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ABSTRACT 

Ground based monitoring methods used to evaluate mine-site rehabilitation have been questioned for their 
ability to effectively measure the ecological ‘health’ of sites over an appropriate range of spatial and 
temporal scales.  In this context, high-resolution remote sensing potentially can be used to translate 
ground based survey information into a medium allowing synoptic ecological assessment over multiple 
scales.   

This study evaluated the utility of an airborne multi-spectral video (MSV) system for remote sensing 
assessment of mine-site rehabilitation and vegetation change in the Alligator Rivers Regions, Northern 
Territory.  As a basis for the evaluation, spatial information requirements for monitoring were identified 
using concepts of Ecosystem Function Analysis (EFA).  Landscape elements were classified based on 
their ‘function’ (ability to store, capture, produce and transfer biological resources) or their ‘dysfunction’ 
(landscape patches that tend to loose resources).  Focus was placed on the ability of MSV to resolve the 
spatial inter-relationships and contextual arrangement of these elements. 

A protocol for the systematic collection, pre-processing, analysis, accuracy assessment and quality control 
of high-resolution MSV data for multi-temporal monitoring is developed.  The constraints on monitoring 
using optical remotely-sensed data imposed by regional patterns of environmental variation are also 
reviewed in the context of operational planning and quality control.   

MSV data were captured at 0.5m and 0.25m pixel resolution in five narrow bands ranging from visual to 
near infrared on 26 May 2000 at two abandoned mine-related sites, the El Sherana Airstrip and Guratba 
(Coronation Hill).  Imagery was mosaicked, geo-registered and calibrated to ground reflectance for 
comparison with contextual ground data.   

A hybrid classification strategy was used to develop a classification scheme with maximum accuracy and 
utility for monitoring purposes.  Capability of the classification to resolve key landscape elements was 
assessed by:  1) Comparison of the spectral reflectance profiles for key surface features;  2) Regression 
analysis of image classes against geo-referenced ground data for both soil moisture and canopy cover;  3) 
Calculation of map accuracy statistics derived from cross tabulation of two classifications, each using an 
independent set of training data; 4) Comparison of supervised classification with unsupervised 
classification results; and 5) Comparison of imagery collected at two resolutions, 0.5m and 0.25m.   

The MSV data provided accurate separation at 0.5m resolution between the key functional groups: 
perennial grasses; annual grasses and bare-ground; and trees and shrubs.  Discrimination within groups 
was generally less pronounced.  However, perennial grass and bare-ground groups separated into distinct 
sub-classes that are likely to provide good indicators of landscape patch quality.  Qualitative comparison 
between 0.5m and 0.25 m data suggested that the finer grain data further contributed to resolving the 
pattern of relevant landscape elements. 

The utility of data to quantitatively assess cover characteristics of sites was demonstrated using data 
produced in classifications.  At the Airstrip site, this involved a comparison of the disturbed areas with the 
surrounding ‘undisturbed’ environment.  At the Guratba site a historical comparison was made by 
conducting a change-analysis against a similar classification derived from co-registered aerial 
photography data collected in 1990.   

High-resolution MSV data complemented ground-based assessment methods using EFA by emulating 
key indicators.  However, it is implicit that EFA ground data acquisition be undertaken concurrently with 
MSV data to fully realise this potential.  It is tacit that monitoring programs integrate both ground-based 
EFA measurements with remote sensing monitoring techniques.  This has significant implications for 
operational planning and in the coordination of multidisciplinary data-collection for monitoring programs 
dedicated to evaluate rehabilitation status. 
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1 INTRODUCTION 

Monitoring systems used to evaluate mine-site rehabilitation have generally been based on 

ground assessment methods.  However, the capability of these methods to effectively measure 

the ecological state of sites over an appropriate range of spatial and temporal scales is 

problematic (Corbett, 1999).  High-resolution remote sensing offers the potential to translate 

ground based survey information into a medium that allows for synoptic assessment over a range 

of scales.   

This study focused on developing a monitoring framework that uses high-resolution remotely 

sensed data in conjunction with spatially referenced ground surveys using Ecosystem Function 

Analysis (EFA).  The capability of a low-cost multi-spectral videography system to emulate 

ground based EFA indicators was then tested. 

A range of studies demonstrate the contribution that remote sensing can make to land 

management by improving our understanding of ecological processes within landscapes.  They 

used quantitative assessment and habitat mapping in combination with spatial analysis for 

monitoring of environmental impact and subsequent restoration efforts (Roy et al. 1995; Totte, 

Henquin & Some 1995; Coops & Catling 1997b; DeAngelis et al. 1998).  Other studies have 

concentrated on monitoring the impact of mining (Rathore & Wright 1993; Hick et al. 1994; 

Warren & Hick 1996; Farrand & Harsanyi 1997; Mueller et al. 1997; Rigol & Chica-Olmo 

1998).  Although these studies focused on vegetation mapping and restoration, and have used 

similar concepts for ecosystem assessment, very few published works have specifically studied 

the application of MSV to provide measurable indicators of ecosystem function at the scale of 

resolution of 0.25 to 0.5 meters. 

Two abandoned mine-sites of the South Alligator Valley (SAV) region, Kakadu National Park 

(KNP) are subject of this study.  Some 18 such sites are located in the region.  Despite their 

relatively small size, the significance of the sites should not be discounted when managing for 

the conservation of both the biological environment and the natural heritage values within 

Kakadu.  Such sites can detract from the Parks natural heritage and beauty and, if not properly 

rehabilitated, can act as reservoirs for weed infestation (Randall 1996).  Furthermore, isolated 

pockets of mine-related waste occur at sites that require remediation to prevent dispersal by 

erosion.  Together these factors may contribute indirectly to a decline in the conservation value 

of the region.  This is important when considering the SAV regions high number of endemic 

species and rich biodiversity (Woinarski et al. 1989).   
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Traditional aboriginal owners for the region (the Jawoyn) and the broader public are concerned 

that these sites be properly returned to their natural state of vegetation and be properly 

remediated with respect to waste management.  Consequently, a mine-site rehabilitation 

program, of which revegetation is an integral part, has been proposed for these sites by Parks 

Australia North.   

Evaluation of the success of the proposed revegetation program requires assessment of the 

ecological state of sites with respect to the achievement of a stable and functional ecosystem.  

This requires measurement of both: 

• Vegetation cover at the mine-sites immediately before the program is instigated; and  

• Vegetation cover in a historical context, before mining activity began at the sites. 

The principle objective of this project is to evaluate the application of a high-resolution airborne 

multi-spectral video system (MSV) for the ecological assessment and monitoring of mine-site 

rehabilitation.   To achieve this objective, a protocol adapted from Stow, Phinn & Hope (1997), 

is proposed to ensure optimal application of multi-temporal remote sensing for monitoring 

change in vegetation form and structure at the scale represented by mine-sites in the SAV region.  

The framework also provides a basis for assessing the potential of airborne MSV remote sensing 

techniques to resolve EFA indicators.   

The principle aim of the present study is to establish a benchmarking process for the region using 

high-resolution MSV data.  The concepts of the Ecosystem Function Analysis (EFA) developed 

by Ludwig et al. (1997) and Tongway et al. (1997) forms the basis for assessing the ecological 

relevance of information derived by remote sensing and image analysis techniques.  A secondary 

objective is to use this information to conduct a vegetation assessment at mine-sites in the SAV 

before rehabilitation efforts commence in 2001.   

Two mine-sites, Guratba (Coronation Hill) and the El Sherana Airstrip were chosen as 

demonstration sites for RS-monitoring and development.  The general location of these sites 

within Kakadu National Park is illustrated in Figure 1.  In summary the information collected in 

this study will contribute to the management and planning of revegetation programs in the SAV 

because: 

• It can provide a baseline from which the success of revegetation programs planned 
for the area in the near future can be quantified; 

• It can assist in measuring the extent of specific problem areas that need special 
attention during rehabilitation; 
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• It can provide a reference for assessing the vegetation community at mine-sites with 
respect to ‘undisturbed’ sites;  

• It can assist in developing a methodology for monitoring rehabilitation success that 
provides synoptic data of an appropriate scale and precision; 

• RS can contribute to an understanding of other ecological on- or off-site impacts from 
mining by identifying the location of ‘unnatural’ surface features or specific sources 
of contamination. 
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Figure 1. Location of the study sites, Guratba (Coronation Hill) and the El Sherana 

Airstrip in the South Alligator River Valley of Kakadu National Park, Northern 
Territory. 
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1.1 A Framework for Monitoring and Information Evaluation 

A central theme to the development of ecological indicators are that measurements be repeatable 

among independent observations and information be obtained within acceptable levels of 

precision and accuracy.  Only when these criteria is met is the utility of information preserved 

for monitoring purposes (Ludwig et al. 1997).   

The factors influencing form, quality, efficiency and utility of information delivered by remote 

sensing are complex.  The analyst must collectively consider the physical and biological 

environment, the sensor and platform, pre-processing steps and contextual ground information. 

Consequently a number of authors have proposed protocols designed to optimise the quality, 

efficiency and utility of remote sensing data for multi-temporal monitoring (Nyquist & Root 

1997).  Adherence to systematic protocol is essential in the development and quality control of 

ecological monitoring indicators for rehabilitation assessment. 

Stow, Phinn & Hope (1997) provide a general framework for an ‘end to end’ system for the 

integrated planning, acquisition of aerial and ground data, quality control and delivery of 

information for multi-temporal monitoring of detailed vegetation changes.  The framework has 

been adapted for the current study (Figure 2).   This system allows information to be provided to 

managers in an efficient and cost effective manner, within limits of acceptable error.   
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             USER NEEDS ASSESSMENT
   - Management & monitoring requirements
   - Match monitoring requirements &
     environment suitable to image dimensions

              FLIGHT & FIELD PLANNING
   - Spatial, spectral, radiometric & temporal
   - QA/QC procedures
   - Ground control, calibration & verification

                IMAGE ACQUISITION
   - Radiometric optimisation
      via exposure settings
   - Within spatial coverage specifications

             GROUND DATA ACQUISITION
 -  GPS survey
 - Radiometric / spectrometer
 - Biophysical variables (incl. EFA indicators)

              IMAGE PRE-PROCESSING
   - Individual image and multi-temporal
   - Geometric rectification & registration
   - Radiometric calibration & normilisation

                  IMAGE ANALYSIS
   - Interpretation & Mensuration
   - Image classification
   - Spectral Indices & Biophysical models
   - Change detection  & analysis

ERROR & ACCURACY ASSESSMENT

FINAL PRODUCT

refine to meet 
user requirements

 
Figure 2. A framework for planning and information flow for an ‘end to end’ system to 

monitor environmental disturbance adapted from Stow, Phinn & Hope (1997). 

1.1.1 Information Requirements 

The first step in the design of a monitoring program is to conduct an analysis of information 

requirements based on the objectives (Stow, Phinn & Hope 1997).  In this context three defining 

questions arise that guide these requirements:  

• At what stage of rehabilitation is the site in becoming a ‘functional’ and self-
sustaining ecosystem? 

• How similar is the site to the surrounding ‘undisturbed’ environment?  

• Are there any specific problems that can be identified, such as weed invasion, soil 
erosion, or areas of mine-related contamination? 
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Strategies for monitoring mine-site rehabilitation must be designed to provide information over a 

suitable range of scales.  Information relating to fine-scale ecosystem processes must be able to 

be linked in a nested hierarchy to indicators collected at broader scales (Tongway, pers. com. 

2000).  Indicators should be ecologically relevant, quantitative and synoptic. Given that there is a 

characteristic set of environmental constraints inherent of a given region (be it geological or 

climatic), any measure of ecosystem health should also be scaled in the context of the ‘natural’ 

(pre-disturbance) environment of the site in question (Bell 1996; Corbett 1999).  In this context, 

Corbett (1999) noted the general lack of consistent, repeatable monitoring methods for mine-site 

rehabilitation assessment that effectively measure, over an appropriate range of spatial and 

temporal scales, the ecological state of sites. 

A conceptual framework for Ecosystem Function Analysis (EFA) has been developed by 

Ludwig et al. (1997) and by Tongway et al. (1997).  Three interrelated components form this 

analysis approach where a range of indicators, measured on the ground, have been derived to 

measure: 

1. Basic ecosystem processes (Landscape Function Analysis); 

2. Vegetation development (composition, development and density); and 

3. Habitat complexity (pattern and structure). 

Remote sensing (RS) can potentially improve information relating to these three components of 

EFA by forming links over a range of scales between scale-dependent elements influencing 

ecosystem processes (Asner, Wessman & Schimel 1998; Jupp et al. 1988; Lobo et al. 1998; 

Tongway et al. 1997).  This information can potentially relate directly to EFA indicators 

measured on the ground.  Identification of these relationships will allow a synoptic approach to 

the application of these indicators for assessment purposes using remote sensing.   

For this reason the scale of resolution of RS data is a fundamental consideration for designing 

any monitoring program.  The scale at which information is collected should reflect functional 

divisions based on both ecological criteria and management objectives.  These factors are 

discussed in more detail below. 

Landscape Function Analysis 

Characteristic patterns and hierarchical organisation of ‘patches’ evolve within the landscape 

though basic ecological processes operating over a range of scales.  Spatial relationships between 

distinct elements of a landscape and the interactions among these structural components define 
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the functional state of an ecosystem at any one time (Bell, Fonseca & Motten 1997; Lobo et al. 

1998). 

The pattern and arrangement of critical patches in the landscape form the basis to Landscape 

Function Analysis (LFA), which hinges on the trigger, transfer, reserve and pulse model 

shown in Figure 3 (Ludwig et al. 1997).   The model has inherent spatio-temporal dimensions 

and, in this sense, remote sensing may provide a means to differentiate patterns relevant to 

defining the functional state of an ecosystem.  The basis of LFA is to measure the spatial 

arrangement, size and relative distribution of patches (obstructions to runoff) with respect to the 

distribution of infertile (inter-patch) zones in a landscape as they relate to the down-slope 

transport of resources by water. 

TRIGGER
(water)

TRANSFER

RESERVE

PULSE

LOSSES
FROM 

SYSTEM Feedback to 
Landscape 
structures

Out-flow

Off-take

(eg. fire ,
erosion)

Ploughback
Recycling
(eg. fire ,

decomposition

 

Figure 3. The trigger, transfer, reserve and pulse model proposed by (Ludwig et al. 
1997) to describe the major spatio-temporal processes related to the 
functioning of terrestrial ecosystems.  

 

Plants, through the production of foliage, stems, roots and seasonal growth cycle, each respond 

to -and are constrained by- ecosystem processes (Asner, Wessman & Schimel 1998).  In this 

context, the Wet-Dry tropical climate of the South Alligator Valley strongly influences 

revegetation of disturbed land, where the ecological cycle of biological production and cycling 

(conservation and loss) of nutrients limits the establishment of a stable plant community.  



