

Australian Government

Department of the Environment, Water, Heritage and the Arts Supervising Scientist internal

report



# Ecotoxicological assessment of a polyelectrolyte flocculant

## Harford AJ, Hogan AC & van Dam RA

Supervising Scientist Division GPO Box 461, Darwin NT 0801

June 2010

Registry File SG2007/0156

(Release status - unrestricted)



Australian Government

Department of the Environment, Water, Heritage and the Arts Supervising Scientist How to cite this report:

Harford AJ, Hogan AC & van Dam RA 2010. Ecotoxicological assessment of a polyelectrolyte flocculant. Internal Report 575, June, Supervising Scientist, Darwin.

Location of final PDF file in SSDX Sharepoint

Supervising Scientist Division > PublicationWork > Publications and Productions > Internal Reports (IRs) > Nos 500 to 599 > IR575\_Ecotox floc bloc (Harford et al)

Location of all key data files for this report in SSDX Sharepoint

Supervising Scientist Division > SSDX > Ecotoxicology of the Alligator Rivers Region > Floc Bloc

Authors of this report:

Andrew Harford – Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia

Alicia Hogan – Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia

Rick van Dam – Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia

The Supervising Scientist is part of the Australian Government Department of the Environment, Water, Heritage and the Arts.

© Commonwealth of Australia 2010

Supervising Scientist

Department of the Environment, Water, Heritage and the Arts GPO Box 461, Darwin NT 0801 Australia

This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Supervising Scientist. Requests and inquiries concerning reproduction and rights should be addressed to Publications Inquiries, Supervising Scientist, GPO Box 461, Darwin NT 0801.

e-mail: publications\_ssd@environment.gov.au

Internet: www.environment.gov.au/ssd (www.environment.gov.au/ssd/publications)

The views and opinions expressed in this report do not necessarily reflect those of the Commonwealth of Australia. While reasonable efforts have been made to ensure that the contents of this report are factually correct, some essential data rely on references cited and/or the data and/or information of other parties, and the Supervising Scientist and the Commonwealth of Australia do not accept responsibility for the accuracy, currency or completeness of the contents of this report, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the report. Readers should exercise their own skill and judgment with respect to their use of the material contained in this report.

Printed and bound in Darwin NT by Supervising Scientist Division

## Contents

| Executive summary |                                                         |    |  |  |  |
|-------------------|---------------------------------------------------------|----|--|--|--|
| A                 | cknowledgments                                          | iv |  |  |  |
| 1                 | Introduction                                            | 1  |  |  |  |
| 2                 | Methods                                                 | 3  |  |  |  |
|                   | 2.1 Diluent                                             | 3  |  |  |  |
|                   | 2.2 Chemistry                                           | 3  |  |  |  |
|                   | 2.3 Toxicity tests                                      | 4  |  |  |  |
|                   | 2.4 Quality Assurance and Quality Control               | 6  |  |  |  |
|                   | 2.5 Statistics                                          | 7  |  |  |  |
| 3                 | Results and discussion                                  | 7  |  |  |  |
|                   | 3.1 Quality Assurance and Quality Control (QA/QC)       | 7  |  |  |  |
|                   | 3.2 Toxicity of flocculant block formulation            | 11 |  |  |  |
|                   | 3.3 Toxicity of PAM                                     | 15 |  |  |  |
|                   | 3.4 Toxicity of PEG                                     | 17 |  |  |  |
|                   | 3.5 Trigger values                                      | 19 |  |  |  |
|                   | 3.6 General discussion                                  | 21 |  |  |  |
| 5                 | Conclusions                                             | 24 |  |  |  |
| 6                 | References                                              | 25 |  |  |  |
| A                 | ppendix A Physicochemical data for the toxicity tests   | 27 |  |  |  |
| A                 | ppendix B Chemical analyses                             | 43 |  |  |  |
| A                 | ppendix C Total Organic Carbon analyses                 | 48 |  |  |  |
| A                 | ppendix D Total Nitrogen analyses                       | 50 |  |  |  |
| Α                 | ppendix E Statistical analyses (Nominal concentrations) | 51 |  |  |  |

## **Executive summary**

Flocculant blocks are commonly used in water treatment processes to reduce suspended sediment loads of the water column. The mining industry has been increasingly interested in the application of flocculant blocks, with the aim of improving the quality of water released into the environment. Energy Resources of Australia Ltd (ERA) implemented the use of flocculant blocks during the 2006-07 wet season to reduce suspended sediment (and associated adsorbed metal) concentrations in a number of its on-site water bodies. To ensure appropriate on-site water management, ERA required information on whether the use of the flocculant blocks would introduce unacceptable toxicity to the Pond Waters at Ranger.

This study investigated the biological impacts of a flocculant block that contained an anionic polyacrylamide (PAM) active ingredient and a polyethylene glycol (PEG) based carrier. The toxicity of the whole flocculent block was assessed and the individual components of the block were also tested separately. Previous studies using acute tests with Northern hemisphere species indicated that the toxicity of the flocculant block was relatively low. However, this study used primarily chronic, sub-lethal tests to assess toxicity. Five Northern Australian tropical freshwater species (ie *Chlorella* sp, *Lemna aequinoctialis, Hydra viridissima Moinodaphnia macleayi* and *Mogurnda mogurnda*) were exposed to various concentrations of the flocculent block, PAM and PEG. The test solutions were measured for total organic carbon (TOC) as indicators of the total amount of PAM and PEG present, while total nitrogen (N) was measured as an indicator of the concentration of PAM alone. Viscosity was measured to provide a metric for assessing the physical effects of the medium itself on the organisms.

The results showed an extremely wide range of 'toxicity', with the flocculant blocks being essentially non-toxic to the duckweed, fish and algae ( $IC_{50}>3600 \text{ mg } \text{L}^{-1}$ ,  $IC_{10}>780 \text{ mg } \text{L}^{-1}$ , nominal concentrations), slightly 'toxic' to the hydra ( $IC_{50}=1180-4250 \text{ mg } \text{L}^{-1}$ ,  $IC_{10}=120-160 \text{ mg } \text{L}^{-1}$ , nominal concentrations) and highly 'toxic' to the cladoceran ( $IC_{50}=10 \text{ mg } \text{L}^{-1}$ ,  $IC_{10}=5 \text{ mg } \text{L}^{-1}$ , nominal concentrations). Investigation of the individual components indicated that the PAM was the primary 'toxicant' in the flocculant blocks. Increased viscosity at higher concentrations of the product was one of the possible contributing factors to the adverse effects observed in the cladocerans.

Water quality trigger values were calculated using species sensitivity distributions. In the event that 95 or 99% species protection levels (equating to TVs of 0.05 and 2 mg L<sup>-1</sup> TOC) were to be applied then it may not be possible to use measurements of TOC or N as surrogates for the flocculant block constituents. The reason for this is that such low concentrations are essentially at or below the effective detection limits for these methods of analysis. In the event that ERA wishes to monitor the presence of flocculant block constituents, a TV protection level of 80%, (ie 30 mg L<sup>-1</sup> TOC) for mine site water bodies would make monitoring of TOC levels as a signal of flocculant block contamination achievable.

## Acknowledgments

We would like to thank the technical staff at *eriss* ecotoxicology laboratory, Kim Cheng, Claire Costello and Melanie Houston, for assisting with the toxicity tests. We would also like to thank the technical staff at *eriss* ecotoxicology laboratory, Kim Cheng, Claire Costello and Melanie Houston, for assisting with the toxicity tests.

## Ecotoxicological assessment of a polyelectrolyte flocculant

AJ Harford, AC Hogan & RA van Dam

## 1 Introduction

For many decades, high molecular weight water-soluble polymers have been used in water purification processes to coagulate and flocculate particles, aiding in their removal from the water column (Bolto & Gregory 2007). These polymers (or polyelectrolytes) have been classed by their ionic nature ie cationic, anionic or non-ionic. Anionic polymers acts as true flocculants and bind suspended particles together to form larger particles that settle out of solution more rapidly, while cationic polymers acts as coagulants through neutralising the surface charges of particles (Liber et al 2005). Mining operations have long recognised the usefulness of flocculating polymers to reduce suspended sediment loads of their effluents. As such, these polymers are viewed as a pollution control measure and have rarely been recognised as a potential pollutant themselves. Despite their common use, and large volumes of these chemicals being released into the environment, only a limited number of studies have investigated their toxicity (Liber et al 2005).

There is an extremely limited database concerning the toxicity of water treatment polymers to aquatic organisms, especially data reporting chronic toxicity. The existing aquatic toxicity information indicates that the anionic class has a relatively low toxicity to aquatic organisms, while the cationic class is at least 100 times more toxic (Hamilton et al 1994). Consequently, cationic polymers have been studied to a greater degree and are reported to be toxic at concentrations <1 mg L<sup>-1</sup>. Studies have shown that the cationic polyelectrolytes affect cell membrane integrity and that the effect is dependent on the charge density and hydrophobicity of the polymer (Narita et al 2001). However, some species-specific mechanisms of action have been reported and the effects on phytoplankton appear to be dependent on the molecular weight of the polymers rather than charge density (de Rosemond & Liber 2004).

The primary mechanism of action of the anionic polymers is the binding of membranes (membranotrophic), which results in the inhibition of the cross-membrane transport of nutrients and essential elements. Consequently, the mechanism of anionic polymers is dependant on the chain length, with longer chains being more toxic (Bolto & Gregory 2007). A limited number of studies have reported that fish appear to be relatively tolerant of anionic polymer exposure with 100% survival commonly occurring at the highest concentrations tested, and with LC<sub>50</sub>s of >20 mg L<sup>-1</sup> – >1000 mg L<sup>-1</sup> (Beim & Beim 1994, de Rosemond & Liber 2004). Cladocerans were commonly the most sensitive species tested and the reported acute toxicities (LC<sub>50</sub>) of anionic polymers to *Ceriodaphnia dubia* (48 h) and *Daphnia magna* (96 h) were 218 mg L<sup>-1</sup> and 14-17 mg L<sup>-1</sup>, respectively (Biesinger et al 1976, Beim & Beim 1994, de Rosemond & Liber 2004). Beim and Beim (1994) also reported an LC<sub>50</sub> of 2100 mg L<sup>-1</sup> PAM for an amphipod, >100 mg L<sup>-1</sup> PAM for a flatworm and >1000 mg L<sup>-1</sup> PAM for an adult minnow (fish).

Energy Resources of Australia Ltd (ERA) implemented the use of flocculant blocks during the 2006–07 wet season to reduce suspended sediment (and associated adsorbed metal)

concentrations in a number of its on-site water bodies. To ensure appropriate on-site water management, ERA required information on whether the use of the flocculant blocks would introduce unacceptable toxicity to the Pond Waters at Ranger. The flocculant blocks investigated in this study consisted of an anionic polyacrylamide (PAM, ~40%, Figure 1a) active ingredient and a polyethylene glycol (PEG, ~60%, Figure 1b) carrier compound. Ecotoxicological data provided in the Material Safety Data Sheets (MSDS) reported acute  $EC/LC_{50}$  values of 212 – >1000 mg L<sup>-1</sup> for PAM (Table 1). A NOEC of 708 mg L<sup>-1</sup> was also reported in documentation provided by the supplier (Environment Warehouse, unpublished data), however, it was unclear for which compound and aquatic species this value was derived. The above toxicity test data for the anionic polyacrylamides were derived from studies undertaken at the Société d'Ecotoxicologie et de Physico-Chimie (SEPC, Sarcey, France) and were used as supporting documentation for products assessed under European Union directive 67/548/EEC (ie REACH program, packaging and labelling of dangerous substances, Vehaar (2002)). The SEPC studies are also cited in National Industrial Chemicals Notification and Assessment Scheme (NICNAS) assessments of products containing anionic polyacrylamides (NICNAS 2005).

The carrier agent in the flocculant blocks, poly ethylene glycol (PEG) is known for its very low toxicity and a limited number of studies have reported no adverse responses in fish and phytoplankton following exposures up to 5 g L<sup>-1</sup> (Wildish 1974, Bridié et al 1979, Chan et al 1981). Indeed, many studies use PEG as an inert carrier agent or negative control (eg Wildish 1974, Harford et al 2007), and its function in the flocculant block is to increase the solubility of the PAM.

The aims of this study were to determine the toxicity of (i) flocculant block, as a whole (ie dissolved), and (ii) the two individual ingredients, ie PAM and PEG, to five local freshwater species, and derive site-specific water quality trigger values for each.



b)

a)



Figure 1 The chemical structures of a) polyacrylamide and b) polyethylene glycol (www.wikipedia.com)

| Species            | Test duration | Endpoint       | Anionic polyacrylamides<br>LC <sub>50</sub> /EC <sub>50</sub> |
|--------------------|---------------|----------------|---------------------------------------------------------------|
| Brachydanio rerio  | 96 h          | Survival       | 357ª                                                          |
| Daphnia magna      | 98 h          | Immobilisation | 212                                                           |
| Pseudomonas putida | 24 h          | Respiration    | 892                                                           |
| Chlorella vulgaris | 72 h          | Growth rate    | >1000                                                         |

 Table 1 Ecotoxicological data provided with the flocculant block product (Environment Warehouse, unpublished data)

a LC<sub>50</sub> reported for Brachydanio rerio

## 2 Methods

#### 2.1 Diluent

Natural Magela Creek water (NMCW) was used for the control treatment and dilution of the test solutions in the all tests. It was collected by SSD staff from Bowerbird Billabong (latitude  $12^{\circ} 46' 15''$ , longitude  $132^{\circ} 02' 20''$ ) during the dry season and Georgetown Billabong (latitude  $12^{\circ} 40' 28'$ , longitude  $132^{\circ} 55' 52$ ) during the wet season. The water was collected in 20 L acid-washed plastic containers and placed in storage at  $4 \pm 1^{\circ}$ C within 1 h of collection. The water was then transported to *eriss* Ecotoxicology Laboratory in Darwin in an air-conditioned vehicle. At the laboratory, it was stored at  $4 \pm 1^{\circ}$ C and filtered through Whatman #42 (2.5 µm pore size) filter paper within 4 d of collection. Throughout the testing period the NMCW had a pH of 6.1 - 6.8 units, a conductivity of  $10-22 \mu$ S/cm and dissolved oxygen of >90%.

#### 2.2 Chemistry

Chemistry samples were taken to ensure that; (i) the dilutions undertaken for the tests were accurate, (ii) no chemical contaminants were introduced to the test solutions during preparation, and (iii) the nutrient additions to the solutions used for the *Chlorella* sp and *L. aequinoctialis* tests were accurate. Due to the nature of the flocculant block constituents, Total Organic Carbon (TOC) was measured and used as a quantitative indicator of the PAM and PEG concentrations in flocculant block, while total nitrogen was measured and used as a quantitative indicator of the active ingredient (PAM) concentration. A metals analysis was conducted on the Magela Creek water controls, Milli-Q water blanks and procedural blanks for quality control of contaminants. However, a metals analysis could not be conducted on the treatment samples because the presence of the polyacrylamide meant that high concentrations of acid were needed to digest the chemical, resulting in impractically high detection limits.

TOC analyses were conducted at *eriss* (Shimadzu TOC-V CSH), while total nitrogen was analysed by flow injection analysis (Lachat 8000 series) at the Northern Territory Environmental Laboratories (NTEL, Berrimah, Northern Territory, Australia). Samples to be analysed for soluble metals were acidified to approximately 0.7% HNO<sub>3</sub> by adding 10  $\mu$ L of 69% Aristar HNO<sub>3</sub> (BDH) for every mL of sample (determined by weighing sample bottles before and after sample addition). Samples for metals were stored at 4 ± 1°C until being sent to NTEL for analysis. Samples to be analysed for nutrients (NO<sub>3</sub> and PO<sub>4</sub>) were then sealed with no head-space and frozen, before sending for analysis at NTEL.

The Brookfield and Funnel methods for viscosity analyses were conducted on surrogate test solutions by Mintech Chemical Industries (Berrimah, Northern Territory, Australia).

Viscosities of the solutions were measured to determine if a physical effect of the test solutions could be separated from the chemical effects.

#### 2.3 Toxicity tests

The tests undertaken to assess the toxicity of flocculant block and its constituents, PAM and PEG, are listed in Table 2. The whole flocculant block (DamClear, Environmental Warehouse, Swansea, NSW, Australia), PAM (MAGNAFLOC<sup>®</sup> 1011, Ciba, Kwinana, WA) and PEG (DPW-1-1111, Ciba, Kwinana, WA) were all dissolved in NMCW and serially diluted to the concentrations shown in Table 2. Standardised ecotoxicological tests for five local freshwater species were conducted at the Environmental Research Institute of the Supervising Scientist laboratories between 10 September 2007 and 22 May 2008. Unless specified, all experiments were conducted in accordance with standardised protocols as detailed by Riethmuller et al (2003). The details of the test protocols are shown in Table 3.

 Table 2
 Details of each of the tests undertaken to assess the toxicity of flocculant block, PAM and PEG<sup>a</sup>

| Test organism                            | Acute/<br>Chronic | Test<br>code | Date     | Concentrations tested (mg L <sup>-1</sup> ) <sup>b</sup> |  |  |  |
|------------------------------------------|-------------------|--------------|----------|----------------------------------------------------------|--|--|--|
| Flocculant block (commercial produ       | ıct)              |              |          |                                                          |  |  |  |
| Chlorella sp. (unicellular alga)         | Chronic           | 866G         | 10/09/07 | 0, 313, 625, 1250, 2500, 5000                            |  |  |  |
| Lemna aequinoctialis (duckweed)          | Chronic           | 865L         | 09/09/07 | 0, 313, 625, 1250, 2500, 5000                            |  |  |  |
| <i>Hydra viridissima</i> (green hydra)   | Chronic           | 862B         | 10/09/07 | 0, 313, 625, 1250, 2500, 5000                            |  |  |  |
|                                          | Chronic           | 873B         | 01/10/07 | 0, 39, 78, 156, 313, 625, 1250                           |  |  |  |
|                                          | Chronic           | 877B         | 15/10/07 | 0, 39, 78, 156, 313, 625, 1250                           |  |  |  |
| Moinodaphnia macleayi (cladoceran)       | Chronic           | 863D         | 21/09/07 | 0, 39, 78, 156, 313, 625, 1250, 2500                     |  |  |  |
|                                          | Chronic           | 874D         | 03/10/07 | 0, 1.22, 2.44, 4.88, 9.75, 19.5, 39, 78                  |  |  |  |
| <i>Mogurnda mogurnda</i> (fish)          | Acute             | 864E         | 12/09/07 | 0, 313, 625, 1250, 2500, 5000                            |  |  |  |
| Polyacrylamide (PAM – Active ingredient) |                   |              |          |                                                          |  |  |  |
| Chlorella sp. (unicellular alga)         | Chronic           | 888G         | 20/11/07 | 0, 125, 250,500, 1000, 2000                              |  |  |  |
| Lemna aequinoctialis (duckweed)          | Chronic           | 887L         | 19/11/07 | 0, 125, 250,500, 1000, 2000                              |  |  |  |
| <i>Hydra viridissima</i> (green hydra)   | Chronic           | 883B         | 12/11/07 | 0, 16, 32, 63, 125, 250,500                              |  |  |  |
|                                          | Chronic           | 892B         | 03/12/07 | 0, 16, 32, 63, 125, 250,500                              |  |  |  |
| Moinodaphnia macleayi (cladoceran)       | Chronic           | 884D         | 12/11/07 | 0, 0.5, 1, 2, 4, 8, 16, 32                               |  |  |  |
| <i>Mogurnda mogurnda</i> (fish)          | Acute             | 891E         | 01/12/07 | 0, 125, 250,500, 1000, 2000                              |  |  |  |
| Polyethylene glycol (PEG – Carrier)      |                   |              |          |                                                          |  |  |  |
| Chlorella sp (unicellular alga)          | Chronic           | 913G         | 26/02/08 | 0, 750, 1500, 3000, 6000,12000                           |  |  |  |
| Lemna aequinoctialis (duckweed)          | Chronic           | 919L         | 31/03/08 | 0, 750, 1500, 3000, 6000,12000                           |  |  |  |
| <i>Hydra viridissima</i> (green hydra)   | Chronic           | 920B         | 08/04/08 | 0, 750, 1500, 3000, 6000,12000                           |  |  |  |
| Moinodaphnia macleayi (cladoceran)       | Chronic           | 927D         | 16/05/08 | 0, 750, 1500, 3000, 6000,12000                           |  |  |  |
| Mogurnda mogurnda (fish)                 | Acute             | 923E         | 16/04/08 | 0, 750, 1500, 3000, 6000,12000                           |  |  |  |

<sup>a</sup> Refer to Table 3 for toxicity test details

<sup>b</sup> All treatments were prepared using Magela Creek water as the diluent.

