |
|---------------------|----------------------------------------|-----------------------|----------------|--------|--------------------|---------------|
| C. marianae (cont.) | ······································ |                       | 45             | nd     | 39                 | nd            |
|                     |                                        |                       | 37             | nd     | 37                 | nd            |
|                     |                                        |                       | 22             | nd     | 37                 | nd            |
|                     |                                        |                       | 60             | nd     | 35                 | nd            |
|                     |                                        |                       | 58             | nd     | 32                 | nd            |
|                     |                                        |                       | 54             | nd     | 36                 | nd            |
|                     |                                        |                       | 39             | nd     | 34                 | nd            |
|                     |                                        |                       | 40             | nd     | 33                 | nd            |
|                     |                                        |                       | 39             | nd     | 35                 | nd            |
|                     |                                        |                       | 40             | nd     | 37                 | nd            |
|                     |                                        |                       | 44             | nd     | 38                 | nd            |
|                     |                                        |                       | 47             | nd     | 39                 | nd            |
|                     |                                        |                       | 37             | nd     | 37                 | nd            |
|                     |                                        |                       | 37             | nd     | 35                 | nd            |
|                     |                                        |                       | 44             | nd     | 39                 | nd            |
|                     |                                        |                       | 38             | nd     | 39                 | nd            |
|                     |                                        |                       | 41             | nd     | 37                 | nd            |
|                     |                                        |                       | 38             | nd     | 40                 | nd            |
|                     |                                        |                       | 39             | nd     | 42                 | nd            |
|                     |                                        |                       | 43             | nd     | 36                 | nd            |
|                     |                                        |                       | 28             |        | 42                 | nd            |
|                     |                                        |                       | 28<br>40       | nd     | 42<br>40           | nd            |
|                     |                                        |                       |                | nd     |                    |               |
|                     |                                        |                       | 48             | nđ     | 41                 | nd            |
|                     |                                        |                       | 40             | nd     | 43                 | nd            |
|                     |                                        |                       | 50             | nd     | 37                 | nd            |
|                     |                                        |                       | 55             | nd     | 41                 | nd            |
|                     |                                        |                       | 24             | nd     | 38                 | nd            |
|                     |                                        |                       | 37             | nd     | 45                 | nd            |
|                     |                                        |                       | 50             | nd     | 38                 | nd            |
|                     |                                        |                       | 34             | nd     | 45                 | nd            |
|                     |                                        |                       | 45             | nd     | 37                 | nd            |
|                     |                                        |                       | 47             | nd     | 37                 | nd            |
|                     |                                        |                       | 35             | nd     | 35                 | nd            |
|                     |                                        |                       | 43             | nd     | 32                 | nd            |
|                     |                                        |                       | 39             | nd     | 36                 | nd            |
|                     |                                        |                       | 39             | nd     | 34                 | nd            |
|                     |                                        |                       | 69             | nd     | 33                 | nd            |
|                     |                                        |                       | 40             | nd     | 35                 | nd            |
|                     |                                        |                       | 64             | nd     | 37                 | nd            |
|                     |                                        |                       | 36             | nd     | 36                 | nd            |
|                     |                                        |                       | 57             | nd     | 33                 | nd            |
|                     |                                        |                       | 35             | nd     | 24                 | nd            |
|                     |                                        |                       | 55             | nd     | 37                 | пd            |
|                     |                                        |                       | 36             | nd     | 37                 | nd            |
|                     |                                        |                       | 55             | nd     | 38                 | nd            |
|                     |                                        |                       | 39             | nd     | 39                 | nd            |
|                     |                                        |                       | 57             | nd     | 37                 | nd            |
|                     |                                        |                       | 49             | nd     | 35                 | nd            |
|                     |                                        |                       | 35             | nd     | 39                 | nd            |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets Indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

\_ -

.

| Species             | <sup>1</sup> No. of<br>fish. | Sampling<br>technique | Length<br>(mm) | Weight     | (g) Length<br>(mm) | Weigh<br>(g) |
|---------------------|------------------------------|-----------------------|----------------|------------|--------------------|--------------|
| C. marianae (cont.) |                              |                       | 55             | nd         | 39                 | nd           |
|                     |                              |                       | 62             | nd         | 37                 | nd           |
|                     |                              |                       | 40             | nd         | 40                 | nd           |
|                     |                              |                       | 23             | nd         | 42                 | nd           |
|                     |                              |                       | 43             | nd         | 36                 | nd           |
|                     |                              |                       | 37             | nd         | 42                 | nd           |
|                     |                              |                       | 54             | nd         | 40                 | nd           |
|                     |                              |                       | 53             | nđ         | 41                 | nd           |
|                     |                              |                       | 49             | nd         | 43                 | nd           |
|                     |                              |                       | 48             | nd         | 37                 | nd           |
|                     |                              |                       | 58             | nd         | 41                 | nd           |
|                     |                              |                       | 64             | n <b>d</b> | 42                 | nd           |
|                     |                              |                       | 49             | nd         | 38                 | nd           |
|                     |                              |                       | 65             | nd         | 45                 | nd           |
|                     |                              |                       | 62             | nđ         | 38                 | nd           |
|                     |                              |                       | 45             | nd         | 43                 | nd           |
|                     |                              |                       | 42             | nđ         | 39                 | nd           |
|                     |                              |                       | 39             | nđ         | 38                 | nd           |
|                     |                              |                       | 37             | nd         | 38                 | nd           |
|                     |                              |                       | 37             | nđ         | 37                 | nd           |
|                     |                              |                       | 41             | nd         |                    |              |
| C. marianae (cont.) | (58) *                       | Seine-netting         | 58             | 2.43       | 33 41              | 0.68         |
|                     | ()                           |                       | 70             | 4.59       |                    | 0.89         |
|                     |                              |                       | 65             | 3.08       |                    | 0.724        |
|                     |                              |                       | 58             | 2.28       |                    | 0.59         |
|                     |                              |                       | 64             | 3.18       |                    | 0.65         |
|                     |                              |                       | 59             | 2.17       |                    | 0.67         |
|                     |                              |                       | 43             | 0.83       |                    | 0.55         |
|                     |                              |                       | 53             | 1.66       |                    | 0.68         |
|                     |                              |                       | 54             | 1.91       |                    | 0.77         |
|                     |                              |                       | 49             | 1.20       |                    | 0.47         |
|                     |                              |                       | 42             | 0.75       |                    | 0.63         |
|                     |                              |                       | 46             | 1,02       |                    | 0.49         |
|                     |                              |                       | 50             | 1.51       |                    | 0.40         |
|                     |                              |                       | 30<br>46       | 0.99       |                    | 0.500        |
|                     |                              |                       | 40<br>39       | 0.95       |                    | 0.300        |
|                     |                              |                       | 39             | 0.80       |                    | 0.42         |
|                     |                              |                       | 51             | 1.34       |                    | 0.400        |
|                     |                              |                       | 37             | 0.58       |                    | 0.830        |
|                     |                              |                       | 42             | 0.56       |                    | 0.520        |
|                     |                              |                       | 42<br>38       | 0.75       |                    | 0.61         |
|                     |                              |                       |                |            |                    | 0.663        |
|                     |                              |                       | 42             | 0.69       |                    |              |
|                     |                              |                       | 44             | 0.83       |                    | 0.438        |
|                     |                              |                       | 45             | 0.86       |                    | 0.452        |
|                     |                              |                       | 43             | 0.72       |                    | 0.386        |
|                     |                              |                       | 42             | 0.71       |                    | 0.545        |
|                     |                              |                       | 41             | 0.65       |                    | 0.161        |
|                     |                              |                       | 38             | 0.54       |                    | 0.217        |
|                     |                              |                       | 38             | 0.77       | 75 21              | 0.096        |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

| Species                         | <sup>1</sup> No. of<br>fish. | Sampling<br>technique | Length<br>(mm) | Weight (g) | Length<br>(mm) | Weight<br>(g) |
|---------------------------------|------------------------------|-----------------------|----------------|------------|----------------|---------------|
| C. marianae (cont.)             |                              |                       | 35             | 0,418      | 35             | 0.422         |
| Craterocephalus stercusmuscarum | 45                           | *Seine-netting        | 20             | 0.042      | 25             | 0.130         |
| *                               |                              | U                     | 20             | 0.042      | 26             | 0.114         |
|                                 |                              |                       | 20             | 0.045      | 27             | 0.122         |
|                                 |                              |                       | 20             | 0.055      | 27             | 0.135         |
|                                 |                              |                       | 20             | 0.056      | 27             | 0.156         |
|                                 |                              |                       | 21             | 0.055      | 27             | 0.156         |
|                                 |                              |                       | 21             | 0.068      | 28             | 0.164         |
|                                 |                              |                       | 21             | 0,560      | 29             | 0.124         |
|                                 |                              |                       | 22             | 0.074      | 29             | 0.145         |
|                                 |                              |                       | 22             | 0,074      | 29             | 0.170         |
|                                 |                              |                       | 23             | 0.053      | 29             | 0.203         |
|                                 |                              |                       | 23             | 0.070      | 29             | 0.210         |
|                                 |                              |                       | 23             | 0.078      | 31             | 0.247         |
|                                 |                              |                       | 24             | 0.065      | 32             | 0.241         |
|                                 |                              |                       | 24             | 0.070      | 33             | 0.218         |
|                                 |                              |                       | 24             | 0.070      | 33             | 0.251         |
|                                 |                              |                       | 24             | 0.094      | 33             | 0.256         |
|                                 |                              |                       | 24             | 0,095      | 35             | 0.274         |
|                                 |                              |                       | 24             | 0,102      | 35             | 0.300         |
|                                 |                              |                       | 24             | 0,102      | 35             | 0.317         |
|                                 |                              |                       | 24             | 0.096      | 35<br>39       | 0.317         |
|                                 |                              |                       | 25             | 0.101      | 48             | 0.687         |
|                                 |                              |                       | 25             | 0.114      | 70             | 0.007         |
| Glossogobius giuris             | 4                            | *Seine-netting        | 41             | 0.426      | 45             | 0.554         |
|                                 |                              | _                     | 42             | 0.468      | 46             | 0.495         |
| Melanotaenia nigrans            | 34                           | *Seine-netting        | 22             | 0.097      | 29             | 0.167         |
| -                               |                              | Ģ                     | 24             | 0.099      | 29             | 0.170         |
|                                 |                              |                       | 24             | 0.109      | 29             | 0.172         |
|                                 |                              |                       | 24             | 0.118      | 29             | 0,183         |
|                                 |                              |                       | 25             | 0.104      | 29             | 0.184         |
|                                 |                              |                       | 25             | 0.138      | 29             | 0.194         |
|                                 |                              |                       | 25             | 0.139      | 30             | 0.192         |
|                                 |                              |                       | 26             | 0.128      | 30             | 0.233         |
|                                 |                              |                       | 26             | 0.128      | 30             | 0.247         |
|                                 |                              |                       | 26             | 0.146      | 30             | 0.256         |
|                                 |                              |                       | 27             | 0.122      | 32             | 0.273         |
|                                 |                              |                       | 27             | 0.123      | 32             | 0.283         |
|                                 |                              |                       | 27             | 0.168      | 33             | 0.281         |
|                                 |                              |                       | 27             | 0.233      | 34             | 0.256         |
|                                 |                              |                       | 28             | 0.148      | 35             | 0.360         |
|                                 |                              |                       | 28             | 0,165      | 35             | 0.361         |
|                                 |                              |                       | 28             | 0.168      | 36             | 0.301         |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

nd indicates no available data.

Table B1 (cont.)

. -

| Species                  | <sup>1</sup> No. o<br>fish. | f Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|--------------------------|-----------------------------|-------------------------|----------------|---------------|----------------|---------------|
| Amniataba percoides      | 27                          | *Gill-netting           | 114            | 21.185        | 127            | 33.344        |
|                          | 2,                          | om nætung               | 127            | 37.450        | 24             | 14.110        |
|                          |                             |                         | 96             | 13.592        | 91             | 10.649        |
|                          |                             |                         | 68             | 5.698         | 152            | 53.924        |
|                          |                             |                         | 70             | 5.509         | 132            | 38.120        |
|                          |                             |                         | 127            | 36.424        | 134            | 39.261        |
|                          |                             |                         | 130            | 37.284        | 122            | 26.265        |
|                          |                             |                         | 143            | 42.707        | 120            | 24.579        |
|                          |                             |                         | 149            | 59.578        | 123            | 29.789        |
|                          |                             |                         | 136            | 39.008        | 120            | 28.969        |
|                          |                             |                         | 128            | 29.452        | 85             | 9.090         |
|                          |                             |                         | 130            | 31.988        | 76             | 5.682         |
|                          |                             |                         | 106            | 17.714        | 75             | 6.881         |
|                          |                             |                         | 90             | 12.837        | 15             | 0.001         |
|                          |                             |                         | 90             | 12.837        |                |               |
| Anodontiglanis dahli     | 6                           | Gill-netting            | 251            | 96            | 301            | 170           |
|                          |                             |                         | 264            | 123           | 343            | 230           |
|                          |                             |                         | 295            | 168           | 364            | 450           |
| Ambassis macleayi        | 1                           | Gill-netting            | 60             | 5,200         |                |               |
| Hephaestus fuliginosus   | 1                           | Gill-netting            | 325            | 700           |                |               |
| eiopotherapon unicolor   | 3                           | Gill-netting            | 150            | 63            | 211            | 180           |
| Beropoiner upon unicolor | 5                           | Qui notang              | 178            | 97            | 211            | 100           |
|                          | - 2                         | *Seine-netting          | 114            | 19.876        | 130            | 30.295        |
| Megalops cyprinoides     | 9                           | Gill-netting            | 200            | 115           | 287            | 289           |
| meguiops cyprinoraes     | ,                           | Gin-netting             | 218            | 145           | 308            | 375           |
|                          |                             |                         | 238            | 171           | 341            | 515           |
|                          |                             |                         | 258            | 226           | 344            | 540           |
|                          |                             |                         | 200<br>276     | 222           | 544            | 540           |
| Nematalosa erebi         | 46                          | Gill-netting            | 142            | 54            | 181            | 107           |
| Tematatosa erevi         | 40                          | om-noung                | 142            | 57            | 190            | 120           |
|                          |                             |                         | 149            | 57<br>64      | 190            | 120           |
|                          |                             |                         | 149            | 64<br>64      | 190            | 113           |
|                          |                             |                         | 152            | 54<br>54      | 191            | 113           |
|                          |                             |                         | 153            | 54<br>68      | 192            | 114<br>122    |
|                          |                             |                         | 160            | 75            | 193            | 122           |
|                          |                             |                         | 161            | 75<br>74      | 193<br>194     | 129<br>121    |
|                          |                             |                         |                |               |                |               |
|                          |                             |                         | 164            | 78            | 195            | 128           |
|                          |                             |                         | 164            | 80<br>87      | 195            | 132           |
|                          |                             |                         | 165            | 87            | 195            | 132           |
|                          |                             |                         | 165            | 89            | 197            | 136           |
|                          |                             |                         | 166            | 70            | 197            | 137           |

 Table B2
 Fish sampled at Jim Jim Creek upstream site on 7/10/96 & 8/10/96, after the opening of the Jim Jim Creek crossing.

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

. -

| Species                  | <sup>1</sup> No. 0<br>fish. | f Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|--------------------------|-----------------------------|-------------------------|----------------|---------------|----------------|---------------|
| N. erebi (cont.)         |                             |                         | 168            | 80            | 199            | 128           |
|                          |                             |                         | 169            | 84            | 203            | 141           |
|                          |                             | •                       | 170            | 82            | 206            | 156           |
|                          |                             |                         | 172            | 91            | 210            | 159           |
|                          |                             |                         | 173            | 90            | 213            | 160           |
|                          |                             |                         | 174            | 96            | 221            | 173           |
|                          |                             |                         | 177            | 97            | 222            | 184           |
|                          |                             |                         | 180            | 104           | 223            | 189           |
|                          |                             |                         | 180            | 105           | 246            | 245           |
|                          |                             |                         | 180            | 110           | 181            | 94            |
| Pingalla midgleyi        | 6                           | Gill-netting            | 80             | 10            | 96             | 19            |
| 0 0 /                    |                             | 0                       | 92             | 15            | 103            | 24            |
|                          |                             |                         | 95             | 17            | 104            | 22            |
| Syncomistes butleri      | 8                           | Gill-netting            | 209            | 179           | 248            | 320           |
| ·····                    | _                           |                         | <b>2</b> 32    | 248           | 250            | 340           |
|                          |                             |                         | <b>2</b> 36    | 266           | 280            | 430           |
|                          |                             |                         | 246            | 333           | 295            | 530           |
| Scleropages jardini      | 1                           | Gill-netting            | 337            | 228           |                |               |
| Strongylura kreffti      | 3                           | Gill-netting            | 342            | 65            | 478            | 250           |
|                          |                             |                         | 378            | 89            |                |               |
| Veosiluris ater          | 9                           | Gill-netting            | <b>2</b> 17    | 77            | 320            | 300           |
|                          |                             |                         | <b>2</b> 26    | 84            | 324            | 289           |
|                          |                             |                         | <b>2</b> 69    | 113           | 331            | 300           |
|                          |                             |                         | 274            | 177           | 335            | 288           |
|                          |                             | ,                       | 318            | 230           |                |               |
| Foxotes chatareus        | 3                           | Gill-netting            | 187            | 130           | 249            | 246           |
|                          |                             | · ·                     | 193            | 138           |                |               |
| Ambassis agrammus        | 1                           | *Seine-netting          | 20             | 0.105         |                |               |
| Craterocephalus marianae | 301                         | *Seine-netting          | 12             | 0.009         | 35             | 0.408         |
|                          |                             |                         | 12             | 0.016         | 35             | 0.417         |
|                          |                             |                         | 13             | 0.012         | 35             | 0.422         |
|                          |                             |                         | 13             | 0.016         | 35             | 0.447         |
|                          |                             |                         | 13             | 0.020         | 35             | 0.449         |
|                          |                             |                         | 13             | 0.022         | 35             | 0.489         |
|                          |                             |                         | 13             | 0.024         | 35             | 0.495         |
|                          |                             |                         | 13             | 0.054         | 35             | 0.543         |
|                          |                             |                         | 14             | 0.017         | 35             | 0,588         |
|                          |                             |                         | 14             | 0.017         | 36             | 0.185         |
|                          |                             |                         | 14             | 0.018         | 36             | 0.455         |
|                          |                             |                         | 14             | 0.019         | 36             | 0.488         |
|                          |                             |                         | 14             | 0.021         | 36             | 0.535         |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

nd indicates no available data.