 

8 

Essentially this system is 'water-controlled', where Wet season rainfall between October and 

April triggers biological, physical and chemical activities (Ludwig et al. 1997).  

Understanding the rate at which materials are transferred across a landscape is crucial in 

determining the functional state of an ecosystem.  Water is also the major force driving transfer 

processes through runoff-runon, erosion-deposition and infiltration of water into the soil.  

The ecological condition of land may be viewed as a continuum between a fully functional 

conserving landscape and a very dysfunctional, or leaky, landscape (Tongway & Hindley 1995).  

In this context, a well-rehabilitated landscape will be characterised as having: 

1. A high level of resource utilisation and control;  

2. Low losses to the system through transport processes (runoff and erosion); and  

3. Fertile patches where resources are concentrated (Tongway et al. 1997).  

It follows that the distribution of elements that make up the landscape, especially the number, 

size, shape, type and spatial arrangement of surface vegetation patches is crucial to the spatio-

temporal dynamics driving the transfer and reserve of scarce resources within the landscape.  In 

this sense, the properties of landscape surface features will govern these processes.  By 

understanding the physical properties for key surface features and by mapping their spatial 

arrangement an indicator of landscape ‘leakiness’ may be derived to measures the functional 

state of the ecosystem.  By undertaking comparative measurements, land undergoing 

rehabilitation can then be scaled in the context of representative pre-disturbance environments. 

The spatial arrangement of surface vegetation has been shown to be a key factor in arresting flow 

of runoff water, allowing for infiltration of water, nutrients and sedimentation as demonstrated in 

Figure 4 (Tongway & Ludwig 1996; Ludwig et al. 1997; Tongway et al. 1997; Tongway & 

Hindley 2000).  
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Figure 4.  Spatial arrangement of vegetation plays a key role in the regulation and 

conservation of scarce resources in tropical savannah landscapes by 
influencing the flow characteristics of surface water (after Tongway & Hindley 
1995).  Remote sensing may provide quantitative indicators to measure the 
effectiveness of resource control provided by surface vegetation pattern. 

Perennial grasses, in particular, are recognised as being important in facilitating the development 

of stable and sustainable tropical savannah ecosystems (Ludwig & Tongway 1992; Ludwig & 

Tongway 1996).  Such patches are biologically responsive and provide a feedback loop that is 

critical to sustaining the quality of fertile patches that, by capturing resources, also respond with 

a pulse of production after a trigger event, such as rain.  The attributes of grassland patches are 

further illustrated in figure 5. 

 
Figure 5  Vegetation patches allow capture of soil and organic matter that may otherwise 

be lost through erosion  (after Tongway & Hindley 1995).    Remote sensing 
may be able to measure the effectiveness of ‘resource capture’.  
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Further, it has been demonstrated that distribution of relatively small, fine grained patches at the 

scale of individual tussock clumps can play an integral role in development of a functional 

ecosystem, through the conservation of scarce nutrients (Ludwig & Tongway 1992).  In fact, 

many small patches (tussocks) will be more effective at reducing erosive forces of water and 

wind than having fewer large patches.  Therefore, the minimum patch size that provides 

functional stability with respect these factors can be considered the minimum useful unit in the 

measurement for LFA and in assessing development towards a sustainable state.   In this sense, 

non-living structures at a scale of 2 to 10 metres wide such as log-hummocks or mounds that 

obstruct downhill water flow in a local watershed will also facilitate biological activity through 

the capture of nutrients, litter and seed (Ludwig & Tongway 1992; Ludwig & Tongway 1996).   

To refine these indicators further it is also useful to distinguish the quality within each structural 

component (patch or inter-patch) as the properties of these elements will define the spatio-

temporal dynamics of resource capture, storage and loss across a landscape.  For example, a 

grass patch would be considered a more stable obstruction to water flow than a mound of bare 

soil exposed to erosive forces.  Similarly, perennial grass provides a far more stable obstruction 

than that provided by the annual grasses, which tends to have a comparably very small basal area 

and a shallower root system (Tongway & Hindley 1995).  The quality of a patch with respect 

these criteria might be measured by developing indicators that measure 1) vegetation type; 2) 

vegetation density and 3) vegetation health.   Similarly, the quality of inter-patches will vary 

with respect to factors affecting erosion potential and water infiltration.  

The implication here is that RS information should ideally discriminate between these features 

and should deliver a comparable spatial resolution, where identification of features less than 

10cm is desirable.  However, if this is not possible, it is still desirable to identify general patterns 

or clumps of such features in the landscape, at a higher level of hierarchical organisation.  A key 

objective, therefore, is to assess the capability of RS imagery to resolve the distribution and 

pattern of key patches within the landscape. 

Vegetation Development 

The restoration of disturbed sites to a ‘natural’ state with respect to the plant community is an 

ultimate goal of rehabilitation in a conservation area.  In this context, monitoring assessment 

requires: 

1. A reference to the range of plant communities representative of the natural 
environment and  

2. Knowledge of the patterns of recolonisation for different keystone species.   
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MSV has been has been used successfully to accurately measure change in total and relative 

vegetation cover (Lonard et al. 1999).  Furthermore, MSV has been used to discriminate between 

keystone plant species (Um & Wright 1998; Everitt et al. 1999).  For example, dominant tree 

species (Eucalyptus spp.), shrubs (Acacia spp.) and grasses have mapped to species level, where 

relative abundances and density can be determined within acceptable error levels (Hick et al. 

1994; Lyon, Honey & Hick 1994).  In some cases, environmental weeds may also be mapped 

successfully at high spatial resolution. 

Habitat Complexity 

A measure of habitat complexity will indicate the potential for an environment to accommodate 

the biological requirements for the range of species known to occur in a given region.  Structural 

components of ‘habitat’ that may be measured by remote sensing are produced by the 

combination of all biotic and abiotic in the landscape.  Quantitative indicators of habitat 

complexity have been derived from forest community studies from RS information (Coops & 

Catling 1997b; Coops & Catling 1997a; Coops et al. 1998).  These measures essentially are 

scale-dependent and examine the relative spatial variance among a standardised set of map 

classes in a given area.  Once a thematic map is produced of sufficient accuracy, it is also 

possible to examine the spatial interrelationships within and between individual classes using 

spatial analysis techniques.  In this context, landscape metrics, such as measures of contagion 

and fractal dimension that relate to the context (relationships between classes) and pattern 

(distribution, size and shape of individual classes), have also been applied by a number of 

authors (Frohn 1998). 

Plant species distribution and density are key elements of habitat complexity.  Vegetation-related 

habitat complexity also has a vertical dimension, which includes tree height, canopy density and 

crown height.  In this context shade is a basic physical element that can be measured by RS that 

relates to vertical habitat complexity.  A shade factor indicator may be derived from remote 

sensed data once standardised as a function of time of day, associated sun angle and topography.  

Further information may then be derived relating to the height, width and density of the objects 

casting the shadow (Campbell 1996). 
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1.2 Variables Limiting Remote Sensing Capability 
The factors that together define the capability of passive optical remote sensing are: 

• The energy source, (the sun); 

• The transmission path (atmosphere); 

• The target (point of interest to be interrogated); 

• The platform; and 

• The sensor attached to the platform. 

Each factor is critical to overall ‘resolving’ capability.  However, it is ultimately the properties of 

the target and the spatial arrangement of target elements in the context of one another that will 

determine the ability of remote sensing to resolve between specific elements (Campbell 1996; 

Zwiggelaar 1998).   

The signal to noise ratio (SN) from the target to the sensor determines the resolving power of the 

sensor.  SN is band specific and is temporally and spatially variable with respect to 

environmental conditions, such as the degree of atmospheric noise, distance of transmission path, 

or sun angle.  For control and assurance of data quality, it is useful for analysts to estimate SN at 

the time of image acquisition by measuring the ratio of the signal mean to the standard deviation 

(Curran & Dungan 1988).  The deployment of spectrally invariant calibration targets, which 

allow standardisation of data to ground reflectance measurements (Stow, Phinn & Hope 1997), 

may assist in providing a standardised calculation of SN.   

1.2.1 The Platform 

The principle advantage of an airborne platform over satellite platforms is a higher SN ratio from 

target to sensor.  This allows sensors to have higher spectral resolution (narrower bands) and 

higher spatial resolution (smaller pixel size).   The higher spectral resolution provided by 

airborne platforms improves potential for fine-resolution diagnostic spectra to be selected for 

targets of interest (Bork, West & Price 1999; Price 1998).  Finer spatial resolution also enhances 

textural information.  For example, components of plant/leaf structure may be used to distinguish 

between species, or between bare-ground types (Campbell 1996). 

Airborne systems also allow greater flexibility over satellite platforms where mission timing, 

altitude and a range of spectral/spatial resolutions can be easily manipulated.  However, aircraft 

also experience geometric instability that can lead to significant geometric distortion at the edges 

of the field of view (FOV).  This form of displacement is also exacerbated in areas where 
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topographic relief is significant.  Together this can make geometric correction of RS data 

difficult (Chen, Wang & Lin 1997; Harrison & Jupp 1991).  Geometric distortion can be reduced 

using several techniques including: 

• Application of geometric correction algorithms in combination with an adequate 
number of ground control points (GCPs); 

• Allowing appropriate overlap between image frames of a mosaic scene so that 
peripheral areas where distortion is highest can be removed; 

• Use of a gyro-based stabilisation mount to compensate for platform roll pitch and 
yaw. 

1.2.2 The Sensor  

The Image Capture Unit (ICU) used in this study was developed by Dr Nick Rollings of the 

Division of Ecosystem Management at the University of New England.  The ICU is designed to 

carry up to eight precision aligned Sony industrial cameras, each with an independent frame-

grabber.  A central switch, which is controlled by a PC/104 industrial computer, triggers frame-

grabs from each camera simultaneously.  Software identifies each frame-grab event where 

images are then downloaded from frame grabber memory to disk.  The entire system is compact, 

lightweight and can be mounted easily to almost any platform (Rollings 2000a; Rollings 2000b).   

The ICU cameras each use a silicon-based Charge-Coupled-Device (CCD) sensor that has a 

spectral response range between 400 to 1100nm.  The high sensitivity of the CCD within this 

range allows for the use of narrow band filters (Zwiggelaar 1998; Rollings 2000b).  Currently 10 

spectral filters covering specific regions within the 450-850 nm range are available.  This allows 

considerable adaptability for application-specific spectral configurations (Rollings 2000b). 

Such a system has the ability to provide high spatial resolution data in a digital format, which is 

more easily manipulated than conventional aerial photography (Mumby et al. 1998).  The spatial 

resolution of imagery can be manipulated in the range of 0.25m to 5m, depending upon altitude 

of fly-over.  The ICU system combines some of the desirable qualities of satellite imagery and 

aerial photography; namely the provision of digital data in discreet spectral bands at high spatial 

resolution. 

1.2.3 The Target 

Several factors influence reflectance and absorption of electromagnetic radiation by the target.  

These include target structure, orientation, texture, density and chemistry.  With respect to 

vegetation, physiognomy (leaf morphology, leaf orientation, foliage density, growth form and 
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phenology) affects the way radiation is reflected whereas foliar chemistry affects the way 

radiation is absorbed (Campbell 1996; O'Neill 1996). 

Diagnostic narrow-band (±10nm) features have been found that discriminate between a variety 

of plant and soil types within the 400 to 1100nm range (Skidmore & Schmidt 1996; Warren & 

Hick 1996; Skidmore et al. 1997; Dematte & Garcia 1999).  This is despite a large degree of 

spectrally redundant information within the broader-band blue, green, red and near-infrared 

region of this spectrum (Baret 1995; Campbell 1996; Price 1998).  Spectra that separate between 

key plant species (e.g. Eucalyptus spp.) and soil types also have been found above the CCD-

sensor range, between 1100-2400nm (Skidmore et al. 1997; Kumar & Skidmore 1998; 

Zwiggelaar 1998). 

1.3 Remote sensing in the South Alligator Rivers Region:  The 
Implications of Environmental Variability. 

A requirement of any monitoring program is that the environmental indicators be measured with 

sufficient accuracy and sensitivity to detect real change.  With respect to RS, achieving this aim 

is complicated by both temporal and spatial variability in the spectral properties of target 

features.  Much of this variability is imposed by regional environmental patterns: climate, 

geology and topography.  Consequently, these factors have important implications for sampling 

design of both image acquisition and ground sample collection.   

1.3.1 Temporal Variability 

Appropriate timing of image acquisition is a critical factor influencing environmental data 

quality.  Predictable (seasonal) temporal patterns and stochastic events, such as fire, must be 

carefully considered with respect to their influence on the spectral response of key surface 

features as well as on the degree of atmospheric noise (Hick et al. 1994).  

In the Alligator Rivers Region, remote sensing acquisition for landscape mapping is generally 

limited to the Dry season period by seasonal cloud cover and rain (Figure 4).  Understanding of 

these conditions assists also in identifying potential problems that may be avoided through 

careful planning and coordination with land managers.  Inter-related factors include: 

• Seasonal variation in both climate and vegetation characteristics; and 

• Time of day and the specific environmental conditions experienced during image 
acquisition that influence the quality of data acquisition, such as excessive wind, smoke 
or cloud-cover, sun angle and shadow effects. 
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Figure 6. Weather patterns of the Alligator Rivers Region, Northern Territory:  a) Mean 

monthly number of days with calm winds at Oenpelli, NT (< 2 knots);  b) 
Mean monthly low-level cloud cover (< 2600m); and  c) mean monthly rainfall 
(mm) at Mary River Ranger Station, Kakadu, NT.  The shaded area indicates 
a generalised ‘window of opportunity’ for optical remote sensing data 
collection based on climatic limitations. 
(Data source:  Australian Bureau of Meteorology) 

Feature definition uncertainty increases as variation in spectral and textural characteristics 

increases for a particular target.  It is therefore important to characterise variation within and 

between sampling events, to define target discrimination potential.  This allows optimal 

precision and accuracy of feature interpretation.   For this reason it is important to have an 

understanding of the temporal patterns of variation in spectral reflectance within and between 

target features - with respect to the spectral profile of specific features of interest.   

Vegetation and soils exhibit considerable spectral variation in response to environmental 

conditions driven by water flux (Muller & James 1885; Roberts et al. 1998).  This is particularly 

the case for plants, where physiological and structural changes related to the seasonal growth 

cycle (phenology) prompt large changes in spectral reflectance (Asner, Wessman & Schimel 
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1998; Zwiggelaar 1998).  Furthermore, soil reflectance can vary considerably in response to 

changes in moisture content (Baret 1995; Famiglietti et al. 1999).   

A number of generalisations can be made with respect to the effect of phenological state on 

spectral and textural response of key plant types.  Spectral variation response patterns tend to be 

consistent with the season for a particular species, but may vary significantly between species 

(Zwiggelaar 1998).  It is therefore useful to determine the time when spectral definition is 

maximal, given other operational constraints such as cloud cover.   

