internal report

Macroinvertebrate community structure in Magela Creek between 1988 and 1996 - preliminary analysis of monitoring data

by

R. O'Connor, C.L. Humphrey & C. Lynch

A study conducted by the Environmental Research Institute of the Supervising Scientist

OCTOBER 1997

Contents

Contents	2
Summary	3
1 Introduction	3
2 Study area	4
3 Methods	5
3.1 Timing of annual sampling	5
3.2 Sampling procedure	5
3.3 Processing and identification of samples	5
3.4 Data analysis	7
4 Results	8
4.1 Summary statistics	8
4.2 Multivariate analyses	11
5 Discussion	16
5.1 Detection of impact	16
5.2 Future directions	17
Acknowledgments	17
References	18

Summary

Macroinvertebrate community data from the macrophytic edge habitat of 2 sites in Magela Creek upstream and downstream of Ranger Uranium Mine were analysed for the years 1988 to 1996 (excluding 1989). These data represented the available information for potential effects of the mine on lotic macroinvertebrate communities in Magela Creek at the time of the 1996 Senate inquiry into uranium mining in Australia. Communities were dominated by chironomid (Diptera) and caenid (Ephemeroptera) species and showed a high degree of interannual variability in total abundance. Multivariate analyses showed the two sites tracking each other over time at both the family and species level. Species level analysis also suggested a gradient in the multivariate ordination linked to separation of sites. These preliminary analyses did not indicate any obvious effects of mining although it is recognised that limitations in design and changes in sampling method over time limit the statistical inference possible.

1 Introduction

At the inception of the extensive programs of environmental research conducted by the *eriss* (nee ARRRI) and its consultants in 1978, it was recognised that the major potential impact of mining operations in the Alligator Rivers Region would arise from the dispersion of contaminated mine waste-waters to surface waters (see review of Humphrey & Dostine 1994). Thus, a large part of the research program of the *eriss* has focussed on development of techniques, particularly those incorporating biological indicators, that would be used to monitor and assess such impact.

Some 7 years after the development of the Ranger mine and after completion of a number of baseline ecological studies of local flora and fauna (focussing mainly on lentic waterbodies or 'billabongs'), macroinvertebrate community studies were initiated in the seasonally-flowing portion of Magela Creek in 1988. Whilst it was anticipated that these data would be used as a basis for detecting and assessing mining impact in Magela Creek, it was also recognised that a lead time in development of suitable procedures for monitoring using macroinvertebrate assemblages would be required before techniques were fully refined. Exemplifying the developmental aspect of this work, an external review of the program conducted in 1993 in the form of a workshop recommended changes to the study design from 1994 onward, in line with then-current, 'best practice' in biological monitoring research (Bunn in press). Up until 1995, the environmental protection objective for environmental monitoring in the ARR was for no observable impact.

In 1996 *eriss* was asked to prepare a report for submission to a Commonwealth Government Senate inquiry into uranium mining in Australia. This report was to include an assessment of impacts, if any, upon the environment surrounding the Ranger project resulting from uranium mining. For this purpose, data from a limited number of samples from the Magela Creek study were analysed in order to draw preliminary conclusions about the effects of the Ranger Mine on macroinvertebrate community structure. For the purpose of the Senate inquiry, these data were supported by biological, physical and chemical data collected in association with other studies of the system. In assessing possible mining-related effects upon macroinvertebrate communities, the current report presents all macroinvertebrate data collated for the Senate inquiry. report and, in addition, makes a brief assessment of the efficacy A more detailed assessment of of past, current and future approaches to monitoring using this assemblage of indicator organisms will be presented elsewhere as the outcome of a review of the monitoring program conducted in June 1997. More detailed descriptions of the sampling program conducted between 1988 to 1996 will also be presented as part of the reporting associated with this review.

2 Study area

Magela Creek arises in the sandstone plateau of western Arnhem Land. It can be classified into three zones according to flow and channel characteristics. The upper reaches which are perennial and spring-fed, the mid lowland reaches where it exists as an anastomosing sand-bed stream and finally a broad, seasonally-inundated floodplain at which point it feeds into the South Alligator River. Macroinvertebrate studies have concentrated on the middle, seasonallyflowing portion of Magela Creek upstream of the floodplain where up to ten sites have been sampled. Since 1994, sites from five control creeks of similar character have also been sampled. Data from only two sites on Magela Creek will be discussed in this report. Site 1 is located 1.5 km upstream of the Ranger Uranium Mine (RUM) release pipe. Site 3 was located 6 km downstream of the RUM pipe for the period 1988-93 (immediately downstream of the disused Jabiru sewage pipe outlet, at Stone Billabong). As of 1994, the downstream site was re-located approximately 1 km upstream of its previous location (or 200 m downstream of gauging station GS8210009). The upstream site represents a control site while the fauna at the downstream site should reflect any impacts that may have occurred as a result of the dispersion of mine waste-waters to the creek system. It is recognised that such a simple design using a single control site has inherent flaws i.e. without extra controls, inferences surrounding possible impacts arising from mining are considerably weakened (Humphrey et al 1995). As a consequence, the results should be viewed as preliminary.

A variety of habitats have been recognised within the Magela Creek system and it appears the composition and abundance of the invertebrate fauna varies amongst these (Tripodi 1996 & personal observation). For the purposes of this report, only the macrophytic-edge habitat will be considered, mainly because no other habitats were sampled prior to 1994. The band of macrophytes occurring at the edge of the creek channel is generally dominated by the submerged plant *Eriocaulon*, and is exposed to moderate to high stream currents during recessional flows. This habitat is relatively uniform in structure along the length of the creek channel considered here, a factor which should minimise confounding in the detection of mining impact. The macrophyte-edge habitat also appears to support greater abundances of invertebrates than other habitats sampled in the monitoring program (Tripodi 1996 & personal observation).

3 Methods

3.1 Timing of annual sampling

Within the study area, Magela Creek generally flows for only 6-7 months and hence sampling of aquatic biota in the creek is restricted to this period. Biota has been sampled annually in late April - early May (the Wet-Dry season transition period) for the following reasons: at this time accessibility is enhanced and sampling easily conducted, water clarity is high (a factor important in fish monitoring), measured responses represent the summation of effects of mine waters released during the preceding Wet season, and abundances and taxa richness were believed to be generally highest (Humphrey et al 1990). Tripodi (1996) subsequently reported highest taxa richness and abundances of benthic invertebrates in macrophytic-edge habitat of Magela Creek channel in the mid Wet season, but only a small decline in these attributes was found by the Wet-Dry transition period.

3.2 Sampling procedure

From 1988 to 1993, invertebrate samples were collected using a Surber sampler of area 0.063 m^2 with a sampling net of 500 μ m mesh. In 1994, a Boulton suction sampler of area 0.04 m^2 was used for sample collection Boulton (1985). In both instances, five replicate samples were taken at each site.

In 1995 and 1996 a technique similar to that being used in the national Monitoring River Health Initiative was adopted (Davies 1994). A triangular pond net with 0.25 m sides (internal dimensions) and mesh size 250 μ m was used to sample a pre-defined 2 m strip of the macrophtye-edge habitat. The net was held vertical to, and firmly against, the stream bed with the net pointing downstream whilst macrophytes and substratum were vigorously disturbed by hand in front of the net opening. The net was moved progressively upstream allowing disturbed material to pass with the stream current into the net. Whilst the total area sampled per replicate using the pond net method was 0.5 m², this is almost certainly an overestimate in terms of density estimates, given that this is a semi-quantitative sampling technique and an unknown portion of the sample was swept to the outside of the net after being disturbed from the stream bed. Three replicates were taken at each site using this method.

3.3 Processing and identification of samples

3.3.1 Field processing of samples

Preliminary sample processing occurred in the field to minimise the volume of sample requiring preservation and to facilitate subsequent subsampling and sorting. Excessive coarse vegetation was removed from samples by thoroughly rinsing samples through nested 4 or 8 mm and 500 μ m sieves. On some occasions samples were placed in 20 L buckets two-thirds filled with water and stirred by hand to separate invertebrates from coarse vegetation prior to sieving. Non-organic subtratum (predominantly sand) left in the bucket was elutriated several times through the nested sieves. Material remaining in the coarser sieve was discarded after inspection for remaining invertebrates. Contents of the 500 μ m sieve were preserved in 70% ethanol in the field (1988-94) or placed in large plastic bags filled with creek water and taken back to the laboratory immediately for 'live-sorting' (1995-96).

3.3.2 Subsampling and sorting in the laboratory

Two main approaches were taken to subsampling and sorting of samples over the course of the study. The approach to subsampling and sorting was linked to whether a 'quantitative' (1988-

94) or 'semi-quantitative' sampling technique (1995-96) was being used at the time. The quantitative approach involved subsampling of preserved samples using a geosplitter (that successively halves samples) or jug splitter. The jug method involved splitting samples volumetrically in a 5 L jug. Full descriptions of these subsampling devices and their efficiency are provided in Storey and Humphrey (1997). In some instances, samples were separated into coarse and fine fractions using sieves and these were subsampled separately. Large, conspicuous taxa were sometimes removed prior to this process to facilitate recovery of a complete taxa list. The aim of subsampling was to minimise sorting and identification time by reducing invertebrate abundance of a given sample to around 200. The lengthy sorting times (> 3 hours) associated with samples containing large amounts of detritus and low invertebrate abundances often meant that this target of 200 animals could not be met. Dissecting microscopes set at least to 10 X magnification were used for sorting of preserved samples. Invertebrate specimens were hand-picked from detritus using 'maze' sorting trays that allow material to be worked through systematically.

A semi-quantitative, 'rapid assessment' method was applied to sample processing in 1995 and 1996 to expedite, in particular, sample sorting time. The aim was to eliminate conventional laboratory subsampling and sorting while still recovering rank abundance of invertebrate taxa. Unpreserved samples from the field were emptied onto white plastic sorting trays of dimensions 680 x 420 mm. Tray bases had lines drawn on them dividing them into ten cells. The sample was gently stirred over the tray base to ensure even distribution (adding stream water to completely cover the sample), before randomly selecting a cell. A perspex ring of 94 mm diameter and 30 mm height was then placed in the selected cell. Rings positioned in this manner were generally found not to lie flush with the tray base because of underlying detritus. To overcome this, the ring was twisted in place until it rested firmly on the tray base. A timer was then activated and the sorter attempted to retrieve all animals within the ring using forceps and Pasteur pipettes. The appropriate stage at which to stop sorting was guided by the time elapsed since the last animal had been retrieved. When about 2 minutes had passed without an animal being found, sorting of that ring ceased and the timer was stopped.

This procedure was repeated, allocating a new ring to successive, randomly-selected cells, until 1 hr had elapsed. If sorting of a ring was incomplete after 1 hr had elapsed, sorting continued regardless until the ring had been completely sorted. Rings for which sorting had been completed were left *in situ* so that the sample was not progressively diluted. It was noticed that more mobile taxa, especially some of the Hemiptera, gathered at the edges of the sorting tray while sorting of the ring was in progress. To minimise this aggregation of specimens, the sample excluded from the rings was stirred prior to the placement of additional rings.

The number of rings used for a given sample was recorded on data sheets. A quick survey of the sample was made at the completion of the sorting process to pick out any conspicuous taxa that had not been found in the rings. These animals were placed in a separate, appropriately labelled vial. This last step was taken to maximise the number of taxa retrieved.

3.3.3 Identification of samples

Invertebrates were identified to the lowest practical taxonomic level using regional and national taxonomic keys and the *eriss* macroinvertebrate reference collection. The exception to this was the Chironomidae from the 1996 samples for which time did not allow. Generally only a family-level of identification was attempted with the Hydracarina due to a lack of local keys. Generic level was only attempted for some described species where it was assessed that species-level identification could not be conducted with accuracy. This was generally for speciose genera where distinguishing features are obscure eg *Austrolimnius* adults, *Ecnomus* and *Orthotrichia* larvae, or where mounting of specimens was required eg *Oecetis* larvae.

Three analysts were involved in identifications and hence quality assurance checks were run by the most experienced analyst on identifications conducted by the other two personnel to maximise consistency.

All invertebrates other that chironomids were identified and counted using Wild M8, MZ8 or M10 dissecting microscopes. The head capsules of chironomids require clearing and mounting on slides to allow their examination at high magnification for species and genus-level identification (Cranston 1991). Specimens were firstly cleared in 5% potassium hydroxide overnight at room temperature. The clearing process was then reversed by placing specimens in glacial acetic acid for at least 15 minutes. Specimens were then briefly immersed in propanol before mounting in Euparal on glass slides. Chironomid material was identified under a compound microscope to the lowest practical level.