APP\_A2.DOC (page 2 of 7)

| Species             | <sup>1</sup> No. of<br>fish. | Sampling<br>technique | Length<br>(mm) | Weight<br>(g)                  | Length<br>(mm) | Weight<br>(g)  |
|---------------------|------------------------------|-----------------------|----------------|--------------------------------|----------------|----------------|
| C. marianae (cont.) |                              | ique                  | 14             | 0.023                          | 36             | 0.539          |
|                     |                              |                       | 14             | 0.023                          | 36             | 0.541          |
|                     |                              |                       | 14             | 0.023                          | 37             | 0.527          |
|                     |                              |                       | 14             | 0.024                          | 38             | 0.644          |
|                     |                              |                       | 14             | 0.025                          | 39             | 0.660          |
|                     |                              |                       | 14             | 0.026                          | 40             | 0.751          |
|                     |                              |                       | 14             | 0.026                          | 40             | 0.801          |
|                     |                              |                       | 14             | 0.028                          | 40             | 0.826          |
|                     |                              |                       | 14             | 0.032                          | 41             | 0.765          |
|                     |                              |                       | 15             | 0.021                          | 41             | 0.822          |
|                     |                              |                       | 15             | 0.025                          | 42             | 0.832          |
|                     |                              |                       | 15             | 0,026                          | 42             | 0.884          |
|                     |                              |                       | 15             | 0.026                          | 42             | 0.889          |
|                     |                              |                       | 15             | 0.026                          | 42             | 0.906          |
|                     |                              |                       | 15             | 0.026                          | 43             | 0.948          |
|                     |                              |                       | 15             | 0.028                          | 43             | 0.952          |
|                     |                              |                       | 15             | 0.028                          | 43             | 0.978          |
|                     |                              |                       | 15             | 0.0 <b>30</b>                  | 43             | 0.994          |
|                     |                              |                       | 15             | 0.031                          | 44             | 0.922          |
|                     |                              |                       | 15             | 0.031                          | 44             | 0.943          |
|                     |                              |                       | 15             | 0.032                          | 44             | 0.980          |
|                     |                              |                       | 15             | 0.035                          | 44             | 0.995          |
|                     |                              |                       | 15             | 0.036                          | 44             | 1.005          |
|                     |                              |                       | 16             | 0.035                          | 44             | 1.006          |
|                     |                              |                       | 16             | 0.039                          | 44             | 1.007          |
|                     |                              |                       | 16             | 0.039                          | 44             | 1.027          |
|                     |                              |                       | 16             | 0.04 <b>0</b>                  | 44             | 1.038          |
|                     |                              |                       | 16             | 0.041                          | 44             | 1.058          |
|                     |                              |                       | 16             | 0.044                          | 44             | 1.060          |
|                     |                              |                       | 16             | 0.045                          | 44             | 1.129          |
|                     |                              |                       | 16             | 0.049                          | 44             | 1.188          |
|                     |                              |                       | 17             | 0.044                          | 45             | 0.999          |
|                     |                              |                       | 17             | 0.048                          | 45             | 1.035          |
|                     |                              |                       | 17             | 0.057                          | 45             | 1.046          |
|                     |                              |                       | 18             | 0.051                          | 45             | 1.066          |
|                     |                              |                       | 18             | 0.066                          | 45             | 1.068          |
|                     |                              |                       | 19             | 0.066                          | 45<br>45       | 1.070          |
|                     |                              |                       | 19             | 0.067                          | 45             | 1.101          |
|                     |                              |                       | 19             | 0.068                          | 45<br>45       | 1.110          |
|                     |                              |                       | 19<br>19       | 0. <b>075</b><br>0. <b>077</b> | 45<br>45       | 1.114<br>1.116 |
|                     |                              |                       | 19             | 0.077                          | 45<br>45       | 1,121          |
|                     |                              |                       | 19<br>19       | 0.084                          | 45<br>45       | 1.121          |
|                     |                              |                       | 19             | 0.087                          | 45             | 1.122          |
|                     |                              |                       | 20             | 0.061                          | 45             | 1.138          |
|                     |                              |                       | 20             | 0.068                          | 45             | 1.145          |
|                     |                              |                       | 20             | 0.068                          | 45             | 1.157          |
|                     |                              |                       | 20             | 0,075                          | 45             | 1.157          |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

. -

| Species             | <sup>1</sup> No. of<br>fish. | Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weigh<br>(g) |
|---------------------|------------------------------|-----------------------|----------------|---------------|----------------|--------------|
| C. marianae (cont.) | 110m                         | teeningue             | 20             | 0.085         | 45             | 1.162        |
|                     |                              |                       | 20             | 0.095         | 45             | 1.102        |
|                     |                              |                       | 20             | 0.095         | 45             | 1.190        |
|                     |                              |                       | 21             | 0.095         | 45             | 1.200        |
|                     |                              |                       | 21             | 0.102         | 45             | 1.200        |
|                     |                              |                       | 21             | 0.102         | 45             | 1.202        |
|                     |                              |                       | 21             |               |                |              |
|                     |                              |                       |                | 0.109         | 45             | 1.229        |
|                     |                              |                       | 22             | 0.095         | 45             | 1.239        |
|                     |                              |                       | 22             | 0.098         | 46             | 1.033        |
|                     |                              |                       | 22             | 0.103         | 46             | 1.074        |
|                     |                              |                       | 22             | 0.108         | 46             | 1.102        |
|                     |                              |                       | 22             | 0.117         | 46             | 1.109        |
|                     |                              |                       | 22             | 0.119         | 46             | 1.112        |
|                     |                              |                       | 22             | 0.120         | 46             | 1.138        |
|                     |                              |                       | 22             | 0.130         | 46             | 1.178        |
|                     |                              |                       | 22             | 0.141         | 46             | 1.183        |
|                     |                              |                       | 23             | 0,100         | 46             | 1.192        |
|                     |                              |                       | 23             | 0,106         | 46             | 1.219        |
|                     |                              |                       | 23             | 0.114         | 46             | 1.313        |
|                     |                              |                       | 23             | 0.117         | 46             | 1.359        |
|                     |                              |                       | 23             | 0.127         | 47             | 1.163        |
|                     |                              |                       | 23             | 0.132         | 47             | 1.179        |
|                     |                              |                       | 23             | 0.134         | 47             | 1.194        |
|                     | ·                            |                       | 23             | 0.136         | 47             | 1,203        |
|                     |                              |                       | 23             | 0.140         | 47             | 1.235        |
|                     |                              |                       | 23             | 0.149         | 47             | 1.249        |
|                     |                              |                       | 23             | 0.168         | 47             | 1.257        |
|                     |                              |                       | 24             | 0.120         | 47             | 1.268        |
|                     |                              |                       | 24             | 0.127         | 47             | 1.284        |
|                     |                              |                       | 24             | 0.135         | 47             | 1.295        |
|                     |                              |                       | 24             | 0.138         | 47             | 1.311        |
| ·                   |                              |                       | 24             | 0.138         | 47             | 1.405        |
|                     |                              |                       | 24             | 0.148         | 48             | 1.235        |
|                     |                              |                       | 24             | 0.158         | 48             | 1.253        |
|                     |                              |                       | 25             | 0.133         | 48             | 1.317        |
|                     |                              |                       | 25             | 0.135         | 48             | 1.375        |
|                     |                              |                       | 25             | 0.137         | 48             | 1.380        |
|                     |                              |                       | 25             | 0.147         | 48             | 1.442        |
|                     |                              |                       | 25             | 0.150         | 48             | 1.534        |
|                     |                              |                       | 25             | 0.155         | 49             | 1.338        |
|                     |                              |                       | 25             | 0.155         | 49             | 1.356        |
|                     |                              |                       | 25             | 0.171         | 49             | 1.392        |
|                     |                              |                       | 26             | 0.179         | 49<br>49       | 1,392        |
|                     |                              |                       | 26<br>26       | 0.179         | 49<br>49       | 1,393        |
|                     |                              |                       | 26<br>26       | 0.190         | 49<br>49       | 1,398        |
|                     |                              |                       | 26<br>26       | 0.211         | 49<br>49       |              |
|                     |                              |                       |                |               |                | 1.432        |
|                     |                              |                       | 27             | 0.197         | 49<br>40       | 1,469        |
|                     | <u></u>                      |                       | 27             | 0.216         | 49             | 1.495        |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

-

| Species                         | <sup>1</sup> No. of | Sampling      | Length      | Weight         | Length      | Weigh          |
|---------------------------------|---------------------|---------------|-------------|----------------|-------------|----------------|
|                                 | fish.               | technique     | <u>(mm)</u> | <u>(g)</u>     | <u>(mm)</u> | <u>(g)</u>     |
| C. marianae (cont.)             |                     |               | 28          | 0.210          | 49          | 1.498          |
|                                 |                     |               | 28          | 0.220          | 49          | 1.528          |
|                                 |                     |               | 28          | 0.222          | 49          | 1.548          |
|                                 |                     |               | 29          | 0.224          | 50          | 1.275          |
|                                 |                     |               | 29          | 0.226          | 50          | 1.285          |
|                                 |                     |               | 29          | 0.245          | 50          | 1.335          |
|                                 |                     |               | 29          | 0.246          | 50          | 1.372          |
|                                 |                     |               | 29          | 0.251          | 50          | 1.384          |
|                                 |                     |               | 29          | 0.266          | 50          | 1.409          |
|                                 |                     |               | 29          | 0.267          | 50          | 1.451          |
|                                 |                     |               | 29          | 0.310          | 50          | 1.452          |
|                                 |                     |               | 30          | 0.224          | 50          | 1.503          |
|                                 |                     |               | 30          | 0.243          | 50          | 1.555          |
|                                 |                     |               | 30          | 0.248          | 51          | 1.566          |
|                                 |                     |               | 30          | 0.259          | 51          | 1.580          |
|                                 |                     |               | 30          | 0.26 <b>6</b>  | 51          | 1.596          |
|                                 |                     |               | 30          | 0.268          | 51          | 1.640          |
|                                 |                     |               | 30          | 0.268          | 51          | 1.652          |
|                                 |                     |               | 30          | 0.271          | 52          | 1.677          |
|                                 |                     |               | 30          | 0.275          | 52          | 1.897          |
|                                 |                     |               | 30          | 0.30 <b>2</b>  | 52          | 1.923          |
|                                 |                     |               | 30          | 0.304          | 53          | 1.747          |
|                                 |                     |               | 30          | 0.316          | 54          | 1.727          |
|                                 |                     |               | 30          | 0.325          | 54          | 1.755          |
|                                 |                     |               | 31          | 0.264          | 55          | 2.168          |
|                                 |                     |               | 31          | 0.325          | 56          | 2.058          |
|                                 |                     |               | 31          | 0.342          | 56          | 2.381          |
|                                 |                     |               | 32          | 0.328          | 56          | 2.390          |
|                                 |                     |               | 32          | 0.335          | 57          | 2.205          |
|                                 |                     |               | 32          | 0.349          | 57          | 2.200          |
|                                 |                     |               | 33          | 0.120          | 57          | 2.390          |
|                                 |                     |               | 33          | 0.348          | 58          | 2.335          |
|                                 |                     |               | 33          | 0.366          | 58          |                |
|                                 |                     |               | 33<br>33    | 0.308          | 58<br>59    | 2.519<br>2.528 |
|                                 |                     |               | 33<br>34    |                | 59<br>60    | 2.528          |
|                                 |                     |               | 34<br>34    | 0,134          | 60<br>60    |                |
|                                 |                     |               | 34<br>34    | 0,353<br>0.389 | 60<br>61    | 2.861          |
|                                 |                     |               |             |                |             | 2.689          |
|                                 |                     |               | 34          | 0.394          | 61          | 2.791          |
|                                 |                     |               | 34<br>24    | 0.411          | 61          | 2.832          |
|                                 |                     |               | 34          | 0.422          | 61          | 2.966          |
|                                 |                     |               | 34<br>34    | 0.449          | 63          | 2.916          |
|                                 |                     |               | 34          | 0,505          |             |                |
| Craterocephalus stercusmuscarum | 63 *                | Seine-netting | 16          | 0.052          | 30          | 0.229          |
|                                 |                     | -             | 17          | 0.049          | 30          | 0.233          |
|                                 |                     |               | 19          | 0.068          | 30          | 0.234          |
|                                 |                     |               | 23          | 0.091          | 31          | 0.209          |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

. -

| Species                         | <sup>1</sup> No. of |                | Length      | Weight        | Length      | Weight |
|---------------------------------|---------------------|----------------|-------------|---------------|-------------|--------|
|                                 | fish.               | technique      | <u>(mm)</u> | (g)           | <u>(mm)</u> | (g)    |
| C. stercusmuscarum (cont.)      |                     |                | 23          | 0.09 <b>6</b> | 31          | 0.227  |
|                                 |                     |                | 23          | 0.121         | 31          | 0.233  |
|                                 |                     |                | 24          | 0.110         | 31          | 0.235  |
|                                 |                     |                | 25          | 0.165         | 31          | 0.242  |
|                                 |                     |                | 26          | 0.135         | 31          | 0.243  |
|                                 |                     |                | 27          | 0.119         | 31          | 0.260  |
|                                 |                     |                | 27          | 0.136         | 31          | 0.276  |
|                                 |                     |                | 27          | 0.143         | 32          | 0.244  |
|                                 |                     |                | 27          | 0.147         | 33          | 0.247  |
|                                 |                     |                | 27          | 0.152         | 33          | 0.252  |
|                                 |                     |                | 27          | 0.155         | 34          | 0.268  |
|                                 |                     |                | 27          | 0.156         | 34          | 0.278  |
|                                 |                     |                | 27          | 0.170         | 35          | 0.263  |
|                                 |                     |                | 27          | 0.19 <b>9</b> | 35          | 0.290  |
|                                 |                     |                | 28          | 0.149         | 35          | 0.295  |
|                                 |                     |                | 28          | 0.172         | 35          | 0.309  |
|                                 |                     |                | 28          | 0.184         | 35          | 0.323  |
|                                 |                     |                | 28          | 0.248         | 36          | 0.285  |
|                                 |                     |                | 29          | 0.186         | 37          | 0.339  |
|                                 |                     |                | 29          | 0.188         | 37          | 0.348  |
|                                 |                     |                | 29<br>29    | 0.200         | 37          | 0.370  |
|                                 |                     |                | 29<br>29    |               | 38          | 0.370  |
|                                 |                     |                |             | 0.210         |             |        |
|                                 |                     |                | 30          | 0.178         | 38          | 0.428  |
|                                 |                     |                | 30          | 0.193         | 40          | 0.417  |
|                                 |                     |                | 30          | 0.194         | 40          | 0.423  |
|                                 |                     |                | 30          | 0.204         | 41          | 0.539  |
|                                 |                     |                | 30          | 0.215         | 45          | 0.630  |
|                                 |                     |                | 30          | 0.228         |             |        |
| Glossogobius giuris             | 2                   | *Seine-netting | 68          | 1.753         | 80          | 2.741  |
| Melanotaenia splendida inornata | 24                  | *Seine-netting | 23          | 0.116         | 34          | 0.314  |
|                                 |                     |                | 23          | 0.120         | 34          | 0.375  |
|                                 |                     |                | 24          | 0.126         | 35          | 0.453  |
|                                 |                     |                | 24          | 0.146         | 37          | 0.488  |
|                                 |                     |                | 24          | 0.208         | 38          | 0.594  |
|                                 |                     |                | 26          | 0.165         | 40          | 0.689  |
|                                 |                     |                | 26          | 0.194         | 41          | 0.668  |
|                                 |                     |                | 27          | 0.194         | 43          | 0.756  |
|                                 |                     |                | 28          | 0.203         | 50          | 1.298  |
|                                 |                     |                | 30          | 0.250         | 55          | 1.538  |
|                                 |                     |                | 31          | 0.296         | 64          | 2.453  |
|                                 |                     |                | 32          | 0.316         | 85          | 6.907  |
|                                 |                     | <b>+</b> C.'   |             | 0.202         |             | 0.004  |
| Melanotaenia nigrans            | 36                  | *Scine-netting | 28          | 0.202         | 32          | 0.284  |
|                                 |                     |                | 28          | 0.212         | 32          | 0.290  |
|                                 |                     |                | 28          | 0.222         | 33          | 0.292  |
|                                 |                     |                | 29          | 0.210         | 33          | 0.312  |
|                                 |                     |                | 29          | 0.210         | 33          | 0.313  |
|                                 |                     |                | 29          | 0.243         | 33          | 0.316  |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

nd indicates no available data.

APP\_A2.DOC (page 6 of 7)

| Species            | <sup>1</sup> No. of<br>fish. | Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|--------------------|------------------------------|-----------------------|----------------|---------------|----------------|---------------|
| M. nigrans (cont.) |                              |                       | 30             | 0.219         | 33             | 0.330         |
| <b>U</b>           |                              |                       | 30             | 0.244         | 33             | 0,469         |
|                    |                              |                       | 30             | 0.251         | 34             | 0.331         |
|                    |                              |                       | 30             | 0.269         | 35             | 0.367         |
|                    |                              |                       | 30             | 0.292         | 36             | 0.401         |
|                    |                              |                       | 30             | 0.305         | 36             | 0.442         |
|                    |                              |                       | 31             | 0.270         | 37             | 0.378         |
|                    |                              |                       | 31             | 0.280         | 37             | 0.447         |
|                    |                              |                       | 31             | 0.286         | 37             | 0.463         |
|                    |                              |                       | 31             | 0.299         | 38             | 0.456         |
|                    |                              |                       | 32             | 0.249         | 39             | 0.454         |
|                    |                              |                       | 32             | 0.272         | 43             | 0.665         |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

nd indicates no available data.

APP\_A2.DOC (page 7 of 7)

| Species                         | <sup>1</sup> No. 0 |               | Length       | Weight         | Length | Weight |
|---------------------------------|--------------------|---------------|--------------|----------------|--------|--------|
|                                 | fish.              | technique     | (mm)         | (g)            | (mm)   | (g)    |
| Amniataba percoides             | 23                 | *Gill-netting | 126          | 33.845         | 76     | 7.012  |
|                                 |                    |               | 117          | 28.668         | 120    | 22.544 |
|                                 |                    |               | 118          | 29.516         | 73     | 6.366  |
|                                 |                    |               | 71           | 6.055          | 79     | 7.534  |
|                                 |                    |               | 142          | 44.235         | 99     | 14.388 |
|                                 |                    |               | 110          | 27.576         | 118    | 30.776 |
|                                 |                    |               | 80           | 9.10 <b>8</b>  | 75     | 6.558  |
|                                 |                    |               | 117          | 36.153         | 90     | 11.621 |
|                                 |                    |               | 137          | 47.243         | 77     | 8.118  |
|                                 |                    |               | 115          | 38.850         | 145    | 56.225 |
|                                 |                    |               | 80           | 7.898          | 110    | 19.693 |
|                                 |                    |               | 94           | 14,107         |        |        |
| Anodontiglanis dahli            | 7                  | Gill-netting  | 297          | nd             | 354    | nd     |
| 0                               |                    | 0             | 309          | nd             | 280    | nd     |
|                                 |                    |               | 307          | nd             | 296    | nd     |
|                                 |                    |               | 305          | nd             |        |        |
| Arius midgleyi                  | 1                  | Gill-netting  | 580          | nd             |        |        |
| Arius leptaspis                 | 1                  | Gill-netting  | 244          | nd             |        |        |
| Ambassis macleayi               | 2                  | Gill-netting  | 60           | 5.000          | 62     | 6.000  |
| Hephaestus fuliginosus          | 1                  | Gill-netting  | 300          | nd             |        |        |
| Leiopotherapon unicolor         | 5                  | Gill-netting  | 87           | 12.000         | 162    | 64.000 |
|                                 |                    |               | 163          | 80.000         | 158    | 66.000 |
|                                 |                    |               | 1 <b>8</b> 9 | 122,000        |        |        |
| Megalops cyprinoides            | 1                  | Gill-netting  | 190          | 80.000         |        |        |
| Melanotaenia splendida inornata | 4                  | Gill-netting  | 104          | 17.000         | 108    | 20.000 |
|                                 |                    | _             | 80           | 8.000          | 88     | 12.000 |
| Nematalosa erebi                | 15                 | Gill-netting  | 167          | 68.00 <b>0</b> | 172    | 80.000 |
|                                 |                    |               | 148          | 38,000         | 148    | 40.000 |
|                                 |                    |               | 165          | 68.000         | 160    | 64.000 |
|                                 |                    |               | 144          | 46.00 <b>0</b> | 152    | 60.000 |
|                                 |                    |               | 162          | 66.00 <b>0</b> | 174    | 82.000 |
|                                 |                    |               | 157          | 52.00 <b>0</b> | 159    | 66.000 |
|                                 |                    |               | 160          | 66.00 <b>0</b> | 155    | 58.000 |
|                                 |                    |               | 144          | 44.000         |        |        |
| Neosiluris hyrtlii              | 2                  | Gill-netting  | 184          | nd             | 229    | nd     |

 Table B3
 Fish sampled at Jim Jim Creek downstream site on 23/05/96 & 24/05/96, before the opening of the Jim Jim Creek crossing.