The phenology of plants in the Alligator Rivers Region has been reviewed by Brennan (1996).  

Although there is considerable temporal variation observed between years in the phenological 

patterns expressed in plants, the relative sequence of changes within and between species is 

generally consistent in any particular season.  Dominant perennial and annual grasses of the SAV 

(Heteropogon and Sorghum spp.) have very different growth cycles.  Sorghum has fruited and 

died off by March, while Heteropogon spp. continue flowering and fruiting from April to May 

after which they remain in a dormant growth state (Brennan 1996).   Because photosynthetically 

active vegetation elicits a very different spectral response to senescent vegetation (Roberts et al. 

1992; Campbell 1996), the phenological difference between perennial and annual grasses during 

the April/May period may be used to differentiate between these key grass types.  

There are other reasons why the early Dry season is considered optimal for RS acquisition and 

why the later period (June to October) should be avoided.  Foliage is a key diagnostic component 

for plant species discrimination, but several tree species in the SAV region are deciduous in the 

late Dry season (Brennan pers. com. 2000).  Data quality is also marred by seasonal fires.  The 

overall burnt area increases over the dry period, where fire either removes surface vegetation or 

alters its spectral characteristics.  Associated smoke also contributes significantly to atmospheric 

noise.   

It is considered that single-date MSV capture during early Dry season yields the maximum 

spectral contrast between key landscape surface indicators required for EFA, therefore providing 

the most cost-effective option based on the objectives for monitoring rehabilitation at mine-sites 

of the SAV region.  It should be noted, however, that other studies have utilised within-year 

multi-temporal RS data to provide further information of ecological significance to monitoring 

vegetation development or land degradation, by accumulating the differences expressed by 

particular features over a range of specific times (e.g. Wolter et al. 1995; Bohlman et al. 1998).  

For instance, further information might be derived within the ARR in the late Dry season, when 



 

17 

diagnostic phenological characteristics, such as flowering, fruiting, or a growth flush, are 

expressed by a number of plants (Brennan 1996).  Another example may be measuring the 

degree of feral pig activity on a floodplain, where rutting damage (exposed soil) is maximal in 

the late Dry Season.   

Implications for Operational Planning 

In summary, the early Dry season (April/May), appears to be the optimum time to collect RS 

data for monitoring rehabilitation in the SAV region using EFA indicators.  This is because 

spectrally diagnostic features for major vegetation types are optimal at this time.  Data quality is 

also optimised, as spectral variability within target populations caused by loss of foliage or 

stochastic events (such as fire), is minimal, while atmospheric visibility tends to be maximal.   

As previously stated, the overall area burnt generally increases over the Dry season.  In KNP a 

spate of prescribed ‘early’ season, burning is conducted. Careful planning and consultation with 

district landowners and managers will minimise the potential impact of prescribed early-season 

burning on data quality (Spiers pers. com. 2000). 

A degree of flexibility should be incorporated into the data acquisition schedule as no amount of 

planning can account for unpredictable circumstances.  Therefore, potential standby costs should 

be factored into any study.  The field and flight team must allow standby time for when 

conditions are not suitable and be able to respond quickly when conditions become suitable.  

Therefore it is necessary to have people on the ground the day data acquisition is planned, to 

notify flight crew of data collection feasibility and to post-pone if necessary.  This may seem a 

costly exercise, but costs are offset by overall improvements to data quality. 

Transferability and efficiency of data collection are key considerations in monitoring design and 

developing accurate indicators of ecosystem processes (Ludwig & Tongway 1992).  Adherence 

to the protocol discussed above will ultimately lead to more accurate and consistent monitoring 

data.   
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1.3.2 Spatial Variability 

The interrelationship between target spatial heterogeneity and the size of the ground sample unit 

(pixel) will also determine target discrimination.  At too fine a resolution, information can be 

obscured by introducing noise.  On the other hand, coarser scales may obscure the ability to 

resolve finer scale relationships, which may have diagnostic significance (Hewitt et al. 1998). 

Spatial variability, or the degree of spectral and textural heterogeneity within a target feature 

population, has implications for obtaining a representative sample for image classification, 

particularly over larger regional areas (Pickup, Bastin & Chewings 1994; Baret 1995).  Such 

variability is also influenced by the bi-directional reflectance from surrounding features and is 

therefore influenced by spatial context between different features (Barrett & Curtis 1992).   

However, for monitoring relatively small areas (e.g. mine-sites) that usually display less spatial 

heterogeneity, the spatial dimension is perhaps not as important as temporal variability.  

Nevertheless, spatial variation must be considered to aid image interpretation and accuracy 

assessment (Wade, Foster & Baban 1996).  Where spatial variation is observed, sampling efforts 

should be distributed across the gradient of variation to obtain a representative sample in the 

most efficient and cost-effective manner (Pressey & Bedward 1991; Campbell 1995).   
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2 MATERIALS AND METHODS 

A generalised outline of the steps involved in pre-flight planning, ground and RS data 

acquisition, data pre-processing and image analysis are summarised in Figure 5.  These steps will 

be elaborated on under the headings of this section 

Pre-Processing

Geo-registration
of image mosaic to 

Ground Control Points

Acquire Videography data

Mosaicking of 
stacked frames through 

selection of reference points

Band stacking:
individual bands for each frame 

aligned to base image by
rotation and x-y shift

procedure

Pre-flight Planning

Plan for time of remote sensed data acquisition:
coordinate ground and air team, 

and liaise with land managers

Establish framework for geometric and
radiometric calibration

Construct, position, 
& geo-reference 

Ground Control Targets

Field Reconnaissance , 
determine spectral filters to be used;

establish area of coverage, plan flight path,
program frame grabber accordingly

Construct
calibration targets

Establish
permanent 

EFA transect-lines

Individual
 image-frames:

separate, unstacked 
multiple band files

  Adjust exposure gain  
  for each band at time of flight
  (shutter speed & f-stop constant)

Pre-arranged flight path

  Ground data acquisition:
  Deploy calibration targets

  and acquire ground
  radiometer readings

  at time of fly-over

Field Data Collection

Image Analysis

Correction of Video-interlacing 
applied to remove offset 

between odd & even lines 
for each image

acquire data

 

Figure 7. Outline of steps in pre-flight planning, image acquisition and pre-processing. 
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2.1 Site Description 
The South Alligator River Valley is located at the southern end of KNP (Figure 1).  The region 

has been identified as a unique ecotone between two geologically different landscapes (the 

Marrawal-Arnhem Convergence), supporting a diverse range of animals and plants of 

conservation significance (Woinarski et al. 1989).  Mine-sites in the area tend to be located on 

the Pine Creek Geosyncline, a geologically complex region consisting of deformed Precambrian 

sedimentary basin with numerous volcanic intrusions (Anon. 1988).  A large range of landforms 

are represented in the region, with a relief of up to 250 m, ranging from escarpment, plateau, 

upland and lowland hills and the valley floor (Story et al. 1976). 

The region has been subjected to a range of human disturbances within the last century- most 

notably grazing and the possible alteration of fire regimes (over a broad scale), the introduction 

of a number of exotic species and mining (Graetz 1989; Woinarski et al. 1989).   

2.1.1 El Sherana Airstrip 

The airstrip (Figure 15) was constructed in the 1960s and was in use until the early 1980s 

(Braithwaite & Woinarski 1990).  It is located on a gentle lower slope (< 5%) that experiences 

seasonal overland water flows and seepage, which has led to development of deep lateritic soils 

(Stow, Phinn & Hope 1997).  The slope drains to a meandering gully that joins the South 

Alligator River approximately one kilometre from the site.  Soil surface texture and particle size 

characteristics vary according to seasonal geomorphic processes driven by wetness and water 

flow that are influenced by localised topography (Story et al. 1976).   

The airstrip is about 50m wide and 1000m long.  It was formed by cutting a level surface into the 

slope, parallel with the slope contour, removing all vegetation and topsoil.  Generally, the 

exposed lateritic sub-soil of the airstrip is compacted, and contains little organic matter as 

indicated by the lack of vegetation and decomposing surface litter.  Since its abandonment, the 

only other major disturbance has been from excavation of gravel for road works near the north-

western end of the airstrip.   

Surface soils at the airstrip can be characterised into areas of actively eroding soil (Figure 23), 

scolded surfaces and several surface depositional classes based on the degree of gravel, sand or 

clay content (Plate 6).  Vegetation colonisation at the site displays a clearly emerging pattern, 

with some areas being recolonised by perennial grasses (Heteropogon spp.) or shrubs (Acacia 

spp.) and other areas by dense to sparse annual grasses.  Vegetation is often associated with 
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localised depressions or obstructions to overland water flow, such as earth mounds or small 

embankment lines formed from grader earth-works.  Significant areas also remain totally devoid 

of vegetation. 

The surrounding area remains relatively undisturbed and consists of Eucalypt woodland 

dominated largely by E. foelscheana, E. latifolia, E. tectifica and E. alba, the latter generally 

being associated with seasonally waterlogged soils on slopes below the airstrip.  Dominant 

understorey species include Erythrophleum chlorostachys and Buchanania obvalata.  Dense 

perennial grasses (Heteropogon contortus and H. triticeus) dominate the herbaceous layer. 

2.1.2 Guratba (Coronation Hill) 

Guratba is located next to the South Alligator River and has relief of 200m (Figure 30).  This site 

displays greater environmental heterogeneity than the El Sherana site.  An upland hill landform 

pattern is dominant in the area with slopes ranging from 5 to 120%.   

Guratba has a history of low-scale mining and extensive exploration activity, which terminated 

in the early 1980s.  The main mining disturbance occurred during the exploration operation when 

roads and drill platforms were cut into the steep eastern hill-face.  There is also a relatively small 

open-cut mine and a number of adits constructed from earlier mine-workings.  Several piles of 

overburden remain, extracted from adits, the open-cut and the drilling sites. 

Geologically, the hill consists of a diverse range of weathered volcanic, metamorphic and 

sedimentary rocks.  On the steeper slopes the surface is often strewn with boulders.  These 

overlie shallow, well-drained skeletal soils with little organic matter (Story et al. 1976).  Bedrock 

has often been exposed through construction of drill pads and roads.   

Several plant-communities occur.  There are three riverine woodland communities:  1) open 

woodland dominated by Eucalyptus tectifica and Erythrophleum chlorostachys;  2) open 

woodland dominated by Eucalyptus papuana;  3) and a narrow band of dense riparian woodland 

dominated by Syzigium, Lophostemon and Melaleuca species.  Woodland communities on the 

upper and lower slopes of the hill are less distinct, but they may be separated into four types: 1) 

mixed E. latifolia, E. tintannans and E. phoenicia;  2) areas of E. miniata;  3) areas of E. 

dichromophloia; and  4) areas of E. latifolia, E. tectifica and E. polycilata. 
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2.2 Pre-flight Planning 
Image coverage was planned to encompass the disturbed site and include a larger portion of the 

surrounding ‘undisturbed’ environment.  This allowed comparisons to be made between 

‘disturbed’ and ‘undisturbed’ areas on imagery. 

2.2.1 A Framework for Image Geo-registration and Integration of Ground-level Sampling 
Efforts 

A network of Ground Control Points (GCPs) was established at each site to allow potential for 

future co-registration of multi-temporal imagery for monitoring purposes.  In turn this facilitates 

accurate cross-comparison of ground data with subsequent image interpretation, classification 

and accuracy assessment. 

Ground control targets consisted of 1.5x1.5m sheets constructed of builders’ sisalation material.  

Each was painted a semi-opaque, matt, light-blue colour on one side, while the other side 

remained a reflective aluminium surface.  The blue surface was placed facing upwards (Plate 1).  

This material also proved durable and fire resistant, a necessary insurance for maintaining the 

integrity of Dry Season sampling efforts.  

Targets were placed at strategic locations (e.g. at either end of permanent transect line 

monitoring sites) to ensure that the spatial consistency between imagery and the corresponding 

ground-truth data was maintained.  A Trimble™ differential GPS, using an Omnistar™ reference 

satellite, was used to geo-reference GCPs to sub-meter precision (Plate 1).  Geometric correction 

of the image could then be obtained by assigning real coordinates to targets identified on image.   

Permanent transect-lines were established at each site using the procedure outlined by Ludwig & 

Tongway (1992).  A 100m measuring tape was used to accurately mark out each 100m long 

transect.  Transects were positioned along the main slope gradient, representing the direction of 

water runoff.  The end of each transect was marked permanently with a star-picket and 

aluminium identification tag.  GCP targets were placed precisely at the each end of the transect, 

with the inner edge of the target abutting the outer edge of the transect marker (Plate 1).  Where 

the aerial view of the end of the transect line was obstructed by tree cover a target was also 

placed centrally along the transect line to validate its position.  Positioning transects in this way 

allowed for accurate measurement of the boundaries between landscape patches/inter-patches 

required for LFA.  Geo-registration of the image to transect lines also allowed ground-based 
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measurements to be precisely cross-referenced to imagery.  This enabled accurate validation of 

imagery with respect to the different patch/inter-patch classes identified on the ground.   

 

 
Plate 1. Images were registered to Ground Control Points using a Trimble™ dGPS.  

GCPs were distributed regularly throughout sites and were also placed at 
each end of permanent transect lines (Guratba site, lower slopes). 

Six replicate transect lines were positioned at both the El Sherana airstrip and at the Guratba site.  

At the El Sherana site transects intersected the airstrip at about 70m intervals (Figure 16).  

Approximately 50m of the transect line crossed the airstrip, while the remaining 50m continued 

onto relatively undisturbed vegetation on either the slopes above or below the edge of the 

airstrip.  Transect lines were systematically interspersed along the airstrip to alternate between 

slopes above and below the airstrip, allowing equal representation in sampling.  

Guratba transects were stratified into three groups to represent the slope gradient of the site on 

the upper (very steep), middle (steep) and lower (medium) slopes. Two transects were placed in 

each of these zones.  One of these was placed on the north-eastern side of the hill, while the other 

was placed the south-eastern side of the hill, to account for a change in rock type over the site. 
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2.3 Ground Data Collection 
Collection of suitable ground data is a critical component of image classification, interpretation 

and subsequent accuracy assessment (Congalton 1991).  The complexity of data collection 

increases as the level of detail required in the image classification increases.  This is directly 

linked to the level of precision and detail required in data collection.  In turn, this is influenced 

by the degree of spatial heterogeneity in the landscape with respect to the independent surface 

classes that one is attempting to map (Pressey & Bedward 1991).  

RS data is generally collected at a scale that is typically greater in both grain and extent than 

traditional ecological measurements (Sanderson et al. 1998).  In order to compare imagery on a 

one to one basis with field measurements, the latter often must be rescaled to match to grain of 

the image data.  Consequently, a two-scale approach was adopted for ground-based sampling to 

assist in delimiting the effective scales at which EFA indicators may be accurately resolved: 

1. A general survey of the key plant species and land surface types identified in initial 
field reconnaissance was undertaken.  Training sites were geo-referenced with a 
Garmin™ Etrex GPS (at up to ±10m accuracy).   