3.4 Data analysis

Species-level data were generated from sites 1 and 3 for the years 1988 to 1995 (excluding 1989). Each site and occasion was represented by three replicates except for site 1 in 1992 and 1993 where only two samples were available. Family-level data for both sites were also available for 1996. Raw counts were converted to totals to account for subsampling. For quantitative samples for which coarse and fine fractions were subsampled separately in the laboratory, counts from the different fractions were scaled up to 100% and added together to give a whole sample estimate. For samples collected using the ring live-sort method, whole sample estimates were calculated by extrapolating the area of the tray that was live sorted (ie number of rings of known area) to the total area of the sorting tray. The accuracy of whole sample estimates using this method, therefore, is dependent upon the ability of the sorter to remove all animals in a ring and upon the assumption that the collective contents of the rings are a representative subsample.

An average abundance per taxon per replicate was calculated for each site and occasion. Averages were used because the number of replicates was not equal for each site and occasion. As a consequence of the use of different sampling methods over the duration of the study, per unit area counts varied. Thus, sampling area per replicate for the period 1988-93 was 0.063 m^2 , for 1994 0.04 m^2 and for 1995-96 up to 0.5 m^2 . Count data are generally skewed with many taxa having low abundance and only a few having high abundance. To normalise the data, therefore, data were transformed before analysis by dividing the counts in each sample by the count of the most abundant taxon in each sample. This step can allow both quantitative and qualitative information to be expressed without either dominating the other (Gauch 1982) and allows comparsion of the combined data.

7

Multivariate ordination was used to explore variation in this large and complex data set. Ordination summarises data sets according to the similarity between the communities of different samples. The similarity of samples to each other was calculated using the Bray-Curtis dissimilarity measure. The ordination method used in this study was semi-strong-hybrid (SSH) multidimensional scaling, in the PATN statistical package (Belbin 1993). Patterns of association amongst sampling sites and occasions were summarised by plotting the ordination scores of each axis against one another. By this method, the closer samples are to each other in ordination space, the more similar is their community structure. The reduction of data to two or three axes that summarise variation results in some distortion. This distortion is measured in terms of 'stress' and the number of axes selected was determined on the basis of a plateau in the level of reduction in stress value as further dimensions were added.

The principal axis correlation (PCC) module in PATN was used to determine those environmental variables and invertebrate taxa that were correlated with the ordination space (see Faith et al 1995). The MCAO module in PATN (Monte Carlo Analysis) was then used to test the significance of the correlation coefficients. A series of 1000 simulations was run to determine the number of times the original PCC correlation for each variable was exceeded. If none of the simulated values exceeded the original PCC value, there was a 99.9% probability that the particular variable had explanatory value in the ordination.

4 Results

4.1 Summary statistics

The total number of taxa found in the 40 samples from 1988 to 1995 was 121, representing a total of 42 families (Appendix 1). The Diptera accounted for approximately one-third of the taxa found (43 taxa) with most of those from the chironomid family (30). The next most diverse group was the Trichoptera with 21 taxa. Richness was generally lower at the upstream site (site 1) except for 1994 and possibly 1992 (when there was one less replicate for site 1 than 3 - Table 1). Richness was markedly low in 1988 which may be related to the low overall abundance of invertebrates recorded in that year (Fig. 2), or because of over-subsampling (subsample abundance ranged from 21 to 126). Sample size also tended to be lower for live-sorted material - the number of animals collected by the live sort technique in 1995 varied from 62 to 126 per sample and in 1996, 17 to 67. The low sample size in 1995 still resulted in richness values comparable to those in years when quantitative techniques were used, and so taxa recovery by this method may be adequate.

		and the state of t
Year	Number of taxa at Magela Creek Site 1	Number of taxa at Magela Creek Site 3
1988	28	39
1990	49	49
1991	44	45
1992	39*	41
1993	41*	51
1994	47	40
1995	41	48

 Table 1 Number of macroinvertebrate taxa (species and above) found at sites 1 and 3 in each year of the study period.

* n=2 replicates

The caenid mayflies and chironomid Diptera were the two most abundant families recorded overall in the study. The caenids accounted for 34% of the number of invertebrates collected and the chironomids 31% (Table 2). The next most abundant family was the Leptoceridae (caddis flies) which only accounted for 6% of the total abundance (Table 2). Variation in total abundance of macroinvertebrates amongst years was quite marked with peaks in 1990 and 1995 (Fig. 1). As discussed above (section 3.5), sampling area per replicate increased from the period 1988-1994 to 1995-1996 so differences in abundance may be an artefact of different sampling areas. However, high invertebrate abundance in 1990 was due predominantly to large numbers of caenid mayflies present in that year while a range of taxa (baetid mayflies, ceratopogonid midges, hydroptilid and leptocerid caddis and the limnesid water mites) were present in relatively high numbers in 1995 (Table 2).

Figure 1 The average abundance of macroinvertebrates per replicate in Magela Ck at sites 1 and 3 from 1988 to 1996 with one standard error shown. Sites (1 or 3) are labelled under the error bars for each site and sampling occasion.

On half the sampling occasions, total abundance differed significantly between sites (Fig. 1). Abundance was significantly higher at site 1 on three occasions (1992, 1993 and 1994). Abundance values at site 3 in 1988 were unique compared with those in other years in being significantly higher than at site 1 (Fig. 1). Within-site variability in total abundance was sometimes quite high, mainly in years where overall abundance was high (Fig. 1).

Family	1988	1988	1990	1990	1991	1991	1992 1992	1993	1993	1994	1994	1995	1995	1996	1996
	SITE 1	SITE 3	SITE 1	SITE 3	SITE 1	SITE 3	SITE 1 SITE 3	SITE 1	SITE 3						
Baetidae	13	2	10	17	10	13	20 7	29	1	8	2	18	80	21	20
Caenidae	17	90	629	764	129	137	240 110	322	107	295	17	264	167	30	62
Ceratopogonidae	19	20	7	17	7	21	8 0	16	12	11	17	52	26	18	19
Chironomidae	57	205	105	37	35	125	263 82	526	173	796	257	170	230	102	70
Hydropsychidae	0	0	165	10	18	9	34 0	212	1	12	0	27	0	0	13
Hydroptilidae	8	9	5	12	1	3	13 40	1	8	20	17	92	37	29	10
Hygrobatidae	0	0	6	3	7	12	4 0	5	3	15	15	0	19	7	89
Leptoceridae	3	9	13	76	12	29	27 31	5	9	4	15	211	121	8	0
Limnesiidae	0	1	1	31	2	5	0 3	0	5	11	1	56	16	3	0
Naididae	1	44	6	27	0	3	1 5	1	1	0	0	7	14	0	0
Pyralidae	0	0	1	4	8	1	33 13	4	1	5	0	45	0	3	0
Simuliidae	0	0	19	4	55	2	30	8	0	0	0	18	12	2	3

Table 2 Average abundance for each site and sampling occasion of macroinvertebrate families that contributed greater than 1% of the total abundance of animals collected over the study.

4.2 Multivariate analyses

4.2.1 Spatial and temporal patterns in community structure

Bray-Curtis dissimilarity values calculated between sites 1 and 3 for each year did not show a consistent trend with time (Table 3), ie community structure at sites did not become more dissimilar with time. Ordination of both species and family level data mirrored this variable difference in community structure between sites over time (Figs 2 and 3). The species level ordination was carried out in three dimensions, resulting in a stress level of 0.13. Differences amongst years were most apparent in vectors 1 and 2 (Fig. 2), whilst vector 3 appeared to represent features of the data separating the two sites is samples from the same site cluster together regardless of year (Fig. 2). The exception to this trend was for years 1994 and 1995 which may be because of the shift in location of site 3, a further 1 km upstream.

Year	Bray Curtis Dissimilarity (species)	Bray Curtis Dissimilarity (family)
1988	0.6602	0.3066
1990	0.2679	0.2255
1991	0.3740	0.3343
1992	0.4705	0.2467
1993	0.6010	0.2250
1994	0.3825	0.2106
1995	0.5580	0.3545
1996	• 	0.4948

 Table 3 Bray Curtis dissimilarity values calculated for Site 1 (upstream of Ranger) vs Site 3 (downstream of Ranger) in each year of sampling.

* species level data unavailable

PCC correlation analysis and tests of significance by MCAO of species level data showed that *Rheotanytarsus* sp. (Chironomidae, Diptera) and *Tasmanocoenis* indeterminate (Caenidae, Ephemeroptera) were highly correlated with the ordination space (p<0.001, Table 4) and that 21 other taxa were significantly correlated (p < 0.05, Table 4). Taxa that were significantly correlated to be those that were most abundant overall (as would be expected). The gradient represented by vector 2 (Fig. 2) is correlated with high numbers of various chironomid taxa (including *Rheotanytarsus* sp. *Djalmabatista* sp. and indeterminate Tanypodinae) at the positive end and high numbers of indeterminate *Tasmanocoenis* and Anisoptera (dragonfly larvae) at the negative end (Table 4). Vector 1 represents a gradient correlated with high numbers of *Rheotanytarsus* sp. at the positive end and high numbers of a variety of caddis fly taxa (including various hydroptilid and leptocerid taxa) at the negative end (Table 4).

Figure 2 Multivariate ordination plot of the macroinvertebrate community structure, at species level, recorded at two sites in Magela Ck using average abundances from two-three replicates per occasion and with year of sampling indicated.

Figure 3 Multivariate ordination plot of the macroinvertebrate community structure, at family level, recorded at two sites in Magela Ck from 1988 to 1995 using average abundances from two-three replicates per occasion and with year of sampling indicated.

Table 4 Invertebrate taxa significantly correlated (p<0.05) with the SSH ordination of sites 1 and 3</th>from Magela Ck on sampling occasions from 1988 to 1995 showing r values, probabilities anddirection of correlation.

Invertebrate taxa	r value	Probability	Direction of correlation					
			vector1	vector2	vector3			
Ceratopogonidae OSS10L	0.7087	0.045	+ve	+ve	+ve			
Rheotanytarsus indeterminate	0.9220	< 0.001	+ve	+ve	-ve			
Ceratopogonidae OSS2L	0.7752	0.013	-ve	+ve	-ve			
Djalmabatista indeteminate	0.7353	0.045	-ve	+ve	-ve			
Tanypodinae indeterminate	0.7789	0.017	-ve	+ve	-ve			
Wundacaenis dostini	0.9022	0.002	-ve	+ve	-ve			
Leptorussa indeterminate	0.8047	0.011	-ve	+ve	-ve			
Orthotrichia indeterminate	0.8382	0.004	-Vė	+ve	-ve			
Triaenodes indeterminate	0.7132	0.040	-ve	+ve	-ve			
Limnesiidae	0.7514	0.017	-ve	+ve	-ve			
Oxidae	0.7091	0.031	-ve	+ve	-ve			
Tanytarsus indeterminate	0.7612	0.019	-ve		+ve			
Pyralidae OSS9L	0.7393	0.046	-ve	+ve	+ve			
Anisoptera indeterminate	0.7211	0.014	-ve	+ve	+ve			
Naididae	0,7068	0.029	-ve	+ve	+ve			
Tasmanocoenis indeterminate	0.9061	<0.001	-ve		 +ve			
Hellyethira forficata	0.8455	0.002	-ve	-ve	+ve			
Simulium papuense(?)	0.7673	0.034		-ve	-ve			
Cloeon fluviatile	0.8143	0.007	-ve	-ve	-ve			
Tasmanocoenis spD*	0.8119	0.001	-ve	-ve	-ve			
Hydroptilidae indeterminate	0.7340	0.020	-ve	-ve	-ve			
Triplectides ciuskus	0.7795	0.020	-ve	-ve	-ve			
Unionicolidae	0.7724	0.018	-ve	-ve	-ve			

* from Suter (1992)

4.2.2 Species vs family data

Dissimilarity values calculated between sites 1 and 3 were always lower for family level data than species level data (Table 3). Thus, sites appeared to be more alike when family data was used. Presumably as taxonomic resolution decreases, the proportion of taxa in common between the two sites increases. Ordination of sites and occasions according to macroinvertebrate family-level data only required two dimensions (Fig. 3) to achieve a stress level similar to that achieved in three dimensions with species-level data. The two gradients appear to correspond to the 'temporal' species ordination (vectors 1 and 2) where differences amongst years were highlighted rather than differences between sites (Fig. 3). It is noteworthy that the alignment of years between the species and family ordinations is similar (if the family level ordination is rotated upside down and back to front) and if years are tracked, the greatest distances between consecutive years coincides (ie 1988 to 1990 and 1994 to 1995).