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

| Species                  | <sup>1</sup> No. of<br>fish. | Sampling<br>technique | Length<br>(mm) | Weight<br>(g)   | Length<br>(mm) | Weight<br>(g) |
|--------------------------|------------------------------|-----------------------|----------------|-----------------|----------------|---------------|
| Pingalla midgleyi        | 6                            | Gill-netting          | 107            | 18.000          | 69             | 6.000         |
|                          |                              |                       | 72             | 7.000           | 79             | 6.000         |
|                          |                              |                       | 67             | 6.000           | 89             | 13.000        |
| Syncomistes butleri      | 4                            |                       | 159            | 68.00 <b>0</b>  | 257            | 320.000       |
|                          |                              |                       | 254            | 315.00 <b>0</b> | 159            | 70.000        |
| Scleropages jardini      | 2                            |                       | 432            | nd              | 478            | nd            |
| Strongylura kreffti      | 2                            |                       | 375            | 104.000         | 360            | 82.000        |
| Neosiluris ater          | 16                           |                       | 293            | nd              | 315            | nd            |
|                          |                              |                       | 230            | nd              | 205            | nd            |
|                          |                              |                       | 258            | nd              | 408            | nd            |
|                          |                              |                       | 295            | nd              | 244            | nd            |
|                          |                              |                       | 270            | nd              | 315            | nd            |
|                          |                              |                       | 289            | nd              | 310            | nd            |
|                          |                              |                       | 345            | nd              | 307            | nd            |
|                          |                              |                       | 235            | nd              | 3 <b>48</b>    | nd            |
| Craterocephalus marianae | 124 *                        | *Scine-netting        | 35             | 0.427           | 43             | 0.941         |
|                          |                              |                       | 36             | 0.474           | 45             | 1.161         |
|                          |                              |                       | 35             | 0.489           | 36             | 0.488         |
|                          |                              |                       | 39             | 0,408           | 46             | 1.135         |
|                          |                              |                       | 36             | 0.460           | 39             | 0.597         |
|                          |                              |                       | 39             | 0.404           | 35             | 0.449         |
|                          |                              |                       | 39             | 0.416           | 35             | 0.400         |
|                          |                              |                       | 40             | 0.432           | 39             | 0.605         |
|                          |                              |                       | 36             | 0.503           | 40             | 0.668         |
|                          |                              |                       | 34             | 0.374           | 37             | 0.460         |
|                          |                              |                       | 35             | 0.429           | 35             | 0.447         |
|                          |                              |                       | 38             | 0.584           | 41             | 0,759         |
|                          |                              |                       | 36             | 0.449           | 37             | 0.524         |
|                          |                              |                       | 35             | 0.401           | 38             | 0.629         |
|                          |                              |                       | 40             | 0.611           | 40             | 0.746         |
|                          |                              |                       | 33             | 0.403           | 35             | 0.411         |
|                          |                              |                       | 19             | 0.053           | 34             | 0.416         |
|                          |                              |                       | 31             | 0.326           | 36             | 0.476         |
|                          |                              |                       | 42             | 0.716           | 35             | 0.430         |
|                          |                              |                       | 28             | 0.391           | 34             | 0.352         |
|                          |                              |                       | 34             | 0.422           | 33             | 0.342         |
|                          |                              |                       | 35             | 0.391           | 33             | 0.342         |
|                          |                              |                       | 33             | 0.401           | 34             | 0.389         |
|                          |                              |                       | 35             | 0.398           | 43             | 0.635         |
|                          |                              |                       | 35             | 0.364           | 58             | 2.005         |
|                          |                              |                       | 34             | 0.380           | 57             | 2.115         |
|                          |                              |                       | 33             | 0.322           | 50             | 1.395         |
|                          |                              |                       | 35             | 0.322           | 50<br>57       | 2.231         |
|                          |                              |                       | 30<br>34       | 0.429           | 55             | 1.846         |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

| Species                         | <sup>1</sup> No. of | Sampling      | Length      | Weight        | Length      | Weight         |
|---------------------------------|---------------------|---------------|-------------|---------------|-------------|----------------|
| A                               | fish.               | technique     | <u>(mm)</u> | <u>(g)</u>    | <u>(mm)</u> | <u>(g)</u>     |
| C. marianae (cont.)             |                     |               | 23          | 0.087         | 53          | 1.569          |
|                                 |                     |               | 30          | 0.171         | 54          | 1.692          |
|                                 |                     |               | 34          | 0.395         | 49          | 1.259          |
|                                 |                     |               | 25          | 0.115         | 43          | 0.848          |
|                                 |                     |               | 28          | 0.144         | 43          | 0.810          |
|                                 |                     |               | 23          | 0.113         | 45          | 0.943          |
|                                 |                     |               | 26          | 0.168         | 40          | 0.734          |
|                                 |                     |               | 22          | 0.102         | 38          | 0.578          |
|                                 |                     |               | 14          | 0.030         | 43          | 0.802          |
|                                 |                     |               | 22          | 0.094         | 48          | 1.172          |
|                                 |                     |               | 14          | 0.027         | 42          | 0.719          |
|                                 |                     |               | 15          | 0.017         | 33          | 0.566          |
|                                 |                     |               | 58          | 2.410         | 40          | 0.674          |
|                                 |                     |               | 57          | 2.015         | 42          | 0.752          |
|                                 |                     |               | 55          | 1.902         | 41          | 0.708          |
|                                 |                     |               | 60          | 2.494         | 43          | 0.746          |
|                                 |                     |               | 58          | 2.297         | 40          | 0.693          |
|                                 |                     |               | 51          | 1.437         | 42          | 0.783          |
|                                 |                     |               | 54          | 1,903         | 38          | 0.6 <b>8</b> 1 |
|                                 |                     |               | 53          | 1.512         | 42          | 0.887          |
|                                 |                     |               | 39          | 0,807         | 41          | 0.772          |
|                                 |                     |               | 54          | 1.834         | 39          | 0,688          |
|                                 |                     |               | 53          | 1.657         | 37          | 0.464          |
|                                 |                     |               | 55          | 1.893         | 46          | 1.089          |
|                                 |                     |               | 50          | 1.499         | 38          | 0.563          |
|                                 |                     |               | 38          | 0.536         | 34          | 0.437          |
|                                 |                     |               | 40          | 0,750         | 39          | 0.603          |
|                                 |                     |               | 34          | 0.980         | 22          | 0.116          |
|                                 |                     |               | 47          | 1.093         | 25          | 0.099          |
|                                 |                     |               | 54          | 1.803         | 37          | 0.523          |
|                                 |                     |               | 41          | 0.780         | 3 <b>9</b>  | 0.595          |
|                                 |                     |               | 50          | 1.533         | 40          | 0.666          |
|                                 |                     |               | 47          | 1.061         | 34          | 0.393          |
| <u> </u>                        |                     | <u> </u>      |             |               |             |                |
| Craterocephalus stercusmuscarum | 38 *                | Seine-netting | 15          | 0.016         | 27          | 0.133          |
|                                 |                     |               | 15          | 0.023         | 28          | 0.074          |
|                                 |                     |               | 17          | 0.03 <b>5</b> | 28          | 0.133          |
|                                 |                     |               | 18          | 0.040         | 28          | 0.135          |
|                                 |                     |               | 19          | 0.034         | 28          | 0.145          |
|                                 |                     |               | 19          | 0.041         | 28          | 0.146          |
|                                 |                     |               | 22          | 0.06 <b>8</b> | 28          | 0.155          |
|                                 |                     |               | 23          | 0.070         | 29          | 0.123          |
|                                 |                     |               | 23          | 0.09 <b>2</b> | 29          | 0.157          |
|                                 |                     |               | 24          | 0.084         | 29          | 0.185          |
|                                 |                     |               | 24          | 0.097         | 30          | 0,160          |
|                                 |                     |               | 24          | 0.105         | 30          | 0.172          |
|                                 |                     |               | 25          | 0.083         | 30          | 0.222          |
|                                 |                     |               | 25          | 0.091         | 31          | 0.205          |
|                                 |                     |               | 25          | 0.100         | 31          | 0.206          |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

| Species                         | <sup>1</sup> No. of<br>fish. | f Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|---------------------------------|------------------------------|-------------------------|----------------|---------------|----------------|---------------|
| C. stercusmuscarum (cont.)      |                              |                         | 26             | 0.129         | 32             | 0.203         |
|                                 |                              |                         | 27             | 0.119         | 33             | 0.242         |
|                                 |                              |                         | 27             | 0.121         | 35             | 0.296         |
|                                 |                              |                         | 27             | 0.122         | 37             | 0.323         |
| Glossogobius giuris             | 5                            | *Seine-netting          | 28             | 0.108         | 45             | 0.413         |
|                                 |                              |                         | 36             | 0.213         | 47             | 0.554         |
|                                 |                              |                         | 45             | 0.387         |                |               |
| Melanotaenia splendida inornata | (16)                         | *Seine-netting          | 25             | 0.135         | 50             | 1.131         |
|                                 |                              |                         | 30             | 0.245         | 55             | 1,306         |
|                                 |                              |                         | 38             | 0.423         | 55             | 1.396         |
|                                 |                              |                         | 41             | 0.600         | 55             | 1.623         |
|                                 |                              |                         | 42             | 0.672         | 56             | 1.941         |
|                                 |                              |                         | 43             | 0.850         | 58             | 2.054         |
|                                 |                              |                         | 44             | 0.831         | 59             | 2.024         |
|                                 |                              |                         | 45             | 0.895         | 65             | 3.138         |
|                                 | 29                           | Seine-netting           | 60             | nd            | 16             | nd            |
|                                 |                              |                         | 56             | nd            | 44             | nd            |
|                                 |                              |                         | 45             | nd            | 19             | nd            |
|                                 |                              |                         | 61             | nd            | 19             | nd            |
|                                 |                              |                         | 21             | nd            | 5 <b>2</b>     | nd            |
|                                 |                              |                         | 54             | nd            | 48             | nd            |
|                                 |                              |                         | 44             | nd            | 22             | nd            |
|                                 |                              |                         | 61             | nd            | 33             | nđ            |
|                                 |                              |                         | 43             | nd            | 48             | nđ            |
|                                 |                              |                         | 44             | nd            | 51             | nđ            |
|                                 |                              |                         | 60             | nd            | 38             | nd            |
|                                 |                              |                         | 68             | nd            | 43             | nđ            |
|                                 |                              |                         | 47             | nd            | 44             | nd            |
|                                 |                              |                         | 61             | nd            | 54             | nd            |
|                                 |                              |                         | 55             | nd            |                |               |
| Melanotaenia nigrans            | (95)                         | *Seine-netting          | 16             | 0.031         | 24             | 0.092         |
|                                 |                              |                         | 18             | 0,095         | 24             | 0.094         |
|                                 |                              |                         | 19             | 0.051         | 24             | 0.097         |
|                                 |                              |                         | 19             | 0.064         | 24             | 0.098         |
|                                 |                              |                         | 20             | 0.058         | 24             | 0.098         |
|                                 |                              |                         | 21             | 0.053         | 24             | 0.098         |
|                                 |                              |                         | 21             | 0.059         | 24             | 0.100         |
|                                 |                              |                         | 21             | 0.06 <b>0</b> | 24             | 0.107         |
|                                 |                              |                         | 21             | 0.070         | 24             | 0.112         |
|                                 |                              |                         | 21             | 0.079         | 24             | 0.119         |
|                                 |                              |                         | 21             | 0.085         | 25             | 0.085         |
|                                 |                              |                         | 22             | 0.06 <b>6</b> | 25             | 0.089         |
|                                 |                              |                         | 22             | 0.070         | 25             | 0.091         |
|                                 |                              |                         | 22             | 0.073         | 25             | 0.096         |
|                                 |                              |                         | 22             | 0.078         | 25             | 0.098         |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

. -

| <sup>1</sup> No. of Sampling<br>fish. technique | Length<br>(mm)  | Weight<br>(g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Length<br>(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Weight<br>(g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.120<br>0.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 | 24              | 0.09 <b>2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 106 Seine-netting                               |                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | 25              | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | 26              | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nđ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | 23              | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | 23              | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | 24              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | 24              | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | fish. technique | fish.         technique         (mm)           22         22         22           22         22         22           22         22         22           22         22         22           22         22         22           23         23         23           23         23         23           23         23         23           23         23         23           23         23         23           23         23         23           23         23         23           23         23         23           23         23         23           23         23         23           23         23         23           23         23         23           24         24         24           24         24         24           24         24         24           24         24         24           24         25         26           32         23         23           24         24         24           24         24 | fish.         technique         (mm)         (g)           22         0.080         22         0.088           22         0.089         22         0.093           22         0.093         22         0.093           22         0.093         22         0.120           23         0.071         23         0.072           23         0.077         23         0.077           23         0.077         23         0.086           23         0.079         23         0.086           23         0.086         23         0.086           23         0.086         23         0.086           23         0.086         23         0.087           23         0.087         23         0.087           23         0.087         23         0.087           23         0.087         23         0.087           23         0.087         23         0.087           23         0.087         23         0.081           24         0.066         24         0.072           24         0.082         24         0.082           24         0 | fish.         technique         (mm)         (g)         (mm)           22         0.080         25         22         0.088         25           22         0.089         25         22         0.089         25           22         0.096         25         22         0.096         25           22         0.096         25         22         0.071         25           23         0.071         25         23         0.072         25           23         0.077         25         23         0.077         25           23         0.079         25         23         0.081         26           23         0.086         26         23         0.086         26           23         0.086         26         23         0.087         27           23         0.087         27         23         0.087         27           23         0.087         27         23         0.087         27           23         0.087         27         23         0.087         27           23         0.080         28         24         0.079         27           24 </td |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

nd indicates no available data.

APP\_A3.Doc (Page 5 of 6)

| Species            | <sup>1</sup> No. of<br>fish, | Sampling technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>_(g) |
|--------------------|------------------------------|--------------------|----------------|---------------|----------------|----------------|
| M. nigrans (cont.) |                              |                    | 26             | nd            | 27             | nd             |
|                    |                              |                    | 27             | nd            | 22             | nd             |
|                    |                              |                    | 27             | nd            | 25             | nđ             |
|                    |                              |                    | 28             | nd            | 21             | nd             |
|                    |                              |                    | 31             | nd            | 26             | nđ             |
|                    |                              |                    | 24             | nd            | 22             | nd             |
|                    |                              |                    | 25             | nd            | 24             | nđ             |
|                    |                              |                    | 23             | nd            | 23             | nd             |
|                    |                              |                    | 28             | nd            | 22             | nd             |
|                    |                              |                    | 20             | nd            | 23             | nd             |
|                    |                              |                    | 27             | nd            | 25             | nd             |
|                    |                              |                    | 27             | nd            | 23             | nd             |
|                    |                              |                    | 23             | nd            | 25             | nđ             |
|                    |                              |                    | 28             | nd            | 25             | nd             |
|                    |                              |                    | 23             | nd            | 27             | nd             |
|                    |                              |                    | 23             | nd            | 23             | nd             |
|                    |                              |                    | 25             | nd            | 25             | nd             |
|                    |                              |                    | 26             | nd            | 23             | nd             |
|                    |                              |                    | 23             | nd            | 25             | nd             |
|                    |                              |                    | 25<br>25       | nd            | 29             | nd             |
|                    |                              |                    | 23<br>24       | nd            | 29<br>24       | nd             |
|                    |                              |                    | 24<br>27       | nd            | 24             | nd             |
|                    |                              |                    |                |               | 23<br>34       | nd             |
|                    |                              |                    | 28<br>24       | nd            | 24             | nd             |
|                    |                              |                    |                | nd            |                |                |
|                    |                              |                    | 26<br>26       | nd            | 26<br>24       | nd             |
|                    |                              |                    | 26<br>24       | nd            | 24<br>24       | nd<br>nd       |
|                    |                              |                    | 24<br>24       | nd            | 24<br>27       | nd<br>nd       |
|                    |                              |                    |                | nd            |                | nd             |
|                    |                              |                    | 24             | nd            | 27             | nd             |
|                    |                              |                    | 24             | nd            | 26<br>27       | nd             |
|                    |                              |                    | 29<br>26       | nd            | 27             | nd             |
|                    |                              |                    | 26<br>25       | nd            | 29<br>25       | nđ             |
|                    |                              |                    | 25             | nd            | 25             | nd             |
|                    |                              |                    | 24             | nd            | 25             | nd             |
|                    |                              |                    | 20             | nd            | 28             | nd             |
|                    |                              |                    | 24             | nd            | 32             | nd             |
|                    |                              |                    | 27             | nd            | 24             | nd             |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

Table B4Fish sampled at the Jim Jim Creek downstream site on 7/10/96 & 8/10/96, after theopening of the Jim Jim Creek crossing.

| Species                         | No. of<br>fish | f Sampling<br>technique | Length<br>(mm) | Weight (g)      | Length<br>(mm)                          | Weight<br>(g) |
|---------------------------------|----------------|-------------------------|----------------|-----------------|-----------------------------------------|---------------|
| Amniataba percoides             | 6              | *Gill-netting           | 97<br>75       | 13.926<br>6.839 | 115                                     | 26.88         |
|                                 |                | *Seine-netting          | 56             | 3.092           | 95                                      | 14.712        |
|                                 |                | 20110 101016            | 72             | 5.419           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |               |
| Anodontiglanis dahli            | 3              | Gill-netting            | 286            | 140             | 319                                     | 216           |
|                                 |                |                         | 302            | 160             |                                         |               |
| Arius leptaspis                 | 1              | Gill-netting            | 252            | 275             |                                         |               |
| Hephaestus fuliginosus          | 1              | Gill-netting            | 356            | 900             |                                         |               |
| Leiopotherapon unicolor         | 4              | Gill-netting            | 80             | 10              | 163                                     | 64            |
|                                 |                |                         | 86             | 9               | 193                                     | 123           |
| Megalops cyprinoides            | 2              | Gill-netting            | 195            | 95              | 232                                     | 170           |
| Melanotaenia splendida inornata | 3              | Gill-netting            | 86             | 6               | 95                                      | 13            |
|                                 |                |                         | 87             | 11              |                                         |               |
|                                 | 40             | *Seine-netting          | 13             | 0.021           | 28                                      | 0.209         |
|                                 |                | _                       | 15             | 0.024           | 28                                      | 0.211         |
|                                 |                |                         | 16             | 0.029           | 30                                      | 0.238         |
|                                 |                |                         | 16             | 0.036           | 32                                      | 0.352         |
|                                 |                |                         | 20             | 0.077           | 34                                      | 0.443         |
|                                 |                |                         | 21             | 0.077           | 35                                      | 0.399         |
|                                 |                |                         | 21             | 0.079           | 35                                      | 0.404         |
|                                 |                |                         | 21             | 0.081           | 35                                      | 0.411         |
|                                 |                |                         | 21             | 0.083           | 36                                      | 0.456         |
|                                 |                |                         | 21             | 0.086           | 37                                      | 0.462         |
|                                 |                |                         | 21             | 0.088           | 37                                      | 0.56          |
|                                 |                |                         | 22             | 0.097           | 37                                      | 0.602         |
|                                 |                |                         | 22             | 0.101           | 38                                      | 0.543         |
|                                 |                |                         | 22             | 0.102           | 38                                      | 0.557         |
|                                 |                |                         | 23             | 0.098           | 40                                      | 0, <b>595</b> |
|                                 |                |                         | 23             | 0.099           | 46                                      | 0,997         |
|                                 |                |                         | 23             | 0.107           | 52                                      | 1.392         |
|                                 |                |                         | 25             | 0.143           | 55                                      | 1.511         |
|                                 |                |                         | 26             | 0,169           | 69                                      | 3.334         |
|                                 |                |                         | 26             | 0.17 <b>9</b>   | 91                                      | 8.183         |
| Nematalosa erebi                | 5              | Gill-netting            | 170            | - 98            | 175                                     | 100           |
|                                 | ~              | <i>-</i> 0              | 170            | 104             | 181                                     | 110           |
|                                 |                |                         | 174            | 96              |                                         |               |
| Neosiluris hyrtlii              | I              | Gill-netting            | 207            | 60              |                                         |               |
| Pingalla midgleyi               | 2              | Gill-netting            | 72             | 7.2             | 75                                      | 8.5           |

<sup>1</sup> Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

| Species                                              | No. of<br>fish | Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g)  |
|------------------------------------------------------|----------------|-----------------------|----------------|---------------|----------------|----------------|
| Syncomistes butleri                                  | 4              | Gill-netting          | nd             | nd            | 199            | 152            |
|                                                      |                | Ũ                     | 154            | 52            | 253            | 301            |
| Neosiluris ater                                      | . 2            | Gill-netting          | 196            | 50            | 270            | 141            |
| Toxotes chatareus                                    | 1              |                       | 226            | 233           |                |                |
| Ambassis agrammus                                    | 33             | *Seine-netting        | 9              | 0.032         | 34             | 0.561          |
|                                                      |                |                       | 12             | 0.024         | 34             | 0.565          |
|                                                      |                |                       | 13             | 0.024         | 34             | 0.575          |
|                                                      |                |                       | 13             | 0.035         | 35             | 0.55           |
|                                                      |                |                       | 14             | 0.028         | 35             | 0.559          |
|                                                      |                |                       | 14             | 0.032         | 35             | 0.616          |
|                                                      |                |                       | 14             | 0.035         | 35             | 0.649          |
|                                                      |                |                       | 15             | 0.037         | 35             | 0, <b>6</b> 72 |
|                                                      |                |                       | 16             | 0.046         | 37             | 0,688          |
|                                                      |                |                       | 17             | 0.042         | 37             | 0.713          |
|                                                      |                |                       | 22             | 0.226         | 38             | 0.782          |
|                                                      |                |                       | 27             | 0.321         | 38             | 0.789          |
|                                                      |                |                       | 30             | 0.377         | 38             | 0.811          |
|                                                      |                |                       | 32             | 0.491         | 39             | 0.902          |
|                                                      |                |                       | 32             | 0.492         | 41             | 0.898          |
|                                                      |                |                       | 33             | 0.467         | 41             | 1.075          |
|                                                      |                |                       | 34             | 0.556         |                |                |
| Ambassis macleayi                                    | 5              | *Seine-netting        | 41             | 1.045         | 52             | 2.02           |
| -                                                    |                | -                     | 42             | 1.691         | 52             | 2.346          |
|                                                      |                |                       | 48             | 1.977         |                |                |
| Craterocephalus marianae                             | 13             | *Seine-netting        | 20             | 0.077         | 26             | 0.199          |
|                                                      |                |                       | 21             | 0.093         | 34             | 0.441          |
|                                                      |                |                       | 22             | 0,108         | 35             | 0.551          |
|                                                      |                |                       | 23             | 0.114         | 37             | 0.534          |
|                                                      |                |                       | 23             | 0.129         | 45             | 1.017          |
|                                                      |                |                       | 24             | 0.133         | 48             | 1,333          |
|                                                      |                |                       | 25             | 0.162         |                |                |
| (4th and 5th net sweep from non-<br>standard sample) | 118            | *Seine-netting        | 17             | 0.044         | 25             | 0.175          |
| -                                                    |                |                       | 17             | 0.055         | 25             | 0.175          |
|                                                      |                |                       | 19             | 0.054         | 25             | 0.177          |
|                                                      |                |                       | 19             | 0.061         | 25             | 0.178          |
|                                                      |                |                       | 20             | 0.061         | 25             | 0.181          |
|                                                      |                |                       | 20             | 0.07          | 25             | 0.182          |
|                                                      |                |                       | 20             | 0.073         | 25             | 0.183          |
|                                                      |                |                       | 20             | 0.078         | 25             | 0.189          |
|                                                      |                |                       | 20             | 0.082         | 25             | 0,1 <b>94</b>  |
|                                                      |                |                       | 20             | 0.088         | 25             | 0.195          |