2. Data was collected for soil, canopy cover and patch-boundary analysis along 
permanent transects geo-referenced to sub-metre accuracy. 

Perennial grasses were the primary coloniser that formed stabilised barriers to runoff in disturbed 

areas.  Grass cover could also be nominally classified according to the density and species within 

disturbed areas.    Bare-ground areas were also a major feature of disturbed sites.  These areas 

could be divided into a number of sub-classes representing ecologically relevant features: 

earthwork barriers to water runoff; deposition zones; and erosion zones.  A typology of these 

areas and associated vegetation responses is summarised below (Table 1).  These patch/inter-

patch zones formed the basis for development of a LFA classification scheme. 
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Table 1. Geomorphic surface-soil groups, associated sub-classes and vegetation 
response indicators identified at the Airstrip site relevant to LFA classification 
scheme.   

Geomorphic 
group 

Sub-class Vegetation response 

Grader-line 
embankments 

Perennial grasses have colonised immediately upslope of 
some embankments, thereby stabilising these areas, while 
others embankments have not been colonised.  These 
generally follow the downhill slope rather than the contour. 

Earth-worked 
barriers to runoff 

Isolated mounds Earth mounds sometimes stabilised by perennial grasses 
and/or shrubs allowing hummocks to form. 

Rill Little vegetation; some colonisation by pioneers species at 
edges of activity (Acacia spp and annual grasses) 

Scolds Compacted skeletal soil; little or no vegetation, Active erosion 

Pedestalling Little or no vegetation 

Lag gravel Little or no vegetation 

Sand Little or no vegetation Active deposition 

Clay-pans Little or no vegetation; colonisation at perimeters by some 
sedges indicating poor drainage 

  

2.3.1 General Survey and Selection of Training Sites 

A broad scale approach was adopted for geo-referencing suitable training-site locations for 

image classification.  The relative spatial accuracy of the Etrex GPS had to be taken into account 

when selecting training site areas.  Special attention was given to locating discreet patches in the 

landscape that would be more easily identified on imagery.  GPS points were only logged once a 

lock of sufficient accuracy (<10m) was obtained.   

Although a number of different woodland communities could be discerned at both sites, 

vegetation was generally very heterogeneous.  In addition, some species did not form discreet 

patches, or only formed very small patches. This made selection of GPS ground-truth points and 

training site selection difficult.  Due to this and time constraints, ground-sampling sizes were not 

always optimal in providing a representative picture of spectral variability among all key surface 

features.  

Priority was given to sampling dominant vegetation types identified in obvious woodland 

communities and those specifically associated with disturbed sites (e.g.. Acacia spp.).  The 

presence of major sub-dominant species was also recorded opportunistically when within 10m of 

a sample location.  
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Selection of Training Sites  

Training-sites were selected and validated using spatially referenced field notes and by revisiting 

the site with a registered true-colour composite image of the scene.  Geo-referenced digital 

photographs were taken to represent LFA patch/inter-patch classes (major grass and bare-ground 

types) and other key surface features  (Plates 4 to 11).  These were used as an index for the 

classification scheme adopted.  They also provided useful information for image interpretation 

and training site selection by providing a contextual reference between associated ground 

features.  Photographic referencing is considered an essential aid to ensure repeatability of the 

classification scheme for standardisation of future monitoring data with baseline information.   

Where possible, training site samples for each class feature were distributed evenly over the 

range in which imagery was captured.  This strategy was adopted to account for both: 1) regional 

variation in spectral characteristics of features; and 2)  stochastic variation between frames 

caused by changes in atmospheric noise, time of day, altitude, and platform role, pitch and yaw.   

However, the uneven distributions of some features made it impossible to obtain a sufficient 

sample to account for these two forms of variation, as the features in question only fell within a 

few frames of the total coverage.    

2.3.2 Transect Surveys 

Transect surveys were conducted measuring:   

1. Canopy cover with a spherical densiometer measured at 10m intervals;  

2. Soil moisture content and associated band-reflectance at 1m intervals, where a 
definite moisture gradient was apparent; and  

3. Line intercept boundaries between key patch/inter-patch classes identified using LFA 
techniques (Tongway & Hindley 1995). 

Measurements of Canopy Cover  

At the Airstrip site, percentage canopy cover was measured at 10m intervals along each transect 

line using a spherical densiometer.  Sixty-five samples were taken, representing the full range of 

canopy cover densities.  These data were used to perform regression analysis on canopy cover 

estimates derived from classified imagery (Section 3.2.3). 

Measurements of Soil-moisture and Associated Band-reflectance 

An area of surface moisture associated with a patch of bare soil was identified on the airstrip.  A 

30m transect line was positioned to intersect the moisture gradient.  To assess the relative 
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influence of moisture on soil band-reflectance, radiometric measurements were recorded with 

corresponding soil moisture estimates at one meter intervals along the transect at the time of fly-

over.  This transect was measured to a known position on one of the permanent transect lines to 

obtain an accurate spatial reference.  This allowed BV reflectance profiles from imagery to be 

compared with ground measurements for samples sites. 

Four replicate samples of surface soil (top 2cm), representing 10 x 10 cm in area were collected 

systematically from quarters of each 1m2 sample area.  Samples were immediately sealed in 

plastic bags to retain moisture content.  Wet and dry weights of replicate samples were measured 

in the laboratory to the nearest 0.01 gram with a Metlar balance.  Dry weight was obtained by 

oven-drying samples for 72hrs at 600C.  Percentage soil moisture (by weight) was then 

calculated from these records.  

LFA Patch Boundary Measurements   

The transect-boundary-intersect between key patch/inter-patch classes was recorded according to 

the method outlined by Tongway & Hindley (1995).  These data have not been fully analysed 

and will not be explored further in this thesis.  However, preliminary results were used for 

training site validation and classification scheme development. 

2.3.3 Radiometric Data Collection 

Given the variable spectral response of plants and soils over space and time, simultaneous 

sampling of ground reflectance with RS data for key targets is an important basis for the 

interpretation and evaluation of RS image classification strategies (Gamon, Lee & Qui 1992; 

Milton, Rollin & Emery 1995).  Field reflectance measurements were taken with a calibrated 4-

channel Exotech™ radiometer configured with blue (450-520 nm), green (520-600nm), red (630-

690nm) and near-infrared (800-1100nm) band filters.   

Band reflectance profiles for key surface features were taken at locations associated with training 

sites produced in Section 3.2.1 and from calibration targets.  Surface features targeted that were 

relevant to landscape function analysis were the perennial grasses, annual grasses, dead 

vegetation and bare-ground classes (Table 1).  Given time and equipment constraints, 

measurements of canopy reflectance for key tree species were not possible.  However, 

measurements were taken in direct sunlight immediately upon obtaining a number of leaf clump 

specimens for some tree species.   
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To reduce random error and increase measurement precision, at least five independent 

measurements of each target type were taken (Milton, Rollin & Emery 1995).  The radiometer 

was held at chest height directly above the area to be sampled, covering a FOV of approximately 

25 cm in diameter.  Care was taken to ensure that only the surface to be sampled was included in 

the FOV.  Reflectance measurements representing 100% reflectance (assuming a true 

Lambertian surface) were also taken from clean Reflex™ white paper.  Together these 

measurements were used to derive percentage reflectance from each target. 

Use of Calibration Targets 

Four calibration targets were placed on the airstrip at the time of image acquisition (Plate 2).  

Targets were constructed from canvas and measured 3x3m.  Each target was painted with 

separate shade of a uniform, matt, grey paint, together representing a serial range of invariant 

reflectance values.  In this way a linear transform function could be derived from ground 

reflectance measurements (Section 3.1.2).  Ground reflectance measurements were taken from 

each of the 4 calibration targets and from a 100% reflectance standard within one hour of image 

acquisition.  

 

Plate 2. Canvas 3x3 m spectral calibration targets were deployed at the airstrip site to 
allow imagery to be standardised to ground reflectance measurements. 

Deployment of calibration targets is considered an important prerequisite for imagery acquired 

for monitoring purposes.  It assists in the standardised comparison with independent multi-

temporal remote sensed images.  Furthermore, use of calibration targets enabled training site 
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band profiles derived from imagery to be validated against ground spectral measurements 

(Phinn, Stow & Zedler 1996; Stow, Phinn & Hope 1997).   

2.4 RS Data Collection and Pre-processing 
The high relief of the SAV region restricted the use of a fixed wing aircraft for the collection of 

high-resolution data.  Consequently, a Bell Jetranger helicopter was used as a platform for the 

ICU.  A 5-camera ICU array was used in this study (Plate 3).  Specifications of imagery and 

acquisition conditions are summarised in Table 3.   

 

 

 . 
Plate 3. The 5-camera ICU array was fitted to the undercarriage of a Bell Jet-ranger 

helicopter. 
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Table 2. Image Capture Unit system specifications and acquisition conditions, 26 May 
2000. 

Sensor type Focal 
length 

Flying 
height 

(pixel size) 
Frame size 
(per band) 

Pixel size 
range 

Spectral range 
(5 bands) 

Signal/ 
Noise 
ratio 

Sony XC-77 
monochrome video: 

 5 silicon CCDs 
(analogue output) 

0.016 m ? (0.5m) 
? (0.25m) 

512 lines X 
512 pixels 

0.25 
→1m 400→850nm Better 

than 50dB 

 Sensor type: Image Capture Unit using Sony XC-77 monochrome video 
 Operator: Ecosystems Management Pty. Ltd (Australia) 
 Acquisition date: 26/5/00 
 Acquisition time: 

(Australian  Central standard time) 
Airstrip site from 1230-1400 hrs 
Guratba and other sites from 1400 hrs 

 Pixel size: 0.25, 0.5, 1.0m coverage’s 
 Band-widths: Band 1: Blue (450±10nm) 
  Band 2: green (550±10nm) 
  Band 3 & 4: Red (650±10nm & 625±5nm) 
  Band 5: Near -infrared (850±10nm) 

CCD= Charge coupled device 
FOV= Field of view 
ICU= image capture unit 

 

Five ICU spectral filters were assigned within the visible and near-infrared electromagnetic 

spectrum in areas well known for their ability to discriminate between major vegetation and soil 

characteristics, such as greenness, moisture content and soil reflectance.   

Image pre-processing (video interlacing correction, stacking and mosaicking of 0.5m data) was 

conducted by Ecosystems Management (Aust.) Ltd. Pty. utilising a Visual Basic program 

developed by Dr Nick Rollings (the ICU-pre-processing suite).  Mosaicking of 0.5m resolution 

data images was also conducted by EM using ESRI Imagine ™ and by James Boyden with 

ErMapper ™ version 6.1 for 0.25m resolution data collected from the El Sherana site.  Based on 

redundant control, rectification of the airstrip mosaic was accurate to <0.5m. 
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3 ANALYSES 

Data analysis was divided into a three phases:  

1. Preliminary spectral characterisation of target features and image calibration; 

2. Image classification and accuracy assessment; and 

3. Interrogation of image classes for site evaluation. 

These phases are described in detail below.  All maps figures have been projected using 

Australian Geodetic Datum (1966) and Universal Transverse Mercator in zone 53, south.  

3.1 Spectral Characterisation of Surface Features and Radiometric 
Calibration of Imagery 

Ground reflectance data were principally used for spectral characterisation of target features.  

When possible, corresponding BVs from MSV data were also compared with ground recordings.  

This involved: 

1. Graphing band profiles for perennial and annual grass types; 

2. Undertaking a non-parametric multivariate classification of radiometric band profiles for 
all features;   

3. Determining the influence on soil moisture on band reflectance for ground-level 
measurements and associated BVs sampled from 0.25m and 0.5m resolution data; and 

4. Deriving a Normalised Difference Vegetation Index (NDVI) from ground records to 
highlight differences with respect to the photosynthetically active potential of vegetation 
and soil reflectance (Equation 1). 

3.1.1 Multivariate Analysis of Band Profiles 

The multivariate analysis procedure involved three steps using PATN™ analysis software 

(Belbin 1994): 

1. A Bray and Curtis dissimilarity matrix was generated for all reflectance band profile 
measurements; 

2. A 2-dimensional ordination of the matrix was conducted using Semi-Strong- Hybrid- 
Multidimensional scaling procedure (Belbin 1991); 

3. Finally, a multiple linear regression (PCC) in conjunction with a Monte Carlo 
permutation procedure (MCAO) was conducted to assess the contribution of each band to 
ordination space. 

3.1.2 Radiometric Calibration of Imagery 

Radiometric calibrations of each image band to ground reflectance measurements were 

performed using each target as a training site for 0.5m resolution data collected from the airstrip 
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site.  For each video band, pixel brightness values (BVs) were sampled from the centre of targets 

to avoid peripheral pixels and thereby obtain ‘pure’ pixel samples.  A linear regression procedure 

was then applied using Minitab™ to describe the relationship between BV for each video band 

against corresponding ground reflectance measurements. 

Calibration of imagery to ground reflectance measurements was conducted to utilise information 

derived from ground reflectance NDVI measurements (Figure 11).  This information was used to 

stratify between major vegetation and bare-ground groups in the unsupervised classification 

procedure (Section 3.2.2).   

Regression analysis produced a highly linear relationship for each band between BV and ground 

reflectance (Appendix I, Figure 38).  Using the derived relationships, linear transforms were 

applied to each band to convert BV to percentage reflectance.  Normalisation of image data in 

this way enabled a direct comparison between pixel BVs and field reflectance measurements. 

3.1.3 Assessing the Relationship between Soil-reflectance and Soil-moisture. 

Multiple linear regressions of band reflectance for soil were conducted against log10-transformed 

values of soil moisture content for corresponding samples collected at 1m intervals along the 

moisture gradient.  Comparative samples were taken for:   

1. Ground-based radiometer measurements;  

2. Pixel BVs for corresponding 0.25m resolution data; and  

3. Pixel BVs for corresponding 0.5m resolution data.   

In the latter two cases, individual pixel values were manually interrogated from the image for 

pixels deemed most central to each corresponding ground-sample point.  For each data group, a 

stepwise regression analysis was performed to determine which band or combination of bands 

contributed most significantly to the soil-reflectance/moisture relationship.   

3.1.4 Use of the Normalised Difference Vegetation Index 

An NDVI image was produced from radiometrically calibrated imagery (Section 3.1.2) to 

represent ‘true’ NDVI measured on the ground.  The NDVI is a useful index because it enhances 

diagnostic differences between green vegetation and bare-ground.  Band ratio measurements also 

tend to normalise for variations in sun angle, haze and topography.  These traits improve utility 

of data for monitoring as they assist in normalising multi-temporal data (Pickup & Nelson 1984).   
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Equation 1. The Normalised Vegetation Index 
 

RNIR
RNIRNDVI

+
−

=    

where: NIR= Near-infrared band  

R= red band 

3.2 Image Classification  
Image classification is a data simplification process in which information contained in the 

original multi-band image is transformed into a digital thematic map.  Image pixels are 

categorised based on a digital BV ranging from 0-255 units.  Delineation of features on the 

surface is possible when features such as individual plant species, assemblages of species, or soil 

type produce unique spectral reflectance characteristics as a function of their structure, condition 

and fractional cover (Phinn, Stow & Zedler 1996).   