Correlation analysis showed that the Caenidae and Chironomidae were highly correlated with the family level ordination space (p < 0.001) and that 12 other families were significantly correlated (p < 0.05, Table 5). Vector 2 in the family level ordination is similar to the species level ordination in that it represents a gradient of high abundance of caenid mayflies at one end (in this case the positive) and high abundance of chironomids at the other end (the negative). The gradient represented by vector one appears to mainly separate the samples from 1995 and 1996 from the other years (Fig. 3). All taxa significantly correlated with the ordination were negatively correlated with vector 1 (Table 5). In other words, samples from 1995 and 1996 at the negative end of vector 1, had higher abundances of the significant taxa (eg Hydroptilidae, Baetidae, Ceratopogonidae and a range of Acarina families).

Invertebrate family	r value	Probability	Direction o	f correlation
			vector1	vector2
Caenidae	0.9307	<0.001	-ve	+ve
Ecnomidae	0.6247	0.023	-ve	+ve
Oxidae	0.6423	0.014	-vê	+ve
Haliplidae	0.6558	0.020	-ve	
Ceratopogonidae	0.7546	0.001	-ve	-ve
Chironomidae	0.8772	<0.001	-ve	-ve
Baetidae	0.7387	0.005	-ve	-ve
Corixidae	0.6466	0.013	-ve	-ve
Coenagrionidae	0.6739	0.008	-ve	-ve
Hydroptilidae	0.6600	0.02	-ve	-ve
Atyidae	0.6983	0.014	-ve	-ve
Hygrobatidae	0.6179	0.09	-ve	-ve
Mideopsidae	0.5923	0.023	-ve	-ve
Torrenticolidae	0.5919	0.017	-ve	-ve

Table 5 Invertebrate families significantly correlated (p<0.05) with the SSH ordination of sites 1 and 3 from Magela Ck on sampling occasions from 1988 to 1996 showing r values, probabilities and direction of correlation.

5 Discussion

5.1 Detection of impact

BACIP (Before, After, Control, Impact, Paired differences) study designs (Stewart-Oaten et al. 1986) involve simultaneous collection of samples from single impact and control sites before and after the impact has occurred. These designs are based on the premise that the differences in responses measured between control and impacted sites in a stream, will change after an impact. In analysing macroinvertebrate community structure data, Faith et al (1991) chose multivariate dissimilarities as the measure of difference between the sites at each time of sampling. The means of sets of differences between the two areas before and after are compared by a t-test or the equivalent. A series of studies have been conducted in streams within the Alligator Rivers Region (ARR) to assess the utility of the so-called BACIP designs for detecting the effects of anthropogenic disturbance upon aquatic communities Results from the South Alligator River indicated that BACIP designs using multivariate dissimilarity values may, under particular circumstances, be very sensitive in detecting mining impact (Faith et al 1995).

Over the period 1988 to the present, national and international changes in the accepted thinking on design (eg development of the beyond BACI approaches) and sampling strategy (from quantitative techniques to rapid assessment protocols) in macroinvertebrate community studies have taken place. Changes in accepted 'best practice' were often accompanied by changes in sampling strategy for the Magela Creek program from year to year. This means that there are certain limitations with using this data to assess whether mining operations at Ranger Uranium Mine have had an impact on Magela Creek. Potential intrinsic constraints arising from the present study are those associated with lack of additional control sites (Faith et al 1995), insufficient sampling effort per site per sampling occasion (Jones 1995) and differences in sampling and sample processing methods. For these reasons statistical differences between years were not tested for (as per the BACIP approach) in this study.

In terms of the BACIP approach, control and before-impact sites can vary with time but they should vary parallel to each other (Faith et al 1995). This 'tracking' of sites over time was evident in both the species and family level ordinations for Magela Creek data (Figs 2 & 3). There was also no consistent trend over time in dissimilarity values between upstream and downstream sites, ie sites didn't become increasingly dissimilar (Table 3). These results, therefore, do not indicate any obvious impact. However, the sensitivity of these analyses may be low given the results of other studies in the region which suggest dissimilarity values between sites in seasonally-flowing creeks are highest and most variable at the time sampling occurred in Magela Creek ie the beginning of the Dry season (Stowar 1997). The difference between 1988 samples and 1990 samples in both species and family ordination space (Figs 2 & 3) may, however, warrant further investigation. The other major difference from 1994 to 1995 (Figs 2 and 3) may be an artefact of the change from a quantitative to semi-quantitative sampling technique. The tracking of sites in Magela Creek over time, however, bodes well for application of BACIP analyses to these and other data collected from control creeks from 1994 onward.

Differences in community structure between any two stream sites will occur naturally as a consequence of habitat changes and longitudinal zonation. The differences noted between sites 1 and 3 on Magela Creek (Tables 1 & 2, Fig 2) may be partly attributable to the proximity of site 1 to permanent headwaters facilitating greater recolonisation of site 1 from this source than site 3 further downstream (Paltridge 1992). Site 1 also experiences faster stream currents than site 3 (*eriss*, unpublished data). This was evident, for example in the much higher incidence at site 1 of *Cheumatopsyche* spp. (caddis fly larvae, family Hydropsychidae) and Simuliidae (black fly larvae - Table 2) which are both flow-dependent filter-feeders.

Dissimilarity values between sites on Magela Creek tended to be more variable than those reported by Faith et al (1995) and Stowar (1997) from other catchments in the ARR. This may be related to the stage in the flow cycle that was sampled (discussed above) and also the distance between sites, which was greater in Magela Creek. The relocation of site 3 in 1994 corresponded to a change in macroinvertebrate community structure evident in the species level ordination of data where samples from site 3 clustered together except for years 1994 and 1995 (Fig 2). These results indicate that relocation of sampling sites may have confounded any other changes in macroinvertebrate community structure.

In the ARR, impacts of both mining and increased turbidity from a road crossing have been detected using family level macroinvertebrate community data (Faith et al 1995, O'Connor et al 1995, Stowar 1997). Species and family data also gave similar interpretations of temporal patterns in Magela Creek (Figs 2 & 3). Given the high conservation value of aquatic systems in the region it is likely that species level identification will be the preferred option where taxonomic information allows. However, noisy data may necessitate the use of family level data for statistical analyses to detect impact.

5.2 Future directions

A commitment to an ongoing monitoring program for Magela Creek will require definition of the environmental protection objectives through consultation with stakeholders. Design of the monitoring strategy needs to then be ratified and protocols documented. A priority in this process is determination of an appropriate level of replication for riffle habitats which will allow calibration of past sampling efforts with more intensive sampling. Analysis of data from control streams by the BACIP techniques used in other studies within the ARR (Faith et al 1995, Stowar 1997) would test their usefulness in the Magela system and indicate which streams provide the most suitable controls.

Additional macroinvertebrate studies conducted in Magela Creek (and/or processing of additional samples held by *eriss*) would be required to evaluate the influence of between-site distance and stage of the annual hydrological cycle in affecting the magnitude of derived dissimilarity values and their temporal variation. Further analysis of the current data will also include an evaluation of patterns and magnitude of flow in the preceding Wet season in affecting dissimilarity values calculated at the Wet-Dry transition period.

Acknowledgments

Thanks go to Barbara Klessa for invertebrate identifications and Caroline Camilleri for initial documentation of some of the field and laboratory procedures. Thanks also to Abbie Spiers for some of the chironomid preparation and long-term involvement in the project. The many past and present staff of *eriss* involved in sampling and sorting are also acknowledged.

References

- Belbin L 1993. PATN Pattern Analysis Package. CSIRO Division of Wildlife and Rangelands Research, Canberra.
- Boulton AJ 1985. A sampling device that quantitatively collects benthos in flowing or standing waters. *Hydrobiologia* 127, 31-39.
- Bunn SE in press. Other approaches and issues. In Proceedings of a Specialist Workshop to Assess the ARRRI Biological Monitoring Program, 24 September 1993, University of Canberra, ACT (eds CM Finlayson, CL Humphrey & RWJ Pidgeon), Organized by the Office of the Supervising Scientist.
- Cranston PS 1991. Immature Chironomidae of the Alligator Rivers Region. Open file record 82, Supervising Scientist for the Alligator Rivers Region, Canberra. Unpublished paper.
- Davies PE 1994. River Bioassessment Manual, version 1.0. National River Processes and Management Program, Monitoring River Health Initiative. Joint EPA-LWRRDC publication.
- Faith DP, Dostine PL & Humphrey CL 1995. Detection of mining impacts on aquatic macroinvertebrate communities: results of a disturbance experiment and the design of a multivariate BACIP monitoring program at Coronation Hill, N.T. Australian Journal of Ecology 20, 167-180.
- Faith DP, Humphrey CL & Dostine PL 1991. Statistical power and BACI designs in biological monitoring: comparative evaluation of measures of community dissimilarity based on benthic macroinvertebrate communities in Rockhole Mine Creek, Northern Territory, Australia. *Australian Journal of Marine and Freshwater Research* 42, 589-602.
- Gauch Jr HJ 1982. *Multivariate analysis in community ecology*. Cambridge University Press, Cambridge.
- Humphrey CL, Bishop KA & Brown VM 1990. Use of biological monitoring in the assessment of effects of mining wastes on aquatic ecosystems of the Alligator Rivers Region, tropical northern Australia. *Environmental Monitoring and Assessment* 14, 139-181.
- Humphrey CL & Dostine PL 1994. Development of biological monitoring programs to detect mining-waste impacts upon aquatic ecosystems of the Alligator Rivers Region, Northern Territory, Australia. *Mitteilungen Internationalis Vereinigung Limnologiae* 24, 293-314.
- Humphrey CL, Faith DP & Dostine PL 1995. Baseline requirements for assessment of mining impact using biological monitoring. In The use of biota to assess water quality, Australian Journal of Ecology 20, 150-66.
- Jones A 1995. Statistical description of the scales of spatial variation of benthic macroinvertebrate communities in Magela Creek, Kakadu, NT. Internal report 214, Supervising Scientist for the Alligator Rivers Region, Canberra. Unpublished paper.
- O'Connor R, Humphrey C, Dostine P, Lynch C & Spiers A 1995. A survey of aquatic macroinvertebrates in lentic waterbodies of Magela and Nourlangie Creek catchments, Alligator Rivers Region, Northern Territory. Internal report 225, Supervising Scientist for the Alligator Rivers Region, Canberra. Unpublished paper.
- Paltridge R 1992. Macroinvertebrate recolonisation of a tropical temporary stream. Open file record 99. Supervising Scientist for the Alligator Rivers Region, Canberra. Unpublished paper.

- Stewart-Oaten A, Murdoch WW, & Parker KR 1986. Environmental impact assessment : "Pseudoreplication" in time? *Ecology* 67, 929-940.
- Storey AW & Humphrey CL 1997. Assessment of the efficiency of four types of device for subsampling of aquatic macroinvertebrate samples. In LWRRDC Milestone Report 2. Development and implementation of QA/QC protocols for sampling and sorting components of the MRHI agency bioassessment program. Internal report 247, Supervising Scientist, Canberra. Unpublished paper.
- Stowar M 1997. Effects of suspended solids on benthic macroinvertebrate fauna downstream of a road crossing, Jim Jim Creek, Kakadu National Park, Honours thesis, University of Canberra.
- Suter PJ 1992. Taxonomic key to the Ephemeroptera (mayflies) of the Alligator rivers Region, Northern Territory. Open file record 96. Supervising Scientist for the Alligator Rivers Region, Canberra. Unpublished report.
- Tripodi E 1996. Temporal and spatial variations in the macroinvertebrate communities of the seasonally flowing portions of Magela Creek, Northern Territory. Internal report 240, Supervising Scientist for the Alligator Rivers Region, Canberra. Unpublished paper.