**Table 3** Details of toxicity tests for five Australian tropical freshwater species used to assess the toxicity of flocculant blocks, PAM and PEG. Full details are provided in Riethmuller et al (2003)

| Species<br>(common name)                             | Test<br>duration<br>and<br>endpoint    | Control response<br>acceptability criterion                            | Temperature,<br>light intensity,<br>photoperiod                      | Feeding/<br>nutrition                                                                         | Culture medium                               | No. replicates<br>(Individuals per<br>replicate) | Test<br>volume<br>(mL) | Static/daily<br>renewals |
|------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|------------------------|--------------------------|
| <i>Chlorella</i> sp.<br>(unicellular green alga)     | 72-h<br>population<br>growth rate      | 1.4 $\pm$ 0.3 doublings day ^1; % CVa <20%                             | 29 ± 1°C<br>100-150 μmol m <sup>-2</sup> sec <sup>-1</sup><br>12:12h | 14.5 mg/L NO <sub>3</sub><br>0.14 mg/L PO <sub>4</sub>                                        | Modified MBL medium                          | 3 (3 $\times$ 10 <sup>4</sup> cells)             | 50                     | Static                   |
| <i>Lemna aequinoctialis</i><br>(tropical duckweed)   | 96-h growth<br>rate                    | Mean growth rate (k)<br>≥0.27; % CV <20%                               | 29 ± 1°C<br>100-150 μmol m <sup>-2</sup> sec <sup>-1</sup><br>12:12h | 3 mg/L NO <sub>3</sub><br>0.3 mg/L PO <sub>4</sub>                                            | 25% modified<br>Hoagland's E and<br>K medium | 3 (4)                                            | 100                    | Static                   |
| <i>Hydra viridissima</i><br>(green hydra)            | 72-h<br>population<br>growth rate      | Mean growth rate (k)<br>≥0.27; % CV <20%                               | 27 ± 1°C<br>30-100 μmol m <sup>-2</sup> sec <sup>-1</sup><br>12:12h  | 3 - 4 <i>Artemia</i><br>nauplii per hydra<br>per day <sup>c</sup>                             | Natural Magela<br>Creek water                | 3 (10)                                           | 30                     | Daily<br>renewals        |
| <i>Moinodaphnia macleayi</i><br>(cladoceran)         | 3 brood<br>(120-144 h)<br>reproduction | Mean adult survival ≥80%;<br>mean neonates per adult<br>≥30; % CV <20% | 27 ± 1°C<br>30-100 μmol m <sup>-2</sup> sec <sup>-1</sup><br>12:12h  | 30 μl FFV <sup>b</sup> and<br>6 × 10 <sup>6</sup> cells of<br><i>Chlorella</i> sp. per<br>day | Natural Magela<br>Creek water                | 10 (1)                                           | 30                     | Daily<br>renewals        |
| <i>Mogurnda mogurnda</i><br>(Northern trout gudgeon) | 96-h survival                          | Mean larval survival<br>≥80%;  % CV <20%                               | 27 ± 1°C<br>30-100 μmol m <sup>-2</sup> sec <sup>-1</sup><br>12:12h  | Nil                                                                                           | Darwin filtered tap<br>water                 | 3 (10)                                           | 30                     | Daily<br>renewals        |

<sup>a</sup> % CV: Percent co-efficient of variation

<sup>b</sup> FFV: fermented food with vitamins. Represents an organic and bacterial suspension prepared by method described in Riethmuller et al (2003).

<sup>C</sup> For all hydra tests, the amount of Artemia nauplii provided was the same but the delivery method differed between some tests. See text for details.

For the flocculant block testing, the *M. macleayi* and *H. viridissima* tests were repeated due to unexpected sensitive responses, where a No-Observed-Effect-Concentration (NOEC) could not be determined. A third *H. viridissima* test (877B) was conducted due to significantly different results between the first two tests (826B and 873B), which arose following the identification of unusual issues associated with the hydra feeding procedure in the viscous test solutions (see Results and Discussion for further explanation). Accordingly, the final hydra test involved a variation to the daily feeding method in the standard protocol, whereby 3-4 *Artemia* nauplii per hydra were added to the test solutions and briefly mixed, rather than being placed directly in the hydra's tentacles. This variation of the test protocol was repeated for the PAM tests (ie test 892B) but was not deemed necessary for the PEG tests because of the low viscosity and toxicity of PEG.

#### 2.4 Quality Assurance and Quality Control

#### 2.4.1 Chemistry

For each test, Milli-Q and procedural blanks were analysed as described above. Chemistry data for the blanks were initially assessed by searching for analyte concentrations higher than detection limits. Where these concentrations were greater than 2  $\mu$ g/L and higher than background levels of NMCW, duplicate blank samples were re-analysed and/or the control water concentrations were compared with those in tests without blank contamination to determine if the contamination was limited to the one sample bottle or experienced throughout the test. Consequences of any contamination were then investigated and discussed on a case-by-case basis.

#### 2.4.2 Water quality

For each test, data were considered free of confounding factors if: the recorded temperature of the incubator remained within the prescribed limits; the recorded pH in the control group was within  $\pm$  1 unit of Day 1 values; the EC for the control solution was within 10% of the values obtained on Day 1; and the DO concentration was greater than 70% throughout the test.

#### 2.4.3 Control responses

Tests were considered valid if the control organisms met the following criteria:

Chlorella sp cell division rate test

- The growth rate of the control algae is within the range  $1.4 \pm 0.3$  doublings day<sup>-1</sup>;
- There is <20% variability (ie co-efficient of variation, CV <20%) in the control growth rate.

L. aequinoctialis plant growth test

- The average increase in frond number in any control flask at test conclusion was at least four times that at test start (ie increase to 48 fronds/flask); and
- There was <20% variability (CV < 20%) in the control growth rate.

M. macleayi 3-brood reproduction test

- 80% or more of the cladocera are alive, female and have produced three broods at the end of the test period;
- Reproduction in the control averages 30 or more neonates surviving per female over the test period; and
- There was <20% variability (CV <20%) in control neonate production

*H. viridissima* population growth test

- More than 30 healthy hydroids (ie k > 0.27 day<sup>-1</sup>) remain in each control dish at the end of the test period; and
- There was <20% variability (CV <20%) in the control growth rate.

M. mogurnda larval fish survival test

- The mean mortality and presence of fungus on the control fish does not exceed 20%;
- There was <20% variability (CV <20%) in control survival; and

### 2.5 Statistics

One way analysis of variance (ANOVA) and appropriate post-hoc tests were performed (using ToxCalc 5.0) on the results to determine NOECs and Lowest-Observed-Effect-Concentrations (LOECs). For the chronic tests linear interpolation was used to determine point estimates of Inhibitory Concentrations (ICs) that reduced endpoint responses by 10% and 50% (ie IC<sub>10</sub> and IC<sub>50</sub>) relative to the control response. For the *M. mogurnda* acute tests, maximum likelihood logit analysis was used to determine the 5% and 50% lethal concentrations (ie  $LC_{05}$  and  $LC_{50}$ ). The IC<sub>10</sub> ( $LC_{05}$  for *M. mogurnda*) toxicity estimates were used to construct a species sensitivity distribution (SSD) based on a Burr Type III distribution, from which Trigger Values (TVs) were calculated that would be protective of 80, 90, 95 and 99% of species (using BurrliOZ<sup>©</sup> 1.0.14, CSIRO, as detailed in ANZECC/ARMCANZ (2000)). The 95% confidence limits (CLs) of the TVs were estimated using the bootstrapping feature of BurrliOZ<sup>©</sup>, as described by Hose and van den Brink (2005). Toxicity results for the flocculant block formulation were reported in terms of nominal concentration (mg/L), TOC (mg/L) and total N (mg/L). For PAM, toxicity results were reported as nominal concentration (mg/L), and TOC (mg/L).

## 3 Results and discussion

### 3.1 Quality Assurance and Quality Control (QA/QC)

A summary of the QA/QC performance of the tests is presented in Table 4.

#### 3.1.1 Flocculant block

All the toxicity tests were considered valid and control performance rates were at an acceptable level for all tests except for the  $3^{rd}$  *H. viridissima* test (877B, Table 4). However, this test used a modified protocol whereby the *Artemia* food was not given directly to the individual hydra (see section 3.2 for details). Consequently, this test was not expected to meet the same growth rates as the standard protocol and was considered valid.

Analysis of the blank, procedural blank and control (NMCW) chemistry samples showed that the test solutions were free of contamination by metals and that the correct amounts of nutrients were added to the *Chlorella* sp and *L. aequinoctialis* test. Control growth rates and physicochemical parameters were all with the specified ranges, except for *Chlorella* sp and *M. macleayi* (see below). It is also interesting to note that the flocculant block had the effect of slightly increasing the conductivity of the test solutions.

There were pH increases of up to 2.0 units measured in the *Chlorella* sp test (Appendix A). This was attributed to higher than normal growth rates of 1.9 doublings d<sup>-1</sup> in the control, which indicates that the initial cell density may have been too high. It is unclear how such pH changes would affect the toxicity of the flocculant blocks. Taylor et al (2002) have reported that an increase

in pH from 4.5 to 8.5 results in the dissociation of carboxyl functional groups, which increases the negativity of the polyelectrolyte and results in a conformation change of the PAM molecules (ie from coiled to extended). This increase in negative charge and change in conformation may have reduced the adsorption capacity of sediment particles for PAM. Whilst it does not necessarily follow that the pH rise of 2 units in the Chlorella toxicity test would reduce the toxicity of PAM to algal cells, at this pH the algal surface would be expected to have a net negative charge (Han et al 2006). Subsequently, a general observation is that increasing the charge density in the same direction of a molecule and a potential substrate will reduce the likelihood of binding of that molecule.

| Test species             | Control<br>performance<br>criterion       | Test Code | Toxicant   | Mean control<br>response<br>± %CV | Water quality <sup>a</sup> |
|--------------------------|-------------------------------------------|-----------|------------|-----------------------------------|----------------------------|
|                          |                                           | 866G      | Floc Block | 1.9 ± 2                           | pH increase                |
| Chlorella sp             | $1.4 \pm 0.3$ doublings dav <sup>-1</sup> | 888G      | PAM        | 1.6 ± 6                           | acceptable                 |
|                          | <u> </u>                                  | 913G      | PEG        | 1.6 ± 4                           | elevated Zn                |
|                          |                                           | 865L      | Floc Block | 59 ± 12                           | acceptable                 |
| Lemna aequinoctialis     | 48 fronds flask-1                         | 887L      | PAM        | 57 ± 10                           | elevated Zn                |
|                          |                                           | 919L      | PEG        | 36 ± 27                           | elevated Zn                |
|                          |                                           | 862B      | Floc Block | 0.33 ± 3.1                        | acceptable                 |
|                          |                                           | 873B      | Floc Block | 0.33 ± 12.8                       | acceptable                 |
| I hara viridiaaima       | $k > 0.27 dow^1$                          | 877B      | Floc Block | $0.26 \pm 0.9$                    | acceptable                 |
| nyura vinuissima         | K > 0.27 day '                            | 883B      | PAM        | 0.28 ± 1.6                        | acceptable                 |
|                          |                                           | 892B      | PAM        | $0.29 \pm 1.6$                    | elevated Zn                |
|                          |                                           | 920B      | PEG        | 0.34 ± 1.7                        | elevated Zn                |
|                          | 80% survival                              | 874D      | Floc Block | 37 ± 5                            | pH increase                |
| Moinodaphnia<br>macleavi | and<br>>30 neonates                       | 884D      | PAM        | 38 ± 21                           | pH increase                |
|                          | adult <sup>-1</sup>                       | 927D      | PEG        | 32 ± 17                           | elevated Zn                |
|                          |                                           | 864E      | Floc Block | 100 ±0                            | acceptable                 |
| Mogurnda mogurnda        | 80% survival                              | 891E      | PAM        | 93 ± 7                            | acceptable                 |
|                          |                                           | 923E      | PEG        | $100 \pm 0$                       | elevated Zn                |

<sup>a</sup> The acceptable water quality criteria are described in section 2.4.2

In some of the flocculant block treatment groups of the *M. macleayi* test (874D) there were pH changes of over 1.0 units, although the control groups did not vary by more than 0.55 units (Appendix A). These pH increases occurred in the higher-concentration treatments and were probably due to flocculant-induced inhibition of cladoceran feeding on the algae cells, which remove carbon dioxide and hydrogen ions from the test solutions during photosynthesis (Stumm & Morgan 1981). As discussed above, an increase in pH may have reduced the binding capacity of the PAM in the flocculant block formulation.

Strong linear relationships were observed between nominal flocculant block concentrations and 1) measured TOC ( $r^2=0.98$ , measured TOC ( $mg L^{-1}$ ) =0.46 × nominal ( $mg L^{-1}$ )), 2) total nitrogen ( $r^2=0.98$ , measured total nitrogen ( $mg L^{-1}$ ) =0.08 × nominal ( $mg L^{-1}$ )) and 3) viscosity ( $r^2=0.98$ , viscosity cPs = 0.02 nominal mg L<sup>-1</sup>) (Appendix B). However, it is important to note that due to technical difficulties in the measurement of TOC (ie the viscosity of the test solutions clogged the analyser), the results presented are from surrogate test solutions not the actual solutions used in the

tests, ie a new batch of solutions needed to be produced for the TOC analyses. The results presented for total nitrogen are based on measurements for sub-samples of the actual solutions used in the tests.

#### 3.1.2 Polyacrylamide

Control performances for PAM toxicity tests were met and all the tests were considered valid (Table 4).

Analysis of the blank, procedural blank and control (NMCW) chemistry samples showed that the test solutions were relatively free of contaminant metals (Appendix B). However, elevated Zn levels were detected in the procedural blank of the *H. viridissima* test and in the procedural blank and control of the *L. aequinoctialis* test (8.6, 8.2 and 6.6  $\mu$ g L<sup>-1</sup> Zn, respectively). Although the Zn concentrations were above background concentrations, they did not appear to affect the control responses of the test and were unlikely to confound the results. Analysis of the nutrient concentrations suggested that less than the optimal amount of nutrients were added to the *Chlorella* sp tests (1.92 and 0.03 as opposed to 3.28 and 0.046 mg L<sup>-1</sup> N & P, respectively, as stipulated in the test protocol); Appendix B). Nevertheless, excellent growth rates were achieved for both these tests. Control growth rates and physicochemical parameters were all with the specified ranges, except for the *M. macleayi* test, in which a pH increase was observed. This was similar to the pH changes in the flocculant block toxicity tests and was likely to be for the same reasons, ie a reduction in cladoceran algal feeding.

Chemical analysis of the test solutions for TOC and total N indicated that there might have been issues with preparing accurate dilutions of the solutions for analysis or indeed problems with dilution of the stock concentrates to prepare the test solutions. These issues likely arose from the extremely viscous nature of the stock concentrate, which appeared not to be a homogenous solution. In particular, the PAM did not necessarily mix completely with the water and appeared to settle on the bottom of containers whilst stored. It was also very difficult to pipette the PAM solutions for sub-sampling and dilution for analysis of TOC. These factors may have caused errors whilst diluting the test solutions and/or possibly while sub-sampling for chemical analysis. Alternatively, the viscosity of the test solutions may have also caused some issues during the chemical analysis techniques, as the instruments required substantial dilution of the test solution to be able to analyse the samples. A detailed discussion of each of the analyses follows.

- The tests solutions for the *L. aequinoctialis* and *Chlorella* sp tests showed strong linear relationships between nominal dilutions and TOC measurements. Furthermore, the proportions of TOC in the test solutions were near the expected concentrations, ie ~50% of the nominal concentration of PAM. The total N concentrations of the *L. aequinoctialis* test solutions showed a good linear relationship with nominal concentrations and were near expected ranges, which indicate that the test solutions were appropriately diluted for *L. aequinoctialis*. However, the total N of *Chlorella* sp in the 500 and 1000 mg/L test solutions appeared lower that expected, but as this result is in contrast to the TOC measurement it may have been due to issues with the chemical analysis rather than the dilution of the test solution.
- One treatment group from each of the *H. viridissima* tests (ie the 125 mg L<sup>-1</sup> and 62 mg L<sup>-1</sup> nominal PAM concentration groups for test 1 and 2, respectively) was removed from the derivation of the toxicity estimates due to seemingly anomalous elevated TOC and total N measurements. All other treatments showed a good relationship between nominal, TOC and total N concentrations, indicating appropriate dilution of these test solutions.
- Analysis of the *M. mogurnda* test solutions showed that, except for the highest concentration of 2000 mg L<sup>-1</sup>, the TOC and total N concentrations of test solutions were much lower than

 The cladoceran test solutions showed low resolution of TOC and total N measurements between treatments at the lower concentrations (ie 0.5 – 4 mg L<sup>-1</sup> nominal concentration, which is approaching the detection limit of these methods). All were around the NMCW background concentration of 4 mg L<sup>-1</sup> and 0.3 mg L<sup>-1</sup> for TOC and total N, respectively. This result highlights an issue of the technical limitations of these analyses at concentrations that display toxic effects.

The measurement of Brookfield viscosity was reliable at high concentrations but for the lowest concentrations the method lacked sensitivity. In the lowest concentration groups concentration-viscosity relationship was not observed, which is probably due to the fact that 1 cPs is the detection limit of the method. Consequently, the lowest four PAM concentrations all measured 1.28 cPs, which resulted in a sharp threshold in the viscosity-response curve. The method of Funnel viscosity was not sensitive even at the highest concentrations (Appendix B; Table B4) and, as a result, these data were not of use for this work.

The difficulties highlighted above with the reliability of the measured TOC and total N data for PAM meant that these data could not be used as metrics against which to assess the results from the toxicity tests. Consequently, the results and trigger values for PAM presented in this report are based only on the nominal concentrations used. However, it should be noted that the use of nominal concentrations is not the preferred approach as the concentrations of toxicant in the test system are assumed and not measured. The aforementioned difficult nature of the PAM might have resulted in errors in dilution of test solution, which introduces some uncertainty in the toxicity estimates and TVs for the PAM. Thus, these values should be only considered with these issues in mind. Ultimately, this situation is of no practical consequence for interpreting the toxicity test results since TOC and N concentration data were not needed to establish that PAM is the primary toxicant of the flocculant block (see Results and Discussion). Moreover, it is important to note that issues encountered with the chemical analyses of PAM where not encountered during the analysis the flocculant block product. Ultimately, PAM has not been deployed into the environment with out the PEG carrier and the TVs for the whole product are the most relevant.

#### 3.1.3 Polyethylene glycol

All the toxicity tests were considered valid and control performances were at an acceptable level for all tests except for the *L. aequinoctialis* (919L, Table 4). However, as no signs of toxicity were observed up to the highest concentration tested, the test data were considered reliable.