The classification scheme developed in this project aimed to represent ground features that may 

contribute to developing indicators of:   

1. Landscape Function Analysis;   

2. Vegetation development; and   

3. Habitat complexity.   

In this context, it was uncertain, particularly with respect to finer-grained features (e.g. logs), 

whether they would classify accurately.  This was because the relative scale of features identified 

on the ground survey varied significantly in patch size and patch distribution pattern, with 

respect to shape and spatial context with other features.  For this reason an iterative approach 

was applied to image classification, accuracy assessment and interpretation to optimise the utility 

of the final classification.  

A supervised classification approach, in conjunction with conventional accuracy assessment 

procedures, was the key method adopted to produce a thematic map.  Feature classes identified 

from the initial ground survey, which classified poorly, were either omitted or merged with a 

higher functional group in the final classification.  Unsupervised classification was also 

undertaken to aid accuracy assessment and image interpretation.   

Shaded areas were treated as a separate class in supervised classification.  This was because 

shade can lead to mis-classification if not isolated (Zwiggelaar 1998).  Shade is also considered 
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an important ecological variable with potential value as an indicator.  The resulting ‘shade’ class 

was also used as a mask in the unsupervised procedure to reduce noise in the classification. 

3.2.1 Supervised Classification 

The iterative approach adopted for supervised classification aimed to deliver a final product in 

which classification accuracy was optimised in the context of the key objectives noted above.  

This process is summarised in the flow chart in Figure 6.  

Training sites were digitised for key tree, shrub, grass and bare-ground classes using a geo-

registered true-colour composite image as a background.  This produces a sample of 

characteristic spectral band profiles for each surface class.  Validation of each training site class 

was conducted using geo-referenced field notes and photographs.  In cases where there was some 

confusion in the interpretation between field notes and the location of features on imagery, these 

areas were omitted from the training-site selection process.   

The size of training-site patches and degree of replication of patches varied considerably 

depending on the abundance and density of surface features and the ease at which a ‘pure’ 

sample of pixels could be selected.  A summary of sampling frequency is provided in Table 6.  

For training classes depicting single species, care was taken to select polygons sampling only 

‘pure-pixel’ regions from the centre of each class type.  The edges between different features 

were avoided.  However, this may not always have been possible for species with small patch 

area, such as Acacia holocericia.   

For imagery collected at each 0.25 and 0.5m resolution, a multivariate discriminate function 

based on training site samples using the ‘enhanced’ maximum likelihood classified rule in ER-

Mapper™ was applied to assign each pixel in the image to an appropriate class.   

Preliminary classes were vetted against accuracy assessment statistics produced using methods 

discussed under that subheading, below.  Poorly classified classes were either omitted entirely 

from classification process or merged with a higher functional group.  If a high likelihood of an 

insufficient training sample size was detected, the offending class was omitted.  However, if an 

offending class could be logically merged (in a ecological sense) to a higher functional group, 

which in turn corresponded spectrally to that group as indicated in Figure 17, the class was then 

merged with a higher group (e.g. Sorghum + sparse annual grass classes).  The classification was 

repeated iteratively with modified training information and compared against the original 

accuracy assessment until acceptable level of accuracy was achieved. 
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SUPERVISED CLASSIFICATION

FINAL
ACCURACY ASSESSMENT

& INTERPRETATION

Selection of training sites
for each class type

Apply maximum likelihood 
classifier for each

 training-site sample set
(using bands 1,2,3, & 5) 

PRELIMINARY
ACCURACY ASSESSMENT

calculate summary statistics
for preliminary classes

(use one classified image only)

Generate Bray & Curtis
dissimilarity matrix of classes 
from mean BVs for all bands

ground survey
of major vegetation &

 'inter-patch' bareground types

Generate classification 
dendogram

(HPGMA procedure- Figure 17)

Generate confusion matrix
and accuracy statistics

by cross-tabulating 
both classified images

divide training sites
equally into two

 independent sample sets

Omit classes with
high level of mis-classification 

& insufficient training sample size

Where possible 
merge classes types

with poor discrimination into 
higher functional group 

re-validate training site
class types

Conduct maximum likelihood 
classifier for revised 

 training-site sample sets
(using bands 1,2,3, & 5) 

Generate confusion matrix
and accuracy statistics

by cross-tabulating 
both classified images

FINAL CLASS MAP

Site evaluation
analysis

Compare with
Unsupervised classes

(refer to Figure 7)

 
Figure 8. Steps used in supervised classification, interpretation and accuracy assessment of 0.5m and 0.25m imagery. 

Note:  Band 4 (650nm) was omitted from supervised classification procedure, as BVs were saturated (=255) and therefore invariant for a number of class types.  This caused ER-
Mapper to returned an error when applying the maximum likelihood classifier. 
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 Accuracy Assessment  

For each classification, a confusion matrix was produced from the two classified images, each 

utilising an independent set of training-site samples representing the same array of classes 

(Tables 5 & 7).  From these contingency tables four complementary measures were calculated: 

Equation 2.  Overall percentage classification accuracy   
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Where: A1= Overall percentage accuracy; 
xi = number of correctly assigned pixels for the ith class combination along the 
confusion matrix diagonal. 
r = number of classes (rows) in confusion matrix. 
N= total number of pixels assigned in classified image 

Equation 3  Per category percentage accuracy for individual classes in each row 
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Where:  xi = Number of correctly assigned pixels for class i  
ri = Total number of pixels assigned to class i over all classes in reference 

image (i.e. row total) 
 

Equation 4. Calculation of Overall Kappa Index of Agreement (KIA)  (Carsten 
1987; Congalton 1988; Congalton 1991; Foody 1992). 
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Where: K= Overall KIA 
r=  number of rows (classes) in cross-classification table 
xii= number of combinations along diagonal 
xi+= total observations in row i 
x+i= total observations in column i 
N= Total number of pixels in image 
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Equation 5.  Calculation of per-category KIA (Rosenfield & Fitzpatrick-Lins 1986) 
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Where pi=proportion of units agreeing in row i/column i 
pi+= proportion of units for expected chance agreement in row i 
p+i= proportion of units for expected chance agreement in column i 
i= class i 

To describe the spectral separation patterns between image classes, a multivariate classification 

dendogram was also produced for band profiles derived from the preliminary image 

classification.  This allowed individual classes to be compared against each other and determined 

whether they may be grouped within a functional hierarchy.  This was conducted only on the 

0.5m resolution image mosaic data for the airstrip (Figure 18) and it involved the following 

steps, using statistics generated from ER-Mapper™ as an input to the software, PATN™:  

1. Mean BVs were calculated for each class across all bands and tabulated; 

2. A Bray and Curtis dissimilarity matrix representing the relative differences between 
classes was produced for these data; and   

3. Finally, a classification dendogram (Figure 17) was then generated using an 
agglomerative hierarchical fusion clustering technique (UPGMA) applied to the 
dissimilarity matrix (Belbin 1994). 

3.2.2 Unsupervised Classification  

The objective of performing unsupervised classification of imagery was to further interrogate 

image information in the context of the supervised classification.  Two questions were asked to 

guide interpretation: 

1. Which unsupervised classes strongly associate with the specific training site sample 
classes used in the supervised classification? and  

2. Were any unsupervised classes formed that were absent from all training-site regions?  

The answer to the first question would assist in determining whether there were sub-classes 

within groups formed in the supervised classification that could provide a higher accuracy for 

class discrimination.  An answer to the second assisted in determining if there is spectral 

information within the multi-band image that can identify unique features (i.e. a plant species) 

not targeted in the supervised classification.  The appearance of unique unsupervised classes may 

also indicate artefacts caused by classification error.   

There were a number of preliminary steps undertaken to reduce noise in the unsupervised 

classification procedure.  First, shaded areas were removed from the classification by using a 

mask derived from the ‘shade’ class formed in the supervised classification outlined above.  

Second, the image was stratified into sub-regions representing two major groups of spectral 

variation.  These were: 1) Bare-ground and annual grasses; and 2)  trees, shrubs and perennial 
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grasses.  A Normalised Difference Vegetation Index (NDVI) calibrated to ground reflectance 

values clearly separated between these two groups, where a threshold NDVI value of 0.35 was 

used separate the two sub-regions.  Once these images had been prepared, Principal Components 

analysis was applied across all five bands to each sub-image followed by an ISO_class 

unsupervised classification utilising principal components 1 to 5; 

A summary of the steps involved in the unsupervised classification procedure is shown in Figure 

7 

Shadow mask 
(derived from

supervised classification)

Raw multi-band
layers for mosaic
(0.5m pixel size)

NDVI mask 
of raw image

(using threshold value to
separate two key groups)

Image I
Bare ground 

and annual grasses

Image II
Trees, shrubs and
perennial grasses

Principal component
Analysis image 
(PC bands 1-5)

Principal component
Analysis image 
(PC bands 1-5)

Image calibrated 
to ground reflectance

(linear transformed)

Interpretation
 of image NDVI against 

ground NDVI measurments
for key features

 Unsupervised 
classification 

(ISOclass module)

 Unsupervised 
classification 

(ISOclass module)

Calculation of NDVI
for calibrated image

 

Figure 9. Steps used in unsupervised classification procedure. 
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3.2.3 Assessment of Canopy Cover Estimates 

A linear regression was conducted on percentage canopy cover derived from supervised 

classification against corresponding spherical densiometer ground measurements using 

Minitab™ statistical software.   The classified image was sub-sampled along each transect line to 

correspond to ground sample points by centrally placing 20 m diameter digitised sample regions 

at 10m intervals along each transect, totalling 65 samples.   

3.2.4 Comparison between Disturbed Areas and Analogue sites 

The classified image for the El Sherana site was interrogated to compare the disturbed area with 

surrounding ‘pre-disturbance’ environment.  This was done by sub-sampling two regions: 1)  the 

airstrip proper;  and 2)  analogue sites selected from ‘undisturbed’ regions adjacent to the 

airstrip.  Proportional cover of over all map classes was calculated for both these regions and 

compared. 

It was assumed that vegetation communities of analogue sites were representative of a ‘natural’ 

disturbance history.  In this sense, it was tacit that vegetation had reached equilibrium with 

natural environmental variation, typical geology and topo-climatic patterns of the area.   

3.2.5 Assessment of Vegetation Change at Guratba 

An evaluation of vegetation change at Guratba, since exploration activities terminated in 1981, 

was conducted.  The two base images used were a 1:7500 aerial photo mosaic taken on June 27 

1990 and the current MSV imagery taken on 26 May 2000.  Classified maps were derived from 

each image and co-registered to each other.  An additive overlay was then applied between both 

class maps to detect change. The steps involved in this procedure are summarised in Figure 8. 



 

40 

 

 

 

 

 

re-register clasified 
video-mosaic
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Select 'training' sites
for key cover-types

(trees, grasses, & bare-ground)

IMAGE II:  Guratba
0.5m video-mosaic 

(acquired May 2000)

Digitise, Stitch, Orthorectify, 
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(EM Ltd.)

Image Classification
(maximum likelihood classifier)

IMAGE I:  Guratba
1:7500 aerial photograph series

(acquired 1990)

Detailed image
classification

(figure 33)

Simplify classification
to cover-type groups

(trees, grass, bare-ground)

select GCPs 
common to aerial photo

 and video-mosaic
(true colour composite)

IMAGE I
+ 

IMAGE II
('change' class overlay)

 

Figure 10. Procedure used to conduct preliminary analysis of vegetation change at 
Guratba (Coronation Hill). 
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4 RESULTS 

An index of percentage dominance, derived from sampling incidence for upper, middle and 

lower canopy woody species is shown in Table 3.  This provides an assessment of the relative 

abundance between major species at each site based on sampling effort.  

Table 3. Relative dominance of tree/shrub species for each canopy level at both sites, 
derived from the sampling incidence of species at ground truth survey points.   

Dominance factor for site1 Canopy level Tree/ shrub species 
Airstrip Guratba 

Eucalyptus latifolia/foelscheana 100 63 
E. tectifica 74 100 
E. alba 18 0 
E. miniata 7 21 
E. polycilata 4 25 
E. tintannans 0 84 
E. papuana 0 68 
E. dichromophloia 0 11 
Corymbia ptychocarpa 0 2 

Upper 

Number sampled  295 213 
Buchanania obovata 100 3 
Erythrophleum chlorostachys 39 100 
Syzigium eucalyptoides 11 0 
Terminalia ferdinandiana 7 4 
Owenia vernicosa 4 1 
Eucalyptus phoenicia 0 11 
Xanthostemon paradoxus 0 5 
E. setosa 0 4 

Middle 

Number sampled 45 174 
2Acacia holosericea 100 4 
2Calytrix exstipulata 15 34 
2Acacia sp. A 4 0 
Wrightia saligna 1 2 
Cochlospernum fraseri 1 2 
3Acacia bidwillii var. major (nov) 0 100 
Terminalia spp. 0 30 
Ficus opposita 0 6 
Pandanus spiralis 0 6 
Brachichiton spp. 0 2 
Grevillia decurrens 0 2 

Lower 

Number sampled 90 93 
1.Dominance factor was calculated for a species by dividing its total count by the maximum count recorded for a species in 
its Canopy group at the site (Upper, middle or lower) and then multiplying by 100 
2.Species almost wholly associated with disturbed regions at the site; 
3. Discreet patch with high numbers of individual plants, otherwise uncommon on site 
Numbers in italics indicate that the associated species was used in map classification for the site in question 
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4.1 Spectral Characterisation of Surface Features 

Ordination of field radiometric measurements (Figure 9) for key features indicated that there is 

significant spectral differentiation between several important features, including perennial 

grasses, annual grasses, a number of different surface soil classes and several dominant tree 

species.  However, separation is not as distinct within certain groups (e.g. trees and shrubs).   

Multivariate analysis of ordination pattern indicated that all radiometer bands contributed 

significantly to differentiation of surface types (Monte Carlo p-value <0.01 for each band).  Blue 

and green bands appearing to contribute to major separation between vegetation and non-

vegetation groups, while red and NIR bands produced most separation within vegetation types.   

Considerable spectral variation was introduced within vegetation groups by three separate fire 

episodes in the recent weeks before image acquisition.  However, in unburnt areas good spectral 

separation was apparent between several key features, in particular perennial grasses, annual 

grasses and bare-ground classes (Figures 10 to 13).  Perennial grasses burnt in the first of the 

fires exhibited rapid regeneration growth and had higher NDVI values than unburnt perennials.  

