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Key Knowledge NeedsKey Knowledge Needs

Managing ecosystems in the face of uncertaintyManaging ecosystems in the face of uncertainty

•• Uncertainty analysis of dataUncertainty analysis of data

•• Linking conceptual models with onLinking conceptual models with on--site site 
management & communicationsmanagement & communications

 

The uncertainty principle in ecosystem 
management

• Society invests heavily in research & management of natural  
systems 

• Yet world is filled with spectacular failures in fisheries, forests, food 
& biodiversity - WHY?

• Main reason – task is DIFFICULT because of uncertainty

– environmental variability

– observation error

– lack of essential knowledge

– human factor

• Worse than uncertainty itself - we tend to underestimate it

• Place too much confidence in our predictive models or none at all
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Discussion paper: ARRTC key knowledge needs 
1. Uncertainty analysis of data  

2. Linking conceptual models with on-site management &communications 

These two questions are linked under the one heading ‘Managing in the face of uncertainty’, 
introduced through the following discussion points. 

1. The Classical approach to science - testing single null-hypotheses with experiments.  

2. The New approach – testing multiple hypotheses with observations & using models to 
evaluate hypotheses. 

3. What is uncertainty and how to model it? 

4. Models for understanding, prediction and decision. 

5. How to confront models with data – the new tools. 

6. Examples – from conceptual to operational.  

• Ecological risk assessment of Ranger – downstream water quality  

• Ecological risk assessment of mimosa on Oenpelli Floodplain 

• Comparison of mining & non-mining ecological risks 

7. Communicating with models and the modelling process, including decision-making. 

1.  The Classical approach to science 
Science is a process for learning about nature in which competing ideas about how the world 
works are measured against observation (Feynman 1965). 

Our descriptions of nature are almost incomplete and our measurements involve uncertainty 
and inaccuracy. Hence, we need to use methods to assess the concordance of competing ideas 
and observations, and this is the domain of statistics. Platt (1964) describes the classical 
Scientific Method as a ‘learning tree of critical experiments involving strong inference’. He 
identifies four steps: 

1. devise alternative hypotheses;  

2. devise experiment(s) to exclude or more of then; 

3. get unambiguous results (ie significant, reject null hypothesis); & 

4. recycle procedure with sub-hypotheses or sequential hypotheses. 

According to Platt (1964) this was the ‘first great intellectual revolution’, the second being the 
‘multiple working hypotheses’ (see below). His views are an extension of Karl Popper’s 
views that revolutionized science in the 20th Century by arguing that hypotheses cannot be 
proved, only disproved. The essence of Popper’s view is to challenge a hypothesis repeatedly 
with critical experiments. If it stands up to the assault it is still not validated but acquires a 
degree of respect (& in practice is treated as if were true). Coinciding with Poppers views 
were the statistical works of Fischer and others who developed the field of hypothesis testing. 
In hypothesis testing we focus on a single hypothesis, the null hypothesis, and calculate the 
probability that the data would have been observed if the null hypothesis were true. If p is 
small enough then we reject it (p<0.05 by convention). However, to complete the calculation, 
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we must also compute the statistical power associated with the test. The power is the 
probability that if the null hypothesis was actually false, and we were given the same data, we 
would actually reject it (~ Type I & II errors). Key elements of the Classical approach are: 

1. confrontation between a single hypothesis & data 

2. central idea of a critical experiment 

3. falsification as the only ‘truth’ 

Popper basically provided the philosophy and Fisher et al the statistical tools. The most rapid 
progress in science is those fields in which such experiments are routine (eg glass house 
agricultural experiemnts, medicine trials, molecular genetics).  

2.  A new approach for ecology – testing multiple hypotheses 
with observations and using models to evaluate hypotheses 
Ecology is dominated by studies where clear experiments and ‘hard data’ are rare. At best the 
classical view is narrow and does not fit many ecological situations; at worst it’s dangerous 
(eg you can accept an experiment as true even though it has low power). For example, how do 
we manage natural systems such as Magela with a high degree of certainty, over a 30 year 
time span, given that there is no possibility for experimental manipulation, none for 
replication, the system is subject to envirommental variability and has cross-scalar 
components (hydro geomorphic scales varying in hours-days-weeks & ecological scales in 
seasons-years-decades). The following attributes of ecological systems in general make 
experimentation difficult or impossible: 

1. long time scales (seasons, years, decades); 

2. poor replication (to none); and 

3. lack of ‘true’ controls. 

The lack of precise knowledge about natural system processes for the Magela and associated 
uncertainties is probably the main reason for embedding the Precautionary Principle as a 
‘bottom line’ in all levels of water quality management at Ranger.  

Nevertheless, with modelling, we could design an ‘experimental tree’ for many hypotheses 
and use observations rather than experiments to differentiate between them. The geologist 
T.C. Chamberlain apparently first introduced the concept of testing multiple hypotheses that 
was published at the end of last century. Ecology is considered more an earth science than a 
biological science because the fields are very similar. With both, experiments are difficult to 
perform, so by necessity we rely on observation, inference, good thinking and models to 
guide our understanding. 

It’s important to note that models can never be ‘validated’; alternative models are simply 
options with ‘varying degrees of belief’. If one model clearly fits the existing data and has 
proven ability to explain new data, then we have a ‘high degree of belief’. There can never be 
a ‘correct’ model, only a ‘best’ model that is more consistent with data among several 
competitors. To choose the ‘best’ model we need new analytical tools where we confront 
models (or concepts/ideas) with data. That is, we determine which model is more consistent 
with the data. The validation of a model is not that it’s ‘true’ but that it has form of utility. 
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If we allow that either Model M1 & M2 is true, we can associate probabilities with the two 
models given the data. We refer to this as the ‘probability of the model’ or the ‘degree of 
belief in the model’. How do we do this? There are three basic steps: 

1. characterise the available data (maps, graphs, spatial & temporal patterns, processes); 

2. convert pictorial or verbal models into a mathematical description (ie some kind of 
mathematical model so that data can be compared to model predictions); and 

3. confront the model with the data by comparing predicted and observed results. 

When we get to Step 3 there are three broad approaches for this confrontation (& see below 
for details). 

1.  Classical hypothesis testing: we confront each model separately with the data 
Ho: Model M1 is true 

Ha: Some other model is true (M2 ..... Mk). 

Using a mathematical description of the models we construct a ‘p value’ for the hypothesis 
that M1 is true. We repeat the process with M2 and so on for k alternative models. However, 
other than collecting more data and more alternative models, there is no guidance about how 
we should view the accumulated models. 

2.  Likelihood approach: we use the data to arbitrate between the models 
That is, we ask ‘how likely are the data given the model’. What is the chance, or likelihood, 
that the model is the appropriate description of the world given the data (ie turning this 
question on its head we compare the likelihoods of the two models given the data)? 

3.  Bayesian approach: we may have other information that allows us to judge, a priori, 
which model is more likely to be true 
Such information can be summarised in a ‘prior probability that M1 is true’. The Reverend 
Thomas Bayes invented the theory, which was introduced by Sir Harold Jeffereys (1948) as 
‘inverse probability’ 200 years later. It’s particularly useful where studies cannot be replicated 
(eg assessment of the risk & safety of particular environmental settings in which ‘expert 
opinion’ is sought). 