Order/Class		1988						1990					
Family	Genus and species	Site 1			Site 3			Site 1			Site 3		
		Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 4	Rep. 2	Rep. 3	Rep. 4
	sample no.	1846	1847	1848	1866	1867	1868	1885	1886	1888	1916	1917	1918
Coleoptera													
Dytiscidae	Antiporus OSS4L				4	4		4		4			
Dytiscidae	Batracomatus wingi (A)												
Dytiscidae	Cybister OSS1L		5										
Dytiscidae	OSS6L								2				
Dytiscidae	Tiporus nr josephini (A)												
Dytiscidae	indet. (L)									4			
Elmidae	Austrolimnius sp2A (L)*							4					
Elmidae	Austrolimnius sp2B (L)*								2	6		12	
Elmidae	Austrolimnius sp4 (L)*												
Elmidae	Austrolimnius sp9 (L)*												
Elmidae	Austrolimnius indet. (A)									12	4		
Elmidae	Austrolimnius indet. (L)							4					1
Elmidae	Genus E sp74E (L)*												
Haliplidae	OSS1L						4						
Hydrophilidae	OSS1L	4	2	5							4		5
Noteridae	Hydrocophus subfasciatus (A)												-
Diptera													
Ceratopogonidae	OSS1L												
Ceratopogonidae	OSS2L		8	28	8	12	4		2	12	4		14
Ceratopogonidae	OSS3L										2		
Ceratopogonidae	OSS5L										_		
Ceratopogonidae	OSS6L					4							
Ceratopogonidae	OSS8L			8							4		2
Ceratopogonidae	OSS9L			8		4			4				2
Ceratopogonidae	OSS10L						4		-				-
Ceratopogonidae	OSS12L												
Ceratopogonidae	indet.			4	16		8			4	18	4	1
Chironomidae	Ablabesmyia notabilis											•	•
Chironomidae	Ablabesmyia indet.												
Chironomidae	Chironomus indet.												
Chironomidae	Cladotanytarsus indet.		4		4			4					
Chironomidae	Conochironomus indet.				8	3	20	•					

Order/Class		1988						1990					
Family	Genus and species	Site 1			Site 3			Site 1			Site 3		
		Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 4	Rep. 2	Rep. 3	Rep. 4
	sample no.	1846	1847	1848	1866	1867	1868	1885	1886	1888	1916	1917	1 91 8
Chironomidae	Cricotopus albitarsis												
Chironomidae	Cricotopus brevicornis												
Chironomidae	Cricotopus indet.												
Chironomidae	Cryprochironomus griseidorsum												
Chironomidae	Cryptochironomus indet.						4						
Chironomidae	Dicrotendipes lindae				4		4			4	2		
Chironomidae	Dicrotendipes indet.								4				
Chironomidae	Djalmabatista indet.	12	4	36	92	80	92		2		12		1
Chironomidae	Kiefferulus tinctus												
Chironomidae	Kiefferulus indet.												
Chironomidae	Larsia albiceps				4	4	4	4	- 4				· 1
Chironomidae	Nanocladius OSS1L								2				
Chironomidae	Nilotanypus indet.									2			
Chironomidae	Parametriocnus nr ornaticornis									4			
Chironomidae	Paratanytarsus indet.									8			
Chironomidae	Paratendipes indet.												
Chironomidae	Polypedilum leei		4										
Chironomidae	Polypedilum nubifer												
Chironomidae	Polypedilum watsoni												
Chironomidae	Polypedilum indet.					4			2				2
Chironomidae	Procladius paludicola						4			4			
Chironomidae	Rheocricotopus indet.							20	2	56	2		
Chironomidae	Rheotanytarsus indet.	24	24	32	12	8		20	26	50	4	12	1
Chironomidae	Robackia indet.										2		1
Chironomidae	Stempellina indet.						16						
Chironomidae	Stenochironomus indet.		4										
Chironomidae	Stictochironomus indet.												
Chironomidae	Tanytarsus indet.			8	44	52	72	12	40		24		10
Chironomidae	Thienemanniella spA##												
Chironomidae	Thienemanniella indet.												
Chironomidae	Thienemannimyia indet.								2	2			
Chironomidae	Chironominae (subfamily) indet.						4		2		4	8	
Chironomidae	Orthocladiinae (subfamily) indet.				4			4					

.

Order/Class		1988						1990					
Family	Genus and species	Site 1			Site 3			Site 1			Site 3		
		Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 4	Rep. 2	Rep. 3	Rep. 4
	sample no.	1846	1847	1848	1866	1867	1868	1885	1886	1888	1916	1917	1918
Chironomidae	Tanypodinae (subfamily) indet.		8		4	8	12	4					
Chironomidae	indet. (L)				4	4	12			2	6		1
Chironomidae	indet. (P)	4	4	4		4	24	4	4	20	12		6
Simuliidae	Simulium papuense (?)			1				20	4		2	4	
Simuliidae	Simulium indet.							4		14	6		
Simuliidae	indet. (L)												
Simuliidae	indet. (P)							4	2	8			
Tabanidae	Tabanus indet.			4						16			
Tabanidae	indet.												
Tipulidae	OSS1L	4	2	1								8	3
Tipulidae	OSS4L	1	4	25	1	9	12			4	10		5
Tipulidae	indet.										2		
Ephemeroptera													
Baetidae	Baetis sp1**												2
Baetidae	Baetis indet.												
Baetidae	Centroptilum OSS1N				4		1						
Baetidae	Cloeon fluviatile												
Baetidae	Genus B sp1**			24						16	10	12	1
Baetidae	Genus B indet.												
Baetidae	Genus C indet.												
Baetidae	indet.	4	4	8					8	6	12	4	2
Caenidae	Tasmanocoenis arcuata								2				_
Caenidae	Tasmanocoenis spD**					4		12	62	86	64	36	19
Caenidae	Tasmanocoenis spE**							36			68	4	23
Caenidae	Tasmanocoenis spH**												
Caenidae	Tasmanocoenis spJ**				85	13	28					4	
Caenidae	Tasmanocoenis indet.		8			12	84	796	284	558	886	796	386
Caenidae	Wundacaenis dostini	16	20		16	-		8	4	12			
Caenidae	indet.		-	8	20		8	•	16	12	4		1
Leptophlebiidae	Thraulus indet.			-			•				•		
Leptophlebiidae	indet.												

Order/Class		1988						1990					
Family	Genus and species	Site 1			Site 3			Site 1			Site 3		
		Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 4	Rep. 2	Rep. 3	Rep. 4
	sample no.	1846	1847	1848	1866	1867	1868	1885	1886	1888	1916	1917	1918
Hemiptera													
Corixidae	Micronecta indet.												1
Mesoveliidae	indet.												
Lepidoptera													
Pyralidae	OSS1L			1						4	2	4	3
Pyralidae	OSS2L												
Pyralidae	OSS9L											4	
Pyralidae	OSS10L												
Pyralidae	indet.												
Odonata													
Coenagrionidae	Austrocnemis maccullochi												
Coenagrionidae	indet.												
Corduliidae	Hemicordulia intermedia				1								
Gomphidae	Antipodogomphus neophytus												
Gomphidae	Antipodogomphus indet.												
Gomphidae	Austrogomphus mjobergi												
Gomphidae	Austrogomphus indet.												
Libellulidae	Diplacodes haematodes						1						
Libellulidae	Nannophlebia indet.												
Libellulidae	Orthetrum caledonicum				1								
Libellulidae	indet.		·		4								
Anisoptera (suborder)	indet.						8						
Zygoptera (suborder)	indet.												
Trichoptera													
Calamoceratidae	Anisocentropus muricatus												
Ecnomidae	Ecnomina indet.												
Ecnomidae	Ecnomus indet.						4				4		
Ecnomidae	indet.								2				
Hydropsychidae	Asmicridea sp3#												
Hydropsychidae	Chematopsyche kakaduensis							24	4	216			
Hydropsychidae	Cheumatopsyche suteri							12	8	136	14	16	1
Hydropsychidae	Cheumatopsyche wellsae												
Hydropsychidae	Cheumatopsyche indet.							20		76			

.

Order/Class		1988						1990					
Family	Genus and species	Site 1			Site 3			Site 1			Site 3		
		Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 4	Rep. 2	Rep. 3	Rep. 4
	sample no.	1846	1847	1848	1866	1867	1868	1885	1886	1888	1916	1917	1918
Hydroptilidae	Hellyethira cubitans (L)												
Hydroptilidae	Hellyethira forficata (L)										4	4	4
Hydroptilidae	Hellyethira forficata (P)										2	4	
Hydroptilidae	Hellyethira indet. (L)							4	4		4		2
Hydroptilidae	Hellyethira ramosa (L)					4	8		2		2	4	1
Hydroptilidae	Hellyethira ramosa (P)												
Hydroptilidae	Hellyethira vernoni (L)												
Hydroptilidae	Oxyethira indet. (L)												
Hydroptilidae	Orthotrichia turrita												
Hydroptilidae	Orthotrichia indet. (L)		12	12	8	8		8	6	6	60	44	47
Hydroptilidae	Orthotrichia indet. (P)									4	10		5
Hydroptilidae	indet. (L)								4		2		3
Hydroptilidae	indet. (P)												
Leptoceridae	Leptorussa indet.	4			8					2	22		
Leptoceridae	Oecetis epekeina												
Leptoceridae	Oecetis spA#											8	
Leptoceridae	Oecetis spE#												
Leptoceridae	Oecetis indet.				8	4		4				8	
Leptoceridae	Triaenodes indet.		4		6462 A	4				4	4		1
Leptoceridae	indet.		· .	e se si	· · 4					4	18		
Philopotamidae	Chimarra spB #									6			
Polycentropodidae	indet.												
Triplectides	ciuskus												
Triplectides	indet.												
Acarina													
Hydryphantidae	indet.										8		
Hygrobatidae	Australiobates indet.							8			-		
Hygrobatidae	indet.							4		6	4		4
Limnesiidae	indet.						4	•	2	•	60	20	12
Mideopsidae	indet.						•		-				•=
Oribatida (suborder)	indet.							4			92		4
Oxidae	indet.		4	4							72		1
			•	•									•

Order/Class		1988						1990					
Family	Genus and species	Site 1			Site 3			Site 1			Site 3		
		Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 4	Rep. 2	Rep. 3	Rep. 4
	sample no.	1846	1847	1848	1866	1867	1868	1885	1886	1888	1916	1917	1918
Torrenticolidae	indet.										4		
Unionicolidae	indet.				4								
	indet.									8			
Decapoda													
Atyidae	Caridina gracilirostris												
Atyidae	Caridinides wilkinsi												
Atyidae	indet.												
Palaemonidae	Macrobrachium bullatum												
Palaemonidae	Macrobrachium rosenbergi												
Palaemonidae	Macrobrachium indet.												
Palaemonidae	indet.						1						
Gastropoda													
Planorbidae	Amerianna indet.												1
Nematoda	indet.		4					4	14	16	20		3
Oligochaeta													
Enchytraeidae	indet.		12			4			2	30		8	
Naididae	indet.		4		32	72	28	4	2	12	42	36	2
Tubificidae	indet.				12		8			8	4		
Magadrili (superorder)	indet.	2	4	2	3	3	3	8	2	4	18	12	1
	indet.							8					
indet = indeterminate	1												

-

* Glaister 1991 # Wells 1991

** Suter 1992

Cranston 1991

Order/Class		1991						1992				
Family	Genus and species	Site 1			Site 3			Site 1		Site 3		
		Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 2	Rep. 5	Rep. 1	Rep. 3	Rep. 4
	sample no.	1935	1936	1937	1965	1966	1967	1986	1989	2015	2017	2018
Coleoptera												
Dytiscidae	Antiporus OSS4L											
Dytiscidae	Batracomatus wingi (A)											
Dytiscidae	Cybister OSS1L											
Dytiscidae	OSS6L	1		5		2			2		1	
Dytiscidae	Tiporus nr josephini (A)											8
Dytiscidae	indet. (L)	2						4	2			
Elmidae	Austrolimnius sp2A (L)*										1	8
Elmidae	Austrolimnius sp2B (L)*	1	4	4				4			1	
Elmidae	Austrolimnius sp4 (L)*											
Elmidae	Austrolimnius sp9 (L)*										1	
Elmidae	Austrolimnius indet. (A)	10	8	3			6					
Elmidae	Austrolimnius indet. (L)	2	4	2			2					
Elmidae	Genus E sp74E (L)*								4			
Haliplidae	OSS1L											
Hydrophilidae	OSS1L							12	4		1	
Noteridae	Hydrocophus subfasciatus (A)											
Diptera												
Ceratopogonidae	OSS1L					2						
Ceratopogonidae	OSS2L	2		- 2	· · · .		2					
Ceratopogonidae	OSS3L											
Ceratopogonidae	OSS5L											
Ceratopogonidae	OSS6L											
Ceratopogonidae	OSS8L	4				10	6		14			
Ceratopogonidae	OSS9L		8	2	2	10	10					
Ceratopogonidae	OSS10L											
Ceratopogonidae	OSS12L											
Ceratopogonidae	indet.	4				14	6		2			
Chironomidae	Ablabesmvia notabilis	-				• •	-					
Chironomidae	Ablabesmvia indet.											
Chironomidae	Chironomus indet.					2						
Chironomidae	Cladotanytarsus indet.					~						
Chironomidae	Conochironomus indet.											