Passionfruit vine showed the highest NDVI index indicating some potential for mapping of this 

weed. 

The image resulting from NDVI calculated from video data calibrated to surface reflectance is 

shown in Figure 12.  Calibration of the image allowed image pixel values to be compared 

directly with the ground based NDVI values (Figure 11). 
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Figure 11. 2-dimendional Ordination of radiometer readings for each recorded ground-feature (using Bray and Curtis dissimilarity and Multi Dimensional Semi-
Strong Hybrid ordination technique).  Features have been separated into four broad categories of ecological significance (see legend).  Each band 
contributed significantly to ordination space (Monte Carlo simulation probabilities:  p< 0.01 for bands 1,2,3,4 respectively) with the direction of 
influence from the origin for each band represented by arrows. 
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Figure 12. Radiometric band profiles of perennial and annual grass types taken from ground-

level measurements.  ‘Burnt’ perennial grass exhibited active regrowth while 
unburnt grass was in a dormant growth state. 
Note: Error bars show Standard Error  
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Figure 13. NDVI calculated for key surface features using ground radiometer measurements.  The reference line (NDVI=0.35) indicates the threshold that was 
used to stratify between the annual-grass/bare-ground and the trees/perennial-grass groups each treated independently in unsupervised 
classification.   

Note: Error bars are standard error 
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Figure 14. NDVI map, linear transformed to emulate ground radiometer measurements, was used to separate between bare ground and annual grasses from 

other vegetation in stratified approach to unsupervised classification.  Trees (blue and white areas), perennial grasses (dark brown areas), and 
bare ground and annual grasses (yellow to light brown areas) are clearly distinguished.   
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4.1.1 Influence of Moisture on Soil Reflectance 

A significant linear correlation was produced between ground reflectance (radiometric bands 1, 

2, 3 and 4) when regressed against log10-transformed soil moisture.  This pattern was emulated in 

corresponding spectral BVs for both 0.25m and 0.5m resolution data.  However, the strength of 

correlation declined markedly as the scale was increased.  These statistical trends are 

summarised in Table 4, Figure 13 and Figure 14.   

A stepwise linear regression of individual radiometer bands and band combinations indicated 

that Band 2 produced the strongest correlation.  Other bands and band combinations did not 

contribute any further to describing the relationship between soil moisture and reflectance.  

 
 
Table 4. Summary of R-coefficients and p-values and sample size describing linear 

regression of reflectance measurements against soil moisture content. 

Data  
source Scale   Band   R  

2 p   n   

1 (450 - 520nm)  0.33   0.001   
2 (520 - 600nm)  0.71   <0.001   
3 (630 - 690nm)  0.65   <0.001   

Exotech  
radiometer   Ground  

4 (760 - 1100nm)  0.59   <0.001   

30   

1 (450 ± 10nm)  0.37   0.043   
2 (525 ± 10nm)  0.38   0.008   
3 (625 ± 10nm)  0.31   0.021   

0.25m pixel   

4 (850 ± 10nm)  0.35   0.012   

16   

1 (450 ± 10nm)  0.23   0.040   
2 (525 ± 10nm)  0.20   0.053   
3 (625 ± 10nm)  0.27   0.022   

ICU video   
  

0.5m pixel   

4 (850 ± 10nm)  0.14   0.115   

19   
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Figure 15. Linear relationships observed between reflectance and soil moisture for 
ground measurements. 
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Figure 13. (continued) Linear relationship observed between reflectance and soil 
moisture for ground readings. 
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Figure 16. Linear relationships observed between reflectance and soil moisture for video 
readings at 0.25 m resolution. 
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4.2 El Sherana Site - Image Classification and Accuracy Assessment 
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Figure 17. Aerial ortho-photo of El Sharana Airstrip, South Alligator Valley 
(acquired July 10, 1988), showing the site in the context of the 
surrounding landscape, and other nearby areas of disturbance 
(Gimbat road and related erosion). 
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Figure 18. True-colour composite MSV mosaic of airstrip area (0.5m resolution) showing location of permanent transects (blues lines). The distribution of GPS points associated with ground descriptions 

are shown as colour coded points indicating dominant features of interest at each point:  red= Acacia holosericea, Blue= eucalypt, green Buchanania obovata, light blue= grasses. 
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Gravel      _______|______________                                        
Scolded surface   __                   |                                        
Sand    _|____               |                                        
Clay    _____|_______        |                                        
Ash        ____________|________|____________________                    
Heteropogon triticeus  __                                       |                    
H. contortus  (med)  _|_ _                                    |                    
E. polycilata    ____|____                                |                    
E.latifolia/foelscheana   ________|_                               |                    
Terminalia ferdinandiana   ________ |                               |                    
E. alba    _______|_|______                         |                    
H. triticeus (burnt)   ___            |                         |                    
H. contortus  (active)  _ |            |                         |                    
H. contortus  (dense)  |_|__          |                         |                    
Heteropogon spp. (burnt)  ____|_______   |                         |                    
E. miniata   _____      |   |                         |                    
E. tectifica   ___ |      |   |                         |                    
Buchanania obovata   __|_|______|___|_________________________|___________________ 
Shaded areas   ____________________________________________________________| 

|           |           |           |           |           | 
  0.0159      0.0917      0.1675      0.2434      0.3192      0.3950 

Bray and Curtis Dissimilarity 
  

Figure 19. Classification dendogram based on mean spectral separation of classes 
derived from preliminary supervised classification procedure, before a 
number of sub-classes were merged or omitted.  Major groups are shaded 
(grey=bare-ground, annual grasses and litter; dark green = perennial 
grasses; blue= trees; dark grey= shaded areas), where A. holosericea is and 
outlier in this trend.  Dendogram produced using UPGMA of Bray and Curtis 
dissimilarity. 

Cluster analysis (Figure 17) indicated that spectral separation between classes formed three 

functional groups:  1) Bare-ground, annual grasses and litter;  2) Perennial grasses; and  3)  

trees/shrubs.  The shrub, Acacia holosericea, was an exception to this rule and fell within group 

1.  This species, which only occurred as isolated shrubs or small groves with relatively sparse 

foliage, was nevertheless resolved from the TCC background image in conjunction with 

contextual ground data, therefore allowing for training site selection.  

Accuracy assessment statistics for the final classification scheme adopted are shown in Table 5 

and a statistical summary of training site samples is provided in Table 6 
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Table 5. Confusion matrix and accuracy statistics for Airstrip supervised classification generated from cross tabulation of individual classes derived from two 

independent sets of training site data.   
GROUP Bare ground &

Annual Grasses
Perennial Grasses Trees Other

Class G S C AG HC_1 HC_2 HC_3 HT BG EA EL EM EP ET BS S

Total
pixels

%
Accuracy:
image B

Kappa
Index

Gravel (> 50%) 41837 2241 0 5972 0 0 0 7 19 18 0 0 0 0 0 1 50095 84 0.83
Sand (>50%) 14524 19584 929 7391 72 291 0 77 179 254 52 0 0 39 0 27 43419 45 0.44
Clay >50% 0 2373 4475 0 0 0 0 0 0 0 0 0 0 0 0 0 6848 65 0.65

Bare
ground &
Annual
Grasses Annual grasses 870 1085 118 145118 3713 508 262 7620 1007 0 0 0 0 124 0 0 160425 90 0.89

H. contortus _1 2 0 0 22895 69421 36960 0 14528 584 0 1401 7 0 5251 0 2060 153109 45 0.41
H. contortus  _2 0 0 0 36 24023 44593 5339 5101 3693 0 2 325 0 385 0 7744 91241 49 0.74
H. contortus  _3 0 0 0 1950 398 2175 13934 0 2989 0 0 0 0 168 0 289 21903 64 0.63
H. triticeus (>50%) 13 0 1 2764 11393 10424 0 150189 380 177 1420 0 159 3849 1 96 180866 83 0.80

Perennial
Grasses

Recently burnt grass 0 0 0 2942 3453 14143 2970 16755 88312 0 0 0 0 2869 0 1147 132591 67 0.64
E. alba 2 0 111 280 3 0 0 444 0 34530 2691 0 152 3572 0 7 41792 83 0.82
E.latifolia/foelscheana 4 1 36 457 694 4380 0 3083 1256 5247 58825 4060 3316 11429 0 328 93116 63 0.61
E. miniata 0 0 0 0 1 0 0 0 0 3259 1137 19360 1635 8557 0 0 33949 57 0.55
E. platycilata 0 0 33 0 0 282 0 13311 7332 3931 722 4462 30795 11421 0 1242 73531 42 0.40

Trees

E. tectifica 0 0 13 20 352 7684 4 3999 5560 1607 2714 21590 5563 128584 0 1534 179224 72 0.68
Bluestone road gravel 0 0 0 0 0 0 0 18 0 0 0 0 0 0 142 0 160 89 0.89Other
Shadow 1 0 0 0 82 830 24 1 2339 14 385 7008 178 6801 0 142279 159942 89 0.88

Total pixels 57253 25284 5716 189825 113605 122270 22533 215133 113650 49037 69349 56812 41798 183049 143 156754 1422211
% Accuracy: image A 73 77 78 76 61 36 62 70 78 70 85 34 74 70 99 91 Over all: 70 0.67
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Table 6. Size and replication of training site samples used in supervised classification 

at airstrip including the number of classes derived from the unsupervised 
(US) classification with a strong association to a specific field training site 
class.   

Group Field Training site # pixels # sample-
patches 

mean patch 
sample size 

(ha) 

Total area 
sampled 

(ha) 
# of ‘US’ 
classes 1

Eucalyptus tectifica 103055 27 0.065 1.753 1 
Buchanania obovata 92802 4 0.395 1.579 0 
Acacia holosericea 80635 9 0.152 1.372 0 
E. latifolia/foelscheana 58522 50 0.020 0.996 3 
E. miniata 57279 7 0.139 0.974 0 
E. polycilata 53337 3 0.302 0.907 0 

Trees and 
Shrubs 

E. alba 27779 4 0.118 0.473 0 
Heteropogon triticeus 141432 14 0.172 2.406 0 
H. contortus (dense) 118096 25 0.080 2.009 0 
H. triticeus (Recently burnt/regen.) 103019 32 0.055 1.752 6 
H. contortus (medium) 92695 23 0.069 1.577 0 

Perennial 
grasses 

H. contortus (active) 19542 4 0.083 0.332 0 
Mixed annual 74133 7 0.180 1.261 1 Annual 

grasses Sorghum spp. 71512 28 0.043 1.216 2 
Gravel 38701 9 0.073 0.658 1 
Sand/gravel 25702 17 0.026 0.437 0 
Gravel/clay Scold 9322 5 0.032 0.159 0 

Bare 
ground 
 

Claypan 5070 9 0.010 0.086 1 
Recent burn (no regrown) 31939 19 0.029 0.543 2 
Ash from recent burn 599 2 0.005 0.01 1 
Shadow 150843 87 0.029 2.566 6 

Other 

Logs 6933 3 0.039 0.118 0 
# of US classes assigned from soil mask 4 
# of US classes assigned from vegetation 
mask 

18 

Total US classes assigned 22 
  

1A US class was seen as having a ‘strong’ association with a particular training site class when 80-100% of all pixels in a 
specific training sample corresponded with the US class 
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Figure 20. El Sharana site.  Map classes derived from final supervised classification of MSV data (0.5m resolution), after training site classes, shown to have poor classification accuracy in 

preliminary analysis, were either removed or merged.   
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Figure 21. Portion of the classified 0.5m mosaic of the Airstrip showing location of transect 1 (blue line) and 

shaded region where 0.25m resolution imagery was also captured.   
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Figure 22. True-colour composite high-resolution (0.25m) mosaic of airstrip at transect 1.   

Note: ‘white’ areas within  shade patches indicate zones where BV=0 for at least one band.  
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Figure 23. Supervised classification of 0.25m resolution data from transect 1.  The same area, classified 

from 0.5m resolution data, is shown in Figure 19. 
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Figure 24. Portion of classified 0.5m mosaic showing shaded region where 0.25m resolution imagery 
was sampled at transect 3. 
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Figure 25. True-colour composite high-resolution (0.25m) mosaic of airstrip at transect 3 showing areas of 
active rill erosion (orange arrows), and embankments formed by grader-works, now associated 
with grasses (blue arrows).  Image blurring is evident in the middle frame of the mosaic.   

Note:  Areas of ‘grey’ associated with shade indicate where BV=0 for at least one of the three bands used in the TCC. 
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Figure 26. Supervised classification of high-resolution (0.25m) data for transect 3. 
Note:  Areas of ‘grey’ associated with shade indicate unclassified areas, where BV=0 for at least one of the 
three bands used in the TCC. 
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Figure 27. Airstrip site false colour composite of principal components 1,2 and 3.  (PC1 =Red PC2=Blue PC3=Green).  The PC-calculation 

was stratified such that the bare-ground region and the vegetation region were calculated independently, before being merging 
into this image.   
Note:  White areas (shade) were omitted from calculation as BV=0. 
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Figure 28. Relationships between classes produced using unsupervised procedure and training site region samples used in supervised classification procedure: A) 

Classes strongly associated (80-100%) with training region samples.  Yellow areas were associated with sorghum annual grass (dense areas), red areas 
with Eucalyptus latifolia, and blue areas with E. tectifica.  B) Classes strongly disassociated (0%) with training region samples used in supervised 
classification procedure (different classes range from red, orange, light green, and blue.  All classes are plotted over a TCC mosaic image.   

A) 

B) 
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 Plate 4. Heteropogon contortus and H. triticeus were the dominant perennial grasses 

at both sites.  This picture shows un-burnt H. contortus (left) and regeneration 
(right) after a recent fire (1.5wks). 

 

 
Plate 5. Sorghum was the dominant annual grass at both sites.  This ‘annual’ grass 

class created for the Airstrip site represents a broad category ranging from 
sparse to the dense annual grass shown in this photo. 
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Plate 6. Gravel, sand and clay were deposited in different regions, disproportionately, 

relative to runoff/erosive characteristics created by micro-topographical 
features along the gentle slope of the airstrip.  Sandy areas formed a 
characteristic zone representing erosion deposits transitional between lag 
gravel on steeper runoff areas and clay in poorly drained, seasonally 
waterlogged areas. 

 

 

Plate 7. Lateritic clay/silt was typically deposited in poorly drained depressions at 
airstrip.   These areas were used as training sites from which the ‘clay/silt 
class were formed in the supervised classification procedure. 
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Plate 8. Scolded surfaces with high clay content were also grouped into the same 
class by the unsupervised procedure using ‘claypan’ training sites in Plate 6. 

 

 
 
Plate 9. Areas of loose lag gravel were a common feature of runoff area surfaces with 

little vegetation. 
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Plate 10. Acacia holosericea was a common shrub colonising disturbed areas of the 

airstrip and erosion gullies, virtually absent in surrounding woodland. 
 