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

| Species             | No. of<br>fish | Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weigh<br>(g)   |
|---------------------|----------------|-----------------------|----------------|---------------|----------------|----------------|
| C. marianae (cont.) | 11316          | <u>iccanique</u>      | 20             | 0.092         | 26             | 0.177          |
| . marianae (cont.)  |                |                       | 20             | 0.092         | 20<br>26       | 0.177          |
|                     |                |                       | 20             | 0.107         | 20<br>26       | 0.198          |
|                     |                |                       | 21             | 0.125         | 26<br>26       | 0.202          |
|                     |                |                       | 22             | 0.104         | 26<br>26       | 0.202          |
|                     |                |                       | 22             | 0.104         | 26             | 0.23           |
|                     |                |                       | 22<br>22       | 0.105         | 26             | 0.239          |
|                     |                |                       | 22             | 0.105         | 20<br>27       | 0.239          |
|                     |                |                       | 22             | 0.105         | 27             | 0.195          |
|                     |                |                       | 22             | 0.121         | 27             | 0.195          |
|                     |                |                       | 22             |               | 27             | 0.195          |
|                     |                |                       |                | 0.159         |                |                |
|                     |                |                       | 22<br>23       | 0.228         | 27             | 0.202<br>0.208 |
|                     |                |                       |                | 0.102         | 27             |                |
|                     |                |                       | 23             | 0.108         | 28             | 0.209          |
|                     |                |                       | 23             | 0.11          | 28             | 0.216          |
|                     |                |                       | 23             | 0.113         | 28             | 0.219          |
|                     |                |                       | 23             | 0.115         | 28             | 0.235          |
|                     |                |                       | 23             | 0.12          | 29             | 0.254          |
|                     |                |                       | 23             | 0.125         | 29             | 0.264          |
|                     |                |                       | 23             | 0.131         | 30             | 0.235          |
|                     |                |                       | 23             | 0.14          | 30             | 0.264          |
|                     |                |                       | 23             | 0.143         | 30             | 0.271          |
|                     |                |                       | 24             | 0.108         | 30             | 0.272          |
|                     |                |                       | 24             | 0.116         | 30             | 0.299          |
|                     |                |                       | 24             | 0.119         | 32             | 0.384          |
|                     |                |                       | 24             | 0.122         | 34             | 0.394          |
|                     |                |                       | 24             | 0.124         | 34             | 0.411          |
|                     |                |                       | 24             | 0.124         | 35             | 0.507          |
|                     |                |                       | 24             | 0.125         | 35             | 0.512          |
|                     |                |                       | 24             | 0.129         | 35             | 0.514          |
|                     |                |                       | 24             | 0.132         | 35             | 0.518          |
|                     |                |                       | 24             | 0.134         | 35             | 0.527          |
|                     |                |                       | 24             | 0.135         | 36             | 0.612          |
|                     |                |                       | 24             | 0.138         | 37             | 0.737          |
|                     |                |                       | 24             | 0.148         | 38             | 0.234          |
|                     |                |                       | 24             | 0.155         | 39             | 0.262          |
|                     |                |                       | 24             | 0,157         | 39             | 0.657          |
|                     |                |                       | 24             | 0.16          | 39             | 0.723          |
|                     |                |                       | 25             | 0.131         | 40             | 0.718          |
|                     |                |                       | 25             | 0.147         | 40             | 0.753          |
|                     |                |                       | 25             | 0.151         | 40             | 0.789          |
|                     |                |                       | 25             | 0.154         | 40             | 0.8            |
|                     |                |                       | 25             | 0.154         | 40             | 0.823          |
|                     |                |                       | 25             | 0.16          | 40             | 0.862          |
|                     |                |                       | 25             | 0.16          | 44             | 1.107          |
|                     |                |                       | 25             | 0.161         | 45             | 0.965          |
|                     |                |                       | 25             | 0.162         | 45             | 1.079          |
|                     |                |                       | 25             | 0.163         | 60             | 3.332          |
|                     |                |                       | 25             | 0.173         | 69             | 4.361          |

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

nd indicates no available data.

Table B4 (cont.).

| Species                            | No. of<br>fish | Sampling<br>technique | Length<br>(mm)      | Weight (g)     | Length<br>(mm)    | Weight<br>(g) |
|------------------------------------|----------------|-----------------------|---------------------|----------------|-------------------|---------------|
| Craterocephalus stercusmuscarum    |                | *Seine-netting        | <u>(1111)</u><br>18 | 0,058          | <u>(mm)</u><br>26 | 0.119         |
| Cruter ocephatus ster cusmuscur um | 52             | Seme-netung           | 18                  | 0.056          | 20                | 0.113         |
|                                    |                |                       | 18                  | 0.044          | 27                | 0.125         |
|                                    |                |                       | 19                  | 0.044          | 27                | 0.123         |
|                                    | •              |                       | 20                  | 0.055          | 27                | 0.149         |
|                                    |                |                       | 20                  | 0.052          | 28                | 0.097         |
|                                    |                |                       | 20                  | 0.053          | 28                | 0.158         |
|                                    |                |                       | 20                  | 0.055          | 28                | 0.158         |
|                                    |                |                       | 20                  | 0.057          | 28<br>29          | 0.181         |
|                                    |                |                       | 21                  | 0.000          | 30                | 0.181         |
|                                    |                |                       | 22                  | 0.071          | 30                | 0.172         |
|                                    |                |                       | 22                  | 0.072          | 30                | 0.182         |
|                                    |                |                       | 22                  |                | 30                | 0.197         |
|                                    |                |                       | 22                  | 0.121          | 31                | 0.179         |
|                                    |                |                       | 23<br>23            | 0.077          | 31                | 0.22          |
|                                    |                |                       | 23                  | 0.084          | 31                | 0.237         |
|                                    |                |                       | 23                  | 0.085          |                   | 0.218         |
|                                    |                |                       | 23<br>23            | 0.086          | 32<br>32          | 0.226         |
|                                    |                |                       | 23<br>24            | 0.087<br>0.082 | 32                | 0.244         |
|                                    |                |                       | 24<br>24            | 0.082          | 32                | 0.231         |
|                                    |                |                       | 24<br>25            |                | 32                | 0.318         |
|                                    |                |                       |                     | 0.107          |                   |               |
|                                    |                |                       | 25                  | 0.113          | 34                | 0.311         |
|                                    |                |                       | 25<br>25            | 0.114          | 36<br>37          | 0.349         |
|                                    |                |                       |                     | 0.116          |                   | 0.374         |
|                                    |                |                       | 25                  | 0.116          | 38                | 0.41          |
| <u></u>                            |                | +0 :                  | 26                  | 0.114          | 45                | 0.743         |
| Glossamia aprion                   | 1              | *Seine-netting        | 111                 | 23.452         |                   |               |
| Glossogobius giuris                | 1              | *Seine-netting        | 49                  | 0,63 <b>2</b>  |                   | <u></u>       |
| Melanotaenia nigrans               | 11             | *Seine-netting        | 20                  | 0.217          | 28                | 0,181         |
| -                                  |                | -                     | 21                  | 0.07           | 29                | 0.234         |
|                                    |                |                       | 25                  | 0.377          | 31                | 0.209         |
|                                    |                |                       | 27                  | 0.151          | 31                | 0.236         |
|                                    |                |                       | 28                  | 0.16 <b>6</b>  | 33                | 0.266         |
|                                    |                |                       | 28                  | 0.176          |                   |               |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

Table B5Fish sampled at the Twin Falls Creek upstream site on 30/05/96 & 31/05/96, before theopening of the Jim Jim Creek crossing.

| Species                         | <sup>1</sup> No. 0<br>fish. | f Sampling<br>technique | Length<br>(mm)    | Weight               | Length            | Weight |
|---------------------------------|-----------------------------|-------------------------|-------------------|----------------------|-------------------|--------|
| Amniataba percoides             | 11                          | *gill-netting           | <u>(mm)</u><br>83 | <u>(g)</u><br>10.130 | <u>(mm)</u><br>97 | (g)    |
| Annialaba percolaes             | 11                          | -gm-netung              | 85<br>86          | 10.130               |                   | 17.150 |
|                                 |                             |                         | 126               |                      | 80                | 7.150  |
|                                 |                             |                         | 120               | 33.491<br>17.290     | 89<br>130         | 11.970 |
|                                 |                             |                         | 102               | 22.140               |                   | 35.760 |
|                                 |                             |                         | 95                | 13.340               | 91                | 10.985 |
|                                 | 2                           | *seine-netting          | 52                |                      | 54                | 2.34   |
|                                 | 2                           | ·seme-netting           | 32                | 2.620                | 54                | 2.34   |
| Anodontiglanis dahli            | 2                           | gill-netting            | 327               | nd                   | 222               | nd     |
| Lates calcarifer                | 1                           | gill-netting            | 225               | 134                  |                   |        |
| Leiopotherapon unicolor         | 15                          | gill-netting            | 151               | 60                   | 157               | 78     |
| • • •                           |                             | 0                       | 114               | 26                   | 156               | 68     |
|                                 |                             |                         | 170               | 90                   | 177               | 100    |
|                                 |                             |                         | 151               | 66                   | 167               | 73     |
|                                 |                             |                         | 222               | 236                  | 166               | 82     |
|                                 |                             |                         | 198               | 132                  | 102               | 20     |
|                                 |                             |                         | 210               | 178                  | 90                | 12     |
|                                 |                             |                         | 163               | 80                   |                   |        |
| Megalops cyprinoides            | 8                           | gill-netting            | 246               | 180                  | 229               | 142    |
| 5 1 VF                          | -                           | 88                      | 245               | 180                  | 200               | 113    |
|                                 |                             |                         | 222               | 162                  | 308               | nd     |
|                                 |                             |                         | 187               | 90                   | 193               | 92     |
| Melanotaenia splendida inornata | . 5                         | gill-netting            | 86                | 7                    | 75                | 6      |
| -                               |                             | •                       | 114               | 24                   | 103               | 16     |
|                                 |                             |                         | 107               | 20                   |                   |        |
|                                 | 57                          | seine-netting           | 60                | nd                   | 53                | nd     |
|                                 |                             |                         | 59                | nd                   | 30                | nd     |
|                                 |                             |                         | 53                | nd                   | 18                | nd     |
|                                 |                             |                         | 58                | nd                   | 29                | nd     |
|                                 |                             |                         | 42                | nd                   | 48                | nd     |
|                                 |                             |                         | 60                | nd                   | 59                | nd     |
|                                 |                             |                         | 39                | nd                   | 50                | nd     |
|                                 |                             |                         | 47                | nd                   | 30                | nd     |
|                                 |                             |                         | 37                | nd                   | 18                | nd     |
|                                 |                             |                         | 29                | nd                   | 42                | nd     |
|                                 |                             |                         | 39                | nd                   | 39                | nd     |
|                                 |                             |                         | 84                | nd                   | 31                | nd     |
|                                 |                             |                         | 62                | nd                   | 44                | nd     |
|                                 |                             |                         | 57                | nd                   | 57                | nd     |
|                                 |                             |                         | 51                | nd                   | 44                | nd     |
|                                 |                             |                         | 53                | nd                   | 55                | nd     |
|                                 |                             |                         | 44                | nd                   | 43                | nd     |

<sup>&</sup>lt;sup>1</sup> Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

nd indicates no available data.

\_

<sup>\*</sup> Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

. -

4

| Species                       | <sup>1</sup> No. of<br>fish. | Sampling technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g)  |
|-------------------------------|------------------------------|--------------------|----------------|---------------|----------------|----------------|
| M. splendida inornata (cont.) |                              |                    | 28             | nd            | 24             | nd             |
| -                             |                              |                    | 43             | nd            | 57             | nd             |
|                               |                              |                    | 43             | nđ            | 44             | nd             |
|                               |                              |                    | 45             | nđ            | 39             | nd             |
|                               |                              |                    | 47             | nd            | 59             | nd             |
|                               |                              |                    | 60             | nd            | 66             | nd             |
|                               |                              |                    | 19             | nd            | 60             | nd             |
|                               |                              |                    | 33             | nd            | 29             | nd             |
|                               |                              |                    | 56             | nd            | 21             | nd             |
|                               |                              |                    | 56             | nd            | 19             | nd             |
|                               |                              |                    | 20             | nd            | 43             | nd             |
|                               |                              |                    | 35             | nd            | 12             |                |
| Mogurnda mogurnda             | 2                            | Seine-netting      | 28             | nd            | 40             | nd             |
| Neosiluris hyrtlii            | 2                            | gill-netting       | 175            | 34            | 185            | 40             |
| Pseudomugil gertrudae         | 2                            | seine-netting      | 21             | nd            | 21             | nd             |
| Pingalla midgleyi             | <u>1</u>                     | gill-netting       | 73             | 7             |                |                |
|                               |                              | seine-netting      | 66             | nd            |                |                |
| Scleropages jardini           | 6                            | gill-netting       | 420            | nd            | 357            | nd             |
|                               |                              |                    | 384            | nd            | 346            | nd             |
|                               |                              |                    | 353            | nd            | 367            | nd             |
| Strongylura kreffti           | 5                            | gill-netting       | 362            | 90            | 305            | 44             |
|                               |                              |                    | 338            | 76            | 380            | 93             |
|                               | _                            |                    | 330            | 60            |                |                |
|                               | 1                            | seine-netting      | 262            | nd            |                |                |
| Neosiluris ater               | 13                           | gill-netting       | 264            | nd            | 281            | nd             |
|                               |                              |                    | 206            | nd            | 217            | nd             |
|                               |                              |                    | 205            | nd            | 236            | nd             |
|                               |                              |                    | 250            | nd            | 247            | nd             |
|                               |                              |                    | 225            | nd            | 263            | nd             |
|                               |                              |                    | 220            | nd            | 242            | nd             |
|                               |                              |                    | 234            | nd            |                |                |
| Craterocephalus marianae      | (281)                        | *Seine-netting     | 55             | 1.732         | 40             | 0.613          |
|                               |                              |                    | 45             | 0. <b>990</b> | 43             | 0, <b>78</b> 6 |
|                               |                              |                    | 53             | 1.404         | 39             | 0.645          |
|                               |                              |                    | 49             | 1.314         | 39             | 0.591          |
|                               |                              |                    | 52             | 1.389         | 29             | 0,557          |
|                               |                              |                    | 60             | 2.501         | 39             | 0.601          |
|                               |                              |                    | 48             | 1.103         | 34             | 0.453          |
|                               |                              |                    | 49             | 1,113         | 51             | 1.411          |
|                               |                              |                    | 50             | 1.552         | 36             | 0.965          |
|                               |                              |                    | 55             | 1.703         | 36             | 0.500          |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

. -

| Species             | <sup>1</sup> No. of<br>fish. | Sampling<br>technique | Length<br>(mm) | Weight<br>(g)          | Length<br>(mm) | Weigh<br>(g) |
|---------------------|------------------------------|-----------------------|----------------|------------------------|----------------|--------------|
| C. marianae (cont.) |                              |                       | 44             | 0.873                  | 42             | 0.740        |
|                     |                              |                       | 49             | 1.224                  | 48             | 1.141        |
|                     |                              |                       | 42             | 0.766                  | 42             | 0.733        |
|                     | •                            |                       | 55             | 1.720                  | 38             | 0.634        |
|                     |                              |                       | 42             | 0.796                  | 40             | 0.618        |
|                     |                              |                       | 49             | 1.240                  | 38             | 0.595        |
|                     |                              |                       | 48             | 1.084                  | 39             | 0.634        |
|                     |                              |                       | 42             | 0.855                  | 37             | 0,548        |
|                     |                              |                       | 49             | 1.262                  | 39             | 0.603        |
|                     |                              |                       | 47             | 1.155                  | 33             | 0.359        |
|                     |                              |                       | 44             | 0.844                  | 38             | 0.526        |
|                     |                              |                       | 38             | 0.568                  | 38             | 0.487        |
|                     |                              |                       | 39             | 0.663                  | 35             | 0.434        |
|                     |                              |                       | 42             | 0.848                  | 37             | 0.529        |
|                     |                              |                       | 38             | 0.652                  | 36             | 0.423        |
|                     |                              |                       | 49             | 1.240                  | 33             | 0.335        |
|                     |                              |                       | 55             | 1,675                  | 35             | 0.428        |
|                     |                              |                       | 43             | 0.840                  | 33             | 0.358        |
|                     |                              |                       | 35             | 0.404                  | 40             | 0.660        |
|                     |                              |                       | 40             | 0.668                  | 39             | 0.515        |
|                     |                              |                       | 45             | 0.944                  | 35             | 0.417        |
|                     |                              |                       | 38             | 0.570                  | 37             | 0.517        |
|                     |                              |                       | 40             | 0.685                  | 35             | 0.452        |
|                     |                              |                       | 37             | 0.532                  | 36             | 0.460        |
|                     |                              |                       | 38             | 0.532                  | 40             | 0.638        |
|                     |                              |                       | 41             | 0.542                  | 33             | 0.339        |
|                     |                              |                       | 41             | 0.832                  | 33             | 0.339        |
|                     |                              |                       | 41             | 0.340                  | 33             | 0.389        |
|                     |                              |                       | 39             | 0.782                  | 28             | 0.383        |
|                     |                              |                       | 39<br>41       |                        | 28<br>34       | 0.263        |
|                     |                              |                       | 41             | 0.737                  | 34             | 0.308        |
|                     |                              |                       | 35             | 1.015<br>0. <b>429</b> | 33             | 0.380        |
|                     |                              |                       |                |                        |                |              |
|                     |                              |                       | 33             | 0,361                  | 34             | 0.378        |
|                     |                              |                       | 33             | 0.389                  | 38             | 0.506        |
|                     |                              |                       | 39             | 0.616                  | 34             | 0.393        |
|                     |                              |                       | 32             | 0.302                  | 32             | 0.297        |
|                     |                              |                       | 35             | 0.428                  | 32             | 0.327        |
|                     |                              |                       | 33             | 0.400                  | 34             | 0.412        |
|                     |                              |                       | 35             | 0.452                  | 38             | 0.470        |
|                     |                              |                       | 39<br>20       | 0.544                  | 40             | 0.591        |
|                     |                              |                       | 39<br>42       | 0.647                  | 33             | 0.352        |
|                     |                              |                       | 42             | 0.815                  | 36             | 0.432        |
|                     |                              |                       | 37             | 0.535                  | 33             | 0.360        |
|                     |                              |                       | 36             | 0.458                  | 34             | 0.361        |
|                     |                              |                       | 33             | 0.412                  | 34             | 0.385        |
|                     | ÷                            |                       | 30             | 0.225                  | 37             | 0.413        |
|                     |                              |                       | 33             | 0.297                  | 35             | 0.443        |
|                     |                              |                       | 30             | 0.269                  | 32             | 0.336        |
|                     |                              |                       | 35             | 0.449                  | 34             | 0.352        |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number 1