Family Genus and species Site 1 Site 3 Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 4 Rep. 5 Rep. 4	Order/Class		1991						1992				
Rep. 1 Rep. 2 Rep. 3 Rep. 3 Rep. 4 Rep. 4 1986 1980 2015 2017 2018 Chironomidae Cricotopus albitarsis 4 4 2 1 2 1 2017 2018 2015 2017 2018 Chironomidae Cricotopus brevicorris 2 4 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Family	Genus and species	Site 1			Site 3			Site 1		Site 3		
sample no. 1935 1936 1936 1966 1966 1986 1988 2015 2017 2018 Chironomidae Cricotopus brevicornis 2 4 2 1 1			Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 2	Rep. 5	Rep. 1	Rep. 3	Rep. 4
Chironomidae Cricotopus albitarsis 4 Chironomidae Cricotopus indet. 2 1 Chironomidae Criporohironomus griseidorsum 1 2 4 Chironomidae Criporohironomus indet. 2 2 4 1 Chironomidae Dicrotendipes indet 2 2 4 1 Chironomidae Dicrotendipes indet. 2 4 4 6 Chironomidae Dicrotendipes indet. 2 4 4 6 1 Chironomidae Kiefferulus tinctus 2 4 4 6 1 Chironomidae Kiefferulus tinctus 2 4 4 6 1 Chironomidae Larsia albiceps 4 4 2 4 2 Chironomidae Parametriconus nr ornaticomis 2 4 2 4 2 Chironomidae Parametriconus nr ornaticomis 2 4 2 4 2 Chironomidae Parametriconus nr ornaticomis 2 4 4 2 3 8		sample no.	1935	19 36	1937	1965	1966	1967	1986	1989	2015	2017	2018
Chironomidae Cricotopus brevicomis 2 1 Chironomidae Crototopus indet. 2 4 5 Chironomidae Cryptochironomus griseidorsum 1 2 4 1 Chironomidae Cryptochironomus griseidorsum 1 2 4 1 Chironomidae Dicrotendipes indet. 2 2 4 1 Chironomidae Dicrotendipes indet. 2 4 4 6 1 Chironomidae Diamabalista indet. 2 4 4 6 1 Chironomidae Kiefferulus indet. 2 4 1 1 1 Chironomidae Nanocladius OSS1L 1<	Chironomidae	Cricotopus albitarsis						4					
Chironomidae Cricotopus indet 2 Chironomidae Cryptochironomus griseidorum 1 Chironomidae Dicrotendipes lindae 2 2 4 1 Chironomidae Dicrotendipes lindae 2 2 4 1 Chironomidae Dicrotendipes lindat 2 2 4 1 Chironomidae Dicrotendipes lindat 2 4 4 6 1 Chironomidae Kiefferulus tinctus 2 4 4 6 1 Chironomidae Kiefferulus tinctus 4 2 4 2 4 2 Chironomidae Larsia albiceps 4 2 4 2 4 2 Chironomidae Nanocladius OSS1L 1 2 4 2 4 2 Chironomidae Paratendipes indet. 2 4 2 4 2 4 2 Chironomidae Paratendipes indet. 2 4 2 4 2 4 1 2 Chironomidae Polypedilum nubifer	Chironomidae	Cricotopus brevicornis								2		1	
ChironomidaeCryptochironomus ginseidorsum1ChironomidaeCirytochironomus indet.224ChironomidaeDicrotendipes indet.2241ChironomidaeDicrotendipes indet.22446ChironomidaeDiambatista indet.24461ChironomidaeKiefferulus inclus24461ChironomidaeKiefferulus indet.24461ChironomidaeKiefferulus indet.244242ChironomidaeNanocladius OSS11.242422ChironomidaeParametriconus nr ornaticornis2424242ChironomidaeParatendipes indet.42424242ChironomidaePolypedilum nubifer242424124ChironomidaePolypedilum indet.2283881124381124412412441244124412441241241244124124124124124114124 <td< td=""><td>Chironomidae</td><td>Cricotopus indet.</td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td></td<>	Chironomidae	Cricotopus indet.						2					
ChironomidaeCryptochironomus indet.224ChironomidaeDicrotendipes indet.22241ChironomidaeDialmabatista indet.224465ChironomidaeKiefferulus indet.24461ChironomidaeKiefferulus indet.74461ChironomidaeKiefferulus indet.7411ChironomidaeNanocladius OSS1L724242ChironomidaeNanocladius OSS1L7242421ChironomidaeParametriocrus nr ornaticomis7242421ChironomidaeParametriocrus nr ornaticomis7243838383	Chironomidae	Cryprochironomus griseidorsum	1										
ChironomidaeDicrotendipes indet22241ChironomidaeDicrotendipes indet.2446ChironomidaeKiefferulus tinctus2446ChironomidaeKiefferulus tinctus2446ChironomidaeKiefferulus tinctus2446ChironomidaeKiefferulus tinctus3411ChironomidaeNanocladius OSS1L2442ChironomidaeNanocladius OSS1L24242ChironomidaeParametricorus nr ornaticornis24242ChironomidaeParatanytarsus indet.424242ChironomidaePolypedilum nubifer24452838ChironomidaePolypedilum nubifer2446220838ChironomidaePolypedilum nubifer2446220838ChironomidaePolypedilum nubifer24444244ChironomidaeRheotanytarsus indet.24442838ChironomidaeRheotanytarsus indet.24444444444444444444444 <td>Chironomidae</td> <td>Cryptochironomus indet.</td> <td></td> <td></td> <td></td> <td>2</td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Chironomidae	Cryptochironomus indet.				2	4						
ChironomidaeDiorotendipes indet.2ChironomidaeDialmabatista indet.2446ChironomidaeKiefferulus tinctus2446ChironomidaeLarsia albiceps41ChironomidaeNanotadius OSS1L2424ChironomidaeNanotadius OSS1L2424ChironomidaeNanotadius OSS1L2424ChironomidaeParametricorus nr onaticornis2424ChironomidaeParatantytarsus indet.4242ChironomidaeParatantytarsus indet.4242ChironomidaePolypedilum nubifer2445ChironomidaePolypedilum nubifer220838ChironomidaePolypedilum nubifer220838ChironomidaeRheocricotopus indet.220838ChironomidaeRheocricotopus indet.24442ChironomidaeRheotantytarsus indet.44444ChironomidaeStempellina indet.44444ChironomidaeStempellina indet.5144844214ChironomidaeStempellina indet.55144844216ChironomidaeThienemaniella indet.55 <td< td=""><td>Chironomidae</td><td>Dicrotendipes lindae</td><td></td><td></td><td>2</td><td>2</td><td></td><td>2</td><td>4</td><td></td><td></td><td>1</td><td></td></td<>	Chironomidae	Dicrotendipes lindae			2	2		2	4			1	
ChironomidaeOjamabatista indet.2446ChironomidaeKiefferulus tinctusIIIChironomidaeLarsia albiceps4IIChironomidaeNanocladius OSS1LIIIChironomidaeNanocladius OSS1LIIIChironomidaeNanocladius OSS1LIIIChironomidaeParametricorus nr ornaticornisIIIChironomidaeParametricorus nr ornaticornisIIIChironomidaeParametricorus nr ornaticornisIIIChironomidaePolypedilum leeiIIIIChironomidaePolypedilum nubiferIIIIChironomidaePolypedilum vatsoniIIIIIChironomidaePolypedilum indet.IIIIIIChironomidaeRheotanytarsus indet.IIIIIIIChironomidaeRheotanytarsus indet.III	Chironomidae	Dicrotendipes indet.					2						
ChironomidaeKiefferulus tinctusChironomidaeKiefferulus indet.ChironomidaeLarsia albiceps4ChironomidaeNanocladius OSS1LChironomidaeNanocladius OSS1LChironomidaeNanocladius OSS1LChironomidaeParametriocrus nr ornaticornisChironomidaeParametriocrus nr ornaticornisChironomidaeParatendipes indet.ChironomidaeParatendipes indet.ChironomidaeParatendipes indet.ChironomidaePolypedilum nubiferChironomidaePolypedilum nubiferChironomidaePolypedilum nubiferChironomidaePolypedilum nubiferChironomidaePolypedilum nubiferChironomidaePolypedilum nubiferChironomidaePolypedilum nubiferChironomidaePolypedilum nubiferChironomidaePolypedilum indet.ChironomidaeRheocritopus indet.ChironomidaeRheocritopus indet.ChironomidaeRheocritopus indet.ChironomidaeStempellina indet.ChironomidaeStempellina indet.ChironomidaeStetochironomus indet.ChironomidaeThienemanniella spA##ChironomidaeThienemanniella indet.ChironomidaeThienemanniella indet.ChironomidaeThienemanniella indet.ChironomidaeThienemanniella indet.ChironomidaeThienemanniella indet.ChironomidaeThienemanniella indet.ChironomidaeThienemanniella indet.Chironomidae </td <td>Chironomidae</td> <td>Djalmabatista indet.</td> <td></td> <td></td> <td></td> <td>2</td> <td>4</td> <td>4</td> <td></td> <td>6</td> <td></td> <td></td> <td></td>	Chironomidae	Djalmabatista indet.				2	4	4		6			
ChironomidaeKiefferulus indet.41ChironomidaeLarsia albiceps41ChironomidaeNanocladius OSS1L242ChironomidaeNilotanypus indet.24242ChironomidaeParametriocnus nr ornaticornis24242ChironomidaeParatentjnes indet.2445244ChironomidaePolypedilum nubiler24452838ChironomidaePolypedilum nubiler2446220838ChironomidaePolypedilum indet.228388124308161124ChironomidaePolypedilum indet.244424412856144128561444126144126144121444216161442161614421616144216161442161616144216 </td <td>Chironomidae</td> <td>Kiefferulus tinctus</td> <td></td>	Chironomidae	Kiefferulus tinctus											
ChironomidaeLarsia albiceps41ChironomidaeNanocladius OSS1L242ChironomidaeParametricorus no ronaticornis242ChironomidaeParatendipes indet.4242ChironomidaeParatendipes indet.4242ChironomidaeParatendipes indet.4242ChironomidaePolypedilum nubifer7777ChironomidaePolypedilum nubifer2777ChironomidaePolypedilum nubifer2777ChironomidaePolypedilum nubifer2777ChironomidaePolypedilum nubifer2777ChironomidaePolypedilum nubifer2777ChironomidaePolypedilum nubifer2777ChironomidaePolypedilum nubifer2777ChironomidaeProcladus paludicola27838ChironomidaeRheotanytarsus indet.2485181664624308161124ChironomidaeStenchironomus indet.4441268561448ChironomidaeThienemanniella spA##787871448ChironomidaeThienemanniella indet.77871448Chi	Chironomidae	Kiefferulus indet.											
ChironomidaeNanocladius OSS1LChironomidaeNilotanypus indet.242ChironomidaeParametriocnus nr ornaticornis242ChironomidaeParatanytarsus indet.4244ChironomidaeParatanytarsus indet.4244ChironomidaePolypedilum leeiChironomidaePolypedilum nubiferChironomidaePolypedilum vatsoniChironomidaePolypedilum indet.220838ChironomidaeProcladius paludicolaChironomidaeRheocricotopus indet.9446220838ChironomidaeRheotanytarsus indet.2485181664624308161124ChironomidaeRheotanytarsus indet.1444ChironomidaeStenochironomus indet4-4ChironomidaeThenemanniella spA##38261441268561448ChironomidaeThienemanniella indet8 <td< td=""><td>Chironomidae</td><td>Larsia albiceps</td><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td>1</td><td></td></td<>	Chironomidae	Larsia albiceps					4					1	
ChironomidaeNilotanypus indet.242ChironomidaeParametricorus nr ornaticornis4242ChironomidaeParatanytarsus indet.42442ChironomidaeParatanytarsus indet.4244544ChironomidaePolypedilum leei244518161124ChironomidaePolypedilum nubifer2446220838ChironomidaePolypedilum nubifer2446220838ChironomidaePolypedilum indet.2446220838ChironomidaeRheotanytarsus indet.2485181664624308161124ChironomidaeRobackia indet.1444244244ChironomidaeStenochironomus indet.1441268561448ChironomidaeThienemaniella spA##38261441268561448ChironomidaeThienemanniella spA##514484244216ChironomidaeThienemanniella spA##5144244216ChironomidaeChironomiae (subfamily) indet. <t< td=""><td>Chironomidae</td><td>Nanocladius OSS1L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Chironomidae	Nanocladius OSS1L											
ChironomidaeParametriocnus nr ornaticornisChironomidaeParatanytarsus indet.424ChironomidaeParatendipes indet.424ChironomidaePolypedilum leei244ChironomidaePolypedilum nubifer255ChironomidaePolypedilum watsoni25518ChironomidaePolypedilum indet.220838ChironomidaePolypedilum indet.25181664624308161124ChironomidaeRheocritotopus indet.944444241268561444ChironomidaeRheothironomus indet.1441268561448412685614484216164324421616442161644216442161644216442161644216164421644216442164421644216442164421644216462430361448484848484848484848484848484844 </td <td>Chironomidae</td> <td>Nilotanypus indet.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td>4</td> <td>2</td> <td></td>	Chironomidae	Nilotanypus indet.								2	4	2	
ChironomidaeParatanytarsus indet.424ChironomidaeParatendipes indetChironomidaePolypedilum leeiChironomidaePolypedilum nubiferChironomidaePolypedilum nubifer2ChironomidaePolypedilum nubifer2ChironomidaePolypedilum nubifer2ChironomidaePolypedilum indet.2ChironomidaeRheocricotopus indet.9446220838ChironomidaeRheocricotopus indet.2485181664624308161124ChironomidaeRheotanytarsus indet.14441268561448ChironomidaeStenochironomus indetChironomidaeTanytarsus indet.38261441268561448ChironomidaeTanytarsus indet	Chironomidae	Parametriocnus nr ornaticornis											
ChironomidaeParatendipes indet.ChironomidaePolypedilum leeiChironomidaePolypedilum watsoniChironomidaePolypedilum indet.ChironomidaePolypedilum indet.ChironomidaePolypedilum indet.ChironomidaePolypedilum indet.ChironomidaePolypedilum indet.ChironomidaePolypedilum indet.ChironomidaePolypedilum indet.ChironomidaePolypedilum indet.ChironomidaeRheocricotopus indet.ChironomidaeRheotanytarsus indet.ChironomidaeRobackia indet.ChironomidaeRobackia indet.ChironomidaeStempellina indet.ChironomidaeStenochironomus indet.ChironomidaeTanytarsus indet.ChironomidaeTanytarsus indet.ChironomidaeThienemanniella spA##ChironomidaeThienemanniella indet.ChironomidaeThienemanninyja indet.ChironomidaeChironomidaeThienemanninyja indet.4ChironomidaeChironomidaeChironomidaeThienemanninyja indet.ChironomidaeChironomiaeChironomidaeThienemanninyja indet.ChironomidaeChironomiaeChironomidaeChironomiaeChironomidaeChironomiaeChironomidaeChironomiaeChironomidaeChironomiaeChironomidaeChironomiaeChironomidaeChironomiaeChironomidaeChironomiaeChironomidaeChironomiae </td <td>Chironomidae</td> <td>Paratanytarsus indet.</td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td>2</td> <td>4</td> <td></td> <td></td> <td></td> <td></td>	Chironomidae	Paratanytarsus indet.		4				2	4				
ChironomidaePolypedilum nubiferChironomidaePolypedilum nubiferChironomidaePolypedilum indet.ChironomidaePolypedilum indet.ChironomidaeProcladius paludicolaChironomidaeRheocricotopus indet.Q83ChironomidaeRheotanytarsus indet.2485ChironomidaeRobackia indet.14ChironomidaeStempellina indet.ChironomidaeStenochironomus indet.ChironomidaeStenochironomus indet.ChironomidaeStenochironomus indet.ChironomidaeStenochironomus indet.ChironomidaeTanytarsus indet.ChironomidaeTanytarsus indet.ChironomidaeThienemanniella spA##ChironomidaeThienemanniella indet.ChironomidaeThienemanniella indet.ChironomidaeChironomiae (subfamily) indet.ChironomidaeChironomiae (subfamily) indet.ChironomidaeChironomiae (subfamily) indet.ChironomidaeChironomiae (subfamily) indet.ChironomidaeChironomiae (subf	Chironomidae	Paratendipes indet.											
ChironomidaePolypedilum nubiferChironomidaePolypedilum watsoniChironomidaePolypedilum indet.ChironomidaeProcladius paludicolaChironomidaeProcladius paludicolaChironomidaeRheocricotopus indet.Q44ChironomidaeRheotanytarsus indet.ChironomidaeRobackia indet.ChironomidaeRobackia indet.ChironomidaeStempellina indet.ChironomidaeStempellina indet.ChironomidaeStenochironomus indet.ChironomidaeStenochironomus indet.ChironomidaeTanytarsus indet.ChironomidaeTanytarsus indet.ChironomidaeThienemanniella spA##ChironomidaeThienemanniella indet.ChironomidaeThienemanniella indet.ChironomidaeChironominae (subfamily) indet.ChironomidaeChironominae (subfamily) indet.ChironomidaeChironominae (subfamily) indet.ChironomidaeChironominae (subfamily) indet.ChironomidaeChironominae (subfamily) inde	Chironomidae	Polypedilum leei											
ChironomidaePolypedilum watsoniChironomidaePolypedilum indet.2ChironomidaeProcladius paludicolaChironomidaeRheocricotopus indet.9446220838ChironomidaeRheotanytarsus indet.2485181664624308161124ChironomidaeRobackia indet.14444121124ChironomidaeStempellina indet.144444121114ChironomidaeStenochironomus indet.1441268561448141268561448141268561448141268561448141268561448141268561448141268561448141268561448141412685614481414126856144814141268561448141516	Chironomidae	Polypedilum nubifer											
ChironomidaePolypedilum indet.2ChironomidaeProcladius paludicola2ChironomidaeRheocricotopus indet.9446220838ChironomidaeRheotanytarsus indet.2485181664624308161124ChironomidaeRobackia indet.1444	Chironomidae	Polypedilum watsoni											
ChironomidaeProcladius paludicolaChironomidaeRheocricotopus indet.9446220838ChironomidaeRheotanytarsus indet.2485181664624308161124ChironomidaeRobackia indet.144444444ChironomidaeStempellina indet.144	Chironomidae	Polypedilum indet.			2								
ChironomidaeRheocricotopus indet.9446220838ChironomidaeRheotanytarsus indet.2485181664624308161124ChironomidaeRobackia indet.144444444ChironomidaeStempellina indet.144	Chironomidae	Procladius paludicola											
ChironomidaeRheotanytarsus indet.2485181664624308161124ChironomidaeRobackia indet.144444444ChironomidaeStempellina indet.1444<	Chironomidae	Rheocricotopus indet.	9		4	4	6	2	20	8		3	8
ChironomidaeRobackia indet.144ChironomidaeStempellina indet.44ChironomidaeStenochironomus indet.4ChironomidaeStictochironomus indet.4ChironomidaeStictochironomus indet.3ChironomidaeTanytarsus indet.3ChironomidaeThienemanniella spA##ChironomidaeThienemanniella indet.ChironomidaeThienemanninyja indet.ChironomidaeThienemanninyja indet.ChironomidaeChironominae (subfamily) indet.ChironomidaeChironominae (subfamily) indet.ChironomidaeOrthocladiinae (subfamily) indet.ChironomidaeOrthocladiinae (subfamily) indet.	Chironomidae	Rheotanytarsus indet.	24	8	5	18	166	46	24	308	16	11	24
ChironomidaeStempellina indet.4ChironomidaeStenochironomus indet.ChironomidaeStictochironomus indet.ChironomidaeTanytarsus indet.ChironomidaeTanytarsus indet.ChironomidaeThienemanniella spA##ChironomidaeThienemanniella indet.ChironomidaeThienemanniella indet.ChironomidaeThienemanniella indet.ChironomidaeThienemanniella indet.ChironomidaeThienemanniella indet.ChironomidaeThienemannimyia indet.ChironomidaeChironominae (subfamily) indet.ChironomidaeOrthocladiinae (subfamily) indet.ChironomidaeOrthocladiinae (subfamily) indet.	Chironomidae	Robackia indet.	1			4	4						
ChironomidaeStenochironomus indet.ChironomidaeStictochironomus indet.ChironomidaeTanytarsus indet.ChironomidaeThienemanniella spA##ChironomidaeThienemanniella indet.ChironomidaeThienemanniella indet.ChironomidaeThienemanniella indet.ChironomidaeChironominae (subfamily) indet.ChironomidaeChironominae (subfamily) indet.ChironomidaeOrthocladiinae (subfamily) indet.ChironomidaeOrthocladiinae (subfamily) indet.	Chironomidae	Stempellina indet.								4			
ChironomidaeStictochironomus indet.ChironomidaeTanytarsus indet.38261441268561448ChironomidaeThienemanniella spA##ChironomidaeThienemanniella indet.886141212121212121212121212121448ChironomidaeThienemanniella indet.88812121412 <td< td=""><td>Chironomidae</td><td>Stenochironomus indet</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Chironomidae	Stenochironomus indet											
ChironomidaeTanytarsus indet.38261441268561448ChironomidaeThienemanniella spA##ChironomidaeThienemanniella indet.8ChironomidaeThienemannimyia indet.8ChironomidaeChironominae (subfamily) indet.44244216ChironomidaeOrthocladiinae (subfamily) indet.44244216	Chironomidae	Stictochironomus indet.											
Chironomidae Thienemanniella spA## Chironomidae Thienemanniella indet. Chironomidae Thienemannimyia indet. Chironomidae Chironomiae Chironomidae Chironomiae Chironomidae Chironomiae Chironomidae Chironomiae Chironomidae Quitable Chironomidae Quitable Chironomidae Quitable Orthocladiinae (subfamily) indet. 4 4 2 16 Quitable Orthocladiinae (subfamily) indet. 2 4 2 16	Chironomidae	Tanytarsus indet.	3	8	2	6	14	4	12	68	56	14	48
Chironomidae Thienemanniella indet. 8 Chironomidae Thienemannimyia indet. 8 Chironomidae Chironominae (subfamily) indet. 4 4 2 4 4 2 16 Chironomidae Orthocladiinae (subfamily) indet. 4 4 2 4 4 2 16 Chironomidae Orthocladiinae (subfamily) indet. 5 2 5 2	Chironomidae	Thienemanniella spA##											
ChironomidaeThienemannimyia indet.ChironomidaeChironominae (subfamily) indet.4424216ChironomidaeOrthocladiinae (subfamily) indet.224216	Chironomidae	Thienemanniella indet.								8			
Chironomidae Chironominae (subfamily) indet. 4 4 2 4 4 2 16 Chironomidae Orthocladiinae (subfamily) indet. 0 2 2 2	Chironomidae	Thienemannimyia indet.								-			
Chironomidae Orthocladiinae (subfamily) indet.	Chironomidae	Chironominae (subfamily) indet.	4			4		2		4	4	2	16
$\mathbf{v} = \mathbf{u}$	Chironomidae	Orthocladiinae (subfamily) indet.								2			