3.  What is uncertainty and how to model it? 
Soulé (1997) identified three key issues for conservation: (1) the effects of various chance 
events (on species, populations, communities & ecosystems); (2) the time frame used in 
planning; and (3) the degree of security sought. The first involves a scientific solution and, in 
contrast, the last two involve society value judgements (ie economic, social, cultural & 
political dimensions). Not all variation in the natural world is due to chance events, much is 
due to deterministic (cause-effect) relationships. There is little difference between purely 
random events and results of processes that are little understood; both remain unpredictable. 
A process in which a variable outcome is random or uncertain is a stochastic process. 
Stochasticity is variability in part due to chance or random events and this is what we mean 
by uncertainty. Gillman (1997) states that, in a deterministic world, everything is predictable. 
However, no ecosystem is purely deterministic because of unexpected or unpredictable events 
that may be entirely random (which he calls stochastic events). But randomness depends also 
on the time-scale used. For example, it is difficult to predict the probability of storms from 
day to day, but we are more certain from month to month. So an unpredictable (& effectively 
random) event at one time-scale may be predictable (& effectively deterministic) at another 
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time scale. And similarly for different spatial scales. Additionally, add to this the inaccuracies 
of our observations or samples of nature. 

3.1  Probability and probability models 
Hence, data we encounter in ecology may encompass different kinds of randomness. Many 
ecological models simply describe the average value of a parameter, but when we compare 
models to data we need methods for determining the probability of individual observations 
given a specific model and mean value for the parameter. This means that we need to describe 
the randomness in the data. When we build a model we need some way to quantify the 
probability distribution of the data. For example, we regularly use the familiar normal or 
Gaussian distribution (‘bell’ shaped curve) in statistical Sums of Squares (SS) analysis of 
data. However, most distributions in nature are not normal. There is a range of useful 
probability distributions suitable for descriptions of ecological data depending whether or not 
such data are discrete or continuous (eg binomial, negative binomial, geometric, Poisson). 
Monte Carlo simulation can be used to generate data and test models. In probability theory we 
are interested in the occurrence of ‘events’ that can be thought of as ‘outcomes’ of 
experiments. Hence, the probability of an event A is denoted by: 

Pr {A} = probability that event A occurs 

We can visualise probability using Venn Diagrams. 
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where S denotes all possible outcomes. A smaller collection of outcomes, A, has probability 
defined in some way as the ‘area’ of A divided by the area of S. Hence,  

Pr {A} = probability that event A occurs = (area of A)/(area of S) 

Continuing with this visualisation, we see that the probability that one of two events A or B 
occurring is: 

Pr {A or B} = Pr{A} + Pr{B} – Pr{A and B}   

That is, the AB interaction term must be accounted for (deducted). 
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3.1.1  Conditional Probability 
If event A occurred what is probability that event B occurred given knowledge about A? This 
is a common question in ecology as we use models to make predictions about data, and data 
to make inferences about different models. If A occurred then the collection of all possible 
outcomes is no longer S but must be A. Hence, 

Pr {B occurred given A occurred} = (area common to A & B) / (area A) 

= Pr {B|A} = Pr {A,B} / Pr {A) 

If A & B are independent then they are interchangeable. 

3.1.2  Bayes Theorem 
The challenge in analysis (& probably all statistical science) is to determine how to use the 
information contained in data and Bayes Theorem is a very powerful method (the extreme 
LHS & RHS of formula below). 

Pr {B|A} = Pr {A,B} / Pr {A) = Pr {A|B} Pr {B} / Pr {A} 

It’s a very useful theorem when there are a number of possible but mutually exclusive 
outcomes B1, B2 ..... Bk, one of which must occur when A occurs. 

3.1.3  Embedding Stochasticity in Ecological Models: Process & observation 
uncertainties 
How can we model uncertainty? Ecological models often begin with a description of a 
process (eg spread rate of a weed, energy or mass transfer, water flow etc). These types of 
models are called ‘process’ models. Uncertainty enters into these processes because 
parameters vary in unpredictable ways in the real world. For example, the spread rate of a 
weed may vary seasonally and annually due to environmental variation such as rainfall that 
drives seed dispersal rates. This is called ‘process uncertainty’, ‘process error’ or ‘process 
noise’ (depending on the field of science). Additionally, to collect data about an ecological 
system we observe it and, hence, there will usually be uncertainty associated with the 
observations.   

So we have two models, one is the observation model and the other is the process model. We 
combine both models into a ‘full model’ of the simple system. For example, the colonisation 
of a weed can be modelled as: 

Process model:  Aweedt+1  =  Aweedt + srt + PEt    

Observation model:  Aweedobs,t  =  Aweedt + OEt     

Where Aweedt+1 is the area extent of the weed at time t+1 which is dependent on the area 
extent of the weed at previous time t, srt is the spread rate of the weed at time t, Aweedobs,t the 
observed extent of the weed at time t, OEt is the observation error and PEt is the process error.  

But before we confront models with data we need some knowledge of the probability 
distributions (pdfs – probability density functions) that might describe the various kinds of 
uncertainty. Comparison of models with bootstrap data sets lets us mimic the Bayesian 
approach (ie use Monte Carlo simulation to resample data) and is gaining popularity. 
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4.  Models for understanding, prediction and decision 

4.1  Types and uses of models 
There are different kinds of models because there are different kinds of investigations. 
Models can be classified according to many dichotomies and, as a general rule, scientists and 
institutions gravitate towards extreme paradigms. 

4.1.1  Deterministic vs stochastic 
Deterministic models have no components that are inherently uncertain; there are no 
parameters in the model that can be characterised by a probability distribution. For fixed 
starting values we always get the same result. In a ‘stochastic model’ some parameters are 
uncertain and can be characterised by probability distributions (ie instead of being a constant 
mean value it’s a variable). With stochastic models we get many different results depending 
on the actual values that the random variables take. 

4.1.2  Statistical (predictive) vs Scientific (consonant) 
Scientific models begin with a description of how the system might work (=consonant with 
nature), and proceeds from this to a set of predictions relating dependent and independent 
variables. In contrast, a statistical (empirical) model forgoes any attempt to explain why 
variables interact the way they do, and describes the relationship with the assumption that it 
extends past the measured values (eg polynomial regression models). 

4.1.3  Static vs dynamic 
Dynamic models link the response variables between one time period and the next. 

4.1.4  Quantitative (precision) vs qualitative (fuzzy) 
A quantitative model leads to a detailed numerical prediction about responses. In contrast, a 
qualitative model leads to a general description about responses. Qualitative models are used 
more broadly to describe regions in which one response is expected and regions in which 
different reponses are expected. In contrast, a quantitative model attempts to describe the 
precise location of the boundary between regions.  

4.1.5  Models for understanding, prediction & decision 
In addition to different kinds of models there are different uses of models. We may model a 
system to broadly test our understanding of it. However, models usually lead to numerical 
predictions in which case we can extract qualitative, intuitive understanding from the broad 
patterns of the numerical predictions. However, a model may be used solely for the purposes 
of prediction. Such prediction may be qualitative (system will/won’t respond to this effect), or 
quantitative (the level of response will be X). A model is most effective if it provides both 
understanding (insight) of known patterns and predictions about situations not yet 
encountered. Hence, model prediction and understanding are not mutually exclusive. 

Finally, we can use a model as part of a decision-making process. Hence, the model may 
provide a means of evaluating the potential effects of different decisions (eg management 
scenarios or treatments). This is where models have the most to offer in terms of practical 
application, but it is also where the greatest danger lies. 

4.2  Model complexity 
Ecological systems are complex; we can only observe a small proportion of all possible 
variables. Levins (1966) sums it up very well – ‘The multiplicity of models is imposed by the 
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contradictory demands of a complex, heterogenous nature and a mind that can only cope with 
a few variables at a time. Models, while essential for understanding reality, should not be 
confused with that reality itself’. Needless to say complexity is both a fascination and a 
frustration in ecology. We often ask ‘how complex should a model be’. A model can be 
intractable if too complex and, at the other extreme, it can be unrealistic and useless if too 
simple. There are other caveats: with simple models we risk leaving out important bits, and if 
models are too complex there may be insufficient information in the data to distinguish 
parameter values.  