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

**.** -

| Species             | <sup>1</sup> No. of<br>fish. | Sampling<br>technique | Length     | Weight<br>(g)         | Length     | Weight              |
|---------------------|------------------------------|-----------------------|------------|-----------------------|------------|---------------------|
| C. marianae (cont.) |                              | teeninque             | (mm)<br>21 |                       | (mm)<br>22 | <u>(g)</u><br>0.351 |
| . marianae (Colll.) |                              |                       | 31         | 0.257                 | 33         |                     |
|                     |                              |                       | 33         | 0.328                 | 33         | 0.326               |
|                     |                              |                       | 68         | 3.414                 | 32         | 0.275               |
|                     |                              |                       | 53         | 1.586                 | 32         | 0.338               |
|                     |                              |                       | 51         | 1.450                 | 34         | 0.390               |
|                     |                              |                       | 46         | 1.206                 | 30         | 0.256               |
|                     |                              |                       | 45         | 0.944                 | 33         | 0.348               |
|                     |                              |                       | 54         | 1.553                 | 32         | 0.259               |
|                     |                              |                       | 54         | 1.701                 | 33         | 0.282               |
|                     |                              |                       | 50         | 1.318                 | 33         | 0.340               |
|                     |                              |                       | 44         | 0.891                 | 28         | 0.214               |
|                     |                              |                       | 48         | 1.149                 | 33         | 0.345               |
|                     |                              |                       | 46         | 1.037                 | 33         | 0.330               |
|                     |                              |                       | 35         | 0.433                 | 22         | 0.086               |
|                     |                              |                       | 38         | 0.586                 | 23         | 0.083               |
|                     |                              |                       | 35         | 0.447                 | 49         | 1.271               |
|                     |                              |                       | 44         | 0.809                 | 61         | 2.624               |
|                     |                              |                       | 43         | 0.802                 | 43         | 0. <b>8</b> 61      |
|                     |                              |                       | 46         | 0.921                 | 43         | 0.827               |
|                     |                              |                       | 44         | 1.425                 | 41         | 0,790               |
|                     |                              |                       | 56         | 1.740                 | 50         | 1,337               |
|                     |                              |                       | 49         | 1,153                 | 44         | 0.952               |
|                     |                              |                       | 50         | 1.240                 | 42         | 0. <b>80</b> 1      |
|                     |                              |                       | 39         | <b>0</b> .60 <b>2</b> | 57         | 1.862               |
|                     |                              |                       | 44         | 0.788                 | 48         | 1.262               |
|                     |                              |                       | 32         | 0.287                 | 41         | 0. <b>696</b>       |
|                     |                              |                       | 35         | 0.431                 | 43         | 0,841               |
|                     |                              |                       | 41         | 0.684                 | 37         | 0,629               |
|                     |                              |                       | 45         | 0.867                 | 32         | 0.351               |
|                     |                              |                       | 36         | 0.494                 | 50         | 1.431               |
|                     |                              |                       | 44         | 0.885                 | 39         | 0.649               |
|                     |                              |                       | 35         | 0.418                 | 40         | 0.716               |
|                     |                              |                       | 36         | 0,492                 | 50         | 1.437               |
|                     |                              |                       | 30         | 0.293                 | 40         | 0.786               |
|                     |                              |                       | 35         | 0.433                 | 52         | 1.535               |
|                     |                              |                       | 48         | 1.015                 | 39         | 0.657               |
|                     |                              |                       | 41         | 0.743                 | 41         | 0.705               |
|                     |                              |                       | 44         | 0.807                 | 38         | 0.730               |
|                     |                              |                       | 40         | 0.654                 | 40         | 0.720               |
|                     |                              |                       | 35         | 0.477                 | 37         | 0.564               |
|                     |                              |                       | 40         | 0.655                 | 38         | 0.547               |
|                     |                              |                       | 38         | 0.563                 | 36         | 0.503               |
|                     |                              |                       | 40         | 0.615                 | 39         | 0.616               |
|                     |                              |                       | 42         | 0.699                 | 39         | 0.569               |
|                     |                              |                       | 42         | 0.764                 | 35         | 0.450               |
|                     |                              |                       | 42         | 0.722                 | 33         | 0.443               |
|                     |                              |                       | 41         | 0.673                 | 34         | 0.451               |
|                     |                              |                       |            |                       |            | 0.732               |
|                     |                              |                       |            |                       |            | 0.652               |
|                     |                              |                       | 34<br>34   | 0.396<br>0.354        | 41<br>40   |                     |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

**.** -

| Species             | <sup>1</sup> No. of Sampling<br>fish. technique | Length      | Weight     | Length      | Weight         |
|---------------------|-------------------------------------------------|-------------|------------|-------------|----------------|
| 7                   | fish. technique                                 | <u>(mm)</u> | <u>(g)</u> | <u>(mm)</u> | <u>(g)</u>     |
| C. marianae (cont.) |                                                 | 34          | 0.404      | 42          | 0.828          |
|                     |                                                 | 30          | 0.312      | 57<br>25    | 1.925<br>0.500 |
|                     |                                                 | 34          | 0.372      | 35          |                |
|                     |                                                 | 33          | 0.328      | 37          | 0.599          |
|                     |                                                 | 33          | 0.383      | 38          | 0.623          |
|                     |                                                 | 33          | 0,395      | 39          | 0.600          |
|                     |                                                 | 33          | 0.358      | 36          | 0.492          |
|                     |                                                 | 34          | 0.389      | 36          | 0.555          |
|                     |                                                 | 38          | 0.526      | 39          | 0.592          |
|                     |                                                 | 32          | 0.327      | 34          | 0.415          |
|                     |                                                 | 35          | 0.446      | 35          | 0.465          |
|                     |                                                 | 37          | 0.497      | 35          | 0.460          |
|                     |                                                 | 31          | 0.304      | 34          | 0.374          |
|                     |                                                 | 31          | 0.308      | 36          | 0.510          |
|                     |                                                 | 33          | 0.371      | 37          | 0.516          |
|                     |                                                 | 30          | 0.270      | 35          | 0.464          |
|                     |                                                 | 34          | 0.370      | 35          | 0.519          |
|                     |                                                 | 31          | 0.281      | 39          | 0,629          |
|                     |                                                 | 34          | 0.384      | 30          | 0.330          |
|                     |                                                 | 30          | 0.269      | 31          | 0.405          |
|                     |                                                 | 20          | 0.071      | 32          | 0.347          |
|                     |                                                 | 51          | 1.460      | 30          | 0.298          |
|                     |                                                 | 35          | 0.450      | 33          | 0.425          |
|                     |                                                 | 54          | 1.650      | 34          | 0.458          |
|                     |                                                 | 44          | 0.855      | 33          | 0.334          |
|                     |                                                 | 38          | 0.573      | 33          | 0.378          |
|                     |                                                 | 38          | 0.386      | 31          | 0.314          |
|                     |                                                 | 48          | 1.197      | 30          | 0.264          |
|                     |                                                 | 41          | 0.843      | 28          | 0.237          |
|                     |                                                 | 41          | 0.752      | 32          | 0.357          |
|                     |                                                 | 42          | 0.724      | 32          | 0.320          |
|                     |                                                 | 47          | 1.172      | 22          | 0.089          |
|                     |                                                 | 46          | 1.167      |             |                |
|                     | 284 Seine-netting                               | 44          | nd         | 31          | nd             |
|                     |                                                 | 43          | nd         | 60          | nd             |
|                     |                                                 | 39          | nd         | 32          | nd             |
|                     |                                                 | 30          | nd         | 39          | nd             |
|                     |                                                 | 35          | nd         | 44          | nd             |
|                     |                                                 | 34          | nd         | 48          | nd             |
|                     |                                                 | 34          | nd         | 51          | nd             |
|                     |                                                 | 37          | nd         | 48          | nd             |
|                     |                                                 | 39          | nd         | 42          | nd             |
|                     |                                                 | 36          | nd         | 52          | nd             |
|                     |                                                 | 44          | nd         | 40          | nd             |
|                     |                                                 | 31          | nd         | 36          | nd             |
|                     |                                                 | 40          | nd         | 35          | nd             |
|                     |                                                 | 39          | nd         | 37          | nd             |
|                     |                                                 | 38          | nd         | 42          | nd             |
|                     |                                                 | 40          | nd         | 42          | nd             |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

- -

| <sup>1</sup> No. of<br>fish. | Sampling technique | Length<br>(mm) | Weight<br>(g)                                                                                                                  | Length<br>(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weight<br>(g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------|--------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                    | 33             | nd                                                                                                                             | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    | 32             | nd                                                                                                                             | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    | 30             | nd                                                                                                                             | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    | 29             | nd                                                                                                                             | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    | 37             | nd                                                                                                                             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    | 33             | nd                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nđ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nđ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nđ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                    |                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nđ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                | nd                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                | nd                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                | nd                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                | nd                                                                                                                             | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                | nd                                                                                                                             | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    | 35             | nd                                                                                                                             | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    | 37             | nd                                                                                                                             | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nđ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    | 38             | nd                                                                                                                             | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    | 35             | nd                                                                                                                             | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    | 34             | nd                                                                                                                             | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    | 42             | nd                                                                                                                             | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                    |                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                    |                | fish.technique(mm)333230293733253536373536373536373536373536373536373536373536373536373536373536373536373834303537383534373933 | fish.         technique         (mm)         (g)           33         nd         32         nd           30         nd         32         nd           30         nd         29         nd           37         nd         33         nd           29         nd         37         nd           33         nd         25         nd           35         nd         35         nd           36         nd         35         nd           35         nd         35         nd           36         nd         35         nd           35         nd         35         nd           35         nd         35         nd           35         nd         35         nd           37         nd         35         nd           31         nd         31         nd           31         nd | fish.         technique         (mm)         (g)         (mm)           33         nd         42         32         nd         33           30         nd         33         30         nd         33           30         nd         33         30         nd         33           29         nd         43         37         nd         50           33         nd         30         25         nd         41           35         nd         36         nd         36           35         nd         36         nd         37           36         nd         37         nd         37           35         nd         36         nd         36           36         nd         51         40         nd         40           35         nd         35         35         nd         42           34         nd         42         34         nd         42           35         nd         42         33         1         13           35         nd         41         35         1         44           31         nd |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

2

| Species             | <sup>1</sup> No. of<br>fish. | Sampling technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|---------------------|------------------------------|--------------------|----------------|---------------|----------------|---------------|
| C. marianae (cont.) |                              |                    | 42             | nd            | 42             | nd            |
|                     |                              |                    | 55             | nd            | 40             | nd            |
|                     |                              |                    | 45             | nd            | 40             | nd            |
|                     |                              |                    | 48             | nd            | 53             | nd            |
|                     |                              |                    | 35             | nd            | 33             | nd            |
|                     |                              |                    | 44             | nd            | 34             | nd            |
|                     |                              |                    | 45             | nd            | 54             | nd            |
|                     |                              |                    | 45             | nd            | 54             | nd            |
|                     |                              |                    | 34             | nd            | 51             | nd            |
|                     |                              |                    | 38             | nd            | 34             | nd            |
|                     |                              |                    | 38             | nd            | 48             | nd            |
|                     |                              |                    | 35             | nd            | 40             | nđ            |
|                     |                              |                    | 40             | nd            | 40             | nd            |
|                     |                              |                    |                |               | 40             |               |
|                     |                              |                    | 44             | nd            |                | nd            |
|                     |                              |                    | 31             | nd            | 39<br>26       | nd            |
|                     |                              |                    | 44             | nd            | 36             | nd            |
|                     |                              |                    | 40             | nd            | 44             | nd            |
|                     |                              |                    | 48             | nd            | 46             | nd            |
|                     |                              |                    | 42             | nd            | 33             | nd            |
|                     |                              |                    | 40             | nd            | 39             | nd            |
|                     |                              |                    | .47            | nd            | 35             | nd            |
|                     |                              |                    | 32             | nd            | 50             | nd            |
|                     |                              |                    | 41             | nd            | 34             | nd            |
|                     |                              |                    | 34             | nd            | 41             | nd            |
|                     |                              |                    | 38             | nd            | 44             | nd            |
|                     |                              |                    | 38             | nd            | 42             | nd            |
|                     |                              |                    | 33             | nd            | 43             | nd            |
|                     |                              |                    | 30             | nd            | 35             | nd            |
|                     |                              |                    | 33             | nd            | 42             | nd            |
|                     |                              |                    | 48             | nd            | 56             | nd            |
|                     |                              |                    | 52             | nd            | 33             | nd            |
|                     |                              |                    | 40             | nd            | 32             | nd            |
|                     |                              |                    | 33             | nd            | 39             | nd            |
|                     |                              |                    | 40             | nd            | 48             | nd            |
|                     |                              |                    | 36             | nd            | 37             | nd            |
|                     |                              |                    | 35             | nd            | 32             | nd            |
|                     |                              |                    | 36             | nd            | 39             | nd            |
|                     |                              |                    | 30<br>40       | nd            | 41             | nd            |
|                     |                              |                    | 40<br>42       | nd            | 35             | nd            |
|                     |                              |                    | 42<br>34       |               | 33             | nd            |
|                     |                              |                    |                | nd<br>nd      | 36             |               |
|                     |                              |                    | 43             | nd<br>nd      |                | nd            |
|                     |                              |                    | 35             | nd            | 47             | nd            |
|                     |                              |                    | 37             | nd            | 33             | nd            |
|                     |                              |                    | 43             | nd            | 43             | nd            |
|                     |                              |                    | 35             | nd            | 25             | nd            |
|                     |                              |                    | 33             | nd            | 68             | nd            |
|                     |                              |                    | 35             | nd            | 24             | nd            |
|                     |                              |                    | 34             | nd            | 58             | nd            |
|                     |                              |                    | 32             | nd            | 59             | nd            |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

nd indicates no available data.

---- (ha

| Species                         | <sup>1</sup> No. 0 |                | Length      | Weight        | Length      | Weight     |
|---------------------------------|--------------------|----------------|-------------|---------------|-------------|------------|
|                                 | fish.              | technique      | <u>(mm)</u> | <u>(g)</u>    | <u>(mm)</u> | <u>(g)</u> |
| C. marianae (cont.)             |                    |                | 39          | nd            | 64          | nd         |
|                                 |                    |                | 39          | nd            | 51          | nd         |
|                                 |                    |                | 34          | nd            | 45          | nd         |
|                                 |                    |                | 50          | nd            | 33          | nd         |
|                                 |                    |                | 48          | nd            | 44          | nd         |
|                                 |                    |                | 45          | nd            | 45          | nd         |
|                                 |                    |                | 34          | nd            | 48          | nd         |
|                                 |                    |                | 50          | nd            | 43          | nd         |
|                                 |                    |                | 41          | nd            | 41          | nd         |
|                                 |                    |                | 54          | nd            | 27          | nd         |
|                                 |                    |                | 36          | nd            | 37          | nd         |
|                                 |                    |                | 50          | nd            | 33          | nd         |
|                                 |                    |                | 54          | nd            | 47          | nd         |
|                                 |                    |                | 45          | nd            | 23          | nd         |
|                                 |                    |                | 40          | nd            | 44          | nd         |
|                                 |                    |                | 42          | nd            | 40          | nd         |
|                                 |                    |                | . 33        | nd            | 33          | nđ         |
|                                 |                    |                | 36          | nd            | 49          | nd         |
|                                 |                    |                | 32          | nd            | 46          | nd         |
|                                 |                    |                | 37          | nd            | 40          | nd         |
|                                 |                    |                | 36          | nd            | 55          | nd         |
|                                 |                    |                | 34          | nd            | 44          | nd         |
|                                 |                    |                | 39          | nd            | 40          | nd         |
|                                 |                    |                | 33          | nd            | 42          | nd         |
|                                 |                    |                | 38          | nd            | 34          | nd         |
|                                 |                    |                | 30          | nd            | 31          | nd         |
|                                 |                    |                | 36          | nd            | 37          | nd         |
|                                 |                    |                | 33          | nd            | 35          | nd         |
| Craterocephalus stercusmuscarum | 13                 | *Seine-netting | 18          | 0.044         | 24          | 0.118      |
| -                               |                    | •              | 18          | 0.080         | 24          | 0.174      |
|                                 |                    |                | 19          | 0.03 <b>9</b> | 25          | 0.125      |
|                                 |                    |                | 20          | 0.057         | 28          | 0.142      |
|                                 |                    |                | 21          | 0.077         | 28          | 0.213      |
|                                 |                    |                | 23          | 0.12 <b>2</b> | 37          | 0.346      |
|                                 |                    |                | 23          | 0.235         |             |            |
|                                 | (7)                | Seine-netting  | 27          | nd            | 21          | nd         |
|                                 | ו7                 | 0              | 59          | nd            | 20          | nd         |
|                                 |                    |                | 22          | nd            | 26          | nd         |
|                                 |                    |                | 39          | nd            |             |            |
| Glossogobius giuris             | (1)                | *Seine-netting | 31          | 0.139         |             | <u> </u>   |
|                                 | 3                  | Seine-netting  | 37          | nd            | 34          | nd         |
|                                 | 2                  |                | 39          | nd            |             |            |
| Melanotaenia nigrans            | 28                 | *Seine-netting | 16          | 0.032         | 50          | 1.131      |
|                                 |                    | 0              | 16          | 0.049         | 51          | 1.251      |
|                                 |                    |                | 19          | 0.044         | 52          | 1.344      |
|                                 |                    |                | 20          | 0.055         | 54          | 1.404      |

<u>-</u> -

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

- -

;

| Species            | <sup>1</sup> No. of<br>fish. | Sampling technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g)  |
|--------------------|------------------------------|--------------------|----------------|---------------|----------------|----------------|
| M. nigrans (cont.) |                              | •                  | 29             | 0.127         | <b>〕</b> 55    | 1.441          |
| •                  |                              |                    | 29             | 0.164         | 55             | 1.520          |
|                    |                              |                    | 29             | 0.185         | 55             | 1.559          |
|                    | •                            |                    | 29             | 0.196         | 56             | 1.995          |
|                    |                              |                    | 30             | 0.212         | 57             | 1.7 <b>8</b> 7 |
|                    |                              |                    | 37             | 0.292         | 58             | 1.803          |
|                    |                              |                    | 38             | 0.463         | 59             | 1.960          |
|                    |                              |                    | 42             | 0.737         | 59             | 1.961          |
|                    |                              |                    | 42             | 0.838         | 65             | 2.607          |
|                    |                              |                    | 42             | 1.113         | 80             | 5.040          |
|                    | (20) S                       | eine-netting       | 19             | nd            | 31             | nd             |
|                    |                              |                    | 27             | nd            | 28             | nd             |
|                    |                              |                    | 22             | nd            | 30             | nd             |
|                    |                              |                    | 28             | nd            | 29             | nd             |
|                    |                              |                    | 27             | nd            | 25             | nd             |
|                    |                              |                    | 24             | nd            | 54             | nd             |
|                    |                              |                    | 27             | nd            | 27             | nd             |
|                    |                              |                    | 26             | nd            | 26             | nd             |
|                    |                              |                    | 28             | nd            | 25             | nd             |
|                    |                              |                    | 28             | nd            | 28             | nd             |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

Table B6Fish sampled at the Twin Falls Creek upstream site on 9/10/96 & 10/10/96, after theopening of the Jim Jim Creek crossing.

| Species                         | <sup>1</sup> No. 0<br>fish. | f Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|---------------------------------|-----------------------------|-------------------------|----------------|---------------|----------------|---------------|
| Amniataba percoides             | 11                          | *gill-netting           | 64             | 4.887         | 75             | 7.416         |
| -                               | •                           |                         | 69             | 6.005         | 86             | 10.25         |
|                                 |                             |                         | 70             | 5.917         | 91             | 13.239        |
|                                 |                             |                         | 71             | 6.037         | 93             | 13.315        |
|                                 |                             |                         | 72             | 6.051         | 120            | 25.069        |
|                                 |                             |                         | 72             | 6.311         |                |               |
|                                 | 4                           | *seine-netting          | 63             | 4,168         | 88             | 10.935        |
|                                 |                             |                         | 78             | 8.501         | 107            | 20.369        |
| Arius leptaspis                 | 1                           | gill-netting            | 200            | 170           |                |               |
| Glossamia aprion                | 2                           | gill-netting            | nd             | nd            | 158            | 66            |
| Hephaestus fuliginosus          | 1                           | gill-netting            | 212            | 198           |                |               |
| Lates calcarifer                | 2                           | gill-netting            | 251            | 162           | 251            | 180           |
| Leiopotherapon unicolor         | 5                           | gill-netting            | 151            | 64            | 172            | 88            |
|                                 |                             | 0                       | 164            | 80            | 195            | 124           |
|                                 |                             |                         | 168            | 78            |                |               |
|                                 | 1                           | *seine-netting          | 135            | 34,23         |                |               |
| Megalops cyprinoides            | 5                           | gill-netting            | 216            | 142           | 244            | 160           |
| 0 1 77                          |                             | 0                       | 221            | 155           | 277            | 298           |
|                                 |                             |                         | 236            | 156           |                |               |
| Melanotaenia splendida inornata | 4                           | gill-netting            | 80             | 6.1           | 85             | 7.9           |
|                                 | <u></u>                     |                         | 85             | 7.            | 87             | 9             |
|                                 | 35                          | *seine-netting          | 22             | 0.100         | 36             | 0.556         |
|                                 |                             |                         | 22             | 0.114         | 37             | 0.535         |
|                                 |                             |                         | 23             | 0.131         | 37             | 0.585         |
|                                 |                             |                         | 23             | 0.145         | 38             | 0.543         |
|                                 |                             |                         | 24             | 0.146         | 40             | 0.573         |
|                                 |                             |                         | 24             | 0.151         | 40             | 0.695         |
|                                 |                             |                         | 25             | 0.132         | 41             | 0.594         |
|                                 |                             |                         | 25             | 0.154         | 41             | 0.635         |
|                                 |                             |                         | 26             | 0.188         | 41             | 0.724         |
|                                 |                             |                         | 26             | 0.210         | 42             | 0.726         |
|                                 |                             |                         | 30             | 0.317         | 43             | 0.846         |
|                                 |                             |                         | 33             | 0.360         | 43             | 0.986         |
|                                 |                             |                         | 33             | 0.403         | 44             | 0.922         |
|                                 |                             |                         | 35             | 0.451         | 46<br>47       | 1.143         |
|                                 |                             |                         | 35             | 0.469         | 47<br>52       | 1.984         |
|                                 |                             |                         | 36<br>nd       | 0.477         | 52<br>pd       | 1.397         |
|                                 |                             |                         | nd             | nd            | nd             | nd            |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

nd indicates no available data.