Analysis of the blank, procedural blank and control (NMCW) chemistry samples showed that the correct amounts of nutrients were added to the *Chlorella* sp and *L. aequinoctialis* tests. Zinc concentrations of 4.6, 3.2, 5.2, 2.3 and 9.8  $\mu$ g L<sup>-1</sup> were also measured in the control NMCW of the *Chlorella* sp., *L. aequinoctialis*, *H. viridissima*, *M. macleayi* and *M. mogurnda* tests, respectively, which are higher than typical levels of Zn in NMCW (ie ~1  $\mu$ g L<sup>-1</sup>). Analysis of the procedural blanks suggest the majority of the Zn came from contamination of the plastic-ware used for the tests, which was probably due to the poor performance of the washing procedures in the laboratory at the time (see Appendix B). Procedural blank Zn concentrations were 2–3  $\mu$ g L<sup>-1</sup> compared with normal concentrations of <0.5  $\mu$ g L<sup>-1</sup>. However, these species showed no or very little reduction in growth rates following exposure to the test solution, which indicated that the measured levels of metals did not confound the test results. Control growth rates and physicochemical parameters were all within the specified ranges for all tests and these tests were considered valid.

Analysis of the highest concentration (ie 12 g L<sup>-1</sup>) of PEG showed that there was significant levels of Al (96  $\pm$  28 µg L<sup>-1</sup>), Cr (22  $\pm$  3 µg L<sup>-1</sup>), Cu (2  $\pm$  1 µg L<sup>-1</sup>), Fe (205 $\pm$ 39), Mn (2  $\pm$  1 µg L<sup>-1</sup>) and Zn (4  $\pm$  0.6 µg L<sup>-1</sup>). Thus, it is possible that the toxic effects observed following exposure to high concentrations of PEG may have been due in part to the contribution of co-occurring metals.

#### 3.2 Toxicity of flocculant block formulation

While the term 'toxicity' has been used to describe the effects of the flocculant block formulation (40% PAM and 60% PEG), it should be noted that a significant contribution to the observed effects could be due to physical factors resulting from the viscosity of the dissolved flocculant block, rather than chemical toxicity per se. While it is not possible to quantify the relative proportions of effect due to physical and chemical factors, the results from the *M. macleayi* and *H. viridissima* tests provide some insights (see below).

The flocculant block formulation exhibited an extremely wide range of toxicity, from very toxic to the cladoceran, *M. macleayi* ( $IC_{50} = 10 \text{ mg L}^{-1}$ , nominal concentration), to effectively non-toxic to the duckweed, *L. aequinoctialis* ( $IC_{50} >> 5000 \text{ mg L}^{-1}$ , nominal concentration) (Figure 2 & Table 5). It was moderately toxic to *H. viridissima* ( $IC_{50} = 4250 \text{ mg L}^{-1}$ , nominal concentration) and *Chlorella* sp ( $IC_{50} = 3690 \text{ mg L}^{-1}$ , nominal concentration) and of low toxicity to *M. mogurnda* ( $IC_{50} = 6450 \text{ mg L}^{-1}$ , nominal concentration). The order of sensitivity (from highest to lowest based on  $IC_{10}$  values) of the five species assessed was (noting that the *M. mogurnda* test is an acute survival test): *M. macleayi* >> *H. viridissima* >> *Chlorella* sp. > *M. mogurnda* > *L. aequinoctialis* (Figure 2 and Table 5). *M. macleayi* was by far the most sensitive organism and, in addition to the observed reproductive impairment, an inhibition of growth rate was evident. Furthermore, although 70% of the individuals exposed to 39 mg L<sup>-1</sup> flocculant block survived the full duration of the test (ie 6 days), their average reproductive output was only 0.8 neonates per adult compared with 36.9 neonates per adult in the NMCW controls.

The flocculant block formulation could have affected organism response in two ways. Firstly, for the aquatic animals, the additional energy demands associated with swimming and feeding in the more viscous medium, especially at the upper end of the concentration range, could have contributed to the observed inhibitions of reproduction and growth. Secondly at the lower and less viscous concentrations of flocculant block, the effects observed for *M. macleayi* could be more attributable to direct chemical toxicity. Chemical analysis of the flocculant block formulation detected numerous metals, some of which where at concentrations that would be toxic to the organisms tested. Noteworthy, Al, Cr, Cu and Zn were detected at concentrations 3, 4, 12 and 5 times than the 95% default TVs, respectively, and mixtures of such metals would be likely to have at least an additive effect. However, the bioavailability of these metals was questionable as it was likely that at least some of the metals were strongly bound to the flocculant block matrix.

In addition to direct effects, the response of *M. macleayi* may have been partially a result of indirect effects via the food source. At the highest flocculant block concentrations tested, the algal feed did not disperse evenly, forming clumps and strings in the flocculant block solution. This effect possibly reduced the ability of *M. macleayi* to filter and ingest sufficient food. These observations, along with the fact that *M. macleayi* in the second highest concentration group showed delayed growth and reproduction, but did survive the testing period, suggests that either energy intake may have been reduced or extra energy expended for movement, or both.

| Species                     | Test | Magguramont | Toxicity (mg per litre or cPs) <sup>a</sup> |                          |       |       |  |  |
|-----------------------------|------|-------------|---------------------------------------------|--------------------------|-------|-------|--|--|
| Species                     | ID   | MedSurement | IC <sub>10 (or 5)</sub> (95%CL)             | IC <sub>50</sub> (95%CL) | NOEC  | LOEC  |  |  |
| Chlorella sp                | 866G | Nominal     | 960 (160-1690)                              | 3690 (3110-4460)         | 310   | 630   |  |  |
|                             |      | TOC         | 460 (60-810)                                | 1880 (1540-2280)         | 160   | 300   |  |  |
|                             |      | Total N     | 60 (10-100)                                 | 210                      | 20    | 40    |  |  |
|                             |      | Viscosity   | 30 (10-40)                                  | 90 (70-100)              | 12    | 20    |  |  |
| L. aequinoctialis           | 865L | Nominal     | >5000                                       | >5000                    | >5000 | 5000  |  |  |
|                             |      | TOC         | >2590                                       | >2590                    | >2590 | 2590  |  |  |
|                             |      | Total N     | 120                                         | >290                     | 290   | >290  |  |  |
|                             |      | Viscosity   | 50                                          | >120                     | 120   | >120  |  |  |
| H. viridissima <sup>b</sup> | 862B | Nominal     | 120 (60-330)                                | 4250                     | <310  | 310   |  |  |
|                             |      | TOC         | 60 (30-170)                                 | 2180                     | <160  | 160   |  |  |
|                             |      | Total N     | 7 (5-20)                                    | 240                      | <20   | 20    |  |  |
|                             |      | Viscosity   | 5 (3-10)                                    | 100                      | <10   | 10    |  |  |
|                             | 873B | Nominal     | >1250                                       | >1250                    | >1250 | >1250 |  |  |
|                             |      | TOC         | >620                                        | >620                     | >620  | >620  |  |  |
|                             |      | Total N     | >130                                        | >130                     | 130   | 130   |  |  |
|                             |      | Viscosity   | >30                                         | >30                      | 30    | >30   |  |  |
|                             | 877B | Nominal     | 160 (0-270)                                 | 1180                     | 160   | 310   |  |  |
|                             |      | TOC         | 80 (0-150)                                  | 610                      | 80    | 170   |  |  |
|                             |      | Total N     | 10 (0-30)                                   | 50                       | 10    | 30    |  |  |
|                             |      | Viscosity   | 8 (0-10)                                    | 30                       | 7     | 10    |  |  |
| M. macleayi                 | 874D | Nominal     | 5 (5-6)                                     | 10 (5-15)                | 5     | 10    |  |  |
|                             |      | TOC         | 4 (4-5)                                     | 10                       | 4     | 7     |  |  |
|                             |      | Total N     | 1 (0.5-1)                                   | 1.5 (1-2)                | 1     | 1.4   |  |  |
|                             |      | Viscosity   | 1.5 (1.5-1.6)                               | 2 (1.5-2.0)              | 1.5   | 2     |  |  |
| M. mogurnda                 | 864E | Nominal     | 780 (30-1510) <sup>b</sup>                  | 6450 (4470-24800)        | 1250  | 2500  |  |  |
|                             |      | тос         | 350 (10-700) <sup>b</sup>                   | 3440 (2310-13900)        | 600   | 1190  |  |  |
|                             |      | Total N     | 150 (10-240) <sup>b</sup>                   | 600 (440-2670)           | 130   | 290   |  |  |
|                             |      | Viscosity   | 20 (0-40) <sup>b</sup>                      | >120                     | 30    | 60    |  |  |

| Table 5 | Summar  | v of toxicitv | of flocculant | block to | the five t | ropical | freshwater s | species t | tested |
|---------|---------|---------------|---------------|----------|------------|---------|--------------|-----------|--------|
|         | ••••••• | ,             | 0             |          |            |         |              | -p        |        |

<sup>a</sup> Nominal values, TOC and Total N expressed at mg L<sup>-1</sup>, while viscosity expressed as cPs.

<sup>b</sup> Three different feeding methods were used. See text for details

<sup>c</sup> Value reported for *M. mogurnda* represents the LC<sub>05</sub> (ie concentration lethal to 5% of individuals relative to the controls).



Figure 2 Effect of flocculant block on five local freshwater species. a) nominal concentrations b) measured TOC concentrations c) measured total nitrogen d) measured viscosity. The *H. viridissima* test shown corresponds to the first test conducted (862B). Data points represent the mean  $\pm$  standard error (n = 3, except for *M. macleayi* where n = 10). Control responses are shown in Table 4.

| Metal              | Al<br>(µg/L) | Cr<br>(µg/L) | Си<br>(µg/L) | Zn<br>(µg/L) |
|--------------------|--------------|--------------|--------------|--------------|
| Blank              | 8            | <0.1         | 1            | 3            |
| Flocculant block   | 168          | 3.6          | 17           | 42.5         |
| 95% Trigger values | 55           | 1.0          | 1.4          | 8.0          |

| Tahla 6  | Kov motals | hatactab | in floccu  | lant block | formulation |
|----------|------------|----------|------------|------------|-------------|
| i able o | rey metals | uelecleu | III IIOCCU | Iani Diock | Iomulation  |

Also noteworthy was the response of *H. viridissima* to different feeding regimes (Figure 3). The observed reduction in population growth was thought to be due to a feeding issue. Feeding of *Artemia* nauplii to *H. viridissima* is carried out once daily during the four day test period, and involves directly presenting each hydra with a standard amount (ie 3-4 individual specimens) of *Artemia*. In test 1 (862B), the hydra were fed using an equal amount of effort across all treatments (ie based on the standard protocol), such that, where hydra in higher flocculant block treatments

were observed having difficulty capturing *Artemia*, no additional effort was used to facilitate the capture. The observed growth inhibition following flocculant block exposure in test 1 was originally attributed to an inability of the hydra to discharge its nematocysts in order to capture *Artemia*, or difficulties experienced by the test operator in presenting the *Artemia* to the hydra due to the viscous nature of the flocculant block, or a combination of both. Because a significant effect was observed at the lowest flocculant block treatment (313 mg L<sup>-1</sup>), the test was repeated with lower treatment concentrations. This provided the opportunity to further investigate the hydra response.

In test 2, hydra were subjected to a different feeding regime, whereby they were fed until they had all received an approximately equal amount of food (ie where hydra were observed to have difficulty capturing *Artemia*, additional effort was used to facilitate the capture). This test demonstrated that the hydra exposed to flocculant block could in fact capture (and subsequently feed on) *Artemia* if sufficient direct contact occurred between *Artemia* and the hydras' tentacles. The 'facilitated feeding' method adopted in test 2 resulted in flocculant block having no adverse effect on *H. viridissima* population growth up to the highest test concentration of approximately 1250 mg L<sup>-1</sup>. This indicated there was no direct toxic effect of flocculant block to *H. viridissima*. However, it was evident that the viscosity of the higher flocculant block concentrations (i) made it difficult for the hydras' tentacles to make contact with *Artemia*, and (ii) reduced the swimming ability of *Artemia*.

These observations led to test 3 (877B), which used a different feeding regime (which was evaluated prior to the toxicity test being conducted), whereby an approximately equal quantity of *Artemia* (4 *Artemia* per individual hydra) was dispensed into the test dish as one addition, and the test dish stirred to distribute the *Artemia* through the test dish. This 'passive' feeding regime enabled an assessment of the extent to which *H. viridissima* could encounter and capture its food source. The results of test 3 were similar to those of test 1, and confirmed that the effects of flocculant block on *H. viridissima* were due to its viscosity, which reduced the likelihood and ability of *H. viridissima* to encounter, and therefore capture, sufficient food (see Section 3.4 for a description of how the toxicity estimates were incorporated into the TV.

*M. mogurnda, L. aequinoctialis* and *Chlorella* sp were all very tolerant to flocculant block exposure. However, some interesting observations were made during these tests. For example, *M. mogurnda* survived high concentrations of the dissolved flocculant block but their movement was greatly inhibited and their operculum movement was increased (indicating a higher respiratory rate), although this could not be quantified. *L. aequinoctialis* growth rate increased by 27% in the presence of 155 mg L<sup>-1</sup> flocculant block, which suggested nutrient availability may have been increased in this treatment group. *Chlorella* sp could not be counted with an electronic particle counter due to the viscosity of the solutions, even when diluted for counting. Therefore, microscope counts were required. The appearance of the algal cells' in the all the flocculant block treatment groups suggested that they were in a flocculated state (ie they were observed in aggregates) in the test. This observation was supported by the similar appearance of the algal food source at high flocculant block concentrations in the cladoceran test. Nevertheless, algal growth was not inhibited by high concentrations of the flocculant block, which suggests they were able to successfully absorb nutrients and grow in the viscous matrix.



**Figure 3** Effect of flocculant block on *H. viridissima* growth rates using three different feeding regimes. Data points represent the mean  $\pm$  standard error (*n* = 3). Control responses are shown in table 4. Test 1 (862B) -

Three to four *Artemia* nauplii presented directly to each hydra using an equal amount of effort across all treatment groups. Test 2 (873B) – Three to four *Artemia* nauplii presented directly to each hydra with additional effort provided to ensure all hydra captured the same amount of food. Test 3 (877B) – Four *Artemia* nauplii per hydra per day added to, and mixed through the test container in one addition.

#### 3.3 Toxicity of PAM

Exposure to PAM alone elicited very similar responses to the flocculant block formulation (Table 7 & Figure 4). For example, *M. macleayi* showed a full toxic effect at 32 mg L<sup>-1</sup> PAM and 78 mg L<sup>-1</sup> flocculant block, both of which correspond to the same PAM concentration (ie the flocculant block contains 40% PAM). The reproductive, growth and survival responses were also similar to those observed for the flocculant block. The results strongly indicate that PAM was the primary toxicant in the flocculant block. As with the flocculant block, observations in the toxicity tests indicated that the flocculation of food contributed to the effects. However, metal analysis of the PAM showed that the metal content of the PAM solutions was very similar to the flocculant block (Table 8). This indicates that a direct chemical effect may have also been possible in treatments where viscosity was low.

The remaining species were an order of magnitude less sensitive to PAM than *M. macleayi* (Table 7 & Figure 4). *H. viridissima* exposed to concentrations of 500 mg L<sup>-1</sup> showed an 82% reduction in population growth, while the growth rates of *Chlorella* sp and *L. aequinoctialis* were reduced by 88 and 96% following exposure to 2000 mg L<sup>-1</sup> PAM (Figure 4). However, there were notable differences in the sensitivity of some species to PAM concentrations compared with the dilution of the flocculant block formulation containing equivalent PAM concentrations (based on a 40% assumed PAM content). For example, the growth rate of the duckweed, *L. aequinoctialis*, was almost completely inhibited at 2000 mg L<sup>-1</sup> PAM but showed no response when exposed to 5000 mg L<sup>-1</sup> flocculant block.

Conversely, the fish, *M. mogurnda*, was tolerant to the PAM displaying no significant effects following exposure to 2000 mg L<sup>-1</sup> PAM. However, it is important to note that although the fish exposed to 2000 mg L<sup>-1</sup> PAM survived the testing period their behaviour and condition was similar to that of surviving larvae at high flocculant block concentrations, in that they could not swim in the medium and appeared stressed (eg. rapid gill movement).

| Spacios                     | Test | Magguramont | Toxicity (mg per litre) <sup>a</sup> |                          |      |       |  |  |
|-----------------------------|------|-------------|--------------------------------------|--------------------------|------|-------|--|--|
| Species                     | ID   | Measurement | IC <sub>10 (or 5)</sub> (95%CL)      | IC <sub>50</sub> (95%CL) | NOEC | LOEC  |  |  |
| Chlorella sp                | 888G | Nominal     | 80 (20–190)                          | 440 (280–580)            | 125  | 250   |  |  |
| L. aequinoctialis           | 887L | Nominal     | 130 (0–400)                          | 380 (50–580)             | 125  | 250   |  |  |
| H. viridissima <sup>b</sup> | 883B | Nominal     | 70 (0–100)                           | 340 (300–390)            | 60   | 125   |  |  |
|                             | 892B | Nominal     | 20 (0–30)                            | >500                     | 20   | 30    |  |  |
| M. macleayi                 | 884D | Nominal     | 1 (1–2)                              | 6 (5–6)                  | 1    | 2     |  |  |
| M. mogurnda <sup>a</sup>    | 891E | Nominal     | >2000                                | >2000                    | 2000 | >2000 |  |  |

<sup>a</sup> Value reported for *M. mogurnda* represents the LC<sub>05</sub> (ie concentration lethal to 5% of individuals relative to the controls). <sup>b</sup> Two different feeding methods were used. See text for details.



**Figure 4** Effect of PAM on five local freshwater species. Results show nominal concentrations and data points represent the mean  $\pm$  standard error (n = 3, except for *M. macleayi* where n = 10). Control responses are shown in Table 4.

| Element            | Al<br>(µg/L) | Cd<br>(µg/L) | Cu<br>(µg/L) | Zn<br>(µg/L) |
|--------------------|--------------|--------------|--------------|--------------|
| Blank              | 8            | 0.06         | 1            | 3            |
| Polyacrylamide     | 216          | 1.02         | 15.5         | 55.5         |
| 95% Trigger values | 55           | 1.0          | 1.4          | 8.0          |

Table 8 Metal analyses of flocculant block and polyacrylamide

The results from the *H. viridissima* test show that the standard feeding method (Test 1) and the modified feeding method (Test 2; ie the passive feeding described in flocculant block section above), resulted in different concentration-responses (Figure 5). The modified feeding method resulted in a 20% effect at the second lowest treatment group of 63 mg L<sup>-1</sup> but only a 42% reduction in the highest PAM treatment of 500 mg L<sup>-1</sup>. The toxicity test using the standard feeding method showed no significant difference from the control in the 63 mg L<sup>-1</sup> treatment but exposure to 500 mg L<sup>-1</sup> resulted in a 82% reduction in hydra population growth rate. Consequently, there are significant differences in IC<sub>10</sub> and IC<sub>50</sub> between the two methods. It is unclear why the standard

feeding method resulted in a higher reduction of growth at 500 mg L<sup>-1</sup>. However, it should be noted that these values are based on nominal concentrations and TOC analysis of the test solutions indicated that PAM concentrations might have been higher in Test 1 than they should have been (Appendix C).



**Figure 5** Effect of polyacrylamide on *H. viridissima* growth rates using two different feeding regimes. Data points represent the mean ± standard error (*n* = 3). Control responses are shown in table 4. Test 1 (883B) - Three to four *Artemia* nauplii presented directly to each hydra using an equal amount of effort across all treatment groups. Test 2 (892B) – Four *Artemia* nauplii per hydra per day added to, and mixed through the test container in one addition.