For any model and amount of data, prediction error will decrease and then increase as 
complexity increases. That is, there is an optimal level of model complexity. There are 
quantitative methods to determine the optimum size of a model. Lishardt and Zucchini (1986) 
provide a formal framework for considering different levels of model complexity with respect 
to reliability of model predictions. Their approach distinguishes between prediction error due 
to approximation (which decreases as model complexity increases) and prediction error due to 
estimation (which increases as model complexity increases). Optimal model size has been 
found to be much less that intuition suggests. Hence, ‘wrong’ models can often perform better 
than ‘right’ models. But this generality will depend also on whether or not the models are 
used to make decisions. Simple models tend to underestimate uncertainty, which is integral to 
robust risk assessment associated with decisions. At the end of the day we may need to iterate 
between alternative models to understand their strengths and weaknesses, with the realisation 
that the most appropriate model will change from application to application. 

5.  How to confront models with data – the new tools 
There are basically three methods to confront models with data briefly outlined above. 

1. Sums of Squares 

2. Likelihood and Maximum likelihood 

3. Bayesian Goodness of Fit. 

5.1  Sums of Squares (sum of squared deviations) 
The simplest technique to confront data and has three selling points: (i) it really is simple, we 
don’t need to make assumptions about how uncertainty enters process or observation systems; 
(ii) it has a long and successful history in science, a proven winner (eg the agricultural 
revolution, advances in medicine); and (iii) modern computers allows us to make 
sophisticated and elegant SS computations. Additionally, we can conduct sensitivity analyses 
by systematically varying one parameter and searching over the others to find the values that 
minimise the SSs. But note that all SS models (GLMs) implicitly assume normally distributed 
uncertainty. 

But how do we choose from the accumulated alternative models? Use minimum SSs? 
Interrogate the model with other data sets? The problem is that we don’t often have other data 
sets. We can use the Bootstrap method to resample, which is getting closer to the 
Bayesian/Lakatosian approach (ie confrontation of multiple hypotheses with data as the 
arbitrator). However, the choice of ‘best’ model implies that in some way we reject others and 
select the ‘best’ one. In contrast, the Bayesian approach allows us to assign relative degrees of 
‘belief’ to competing models. 
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5.2  Likelihood and Maximum Likelihood 
The SS methods can be used to find the best fit of a model under minimal assumptions of 
uncertainty. However, there are many cases in which the ‘form’ of the probability 
distributions of the uncertain terms can be justified. For example, if the deviations of the data 
from average closely follow a log normal distribution then it makes sense to assume that the 
sources of uncertainty are also log normally distributed. In such cases we can go beyond the 
SS and use Likelihood methods. Such methods allow us to calculate confidence bounds on 
parameters (something the SS doesn’t allow), and to test hypotheses in the traditional manner. 
In addition, Likelihood forms the foundation of Bayesian analysis. We use the probability 
distributions to characterise uncertainty in the model to: (i) find parameters of a given model 
that provide the best fit to the data (called Maximum Likelihood Estimation); (ii) compare 
alternative hypotheses (using the Likelihood Ratio test); and (iii) calculate confidence bounds. 

Additionally, the results of statistical tests depend not only on what variation is in the data, 
but also on how we believe uncertainty enters it. For example, in standard linear regression 
analysis we assume no observational uncertainty (Y), just process uncertainty (X). But when 
X is measured imprecisely it’s impossible to estimate variances for both observation and 
process simultaneously. You can try but often the result is ambiguous. Hence, the 
simultaneous estimation of process and observational uncertainty is complex. However, 
assuming only one kind of uncertainty can often provide a reasonably good fit to the data, 
although neither model is correct. Hilborn and Mangel (1997) suggest that, as a general rule, 
if the data are ‘informative’ then the assumption about how uncertainty enters a model does 
not matter greatly as each has strengths and weaknesses.  

5.3  Robustness – do we let outliers ruin our day? 
The problem with Likelihood is that some observations are just too unlikely and will therefore 
dominate any estimation. Robust estimation has two meanings (Huber 1981): (i) what 
happens when the assumption of normally distributed uncertainty is inappropriate, which is 
often the case for ecological data; and (ii) how do we deal with data points that are highly 
irregular? (eg via weighted data points?). However, in some risk analyses where rare events 
(outliers) lead to irretrievable system failure (the event we try to avoid), we need to be 
concerned about so called ‘outliers’. In this sense Likelihood and Bayesian analyses, whilst 
attractive for many reasons, may be inappropriate.  

5.4  Bayesian Goodness of Fit 
Bayesian methods provide a framework for using prior information that may be valuable and 
should not be lost in analysis. We analyse ecological data to determine the relative probability 
of competing hypotheses and, at the end of the day, we want to say how well the data support 
each alternative hypotheses given all the available data, not just the results of the current 
study (or experiment). This is really the goal of science and we do it informally anyway 
because we need to report the results of our work in relation to all other work. Bayes’ 
Theorem provides a simple way to use all possible information, but has a long and bitter 
debate amongst scientists (eg why bother?). It goes like this - if event A is the data and event 
B is the hypothesis Hi, we replace Pr {A|B} with the likelihood L {data|Hi} of the data given 
the hypothesis, and Pr {B} with the prior probability Prior {Hi} assigned to the hypothesis. 

Pr {Hi|data} = L {data|Hi} Prior {Hi} / Pr {data} 
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Here Pr {Hi|data} is the probability of the hypothesis given the data (posteriori probability). 
The prior probability of Hi summarises what we know before the study (or experiment) and is 
the posteriori probability emerging from the previous study. The numerator is the joint 
probability of the data and Hi. The denominator is the sum of such joint probabilities, 
summed overall possible hypotheses. Hence, Bayes’ Theorem can also be written as: 

Pr {Hi|data} = L {data|Hi} Prior {Hi} / Σj L{data|Hj} Prior {Hj} 
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Powerpoint presentation 
 

ARRTC key knowledge needs 

Discussion Outline Discussion Outline 
• Clas s ical s cience – tes ting s ingle null hypotheses  with experiments

• New Science – tes ting multiple hypotheses  with observations

• Us ing models  to evaluate hypotheses

• What is  uncertainty & how to model it

• Models  for unders tanding, prediction & decis ion

• How to confront models  with data – the new tools

• Examples  – conceptual to operational
– Ecologica l Risk As ses sment of RUM & downs tream WQ

– Managing invas ive spec ies , mimosa at Oenpelli

• Communicating & making decis ions  – use modelling process

 
 

 

Some definitions

Theory: Considerable evidence in support of a general principle 
explaining certain phenomena

Hypothesis: Unproved theory, basis for further investigation

Model: Generalised, metaphorical (symbolic) description used to 
analyse or explain something

Models can be tools to evaluate hypotheses, but they are not 
hypotheses themselves

Data: Observations or measurements

Uncertainty: Chance or random events, upredictable or unexpected 
events, lack of knowledge, variability, stochastic process, 
process & observation uncertainty (or error)
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Coping with uncertainty – Soulé (1990) &  
viable populations for conservation

• Identified 3 key is sues  for conservation of species , populations , 
communities  & ecosys tems

1. E ffects  of various  chance events

2. Time frame used in planning

3. Degree of security sought

• The firs t requires  s c ientific  solution, 2 & 3 are society value 
judgments  (socio- economic , cultural & political dimens ions)

 
 

 

Classical approach to science
• The Scientific Method: “a learning tree of critical experiments involving 

strong inference (Platt 1964)” – 4 steps

1. devise alternative hypotheses

2. devise experiments to exclude 1 or more of them

3. get unambiguous results (i.e. significant p-value, reject null hypothesis)

4. recycle process with sub-hypotheses or sequential hypotheses

• Extension of Karl Poppers (1939) revolutionary view  - hypotheses cannot be  
proved, only disproved – “falsification”

• Challenge hypothesis repeatedly with critical experiments, if it survives
the assault it is still not validated