Order/Class		1991						1992				
Family	Genus and species	Site 1			Site 3			Site 1		Site 3		
		Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 2	Rep. 5	Rep. 1	Rep. 3	Rep. 4
	sample no.	1935	1936	1937	1965	1966	1967	1986	1989	2015	2017	2018
Chironomidae	Tanypodinae (subfamily) indet.					2					1	
Chironomidae	indet. (L)	2	4			14	4		4	12		
Chironomidae	indet. (P)	11	8	4		24	14	8	38	12	1	8
Simuliidae	Simulium papuense (?)	9	4	26		4					1	
Simuliidae	Simulium indet.	27	8	82		2			6			
Simuliidae	indet. (L)	4		1								
Simuliidae	indet. (P)	1		4								
Tabanidae	Tabanus indet.	2	8	3		4						
Tabanidae	indet.											
Tipulidae	OSS1L	3	4	2				16	4		1	
Tipulidae	OSS4L	3	8				6		4		2	8
Tipulidae	indet.	2					2					
Ephemeroptera												
Baetidae	Baetis sp1**											
Baetidae	Baetis indet.											
Baetidae	Centroptilum OSS1N											
Baetidae	Cloeon fluviatile			1								
Baetidae	Genus B sp1**	11		6		26	8	8	8	16	5	
Baetidae	Genus B indet.											
Baetidae	Genus C indet											
Baetidae	indet.	2		10			4	4	- 4			
Caenidae	Tasmanocoenis arcuata											
Caenidae	Tasmanocoenis spD**	7	16	1	4	20	6	12		12	17	24
Caenidae	Tasmanocoenis spE**	8	4	2		_4	20	8	12		32	
Caenidae	Tasmanocoenis spH**											
Caenidae	Tasmanocoenis spJ**											
Caenidae	Tasmanocoenis indet.	180	96	63	30	178	140	220	86	44	147	8
Caenidae	Wundacaenis dostini	2	4	3		6	4	28	114	20	9	16
Caenidae	indet.						-				-	
Leptophlebiidae	Thraulus indet.											
Leptophlebiidae	indet.											