 

 
Plate 11. Mixed open woodland dominated by Eucalyptus latifolia, E. tectifica and E. 

alba was typical of surrounding ‘undisturbed’ environment at the El Sherana 
site. 



 

70 

4.2.1 Comparison of disturbed and non-disturbed sites (El Sherana airstrip) 

There were marked differences in vegetation cover and the proportion of bare-ground between 

the disturbed site and surrounding undisturbed areas (Figure 27).  A significant proportion of the 

airstrip was entirely devoid of vegetation (20%) and a further 42% of the area was dominated by 

annual grasses.  Furthermore, many tree species, occurring on analogue sites appeared to be 

virtually absent on the airstrip (Figure 28).  The proportion of stable vegetation types for 

analogue sites was far greater and exhibited less than 1% bare-ground and only 3% annual 

grasses.   

 

 

A)  Airstrip

Bare ground
20%

Annual 
grasses

42%

perennial 
grasses

29% Burnt 
grassland

4%

trees
3%

shadow
2%

Other
9%

B) Analogue site

Bare ground
0%

Annual 
grasses

3%

perennial 
grasses

40%

Burnt 
grassland

7%

trees
37%

shadow
13%

Other
1%

 
Figure 29. Vegetation and soil cover characteristics compared proportionally between 

the airstrip (A) and the ‘undisturbed’ analogue site (B).  Area sampled was 
4.2 and 10.6 hectares for the Airstrip and analogue sites, respectively. 
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Figure 30. Relative proportion of specific cover classes (within the Tree, Grass and 
bare-ground categories described in Figure 27 for El Sherana Airstrip and 
analogue site. 
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4.2.2 Canopy Cover Assessment 

Canopy cover estimates correlated strongly with ground measurements (R2=0.75) as shown in 

Figure 29.  The map classification tended to over-estimate canopy cover.  This is to be expected, 

because it is likely that smaller trees and shrubs (not measured as canopy on the ground) were 

classified as trees and, as such, were included in the estimate of canopy area.  Application of a 

filter to remove discreet ‘tree’ pixel clusters below a certain area (not expected to be included as 

canopy) may further strengthen this correlation. 
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Figure 31. Relationship between percentage canopy cover measured from the ground 
and tree cover map classes in Figure 18  (n=65). 
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4.3 Guratba Site - Image Classification and Accuracy Assessment 
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Figure 32. Guratba site.  Aerial ortho-photograph mosaic, June 27, 1990.  Shaded region area indicates the video coverage mosaicked from May 2000 at a resolution of 0.5m.   
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Figure 33. Guratba site true-colour composite video mosaic (May 26, 2000) clearly showing areas of burnt and un-burnt savannah woodland, and bare-ground regions.  Scorched tree-crowns, 
evident in the burnt area in the eastern half, misclassified as areas of bare ground in the supervised classification. 
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Figure 34. Guratba site, May 2000.  False colour composite of principal components 1, 2, and 3 generated from all 5 
video bands. 
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Table 7. Confusion matrix and accuracy statistics for supervised classification generated for the Guratba site from cross tabulation of individual classes 

derived from two independent sets of training site data. 

 Bare-ground and 
Annuals 

Perennial 
Grasses Trees and shrubs Other GROUP 

Class WG RG S. PV BG H EPh ET EM EPa EP ET ETi ErC SC S W 
Total 
pixels 

% Accuracy 
(image B) 

Kappa 
Index 

White' gravel 7151 632 18 0 0 0 0 0 0 0 0 0 0 0 296 0 0 8097 88 0.88 
'Red' Gravel 253 53720 6261 564 2002 0 0 0 0 0 0 0 0 0 4134 0 0 66934 80 0.79 
Sorghum spp. 196 6251 56654 0 200 0 0 19 0 0 0 0 4385 0 3647 0 0 71352 79 0.78 

Bare-ground & 
Annuals 

Pasiflora Vine 0 0 231 5446 0 0 804 112 15 226 659 0 0 168 308 0 0 7969 68 0.67 
Burnt grassland (mixed) 0 12 214 0 448810 2 0 0 121 0 0 3528 18126 0 4455 14496 184 489948 92 0.88 Perennial 

Grasses Heteropogon spp. 0 0 0 141 14186 71652 136 0 2 14 0 23631 9571 2963 518 0 14 122828 58 0.56 
Eucalyptus phoenicia 0 0 0 645 3226 0 34804 204 2203 1472 65 7208 21614 284 3063 0 0 74788 47 0.45 
E.latifolia/foelscheana 0 0 51 352 0 444 942 3064 9 235 1798 30 9045 10 392 0 0 16372 19 0.19 
E. miniata 0 0 0 1625 5190 0 820 0 11273 3853 172 2279 678 343 1563 300 0 28096 40 0.40 
E. papuana 0 0 0 112 0 0 1353 347 175 11695 1736 0 2433 1774 358 2 0 19985 59 0.58 
E. polycilata 0 0 0 409 0 465 82 6 489 3201 19806 621 2076 8710 90 2740 0 38695 51 0.50 
E. tectifica 0 0 0 1389 29718 8859 4 0 402 1582 3348 116178 14554 6055 34 50772 4749 237644 49 0.43 
E. tintannans 0 1361 25867 6876 83300 5074 8499 65 1849 104 1056 8987 166790 1190 5870 5853 0 322741 52 0.43 
Erythrophleum 
chlorostachys 

0 0 0 20144 3659 2205 0 0 544 1964 3117 31485 5782 64008 7445 3562 15 143930 45 0.42 

Trees and 
shrubs 

Scorched tree crowns 8 13791 13693 17527 44390 1 580 47 510 174 2 61 41269 978 183034 12144 0 328209 56 0.51 
Shadow                    0 0 0 0 444 0 0 0 5 1 0 0 3 4 22 21600 0 22079 98 0.98 Other Water 0 0 0 0 2994 1183 0 0 0 0 0 4722 33 44 88 1886 13157 24107 55 0.54 

 Total pixels 7608 75767 102989 55230 638119 89885 48024 3864 17597 24521 31759 198730 296359 86531 215317 113355 18119 2023774   
% Accuracy (image A) 94 71 55 10 70 80 73 79 64 48 62 59 56 74 85 19 73 Over all: 63 0.57  
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Figure 35. Detailed class map derived from supervised classification approach at Guratba area 
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Figure 36. Simplified classification of image used in change analysis . 
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Figure 37. Supervised classification of 1981 aerial photograph (Figure 29) used in change analysis. 
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4.3.1 Change Analysis between 1981 Aerial Photo and Current Video Imagery 
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Figure 38. ‘Change’ analysis classes resulting from additive overlay of class layers derived 
from May 2000 video mosaic and 1981 aerial photo. 
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Figure 39. Area summary (ha) of change analysis categories produced from overlay 
between class layers from 1990 and May 2000 for Guratba.  An area of video 
imagery south east of the Hill, known to have a high level of misclassification 
due to burning, was masked from this assessment.    
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5 DISCUSSION 

Mine-site rehabilitation may be conceptualised as a number of ecologically relevant phases 

towards restoration of a ‘natural’ vegetation community.  In the initial phase, a foundation for 

plant colonisation is constructed, sometimes referred to as the ‘geotechnical’ stage.  In this stage 

the constructed landform typically consists of a fine-grained series of ‘banks’ and ‘troughs’ made 

by deep ripping, forming a series of micro-catchments exerting strong resource control 

(Tongway & Hindley 2000).   

Latter phases (or aims) of the rehabilitation process are:  1)  stabilisation and abatement of 

erosion by initial development of vegetation cover; 2)  sustainability, through establishment of a 

framework for biological resource control; and ultimately 3)  achievement of biological and 

functional diversity in comparison with the undisturbed environment.   

Evaluation of rehabilitation status depends upon applying indicators that gauge the progression 

of rehabilitation in the context of each phase, above.  In this sense indicators relevant to each 

phase, referred to as Ecosystem Function Analysis, are based on: 1) the relative importance of 

different landscape elements exerting spatial resource control, or LFA; 2) vegetation 

development and; 3) habitat complexity. 

According to Tongway et al. (1997; p9), a scientific indicator is “a single piece of information 

which acts as a surrogate for an environmental variable to serve a particular use or interest”.  

In this respect an indicator should be: 

• Informative; 

• Sensitive and unambiguous; 

• Quick, simple and inexpensive; 

• Consistent over time; 

• Convenient; 

• Widely applicable; 

• Capable of providing a predictive understanding of ecosystems; and be  

• Teachable and transferable between operators. 

For the sake of brevity, it will not be possible to discuss each of these criteria in depth.  

However, the discussion that follows will attempt to evaluate the measurements made by remote 

sensing in this context, using concepts of EFA and accuracy assessment. 
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5.1 Indicators of Landscape Function  
In the very early ‘geotechnical’ phase of rehabilitation, it is considered that MSV cannot resolve 

suitable indicators for LFA assessment.  This is because the constructed system of banks and 

troughs exerting resource control are of relatively homogeneous soil type at this stage.  

Therefore, no discrimination between these elements can be expected, as they will exhibit similar 

spectral reflectance profiles.  Further, other relatively fine-grained features such as logs, 

important in resource control dynamics, also discriminated poorly using 0.5m resolution data, 

although these could be resolved spectrally from other ground features using ground radiometer 

measurements.  Potential for the higher resolution 0.25m data to resolve these fine-grained 

features could not be determined due to insufficient sample size. 

As demonstrated in this study, MSV does appear to separate between relevant landscape patches 

and inter-patches, such as perennial grasses and bare-ground classes, in the later stages of 

rehabilitation.  This is because geomorphic and biological activity has begun to modify surfaces 

in these stages.  Classification schemes, similar to those developed in this study, have proved 

useful in providing indicators for spatial modelling to predict erosion potential and landform 

stability (Post et al. 1999).  Furthermore, recent studies have demonstrated that quantitative 

indices of landscape ‘leakiness’ can be derived from classified imagery (Kinloch, Bastin & 

Tongway 2000; Bastin et al. 2001; Ludwig et al. 2001). 

Refinement of these indicators is likely by further separation between the quality within patch or 

inter-patch zones of the landscape, as developed in the classification scheme.  For example, 

several geomorphic soil classes could be resolved within inter-patch zones that separate between 

depositional, stable and erosional surfaces.  Furthermore, major vegetation types and cover 

density classified effectively.  Determining a measurable difference in quality between 

individual map-class types using the ground-based indicators developed by Tongway and 

Hindley (1995) will be necessary to confirm the utility of the classification scheme in 

distinguishing between the qualities within patch/inter-patch class types. 

The classification maps also yielded useful information with respect to the shape, pattern and 

contextual arrangement of individual patches in the landscape.  This allowed the extent of 

specific problems with respect to rehabilitation at sites to be measured.  For example, in some 

areas at the Airstrip Site embankment microtopography pattern formed by grader-workings was 

found to be unsuitable for rehabilitation.  In these areas, embankments were orientated along the 

slope instead of in the direction of the slope-contour.  This meant that no sinks or troughs were 

formed to abate the erosive forces of runoff water and allow accumulation of biological 
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resources.  Both true-colour-composite and classified images revealed the location and extent of 

these problems. In this context, the utility of this information would be enhanced when combined 

in a GIS environment with a sub-meter scale digital elevation model.   

The presence of relatively large homogeneous areas of bare-ground and sparse annual grasses 

indicated a need to establish a geotechnical foundation for resource control.  In the case of the 

‘clay’ surface class, this often indicated an area where surface drainage and water infiltration was 

poor. 

5.2 Vegetation Development Indicators 
Reflectance provided by any target (e.g. a tree) is a combination of structural variables (canopy) 

and optical properties of the leaf and surrounding soil properties (Baret 1995).  Considerable 

evidence has been presented from ground reflectance data to suggest that individual plant species 

or soil cover types displayed diagnostic spectral profiles.  High discrimination between key plant 

and soil types was also shown in classified imagery.  On the other hand, relatively small targets 

such as A. holosericea, classified to group level in the final classification (e.g. trees), were poorly 

identified to species level.  In this sense it would be beneficial to revisit sites, locate these points 

and measure the relative size of these shrubs/saplings, to determine the degree of 

misclassification.  Peripheral areas of individual tree also tended to misclassify as another tree 

species.  Development of a decision tree algorithm to reclassify peripheral areas may assist in 

improving overall classification accuracy. 

Unsupervised classification indicated regions of tree canopy that had high diagnostic value to 

species level.  However, these features were not distributed consistently among the species 

population as indicated by cross-tabulation of unsupervised classes against training site pixel 

samples.  

Some vegetation classes in the classification scheme represented broad categories, which 

nevertheless yielded useful information relating to vegetation development.  For example, the 

‘annual grass’ class formed in the supervised classification approach ranged from a mixture of 

sparse annual and bare-ground (gravel and sand) to dense annual grass (sorghum).  Unsupervised 

classification appeared to separate the dense Sorghum component from this class Figure 26b.   

Sorghum may be considered a management indicator species from a number of reasons.  In this 

case, the presence of dense annual grass is likely to indicate a transitional state towards 

colonisation of perennial grasses, as these patches were often associated with the boundaries 

between established perennial grasses and more poorly vegetated soils.  Sorghum is also often 
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associated with an environmental disturbance regime.  For example, the presence of high 

Sorghum densities can indicate a regime of frequent annual Dry season burning (Williams pers. 

com. 2000). 

5.3 Habitat Complexity Indicators 
There is certainly potential to further develop indicators of habitat complexity given that 

dominant vegetation types and LFA criteria can be accurately resolved using MSV.  In this 

context, shade potential should also be considered a basic component in developing any measure 

of habitat complexity for open savannah woodland, as shade will relate to moisture conservation 

in soil and to photosynthetic potential.  Although shade will vary with sun angle, it can be 

standardised, as long as the time of day of data acquisition is known.  Furthermore, this provides 

the potential to estimate canopy depth and tree height, provided the relief is relatively flat, or 

invariant (Campbell 1996). 

Habitat complexity indicators based on spatial variograms between map classes, such as those 

developed by Coops & Catling (1997a, 1997b) also have potential for rehabilitation monitoring 

but have not been developed further in the present study. 

5.4 Classification Accuracy  
The utility of different classes within the classification scheme for conducting EFA is implicitly 

scale-dependent with respect to the size of different features being monitored.  Superimposed 

upon this dependency are the spectral limitations of surface targets.  Together these influence 

classification accuracy. 

Classification accuracy is also influenced by the choice of classification scheme, ground data 

collection, spatial autocorrelation and sample size (Congalton 1991; Campbell 1995).  In the case 

of supervised classification, the process is dependent upon human judgement and, in effect, is 

somewhat more subjective than more mechanistic data processing routines (Campbell 1996).  

However, supervised classification is easily visualised by the analyst and can be standardised 

and repeatable when based on rigorous ground reference data. 