• However – it acquires a degree of respect & treated as if true

• Popper provide the philosophy, Fisher et al. the statistical tools 

• This was the “first great intellectual revolution” (Platt 1964)
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Classical approach to science

• Has 3 key elements

– confrontation between a single hypothesis & data

– central idea of a critical experiment

– falsification as the only “truth”

• Most rapid progress in science are fields where such 
experiments are routine (e.g. chemistry, genetics)

• For ecological studies - this view is too narrow at best & 
dangerous at worst (e.g. can accept an experiment as true 
even though it has low power) 

 
 

 

Classical approach - limited use in ecology

• Ecology dominated by studies where clear experiments & “hard data” 
often not possible

• e.g. How do we manage mine contaminants downstream of RUM, within a 
World Heritage National Park, with a high degree certainty over a 30 year 
time span, given:

– no possibility for experimental manipulation

– none for replication (only one Magela Creek)

– none for use of “true” controls 

– system dominated by environmental variability 

– & cross-scalar effects between biological & physical processes

• Main reasons for use of “Precautionary Principle” as a bottom line
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The new approach to Science

• If experiments not possible need to go beyond the 
single null-hypothesis approach

• Use models to design an “experimental tree” for many 
hypotheses

• Use observations, rather than experiments, to 
differentiate between them

• This is the second great intellectual revolution - the 
“multiple hypotheses” (Platt 1964)

 
 

 

The new approach to ecology is the old 
approach to geology

• TC Chamberlain introduced concept of “multiple hypotheses” 
end last Century

• Ecology is more an earth science than a biological science 

• In both - descriptions of the world are incomplete & 
measurements involve inaccuracy & uncertainty

• In both - experiments are difficult or impossible to perform

• Hence - rely on observation, inference, good thinking & models 
to guide our understanding of the natural world
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Ecologists are modellers at heart 
• Profile of an ecologis t – a creative problem solver, works  in the field & 

lab, uses  s tatis tics  & computers , often works  with ecological concepts  
that are model based if not model driven, asks  the following ques tions :

• how do we make the field & laboratory coherent?

• how do we link models  with data?

• how do we conduct experiments  & relate them to the world?

• how do we integrate modelling & s tatis tics?

• how do we confront multiple hypotheses  with data & ass ign different 
degrees  of belief ?

• how do we deal with time series  (where data are linked from one measurement 
to the next)?

• or put multiple sources  of data into one inferentia l framework

• All these questions  are relevant to ERISS

 
 

 

Model validation & degrees of belief – the new religion

• If one model clearly fits existing data & has proven ability to 
explain new data, we have a “high degree of belief” 

• Models cannot be validated – alternative models are just 
options with “varying degrees of belief”

• Levins (1966) sums it up well:

– all models are both “true” & “false”

– validation of model is not that it’s “true” but that it has some form of 
utility

– multiplicity of models simply reflects a complex, heterogeneous nature 
& minds that can only handle a few variables at a time

– whilst models are essential for understanding reality, they should not 
be confused with reality itself 
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Confronting models with data

• Because models are symbolic descriptions of nature, we can 
use them to test hypotheses 

• And help evaluate the confrontation between ideas (concepts) 
& data

• But no “correct” model, only a “best” model

• So ..... how do we choose the “best” model? 

• We confront models with data & ask which is more  
consistent

 
 

 

The confrontation

• We associate probabilities to competing models given the data

• The probability of the model is the “degree of belief” in the model

• So - what is the process?

1. Characterise available data – maps, graphs, spatial & temporal patterns

2. Convert pictorial or verbal models into a mathematical description or model  
so that data can be compared to model predictions

3. Confront the model with the data by comparing predicted & observed results
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Prediction
(e.g. frequency fish kills / year)

Pr
ob

ab
ili

ty
 d

en
si

ty Best prediction
Model B

Best prediction
Model A

Step 3 - comparing predicted & 
observed results

Observed data

Models & data have 
central tendencies & 

variances (uncertainties)

 
 

 

The confrontation tool box
Three broad approaches

1. Sums of Squares (backbone of Classical approach)
• simple, no assumptions how uncertainty enters process or observation systems

• proven winner – long history of success

• but no guidance about how we should view accumulated alternative models

2. Likelihood & Maximum Likelihood
• use data to arbitrate between models – “how likely are the data given the model?” 

(or what’s the likelihood's of the 2 models given the data)

• can calculate confidence bounds on parameters & use probability distributions to 
characterise uncertainty

3. Bayesian Goodness of Fit
• a priori information allows us to judge which model is more likely to be true 

(summarised in the “prior” probability that a model is true)

• useful where studies cannot be replicated, or where “expert opinion” is sought

• but exists a long & bitter debate
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What is uncertainty? 
Gillman – Introduction to Ecological Modelling (1989)

• In a determinis tic world everything is  predictable (cause = effect) 

• B ut no system is  determinis tic because of unexpected or 
unpredictable events , which may be entirely random (s tochas tic)

• B ut randomness  depends on temporal & spatial s cales  used – an 
unpredictable event at one scale may be predictable at another

• Add to this  the inaccuracies  of observations  or samples  of nature

 
 

 

Uncertainty
Stochasticity in ecological models

• Two types  of uncertainty

– Process  uncertainty

– Observation uncertainty

• Ecological models  may begin with a description of a process  (e.g. mass  
trans fer, water flow, spread rate of a weed etc) – “process  models”

• Uncertainty results  from model parameters  varying in unpredictable ways

• e.g. predicted U-conc increase at 009 is  a function of ins tantaneous  loads 
at mine s ite exit points  & flow rate at 009, which are a ll variable within & 
between years  – called process  uncertainty

• To collect data about a s ys tem we observe it & there is  uncertainty 
as sociated with the observations  – called observation uncertainty
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Uncertainty
Stochasticity in ecological models

Full model = (process model + process error)                        
+ (observation model + observation error)

• Before confronting models with data we need to know the probability 
distributions that describe various kinds of uncertainty or stochasticity 
associated with model parameters

• Replace mean parameter values with a probability distribution function 
(pdf) – i.e. they are now random & unpredictable variables, not constants

• Many pdfs available “off the shelf” for discrete or continuous data (e.g. 
normal, binomial, negative binomial, geometric, lognormal, gamma) 

 
 

 

Types of models – the many dichotomies

1. Deterministic vs stochastic
• Deterministic models - no components inherently uncertain

• Stochastic models – some parameters uncertain & can be characterised by a pdf

2.  Statistical (predictive) vs scientific (consonant)
• Scientific models begin with a description of how nature may work, & proceeds to a 

set of predictions relating dependent & independent variables

• Predictive models forgo any attempt to explain why variables interact & assumes 
the relationship extends past measured values (e.g. regression, frequency)

3.  Static vs dynamic
• Response variables linked between one time period & next

4.  Quantitative (precision) vs qualitative (fuzzy)
• Qualitative model – general description about responses; region where one 

response expected & regions in which different responses expected

• Quantitative model – detailed description about responses; a description of the 
precise location of boundary between regions
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Types & uses of models – the one we want !
5. Models for understanding, prediction & decision

• Models used to broadly test our understanding of how nature works or to predict

• Predictions can be qualitative (system will / won’t respond) or quantitative (the level 
of response will be X .... )

• Effective models provide both understanding & future predictions

• But strong case for hybrid models – stochastic process models 

• Models can be part of a decision making process - evaluate potential effects of 
different decisions

• Where models have the most to offer in terms of practical application

• But - also where the greatest danger lies

 
 

 

Model types reduce to two

Potential for hybrid models

Process-based Models

• Built on scientific knowledge of processes   

• Need comprehensive data sets

• Often over-parameterised

• Outputs sensitive to parameter values

• Scale issues 

• Uncertainties handled poorly

• Transferable

Empirical Models

• Built on empirical (statistical) relationships
• Range of univariate & multivariate approaches
• No process understanding
• Need good data sets 
• Not easily transferable
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How complex should models be ?