Ord	ler/Class		1991						1992				
	Family	Genus and species	Site 1			Site 3			Site 1		Site 3		
			Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 2	Rep. 5	Rep. 1	Rep. 3	Rep. 4
		sample no.	. 1935	1936	1937	1965	1966	1967	1986	1989	2015	2017	2018
Herr	niptera												
	Corixidae	Micronecta indet.											
	Mesoveliidae	indet.											8
Lepi	doptera												
	Pyralidae	OSS1L	8		6	4	•		32	34	20		8
	Pyralidae	OSS2L											
	Pyralidae	OSS9L	3	4							4		8
	Pyralidae	OSS10L											
	Pyralidae	indet.	2										
Odo	nata												
	Coenagrionidae	Austrocnemis maccullochi											
	Coenagrionidae	indet.											
	Corduliidae	Hemicordulia intermedia											
	Gomphidae	Antipodogomphus neophytus											
	Gomphidae	Antipodogomphus indet.											
	Gomphidae	Austrogomphus mjobergi											
	Gomphidae	Austrogomphus indet.											
	Libellulidae	Diplacodes haematodes											
	Libellulidae	Nannophlebia indet.											
	Libellulidae	Orthetrum caledonicum											
	Libellulidae	indet.			·	- 11							
	Anisoptera (suborder)	indet.										1	
	Zygoptera (suborder)	indet.											
Tric	hoptera												
	Calamoceratidae	Anisocentropus muricatus											
	Ecnomidae	Ecnomina indet.									4		
	Ecnomidae	Ecnomus indet.										1	
	Ecnomidae	indet.											
	Hydropsychidae	Asmicridea sp3#	1		2	1							
	Hydropsychidae	Chematopsyche kakaduensis	3	4	4				12	20			
	Hydropsychidae	Cheumatopsyche suteri	15		13	I	6	5 12	20	12			
	Hydropsychidae	Cheumatopsyche wellsae					4	ļ					
	Hydropsychidae	Cheumatopsyche indet.	6	4	3	I	6	;		4			

Order/Class		1991						1992				
Family	Genus and species	Site 1			Site 3			Site 1		Site 3		
		Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 2	Rep. 5	Rep. 1	Rep. 3	Rep. 4
	sample no.	1935	1936	1937	1965	1966	1967	1986	1989	2015	2017	2018
Hydroptilidae	Hellyethira cubitans (L)										1	
Hydroptilidae	Hellyethira forficata (L)					4		12	4	4	24	40
Hydroptilidae	Hellyethira forficata (P)											
Hydroptilidae	Hellyethira indet. (L)					4				8	10	24
Hydroptilidae	Hellyethira ramosa (L)								4	4	1	
Hydroptilidae	Hellyethira ramosa (P)			·.							1	
Hydroptilidae	Hellyethira vernoni (L)											
Hydroptilidae	Oxyethira indet. (L)											
Hydroptilidae	Orthotrichia turrita											
Hydroptilidae	Orthotrichia indet. (L)	8	4		12	24	6		16	8	14	32
Hydroptilidae	Orthotrichia indet. (P)	11	4		4	24	2	8	10	4	2	
Hydroptilidae	indet. (L)	4							6	-	_	
Hydroptilidae	indet. (P)									4		
Leptoceridae	Leptorussa indet											
Leptoceridae	Oecetis epekeina											
Leptoceridae	Oecetis spA#											
Leptoceridae	Oecetis spE#											
Leptoceridae	Oecetis indet.	1	4			4			4			
Leptoceridae	Triaenodes indet.				1 .t	•		4	•		1	
Leptoceridae	ind e t.		4			8	2	4	8	16	1	16
Philopotamidae	Chimarra spB #					-	-	•				
Polycentropodidae	indet.					4	2			4		
Triplectides	ciuskus						-			•		
Triplectides	indet.											
Acarina												
Hydryphantidae	indet.											
Hygrobatidae	Australiobates indet.											
Hygrobatidae	indet.	13	4	3	4	28	4	8			1	
Limnesiidae	indet.	2	4	-	2		4	•		4	5	
Mideopsidae	indet.	_	-		_	2	-			•	Ŭ	
Oribatida (suborder)	indet.					2	2		4			
Oxidae	indet.				2	2	4		·			

Order/Class		1991						1992				
Family	Genus and species	Site 1			Site 3			Site 1		Site 3		
		Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 2	Rep. 5	Rep. 1	Rep. 3	Rep. 4
	sample	no. 1935	1936	1937	1965	1966	1967	1986	1989	2015	2017	2018
Torrenticolidae	indet.	2					2				1	
Unionicolidae	indet.	2			2							
	indet.					6			6			
Decapoda												
Atyidae	Caridina gracilirostris											
Atyidae	Caridinides wilkinsi											
Atyidae	indet.											
Palaemonidae	Macrobrachium bullatum								8			
Palaemonidae	Macrobrachium rosenbergi											
Palaemonidae	Macrobrachium indet.			1								
Palaemonidae	indet.											
Gastropoda												
Planorbidae	Amerianna indet.											
Nematoda	indet.	2				10	2		58			
Oligochaeta												
Enchytraeidae	indet.	2				8		4			1	8
Naididae	indet.					10			2			16
Tubificidae	indet.	2				12					1	
Magadrili (superorder)	indet.	2		1	2	4	2		6	4	3	
	indet.				2		2		4	4		
indet = indeterminate	•											

* Glaister 1991 # Wells 1991

** Suter 1992

Cranston 1991

Order/Class		1993					1994					
Family	Genus and species	Site 1		Site 3			Site 1			Site 3		
		Rep. 1	Rep. 5	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3
	sample no.	1107	1110	1137	1139	1140	471	472	473	491	492	493
Coleoptera												
Dytiscidae	Antiporus OSS4L							4				
Dytiscidae	Batracomatus wingi (A)		2		4	2						
Dytiscidae	Cybister OSS1L											
Dytiscidae	OSS6L	2										
Dytiscidae	Tiporus nr josephini (A)				2					4		
Dytiscidae	indet. (L)											
Elmidae	Austrolimnius sp2A (L)*		2			2			4			
Elmidae	Austrolimnius sp2B (L)*		2	14	6	6			8			
Elmidae	Austrolimnius sp4 (L)*			30								
Elmidae	Austrolimnius sp9 (L)*			24								
Elmidae	Austrolimnius indet. (A)		4		2							
Elmidae	Austrolimnius indet. (L)			10		6						
Elmidae	Genus E sp74E (L)*											
Haliplidae	OSS1L											
Hydrophilidae	OSS1L	2										
Noteridae	Hydrocophus subfasciatus (A)											
Diptera												
Ceratopogonidae	OSS1L											
Ceratopogonidae	OSS2L	8	8	6		6		12		12	2	12
Ceratopogonidae	OSS3L										_	
Ceratopogonidae	OSS5L				2							
Ceratopogonidae	OSS6L											
Ceratopogonidae	OSS8L				6	2			4	8		4
Ceratopogonidae	OSS9L	10	6			6		4		4	4	4
Ceratopogonidae	OSS10L								4	-	-	-
Ceratopogonidae	OSS12L				2	2						
Ceratopogonidae	indet.				_	4			8			
Chironomidae	Ablabesmvia notabilis								•	4		
Chironomidae	Ablabesmvia indet.									•		
Chironomidae	Chironomus indet.											
Chironomidae	Cladotanytarsus indet.					2	8	16	12	8	4	4
Chironomidae	Conochironomus indet.					-	-			•	4	4

Order/Class		1993					1994					
Family	Genus and species	Site 1		Site 3			Site 1			Site 3		
		Rep. 1	Rep. 5	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3
	sample no.	1107	1110	1137	1139	1140	471	472	473	491	492	493
Chironomidae	Cricotopus albitarsis						8					
Chironomidae	Cricotopus brevicornis	4							8			
Chironomidae	Cricotopus indet.											
Chironomidae	Cryprochironomus griseidorsum											
Chironomidae	Cryptochironomus indet.		2	2	6	4	4					4
Chironomidae	Dicrotendipes lindae				4		12	4		8	14	
Chironomidae	Dicrotendipes indet.				2		4	8			6	
Chironomidae	Djalmabatista indet.				2	4				16	26	12
Chironomidae	Kiefferulus tinctus			52								
Chironomidae	Kiefferulus indet.			4			4					
Chironomidae	Larsia albiceps							12		4		
Chironomidae	Nanocladius OSS1L							8			2	
Chironomidae	Nilotanypus indet.				4	2	4					
Chironomidae	Parametriocnus nr ornaticornis											
Chironomidae	Paratanytarsus indet.		4		2		12					
Chironomidae	Paratendipes indet.					2						
Chironomidae	Polypedilum leei						4					
Chironomidae	Polypedilum nubifer										2	
Chironomidae	Polypedilum watsoni	2									2	28
Chironomidae	Polypedilum indet.	4	· .	· · · ·	6	4		28		20	4	28
Chironomidae	Procladius paludicola											
Chironomidae	Rheocricotopus indet.	22	28		6		8		28			
Chironomidae	Rheotanytarsus indet.	326	340	12	44	32	780	152	568	176	64	208
Chironomidae	Robackia indet.	2			4	4			4			
Chironomidae	Stempellina indet				-	-			4			
Chironomidae	Stenochironomus indet.				8	2			-	8		
Chironomidae	Stictochironomus indet.					_				•		8
Chironomidae	Tanytarsus indet.	16	24	54	116	56	108	180	176	24	16	4
Chironomidae	Thienemanniella spA##	2	2									•
Chironomidae	Thienemanniella indet.		_									
Chironomidae	Thienemannimyia indet.						4					4
Chironomidae	Chironominae (subfamily) indet.	6	4	10	4		20	36	20	4		8
Chironomidae	Orthocladiinae (subfamily) indet.	4	4	4	·	2			20			•

.

Order/Class		1993					1994					
Family	Genus and species	Site 1		Site 3			Site 1			Site 3		
		Rep. 1	Rep. 5	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3
	sample no.	1107	1110	1137	1139	1140	471	472	473	491	492	493
Chironomidae	Tanypodinae (subfamily) indet.	2	2			2	4	8	4	4	6	4
Chironomidae	indet. (L)	238		6			12	12	8		2	
Chironomidae	indet. (P)	4	10	6	10	34	52	32	12	16	2	8
Simuliidae	Simulium papuense (?)	2	2									
Simuliidae	Simulium indet.	6	6									
Simuliidae	indet. (L)											
Simuliidae	indet. (P)											
Tabanidae	Tabanus indet.		8		2							
Tabanidae	indet.	2										
Tipulidae	OSS1L	2										
Tipulidae	OSS4L				2							
Tipulidae	indet.			2		2		4				
Ephemeroptera												
Baetidae	Baetis sp1**											
Baetidae	Baetis indet.											
Baetidae	Centroptilum OSS1N											
Baetidae	Cloeon fluviatile									4		
Baetidae	Genus B sp1**	10	20						4			
Baetidae	Genus B indet.											
Baetidae	Genus C indet.											
Baetidae	indet.	26			2	2	4	12	4		2	
Caenidae	Tasmanocoenis arcuata			4				32				
Caenidae	Tasmanocoenis spD**	26	10	10	12	8	36	12	24			
Caenidae	Tasmanocoenis spE**	6	18	2		8			56			
Caenidae	Tasmanocoenis spH**											
Caenidae	Tasmanocoenis spJ**											
Caenidae	Tasmanocoenis indet.	184	326	76	136	32	148	112	376	8	8	12
Caenidae	Wundacaenis dostini	24	28	2	24	4	32	8	40	12	4	8
Caenidae	indet.	22			2	-		8				•
Leptophlebiidae	Thraulus indet.		2		-			•				
Leptophlebiidae	indet.	6	2									

.