- -

| Species                       | <sup>1</sup> No. of<br>fish. | Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|-------------------------------|------------------------------|-----------------------|----------------|---------------|----------------|---------------|
| M. splendida inornata (cont.) |                              |                       | nd             | nd            | nd             | nd            |
|                               |                              |                       | nd             | nd            |                |               |
| Pingalla midgleyi             | 4                            | gill-netting          | 72             | 8.1           | 93             | 16.6          |
|                               | •                            | _ +                   | 88             | 13            | 111            | 26.4          |
|                               | 1                            | *seine-netting        | 82             | 9.339         |                |               |
| Syncomistes butleri           | 1                            | gill-netting          | 163            | 74            | · · · · · ·    |               |
| Scleropages jardini           | 7                            | gill-netting          | 331            | 290           | 362            | 400           |
|                               |                              |                       | 334            | 315           | 376            | <b>45</b> 3   |
|                               |                              |                       | 337            | 301           | 390            | 409           |
|                               |                              |                       | 357            | 403           |                |               |
| Neosiluris ater               | 9                            | gill-netting          | 157            | 138           | 256            | 144           |
|                               |                              |                       | 213            | 70            | 257            | 124           |
|                               |                              |                       | 221            | 90            | 297            | 194           |
|                               |                              |                       | 235            | 98            | 328            | 270           |
|                               |                              |                       | 244            | 111           |                |               |
| Craterocephalus marianae      | (172) o<br>383               | *seine-netting        | 15             | nd            | 34             | 0.594         |
|                               |                              |                       | 16             | nd            | 35             | nd            |
|                               |                              |                       | 16             | 0.033         | 35             | nd            |
|                               |                              |                       | 16             | 0.036         | 35             | nd            |
|                               |                              |                       | 16             | 0.041         | 35             | nd            |
|                               |                              |                       | 16             | 0.062         | 35             | nd            |
|                               |                              |                       | 17             | 0.045         | 35             | nd            |
|                               |                              |                       | 17             | 0.054         | 35             | nd            |
|                               |                              |                       | 17             | 0.065         | 35             | nd            |
|                               |                              |                       | 18             | nd            | 35             | 0.579         |
|                               |                              |                       | 18             | 0.064         | 35             | 0.579         |
|                               |                              |                       | 19             | nd            | 35             | 0.654         |
|                               |                              |                       | 19             | 0.063         | 36             | nd            |
|                               |                              |                       | 19             | 0.065         | 36             | nd            |
|                               |                              |                       | 19             | 0.065         | 36             | nd            |
|                               |                              |                       | 19             | 0.068         | 36             | 0.362         |
|                               |                              |                       | 19             | 0.129         | 36             | 0.576         |
|                               |                              |                       | 20             | nd            | 36             | 0.634         |
|                               |                              |                       | 20             | 0.07 <b>2</b> | 36             | 0.644         |
|                               |                              |                       | 20             | 0.078         | 36             | 0. <b>664</b> |
|                               |                              |                       | 20             | 0.105         | 37             | nd            |
|                               |                              |                       | 21             | nd            | 37             | nd            |
|                               |                              |                       | 21             | nd            | 37             | nd            |
|                               |                              |                       | 21             | nd            | 37             | nd            |
|                               |                              |                       | 21             | nd            | 37             | nd            |
|                               |                              |                       | 21             | nd            | 37             | 0.74          |
|                               |                              |                       | 21             | nd            | 37             | 0.75          |
|                               |                              |                       | 21             | nd            | 38             | nd            |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

| Species             | <sup>1</sup> No. of<br>fish. | Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|---------------------|------------------------------|-----------------------|----------------|---------------|----------------|---------------|
| C. marianae (cont.) | 445444                       | u                     | 21             | nđ            | 38             | nd            |
|                     |                              |                       | 21             | 0.075         | 38             | nd            |
|                     |                              |                       | 21             | 0.086         | 38             | nd            |
|                     |                              |                       | 21             | 0.09          | 38             | 0.599         |
|                     |                              |                       | 21             | 0.094         | 38             | 0.748         |
|                     |                              |                       | 21             | 0.095         | 39             | nd            |
|                     |                              |                       | 21             | 0.104         | 39             | nd            |
|                     |                              |                       | 22             | nd            | 39             | nd            |
|                     |                              |                       | 22             | nd            | 39             | nd            |
|                     |                              |                       | 22             | nd            | 39             | nd            |
|                     |                              |                       | 22             | nd            | 39             | 0.631         |
|                     |                              |                       | 22             | 0.105         | 39             | 0.638         |
|                     |                              |                       | 22             | 0.123         | 39             | 0.698         |
|                     |                              |                       | 22             | 0.138         | 39             | 0.726         |
|                     |                              |                       | 23             | nd            | 39             | 0.739         |
|                     |                              |                       | 23             | nd            | 39             | 0.763         |
|                     |                              |                       | 23             | 0.105         | 39             | 0.831         |
|                     |                              |                       | 23             | 0.119         | 40             | nd            |
|                     |                              |                       | 23             | 0.122         | 40             | nd            |
|                     |                              |                       | 23             | 0.132         | 40             | nd            |
|                     |                              |                       | 23             | 0.165         | 40             | 0.569         |
|                     |                              |                       | 24             | nd            | 40             | 0.787         |
|                     |                              |                       | 24             | 0.125         | 40             | 0.914         |
|                     |                              |                       | 24             | 0.133         | 41             | nd            |
|                     |                              |                       | 24             | 0.171         | 41             | 0.819         |
|                     |                              |                       | 24             | 0.196         | 42             | nd            |
|                     |                              |                       | 25             | nd            | 42             | 0.954         |
|                     |                              |                       | 25             | 0.174         | 43             | nd            |
|                     |                              |                       | 25             | 0.251         | 43             | nd            |
|                     |                              |                       | 26             | nd            | 43             | 0.966         |
|                     |                              |                       | 26             | 0.135         | 43             | 1.021         |
|                     |                              |                       | 27             | nd            | 43             | 1.024         |
|                     |                              |                       | 27             | nd            | 44             | nd            |
|                     |                              |                       | 27             | nd            | 44             | 1.073         |
|                     |                              |                       | 27             | nd            | 44             | 1.151         |
|                     |                              |                       | 27             | 0.181         | 45             | nd            |
|                     |                              |                       | 27             | 0.208         | 45             | nd            |
|                     |                              |                       | 28             | nd            | 45             | 1.043         |
|                     |                              |                       | 28             | nd            | 45             | 1.133         |
|                     |                              |                       | 28             | nd            | 45             | 1.169         |
|                     |                              |                       | 28             | nd            | 46             | nd            |
|                     |                              |                       | 28             | nd            | 46             | nd            |
|                     |                              |                       | 28             | 0.233         | 46             | 1.08          |
| r.                  |                              |                       | 28             | 0.264         | 46             | 1.163         |
| •                   |                              |                       | 29             | 0.203         | 46             | 1.192         |
|                     | 4                            |                       | 29             | 0.228         | 47             | 1.322         |
|                     |                              |                       | 29             | 0.251         | 47             | 1.429         |
|                     |                              |                       | 30             | nd            | 48             | nd            |
|                     |                              |                       | 30             | nd            | 48             | 1.36          |
|                     |                              |                       | 32             | nd            | 50             | 1.502         |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

| Species                         | <sup>1</sup> No. of<br>fish. | Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|---------------------------------|------------------------------|-----------------------|----------------|---------------|----------------|---------------|
| C. marianae (cont.)             |                              |                       | 33             | nd            | 50             | 1.697         |
|                                 |                              |                       | 34             | nd            | 51             | 1.812         |
|                                 |                              |                       | 34             | nd            | 52             | 1.563         |
|                                 |                              |                       | 34             | nd            | 52             | 1,835         |
|                                 |                              |                       | 34             | nd            | 55             | 1.956         |
|                                 |                              |                       | 34             | nd            | 56             | 2.008         |
|                                 |                              |                       | 34             | 0.536         | 58             | nd            |
|                                 |                              |                       | 34             | 0.537         | 59             | 2,588         |
| Melanotaenia nigrans            | 7                            | *seine-netting        | 29             | 0,231         | 32             | 0.238         |
| -                               |                              | -                     | 30             | nd            | 32             | 0.316         |
|                                 |                              |                       | 31             | 0.236         | 35             | 0.417         |
|                                 |                              |                       | 31             | 0,273         |                |               |
| Craterocephalus stercusmuscarum | 1                            | *seine-netting        | nd             | nd            |                |               |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

 Table B7
 Fish sampled at the Twin Falls Creek downstream site on 12/06/96 & 13/06/96, before the opening of the Jim Jim Creek crossing.

| Species                         | <sup>1</sup> No. o<br>fish. | f Sampling<br>technique | Length<br>(mm) | Weight<br>(g)  | Length<br>(mm) | Weight<br>(g) |
|---------------------------------|-----------------------------|-------------------------|----------------|----------------|----------------|---------------|
| Amniataba percoides             | 15                          | *gill-netting           | 100            | 17.328         | 100            | 16.732        |
| <b>F</b>                        |                             | 00                      | 94             | 14.528         | 74             | 6.940         |
|                                 |                             |                         | 86             | 10.480         | 125            | 32.350        |
|                                 |                             |                         | 112            | 27.543         | 126            | 38.729        |
|                                 |                             |                         | 113            | <b>2</b> 4.923 | 70             | 4.692         |
|                                 |                             |                         | 66             | 4.926          | 85             | 11.249        |
|                                 |                             |                         | 112            | 27.918         | 94             | 13.308        |
|                                 |                             |                         | 76             | 7.203          |                |               |
| Glossamia aprion                | 2                           | gill-netting            | 120            | 28             | 106            | 20            |
| Hephaestus fuliginosus          | 1                           | gill-netting            | 156            | 75             |                |               |
| Leiopotherapon unicolor         | 3                           | gill-netting            | 193            | 120            | 185            | 124           |
|                                 |                             | 00                      | 183            | 122            |                |               |
| Megalops cyprinoides            | 2                           | gill-netting            | 229            | 184            | 229            | 176           |
| Melanotaenia splendida inornata | 38                          | gill-netting            | 92             | 11             | 93             | 13            |
| *                               |                             | 0 0                     | 121            | 27             | 99             | 15.5          |
|                                 |                             |                         | 105            | 18.5           | 90             | 11            |
|                                 |                             |                         | 97             | 15             | 82             | 7             |
|                                 |                             |                         | 110            | 23             | 75             | 7             |
|                                 |                             |                         | 108            | 21             | 86             | 8.5           |
|                                 |                             |                         | 106            | 18             | 103            | 18            |
|                                 |                             |                         | 91             | 11             | 104            | 19            |
|                                 |                             |                         | 89             | 10.5           | 72             | 5.5           |
|                                 |                             |                         | 85             | 13             | 94             | 13            |
|                                 |                             |                         | 94             | 9              | 97             | 14.5          |
|                                 |                             |                         | 105            | 18             | 100            | 16            |
|                                 |                             |                         | 90             | 12             | 85             | 9             |
|                                 |                             |                         | 77             | 7              | 95             | 13            |
|                                 |                             |                         | 95             | 14             | 80             | 9             |
|                                 |                             |                         | 97             | 16             | 107            | 21            |
|                                 |                             |                         | 93             | 14             | 91             | 11            |
|                                 |                             |                         | 82             | 8              | 104            | 18            |
|                                 |                             |                         | 98             | 15             | 115            | 18            |
|                                 | (49)                        | *seine-netting          | 26             | 0.142          | 49             | 1.154         |
|                                 |                             |                         | 27             | 0.172          | 50             | 1.125         |
|                                 |                             |                         | 29             | 0.196          | 52             | 1.498         |
|                                 |                             |                         | 29             | 0.205          | 52             | 1.636         |
|                                 |                             |                         | 30             | 0.189          | 55             | 1.072         |
|                                 |                             |                         | 31             | 0.290          | 55             | 1.899         |
|                                 |                             |                         | 38             | 0.491          | 55             | 1.949         |
|                                 |                             |                         | 38             | 0.555          | 55             | 2.093         |
|                                 |                             |                         | 38             | 0.594          | 56             | <u>1.972</u>  |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

| Species                        | <sup>1</sup> No. of<br>fish. | Sampling<br>technique | Length<br>(mm)    | Weight<br>(g)  | Length            | Weight<br>(g) |
|--------------------------------|------------------------------|-----------------------|-------------------|----------------|-------------------|---------------|
| M. splendida inornata (cont.)  | 11311,                       |                       | <u>(mm)</u><br>39 | 0.518          | <u>(mm)</u><br>56 | 2.006         |
| wi. spienalaa inornala (cont.) |                              |                       | 39                | 0.578          | 56<br>56          | 2.000         |
|                                |                              |                       | 39                | 0.578          | 56                | 2.031         |
|                                |                              |                       | 43                |                | 58                | 1.620         |
|                                |                              |                       | 43<br>44          | 0.701<br>0.747 | 59                | 1.650         |
|                                |                              |                       | 44                | 0.747          | 59                | 2.403         |
|                                |                              |                       | 44                | 0.809          | 64                | 2.403         |
|                                |                              |                       | 45<br>45          | 0.809          | 68                | 3.540         |
|                                |                              |                       | 45<br>45          | 0.837          | 70                | 3,741         |
|                                |                              |                       | 4 <i>3</i><br>45  | 0.935          | 70                | 5,848         |
|                                |                              |                       | 45<br>45          | 1.002          | 81                | 6.061         |
|                                |                              |                       | 43<br>47          |                | 85                | 8.034         |
|                                |                              |                       |                   | 1.110          |                   |               |
|                                |                              |                       | 47                | 1.131          | 90                | 9.920         |
|                                |                              |                       | 47                | 1.142          | 105               | 13.660        |
|                                |                              |                       | 48                | 0.884          | 113               | 20.152        |
|                                |                              |                       | 48                | 1.680          |                   |               |
|                                | 53 s                         | seine-netting         | 114               | nd             | 60                | nd            |
|                                |                              |                       | 47                | nd             | 88                | nd            |
|                                |                              |                       | 32                | nd             | 70                | nd            |
|                                |                              |                       | 55                | nd             | 50                | nd            |
|                                |                              |                       | 59                | nd             | 39                | nd            |
|                                |                              |                       | 55                | nd             | 84                | nd            |
|                                |                              |                       | 78                | nd             | 26                | nd            |
|                                |                              |                       | 53                | nd             | 48                | nd            |
|                                |                              |                       | 52                | nd             | 58                | nd            |
|                                |                              |                       | 38                | nd             | 56                | nd            |
|                                |                              |                       | 20                | nd             | 58                | nd            |
|                                |                              |                       | 104               | nd             | 60                | nd            |
|                                |                              |                       | 49                | nd             | 53                | nd            |
|                                |                              |                       | 50                | nd             | 44                | nd            |
|                                |                              |                       | 38                | nd             | 44                | nd            |
|                                |                              |                       | 49                | nd             | 41                | nd            |
|                                |                              |                       | 43                | nd             | 30                | nđ            |
|                                |                              |                       | 45                | nd             | 34                | nd            |
|                                |                              |                       | 56                | nd             | 28                | nd            |
|                                |                              |                       | 49                | nd             | 70                | nd            |
|                                |                              |                       | 59                | nd             | 46                | nd            |
|                                |                              |                       | 31                | nd             | 93                | nd            |
|                                |                              |                       | 39                | nd             | 40                | пđ            |
|                                |                              |                       | 29                | nd             | 37                | nd            |
|                                |                              |                       | 44                | nd             | 64                | nd            |
|                                |                              |                       | 27                | nd             | 44                | nd            |
|                                |                              |                       | 34                | nd             |                   |               |
| Neosiluris hyrtlii             | 11 g                         | ill-netting           | 186               | nd             | 143               | 20            |
|                                |                              |                       | 180               | nd             | 187               | 43            |
|                                |                              |                       | 149               | nd             | 157               | 29            |
|                                |                              |                       | 167               | nd             | 141               | 20            |
|                                |                              |                       | 178               | nd             | 203               | 52            |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

. -

| Species                  | <sup>1</sup> No. of<br>fish. | f Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|--------------------------|------------------------------|-------------------------|----------------|---------------|----------------|---------------|
| N. hyrtlii (cont.)       |                              | <b>.</b>                | 142            | nd            |                |               |
| Pingalla midgleyi        | 19                           | gill-netting            | 74             | 8             | 72             | 7             |
| ringalia miagleyi        | . 19                         | gin-netting             |                | 13            |                | 6             |
|                          |                              |                         | 84<br>75       | 8             | 69<br>87       |               |
|                          |                              |                         | 84             | 12            | 87<br>06       | 12.5          |
|                          |                              |                         |                |               | 96<br>75       | 15.5          |
|                          |                              |                         | <b>8</b> 9     | 13<br>11      | 75             | 9             |
|                          |                              |                         | 85             |               | 77             | 8<br>5        |
|                          |                              |                         | 70<br>73       | 6<br>7        | 66<br>67       | 5<br>6.5      |
|                          |                              |                         |                |               |                |               |
|                          |                              |                         | 98             | 18            | 96             | 19.5          |
|                          |                              |                         | 83             | 11            |                |               |
| Scleropages jardini      | 2                            | gill-netting            | 319            | 263           | 345            | 330           |
| Strongylura kreffti      | 7                            | gill-netting            | 302            | 41            | 438            | 180           |
|                          |                              |                         | 345            | 72            | 325            | 60            |
|                          |                              |                         | 346            | 102           | 295            | 50            |
|                          |                              |                         | 346            | 82            |                |               |
| Neosiluris ater          | 6                            | gill-netting            | 277            | nd            | 213            | 88            |
|                          |                              | 00                      | 210            | nd            | 227            | 92            |
|                          |                              |                         | 242            | 106           | 211            | 76            |
| Craterocephalus marianae | 135                          | *seine-netting          | 36             | 0.398         | 32             | 0.327         |
| -                        |                              | -                       | 37             | 0.515         | 38             | 0.576         |
|                          |                              |                         | 50             | 1.466         | 38             | 0.565         |
|                          |                              |                         | 52             | 1.566         | 34             | 0.370         |
|                          |                              |                         | 39             | 0,621         | 32             | 0.302         |
|                          |                              |                         | 37             | 0.54 <b>8</b> | 68             | 3.416         |
|                          |                              |                         | 35             | 0.491         | 41             | 0.758         |
|                          |                              |                         | 34             | 0.444         | 47             | 1.057         |
|                          |                              |                         | 42             | 0.843         | 48             | 1.042         |
|                          |                              |                         | 38             | 0.586         | 43             | 0.795         |
|                          |                              |                         | 42             | 0.835         | 38             | 0.584         |
|                          |                              |                         | 40             | 0.643         | 43             | 0.833         |
|                          |                              |                         | 44             | 1.007         | 43             | 0.850         |
|                          |                              |                         | 44             | 0.840         | 43             | 0.896         |
|                          |                              |                         | 35             | 0.466         | 44             | 0.898         |
|                          |                              |                         | 33             | 0.606         | 44             | 0.916         |
|                          |                              |                         | 35             | 0.462         | 36             | 0.517         |
|                          |                              |                         | 33             | 0.423         | 38             | 0.560         |
|                          |                              |                         | 35             | 0.556         | 38             | 0.590         |
|                          |                              |                         | 38             | 0.546         | 50             | 1.306         |
|                          |                              |                         | 38             | 0.547         | 48             | 1.218         |
|                          |                              |                         | 38             | 0.582         | 45             | 0.896         |
|                          |                              |                         | 41             | 0.813         | 52             | 1.678         |
|                          |                              |                         | 43             | 0.830         | 43             | 0.88          |
|                          |                              |                         | 49             | 1.130         | 44             | 0.917         |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