• Ecosystems are complex - we only observe a small proportion of all 
possible variables

• A model can be intractable if too complex; at the other extreme it can 
be unrealistic if too simple

• For any model & amount of data, prediction error will decrease &
then increase as complexity increases

• Methods exist to determine “optimum” model size which distinguishes 
between prediction errors due to approximation & estimation

• Optimum model size generally much less than intuition suggests

 
 

 

Examples of uncertainty analysis of data
Context - ecosystem “health” in ARR

• Multiple problems caused by multiple threats

• Key threats include

– toxic contaminants from mining
– invasive species
– climate change effects 
– infrastructure 

• Natural systems characterised by

– variability
– complexity
– uncertainty

• Only certainty is that managers need predictive tools (e.g. 
ecological risk assessment)
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Example 1:  Ecological risk assessment of RUM 
(managing WQ in Magela Creek DS  Ranger) 

• Introduction to quantitative Ecological Risk Assessments (ERA)

• Frequentist s tatis tics  (effects  & exposure)

• B ayes ian s tatis tics

• EWLS “whole of mine model” (deterministic)

• Need for a hybrid model  =  statis tical model + process  model

=  stochastic process model

 
 

 

Ecological Risk Assessment
Framework for the ARR
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Qualitative risk assessment

But need to know what are behind the ratings

Likelihood
exposure

Consequences exposure

Little

Low

Medium

High

Serious Catastrophe

 
 

 

Why do we need quantitative ERA’s?

• Qualitative ERA’s  often fail because

– subjective assessments  generally biased – so unreliable

– humans  not good at subjectively assess ing risk

– uncertainties  not treated explicitly

• Need quantitative tools  that are

– rigorous

– transparent

– internally cons is tent

– free from ambiguity

– allows comparisons (of hypotheses  or management options)
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• Divers ity of methods available

— worst case scenario

— what if analys is

— decis ion analys is

— probability theory (frequency, Monte Carlo s imulation, bootstrap)

— Bayes ian analys is (prior knowledge)

• All address uncertainty associated with variability

• Software now available to ass is t (e.g. RAMAS, RiskOpt)

• Knowledge uncertainty - more difficult

Risk Assessment Tools

 
 

 

Ecological Risk Assessment
• Risk assessment is about estimating the probability of an 

adverse event

• Two main components of risk
– Effects consequences of adverse event

– Exposure likelihood of exposure to adverse event

Pr (Risk)  =  Pr (effects) x Pr (exposure)

• Also need to consider scale
– spatial (creek, river, catchment, region)

– temporal (now, 20y, 50y)
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Probability of an 
“adverse” event

S

S imilarly for likelihood of an 
effect = Pr {B }J oint probability

Pr {A} = probability that event A 
occurred (exposure)

= (area A / area S ) where S  is  all 
poss ible outcomes

Pr {A, B } = probability that both 
occurred = Pr {A} + Pr {B } – Pr {A & B}

A  Exposure

B    E ffects

 
 

 

Probabilistic risk assessment of a toxicant

Exposure (Likelihood)

Effects (Consequences)
Sp sensitivity distribution)

Log Conc.

Log Conc.
Concentration
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Effects data

Exposure 
data

5%

5% of species will be affected 20% time
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Where do we begin ?

• Firs t build conceptual models

— big picture models (e.g. catchment-scale)
— system - specific models (e.g. local-scale)

• Then build mathematical models which describe the 
sys tem of interest

— but generally lack knowledge about how ecosystem
processes work & the effects of stressors

 
 

 

System specific - Transport Pathways Conceptual Model
Conceptual model of ecosystem processes & pathways for pollutant/propagule 

transport in the environment of ARR
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Mine Sites

Atmospheric pollution – radon, dust –
rates, distribution, fate, effect 

Biological pollution – bio-
concentration, invasive species – 
rates, distribution, fate, effect 

Deliberately introduced 
materials for mining, milling 
and rehabilitation – chemical, 
biological & physical  

Surface water pollution – uranium, 
manganese, sulphate – rates, 
distribution, fate, effect 

Groundwater pollution – uranium, 
manganese, sulfate – rates, 
distribution, fate, effect Infrastructure development – land 

clearing, fragmentation, flow 
disruption 
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Can be spatially explicit 
model

System-specific model at mine site 
scale: surface water pollution exit 

pathways at RUM

009

Tailings
Pit 1

RP1

RP2
RP2

Pit 1

Coonjimba 
Billabong

Coonjimba 
Billabong

Georgetown 
Billabong

Georgetown 
Billabong

Corrid
or 

CreekCorrid
or 

CreekGulungal 
Creek

Pit 3
Pit 3

Tailings

RP1

Djalkmara 
Billabong Djalkmara 

Billabong

Magela Ck

Magela Ck

Main exit 
points

 
 

 

U - concentration data at Magela 009 weekly 
readings over wet season

B ackground + anthropogenic spikes
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Statis tical distribution U-conc data at Magela 009
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Exposure & effects at 009  (1980-2003)
Cumulative % Frequency of Exposure & Effects vs U con (ug/L)
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Exposure Effects

If U conc = TV     
1% species at risk 

99% protected

with 50% certainty 
(NWQG standard)

Binary system: no past connection because of almost zero
probabilty of interaction (1 in 1.6 million) 
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Uranium Exposure & Effects Frequency Curves
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U conc Magela 009: 4-point moving average
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Matching exposure & effects  data

Ecotox effects  data: 96h 
duration

Exposure data: weekly 
samples  (min 1 day/wk) 
during release

Weekly samples  are
“worst case scenario” as  
4-day exposure means 
would have less  variance 
flattening  U–spikes
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ecological risk 
off-site at 009?

 
 

 

Chance of an adverse event at 009 

= the probability of a “rare” event or system failure

Problem – estimate the ecological risk at the U-TV boundary (5.5 ug/L  at 009), 
given log normal distribution of uranium exposure & effects  data

Pr (ecological risk) = Pr (exposure) x Pr (effects  or consequences)

• Pr (exposure) = 0.0000304521 (1 in 32,828)

• Pr (effects , 1% species affected) = 0.01 (1 in 100)

• Pr (ecological risk) = 0.0000003045 (1 in 3.3 million)

• Note Pr (1% effects) is  only 50% certain (NWQG), however

• Pr (ecological risk) = Pr (exposure) x Pr (effects ) 

• = (0.0000304521) x [(0.01 x 0.50)/(1.00 x 0.50)]

• =  0.0000003045 (1 in 3.3 million)
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Pr {Hi|data} =  L {data|Hi} Prior {Hi}
Pr {data}

Bayesian theory – hypothesis 
confronted with data

• Hi is >1% species not protected (U = > TV 5.5 ug/L)

• Pr {Hi|data} is the probability of the hypothesis given the exposure 
data (posteriori probability)

• L {data|Hi} is the likelihood of the data given the hypothesis

• Prior {Hi} - probability of Hi summarises what is previously known, the
posteriori probability emerging from previous ecotox effects study

 
 

 

Ecological Risk at RUM & B ayes ian S tatis tics  

Posteriori hypothes is  – backcasting with observational data (exposure)

H11: TV reached (P = 0.0000304521)

H12: false, TV not reached (P = 0.9999695479)

Prior or additional knowledge – Ecotox lab work (SSDs - effects)

H21: 1% species affected at TV (P = 0.50 x 0.01 = 0.005)

H22: false, 1% not affected at TV (P = 0.50 x 0.99 = 0.495)

Pr {H1|both data} = P{H11} P{H21}/ [P{H11} P{H21} + P{H12} P{H22}]

=  0.0000003045 (1 in 3.3 million)

= 1 in 3.3 million
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EWLS “Deterministic” Model - RUM 