#### 3.4 Toxicity of PEG

PEG was much less toxic compared with PAM and the flocculant block formulation (Figure 6 & Table 9). At high concentrations of up to 12 000 mg L<sup>-1</sup> (nominal) the PEG produced a slightly 'foamy' solution, which is indicative of its surfactant-like properties (Wildish 1974). Both *Chlorella* sp and *L. aequinoctialis* were extremely tolerant of PEG, with concentrations  $\leq 12 000$  mg L<sup>-1</sup> (nominal) having no effect on these species. Indeed, the duckweed's growth rate was slightly higher following exposure to PEG, as it was for the flocculant block and PAM. *M. mogurnda* and *H. viridissima* exhibited partial inhibitory responses (~60% and 25% relative to the control response, respectively) following exposure to 12 000 mg L<sup>-1</sup> PEG (nominal).

As was the case for the flocculant block and PAM, *M. macleayi* was the most sensitive species. Uniquely for this test, exposure to PEG resulted in a high, concentration-dependent mortality of offspring neonates (Figure 7). This response was not observed following exposure of *M. macleayi* to the flocculant block formulation or to PAM alone. Significant offspring mortality is rarely observed during chronic endpoint toxicity tests for *M. macleayi* and indicates that PEG may have directly affected the embryos in the brood sac.

Surprisingly, the usually tolerant fish species, *M. mogurnda*, was the second most sensitive species to PEG exposure, with an  $LC_{50}$  of 9330 mg L<sup>-1</sup> and an  $LC_{05}$  of 1940 mg L<sup>-1</sup>. The  $LC_{05}$  value is lower than the PAM  $LC_{05}$  of >2000 mg/L and suggests that, in the case of the fish, the primary toxicant in the flocculant block may have been PEG, and that a different mechanism of action is resulting in fish mortality following exposure to high concentrations of flocculant block.

|                                                                                               | Test |             | Toxicity (mg per litre)            |                          |       |        |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|------|-------------|------------------------------------|--------------------------|-------|--------|--|--|--|--|--|--|--|
| Species<br>Chlorella sp.<br>L. aequinoctialis<br>H. viridissima<br>M. macleayi<br>M. mogurnda | ID   | Measurement | IC <sub>10 (or 5)</sub><br>(95%CL) | IC <sub>50</sub> (95%CL) | NOEC  | LOEC   |  |  |  |  |  |  |  |
| Chlorella sp.                                                                                 | 0120 | Nominal     | >12000                             | >12000                   | 12000 | >12000 |  |  |  |  |  |  |  |
|                                                                                               | 9130 | TOC         | >7000                              | >7000                    | 7000  | >7000  |  |  |  |  |  |  |  |
| L. aequinoctialis                                                                             | 0101 | Nominal     | >12000                             | >12000                   | 12000 | >12000 |  |  |  |  |  |  |  |
|                                                                                               | 919L | TOC         | >7000                              | >7000                    | 7000  | >7000  |  |  |  |  |  |  |  |
| H. viridissima                                                                                | 920B | Nominal     | 788 (512-2669)                     | >12000                   | 750   | 1500   |  |  |  |  |  |  |  |
|                                                                                               |      | TOC         | 470 (310-1640)                     | >7000                    | 1750  | 3440   |  |  |  |  |  |  |  |
| M. macleayi                                                                                   | 927D | Nominal     | 790 (250-1170)                     | 1990 (1420-2310)         | 750   | 1500   |  |  |  |  |  |  |  |
|                                                                                               |      | TOC         | 470 (140-670)                      | 1170 (850–1350)          | 450   | 890    |  |  |  |  |  |  |  |
| M. mogurnda                                                                                   | 923E | Nominal     | 1940 (0-3940)                      | 9330 (5640-57950)        | 3000  | 6000   |  |  |  |  |  |  |  |
|                                                                                               |      | TOC         | 1370 (780-1910)                    | 5670 (4160–9410)         | 890   | 1750   |  |  |  |  |  |  |  |

 Table 9
 Summary of toxicity of polyethylene glycol (PEG), expressed as mg per litre (nominal and TOC), to the five tropical freshwater species tested

a Value reported for *M. mogurnda* represents the LC<sub>05</sub> (ie concentration lethal to 5% of individuals relative to the controls)



**Figure 6** Effect of PEG on five local freshwater species. a) nominal concentrations and b) measured TOC concentrations. Data points represent the mean  $\pm$  standard error (n = 3, except for *M. macleayi* where n = 10). Control responses are shown in table 4.



**Figure 7** Effect of polyethylene glycol on neonate survival. Data points represent the mean ± standard error of *n* successful broods (as indicated on the chart) in the treatment group. Asterisks indicate that the group is significantly different from the control (P<0.05, Wilcoxon Rank Sum test)

#### 3.5 Trigger values

The Species Sensitivity Distributions (SSDs) based on the flocculant block, PAM and PEG  $IC_{10}/LC_{05}$  values are shown in Figure 8. The associated TVs corresponding to the 80, 90, 95 and 99% species protection levels for the flocculant block, PAM (nominal concentrations only) and PEG (nominal and TOC concentrations) are presented in Table 10, respectively. Issues relating to the TVs and their application are discussed in the general discussion section of this report.

For the flocculant block and PAM toxicity tests using *H. viridissima*, the  $IC_{10}$  values from the standard feeding method and the passive feeding method were averaged because both these methods provided similar concentration-response relationships, and there was no justification to prefer one set of data over the other. Furthermore, neither method showed a tendency to produce more sensitive toxicity estimates. Compared with the standard feeding method the  $IC_{10}$  for the passive feeding method was higher for the flocculant block tests but lower for the PAM tests. Using the geometric mean of multiple  $IC_{10}$  values from the same endpoint is also consistent with the guidance provided in ANZECC/ARMCANZ (2000). However, no advice is provided when using data from slightly different methods. This is probably because all protocols are likely to differ to various degrees, eg. in the water quality used between laboratories. Thus, pooling the data in this case was considered valid.

Trigger values for PAM based on measured TOC and nitrogen are not shown due to the unreliable chemical analysis results, especially for the fish and cladoceran. Furthermore, the TV calculating for nominal PAM concentrations should be viewed with some caution, as there might have been errors in the dilution of the PAM treatments in the toxicity tests. It is also important to note that the model fits for the PEG SSDs were poorer than those for the flocculant block and PAM SSDs, due to two species showing no effect at the highest concentrations and the two most sensitive species having very similar toxicity estimates (Figure 8e & f). Consequently, the SSD for PEG would probably benefit from more definitive toxicity estimates for *Chlorella* sp and *L. aequinoctialis*. However, for this study this was deemed unnecessary as it is highly unlikely that the toxicity values for PEG represent environmentally-relevant concentrations.

The TVs are accompanied by very wide 95% confidence limits (CLs). This is primarily due to the low sample size of five, and the wide spread of toxicity values, which spans three orders of magnitude (ie from the very high sensitivity of *M. macleayi* to the very low sensitivity of *L. aequinoctialis*).



Figure 8 Species sensitivity distributions (from BurrliOZ<sup>©</sup>) for flocculant block, based on IC<sub>10</sub>/LC<sub>05</sub> values expressed as: a) flocculant block nominal concentration (mg L<sup>-1</sup>); b) flocculant block total organic carbon (TOC) measured concentration (mg L<sup>-1</sup>); c) flocculant block total nitrogen measured concentration (mg L<sup>-1</sup>); d) polyacrylamide nominal concentration; e) polyethylene glycol nominal concentration (mg L<sup>-1</sup>); and f) polyethylene glycol total organic carbon (TOC) measured concentration (mg L<sup>-1</sup>).

| Species            | Concentration (95% CL)                      |                                                       |                                                 |  |  |  |  |  |  |  |  |
|--------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------|--|--|--|--|--|--|--|--|
| protection level   | Nominal concentration (mg L <sup>-1</sup> ) | Total organic carbon<br>(mg L <sup>-1</sup> Measured) | Total Nitrogen<br>(mg L <sup>-1</sup> Measured) |  |  |  |  |  |  |  |  |
| Flocculant Block   |                                             |                                                       |                                                 |  |  |  |  |  |  |  |  |
| 99%                | 0.03 (0-400)                                | 0.05 (0-180)                                          | 0.04 (0-20)                                     |  |  |  |  |  |  |  |  |
| 95%                | 2 (0-530)                                   | 2 (0-260)                                             | 1 (0-40)                                        |  |  |  |  |  |  |  |  |
| 90%                | 10 (0-670)                                  | 8 (0-310)                                             | 2 (0-60)                                        |  |  |  |  |  |  |  |  |
| 80%                | 60 (5-840)                                  | 30 (4-400)                                            | 8 (1-80)                                        |  |  |  |  |  |  |  |  |
| Polyacrylamide (P  | AM)                                         |                                                       |                                                 |  |  |  |  |  |  |  |  |
| 99%                | 0.4 (0-40)                                  | N.A. <sup>1</sup>                                     | N.A                                             |  |  |  |  |  |  |  |  |
| 95%                | 1 (0-50)                                    | N.A.                                                  | N.A                                             |  |  |  |  |  |  |  |  |
| 90%                | 3 (0-70)                                    | N.A.                                                  | N.A                                             |  |  |  |  |  |  |  |  |
| 80%                | 10 (0-110)                                  | N.A.                                                  | N.A                                             |  |  |  |  |  |  |  |  |
| Polyethylene glyco | ol (PEG)                                    |                                                       |                                                 |  |  |  |  |  |  |  |  |
| 99%                | 410 (280-1110)                              | 210 (30-780)                                          | N.A                                             |  |  |  |  |  |  |  |  |
| 95%                | 580 (430-1380)                              | 320 (110-1270)                                        | N.A                                             |  |  |  |  |  |  |  |  |
| 90%                | 710 (550-1690)                              | 410 (200-1310)                                        | N.A                                             |  |  |  |  |  |  |  |  |
| 80%                | 950 (720-2040)                              | 590 (430-1670)                                        | N.A                                             |  |  |  |  |  |  |  |  |

 Table 10
 Calculated Trigger Values for the flocculant block and its two constituents, polyacrylamide and polyethylene glycol

<sup>1</sup> Not applicable

#### 3.6 General discussion

This study found that the sensitivity of the test organisms to the flocculant blocks varied considerably. It was also clear from the study that the active ingredient, PAM, was the primary toxicant to most species. The carrier, PEG, was relatively innocuous even at extremely high concentrations of grams per litre (Table 11). However, it should be noted that for *M. mogurnda* the IC<sub>10</sub> for PEG (1940 mg L<sup>-1</sup>) was marginally lower than the IC<sub>10</sub> for PAM (>2000 mg L<sup>-1</sup>), which suggests that PEG may be the primary fish toxicant in the flocculant block, albeit of low toxicity (Table 11). The low toxicity of PEG found in this study concurs with a limited number of studies that have used concentrations up to 5 g L<sup>-1</sup> and that have rarely reported an adverse response in aquatic organisms (Wildish 1974, Bridie´ et al 1979, Chan et al 1981).

There are some notable differences between the results of the current study and the PAM toxicity data provided by the manufacturer. Of particular interest are the PAM toxicity estimates reported for the green alga, *Chlorella vulgaris*, and the zebrafish, *Brachydanio rerio*. The current study found an EC<sub>50</sub> of 440 mg L<sup>-1</sup> PAM for *Chlorella* sp., while the EC<sub>50</sub> data provided by the manufacturer for *C. vulgaris* was >1000 mg L<sup>-1</sup>. Unfortunately, no details of the *C. vulgaris* test are available and hence it is difficult to identify the reasons for the difference in observed toxicity. The difference is unlikely to be species-related as these two species are very similar phylogenetically. The toxicity tests in the present study were likely conducted at a higher temperature (ie 27°C compared to 25°C or lower for the other reported toxicity tests), which may account for the differences in the toxicity estimates reported. However, it might be expected that the higher temperatures would result in a less viscous solution and thus a lower toxicity, but this was not the case.

|                          | Toxicity (mg per litre)                         |                                    |                                    |                                      |  |  |  |  |  |  |  |
|--------------------------|-------------------------------------------------|------------------------------------|------------------------------------|--------------------------------------|--|--|--|--|--|--|--|
| Species                  | Flocculant Block<br>IC/LC <sub>50</sub> (95%CL) | PAM<br>IC/LC <sub>50</sub> (95%CL) | PEG<br>IC/LC <sub>50</sub> (95%CL) | Comment                              |  |  |  |  |  |  |  |
| Chlorella sp             | 3690 (3110-4460)                                | 440 (280-580)                      | >12000                             | PAM more toxic than PEG              |  |  |  |  |  |  |  |
| L. aequinoctialis        | >5000                                           | 380 (50-580)                       | >12000                             | PAM more toxic than PEG              |  |  |  |  |  |  |  |
| H. viridissima ª         | 4250                                            | 340 (300-390)                      | >12000                             | PAM more toxic than PEG              |  |  |  |  |  |  |  |
| M. macleayi              | 10 (5-15)                                       | 6 (5-6)                            | 1990 (1420-2310)                   | PAM more toxic than PEG              |  |  |  |  |  |  |  |
| M. mogurnda <sup>b</sup> | 6450 (4470-24800)                               | >2000                              | 9330 (5640-57950)                  | PEG more toxic than PAM <sup>c</sup> |  |  |  |  |  |  |  |

 Table 11
 Comparison of the polyacrylamide and polyethylene glycol toxicity

<sup>a</sup> Results for the standard protocol feeding method shown.

<sup>b</sup> LC<sub>50</sub> values shown for *M. mogurnda* 

 $^\circ\textsc{Based}$  on  $LC_{\rm 05}$  values for >2000 and 1940 mg  $L^{\textsc{-1}}$  for PAM and PEG respectively.

The results of this study also found that PAM was markedly less toxic to the Australian tropical fish, *M. morgurnda* ( $LC_{50} > 2000 \text{ mg L}^{-1}$ ), compared with the northern hemisphere tropical fish, *B. rerio* ( $LC_{50}$  357 mg  $L^{-1}$ ). However, *B. rerio* was tested using a non-renewal test design, compared to the daily renewals for *M. mogurnda* used here. It is unclear whether such a difference in test design could account for the difference in toxicity of PAM. Such a difference may be more attributable to inter-species differences in sensitivity.

*M. macleayi* was by far the most sensitive organism tested in this study. This finding concurs with the available literature, which reports that cladocerans are the most sensitive taxa to polyelectrolyte exposure, albeit from a limited number of species that have been used in toxicity test for these compounds. The results from this study are comparable with studies by Beim and Beim (1994) and Biesinger et al (1976), who reported 96-h LC<sub>50</sub>s of 14 mg L<sup>-1</sup> and 17 mg L<sup>-1</sup> for *Daphnia magna*, respectively. The reasons for the observed effects on *M. macleayi* may be several-fold. Flocculation by the PAM of the cladocerans' food source may have made it more difficult for them to access food, while the higher viscosity of the test solutions may have increased the energy demands for locomotion and filter feeding, reducing the energy available for reproduction and growth. Moreover, at low concentrations of flocculant block and PAM, a chemical effect (cf. the above physical effects) may have contributed to the response. Metal analyses of However, it is important to note that the concentration of residual acrylamide monomer was not measured because it was likely to be present only in low concentrations and is not highly toxic to aquatic organisms (LC<sub>50</sub> ranges from ~100-200 mg L<sup>-1</sup> for *D. magna* and fish (various species)).

The issue of a specific physical effect (as distinct from chemical toxicity) associated with each of the components individually and in a mixture (the flocculant block formulation) was investigated by plotting the response (neonates per adult) of the *M. macleayi* test against the measured viscosity for each of the three test solutions (Figure 9). The toxic effect of PEG was clearly unrelated to viscosity. High concentrations of PEG were only slightly more viscous than controls, but did appear 'soapy' suggesting surfactant properties. In contrast, the test response for the flocculant block and PAM displayed a dependence on both viscosity and concentration, albeit not to the same degree. The solutions containing PAM alone showed a greater response at lower viscosities compared to the flocculant block, which may indicate a chemical effect, in addition to viscosity, was contributing to toxicity (Figure 9). However, it is necessary to note that the measured viscosity of PAM solutions was not linear in the low concentration range of interest and at higher concentrations the PAM was more viscous than the flocculant block. (Figure 10). This may have been due to PAM's tendency to form non-homogenous solutions resulting in lower measurements because of areas of lower resistance in samples. However,

these observations may also be related to reports that PAM solutions behave as psuedoplastic non-Newtonian fluids ie, viscosity decreases when increasing shear rates are applied (Autio & Houska 1991), although studies have reported that in the low concentration range of interest for the cladoceran study (ie >400 mg L<sup>-1</sup>) PAM has Newtonian fluid properties (Figure 9, Bjorneberg 1998). Moreover, the rheology of PEG-PAM mixtures could not be found in the literature and it is clear that the PEG 'carrier' significantly changes the PAM solution's properties. Finally, it should be noted that the reported accuracy of these measurements was ±1 cPs, with the total range of the measurements spanning only 1-5 cPs. Thus the indicated slight dependence on viscosity of PAM in Figure 9 is likely within the bounds of measurement precision, especially given the issues of solution heterogeneity noted above. Ultimately, the ability of the Brookfield viscosity measurement to inform the assessment of effects of viscosity is limited by its precision at the lower end of the viscosity scale.



**Figure 9** Response of *M. macleayi* reproduction to flocculant block, PAM and PEG, plotted against solution viscosity. The concentrations adjacent to the data points for flocculant block and PAM show the nominal concentration of the test solution measured.



Figure 10 Relationship between nominal concentration and measured viscosity for flocculant block and PAM. a) low concentration range b) the full concentration range of test solutions

Although, it is reasonable to question the environmental relevance of the *M. macleayi* finding in light of the fact that the flocculants would also be bound to suspended sediment in the field and thereby removed from the water column. However, it is logical to conclude from the observations made during testing that these products also flocculate algae and organic particulates that are necessary for the growth of filter feeding organisms. Subsequently, any reduction in the availability of food would reduce the overall energy available to cladocerans and thus their reproductive output. Nonetheless, additional environmental factors will also influence the concentration and environmental fact of the flocculant blocks in the mine waters (eg flow rates).

It was unfortunate that the measured TOC and total N results were unreliable to the point that TVs based on these parameters could not be derived with confidence. The issues associated with the chemical analyses of the PAM were due to the extremely difficult properties of the PAM at the concentrations tested in this study. In the absence of the PEG carrier, the PAM solutions comprised a heterogeneous gel-like solution. The PAM appeared to settle-out with the gel sitting on the bottom of the test containers and was extremely difficult to pipette. Consequently, obtaining a representative sub-sample of the test solution was difficult. In addition, the viscosity of the PAM was a challenge for the analytical instruments. However, the test results clearly implicated PAM as the primary toxicant, which was the main aim of testing the PAM solution alone.

Finally, the limitations, and hence the appropriate use of the TVs derived in this study need to be emphasised. If a Magela Creek TV was required, the typically adopted level of species protection of 99% for this system would equate to a TV of 0.02 mg  $L^{-1}$  (as DOC), which is far below the background level of DOC in Magela Creek (ie ~1-5 mg  $L^{-1}$ ). Inputs of flocculant block components at these levels could not therefore be detected by measuring TOC, the most practicable method for screening. It is possible that a method for specifically measuring these types of organics at such low concentrations could be developed but that option would need to be specifically investigated.