-

| Species             | <sup>1</sup> No. of Sampling<br>fish. technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|---------------------|-------------------------------------------------|----------------|---------------|----------------|---------------|
| C. marianae (cont.) | tion teeningue                                  | 41             | 0.785         | 42             | 0.748         |
|                     |                                                 | 50             | 1.311         | 43             | 0.894         |
|                     |                                                 | 39             | 0.940         | 40             | 0.687         |
|                     |                                                 | 37             | 0.501         | 43             | 0.864         |
|                     |                                                 | 46             | 1.116         | 36             | 0.535         |
|                     |                                                 | 40             | 0.681         | 36             | 0.478         |
|                     |                                                 | 35             | 0.429         | 39             | 0.618         |
|                     |                                                 | 42             | 0.769         | 36             | 0.474         |
|                     |                                                 | 35             | 0.487         | 39             | 0.554         |
|                     |                                                 | 33             | 0.368         | 36             | nd            |
|                     |                                                 | 35             | 0.308         | 30<br>40       | 0.635         |
|                     |                                                 | 39             | 0.585         | 39             | 0.035         |
|                     |                                                 | 38             | 0.585         | 39             | 0.594         |
|                     |                                                 | 38             |               | 33             | 0.393         |
|                     |                                                 |                | 0.533         |                |               |
|                     |                                                 | 35             | 0.460         | 37             | 0.507         |
|                     |                                                 | 36             | 0.514         | 38             | 0.597         |
|                     |                                                 | 36             | 0.471         | 33             | 0.344         |
|                     |                                                 | 36             | 0.466         | 35             | 0.470         |
|                     |                                                 | 40             | 0.675         | 34             | 0.409         |
|                     |                                                 | 37             | 0.473         | 34             | 0.392         |
|                     |                                                 | 34             | 0.412         | 33             | 0.344         |
|                     |                                                 | 35             | 0.523         | 41             | 0.715         |
|                     |                                                 | 34             | 0.441         | 34             | 0.460         |
|                     |                                                 | 31             | 0.754         | 36             | 0.467         |
|                     |                                                 | 35             | 0.494         | 34             | 0.427         |
|                     |                                                 | 34             | 0.393         | 38             | 0.533         |
|                     |                                                 | 35             | 0.405         | 33             | 0.331         |
|                     |                                                 | 35             | 0.477         | 35             | 0.430         |
|                     |                                                 | 32             | 0.327         | 31             | 0.319         |
|                     |                                                 | 35             | 0.503         | 33             | 0.411         |
|                     |                                                 | 33             | 0.38          | 34             | 0.403         |
|                     |                                                 | 32             | 0.35          | 32             | 0.339         |
|                     |                                                 | 30             | 0.302         | 34             | 0.372         |
|                     |                                                 | 38             | 0.460         | 36             | 0.511         |
|                     |                                                 | 33             | 0.350         | 34             | 0.433         |
|                     |                                                 | 33             | 0.355         | 32             | 0.321         |
|                     |                                                 | 31             | 0.303         | 31             | 0.307         |
|                     |                                                 | 29             | 0.268         | 32             | 0.339         |
|                     |                                                 | 32             | 0.334         | 28             | 0.250         |
|                     |                                                 | 32             | 0.325         | 31             | 0.317         |
|                     |                                                 | 32             | 0.347         | 30             | 0.286         |
|                     |                                                 | 32             | 0.320         | 30             | 0.510         |
|                     |                                                 | 32             | 0.319         |                |               |
|                     | (119) seine-netting                             | 44             | nd            | 35             | nd            |
|                     |                                                 | 39             | nd            | 39             | nd            |
|                     |                                                 | 43             | nd            | 34             | nd            |
|                     |                                                 | 34             | nd            | 32             | nd            |
|                     |                                                 | 65             | nd            | 29             | nd            |
|                     |                                                 | 36             | nd            | 38             | nd            |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

;

| Species             | <sup>1</sup> No. of<br>fish, | Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight |
|---------------------|------------------------------|-----------------------|----------------|---------------|----------------|--------|
| C. marianae (cont.) |                              |                       | 34             | nd            | 35             | nd     |
|                     |                              |                       | 33             | nd            | 36             | nd     |
|                     |                              |                       | 38             | nd            | 34             | nd     |
|                     |                              |                       | 40             | nd            | 36             | nd     |
|                     |                              |                       | 48             | nd            | 35             | nd     |
|                     |                              |                       | 36             | nd            | 32             | nd     |
|                     |                              |                       | 35             | nd            | 34             | nd     |
|                     |                              |                       | 49             | nd            | 35             | nd     |
|                     |                              |                       | 37             | nd            | 49             | nd     |
|                     |                              |                       | 34             | nd            | 32             | nd     |
|                     |                              |                       | 33             | nd            | 32             | nd     |
|                     |                              |                       | 38             | nd            | 36             | nd     |
|                     |                              |                       | 39             | nd            | 37             | nd     |
|                     |                              |                       | 34             | nd            | 30             | nd     |
|                     |                              |                       | 35             | nd            | 48             | nd     |
|                     |                              |                       | 35             | nd            | 48<br>34       | nd     |
|                     |                              |                       | 29             | nd            | 34             | nd     |
|                     |                              |                       |                |               |                |        |
|                     |                              |                       | 47             | nd<br>nd      |                | nd     |
|                     |                              |                       | 30             | nd            | 43             | nd     |
|                     |                              |                       | 36             | nd            | 33             | nd     |
|                     |                              |                       | 44             | nd            | 53             | nd     |
|                     |                              |                       | 35             | nd            | 39             | nd     |
|                     |                              |                       | 38             | nd            | 35             | nd     |
|                     |                              |                       | 42             | nd            | 33             | nd     |
|                     |                              |                       | 35             | nd            | 37             | nd     |
|                     |                              |                       | 36             | nd            | 43             | nd     |
|                     |                              |                       | 49             | nd            | 44             | nd     |
|                     |                              |                       | 43             | nd            | 38             | nd     |
|                     |                              |                       | 48             | nd            | 40             | nd     |
|                     |                              |                       | 43             | nd            | 37             | nd     |
|                     |                              |                       | 42             | nd            | 32             | nd     |
|                     |                              |                       | 38             | nd            | 35             | nd     |
|                     |                              |                       | 40             | nd            | 38             | nd     |
|                     |                              |                       | 39             | nd            | 37             | nd     |
|                     |                              |                       | 50             | nd            | 26             | nd     |
|                     |                              |                       | 37             | nd            | 35             | nd     |
|                     |                              |                       | 41             | nd            | 34             | nd     |
|                     |                              |                       | 42             | nd            | 34             | nd     |
|                     |                              |                       | 38             | nd            | 34             | nd     |
|                     |                              |                       | 34             | nd            | 44             | nd     |
|                     |                              |                       | 39             | nd            | 35             | nd     |
|                     |                              |                       | 37             | nd            | 43             | nd     |
|                     |                              |                       | 37             | nd            | 43<br>45       | nd     |
|                     |                              |                       | 34<br>31       |               |                |        |
|                     |                              |                       |                | nd<br>nd      | 32             | nd     |
|                     |                              |                       | 35             | nd<br>nd      | 39             | nd     |
|                     |                              |                       | 31             | nd            | 37             | nd     |
|                     |                              |                       | 32             | nd            | 36             | nd     |
|                     |                              |                       | 45             | nd            | 31             | nd     |
|                     |                              |                       | 39             | nd            | 35             | nd     |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

| Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>1</sup> No. 0<br>fish. | f Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|----------------|---------------|----------------|---------------|
| C. marianae (cont.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                         | 34             | nd            | 38             | nd            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 43             | nd            | 30             | nd            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 35             | nd            | 32             | nd            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 36             | nd            | 34             | nd            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 33             | nd            |                |               |
| Craterocephalus stercusmuscarum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                           | *seine-netting          | 30             | 0.133         | 35             | 0.274         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 30             | 0.197         | 36             | 0.28          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 33             | 0.054         |                |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4)                         | seine-netting           | 36             | nd            | 35             | nđ            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 30             | nđ            | 30             | nđ            |
| Glossogobius giuris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                           | *seine-netting          | 47             | 0.455         |                |               |
| Melanotaenia nigrans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32                          | *seine-netting          | 21             | 0.058         | 29             | 0.243         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | -                       | 22             | 0.079         | 30             | 0.182         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 23             | 0.110         | 30             | 0.186         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 24             | 0,078         | 30             | 0.215         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 24             | 0.101         | 31             | 0.185         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 26             | 0.106         | 32             | 0.217         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 26             | 0.116         | 34             | 0.329         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 26             | 0.119         | 34             | 0,901         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 27             | 0.147         | 35             | 0,309         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 27             | 0.153         | 35             | 0.388         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 28             | 0.173         | 36             | 0.279         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 28             | 0.180         | 36             | 0.298         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 29             | 0.157         | 36             | 0.373         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 29             | 0.161         | 38             | 0.416         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 29             | 0.185         | 44             | 0.176         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 29             | 0.186         | 45             | 0.625         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (23)                        | seine-netting           | 33             | nd            | 35             | nd            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 36             | nd            | 25             | nd            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 34             | nđ            | 23             | nd            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 23             | nd            | 32             | nd            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 28             | nd            | 31             | nđ            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 28             | nd            | 37             | nd            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 43             | nd            | 36             | nd            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 31             | nd            | 36             | nđ            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 43             | nd            | 27             | nd            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 30             | nd            | 28             | nd            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         | 30<br>28       | nd<br>nd      | 26             | nd            |
| The state of the s |                             |                         |                |               |                |               |
| Pseudomugil gertrudae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                           | seine-netting           | 23             | nd            |                |               |
| Mogurnda mogurnda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                           | seine-netting           | nd             | nd            |                |               |

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

nd indicates no available data.

4

. -

| Species                         | <sup>1</sup> No. of<br>fish. | Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|---------------------------------|------------------------------|-----------------------|----------------|---------------|----------------|---------------|
| Amniataba percoides             | 7                            | *gill-netting:        | 71             | 5.04          | 74             | 6.74          |
| -                               |                              |                       | 80             | 8.08          | 66             | 4.61          |
|                                 |                              |                       | 79             | 6.58          | 71             | 6.22          |
|                                 |                              | •                     | 86             | 11.03         |                |               |
| Glossamia aprion                | 1                            | gill-netting:         | 141            | 46.0          |                |               |
| Leiopotherapon unicolor         | 9                            | gill-netting:         | 139            | 42.0          | 189            | 130           |
|                                 |                              |                       | 142            | 50.0          | 197            | 130           |
|                                 |                              |                       | 157            | 61.0          | 197            | 145           |
|                                 |                              |                       | 165            | 75,0          | 209            | 122           |
|                                 |                              |                       | 184            | 110.0         |                |               |
| Melanotaenia splendida inornata | 7                            | gill-netting:         | 77             | 6.1           | 87             | 9             |
|                                 |                              |                       | 79             | 7.0           | 89             | 10            |
|                                 |                              |                       | 79             | 8.0           | 90             | 9.1           |
|                                 |                              |                       | 87             | 9.0           |                |               |
|                                 | 89                           | *seine-netting:       | 88             | 7.79          | 25             | 0.11          |
|                                 |                              |                       | 84             | 5.85          | 60             | 2.04          |
|                                 |                              |                       | 74             | 4,33          | 60             | 2.32          |
|                                 |                              |                       | 64             | 2.32          | 54             | 1.55          |
|                                 |                              |                       | 74             | 4.41          | 57             | 1.70          |
|                                 |                              |                       | 79             | 4.75          | 64             | 2.36          |
|                                 |                              |                       | 65             | 2.9 <b>9</b>  | 55             | 1.66          |
|                                 |                              |                       | <b>7</b> 0     | 3.58          | 55             | 1.56          |
|                                 |                              |                       | 56             | 1.72          | 60             | 2.14          |
|                                 |                              |                       | 73             | 4.3 <b>6</b>  | 49             | 0. <b>99</b>  |
|                                 |                              |                       | 70             | 4.43          | 56             | 1.68          |
|                                 |                              |                       | 60             | 2.38          | 49             | 0.96          |
|                                 |                              |                       | 71             | 3.3 <b>3</b>  | 45             | 0.60          |
|                                 |                              |                       | 72             | nd            | 45             | 0.87          |
|                                 |                              |                       | 54             | 1.46          | 42             | 0.58          |
|                                 |                              |                       | 42             | 0.81          | 35             | 0.42          |
|                                 |                              |                       | 51             | 1.37          | 45             | 0.78          |
|                                 |                              |                       | 52             | 1.49          | 56             | 0.47          |
|                                 |                              |                       | 53             | 1.59          | 35             | 0.36          |
|                                 |                              |                       | 39             | 0.51          | 30             | 0.29          |
|                                 |                              |                       | 38             | 0.47          | 35             | 0.40          |
|                                 |                              |                       | 39             | 0.48          | 32             | 0.29          |
|                                 |                              |                       | 45             | 0.95          | 25             | 0.16          |
|                                 |                              |                       | 53             | 1.50          | 24             | 0.11          |
|                                 |                              |                       | 82             | 5.24          | 21             | 0.08          |
|                                 |                              |                       | 65             | 3.04          | 20             | 0.07          |
|                                 |                              |                       | 67             | 2.50          | 50             | 1.17          |
|                                 |                              |                       | 64             | 2.84          | 40             | 0.70          |
|                                 |                              |                       | 62             | 2.71          | 33             | 0.37          |

 Table B8
 Fish sampled at the Twin Falls Creek downstream site on 10/10/96 & 11/10/96, after the opening of the Jim Jim Creek crossing.

nd indicates no available data.

. ·

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

<sup>\*</sup> Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

| Species                       | <sup>1</sup> No. o<br>fish. | of Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g)  |
|-------------------------------|-----------------------------|--------------------------|----------------|---------------|----------------|----------------|
| M. splendida inornata (cont.) |                             |                          | 58             | 1.62          | 23             | 0.20           |
|                               |                             |                          | 69             | 2.54          | 24             | 0.18           |
|                               |                             |                          | 61             | nd            | 26             | 0.14           |
|                               |                             |                          | 65             | 1.48          | 21             | 0.07           |
|                               |                             |                          | 54             | 1.38          | 20             | 0.07           |
|                               |                             |                          | 45             | 0.93          | 20             | 0.08           |
|                               |                             |                          | 45             | 0.87          | 18             | 0.05           |
|                               |                             |                          | 40             | 0.62          | 21             | 0.06           |
|                               |                             |                          | 30             | 0.24          | 19             | 0.11           |
|                               |                             |                          | <b>2</b> 9     | 0.22          | 16             | 0.03           |
|                               |                             |                          | nd             | nd            | n <b>d</b>     | nd             |
|                               |                             |                          | nd             | nd            | nd             | nd             |
|                               |                             |                          | nd             | nd            | nd             | nd             |
|                               |                             |                          | nd             | nd            | nd             | nd             |
|                               |                             |                          | nd             | nd            | nd             | nd             |
|                               |                             |                          | nd             | nd            |                |                |
| Neosiluris hyrtlii            | 6                           | gill-netting:            | 145            | 20            | 173            | 37,00          |
|                               |                             |                          | 148            | 19            | 179            | 35.00          |
|                               |                             |                          | 165            | 30            | 182            | 42.00          |
| Pingalla midgleyi             | 22                          | gill-netting:            | 66             | 6             | 77             | 8.50           |
|                               |                             |                          | 69             | 7             | 78             | 9.00           |
|                               |                             |                          | 70             | 7             | 79             | 10.00          |
|                               |                             |                          | 70             | 8             | 79             | 13. <b>2</b> 0 |
|                               |                             |                          | 72             | 7             | 80             | 10.00          |
|                               |                             |                          | 72             | 8             | 80             | 10.50          |
|                               |                             |                          | <b>7</b> 3     | 7             | 90             | 15.00          |
|                               |                             |                          | 73             | 7             | 92             | 15,50          |
|                               |                             |                          | 75             | 8             | 92             | 16.00          |
|                               |                             |                          | 75             | 9             | 94             | 17.00          |
|                               |                             |                          | 75             | 9             | 97             | 18.10          |
| Scleropages jardini           | 8                           | gill-netting:            | 278            | 170           | 348            | 360            |
|                               |                             |                          | 308            | 270           | 360            | 380            |
|                               |                             |                          | 317            | 260           | 364            | 420            |
|                               |                             |                          | 336            | 300           | 365            | 445            |
| Strongylura kreffti           | 1                           | gill-netting:            | 352            | 70            | •              |                |
| Veosiluris ater               | 4                           | gill-netting:            | 202            | 65            | 220            | 89             |
|                               |                             |                          | <b>2</b> 16    | 77            | 232            | 95             |
| Craterocephalus marianae      |                             | *seine-netting:          | 56             | 2.10          | 39             | 0.72           |
|                               | of                          |                          | 37             | 0,62          | 22             | 0.10           |
|                               | 938                         |                          | 44             | nd            | 23             | 0.11           |
|                               |                             |                          | 45             | 1.12          | 37             | nd             |
|                               |                             |                          | 51             | 1.63          | 30             | nd             |
|                               |                             |                          | 41             | 0.83          | 27             | 0.19           |

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

| Species             | <sup>1</sup> No. of<br>fish. | Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|---------------------|------------------------------|-----------------------|----------------|---------------|----------------|---------------|
| C. marianae (cont.) |                              |                       | 44             | 1.19          | 20             | 0.08          |
|                     |                              |                       | 47             | 1.35          | 20             | 0.09          |
|                     |                              |                       | 46             | 1.30          | 9              | 0.03          |
|                     |                              |                       | 44             | nd            | 13             | 0.11          |
|                     |                              |                       | 23             | 0.10          | 42             | 0.83          |
|                     |                              |                       | 42             | 0,76          | 19             | 0.07          |
|                     |                              |                       | 44             | 0.96          | 27             | 0.18          |
|                     |                              |                       | 42             | 0.81          | 18             | 0.04          |
|                     |                              |                       | 45             | 1.03          | 22             | 0.08          |
|                     |                              |                       | 39             | nd            | 27             | 0.18          |
|                     |                              |                       | 25             | nd            | 44             | 0.87          |
|                     |                              |                       | 26             | 0.18          | 42             | 0.76          |
|                     |                              |                       | 25             | 0.13          | 38             | 0.62          |
|                     |                              |                       | 23             | nd            | 40             | 0.52          |
|                     |                              |                       |                |               |                | 0.38          |
|                     |                              |                       | 15             | 0.02          | 25             |               |
|                     |                              |                       | 29<br>20       | 0.26          | 34             | 0.37          |
|                     |                              |                       | 39             | 0.61          | 40             | 0.67          |
|                     |                              |                       | 55             | 1.77          | 37             | 0.19          |
|                     |                              |                       | 49             | 1.27          | 39             | nd            |
|                     |                              |                       | 34             | 0.36          | 42             | nd            |
|                     |                              |                       | 39             | 0.63          | 29             | nd            |
|                     |                              |                       | 44             | 1.01          | 11             | 0.04          |
|                     |                              |                       | 37             | 0,57          | 22             | 0.07          |
|                     |                              |                       | 20             | 0.08          | 45             | nd            |
|                     |                              |                       | 17             | 0.06          | 22             | 0.0 <b>8</b>  |
|                     |                              |                       | 40             | 0.62          | 40             | 0.66          |
|                     |                              |                       | 43             | nd            | 40             | 0.6 <b>8</b>  |
|                     |                              |                       | 40             | ().69         | 35             | nd            |
|                     |                              |                       | 42             | 0.7 <b>9</b>  | 29             | nd            |
|                     |                              |                       | 32             | 0.36          | 20             | 0.06          |
|                     |                              |                       | 37             | 0,48          | 33             | 0.14          |
|                     |                              |                       | 48             | 1.22          | 42             | nd            |
|                     |                              |                       | 22             | 0.10          | 24             | 0.13          |
|                     |                              |                       | 37             | 0.56          | 23             | 0.11          |
|                     |                              |                       | 42             | 0.71          | 37             | nd            |
|                     |                              |                       | 28             | 0.22          | 30             | 0.64          |
|                     |                              |                       | 37             | 0.57          | 45             | nd            |
|                     |                              |                       | 18             | 0.05          | 21             | nd            |
|                     |                              |                       | 23             | 0.12          | 28             | 0.06          |
|                     |                              |                       | 38             | 0.60          | 20             | 0.08          |
|                     |                              |                       | 22             | 0.07          | 19             | 0.07          |
|                     |                              |                       | 33             | 0.50          | 25             | 0.14          |
|                     |                              |                       | 38             | 0.51          | 23             | 0.14          |
|                     |                              |                       | 41             | 0. <b>31</b>  | 27             | nd            |
|                     |                              |                       | 23             | nd            | 27             | nd            |
|                     |                              |                       | 23<br>38       |               |                | па<br>0.07    |
|                     |                              |                       |                | nd            | 20             | 0.07          |
|                     |                              |                       | 46<br>53       | nd            | 17             |               |
|                     |                              |                       | 53             | nd            | 18             | 0.04          |
|                     |                              |                       | 23             | nd            | 18             | nd            |
|                     |                              |                       | 37             | nd            | 18             | 0.05          |