• Attempts to develop a “whole of mine” predictive process model to 
better manage WQ on site (Klessa)

• Predicts change in WQ (EC us/cm & U ug/L) at compliance point 009

• Uses point source data – contributions to solute load at 009 from 3 
main surface water exit pathways 

– Corridor Ck /Georgetown Billabong

– RP1 / Coonjimba Billabong

– Direct release of ponded water from Djalkmara Billabong

• Does not account for diffuse sources (shallow ground water 
fluxes, seepage to Gulungal from Tailings dam & land application), 
or differential lag times in flow rates

 
 

 

EWLS Model - RUM 
• MODEL predicts incremental increase in solutes over background (as 

measured upstream of mine at GS821067)

PCI = (L1 + L2 + L3) / F

• Where PCI is predicted concentration increase; L1, L2 & L3 instantaneous 
loads at 3 exit points; F is instantaneous flow rate (m3s-1) at 009

• Assumes Corridor Ck & RP1 catchments similar in size, no Djalkmara 
release & 100 x dilution of waters into Magela. Model simplifies to

PCI = 0.01 (C1 +C2)

• Where C1 & C2 are measured concs at those 2 exits

• Hence, site operational model =

Predicted concentration at 009 = PCI + Baseline mean

• Used in conjunction with risk assessment decision making process (“traffic 
lights” approach w.r.t. focus & action levels) 
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EWLS Model - RUM 
• A start but long way to go

• Model “validation” - compared D - U differences for 3 wet seasons but 
was a poor fit (2 of 3 cfs were conservatively consistent with model)

• The overall confrontation between model & data is weak – does 
not use advanced analytical tools

• Biggest problem - process & observation uncertainties not explicitly 
defined – basically a simple deterministic model with boundary 
conditions approximated; uses mean values & smoothing to hide 
variability

• Need a hybrid model to combine key processes with probability

• And a comprehensive quantitative risk assessment & decision 
analysis (if model to be used for on site WQ management)

 
 

 

Where next for Ecological Risk 
Assessment of RUM ?

• Make the U- Effects model more robust - the ERA shows that it’s the 
weaker partner although a huge work in itself

• Model other major chemicals & explore interactions between them

• Develop a hybrid “process & statistical” model:

– consistent with historical data

– has ability to predict future events at 009 in relation to on-site WQ 
management

– has an acceptable level of uncertainty

• Incorporate decision analysis into the risk assessment 
framework
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NOEC U-toxicity range (ug/L)
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Making the effects model more robust 
• Strength: deliberate range of species across trophic levels used

long tail

• Weakness: small sample (5/1500 = 0.33%) & Log - Logistic 
assumption leads to “long-tail syndrome” 

• Long extrapolation to critical part of risk model – closes the binary gap; in
ecotox generally LL model weak assumption; when tested only half true

 
 

 

NOEC vs Body Mass

y = 0.5535x + 3.8365
R2 = 99.2%, P<0.01
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Using models to help make risk 
management decisions

 
 

 

Risk assessment & ranking
• Effects/hazard assessment
• Likelihood assessment

Decision processes

Risk management

Problem formulation

Issue/Hazard Assessment

Further 
investigationsMonitoring

Alternative
scenarios

Making risk 
management 

decis ions
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Decision needs: Type I & II errors
Environmental managers  seek to 
balance chance of making 2 kinds  

of mis takes

Predicted responsePredicted response

Tr
ue

 re
sp

on
se

Impact No impact

Impact

No impact

Y
Y

N
N

N
Y

Type II error

Y
N

Type I error
2. False alarm (Type I) 
predict an impact predict an impact 
when there is nonewhen there is none

1. False security (Type II)
predict no impact (safe) 
when there is one

 
 

 

Decision needs – safety in numbers

Predicted responsePredicted response

Tr
ue

 re
sp
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se

Impact No impact

ImpactImpact

No impactNo impact

YY
YY

NN
NN

NN
YY

Type II errorType II error

YY
NN

Type I errorType I error

?
?

x
x

•Trade off between Type I & II errors

•Need Power = 1 – β (Type II error rate)

•Hence need lots  data or replication
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Turbidity
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Flow

YES = Flow event
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Incorporate Decision tree” models (e.g. algal blooms)

 
 

 

Example 2:  Conceptual & operational models  for 
managing invas ive species  impacts  at landscape s cales  

(mimosa on Oenpelli F loodplain)

• Conceptual bioeconomic framework 

• Key predictive sub-models  for on-s ite operations

• Ecological ris k assessment

• Further improvements  in ERA process

• Comparing mining & non-mining ecologica l ris ks
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Pest control

Pest density

Damage 
reduction

Economic inputs
(costs of control)

Outputs
(additional income or

improved public asset)

Benefit/cost analysis

Monetary benefit/cost analysis
Benefit maximisation

Cost minimisation

Conceptual bioeconomic model for Conceptual bioeconomic model for 
invasive species management invasive species management 

 
 

 

Three key predictive      Three key predictive      
sub sub -- modelsmodels

1. Damage – pest density relationship

2. Cost- of- control curve 

3. Population growth response 
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1.  Mimosa: Damage 1.  Mimosa: Damage –– density relationshipdensity relationship

Experimental data (Cooke et al. 1990)

Impact of mimosa on floodplain plant 
biodiversity (CSIRO, Oenpelli 1993)

Loss = 0.90 %CM - 2.81
R2 = 90%, n=4, P<0.05
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Pr (effects ) = 0.87

 
 

 

2.  Mimosa: cost - of - control 

Cost-of-control curve Mimosa
Oenpelli (1991 - 1997)

y = 30150x-0.7109

R2 = 93%, P<0.001
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3.  Mimosa: rate of spread or 3.  Mimosa: rate of spread or 
colonisation (exposure)colonisation (exposure)

Area (ha) spread Mimosa: Oenpelli & Mary 
River Floodplains
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Observed data Model: exponential growth with “ceiling”
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   COST-OF-CONTROL
Costs/ha Total Costs

Initial cost ($/ha) $51 $404,162
Mean annual maint cost ($/ha/yr) $236 $242,106
Total cost ($/ha) for $1,231 $1,614,692

Mimosa control Oenpelli F loodplain            
Combined sub-models  

control 1992

$1.6 mill matches operating 
costs in annual reports. But 

actual costs including capital & 
OHs 1992 – 1997 = $6 - 7 million
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ERA of mimosa plant biodivers ity impacts  Oenpelli F loodplain

Frequentis t approach – predicted exposure & effects  over time (1984 – 2003)
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control (1992)

predicted 

R isk prob =Pr (effects) x Pr (exposure)

Risk prob = Pr (0.87) x (α of floodplain with 100% mimosa cover) 

1992 Risk prob =0.87 x 0.27 = 0.23

 
 

 

Mimosa risk management

• Further model improvements  in pipeline to reduce 
uncertainty in decis ion making

– include environmental s tochas tic ity (rainfall effects  on spread rates )

– make model spatially explic it (use life-his tory & habitat knowledge 
in GIS )

– enhance risk assessment model – include benefits  & cos ts  of 
monitoring (e.g aerial & ground search, remote sens ing)

 
 

 

 

 

 



41 

Comparing mining & non-mining ecological risks
Risk Probability = Pr {effects} x Pr {exposure}

Mimosa Oenpelli

When control commenced 1992 P ris k (1992) = 0.23 ~ 1 in 4

If no control commenced in 1992 P ris k (2003) = 0.86  ~  1 in 1

RUM (1980 – 2003) - 22yrs

B ayes ian & conditional prob models P ris k = 0.0000006090 ~1 in 3.3 million

Comparing 22 yrs  RUM risk with 1 yr mimosa risk (1992)

Factor of ~ 756,00 difference

which does  not reflec t differential research 

& management inves tment

 
 

 

Communicating Risk
Amongst scientists
• Use modelling process to bring scientists together into an 

integrated & coherent expert system

• Cuts across disciplines, imparts common ownership, helps
resolve differences & conflicts

With environmental & NR managers
• Involve in modelling process from outset

• With ownership more likely to use models

With stakeholders & general public

• Communicate risk through excitement of new approach to science

• Highlight need to accept & live with degrees of uncertainty
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Workshop Outcomes

• Need to ask – has ARRTC covered all bases?  What’s not on their list?