For management of waters on-site, a level of species protection of 99 or 95% would be inappropriate. In this case, a lower level of protection (say 90 or 80%) would be more fitting for water bodies already impacted from mining (ANZECC/ARMCANZ 2000). This would be especially the case for runoff from waste rock stockpiles wherein the objective is to reduce the loading of fine particulates as soon as possible after these waters enter sediment traps and/or polishing wetlands. The flocculant block products will readily bind to the suspended solids in the mine waters causing aggregation of the particles (the role of a flocculant) and sedimentation to the base of the pond, where they would most likely be retained on the mine site. The 90 and 80% TVs based on TOC (8 and 30 mg L<sup>-1</sup>, respectively) are likely to be sufficiently above 'background' TOC in Ranger mine waters (1–3 mg L<sup>-1</sup>; ERA, pers comm.) for practical quantification of flocculants in Ranger water bodies. Thus, it may be possible using analysis of TOC to detect the inputs of dissolved flocculant block components.

## 5 Conclusions

To date, flocculant blocks, and specifically their anionic polymer ingredients, have been considered relatively non-toxic. Consequently, limited studies have focused on the environmental impacts of these products. Indeed, compared with their cationic counterparts, previous toxicity test work has indicated that anionic polymers are much less toxic.

However, the present study has demonstrated that sensitivity of different freshwater species to anionic polymers can vary considerably. More importantly, the value of measuring chronic sub-lethal endpoints has been demonstrated through the low toxicity estimate derived from the 6 day cladoceran reproduction test. Measurement of the low viscosity and high metal concentrations in the test solutions indicate that some of the effects of PAM may have been due to direct toxic effects rather than indirect effects due to viscosity. Nevertheless, this issue should not greatly alter how the results of the study are applied because the mechanism of action is secondary to the importance of the toxicity estimates derived.

A key challenge with respect to the application of the water quality guideline values derived from this study is the ability of a standard water quality monitoring program to measure and detect concentrations of dissolved flocculant block components in waters downstream of where such products have been deployed. Depending on the agreed level of species protection, there may be substantial practical difficulty in using TOC as a surrogate to monitor levels of flocculant block components in mine waters due to relatively high background concentrations of TOC. The measurement of nitrogen as a surrogate for PAM is also unlikely to be practical, as the proportion of nitrogen in the flocculant block is even lower than the carbon content of the product. Furthermore, nitrogen levels in water bodies on the Ranger mine site may also be elevated due to inputs from explosives residues.

## 6 References

- ANZECC/ARMCANZ 2000. *Chapter 8: Aquatic ecosystems*. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra.
- Autio K & Houska M 1991. Measurement of flow curves for model liquids and real food systems with two commercial viscometers. *Journal of Food Engineering* 13, 57–66.
- Beim AA & Beim AM 1994. Comparative ecological toxicological data on determination of maximum permissible concentrations (MPC) for several flocculants *Environmental Technology* 15, 195–198.
- Biesinger KE, Lemke AE, Smith WE & Tyo RM 1976. Comparative toxicity of polyelectrolytes to selected aquatic animals. J. Water Pollut. Control Fed. 48, 183–195.
- Bjornberg, DL 1998. Temperature, concentration, and pumping effects on PAM viscosity. *Transactions of the American Society of Agricultural Engineers* 41, 1651–1655.
- Bolto B & Gregory J 2007. Organic polyelectrolytes in water treatment. *Water Research* 41, 2301–2324.
- Bridié AL, Wolff CJM & Winter M 1979. The acute toxicity of some petrochemicals to goldfish. *Water Research* 13.
- Chan K, Wong KH & Ng SL 1981. Effects of polyethylene glycol on growth and cadmium accumulation of CU-1. *Chemosphere* 10, 985–991.
- De Rosemond SJC & Liber K 2004. Wastewater treatment polymers identified as the toxic component of a diamond mine effluent. *Environmental Toxicology and Chemistry* 23, 2234–2242.
- Hamilton JD, Reinert KH & Freeman MB 1994. Aquatic risk assessment of polymers. *Environmental Science and Technology* 28, A187–A192.
- Han X, Wong YS & Tam NFY. 2006. Surface complexation mechanism and modeling in Cr(III) biosorption by a microalgal isolate, Chlorella miniata. *Journal of Colloid and Interface Science* 303, 365–371.

- Harford AJ, Halloran K & Wright PFA 2007. Effect of *in vitro* and *in vivo* organotin exposures on the immune functions of Murray cod (Maccullochella peellii peellii). *Environmental Toxicology and Chemistry* 26, 1649–1656.
- Hose GC, van den & Brink PJ 2005. Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data. *Archives of Environmental Contamination and Toxicology* 47, 511–520.
- Houston M, Hogan A, van Dam R & Nou S 2007. Procedure for the 96 hour gastropod reproduction toxicity test using *Amerianna cumingi*. Internal Report 525, June, Supervising Scientist, Darwin. Unpublished paper.
- Liber K, Weber L & Lévesque C 2005. Sublethal toxicity of two wastewater treatment polymers to lake trout fry (Salvelinus namaycush). *Chemosphere* 61, 1123–1133.
- Narita T, Ohtakeyama R, Matsukata M, Gong JP & Osada Y 2001. Kinetic study of cell disruption by ionic polymers with varied charge density. *Colloid & Polymer Science* 279, 178–183.
- NICNAS 2005. Full Public Report: Polymer in Ultimer 00LT053, File No PLC/458, National Industrial Chemicals Notification and Assessment Scheme, Canberra, ACT, Australia. http://www.nicnas.gov.au/publications/car/new/plc/plc0400fr/plc458fr.pdf
- Riethmuller N, Camilleri C, Franklin N, Hogan AC, King A, Koch A, Markich SJ, Turley C & van Dam R 2003. *Ecotoxicological testing protocols for Australian tropical freshwater ecosystems*. Supervising Scientist Report 173, Supervising Scientist, Darwin NT.
- Stumm W & Morgan JJ 1981. Aquatic chemistry : An introduction emphasizing chemical equilibria in natural waters. 2d edn. Willy-Interscience. New York.
- Taylor ML, Morris GE, Self PG & Smart RC 2002. Kinetics of adsorption of high molecular weight anionic polyacrylamide onto kaolinite: The flocculation process. *Journal of Colloid and Interface Science* 250, 28–36.
- Vehaar HJM (2002) Anionic polyelectrolytes: Classification and Labelling within the Framework of EU Directive 67/548/EEC; Supporting documentation. OpdenKamp Registration & Notification, The Hague, The Netherlands.
- Wildish DJ 1974. Lethal response by Atlantic salmon part to some polyoxyethylated cationic and nonionic surfactants. *Water Research* 8, 433–437.

## Appendix A Physicochemical data for the toxicity tests

#### Appendix A1 Physicochemical data for the flocculant block toxicity tests

#### Chlorella sp test (866G)

| Flocculant Block Concentration (mg L <sup>-1</sup> ) |                           |      |      |      |      |      |      |      |      |      |      |      |      |
|------------------------------------------------------|---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| _                                                    | 0                         |      | C    | 313  |      | 625  |      | 1250 |      | 2500 |      | 5000 |      |
| Day                                                  | Parameter                 | 0 h  | 72 h |
| 0                                                    | рН                        | 6.72 | 7.91 | 6.62 | 8.65 | 6.49 | 8.77 | 6.50 | 8.65 | 6.38 | 7.91 | 6.42 | 7.07 |
|                                                      | Conductivity <sup>1</sup> | 23   | 47   | 28   | 46   | 34   | 51   | 47   | 63   | 71   | 85   | 123  | 141  |
|                                                      | DO <sup>2</sup>           | 97   | 99   | 98   | 100  | 100  | 97   | 102  | 90   | 102  | 82   | 84   | 87   |

 $^1$  Conductivity units are in  $\mu S~cm^{\text{-1}}$ 

<sup>2</sup> DO: Dissolved oxygen. Measurements are expressed as percent saturation

#### Lemna aequinoctialis test (865L)

|     |                           |      |      | /    |         |          |            |          |      |      |      |      |      |
|-----|---------------------------|------|------|------|---------|----------|------------|----------|------|------|------|------|------|
|     |                           |      |      | Flo  | cculant | Block Co | oncentrati | on (mg l | 1)   |      |      |      |      |
|     |                           | (    | C    | 31   | 13      | 6        | 25         | 12       | 50   | 25   | 500  | 50   | 000  |
| Day | Parameter                 | 0 h  | 96 h | 0 h  | 96 h    | 0 h      | 96 h       | 0 h      | 96 h | 0 h  | 96 h | 0 h  | 96 h |
| 0   | рН                        | 6.72 | 7.20 | 6.25 | 7.30    | 6.49     | 7.27       | 6.50     | 7.21 | 6.38 | 6.73 | 6.42 | 6.68 |
|     | Conductivity <sup>1</sup> | 23   | 19   | 28   | 23      | 34       | 31         | 47       | 43   | 71   | 77   | 123  | 120  |
|     | DO <sup>2</sup>           | 98   | 94   | 98   | 85      | 100      | 84         | 102      | 74   | 102  | 69   | 84   | 78   |

<sup>1</sup> Conductivity units are in μS cm<sup>-1</sup>

#### Hydra viridissima test (862B)

|     |                           |      |      | Flo  | cculant | Block Co | ncentrati | on (mg l | )    |      |      |      |      |
|-----|---------------------------|------|------|------|---------|----------|-----------|----------|------|------|------|------|------|
|     |                           | (    | )    | 31   | 13      | 6        | 25        | 12       | 50   | 25   | 500  | 50   | 000  |
| Day | Parameter                 | 0 h  | 24h  | 0 h  | 24 h    | 0 h      | 24 h      | 0 h      | 24 h | 0 h  | 24 h | 0 h  | 24 h |
| 0   | рН                        | 6.66 | 6.79 | 6.61 | 6.82    | 6.52     | 6.79      | 6.46     | 6.79 | 6.45 | 6.67 | 6.37 | 6.60 |
|     | Conductivity <sup>1</sup> | 16   | 30   | 21   | 25      | 27       | 42        | 40       | 44   | 65   | 71   | 115  | 127  |
|     | DO <sup>2</sup>           | 106  | 94   | 96.6 | 93      | 103      | 82        | 101      | 86   | 95   | 74   | 85   | 81   |
| 1   | рН                        | 6.50 | 6.61 | 6.58 | 6.60    | 6.53     | 6.66      | 6.45     | 6.63 | 6.41 | 6.61 | 6.40 | 6.59 |
|     | Conductivity              | 16   | 17   | 21   | 22      | 27       | 30        | 40       | 42   | 66   | 66   | 114  | 118  |
|     | DO                        | 108  | 93   | 92   | 86      | 93       | 83        | 85       | 69   | 95   | 82   | 77   | 81   |
| 2   | рН                        | 6.44 | 6.70 | 6.49 | 6.72    | 6.51     | 6.69      | 6.56     | 6.70 | 6.51 | 6.67 | 6.46 | 6.60 |
|     | Conductivity              | 16   | 17   | 21   | 22      | 27       | 29        | 40       | 43   | 65   | 66   | 115  | 119  |
|     | DO                        | 106  | 92   | 103  | 89      | 97       | 78        | 97       | 70   | 97   | 82   | 80   | 75   |
| 3   | рН                        | 6.46 | 6.60 | 6.75 | 6.80    | 6.55     | 6.89      | 6.61     | 6.93 | 6.51 | 6.91 | 6.47 | 6.87 |
|     | Conductivity              | 16   | 17   | 21   | 22      | 27       | 28        | 39       | 42   | 64   | 68   | 115  | 118  |
|     | DO                        | 106  | 93   | 101  | 90      | 106      | 85        | 90       | 72   | 97   | 83   | 93   | 90   |

 $^{1}$  Conductivity units are in  $\mu S~cm^{\text{-1}}$ 

#### Hydra viridissima test (873B)

|     |                           |      |      | Flo  | cculant | Block Co | oncentrati | ion (mg l | 1)   |      |       |      |      |
|-----|---------------------------|------|------|------|---------|----------|------------|-----------|------|------|-------|------|------|
|     |                           | (    | )    | 3    | 9       | 7        | '8         | 1         | 56   | 3    | 13    | 12   | 250  |
| Day | Parameter                 | 0 h  | 24h  | 0 h  | 24 h    | 0 h      | 24 h       | 0 h       | 24 h | 0 h  | 24 h  | 0 h  | 24 h |
| 0   | рН                        | 6.66 | 6.69 | 6.80 | 6.70    | 6.68     | 6.71       | 6.68      | 6.70 | 6.64 | 9.79* | 6.63 | 6.79 |
|     | Conductivity <sup>1</sup> | 16   | 19   | 17   | 19      | 19       | 21         | 21        | 22   | 26   | 26    | 57   | 50   |
|     | DO <sup>2</sup>           | 106  | 97   | 104  | 97      | 106      | 94         | 105       | 91   | 109  | 91    | 82   | 84   |
| 1   | рН                        | 6.44 | 6.63 | 6.43 | 6.71    | 6.48     | 6.65       | 6.51      | 6.72 | 6.53 | 6.76  | 6.44 | 6.79 |
|     | Conductivity              | 19   | 19   | 18   | 20      | 19       | 20         | 21        | 22   | 25   | 27    | 56   | 58   |
|     | DO                        | 113  | 96   | 115  | 92      | 106      | 92         | 111       | 87   | 110  | 86    | 104  | 85   |
| 2   | рН                        | 6.55 | 6.73 | 6.52 | 6.76    | 6.49     | 6.78       | 6.54      | 6.79 | 6.58 | 6.85  | 6.56 | 6.91 |
|     | Conductivity              | 17   | 20   | 17   | 21      | 19       | 21         | 21        | 23   | 25   | 28    | 56   | 60   |
|     | DO                        | 118  | 93   | 115  | 94      | 117      | 93         | 114       | 95   | 117  | 93    | 112  | 79   |
| 3   | рН                        | 6.46 | 6.70 | 6.56 | 6.74    | 6.58     | 6.75       | 6.54      | 6.83 | 6.64 | 6.88  | 6.55 | 6.95 |
|     | Conductivity              | 17   | 18   | 18   | 19      | 19       | 20         | 21        | 21   | 26   | 26    | 56   | 58   |
|     | DO                        | 115  | 100  | 118  | 98      | 117      | 96         | 109       | 96   | 108  | 95    | 92   | 84   |

\* indicates likely erroneous reading

<sup>1</sup> Conductivity units are in  $\mu$ S cm<sup>-1</sup>.

#### Hydra viridissima test (877B)

|     |                           |      | Flocculant Block Concentration (mg L <sup>-1</sup> ) |      |      |      |      |      |      |      |      |      |      |      |      |  |
|-----|---------------------------|------|------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
|     |                           | (    | 0                                                    |      | 39   |      | 78   |      | 156  |      | 313  |      | 625  |      | 1250 |  |
| Day | Parameter                 | 0 h  | 24h                                                  | 0 h  | 24 h |  |
| 0   | рН                        | 6.54 | 6.68                                                 | 6.59 | 6.76 | 6.56 | 6.75 | 6.60 | 6.79 | 6.53 | 6.78 | 6.58 | 6.80 | 6.58 | 6.75 |  |
|     | Conductivity <sup>1</sup> | 18   | 20                                                   | 19   | 21   | 20   | 21   | 21   | 23   | 25   | 26   | 32   | 32   | 47   | 49   |  |
|     | DO <sup>2</sup>           | 105  | 92                                                   | 98   | 93   | 99   | 90   | 100  | 87   | 106  | 85   | 96   | 80   | 99   | 73   |  |
| 1   | рН                        | 6.61 | 6.75                                                 | 6.65 | 6.80 | 6.61 | 6.79 | 6.63 | 6.82 | 6.54 | 6.83 | 6.58 | 6.83 | 6.60 | 6.94 |  |
|     | Conductivity              | 18   | 20                                                   | 22   | 20   | 20   | 21   | 21   | 23   | 25   | 27   | 33   | 33   | 47   | 49   |  |
|     | DO                        | 113  | 93                                                   | 106  | 91   | 109  | 95   | 103  | 86   | 106  | 82   | 99   | 75   | 92   | 71   |  |
| 2   | рН                        | 6.57 | 6.75                                                 | 6.72 | 6.77 | 6.64 | 6.77 | 6.66 | 6.82 | 6.63 | 6.84 | 6.68 | 6.86 | 6.70 | 6.93 |  |
|     | Conductivity              | 18   | 20                                                   | 19   | 20   | 20   | 21   | 21   | 23   | 25   | 27   | 32   | 33   | 47   | 49   |  |
|     | DO                        | 113  | 93                                                   | 109  | 91   | 106  | 90   | 110  | 90   | 114  | 85   | 102  | 81   | 103  | 78   |  |
| 3   | рН                        | 6.54 | 6.70                                                 | 6.60 | 6.78 | 6.63 | 6.81 | 6.65 | 6.85 | 6.61 | 6.85 | 6.59 | 6.90 | 6.59 | 6.90 |  |
|     | Conductivity              | 20   | 22                                                   | 19   | 20   | 20   | 20   | 21   | 21   | 25   | 26   | 31   | 32   | 45   | 48   |  |
|     | DO                        | 112  | 91                                                   | 105  | 93   | 105  | 92   | 112  | 91   | 110  | 89   | 97   | 76   | 105  | 77   |  |

 $^1$  Conductivity units are in  $\mu S~cm^{\text{-1}}$
#### Moinodaphnia macleayi (863D)

|     |                           |       |      |      |      | Floo | cculant E | Block Co | oncentra | tion (mg | L <sup>-1</sup> ) |      |      |      |      |      |      |
|-----|---------------------------|-------|------|------|------|------|-----------|----------|----------|----------|-------------------|------|------|------|------|------|------|
|     |                           | C     | )    | 3    | 9    | 7    | '8        | 1        | 56       | 3        | 13                | 62   | 25   | 12   | 250  | 25   | 500  |
| Day | Parameter                 | 0 h   | 24h  | 0 h  | 24h  | 0 h  | 24h       | 0 h      | 24 h     | 0 h      | 24 h              | 0 h  | 24 h | 0 h  | 24 h | 0 h  | 24 h |
| 0   | рН                        | 5.39* | 6.94 | 6.56 | 7.19 | 6.57 | 7.88      | 6.62     | 8.58     | 6.62     | 8.57              | 6.60 | 8.26 | 6.60 | 7.71 | 6.52 | 7.30 |
|     | Conductivity <sup>1</sup> | 17    | 20   | 17   | 19   | 18   | 20        | 19       | 22       | 22       | 24                | 30   | 32   | 43   | 46   | 73   | 77   |
|     | DO <sup>2</sup>           | 106   | 97   | 103  | 99   | 107  | 96        | 110      | 100      | 103      | 95                | 99   | 91   | 104  | 87   | 100  | 85   |
| 1   | рН                        | 6.55  | 6.80 | 6.57 | 7.11 | 6.59 | 7.03      | 6.61     | 7.09     | 6.52     | 7.14              | 6.59 | 7.11 | 6.54 | 7.03 | 6.49 | 6.85 |
|     | Conductivity              | 19    | 19   | 18   | 19   | 18   | 21        | 20       | 21       | 23       | 24                | 30   | 32   | 45   | 45   | 75   | 76   |
|     | DO                        | 111   | 93   | 115  | 96   | 111  | 92        | 116      | 91       | 108      | 94                | 115  | 80   | 108  | 81   | 98   | 85   |
| 2   | рН                        | 6.50  | 7.04 | 6.55 | 7.09 | 6.55 | 8.05      | 6.58     | 8.49     | 6.55     | 8.66              |      |      |      |      |      |      |
|     | Conductivity              | 21    | 19   | 17   | 20   | 17   | 20        | 20       | 22       | 23       | 25                | NA   | NA   | NA   | NA   | NA   | NA   |
|     | DO                        | 114   | 101  | 114  | 98   | 116  | 108       | 116      | 106      | 113      | 98                |      |      |      |      |      |      |
| 3   | рН                        | 6.59  | 6.90 | 6.68 | 7.15 | 6.69 | 7.10      |          |          |          |                   |      |      |      |      |      |      |
|     | Conductivity              | 17    | 20   | 18   | 20   | 18   | 20        | NA       | NA       | NA       | NA                | NA   | NA   | NA   | NA   | NA   | NA   |
|     | DO                        | 108   | 100  | 105  | 102  | 112  | 103       |          |          |          |                   |      |      |      |      |      |      |
| 4   | рН                        | 6.57  | 6.85 | 6.65 | 6.99 | 6.65 | 7.00      |          |          |          |                   |      |      |      |      |      |      |
|     | Conductivity              | 20    | 20   | 18   | 21   | 18   | 21        | NA       | NA       | NA       | NA                | NA   | NA   | NA   | NA   | NA   | NA   |
|     | DO                        | 111   | 96   | 115  | 97   | 114  | 98        |          |          |          |                   |      |      |      |      |      |      |

\* indicates likely erroneous reading

<sup>1</sup> Conductivity units are in  $\mu$ S cm<sup>-1</sup>.