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

| Species                         | <sup>1</sup> No. of<br>fish. | Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weigh<br>(g) |
|---------------------------------|------------------------------|-----------------------|----------------|---------------|----------------|--------------|
| C. marianae (cont.)             |                              |                       | 35             | nd            | 20             | 0.07         |
|                                 |                              |                       | 49             | 1.29          | 24             | 0.12         |
|                                 |                              |                       | 40             | 0.73          | 22             | nd           |
|                                 |                              |                       | 35             | 0.45          | 28             | 0.21         |
|                                 |                              |                       | 34             | nd            | 17             | 0.04         |
|                                 |                              |                       | 24             | nd            | 22             | 0.09         |
|                                 |                              |                       | 23             | 0.10          | 17             | 0.04         |
|                                 |                              |                       | 34             | 0.42          | 15             | 0.03         |
|                                 |                              |                       | 17             | 0.05          | 20             | 0:07         |
|                                 |                              |                       | 37             | 0.58          | 55             | 1.78         |
|                                 |                              |                       | 48             | 1.29          |                |              |
| Melanotaenia nigrans            | 66                           | *seine-netting:       | 48             | 0.82          | 41             | 0.42         |
| ·····                           |                              | <i>\</i> ,            | 50             | 1.00          | 33             | 0.29         |
|                                 |                              |                       | 49             | 0.88          | 30             | 0.23         |
|                                 |                              |                       | 49             | 0.85          | 35             | 0.34         |
|                                 |                              |                       | 49             | 1.30          | 40             | 0.56         |
|                                 |                              |                       | 45             | 0.77          | 29             | 0.19         |
|                                 |                              |                       | 40             | 0.52          | 37             | 0.36         |
|                                 |                              |                       | 44             | 0.74          | 38             | 0.38         |
|                                 |                              |                       | 52             | 1.23          | 36             | 0.30         |
|                                 |                              |                       | 38             | 0.35          | 37             | 0.32         |
|                                 |                              |                       | 39             | 0.50          | 35             | 0.29         |
|                                 |                              |                       | 45             | 0.61          | 38             | 0.34         |
|                                 |                              |                       | 43<br>29       | 0.13          | 58<br>44       | 0.55         |
|                                 |                              |                       | 29<br>47       | 0.13          | 33             | 0.33         |
|                                 |                              |                       |                |               |                |              |
|                                 |                              |                       | 43             | 0.46          | 30             | 0.11         |
|                                 |                              |                       | 42             | 0.5 <b>5</b>  | 31             | 0.16         |
|                                 |                              |                       | 35             | 0.30          | 36             | 0.31         |
|                                 |                              |                       | 37             | 0.23          | 34             | 0.27         |
|                                 |                              |                       | 36             | 0.35          | 34             | nd           |
|                                 |                              |                       | 38             | 0.39          | 31             | 0.24         |
|                                 |                              |                       | 40             | 0.39          | 35             | 0.32         |
|                                 |                              |                       | 31             | 0.15          | 41             | 0.53         |
|                                 |                              |                       | 30             | 0.14          | 32             | 0.25         |
|                                 |                              |                       | 33             | 0.24          | 41             | 0.43         |
|                                 |                              |                       | 38             | 0.45          | 29             | 0.13         |
|                                 |                              |                       | 33             | 0.16          | 31             | 0.16         |
|                                 |                              |                       | 37             | 0.32          | 32             | 0.45         |
|                                 |                              |                       | 31             | 0.15          | 32             | 0.20         |
|                                 |                              |                       | 35             | 0.28          | 29             | 0.13         |
|                                 |                              |                       | 36             | 0.33          | 22             | 0.06         |
|                                 |                              |                       | 44             | 0.56          | 22             | nd           |
|                                 |                              |                       | 36             | 0.40          | 16             | 0.03         |
|                                 |                              |                       | 35             | 0,15          | 13             | 0.02         |
| Craterocephalus stercusmuscarum | 39 *                         | *seine-netting:       | 39             | ().39         | 32             | 0.2          |
|                                 |                              |                       | 42             | 0.42          | 32             | 0.21         |
|                                 |                              |                       | 25             | 0.11          | 31             | 0.19         |
|                                 |                              |                       | 32             | 0.21          | 35             | 0.11         |

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

. -

| Species                    | <sup>1</sup> No. of<br>fish. | Sampling<br>technique | Length<br>(mm) | Weight<br>(g) | Length<br>(mm) | Weight<br>(g) |
|----------------------------|------------------------------|-----------------------|----------------|---------------|----------------|---------------|
| C. stercusmuscarum (cont.) |                              |                       | 33             | 0.2           | 29             | 0.1           |
|                            |                              |                       | 30             | 0.18          | 29             | 0.12          |
|                            |                              |                       | 30             | 0.21          | 21             | 0.05          |
|                            |                              |                       | 34             | 0.29          | 24             | 0.06          |
|                            |                              |                       | 36             | 0.32          | 22             | nd            |
|                            |                              |                       | 33             | 0.24          | 21             | 0.03          |
|                            |                              |                       | 40             | 0.29          | 18             | 0.03          |
|                            |                              |                       | 30             | 0.18          | 23             | nd            |
|                            |                              |                       | nd             | nd            | nd             | nd            |
|                            |                              |                       | nd             | nd            | nd             | nd            |
|                            |                              |                       | nd             | nd            | nd             | nd            |
|                            |                              |                       | nd             | nd            | nd             | nd            |
|                            |                              |                       | nd             | nd            | nd             | nd            |
|                            |                              |                       | nd             | nd            | nd             | nd            |
|                            |                              |                       | nd             | nd            | nd             | nd            |
|                            |                              |                       | nd             | nd            |                |               |

Numbers without brackets are the total number of fish sampled by a given sample technique. Numbers in brackets indicate that this group of fish are a subsample of the total sampled which was measured in a different state of preservation (see \*). The subsample number is NOT in addition to the total number

\* Indicates that, for this group of fish, measurements were taken from alcohol preserved specimens

nd indicates no available data.

APP\_A8.DOC (page 5 of 5)

## **APPENDIX C**

Results of multivariate analysis of fish community structure data

**Table C1** Principle axis correlation coefficients (R) and associated Monte-Carlo probability (p) derived from a PCC analysis of physico-chemical parameters against the SSH ordination space of fish community data (Log10 transformed; Bray & Curtis dissimilarity values).

Vector 1 and Vector 2 are coordinates indicating direction of influence from the origin in the SSH ordination space.

Note: Parameters were measured before and after opening of JimJim creek crossing at sampling sites on Jim Jim and Twin Falls Creeks. Mean and maximum values were calculated from samples taken on a monthly basis (April - May 1996, for the 'before' group; and June - October, 1996, for the 'after' group). 'Downstream' values at site JJ3 were calculated as a mean of data from both sites, JJ2 and JJ3 (see Figure 1). Table sorted by significance level (p)

| Desciption                                      | Code   | Vector 2        | Vector 1          | R    | P    |
|-------------------------------------------------|--------|-----------------|-------------------|------|------|
| Maximum Sodium                                  | mxNa   | 0.1268          | 0.9919            | 0.88 | 0.01 |
| Maximum Sulphate                                | mxSO4  | 0.8642          | 0.5031            | 0.86 | 0.02 |
| Mean Aluminium                                  | Ał     | -0.7469         | 0.6650            | 0.76 | 0.03 |
| Maximum Total Phosphate                         | mxTP   | -0.0505         | 0.9987            | 0.87 | 0.04 |
| Mean Total Organic Carbon                       | TOC    | -0.9075         | 0.4201            | 0.78 | 0.04 |
| Maximum Uranium                                 | mxU    | -0.7248         | 0.6889            | 0.76 | 0.05 |
| Mean Uranium                                    | Ų      | -0.7230         | 0.6909            | 0.76 | 0.05 |
| Maximum Ortho-Phosphate                         | mxOrP  | -0.7312         | 0.6822            | 0.83 | 0.06 |
| Maximum iron                                    | mxFe   | -0.4112         | 0.9115            | 0.81 | 0.06 |
| Mean Turbidity                                  | тв     | -0.7076         | 0.7066            | 0.75 | 0.06 |
| Maximum Turbidity                               | mxTB   | -0.6958         | 0.7183            | 0.74 | 0.06 |
| Maximum Aluminium                               | mxAi   | -0.7106         | 0.7036            | 0.75 | 0.07 |
| Maximum Potassium                               | mxK    | -0.6765         | 0,7365            | 0,74 | 0.08 |
| Mean CaCO3                                      | CaCO   | -0.8367         | 0.5477            | 0.74 | 0.08 |
| Mean Zinc                                       | Zn     | -0.8793         | 0.4763            | 0,74 | 0.08 |
| Mean Lead                                       | Рb     | <b>-0.7</b> 117 | 0.7025            | 0.74 | 0.09 |
| Mean Dissolved Organic Carbon                   | DOC    | -0.3091         | -0.9510           | 0.82 | 0.10 |
| Maximum Suspended Solids                        | mxSUS  | -0.7351         | 0.6780            | 0.75 | 0.10 |
| Maximum Copper                                  | mxCu   | -0.7116         | 0.7025            | 0.74 | 0.10 |
| Maximum Lead                                    | mxPb   | -0.7116         | 0.7025            | 0.74 | 0.11 |
| Mean Potassium                                  | K      | -0.4139         | 0.9103            | 0.76 | 0.12 |
| Mean Manganese                                  | Mn     | -0.0753         | 0.9972            | 0.75 | 0.13 |
| Mean Copper                                     | Cu     | -0.7116         | 0.7025            | 0.74 | 0.13 |
| Maximum Chloride                                | mxCl   | -0.6673         | 0.7448            | 0.74 | 0.13 |
| Maximum Manganese (HPLC method)                 | mxMn   | -0.1168         | 0.9931            | 0.73 | 0.13 |
| Mean Chromium                                   | Cr     | -0.7117         | 0.7025            | 0.74 | 0.14 |
| Maximum Zinc                                    | mxZn   | -0.9294         | 0.3691            | 0.73 | 0.15 |
| Mean Total Phosphate                            | TP     | 0.6976          | 0.7164            | 0.71 | 0.15 |
| Maximum Chromium                                | mxCr   | -0.7116         | 0.7025            | 0.74 | 0.17 |
| Mean Manganese (ICPMS method)                   | MnIC   | 0.0237          | 0.9997            | 0.72 | 0.17 |
| Mean Sodium                                     | Na     | 0.5803          | 0.8144            | 0.68 | 0.19 |
| Mean Iron                                       | Fe     | -0.5243         | 0.8515            | 0.69 | 0.20 |
| Maximum Manganese (ICPMS method)                | mxMnIC | -0.1875         | 0.9823            | 0.69 | 0.22 |
| Maximum Magnesium                               | mxMg   | -0.7068         | 0.7074            | 0.66 | 0.24 |
| Maximum Conductivity                            | mxCon  | -0.6818         | 0.7315            | 0.66 | 0.25 |
| Mean Sulphate                                   | SO4    | 0.9555          | -0.2948           | 0.62 | 0.27 |
| Mean pH                                         | pH     | 0.6571          | 0.7538            | 0.63 | 0.28 |
| Maximum pH                                      | mxpH   | 0.5373          | 0.8434            | 0.66 | 0.30 |
| Mean Ortho-Phosphate                            | OrP    | -0.9095         | 0.4157            | 0.54 | 0.35 |
| Maximum HCO3                                    | mxHCO3 | -0.9387         | 0.3447            | 0.56 | 0.41 |
| Conductivity                                    | Con    | 0.8838          | -0.4678           | 0.56 | 0.42 |
| Maximum CaCO3                                   | mxCaCO | -0.9509         | 0.3095            | 0.56 | 0.47 |
| Mean Chlorophyli-b                              | Cb     | -0.5570         | -0.8305           | 0.51 | 0.51 |
| Mean Magnesium                                  | Mg     | -0.6460         | 0,7633            | 0.51 | 0.56 |
| Maximum Total Organic Carbon                    | mxTOC  | -0.8871         | -0.4616           | 0.49 | 0.66 |
| Maximum Total Organic Carbon<br>Maximum Calcium | mxCal  | -0.9812         | -0.1932           | 0.49 | 0.67 |
| Mean Total Chlorophyll                          | TC     | -0.8520         | -0.5236           | 0.34 | 0.67 |
| Maximum Chlorophyll-c                           | mxCc   | 0.0718          | 0.9974            | 0.34 | 0.68 |
| Maximum Dissolved Organic Carbon                | mxDOC  | -0.9805         | -0.1965           | 0.42 | 0.69 |
| Mean Chlorophyll-c                              | Cc     | -0.5949         | 0.8038            | 0.42 | 0.05 |
| Mean Calcium                                    | Ca     | -0.0089         | -1.0000           | 0.42 | 0.75 |
| Maximum Chlorophyll-b                           | mxCb   | 0.1967          | -0.9805           | 0.21 | 0.76 |
| Maximum Chiorophys-b<br>Mean Calcium            | Cal    | -0.6003         | -0.9905           | 0.79 | 0.79 |
| Mean Calcium<br>Mean HCO3                       |        |                 | -0.7998<br>0.4585 | 0.39 |      |
|                                                 | HCO3   | -0.8887         |                   |      | 0.80 |
| Mean Chloride<br>Mean Supported Selida          | CI     | -0.8741         | 0.4858            | 0.31 | 0.81 |
| Mean Suspended Solids                           | SUS    | -0.7641         | 0.6451            | 0.74 | 0.83 |
| Mean Chlorophyll-a                              | mxCa   | 0.5121          | -0.8590           | 0.23 | 0.85 |
| Maximum Total Chlorophyll(a,b,c)                | mxTC   | 0.9992          | -0.0393           | 0.17 | 0.86 |

**Table C2** Principle axis correlation coefficients (R) and associated Monte-Carlo probability (p) derived from a PCC analysis of physico-chemical parameters against the SSH ordination space of fish community data (untransformed; Bray & Curtis dissimillarity values).

Vector 1 and Vector 2 are coordinates indicating direction of influence from the origin in the SSH ordination space.

Note: Parameters were measured before and after opening of JimJim creek crossing at sampling sites on Jim Jim and Twin Falls Creeks. Mean and maximum values were calculated from samples taken on a monthly basis (April - May 1996, for the 'before' group; and June - October, 1996, for the 'after' group). 'Downstream' values at site JJ3 were calculated as a mean of data from both sites, JJ2 and JJ3 (see Figure 1). Table sorted by significance level (p)

| Desciption                                      | Code   | Vector 2 | Vector 1 | R    | р    |
|-------------------------------------------------|--------|----------|----------|------|------|
| Mean Total Organic Carbon                       | тос    | 0.7344   | -0.6787  | 0.92 | 0,02 |
| Mean Aluminium                                  | AI     | 0.5167   | -0.8562  | 0.89 | 0.02 |
| Mean CaCO3                                      | CaCO   | 0.7426   | -0.6697  | 0.85 | 0.02 |
| Maximum Chlorophyll-c                           | mxCc   | -0.3334  | -0.9428  | 0.90 | 0.03 |
| Maximum Uranium                                 | mxU    | 0.5567   | -0.8307  | 0.88 | 0.03 |
| Mean Uranium                                    | · U    | 0.5518   | -0.8340  | 0.88 | 0.04 |
| Maximum Turbidity                               | mxTB   | 0.4657   | -0.8849  | 0.87 | 0.04 |
| Mean Total Phosphate                            | ΤP     | -0.9837  | -0.1797  | 0.87 | 0.04 |
| Mean Turbidity                                  | тв     | 0.4766   | -0.8791  | 0.87 | 0.04 |
| Maximum Potassium                               | mxK    | 0.3105   | -0.9506  | 0.86 | 0.04 |
| Maximum Aluminium                               | mxAl   | 0.4914   | -0.8709  | 0.87 | 0.05 |
| Conductivity                                    | Con    | -0.9860  | 0.1668   | 0.82 | 0.06 |
| Maximum Suspended Solids                        | mxSUS  | 0.4544   | -0.8908  | 0.87 | 0.07 |
| Maximumtotal Chlorophyli(a,b,c)                 | mxTC   | -0.5937  | -0.8047  | 0.82 | 0.07 |
| fean Lead                                       | Pb     | 0.5224   | -0.8527  | 0.86 | 0.09 |
| Maximum Chloride                                | mxCl   | 0.2204   | -0.9754  | 0.82 | 0.09 |
| fean Chlorophyll-c                              | Cc     | 0.0450   | -0.99990 | 0.82 | 0.09 |
| • •                                             |        | 0.5224   | -0.8527  | 0.86 | 0.03 |
| Aaximum Copper<br>Aean Dissolved Organic Carbon | mxCu   |          |          |      | 0.10 |
|                                                 | DOC    | 0.6570   | 0.7539   | 0.75 |      |
| Aaximum Lead                                    | mxPb   | 0.5224   | -0.8527  | 0.86 | 0.11 |
| Aean Zinc                                       | Zn     | 0.4666   | -0.8845  | 0.85 | 0.11 |
| Aean Sulphate                                   | SO4    | 0.0150   | 0.9999   | 0.78 | 0.11 |
| Aean Potassium                                  | ĸ      | 0.0099   | -1.0000  | 0.83 | 0.12 |
| Maximum Magnesium                               | mxMg   | 0.3372   | -0.9414  | 0.79 | 0.12 |
| Aaximum Conductivity                            | mxCon  | 0.2435   | -0.9699  | 0.78 | 0.12 |
| lean Copper                                     | Cu     | 0.5224   | -0.8527  | 0.86 | 0.13 |
| faximum Zinc                                    | mxZn   | 0.4446   | -0.8957  | 0.82 | 0.13 |
| fean Chromium                                   | Cr     | 0.5224   | -0.8527  | 0.86 | 0.14 |
| lean Ortho-Phosphate                            | OrP    | 0.9532   | -0.3023  | 0.71 | 0.14 |
| Nean Chloride                                   | CI     | -0.3573  | -0.9340  | 0.70 | 0.16 |
| Maximum Chromium                                | mxCr   | 0.5224   | -0.8527  | 0.86 | 0.17 |
| lean Sodium                                     | Na     | -0.9922  | -0.1248  | 0.72 | 0.19 |
| Aean Iron                                       | Fe     | 0.3842   | -0.9233  | 0.67 | 0.19 |
| Maximum Manganese (ICPMS method)                | mxMnIC | -0.4122  | -0.9111  | 0.65 | 0.21 |
| Aaximum Ortho-Phosphate                         | mxOrP  | 0.0889   | -0.9960  | 0.66 | 0.23 |
| faximum Iron                                    | mxFe   | 0.2352   | -0.9719  | 0.63 | 0.24 |
| lean Manganese                                  | Mn     | -0.4716  | -0.8818  | 0.65 | 0.25 |
| Aximum CaCO3                                    | mxCaCO | 0,1966   | -0.9805  | 0.58 | 0.26 |
| Maximum HCO3                                    | mxHCO3 | 0.2029   | -0.9792  | 0.58 | 0.29 |
| Maximum pH                                      | mxpH   | -0,7501  | -0.6613  | 0.63 | 0.30 |
| lean Magnesium                                  | Mg     | 0.0904   | -0.9959  | 0.67 | 0.31 |
| fean Maganese (ICPMS method)                    | MniC   |          | -0.7891  | 0.58 | 0.32 |
|                                                 | mxMn   | -0.6143  |          |      | 0.32 |
| Aximum Manganese (HPLC method)                  |        | -0.5359  | -0.8443  | 0.57 |      |
| fean Chlorophyll-b                              | Cb     | -0.2957  | -0.9553  | 0.49 | 0.41 |
| faximum Sulphate                                | mxSO4  | -0.9594  | 0.2821   | 0.44 | 0.51 |
| lean Chlorophyll-a                              | mxCa   | -0.7751  | -0.6318  | 0.53 | 0.52 |
| laximum Sodium                                  | mxNa   | -0.7532  | -0.6578  | 0.49 | 0.55 |
| lean HCO3                                       | HCO3   | -0.2041  | -0.9790  | 0.44 | 0.58 |
| laximum Chlorophyll-b                           | mxCb   | -0.6270  | -0.7790  | 0.74 | 0.62 |
| laximum Total Organic Carbon                    | mxTOC  | -0.0362  | -0.9993  | 0.41 | 0.69 |
| lean Suspended Solids                           | SUS    | 0.4089   | -0.9126  | 0.89 | 0.70 |
| lean Calcium                                    | Ca     | -0.6200  | -0.7846  | 0.26 | 0.70 |
| laximum Calcium                                 | mxCal  | 0.0142   | -0.9999  | 0.43 | 0.71 |
| lean pH                                         | pН     | -0.9523  | -0.3052  | 0.36 | 0.71 |
| fean Total Chlorophyll                          | τ¢     | -0.1714  | -0.9852  | 0.66 | 0.72 |
| faximum Total Phosphate                         | mxTP   | -0.6790  | -0.7342  | 0.27 | 0.79 |
| lean Calcium                                    | Cal    | -0.5470  | -0.8371  | 0.26 | 0.83 |
| faximum Dissolved Organic Carbon                | mxDOC  | -0.0572  | -0.9984  | 0.18 | 0.86 |

APP\_B1.DOC