• A summary matrix would be useful, one that identifies for each KKN

– what the issue is – is it really an issue?

– what are the key knowledge gaps?

– who is best able to fill the gap (Eriss, EWLS, other)?

– if within Eriss – who, how & when?

– how & when to collaborate with EWLS?  Start now?

• How do existing projects fit the new needs?  If not when do they phase 
out?  Or can they be made to fit?

 
 

 

ARRTC Key Knowledge Needs 
1. Contaminant movement within biophys ical pathways  (CH)

2. Contaminant movements  through groundwater (KE & PM)

3. L inking ecotox knowledge & biophys ical pathways  (CH)

4. Human health risks associated with biophys ical pathways  (PM)

5. Radiological effects  on people (PM)

6. L inking conceptual models  with on-s ite management (PB )

7. Completion criteria & shared reclamation objectives  (KE)

8. Ecosystem establishment techniques  (KE)

9. Sustainability of rehabilitation (PB  & CH)

10. Final landform - radon emanation & bioaccumulation of radionuclides (PM)

11. Adequate baseline data to underpin indicators  of success  (CH)

12. Demonstrated ability to reconstruct an ecosystem (KE)

13. Uncertainty analys is  of data (PB  & KE)

14 & 16 Communications – later; 15?  
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ARRTC Key Knowldge Needs reduce to 2 clusters - pathway 
analysis & the rehabilitation process - both are linked & 
essential for managing risks to humans & ecosystems

Pathway Risk
Ecosystem Human

1 Biophysical x x
2 Groundwater x x
3 Biophysical x x
4 Biophysical - human x
5 Radiological x
6 Pathways model & ERA x x
10 Radiological x
13 Pathways model & ERA x x

Rehabilitation process
7 Rehabilitation x x
8 Rehabilitation x x
9 Rehabilitation x x
11 Rehabilitation x x
12 Rehabilitation x x

KKN

 
 

 

Comparison of research foci before after future mine closure 
Outcome areas Before closure After closure

Operational mine Rehabilitation
Management focus Off-site On & off-site

Primary focus transport pathway Surface water Groundwater & surface water
& release into Magela Erosion & surface water transport (sediments)
(009) Direct gamma

Dust

Secondary focus transport pathway Direct gamma (radon)
dust

Primary focus response uptake Aquatic organisms Bush tucker (fruits/yams/vert wildlife)
Drinking water
Bioaccumulation 

Secondary focus response uptake Bush tucker
Drinking water
Bioaccumulation 

Primary contaminants U Mg SO4 Radon Sediments U SO4 NH4 Mn Radon

Landscape-wide impacts considered Yes Yes
Time frame 23-30 yrs 100 +  yrs?
Degree of security Very High High

Modelling requirements
Transport pathways (GW, SW, air) Yes Yes
Ecological risk assessment Yes Yes
Landform evolution No Yes
Vegetation succession/dynamics No Yes
Catchment model Yes Yes
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One approach to ARRTC KKNs – use transport pathways 
model within an ecological risk assessment framework

for the ARR
Allows coherent transition between research centred on 

an operational mine & the rehabilitation phase

 
 

 

Original Transport Pathways Model + rehab additions
Conceptual model of ecosystem processes & pathways for pollutant/propagule 

transport in the environment of ARR
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Mine Sites 

Atmospheric pollution – radon, dust – 
rates, distribution, fate, effect 

Biological pollution – bio-
concentration, invasive species – 
rates, distribution, fate, effect 

Deliberately introduced 
materials for mining, milling 
and rehabilitation – chemical, 
biological & physical  

Surface water pollution – uranium, 
manganese, sulphate – rates, 
distribution, fate, effect 

Groundwater pollution – uranium, 
manganese, sulfate – rates, 
distribution, fate, effect Infrastructure development – land 

clearing, fragmentation, flow 
disruption 

Invasive species

Fire

People 

Erosion 
sediments

Wildlife
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Use a spatially explicit 
model for all pathways

For model simulation during pre- & 
post mine closure, risk analysis, 
decision analyis, monitoring & 

communications

009

Tailings
Pit 1

RP1

RP2
RP2

Pit 1

Coonjimba 
Billabong

Coonjimba 
Billabong

Georgetown 
Billabong

Georgetown 
Billabong

Corrid
or 

CreekCorrid
or 

CreekGulungal 
Creek

Pit 3
Pit 3

Tailings

RP1

Djalkmara 
Billabong Djalkmara 

Billabong

Magela Ck

Magela Ck

Main exit 
points 
surface 
water

 
 

 

Uncertainty & ecosystem rehabilitation in ARR

• Multiple problems caused by multiple threats

• Key threats include
– toxic contaminants from past mining
– erosion/sediments
– invasive species (e.g. pigs & weeds)
– unmanaged fire
– climate change effects 
– infrastructure & people

• Natural & rehabilitated systems characterised by
– variability
– complexity
– uncertainty

• Only certainty - managers need predictive tools (e.g. 
ecological risk assessment, ecological models)
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Ecological Risk Assessment
• Risk assessment is about estimating the probability of an 

adverse event

• Two main components of risk
– Effects consequences of adverse event

– Exposure likelihood of exposure to adverse event

Pr (Risk)  =  Pr (effects) x Pr (exposure)

• Also need to consider scale
– spatial (creek, river, catchment, region)

– temporal (now, 20y, 50y)

 
 

 

• Range of methods  available

— wors t case scenario

— what if analys is

— decis ion analys is

— probability theory (frequency, Monte Carlo s imulation, boots trap)

— B ayes ian analys is (prior knowledge)

— GLMs (leas t squares , likelihood)

• All addres s  uncertainty as sociated with variability

• Knowledge uncertainty – more difficult – need new 
research to fill key gaps

Risk Assessment Tools
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• Models generally used to test our understanding of how a system works or to 
predict

• Most useful models provide both (e.g. stochastic process models)

• Models can be part of the decision making process – used to evaluate potential 
effects of different decisions within a risk assessment framework

• Where models have the most to offer in terms of practical application, but also 
where the greatest danger lies

Use ecological models for understanding, 
prediction & decision

 
 

 

Ecological Risk Assessment of Ranger

• Make U- Effects model more robust using Life History analysis

• Model exposure of other major chemicals & explore interactions 
between them (Mg, SO4, Mn, Ca etc)

• Develop stochastic process model for Ecological Risk Assessment
– consistent with historical data

– ability to predict future events at 009 in relation to on-site WQ management

– has an acceptable level of uncertainty

• Incorporate decision analysis into the risk assessment framework

• Model other pathways (ground water, air) 

• Extend risk assessment framework to encompass rehabilitation 
phase
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Invasive species management - 3 key
predictive sub-models

1. Damage – pest density relationship
2. Cost- of- control curve 
3. Population growth response 

For:

• Mimosa, salvinia, paragrass, major terrestrial weeds

• Pigs

 
 

 

Risk management of invas ive 
species  in the ARR

• Further model improvements  to reduce uncertainty in 
decis ion making

– incorporate effects  of environmental variability on population 
dynamics  of pes t species

– make model spatially explic it (via life-his tory & habitat knowledge 
in GIS  environment)

– enhance risk as sessment model – inc lude benefits  & cos ts  of 
monitoring (e.g aerial & ground search, remote sens ing)
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Fits ARRTC
2002-03 Projects KKNs? How? Theme End Pt