<sup>2</sup> DO: Dissolved oxygen. Measurements are expressed as percent saturation.

#### Moinodaphnia macleayi (874D)

|     |                           |      |      |      |      | Floo | culant E | Block Co | oncentrat | tion (mg | L <sup>-1</sup> ) |      |      |      |      |      |      |
|-----|---------------------------|------|------|------|------|------|----------|----------|-----------|----------|-------------------|------|------|------|------|------|------|
|     |                           | (    | 0    | 1    | .2   | 2    | .4       | :        | 5         | 1        | 10                | 2    | 0    | 3    | 39   | 7    | 78   |
| Day | Parameter                 | 0 h  | 24h  | 0 h  | 24h  | 0 h  | 24h      | 0 h      | 24 h      | 0 h      | 24 h              | 0 h  | 24 h | 0 h  | 24 h | 0 h  | 24 h |
| 0   | pН                        | 6.54 | 6.93 | 6.62 | 6.83 | 6.66 | 6.92     | 6.67     | 6.93      | 6.69     | 7.95              | 6.73 | 7.76 | 6.68 | 7.83 | 6.68 | 7.95 |
|     | Conductivity <sup>1</sup> | 17   | 20   | 17   | 20   | 17   | 20       | 17       | 20        | 17       | 20                | 17   | 20   | 18   | 21   | 17   | 21   |
|     | DO <sup>2</sup>           | 109  | 94   | 107  | 100  | 104  | 99       | 107      | 98        | 109      | 103               | 112  | 100  | 110  | 103  | 105  | 102  |
| 1   | pН                        | 6.63 | 6.90 | 6.58 | 7.01 | 6.59 | 7.01     | 6.63     | 7.06      | 6.68     | 6.96              | 6.73 | 7.09 | 6.63 | 7.04 | 6.80 | 7.00 |
|     | Conductivity              | 24   | 20   | 19   | 20   | 17   | 20       | 17       | 21        | 17       | 20                | 18   | 20   | 18   | 21   | 19   | 21   |
|     | DO                        | 111  | 98   | 104  | 98   | 115  | 90       | 110      | 98        | 112      | 92                | 112  | 97   | 109  | 95   | 106  | 95   |
| 2   | рН                        | 6.78 | 6.81 | 6.72 | 6.88 | 6.67 | 6.96     | 6.72     | 7.01      | 6.61     | 6.89              | 6.65 | 7.25 | 6.65 | 7.16 | 6.62 | 7.26 |
|     | Conductivity              | 17   | 20   | 17   | 20   | 16   | 20       | 17       | 20        | 17       | 20                | 18   | 20   | 18   | 20   | 19   | 22   |
|     | DO                        | 109  | 97   | 108  | 97   | 108  | 96       | 111      | 97        | 108      | 98                | 107  | 95   | 110  | 101  | 103  | 98   |
| 3   | pН                        | 6.51 | 6.92 | 6.58 | 7.48 | 6.51 | 7.31     | 6.54     | 7.42      | 6.64     | 7.25              | 6.68 | 7.62 | 6.68 | 8.32 |      |      |
|     | Conductivity              | 17   | 19   | 17   | 20   | 18   | 20       | 17       | 19        | 17       | 20                | 17   | 20   | 18   | 21   | NA   | NA   |
|     | DO                        | 108  | 97   | 114  | 101  | 108  | 99       | 115      | 101       | 116      | 101               | 109  | 101  | 109  | 103  |      |      |
| 4   | pН                        | 6.62 | 7.00 | 6.70 | 7.45 | 6.70 | 7.34     | 6.72     | 7.37      | 6.73     | 7.62              | 6.72 | 8.29 | 6.72 | 8.29 |      |      |
|     | Conductivity              | 17   | 19   | 17   | 19   | 17   | 19       | 17       | 19        | 17       | 19                | 17   | 20   | 18   | 20   | NA   | NA   |
|     | DO                        | 106  | 94   | 111  | 94   | 109  | 95       | 113      | 97        | 111      | 98                | 112  | 102  | 111  | 104  |      |      |

<sup>1</sup> Conductivity units are in  $\mu$ S cm<sup>-1</sup>

<sup>2</sup> DO: Dissolved oxygen. Measurements are expressed as percent saturation

| Mogurnda mogurnda test (864) | E) |
|------------------------------|----|
|------------------------------|----|

|     |                           |      |      | Fl   | occulant | Block C | oncentra | tion (mg | L <sup>-1</sup> ) |      |      |      |      |
|-----|---------------------------|------|------|------|----------|---------|----------|----------|-------------------|------|------|------|------|
|     |                           | (    | C    | 31   | 13       | 6       | 25       | 12       | 50                | 25   | 500  | 50   | 000  |
| Day | Parameter                 | 0 h  | 24h  | 0 h  | 24 h     | 0 h     | 24 h     | 0 h      | 24 h              | 0 h  | 24 h | 0 h  | 24 h |
| 0   | рН                        | 6.57 | 6.80 | 6.56 | 6.73     | 6.46    | 6.72     | 6.56     | 6.71              | 6.37 | 6.59 | 6.39 | 6.46 |
|     | Conductivity <sup>1</sup> | 16   | 20   | 25   | 28       | 34      | 37       | 56       | 59                | 97   | 98   | 169  | 163  |
|     | DO <sup>2</sup>           | 103  | 92   | 106  | 84       | 95      | 79       | 90       | 82                | 95   | 75   | 78   | 73   |
| 1   | рН                        | 6.57 | 6.59 | 6.68 | 6.64     | 6.62    | 6.66     | 6.55     | 6.60              | 6.50 | 6.52 | 6.28 | 6.29 |
|     | Conductivity              | 15   | 16   | 24   | 25       | 35      | 36       | 55       | 58                | 96   | 98   | 169  | 177  |
|     | DO                        | 100  | 101  | 104  | 104      | 91      | 78       | 92       | 83                | 96   | 80   | 93   | 77   |
| 2   | рН                        | 6.59 | 6.79 | 6.75 | 6.79     | 6.74    | 6.79     | 6.74     | 6.71              | 6.66 | 6.59 | 6.65 | 6.45 |
|     | Conductivity              | 16   | 17   | 27   | 28       | 38      | 39       | 58       | 60                | 99   | 100  | 178  | 180  |
|     | DO                        | 94   | 92   | 85   | 85       | 78      | 82       | 83       | 79                | 80   | 81   | 76   | 87   |
| 3   | рН                        | 6.55 | 6.74 | 6.69 | 6.73     | 6.78    | 6.78     | 6.62     | 6.73              | 6.46 | 6.74 | 6.36 | 6.59 |
|     | Conductivity              | 16   | 20   | 25   | 29       | 35      | 40       | 54       | 57                | 90   | 99   | 177  | 181  |
|     | DO                        | 115  | 88   | 117  | 82       | 115     | 84       | 114      | 71                | 113  | 77   | 105  | 80   |

 $^1$  Conductivity units are in  $\mu S~cm^{\text{-1}}$ 

<sup>2</sup> DO: Dissolved oxygen. Measurements are expressed as percent saturation

| пуа | ra viriuissiina           | a test ( | 0030) |      |      |      |       |                       |      |      |      |      |      |      |      |
|-----|---------------------------|----------|-------|------|------|------|-------|-----------------------|------|------|------|------|------|------|------|
|     |                           |          |       |      |      |      | PAM ( | (mg L <sup>-1</sup> ) |      |      |      |      |      |      |      |
|     |                           |          | 0     |      | 16   | :    | 32    |                       | 63   | 1    | 25   | 2    | 250  | 5    | 500  |
| Day | Parameter                 | 0 h      | 24h   | 0 h  | 24 h | 0 h  | 24 h  | 0 h                   | 24 h | 0 h  | 24 h | 0 h  | 24 h | 0 h  | 24 h |
| 0   | рН                        | 6.65     | 6.75  | 6.69 | 6.85 | 6.62 | 6.90  | 6.65                  | 7.00 | 6.80 | 7.02 | 6.86 | 7.14 | 7.39 | 7.27 |
|     | Conductivity <sup>1</sup> | 21       | 21    | 28   | 23   | 24   | 25    | 26                    | 32   | 28   | 36   | 30   | 70   | 79   | 95   |
|     | DO <sup>2</sup>           | 104      | 91    | 103  | 91   | 106  | 91    | 107                   | 86   | 106  | 87   | 101  | 80   | 101  | 74   |
| 1   | рН                        | 6.61     | 6.55  | 6.65 | 6.70 | 6.72 | 6.73  | 6.80                  | 6.80 | 6.90 | 6.91 | 6.93 | 7.01 | 7.40 | 7.28 |
|     | Conductivity              | 20       | 22    | 21   | 24   | 23   | 25    | 26                    | 29   | 42   | 35   | 31   | 53   | 143  | 152  |
|     | DO                        | 114      | 94    | 116  | 92   | 114  | 92    | 105                   | 93   | 99   | 83   | 99   | 89   | 89   | 80   |
| 2   | рН                        | 6.90     | 6.61  | 6.84 | 9.76 | 6.82 | 6.78  | 6.83                  | 6.81 | 7.09 | 7.00 | 6.92 | 6.88 | 7.63 | 7.31 |
|     | Conductivity              | 21       | 23    | 22   | 24   | 23   | 26    | 26                    | 29   | 43   | 50   | 32   | 38   | 169  | 174  |
|     | DO                        | 114      | 94    | 109  | 93   | 113  | 93    | 110                   | 91   | 93   | 77   | 104  | 89   | 92   | 83   |
| 3   | рН                        | 6.81     | 6.86  | 6.81 | 6.93 | 6.76 | 6.96  | 6.80                  | 7.02 | 6.99 | 7.23 | 6.83 | 7.10 | 7.53 | 7.39 |
|     | Conductivity              | 20       | 21    | 21   | 23   | 23   | 24    | 26                    | 27   | 39   | 42   | 32   | 33   | 112  | 152  |
|     | DO                        | 119      | 94    | 123  | 91   | 117  | 92    | 118                   | 87   | 104  | 82   | 118  | 89   | 93   | 84   |

### Appendix A2 Physicochemical data for the PAM toxicity tests

#### Hydra viridissima test (883B)

<sup>1</sup> Conductivity units are in  $\mu$ S cm<sup>-1</sup>

<sup>2</sup> DO: Dissolved oxygen. Measurements are expressed as percent saturation

#### Hydra viridissima test (892B)

|     |                           |      |      |      |      |      | PAM ( | mg L <sup>-1</sup> ) |      |      |      |      |      |      |      |
|-----|---------------------------|------|------|------|------|------|-------|----------------------|------|------|------|------|------|------|------|
|     |                           | (    | 0    |      | 16   | 3    | 32    | (                    | 63   | 1    | 25   | 2    | 250  | 5    | 00   |
| Day | Parameter                 | 0 h  | 24h  | 0 h  | 24 h | 0 h  | 24 h  | 0 h                  | 24 h | 0 h  | 24 h | 0 h  | 24 h | 0 h  | 24 h |
| 0   | рН                        | 6.55 | 6.58 | 6.65 | 6.75 | 6.69 | 6.85  | 6.69                 | 6.96 | 6.93 | 7.04 | 6.88 | 7.31 | 7.51 | 7.45 |
|     | Conductivity <sup>1</sup> | 20   | 22   | 22   | 23   | 24   | 25    | 25                   | 33   | 32   | 33   | 30   | 83   | 106  | 118  |
|     | DO <sup>2</sup>           | 111  | 93   | 106  | 92   | 116  | 87    | 114                  | 80   | 90   | 79   | 85   | 73   | 79   | 79   |
| 1   | рН                        | 6.39 | 6.81 | 6.59 | 6.89 | 6.64 | 6.89  | 6.68                 | 6.90 | 6.91 | 7.15 | 7.05 | 7.32 | 7.32 | 7.23 |
|     | Conductivity              | 21   | 21   | 22   | 23   | 24   | 25    | 24                   | 26   | 36   | 42   | 41   | 76   | 84   | 110  |
|     | DO                        | 115  | 95   | 111  | 91   | 111  | 96    | 118                  | 89   | 98   | 73   | 101  | 77   | 87   | 75   |
| 2   | рН                        | 6.66 | 6.82 | 6.70 | 6.89 | 6.75 | 6.95  | 6.78                 | 6.98 | 7.01 | 7.18 | 7.13 | 7.24 | 7.32 | 7.28 |
|     | Conductivity              | 20   | 22   | 22   | 23   | 24   | 25    | 24                   | 26   | 37   | 40   | 49   | 58   | 84   | 96   |
|     | DO                        | 115  | 92   | 112  | 92   | 116  | 95    | 114                  | 88   | 105  | 82   | 110  | 81   | 91   | 78   |
| 3   | рН                        | 6.67 | 6.83 | 6.69 | 6.92 | 6.72 | 6.99  | 6.73                 | 7.04 | 7.01 | 7.26 | 7.07 | 7.29 | 7.32 | 7.39 |
|     | Conductivity              | 20   | 21   | 22   | 22   | 24   | 25    | 25                   | 25   | 38   | 39   | 47   | 51   | 94   | 100  |
|     | DO                        | 113  | 93   | 107  | 92   | 115  | 92    | 119                  | 93   | 94   | 79   | 101  | 86   | 98   | 72   |

 $^1$  Conductivity units are in  $\mu S~cm^{\text{-}1}$ 

<sup>2</sup> DO: Dissolved oxygen. Measurements are expressed as percent saturation

#### Moinodaphnia macleayi (884D)

|     |                           |      |      |      |      |      |      | PAM ( | mg L <sup>-1</sup> ) |      |      |      |      |      |       |      |      |
|-----|---------------------------|------|------|------|------|------|------|-------|----------------------|------|------|------|------|------|-------|------|------|
|     |                           | (    | 0    | 0    | .5   |      | 1    |       | 2                    |      | 4    | ;    | 8    |      | 16    | 3    | 32   |
| Day | Parameter                 | 0 h  | 24h  | 0 h  | 24h  | 0 h  | 24h  | 0 h   | 24 h                 | 0 h  | 24 h | 0 h  | 24 h | 0 h  | 24 h  | 0 h  | 24 h |
| 0   | рН                        | 6.53 | 8.60 | 6.60 | 7.80 | 6.66 | 8.10 | 6.78  | 7.96                 | 6.73 | 7.57 | 6.72 | 7.85 | 6.73 | 7.94  | 6.78 | 8.72 |
|     | Conductivity <sup>1</sup> | 22   | 24   | 19   | 21   | 19   | 22   | 21    | 22                   | 20   | 24   | 20   | 23   | 21   | 25    | 23   | 25   |
|     | DO <sup>2</sup>           | 105  | 100  | 114  | 99   | 107  | 103  | 106   | 100                  | 103  | 101  | 111  | 101  | 106  | 100   | 94   | 101  |
| 1   | рН                        | 6.63 | 7.60 | 6.67 | 8.41 | 6.65 | 8.39 | 6.72  | 7.61                 | 6.70 | 8.06 | 6.70 | 8.73 | 6.71 | 9.25* | 6.77 | 8.79 |
|     | Conductivity              | 21   | 23   | 19   | 22   | 20   | 22   | 20    | 22                   | 20   | 23   | 20   | 24   | 21   | 26    | 23   | 25   |
|     | DO                        | 110  | 100  | 115  | 102  | 112  | 102  | 108   | 99                   | 112  | 101  | 116  | 104  | 109  | 109   | 101  | 104  |
| 2   | рН                        | 6.51 | 7.19 | 6.49 | 7.36 | 6.56 | 7.25 | 6.64  | 7.17                 | 6.61 | 7.35 | 6.61 | 8.23 | 6.62 | 8.18  | 6.62 | 8.11 |
|     | Conductivity              | 24   | 23   | 20   | 22   | 20   | 22   | 20    | 23                   | 20   | 22   | 21   | 23   | 22   | 23    | 23   | 25   |
|     | DO                        | 108  | 99   | 112  | 100  | 111  | 98   | 110   | 98                   | 114  | 101  | 110  | 103  | 107  | 104   | 105  | 101  |
| 3   | рН                        | 6.52 | 7.75 | 6.58 | 7.33 | 6.55 | 7.34 | 6.65  | 7.56                 | 6.60 | 7.91 | 6.58 | 8.28 | 6.60 | 8.37  | 6.68 |      |
|     | Conductivity              | 23   | 23   | 20   | 22   | 20   | 22   | 20    | 23                   | 20   | 22   | 20   | 23   | 21   | 24    | 23   | NA   |
|     | DO                        | 113  | 95   | 113  | 93   | 112  | 94   | 115   | 97                   | 114  | 98   | 103  | 99   | 111  | 100   | 105  |      |
| 4   | рН                        | 6.53 | 8.72 | 6.57 | 7.70 | 6.60 | 7.59 | 6.61  | 7.56                 | 6.62 | 7.76 | 6.62 | 7.73 | 6.64 | 8.06  |      |      |
|     | Conductivity              | 20   | 33   | 20   | 23   | 19   | 23   | 20    | 23                   | 20   | 23   | 20   | 23   | 21   | 24    | NA   | NA   |
|     | DO                        | 116  | 92   | 117  | 94   | 111  | 93   | 112   | 96                   | 112  | 96   | 113  | 94   | 110  | 98    |      |      |

\* Indicates likely erroneous reading

 $^{1}$  Conductivity units are in  $\mu\text{S/cm}$ 

<sup>2</sup> DO: Dissolved oxygen. Measurements are expressed as percent saturation

### Lemna aequinoctialis test (887L)

|     |                           |                       |      |      |      | PAM ( | mg L <sup>-1</sup> ) |      |      |      |      |      |      |
|-----|---------------------------|-----------------------|------|------|------|-------|----------------------|------|------|------|------|------|------|
| _   |                           | 0 125 250 500 1000 20 |      |      |      |       |                      |      |      |      |      |      | 000  |
| Day | Parameter                 | 0 h                   | 96 h | 0 h  | 96 h | 0 h   | 96 h                 | 0 h  | 96 h | 0 h  | 96 h | 0 h  | 96 h |
| 0   | рН                        | 6.73                  | 7.13 | 7.03 | 7.22 | 7.26  | 7.24                 | 7.39 | 7.35 | 7.60 | 7.74 | 7.62 | 7.75 |
|     | Conductivity <sup>1</sup> | 31                    | 23   | 44   | 45   | 75    | 71                   | 101  | 111  | 268  | 272  | 350  | 388  |
|     | DO <sup>2</sup>           | 106                   | 93   | 78   | 84   | 94    | 86                   | 97   | 78   | 74   | 81   | 84   | 74   |

<sup>1</sup> Conductivity units are in  $\mu$ S cm<sup>-1</sup>.