Classification accuracy was improved when a number of preliminary classes were removed from 

the scheme.  Most notably, the coloniser, A. holosericea, was shown not to separate well in 

classification, having a high association with bare-ground classes (Figure 17). Such poor 

classification is probably the result of a high contribution of background reflectance from bare-

ground and boundary errors caused by relatively small training sites.  Furthermore, training sites 



 

88 

for this species could only be selected from relatively small patches. This possibly led to a high 

level of mixed pixels associated with edges.  On the other hand, TCC imagery allowed the 

distribution of A. holosericea to be discerned when used in conjunction with contextual ground 

data.  

The hierarchical classification scheme adopted in this study aimed to represent ecologically 

functional units that contributed in different ways to landscape function analysis, vegetation 

development and habitat complexity.  In this context, it should be noted that the degree of 

spectral discrimination between key surface features varied (Figure 9 & 11).  Consequently, the 

accuracy of classification between these features also varied.  However the separation between 

major groups in the classification hierarchy was generally pronounced, providing separation 

between trees & shrubs, perennial grasses, annual grasses and bare-ground/annual grass/litter 

classes (Figure 15) than separation between sub-classes. 

The spectral separation between bare-ground class boundaries was not defined precisely as these 

classes (e.g. clay, sand and gravel) represented three levels in a continuum based on soil particle 

size.  However, it is useful to distinguish between these groups, since they not only indicate 

unstable erosion classes (EFA inter-patch zones), but also patterns of water flow, deposition and 

soil infiltration by water (or lack thereof).  Physical soil surface properties have also been shown 

to be useful ecological indicators for an array of different processes, such as water infiltration 

potential/water runoff potential, stability to erosion and nutrient cycling state (Tongway & 

Hindley 1995).  Improved precision between classes divisions might be achieved by exploring 

spectral unmixing analysis methods that attempt to resolve sub-pixel mixture information 

(Brown, Gunn & Lewis 1999).  

Any classification undertaken to generalise patterns of interest will have inherent sources of 

error.  It is imperative, therefore, that the monitoring system incorporates standard accuracy 

assessment procedures to validate imagery within acceptable levels of error for quality control 

and assurance. 

5.4.1 Mitigation of Potential Error Sources 

A number of sources of error are apparent in the data.  While some of these sources are 

unavoidable, others may be reduced.  Similarly, a number of preliminary technical difficulties 

were encountered that, when not recognised, may contribute to information loss and potential 

error.  These problems and some possible ways of overcoming them are summarised in Table 8. 
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It was evident that significant geometric error was introduced because of aircraft movement 

(Figure 23).  Relative to fixed-wing aircraft, helicopters are more prone to roll, pitch and yaw.  

Strong winds were encountered during the flyover time, which certainly exacerbated these 

effects.  Recent development of a gyro-based stabilisation mount for the camera array, which 

compensates for aircraft roll during flight, will substantially reduce this error source.  A need to 

avoid unpredictable weather by exercising a degree of flexibility in the mobilisation/standby 

time for image acquisition is implicit.   

The windy conditions presented a worst-case scenario for the assessment MSV image quality.  

Although there are a number of frames where noticeable blurring of the imagery is apparent, the 

majority of frames appear crisp and indeed provide suitable clarity.  The windy conditions, 

however, also caused the flight line of the helicopter for each flight run to be erratic, creating an 

uneven mosaic of the scene.  Originally, it had been planned to obtain 60% overlap between 

frames to reduce geometric errors.  This was not achieved, however.   
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Table 8. Problems encountered contributing to error or information loss in the 
acquisition of video data with possible solutions and the operational 
implications of these ‘solutions’. 

Problem encountered Solution Operational Implications  

Radiometric calibration of 
Guratba image not possible 
due to large variation between 
Airstrip and Guratba in 
reflectance properties  

• Deploy calibration targets at 
individual sites for real time 
measurements and if 
necessary deploy multiple 
sets of targets to over the full 
range of relief displacement.  

• More field resources required:  
Deployment of field personnel 
with appropriate equipment 
(radiometer) at each site to 
take real time measurements 
may not be possible. 

 

Geometric error apparent in 
the co-registration of multiple 
bands in the frame stacking 
procedure 

• Deploy more GCPs 

• Ensure artificial GCPs are 
detectable across the full 
array of bands to facilitate 
selection of co registration 
points 

• Use multiple GCPs in 
conjunction with appropriate 
geometric correction 
algorithm in co-registration 
stacking procedure 

• More time involved to position 
more targets over a larger 
area 

• Use reflective aluminium 
surface of builders sisalation 
material 

• Labour intensive.  Requires to 
be automated 

Geo-registration accuracy of 
image poor at extremities of 
mosaic coverage at Guratba 

• Deploy a larger network of 
GCPs to compensate for high 
relief displacement 

• Extra time involved to position 
more targets over a larger 
area 

Information loss due to 
saturation (BV= 255), or no 
detection (BV=0) for certain 
bands over range of target 
reflectance conditions 

• Develop means to check and 
adjust gain setting for 
individual bands. 

• Consider the need to use 
neutral density filters for 
certain bands to assist in 
adjusting to appropriate 
sensitivity range 

• Need to develop procedure to 
conduct such adjustments 
efficiently  

 

 

 

Misalignment between overlaying band layers on the image was another source of geometric 

error apparent in some image frames.  This can cause error in multivariate classification 

procedures utilising multiple bands.  Misclassification derived from misalignment error may be 

revealed at the boundaries between spectrally different features, as it will result in an 

inappropriate band profile between adjacent features, thereby leading to mis-classification.  This 

was detected in one of the frames using the unsupervised classification procedure of the airstrip 

mosaic, where a unique class in the boundary region between trees and grasses was formed 

(Figure 28b).  This source of error may also to have contributed significantly to the poor 

classification of some relatively small features such as A. holosericea. 
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Misalignment error can arise as a result slight optical differences between individual cameras, or 

through human error in the selection of co-registration points for stacking corresponding band 

frames.  Such errors may be reduced by employing two strategies: 

• Using more GCPs in the cross-registration stacking procedure between individual 
bands for a particular frame; 

• Applying a geometric algorithm using multiple GCPs, such as a cubic convolution, to 
correct geometric distortions between band-frames against a base frame instead of a 
simple x/y shift procedure to one control point; 

The pre-processing stacking method used a simple x-y shift correction to single GCP cross-

referenced to a base image frame.  Registration between band-frames could have been improved 

if a larger sample of GCPs were selected then an appropriate geometric correction algorithm 

applied.  As part of quality control of this process, residual errors for each control point and the 

total ‘root mean square’ error could be recorded routinely for each registered frame (Wilson 

pers. com. 2001).  However, selection of an appropriate number of GCPs can be complicated by 

lack of identifiable GCPs between bands.  Distribution of more artificial GCP targets would have 

assisted in this respect.  Furthermore, target discrimination over the full band-range would have 

been improved if artificial targets had been placed with the aluminium surface facing upwards, 

as it was found that the blue surface of the builders sisalation material did not discriminate well 

in the blue region (450nm).   

Together, sources of error due to locational and image blur problems reduce the actual area of 

the ground resolution provided by remote sensing, where it has been suggested that actual spatial 

resolution in data can be as much as 4-6 times greater than the ground resolution element, the 

pixel (Curran & Williamson 1986).  This creates difficulties in selecting training site samples for 

supervised classification, as the degree of spectral mixing at the boundaries between different 

features is increased (Curran & Williamson 1986).  A representative sample of pixels from 

relatively small targets, such as A. holosericea shrubs, was not possible as is supported by the 

low per category KIA value for this class (0.14).  Reduction of these sources of geometric error 

will certainly improve classification accuracy of relatively small targets. 

Classification of small features was improved by using finer grain data (0.25m) data.   For 

example, while A. holosericea was misclassified as gravel, sand or grass classes at 0.5m 

resolution, the shrubs appeared to classify more often as either A. holosericea or a tree class (E. 

tectifica) as shown by comparison of Figure 23 with Figure 21.   
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5.4.2 Fire 

Fire has been identified as a major factor impeding effective collection of EFA monitoring 

indicators using RS.  Image classification accuracy is reduced by adding another dimension of 

spatial heterogeneity elicited by variable spectral responses of plants to fire (Plate 4 and Figure 

31).  For example, eucalypts are sometimes prompted to drop their leaves, as is evidenced by the 

‘scorched’ tree crowns at Guratba (Figure 31).  .   

The process of mine-site rehabilitation may occur over a time frame of 50 years or more.  

Restricting MSV image collection to in the early Dry Season period is considered a necessary 

requirement to avoid problems caused by fire and other sources of seasonal variation.  Given a 

sampling frequency of every 3-5 years and the considerable investment of resources in image 

collection, it would seem possible to plan for such contingencies.   

Reiterating, operational monitoring requires good communication with land managers and 

subsequent cooperation from all parties.  Flexibility in the timing of funds allocation for such 

monitoring projects can also be a useful management option.  For instance, when unfavourable 

conditions arise, such as fire, the possibility of postponing data collection to the following year 

may need to be considered. 
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6 CONCLUSION AND RECOMMENDATIONS  

The protocols developed above provide a basis for rehabilitation monitoring and assessment of 

mine-sites in the SAV using high-resolution MSV.  The HR data provided synoptic and 

quantitative indicators useful in ecological assessment.  Thematic maps produced by the image 

classification also presented information in a form that can readily be conveyed to land 

managers.   

It is considered that, the relatively small area encompassed by mine-sites allow for a repeatable 

supervised classification scheme useful in monitoring. In general small areas have lower spatial 

heterogeneity and are therefore easily ground-truthed.  While the initial field sampling to 

develop a benchmark can be time-consuming and expensive, field survey intensity is reduced 

once a permanent ground-referenced system and desired map classes are established for a region.   

The classification scheme developed was sufficiently accurate to distinguish among key 

vegetation communities and bare-ground types useful in EFA.  Comparison between disturbed 

sites and undisturbed ‘analogue’ sites highlighted substantial differences in vegetation 

communities.  Not only was overall vegetation density sparser, species dominance also differed.  

Some areas remain devoid of vegetation.  Classes accurately distinguished within these areas 

were regions of active erosion, deposition, or poorly drained areas. At the airstrip, embankments 

formed by deep ripping could also be visualised from TCC imagery, as they were often 

associated with vegetation.  In many cases the arrangement of embankments was found to be 

inappropriate, as the rip-lines were orientated in the down-slope direction rather than with the 

slope contour, therefore not providing any protection for the from water runoff, and in some 

cases it can be considered an erosion. 

The utility of the technique for providing repeatable, accurate measurements is very much 

dependent on adherence to the protocols outlined in this study.     In particular the condition that 

imagery and ground data be collected concurrently and at a suitable time is important for 

maintenance of data quality.   This has implications for planning both multidisciplinary data 

collection and the coordination of field operations.  In retrospect, further improvements to data 

quality and accuracy may also be achieved by implementing a number of minor changes to the 
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data collection, pre-processing, and analysis procedures.  These recommendations are 

summarised in Appendix II. 

Many steps are involved in the pre-processing analysis and delivery of information derived from 

remote sensing.  This can be a resource-intensive and costly exercise.  However, there is also 

considerable scope to improve the efficiency and cost-effectiveness of these steps.  

Technological advancement in the area of image data acquisition and analysis is developing 

rapidly.  Therefore it is highly possible that improvements in image collection and automated 

processing techniques will facilitate the provision of cost-effective information (Hick et al. 1994; 

Phinn, Stow & Zedler 1996).     

With current technology, processing is more efficient using conventional RBG digital 

photography.  Such a system, with the addition of a NIR band to expand the spectral range 

required to distinguish between vegetation classes would only need two relatively low-cost 

camera units; not the five used in this study.  This would reduce processing involved in band 

stacking while also increasing the spatial precision between band layers.  

High-resolution MSV (or conventional HR photography) can play an integral role for the 

monitoring and assessment of mine-site rehabilitation.  The information gathered forms a basis 

for evaluation of the success of the proposed revegetation program for abandoned mine sites in 

the SAV.  It provided a quantitative and synoptic analysis of the status of vegetation and 

rehabilitation at mine sites in this study, and demonstrated the potential for monitoring using 

multi-temporal change analysis. Finer scale indicators measured on the ground could be 

translated to larger scale relationships detected by MSV.   In conclusion, an integrated mapping 

approach, using high-resolution aerial video (or photography) in combination with contextual 

ground data, can meet the requirements for monitoring revegetation.   
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APPENDIX I:  IMAGE CALIBRATION  
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Figure 40. Linear relationships for each band between calibration target ground 
reflectance readings and equivalent video band (pixel brightness values) for 
0.5m resolution image data collected from El Sherana Airstrip site.  Pixel 
sample sizes for each target (light to very dark) were 35, 25, 29 and 27 
respectively.  Error bars are SE. 
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Figure 38. (continued)  Linear relationships for each band between calibration targets 
ground reflectance readings and equivalent video band (pixel brightness 
values) for 0.5m resolution image data collected from El Sherana Airstrip site.  
Pixel sample sizes for each target (light to very dark) were 35, 25, 29 and 27 
respectively.  Error bars are SE.   
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APPENDIX II:  RECOMEDNDATIONS FOR PROTOCOL REFINMENT  

Recommendation 1. To maximise  target discrimination, image data collection should be 

undertaken as early as possible in the Dry season and, where burning of sites 

before imagery is collected should be avoided. 

Recommendation 2.     Deployment of  further artificial GCPs for co-registration purposes 

would have been beneficial, particularly at the Guratba site, where geometric 

distortions was exacerbated by the high relief in the area.  This will be especially 

important for  minimising error created from multi-temporal change analysis 

Recommendation 3. A more complete collection of Ecosystem Function Analysis data for 

transect-boundary analysis, with associated measurement of soil surface condition 

indicators, is necessary.  Collection of data at this scale in tandem with high-

resolution RS data collection is considered a priority for future research towards 

refining the monitoring protocol developed here.  This would allow a more 

comprehensive assessment of the precision and accuracy of specific map classes as 

indicators in EFA.  In this regard, the monitoring framework in this study will 

certainly facilitate any future research efforts at the study site.  

Recommendation 4. A comprehensive spectral library of key vegetation and ground types was 

not available in this study.  Limited time also reduced the ability to collect 

representative measurements of ground reflectance for key vegetation and surface 

types.  Future monitoring would therefore benefit from a study dedicated to 

determining the spectrally diagnostic regions between key vegetation types using 

include sensitive field spectrometry.  This knowledge could then be applied to 

optimise remote sensing multispectral configurations for species discrimination 

using narrow-band filters.  In the Alligator Rivers Region, such a study need only 

be conducted over the first few months of the Dry season to obtain maximum 

benefit, as the window of opportunity for mapping to conduct EFA criteria using 

RS appears to be in the early Dry season.   

Recommendation 5. It is recommended that field validation of classification scheme be 

undertaken to confirm classification against post-classified data (a method not 
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pursued in this study due to lack of time).  This will assist in further refinement 

and validation of the classification scheme. 
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