Order/Class		1993					1994					
Family	Genus and species	Site 1		Site 3			Site 1			Site 3		
		Rep. 1	Rep. 5	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3
	sample no.	1107	1110	1137	1139	1140	471	472	473	491	492	493
Hemiptera												
Corixidae	Micronecta indet.											
Mesoveliidae	indet.											
Lepidoptera												
Pyralidae	OSS1L	2	2	4			4		1			
Pyralidae	OSS2L	2					4					
Pyralidae	OSS9L	2										
Pyralidae	OSS10L								1			
Pyralidae	indet.							4				
Odonata												
Coenagrionidae	Austrocnemis maccullochi											
Coenagrionidae	indet.											
Corduliidae	Hemicordulia intermedia											
Gomphidae	Antipodogomphus neophytus											
Gomphidae	Antipodogomphus indet.											
Gomphidae	Austrogomphus mjobergi											
Gomphidae	Austrogomphus indet.											
Libellulidae	Diplacodes haematodes											
Libellulidae	Nannophlebia indet.											
Libellulidae	Orthetrum caledonicum											
Libellulidae	indet.				- 1							
Anisoptera (suborder)	indet.							4				
Zygoptera (suborder)	indet.							12				
Trichoptera												
Calamoceratidae	Anisocentropus muricatus											
Ecnomidae	Ecnomina indet.											
Ecnomidae	Ecnomus indet.		2		2					4	2	
Ecnomidae	indet.											
Hydropsychidae	Asmicridea sp3#											
Hydropsychidae	Chematopsyche kakaduensis		4						4			
Hydropsychidae	Cheumatopsyche suteri	78	78		2	!			1			
Hydropsychidae	Cheumatopsyche wellsae	30	102				4					
Hydropsychidae	Cheumatopsyche indet.	76	56	i			24		4			

Order/Class		1993					1994					
Family	Genus and species	Site 1		Site 3			Site 1			Site 3		
		Rep. 1	Rep. 5	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3
	sample no.	1107	1110	1137	1139	1140	471	472	473	491	492	493
Hydroptilidae	Hellyethira cubitans (L)											
Hydroptilidae	Hellyethira forficata (L)									12	4	4
Hydroptilidae	Hellyethira forficata (P)											
Hydroptilidae	Hellyethira indet. (L)			4	6		4				2	
Hydroptilidae	Hellyethira ramosa (L)			4	6	4				4	2	4
Hydroptilidae	Hellyethira ramosa (P)											
Hydroptilidae	Hellyethira vernoni (L)										2	
Hydroptilidae	Oxyethira indet. (L)										4	
Hydroptilidae	Orthotrichia turrita											
Hydroptilidae	Orthotrichia indet. (L)	2			2	4	8	20	16	8	2	
Hydroptilidae	Orthotrichia indet. (P)							4				
Hydroptilidae	indet. (L)	2					8					
Hydroptilidae	indet. (P)										4	
Leptoceridae	Leptorussa indet.				4					4		
Leptoceridae	Oecetis epekeina											
Leptoceridae	Oecetis spA#											8
Leptoceridae	Oecetis spE#											
Leptoceridae	Oecetis indet.			2	6						4	4
Leptoceridae	Triaenodes indet.		4	2								4
Leptoceridae	indet.	4				6	12			4	16	
Philopotamidae	Chimarra spB #	2	2									
Polycentropodidae	indet.											
Triplectides	ciuskus											
Triplectides	indet.											
Acarina												
Hydryphantidae	indet.											
Hygrobatidae	Austratiobates indet.											
Hygrobatidae	indet.	4	6	6	4		4	16	24	28	4	12
Limnesiidae	indet.			10	2	2	12	12	8		4	
Mideopsidae	indet.											
Oribatida (suborder)	indet.											
Oxidae	indet.					2					4	

Order/Class		1993					1994					
Family	Genus and species	Site 1		Site 3			Site 1			Site 3		
		Rep. 1	Rep. 5	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3
	sample no	. 1107	1110	1137	1139	1140	471	472	473	491	492	493
Torrenticolidae	indet.											
Unionicolidae	indet.							4		4		
	indet.											
Decapoda												
Atyidae	Caridina gracilirostris											
Atyidae	Caridinides wilkinsi											
Atyidae	indet.											
Palaemonidae	Macrobrachium bullatum				4	2						
Palaemonidae	Macrobrachium rosenbergi						1					
Palaemonidae	Macrobrachium indet.											
Palaemonidae	indet.											
Gastropoda												
Planorbidae	Amerianna indet.											
Nematoda	indet.	4				30		20				
Oligochaeta												
Enchytraeidae	indet.					2						8
Naididae	indet.		2			2						
Tubificidae	indet.		2			6						20
Magadrili (superorder)	indet.			2	16	8				8	3	
	indet.											
indet = indeterminate	2											
	•											

* Glaister 1991 # Wells 1991 ** Suter 1992

Cranston 1991

Order/Class		1995						
	Family	Genus and species	Site 1			Site 3		
			Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3
		sample n	o. 1	2	3	13	14	15
Cole	eoptera							
	Dytiscidae	Antiporus OSS4L						
	Dytiscidae	Batracomatus wingi (A)						
	Dytiscidae	Cybister OSS1L						
	Dytiscidae	OSS6L						
	Dytiscidae	Tiporus nr josephini (A)	4					
	Dytiscidae	indet. (L)						
	Elmidae	Austrolimnius sp2A (L)*						
	Elmidae	Austrolimnius sp2B (L)*						
	Elmidae	Austrolimnius sp4 (L)*						
	Elmidae	Austrolimnius sp9 (L)*						
	Elmidae	Austrolimnius indet. (A)			8			
	Elmidae	Austrolimnius indet. (L)				10		
	Elmidae	Genus E sp74E (L)*						
	Haliplidae	OSS1L						
	Hydrophilidae	OSS1L	4				10	
	Noteridae	Hydrocophus subfasciatus (A)	4					
Dipt	era							
	Ceratopogonidae	OSS1L						
	Ceratopogonidae	OSS2L	12	62	8	10	31	8
	Ceratopogonidae	OSS3L		21				
	Ceratopogonidae	OSS5L						8
	Ceratopogonidae	OSS6L			33			
	Ceratopogonidae	OSS8L				10		
	Ceratopogonidae	OSS9L		21				
	Ceratopogonidae	OSS10L						
	Ceratopogonidae	OSS12L						
	Ceratopogonidae	indet.					10	
	Chironomidae	Ablabesmyia notabilis						
	Chironomidae	Ablabesmyia indet.					10	
	Chironomidae	Chironomus indet.						
	Chironomidae	Cladotanytarsus indet.			8	21	31	8
	Chironomidae	Conochironomus indet.				10		

Order/Class		1995					
Family	Genus and species	Site 1			Site 3		
		Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3
	sample no.	1	2	3	13	14	15
Chironomidae	Cricotopus albitarsis						
Chironomidae	Cricotopus brevicornis						
Chironomidae	Cricotopus indet.	4	82	8			
Chironomidae	Cryprochironomus griseidorsum						
Chironomidae	Cryptochironomus indet.						8
Chironomidae	Dicrotendipes lindae	8					
Chironomidae	Dicrotendipes indet.		21	16	10		
Chironomidae	Djalmabatista indet.		21	8	62	82	66
Chironomidae	Kiefferulus tinctus						
Chironomidae	Kiefferulus indet.						
Chironomidae	Larsia albiceps				10		
Chironomidae	Nanocladius OSS1L						
Chironomidae	Nilotanypus indet.						
Chironomidae	Parametriocnus nr ornaticornis						
Chironomidae	Paratanytarsus indet.					10	
Chironomidae	Paratendipes indet.						
Chironomidae	Polypedilum leei					10	
Chironomidae	Polypedilum nubifer						
Chironomidae	Polypedilum watsoni						
Chironomidae	Polypedilum indet.						
Chironomidae	Procladius paludicola						
Chironomidae	Rheocricotopus indet.						
Chironomidae	Rheotanytarsus indet.	16	185	8	175	21	99
Chironomidae	Robackia indet.						
Chironomidae	Stempellina indet.						
Chironomidae	Stenochironomus indet					10	
Chironomidae	Stictochironomus indet.						
Chironomidae	Tanytarsus indet.	16	62				
Chironomidae	Thienemanniella spA##						
Chironomidae	Thienemanniella indet.						
Chironomidae	Thienemannimyia indet.						
Chironomidae	Chironominae (subfamity) indet.						
Chironomidae	Orthocladiinae (subfamily) indet.						
	••						

.

Order/Class		1995						
	Family	Genus and species	Site 1			Site 3		
			Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3
		sample no.	1	2	3	13	14	15
	Chironomidae	Tanypodinae (subfamily) indet.					21	
	Chironomidae	indet. (L)		22	8	10		16
	Chironomidae	indet. (P)			16			
	Simuliidae	Simulium papuense (?)		21	33	21		
	Simuliidae	Simulium indet.						16
	Simuliidae	indet. (L)						
	Simuliidae	indet. (P)						
	Tabanidae	Tabanus indet.						
	Tabanidae	indet.						
	Tipulidae	OSS1L			1			
	Tipulidae	OSS4L						
	Tipulidae	indet.						
Ephe	meroptera							
	Baetidae	Baetis sp1**						
	Baetidae	Baetis indet.						66
	Baetidae	Centroptilum OSS1N						
	Baetidae	Cloeon fluviatile		41		21	10	
	Baetidae	Genus B sp1**						
	Baetidae	Genus B indet.				51		
	Baetidae	Genus C indet.					10	
	Baetidae	indet.			8	62	10	
	Caenidae	Tasmanocoenis arcuata						
	Caenidae	Tasmanocoenis spD**	8	103	247	82		4 1
	Caenidae	Tasmanocoenis spE**				21		8
	Caenidae	Tasmanocoenis spH**					21	8
	Caenidae	Tasmanocoenis spJ**				10		
	Caenidae	Tasmanocoenis indet.	78	41	58	103	4 1	49
	Caenidae	Wundacaenis dostini	45	165	25	62	31	25
	Caenidae	indet.		21				
	Leptophlebiidae	Thraulus indet.						
	Leptophlebiidae	indet.						

Order/Class		1995					
Family	Genus and species	Site 1			Site 3		
		Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3
	sample no	. 1	2	3	13	14	15
Hemiptera							
Corixidae	Micronecta indet.						
Mesoveliidae	indet.						
Lepidoptera							
Pyralidae	OSS1L		83	1			
Pyralidae	OSS2L		21				
Pyralidae	OSS9L		21				
Pyralidae	OSS10L						
Pyralidae	indet.			8			
Odonata							
Coenagrionidae	Austrocnemis maccullochi				10		
Coenagrionidae	indet.					21	
Cordutiidae	Hemicordulia intermedia						
Gomphidae	Antipodogomphus neophytus			8			
Gomphidae	Antipodogomphus indet.		2				
Gomphidae	Austrogomphus mjobergi			1			
Gomphidae	Austrogomphus indet.				1		
Libellulidae	Diplacodes haematodes						
Libellulidae	Nannophlebia indet.					10	
Libellulidae	Orthetrum caledonicum						
Libellulidae	indet.						
Anisoptera (suborder)	indet.						
Zygoptera (suborder)	indet.						
Trichoptera							
Calamoceratidae	Anisocentropus muricatus					10	
Ecnomidae	Ecnomina indet.						
Ecnomidae	Ecnomus indet.		41				
Ecnomidae	indet.						
Hydropsychidae	Asmicridea sp3#						
Hydropsychidae	Chematopsyche kakaduensis						
Hydropsychidae	Cheumatopsyche suteri			59	1		
Hydropsychidae	Cheumatopsyche wellsae						
Hydropsychidae	Cheumatopsyche indet.		21				

.

Order/Class								
Family	Genus and species	Site 1			Site 3			
		Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	
	sample no.	1	2	3	13	14	15	
Hydroptilidae	Hellyethira cubitans (L)							
Hydroptilidae	Hellyethira forficata (L)	37	165	25	31		49	
Hydroptilidae	Hellyethira forficata (P)							
Hydroptilidae	Hellyethira indet. (L)							
Hydroptilidae	Hellyethira ramosa (L)				10			
Hydroptilidae	Hellyethira ramosa (P)							
Hydroptilidae	Hellyethira vernoni (L)							
Hydroptilidae	Oxyethira indet. (L)				10			
Hydroptilidae	Orthotrichia turrita				62			
Hydroptilidae	Orthotrichia indet. (L)	21	185	49			49	
Hydroptilidae	Orthotrichia indet. (P)							
Hydroptilidae	indet. (L)	8	41		10			
Hydroptilidae	indet. (P)							
Leptoceridae	Leptorussa indet.	119	82	82	93		25	
Leptoceridae	Oecetis epekeina		1					
Leptoceridae	Oecetis spA#							
Leptoceridae	Oecetis spE#		21					
Leptoceridae	Oecetis indet.	8		16	82		25	
Leptoceridae	Triaenodes indet.		21					
Leptoceridae	indet.			16	1			
Philopotamidae	Chimarra spB #							
Polycentropodidae	indet.							
Triplectides	ciuskus	4	1	8		10	8	
Triplectides	indet.				10			
Acarina								
Hydryphantidae	indet.	8		99				
Hygrobatidae	Australiobates indet.							
Hygrobatidae	indet.				21	21	16	
Limnesiidae	indet.	45	82	41	31	10	8	
Mideopsidae	indet.							
Oribatida (suborder)	indet.							
Oxidae	indet.	8	82	41		10		

. .

Ord	ler/Class		1995					
	Family	Genus and species	Site 1			Site 3		
			Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3
		sample no.	1	2	3	13	14	15
	Torrenticolidae	indet.						
	Unionicolidae	indet.	8		25	21	21	
		indet.						8
Dec	apoda							
	Atyidae	Caridina gracilirostris				21	51	
	Atyidae	Caridinides wilkinsi					21	
	Atyidae	indet.	4					
	Palaemonidae	Macrobrachium bullatum						
	Palaemonidae	Macrobrachium rosenbergi						
	Palaemonidae	Macrobrachium indet.				10		
	Palaemonidae	indet.					10	16
Gas	tropoda							
	Planorbidae	Amerianna indet.						
Nen	natoda	indet.						
Olig	ochaeta							
	Enchytraeidae	indet.				. :		
	Naididae	indet.		21			41	
	Tubificidae	indet.					41	
	Magadrili (superorder)	indet.		23		10		
		indet.						
	indet = indeterminate							

* Glaister 1991 # Wells 1991

** Suter 1992

Cranston 1991