 $^2\,{\rm DO:}$  Dissolved oxygen. Measurements are expressed as percent saturation.

#### Chlorella sp test (888G)

|     |                           | (0000) | /    |      |      |      |                       |      |      |      |      |      |      |
|-----|---------------------------|--------|------|------|------|------|-----------------------|------|------|------|------|------|------|
|     |                           |        |      |      |      | PAM  | (mg L <sup>-1</sup> ) |      |      |      |      |      |      |
|     |                           | (      | 0    | 1:   | 25   | 2    | 50                    | 50   | 00   | 10   | 000  | 20   | 00   |
| Day | Parameter                 | 0 h    | 72 h | 0 h  | 72 h | 0 h  | 72 h                  | 0 h  | 72 h | 0 h  | 72 h | 0 h  | 72 h |
| 0   | pН                        | 6.37   | 6.65 | 6.86 | 6.63 | 6.94 | 6.84                  | 6.85 | 7.07 | 6.99 | 7.18 | 7.13 | 7.20 |
|     | Conductivity <sup>1</sup> | 56     | 48   | 142  | 61   | 202  | 104                   | 237  | 205  | 303  | 308  | 386  | 382  |
|     | DO <sup>2</sup>           | 100    | 95   | 97   | 85   | 88   | 74                    | 98   | 70   | 88   | 71   | 93   | 75   |

 $^1$  Conductivity units are in  $\mu S~cm^{\text{-}1}$ 

<sup>2</sup> DO: Dissolved oxygen. Measurements are expressed as percent saturation

#### Mogurnda mogurnda test (891E)

|     |                           |      |      |      |      | PAM (I | mg L⁻¹) |      |      |      |      |      |      |
|-----|---------------------------|------|------|------|------|--------|---------|------|------|------|------|------|------|
|     |                           | (    | )    | 12   | 25   | 2      | 50      | 50   | 00   | 10   | 000  | 20   | 000  |
| Day | Parameter                 | 0 h  | 24h  | 0 h  | 24 h | 0 h    | 24 h    | 0 h  | 24 h | 0 h  | 24 h | 0 h  | 24 h |
| 0   | pН                        | 6.67 | 6.86 | 6.83 | 6.80 | 6.74   | 6.97    | 6.73 | 7.05 | 6.83 | 7.48 | 7.62 | 7.49 |
|     | Conductivity <sup>1</sup> | 22   | 27   | 24   | 28   | 24     | 29      | 25   | 34   | 31   | 138  | 121* | 360  |
|     | DO <sup>2</sup>           | 101  | 93   | 104  | 84   | 114    | 89      | 107  | 91   | 108  | 82   | 78   | 84   |
| 1   | pН                        | 6.62 | 6.77 | 6.75 | 6.90 | 6.70   | 7.13    | 6.70 | 7.34 | 7.81 | 7.43 | 7.64 | 7.53 |
|     | Conductivity              | 22   | 24   | 24   | 27   | 26     | 50      | 27   | 77   | 164  | 238  | 354  | 376  |
|     | DO                        | 119  | 93   | 115  | 92   | 118    | 87      | 120  | 81   | 90   | 72   | 86   | 67*  |
| 2   | рН                        | 6.58 | 6.83 | 6.72 | 6.97 | 6.73   | 7.18    | 6.79 | 7.38 | 7.31 | 7.42 | 7.65 | 7.58 |
|     | Conductivity              | 22   | 24   | 25   | 32   | 27     | 52      | 29   | 53   | 163  | 251  | 362  | 361  |
|     | DO                        | 116  | 95   | 113  | 93   | 117    | 90      | 114  | 83   | 88   | 81   | 87   | 73   |
| 3   | pН                        | 6.58 | 6.88 | 7.09 | 7.11 | 7.37   | 7.16    | 7.57 | 7.28 | 7.49 | 7.41 | 7.57 | 7.50 |
|     | Conductivity              | 22   | 25   | 45   | 49   | 74     | 75      | 140  | 132  | 217  | 201  | 329  | 306  |
|     | DO                        | 118  | 99   | 95   | 86   | 109    | 89      | 96   | 77   | 94   | 87   | 72   | 85   |

\*Indicates likely erroneous reading

<sup>1</sup> Conductivity units are in  $\mu$ S/cm

<sup>2</sup> DO: Dissolved oxygen. Measurements are expressed as percent saturation

### Appendix A3 Physicochemical data for the PEG toxicity tests

#### Chlorella sp test (913G)

|     |                           |      |      |      |      | PEG  | (mg L <sup>-1</sup> ) |      |      |      |      |      |      |
|-----|---------------------------|------|------|------|------|------|-----------------------|------|------|------|------|------|------|
|     |                           | (    | )    | 7    | 50   | 15   | 00                    | 30   | 00   | 60   | 00   | 120  | 000  |
| Day | Parameter                 | 0 h  | 72 h | 0 h  | 72 h | 0 h  | 72 h                  | 0 h  | 72 h | 0 h  | 72 h | 0 h  | 72 h |
| 0   | pН                        | 6.07 | 6.40 | 6.09 | 6.42 | 6.08 | 6.43                  | 6.11 | 6.47 | 6.13 | 6.58 | 6.13 | 6.72 |
|     | Conductivity <sup>1</sup> | 43   | 37   | 41   | 39   | 42   | 39                    | 42   | 39   | 44   | 40   | 49   | 42   |
|     | DO <sup>2</sup>           | 97   | 96   | 102  | 92   | 106  | 96                    | 96   | 94   | 98   | 93   | 102  | 92   |

 $^1$  Conductivity units are in  $\mu S \ cm^{-1}$ 

<sup>2</sup> DO: Dissolved oxygen. Measurements are expressed as percent saturation

#### Lemna aequinoctialis test (864E)

|     |                           |      |      |      |      | PEG (I | mg L <sup>-1</sup> ) |      |      |      |      |      |      |
|-----|---------------------------|------|------|------|------|--------|----------------------|------|------|------|------|------|------|
| _   |                           | (    | )    | 75   | 50   | 15     | 600                  | 30   | 00   | 60   | 000  | 12   | 000  |
| Day | Parameter                 | 0 h  | 96 h | 0 h  | 96 h | 0 h    | 96 h                 | 0 h  | 96 h | 0 h  | 96 h | 0 h  | 96 h |
| 0   | рН                        | 6.74 | 6.60 | 6.41 | 6.67 | 6.49   | 6.74                 | 6.40 | 6.77 | 6.38 | 6.84 | 6.35 | 7.04 |
|     | Conductivity <sup>1</sup> | 19   | 24   | 19   | 17   | 21     | 16                   | 21   | 19   | 23   | 19   | 27   | 24   |
|     | DO <sup>2</sup>           | 94   | 89   | 99   | 88   | 97     | 89                   | 92   | 86   | 96   | 87   | 95   | 87   |

 $^1$  Conductivity units are in  $\mu S \ cm^{-1}$ 

#### Hydra viridissima test (920B)

|     |                           |      |      |      |      | PEG ( | mg L <sup>-1</sup> ) |      |      |      |      |      |      |
|-----|---------------------------|------|------|------|------|-------|----------------------|------|------|------|------|------|------|
|     |                           | 0    |      | 750  |      | 15    | 1500                 |      | 3000 |      | 6000 |      | 000  |
| Day | Parameter                 | 0 h  | 24h  | 0 h  | 24 h | 0 h   | 24 h                 | 0 h  | 24 h | 0 h  | 24 h | 0 h  | 24 h |
| 0   | рН                        | 6.27 | 6.43 | 5.93 | 6.46 | 6.29  | 6.53                 | 6.36 | 6.59 | 6.37 | 6.67 | 6.41 | 6.86 |
|     | Conductivity <sup>1</sup> | 15   | 11   | 17   | 12   | 17    | 13                   | 16   | 15   | 16   | 17   | 20   | 20   |
|     | DO <sup>2</sup>           | 103  | 85   | 105  | 89   | 107   | 89                   | 103  | 89   | 109  | 89   | 114  | 85   |
| 1   | рН                        | 6.11 | 6.55 | 6.18 | 6.56 | 6.24  | 6.60                 | 6.31 | 6.66 | 6.31 | 6.73 | 6.37 | 6.89 |
|     | Conductivity              | 12   | 12   | 11   | 12   | 12    | 14                   | 14   | 16   | 16   | 17   | 20   | 21   |
|     | DO                        | 105  | 90   | 101  | 91   | 105   | 91                   | 108  | 89   | 107  | 88   | 112  | 85   |
| 2   | рН                        | 6.35 | 6.55 | 6.38 | 6.55 | 6.35  | 6.66                 | 6.38 | 6.63 | 6.47 | 6.80 | 6.53 | 6.93 |
|     | Conductivity              | 11   | 12   | 10   | 12   | 12    | 14                   | 14   | 16   | 16   | 18   | 19   | 21   |
|     | DO                        | 119  | 92   | 118  | 91   | 112   | 92                   | 115  | 91   | 113  | 91   | 116  | 89   |
| 3   | рН                        | 6.40 | 6.51 | 6.32 | 6.58 | 6.44  | 6.63                 | 6.42 | 6.84 | 6.53 | 6.92 | 6.58 | 7.08 |
|     | Conductivity              | 10   | 11   | 11   | 11   | 12    | 12                   | 14   | 15   | 16   | 17   | 19   | 20   |
|     | DO                        | 118  | 96   | 117  | 96   | 115   | 94                   | 115  | 94   | 119  | 95   | 118  | 95   |

 $^1$  Conductivity units are in  $\mu S~cm^{\text{-1}}$ 

<sup>2</sup> DO: Dissolved oxygen. Measurements are expressed as percent saturation

#### Moinodaphnia macleayi (922D)

|     |                           | _    |      |      |      | PEG (n | ng L <sup>-1</sup> ) |      |      |      |      |      |      |
|-----|---------------------------|------|------|------|------|--------|----------------------|------|------|------|------|------|------|
|     |                           | (    | D    | 7    | 50   | 15     | 00                   | 30   | 000  | 6000 |      | 12   | 000  |
| Day | Parameter                 | 0 h  | 24h  | 0 h  | 24h  | 0 h    | 24h                  | 0 h  | 24 h | 0 h  | 24 h | 0 h  | 24 h |
| 0   | pН                        | 6.80 | 6.85 | 6.86 | 6.91 | 6.90   | 7.05                 | 6.90 | 7.05 | 6.89 | 7.03 | 6.90 | 7.12 |
|     | Conductivity <sup>1</sup> | 20   | 17   | 19   | 18   | 19     | 17                   | 21   | 20   | 23   | 23   | 28   | 26   |
|     | DO <sup>2</sup>           | 95   | 88   | 93   | 91   | 94     | 94                   | 96   | 92   | 99   | 90   | 107  | 92   |
| 1   | pН                        | 6.80 | 6.80 | 6.83 | 6.90 | 6.85   | 6.88                 | 6.86 | 6.92 | 6.84 | 7.00 | 6.83 | 7.12 |
|     | Conductivity              | 18   | 18   | 16   | 18   | 17     | 19                   | 18   | 20   | 21   | 23   | 25   | 27   |
|     | DO                        | 102  | 91   | 105  | 91   | 102    | 92                   | 102  | 89   | 104  | 93   | 101  | 94   |
| 2   | pН                        | 6.75 | 6.78 | 6.75 | 6.85 | 6.76   | 6.87                 | 6.79 | 6.91 | 6.77 | 7.00 | 6.79 | 7.08 |
|     | Conductivity              | 17   | 18   | 16   | 19   | 16     | 19                   | 18   | 21   | 21   | 23   | 25   | 27   |
|     | DO                        | 109  | 87   | 111  | 87   | 109    | 93                   | 110  | 94   | 110  | 90   | 119  | 92   |
| 3   | pН                        | 6.61 | 6.78 | 6.66 | 6.81 | 6.70   | 6.83                 | 6.70 | 6.86 | 6.70 | 6.88 | 6.69 |      |
|     | Conductivity              | 17   | 18   | 18   | 19   | 19     | 20                   | 20   | 20   | 23   | 23   | 27   | NA   |
|     | DO                        | 109  | 92   | 112  | 95   | 110    | 95                   | 111  | 91   | 114  | 93   | 111  |      |
| 4   | pН                        | 6.55 | 6.88 | 6.53 | 6.92 | 6.67   | 6.94                 | 6.79 | 7.01 | 6.67 | 7.04 |      |      |
|     | Conductivity              | 17   | 20   | 19   | 18   | 19     | 19                   | 21   | 21   | 21   | 23   | NA   | NA   |
|     | DO                        | 115  | 95   | 115  | 94   | 117    | 89                   | 108  | 90   | 115  | 90   |      |      |

<sup>1</sup> Conductivity units are in  $\mu$ S cm<sup>-1</sup>

<sup>2</sup> DO: Dissolved oxygen. Measurements are expressed as percent saturation

### Mogurnda mogurnda test (923E)

|     |                           |       |      |      |      | PAM ( | mg L <sup>-1</sup> ) |      |      |      |       |      |      |
|-----|---------------------------|-------|------|------|------|-------|----------------------|------|------|------|-------|------|------|
|     |                           | 0 750 |      | 50   | 15   | 00    | 30                   | 00   | 60   | 000  | 12000 |      |      |
| Day | Parameter                 | 0 h   | 24h  | 0 h  | 24 h | 0 h   | 24 h                 | 0 h  | 24 h | 0 h  | 24 h  | 0 h  | 24 h |
| 0   | рН                        | 6.46  | 6.72 | 6.37 | 6.77 | 6.35  | 6.73                 | 6.33 | 6.83 | 6.37 | 6.91  | 6.44 | 7.06 |
|     | Conductivity <sup>1</sup> | 10    | 16   | 10   | 16   | 11    | 16                   | 13   | 17   | 15   | 20    | 20   | 25   |
|     | DO <sup>2</sup>           | 102   | 87   | 109  | 92   | 109   | 90                   | 111  | 90   | 109  | 91    | 110  | 87   |
| 1   | рН                        | 6.24  | 6.56 | 6.30 | 6.60 | 6.29  | 6.61                 | 6.31 | 6.66 | 6.37 | 6.82  | 6.42 | 6.94 |
|     | Conductivity              | 10    | 12   | 17   | 12   | 11    | 13                   | 12   | 14   | 15   | 17    | 20   | 22   |
|     | DO                        | 102   | 90   | 116  | 88   | 109   | 88                   | 120  | 91   | 114  | 86    | 119  | 84   |
| 2   | рН                        | 6.40  | 6.59 | 6.29 | 6.53 | 6.32  | 6.62                 | 6.34 | 6.70 | 6.39 | 6.77  | 6.41 | 6.90 |
|     | Conductivity              | 11    | 12   | 11   | 12   | 11    | 13                   | 13   | 14   | 15   | 19    | 20   | 23   |
|     | DO                        | 112   | 90   | 113  | 91   | 111   | 91                   | 108  | 92   | 103  | 89    | 111  | 91   |
| 3   | рН                        | 6.58  | 6.73 | 6.35 | 6.65 | 6.26  | 6.63                 | 6.24 | 6.65 | 6.39 | 6.80  | 6.37 | 6.96 |
|     | Conductivity              | 10    | 13   | 10   | 13   | 11    | 14                   | 12   | 15   | 15   | 18    | 20   | 25   |
|     | DO                        | 113   | 90   | 117  | 87   | 119   | 88                   | 115  | 90   | 117  | 88    | 115  | 80   |

 $^1$  Conductivity units are in  $\mu S~cm^{\text{-}1}$ 

<sup>2</sup> DO: Dissolved oxygen. Measurements are expressed as percent saturation

# Appendix B Chemical analyses

| Table B1 | Nutrient analysis |  |  |
|----------|-------------------|--|--|
|          |                   |  |  |

| Test code      | Date       | Sample type      | Nitrate mg L <sup>-1</sup> | Phosphate mg L <sup>-1</sup> |
|----------------|------------|------------------|----------------------------|------------------------------|
| 865L &<br>866G | 10/09/2007 | Procedural blank | 0.01                       | <0.005                       |
| 865L           | 10/09/2007 | Blank            | <0.005                     | <0.005                       |
| 865L           | 10/09/2007 | NMCW             | 0.685                      | 0.1                          |
| 866G           | 10/09/2007 | NMCW             | 2.97                       | 0.045                        |
| 887L           | 30/10/2007 | Procedural blank | 0.01                       | <0.005                       |
| 887L           | 30/10/2007 | Blank            | <0.005                     | <0.005                       |
| 887L           | 30/10/2007 | NMCW             | 0.66                       | 0.085                        |
| 888G           | 20/11/2007 | Procedural blank | 0.005                      | <0.005                       |
| 888G           | 20/11/2007 | NMCW             | 1.92                       | 0.03                         |
| 913G           | 26/02/2008 | Procedural blank | 0.01                       | <0.005                       |
| 913G           | 26/02/2008 | NMCW             | 2.21                       | 0.035                        |
| 919L           | 31/03/2008 | Procedural blank | 0.03                       | <0.005                       |
| 919L           | 31/03/2008 | NMCW             | 0.605                      | 0.055                        |