LANDSCAPE
1 Weed risk assessment KNP Yes Rehab Invasive sp 03-04
2 Feral animal management KNP Yes Rahab Invasive sp 03-04
3 Boggy Plain - multiple impacts Yes Rehab Invas sp, fire, climate change 06-07

Control site mining impacts
4 World Heritage values - Waterbirds ARR Yes Rehab WH values, climate change 06-07
5 Mangrove response to coastal Yes Rehab Climate change 05-06

environmental change
6 Ecological risk assessment Ranger Yes Rehab/TP model Mine-site management 04-05
7 Ecological risk assessment Jabiluka? Yes Rehab/TP model Mine-site management 04-05
8 Ecological modelling (= ERA & TP model) Yes Rehab/TP model Mine-site management 06-07
9 Catchment management Arnhem Land No

ECOTOX
10 Current ecotox projects (Mg, SO4, NH4, Mn) Yes Rehab/TP model Mine-site management, WQ 03-04
11 Strengthen SSD ecotox effects model Yes Rehab/TP model Mine-site management, WQ 03-04

using life history analysis
REHABILITATION
Integrate all YESs into REHAB projects Mine-site management, WQ ?
See following

Do our existing ERA projects fit the new 
Key Knowledge Needs?  

 
 

 

REHABILITATION 

=  Landscape gardening on a 
grand scale ?
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Rehabilitated mine site area will be an 
open system 

• Rehab s ites  are open s ys tems subject to dis turbance or change (e.g. fire, 
invas ive species)

• Ecosystem will hence exhibit non-equilibrium dynamics (including 
multiple equilibria, dynamic equilibrium, unstable equilibrium)

• NE Ecosys tem dynamics  characteris ed by divers ity, complexity & 
uncertainty

• May exist many local “domains” of attraction with boundaries separated 
by breakpoints or thresholds (hysteresis effect)

• Transition to a local phase may be irreversible (wrt to rehab, would entail 
costly intervention to reverse change)

• System outcomes generally unpredictable because of sens itivity to initial 
conditions

 
 

 

• YES – rehabilitation sites are open systems with uncertain outcomes

• Adaptive Management is: 

– about managing in the face of uncertainty (process, observational & 
chance events)

– a structured process of “learning by doing” via experimental management; 
one step beyond better ecological monitoring & response to unexpected 
impacts

• Rehabilitation programs have great scope for AM of landscapes 
(vegetation, landforms) & populations

• An opportunity to improve management by resolving key uncertainties

Role for adaptive experimental 
management in rehabilitation? 
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• Begins by integrating existing knowledge into models that attempt to 
make predictions about impacts of alternative actions

• The crucial modelling step has 3 functions

– problem clarification & enhanced communication amongst scientists, managers & other 
stakeholders

– screening of options to eliminate those unlikely to do much good

– identification of key knowledge gaps that make model predictions suspect

• Models are constantly improved with structured manipulation of 
management treatments, in combination with monitoring & feedback loops

• But not without problems – modelling plagued by cross-scalar effects 
(rapid hydrologic change vs long-term ecological response), lack of data 
on key processes & so on

Adaptive Management

 
 

 

Monitoring approaches 
• Traditional quantitative ecological assessment (e.g. structure 

& composition vegetation)

• Vital Ecological Attributes (VEA)

• Ecosystem Function Analysis (EFA)

• Remote sensing (structure, pattern & composition)

• Faunal recolonisation (abundance & composition)

• Other indices of ecosystem recovery

• These monitoring approaches need not be mutually exclusive 
& can be incorporated into a range of working frameworks 
(e.g. risk assessment, adaptive management)
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Vital Ecological Attributes (VEA)
• Characteristics, or attributes, that are correlated with, and can serve as, 

indicators of ecosystem structure and function

• Basic approach to plant succession that defines minimum set of plant 
attributes needed to predict plant community dynamics subject to recurrent 
disturbance such as fire & floods. e.g. 

• perenial & annual plant species richness

• abundance invasive species

• spectrum of plant life forms

• total cover of the vegetation

• viable seed bank in the soil

• recruitment, growth & survival of key indicator plants

• soil surface conditions

• organic matter content in the soil

• Liked by Max, Chris, 1 ARRTC member & myself, but not by mining 
companies (e.g ERA-EWLS) & CSIRO SE

 
 

 

Ecosystem Function Analysis (EFA)

• Developed by CSIRO SE for rangelands & other disturbed landscapes such as 
mine sites. Provides assessment on effects of stress/disturbance on 
landscapes. Has 3 modules: 

– landscape function

– vegetation composition and dynamics

– habitat complexity

• Apparently assumes an equilibrium end-point

• Liked by mining companies (e.g ERA-EWLS) & CSIRO SE, but not by 
Max, Chris, 1 ARRTC member & myself
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Rehabilitation
7. Completion criteria & shared reclamation objectives  (KE)

Key is sues

Knowledge gaps

Poss ible project

Who, where & when?

 
 

 

Rehabilitation
8. Ecosys tem es tablishment techniques  (KE)

Key is sues

Knowledge gaps

Poss ible project

Who, where & when?
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Rehabilitation

Key issues

• Depends on mine site closure criteria & rehab goals (wrt analogue or reference site?)

• What success criteria & indicators? & how to monitor?

• What approach or model? – EFA, VE A or other (e.g. use remote sens ing); need not be 
mutually exc lus ive – tells  us  when to intervene (& what benefits  for what cos ts )

Knowledge gaps

• Dis turbance ecology - invas ive species  (weeds  & pigs ), fire, people & their 
interactions

• Soil-vegetation-fire dynamics  of surrounding landscape & rehabilitated area

• How to manage contaminated s ites  & eros ion – identify all potential transport 
pathways

• Lessons  from Nabarlek?

9. Sustainability of rehabilitation (DW/J B  & CH)

 
 

 

Rehabilitation

Poss ible projects

• Initial modelling exerc ise us ing available knowledge comparing VEA, EFA & other 
approaches , & a range of success  indicators  (inc luding multivariate indicators )

• Revamp exis ting weed & pig control projects  to deal with specific  rehab is sues  (eg 
ground dis turbance & weed invas ion risk, interactions  with fire; pig impacts  etc) 

Who, where & when?

• Across Eriss, EWLS, NLC, PAN (?), TOs; Nabarlek & Ranger; 2003 – 2004 Work Plan

9. Sustainability of rehabilitation (DW/J B  & CH) - continue
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Rehabilitation
10. Final landform - radon emanation & bioaccumulation of radionuclides  (PM)

Key is sues

Knowledge gaps

Poss ible project

Who, where & when?

 
 

 

Rehabilitation

11. Adequate baseline data to underpin indicators  of success  (CH)

Key is sues

Knowledge gaps

Poss ible project

Who, where & when?
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Rehabilitation

12. Demonstrated ability to reconstruct an ecosys tem (KE)

Key is sues

Knowledge gaps

Poss ible project

Who, where & when?

 
 

 

Rehabilitation

Key is sues

• Now – mine operational. Risks  of “off-s ite” impacts  as sociated with a ll transport pathways  
(surface & ground water, a ir) & contaminants /propagules

• Future – mine c losure/rehab. Risks  of “on & off-s ite” impacts  assoc iated with all transport 
pathways  (surface & ground water, a ir, biophys ical) & contaminants /propagules

Knowledge gaps

• As  dis cus sed in seminars  & this  workshop

Poss ible project

• Develop s tochas tic  process  sub-models  of Conceptual Transport Model

• Undertake ecological risk asses sment

Who, where & when?

• Now – acros s  E riss , EWLS ; Ranger; 2002-03 & 2003-04

• Future – acros s  E riss , EWLS , PAN (?), TOs, other s takeholders ; Ranger; 2003-04

13. Conceptual Transport Model & E cological R isk Asses sment Framework
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