| Test code(s)   | Date     | Sample    | Al<br>µg L <sup>-1</sup> | Ca<br>mg L <sup>-1</sup> | Cd<br>µg L <sup>-1</sup> | Co<br>µg L <sup>-1</sup> | Cr<br>µg L <sup>-1</sup> | Cu<br>µg L <sup>-1</sup> | Fe<br>µg L <sup>-1</sup> | Mg<br>mg L <sup>-1</sup> | Mn<br>µg L <sup>-1</sup> | Ca<br>mg L <sup>-1</sup> | Ni<br>µg L <sup>-1</sup> | Pb<br>µg L <sup>-1</sup> | SO₄<br>mg L <sup>-1</sup> | Se<br>µg L <sup>-1</sup> | U<br>µg L <sup>-1</sup> | Zn<br>µg L <sup>-1</sup> |
|----------------|----------|-----------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|--------------------------|-------------------------|--------------------------|
| 865L/862B/866G | 10/09/07 | Pro blank | 0.1                      | <0.1                     | <0.02                    | <0.01                    | <0.1                     | <0.01                    | <20                      | <0.1                     | <0.01                    | <0.1                     | 0.05                     | <0.01                    | <0.1                      | <0.2                     | 0.006                   | 0.2                      |
| 865L/862B/866G | 10/09/07 | Blank     | 0.2                      | <0.1                     | <0.02                    | <0.01                    | <0.1                     | <0.01                    | <20                      | <0.1                     | <0.01                    | <0.1                     | 0.03                     | <0.01                    | <0.1                      | <0.2                     | <0.001                  | <0.1                     |
| 865L/862B/866G | 10/09/07 | NMCW      | 12.8                     | 0.2                      | <0.02                    | 0.05                     | <0.1                     | 0.28                     | 100                      | 0.8                      | 2.71                     | 1.3                      | 0.38                     | 0.02                     | 0.2                       | <0.2                     | 0.012                   | 0.8                      |
| 864E           | 12/09/07 | Pro blank | 7.4                      | <0.1                     | <0.02                    | <0.01                    | <0.1                     | 0.02                     | <20                      | <0.1                     | 0.02                     | <0.1                     | 0.38                     | 0.01                     | <0.1                      | <0.2                     | 0.033                   | 0.2                      |
| 864E           | 12/09/07 | Blank     | 0.6                      | <0.1                     | <0.02                    | <0.01                    | <0.1                     | <0.01                    | <20                      | <0.1                     | <0.01                    | <0.1                     | 0.15                     | <0.01                    | <0.1                      | <0.2                     | <0.001                  | <0.1                     |
| 864E           | 12/09/07 | NMCW      | 14.2                     | 0.2                      | 0.02                     | 0.05                     | <0.1                     | 0.21                     | 100                      | 0.8                      | 3.22                     | 1.2                      | 0.39                     | 0.02                     | 0.2                       | <0.2                     | 0.017                   | 1.2                      |
| 863D           | 20/09/07 | Pro blank | 0.5                      | <0.1                     | <0.02                    | <0.01                    | <0.1                     | <0.01                    | <20                      | <0.1                     | <0.01                    | <0.1                     | 0.02                     | <0.01                    | <0.1                      | <0.2                     | 0.001                   | <0.1                     |
| 863D           | 20/09/07 | Blank     | 0.3                      | <0.1                     | <0.02                    | <0.01                    | <0.1                     | <0.01                    | <20                      | <0.1                     | <0.01                    | <0.1                     | 0.03                     | <0.01                    | <0.1                      | <0.2                     | <0.001                  | 0.2                      |
| 863D           | 20/09/07 | NMCW      | 12.8                     | 0.2                      | 0.04                     | 0.06                     | <0.1                     | 0.25                     | 120                      | 0.8                      | 3.83                     | 1.3                      | 0.23                     | 0.05                     | 0.3                       | <0.2                     | 0.012                   | 2.2                      |
| 877B           | 15/10/07 | Blank     | <0.1                     | <0.1                     | <0.02                    | <0.01                    | <0.1                     | <0.01                    | <20                      | <0.1                     | <0.01                    | <0.1                     | 0.08                     | <0.01                    | <0.1                      | <0.2                     | <0.001                  | <0.1                     |
| 877B           | 15/10/07 | Pro blank | 0.6                      | <0.1                     | <0.02                    | <0.01                    | <0.1                     | 0.02                     | <20                      | <0.1                     | 0.01                     | <0.1                     | 2.1                      | 0.01                     | 0.2                       | <0.2                     | 0.005                   | 0.3                      |
| 877B           | 15/10/07 | NMCW      | 13.5                     | 0.3                      | 0.06                     | 0.06                     | <0.1                     | 0.24                     | 200                      | 1                        | 4.06                     | 1.2                      | 0.55                     | 0.03                     | 0.3                       | <0.2                     | 0.015                   | 1.6                      |
| 873B           | 1/10/07  | Blank     | <0.1                     | <0.1                     | <0.02                    | <0.01                    | <0.1                     | <0.01                    | <20                      | <0.1                     | <0.01                    | <0.1                     | 0.03                     | <0.01                    | <0.1                      | <0.2                     | <0.001                  | 0.2                      |
| 873B           | 1/10/07  | Pro blank | 0.4                      | <0.1                     | <0.02                    | <0.01                    | <0.1                     | 0.04                     | <20                      | <0.1                     | <0.01                    | <0.1                     | 0.03                     | 0.01                     | <0.1                      | <0.2                     | 0.004                   | 0.2                      |
| 873B           | 1/10/07  | NMCW      | 12                       | 0.2                      | <0.02                    | 0.05                     | <0.1                     | 0.18                     | 140                      | 0.9                      | 3.19                     | 1.3                      | 0.15                     | 0.02                     | 0.3                       | <0.2                     | 0.014                   | 0.8                      |
| 874D           | 3/10/07  | Blank     | <0.1                     | <0.1                     | <0.02                    | <0.01                    | <0.1                     | <0.01                    | <20                      | <0.1                     | <0.01                    | <0.1                     | 1.76                     | <0.01                    | <0.1                      | <0.2                     | <0.001                  | 0.1                      |
| 874D           | 3/10/07  | Pro blank | <0.1                     | <0.1                     | <0.02                    | <0.01                    | <0.1                     | 0.01                     | <20                      | <0.1                     | 0.03                     | <0.1                     | 0.13                     | <0.01                    | 0.2                       | <0.2                     | <0.001                  | 0.2                      |
| 874D           | 3/10/07  | NMCW      | 20                       | 0.3                      | 0.04                     | 0.08                     | <0.1                     | 0.24                     | 180                      | 0.9                      | 5.07                     | 1.3                      | 1.02                     | 0.04                     | 0.3                       | <0.2                     | 0.02                    | 0.9                      |
| 887L           | 30/10/07 | Blank     | 12.1                     | <0.1                     | <0.02                    | <0.01                    | <0.1                     | 1.1                      | <20                      | <0.1                     | 0.38                     | <0.1                     | 0.17                     | 0.07                     | <0.1                      | <0.2                     | 0.013                   | 8.2                      |
| 887L           | 30/10/07 | Pro blank | 1                        | <0.1                     | <0.02                    | <0.01                    | 0.1                      | 0.78                     | <20                      | <0.1                     | 0.44                     | <0.1                     | 0.17                     | 0.04                     | <0.1                      | <0.2                     | 0.052                   | 0.4                      |
| 887L           | 30/10/07 | NMCW      | 5.5                      | 0.3                      | 0.02                     | 0.02                     | <0.1                     | 1.17                     | 60                       | 1                        | 0.92                     | 1.3                      | 0.76                     | 0.05                     | 0.4                       | <0.2                     | 0.013                   | 6.6                      |
| 888G           | 20/11/07 | Pro blank | 0.2                      | <0.1                     | <0.02                    | <0.01                    | <0.1                     | 0.06                     | <20                      | <0.1                     | 0.27                     | <0.1                     | 0.08                     | 0.02                     | <0.1                      | <0.2                     | <0.001                  | 0.3                      |

Table B2 Metal analysis

| Table B2 (continued) Metal analysi |
|------------------------------------|
|------------------------------------|

| Test code(s) | Date     | Sample                   | Al<br>µg L⁻¹ | Ca<br>mg L <sup>-1</sup> | Cd<br>µg L <sup>-1</sup> | Co<br>µg L <sup>-1</sup> | Cr<br>µg L <sup>-1</sup> | Cu<br>µg L <sup>-1</sup> | Fe<br>µg L <sup>-1</sup> | Mg<br>mg L <sup>-1</sup> | Mn<br>µg L⁻¹ | Ca<br>mg L <sup>-1</sup> | Ni<br>µg L-1 | Pb<br>µg L <sup>-1</sup> | SO4<br>mg L <sup>-1</sup> | Se<br>µg L <sup>-1</sup> | U<br>µg L-1 | Zn<br>µg L <sup>-1</sup> |
|--------------|----------|--------------------------|--------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|--------------------------|--------------|--------------------------|---------------------------|--------------------------|-------------|--------------------------|
| 888G         | 20/11/07 | NMCW                     | 1.4          | 0.3                      | <0.02                    | <0.01                    | <0.1                     | 0.84                     | <20                      | 1                        | 0.35         | 7.9                      | 0.42         | 0.05                     | 101                       | <0.2                     | 0.037       | 0.3                      |
| 884D/883B    | 12/11/07 | Pro blank                | 0.2          | <0.1                     | <0.02                    | <0.01                    | <0.1                     | <0.01                    | <20                      | <0.1                     | <0.01        | <0.1                     | 0.01         | <0.01                    | <0.1                      | <0.2                     | <0.001      | <0.1                     |
| 884D/883B    | 12/11/07 | Blank                    | 0.1          | <0.1                     | <0.02                    | <0.01                    | <0.1                     | <0.01                    | <20                      | <0.1                     | <0.01        | <0.1                     | 0.07         | 0.01                     | <0.1                      | <0.2                     | 0.028       | 0.1                      |
| 884D/883B    | 12/11/07 | NMCW                     | 11.1         | 0.3                      | 0.02                     | 0.05                     | <0.1                     | 0.31                     | 120                      | 1                        | 2.71         | 1.4                      | 0.21         | 0.03                     | 0.3                       | <0.2                     | 0.011       | 0.8                      |
| 891E         | 1/12/07  | Blank                    | 0.7          | <0.1                     | <0.02                    | <0.01                    | <0.1                     | 0.04                     | <20                      | <0.1                     | 0.03         | <0.1                     | 0.04         | 0.03                     | <0.1                      | <0.2                     | <0.001      | 1                        |
| 891E         | 1/12/07  | Pro blank                | 0.4          | <0.1                     | <0.02                    | <0.01                    | <0.1                     | 0.04                     | <20                      | <0.1                     | 0.05         | <0.1                     | 0.03         | 0.03                     | <0.1                      | <0.2                     | <0.001      | 0.7                      |
| 891E         | 1/12/07  | NMCW                     | 4.9          | 0.4                      | 0.06                     | 0.02                     | <0.1                     | 0.4                      | 60                       | 1.1                      | 0.57         | 1.7                      | 0.4          | 0.08                     | 0.5                       | <0.2                     | 0.013       | 3                        |
| 892B         | 3/12/07  | Blank                    | 0.4          | <0.1                     | <0.02                    | <0.01                    | <0.1                     | <0.01                    | <20                      | <0.1                     | 0.02         | <0.1                     | 0.03         | 0.02                     | <0.1                      | <0.2                     | <0.001      | 0.5                      |
| 892B         | 3/12/07  | Pro blank                | 1            | <0.1                     | <0.02                    | <0.01                    | <0.1                     | 0.03                     | <20                      | <0.1                     | 0.08         | <0.1                     | 0.09         | 0.03                     | <0.1                      | <0.2                     | 0.024       | <0.1                     |
| 892B         | 3/12/07  | NMCW                     | 9.5          | 0.3                      | 0.02                     | 0.03                     | <0.1                     | 0.3                      | 100                      | 1                        | 1            | 1.4                      | 0.46         | 0.07                     | 0.3                       | <0.2                     | 0.029       | 8.6                      |
| 913G         | 26/02/08 | Pro blank                | 1.1          | <0.1                     | <0.02                    | <0.01                    | <0.1                     | 0.19                     | <20                      | <0.1                     | <0.01        | <0.1                     | 0.02         | 0.02                     | <0.1                      | <0.2                     | 0.018       | 2.6                      |
| 913G         | 26/02/08 | NMCW                     | 67.5         | 0.3                      | <0.02                    | 0.14                     | 0.5                      | 0.53                     | 240                      | 0.4                      | 6.38         | 7.3                      | 0.65         | 0.18                     | 96.7                      | <0.2                     | 0.038       | 4.6                      |
| 913G         | 26/02/08 | PEG 12 g L <sup>-1</sup> | 159          | 0.3                      | <0.02                    | 0.11                     | 23.3                     | 6.31                     | 240                      | 0.4                      | 5.67         | 7.3                      | 1.42         | 0.16                     | 98.9                      | <0.2                     | 0.036       | 5.6                      |
| 919L         | 31/03/08 | Pro blank                | 0.8          | <0.1                     | <0.02                    | <0.01                    | 0.1                      | 0.04                     | <20                      | <0.1                     | <0.01        | <0.1                     | 1.25         | 0.01                     | <0.1                      | <0.2                     | 0.029       | 2.1                      |
| 919L         | 31/03/08 | NMCW                     | 45.7         | 0.3                      | <0.02                    | 0.21                     | <0.1                     | 0.3                      | 160                      | 0.3                      | 15.1         | 1                        | 3.77         | 0.07                     | 0.2                       | <0.2                     | 0.079       | 3.2                      |
| 919L         | 31/03/08 | PEG 12 g L <sup>-1</sup> | 103          | 0.2                      | <0.02                    | 0.23                     | 25.7                     | 0.47                     | 140                      | 0.3                      | 13.3         | 1.2                      | 4.79         | 0.1                      | 0.5                       | <0.2                     | 0.072       | 4.9                      |
| 920B         | 8/04/08  | Pro blank                | 0.9          | <0.1                     | <0.02                    | <0.01                    | 0.1                      | 0.11                     | <20                      | <0.1                     | <0.01        | <0.1                     | 0.05         | 0.02                     | <0.1                      | <0.2                     | 0.021       | 2.9                      |
| 920B         | 8/04/08  | NMCW                     | 49.6         | 0.3                      | <0.02                    | 0.19                     | 0.1                      | 0.36                     | 200                      | 0.3                      | 13.4         | 1                        | 0.27         | 0.41                     | 0.2                       | <0.2                     | 0.061       | 5.2                      |
| 923E         | 16/04/08 | Pro blank                | 0.4          | <0.1                     | <0.02                    | <0.01                    | 0.1                      | 0.04                     | <20                      | <0.1                     | <0.01        | <0.1                     | 0.09         | 0.01                     | <0.1                      | <0.2                     | 0.007       | <0.1                     |
| 923E         | 16/04/08 | NMCW                     | 50           | 0.8                      | <0.02                    | 0.2                      | 0.2                      | 3.44                     | 180                      | 0.4                      | 14.8         | 1.1                      | 0.5          | 0.11                     | 0.3                       | <0.2                     | 0.033       | 9.8                      |
| 923E         | 16/04/08 | PEG 12 g L <sup>-1</sup> | 102          | 0.3                      | <0.02                    | 0.23                     | 25.6                     | 1.76                     | 140                      | 0.4                      | 13.8         | 1.3                      | 0.64         | 0.1                      | 0.5                       | <0.2                     | 0.071       | 2.9                      |
| 927D         | 16/05/08 | Pro blank                | 2.1          | <0.1                     | <0.02                    | <0.01                    | <0.1                     | 0.67                     | <20                      | <0.1                     | 0.09         | <0.1                     | 0.24         | 0.07                     | <0.1                      | <0.2                     | 0.007       | 1.5                      |
| 927D         | 16/05/08 | NMCW                     | 14.7         | 0.4                      | <0.02                    | 0.08                     | <0.1                     | 0.44                     | 240                      | 0.8                      | 3.57         | 1.2                      | 0.34         | 0.07                     | 0.2                       | <0.2                     | 0.015       | 2.3                      |
| 927D         | 16/05/08 | PEG 12 g L <sup>-1</sup> | 21.4         | 0.4                      | <0.2                     | <0.1                     | 13.5                     | 0.54                     | 300                      | 0.8                      | 5.02         | 1.3                      | 0.89         | 0.17                     | 0.4                       | <2                       | 0.028       | 3.9                      |

| Element          | Ag   | AI   | As   | Au   | В    | Ва   | Br   | Cd   | Cr   | Cu   | Fe   | Hg   | I    | In   |
|------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Units            | µg/L | μg/L |
| Blank            | 0.05 | 8    | 0.3  | 0.51 | 4.5  | 1.16 | 17   | 0.06 | <0.1 | 1    | <20  | 0.04 | <5   | 0.07 |
| Flocculant block | 1.25 | 168  | 5.15 | 11.5 | 31.5 | 24.4 | 424  | 0.6  | 3.6  | 17   | 80   | 0.6  | 10   | 1.06 |
| Polyacrylamide   | 1.15 | 216  | 4.9  | 11.2 | 79   | 24.8 | 320  | 1.02 | 2.9  | 15.5 | 100  | 0.68 | 10   | 1.12 |

Table B3 Metal analyses of flocculant block (5 g/L) and polyacrylamide (2 g/L) solutions

Table B3 (continued) Metal analyses of flocculant block and polyacrylamide

| Element          | Mg   | Mn   | Na   | Ni   | Pb   | SO4  | Se   | Sn   | Sr   | V    | Zn   |
|------------------|------|------|------|------|------|------|------|------|------|------|------|
| Units            | mg/L | μg/L | mg/L | μg/L | μg/L | mg/L | µg/L | μg/L | μg/L | μg/L | μg/L |
| Blank            | <0.1 | 0.2  | 0.2  | 0.15 | 0.25 | <0.1 | 0.4  | 9.5  | 0.12 | 0.5  | 3    |
| Flocculant block | 1    | 3.95 | 83.8 | 2.42 | 0.8  | 4.3  | 8.8  | 85.3 | 3.94 | 9.9  | 42.5 |
| Polyacrylamide   | 3.3  | 3.95 | 98.7 | 3    | 1.85 | 17.2 | 2.6  | 72.6 | 2.66 | 9.7  | 55.5 |

| Table B4 | Viscosity | / measurements |
|----------|-----------|----------------|
|----------|-----------|----------------|

| Sample        | Nominal<br>concentration<br>(mg L <sup>-1</sup> ) | Brookfield viscosity<br>(cPs) | Funnel viscosity<br>(sec) |
|---------------|---------------------------------------------------|-------------------------------|---------------------------|
| PAM           | 2000                                              | 52.6                          | 40                        |
| PAM           | 1000                                              | 34.6                          | 33                        |
| PAM           | 500                                               | 22.1                          | 18                        |
| PAM           | 250                                               | 12.3                          | 18                        |
| PAM           | 125                                               | 6.89                          | 18                        |
| PAM           | 63                                                | 2.35                          | 18                        |
| PAM           | 31                                                | 2.03                          | 18                        |
| PAM           | 16                                                | 1.6                           | 17                        |
| PAM           | 8                                                 | 1.39                          | 17                        |
| PAM           | 4                                                 | 1.28                          | 17                        |
| PAM           | 2                                                 | 1.28                          | 17                        |
| PAM           | 1                                                 | 1.28                          | 17                        |
| PAM           | 0.5                                               | 1.28                          | 17                        |
| PEG           | 12000                                             | NA                            | 12*                       |
| PEG           | 6000                                              | 1.49                          | 17                        |
| PEG           | 3000                                              | 1.28                          | 17                        |
| PEG           | 1500                                              | 1.28                          | 17                        |
| PEG           | 750                                               | 1.28                          | 17                        |
| PEG           | 375                                               | 1.28                          | 17                        |
| PEG           | 188                                               | 1.28                          | 17                        |
| PEG           | 94                                                | 1.28                          | 17                        |
| Floc Block    | 5000                                              | NA                            | 34                        |
| Floc Block    | 2500                                              | 56.2                          | 30                        |
| Floc Block    | 1250                                              | 34.1                          | 27                        |
| Floc Block    | 625                                               | 20.4                          | 25                        |
| Floc Block    | 313                                               | 12.2                          | 24                        |
| Floc Block    | 156                                               | 7.47                          | 23                        |
| Floc Block    | 78                                                | 4.91                          | 21                        |
| Floc Block    | 39                                                | 3.31                          | 18                        |
| Floc Block    | 20                                                | 2.35                          | 17                        |
| Floc Block    | 10                                                | 1.81                          | 17                        |
| Floc Block    | 5                                                 | 1.49                          | 17                        |
| Floc Block    | 2                                                 | 1.28                          | 17                        |
| Floc Block    | 1                                                 | 1.17                          | 17                        |
| NMCW          | 0                                                 | 1.07                          | 17                        |
| Milli Q water | 0                                                 | 1.07                          | 17                        |

NA = Not analysed

# Appendix C Total Organic Carbon analyses

| Nominal |      |       | Measured | Floc Block | OC (mg/L) |         |         |
|---------|------|-------|----------|------------|-----------|---------|---------|
| (mg/L)  | Clad | Algae | Lemna    | Fry        | Hydra 1   | Hydra 2 | Hydra 3 |
| 0       | 1.9  | 1.7   | 1.7      | 1.8        | 1.723     | 1.748   | 2.9     |
| 1.22    | NA   | NA    | NA       | NA         | NA        | NA      | NA      |
| 2.44    | 2.8  | NA    | NA       | NA         | NA        | NA      | NA      |
| 4.88    | 2.8  | NA    | NA       | NA         | NA        | NA      | NA      |
| 9.75    | 4.0  | NA    | NA       | NA         | NA        | NA      | NA      |
| 19.5    | 6.8  | NA    | NA       | NA         | NA        | NA      | NA      |
| 39      | 10.5 | NA    | NA       | NA         | NA        | NA      | 22.3    |
| 78      | 20.5 | NA    | NA       | NA         | NA        | 20.99   | 43.2    |
| 156.25  | 38.3 | NA    | NA       | NA         | NA        | 40.64   | 81.8    |
| 312.5   | NA   | 155.4 | 155.4    | 144.4      | 155.4     | 79.28   | 173.6   |
| 625     | NA   | 303.2 | 303.2    | 292.2      | 303.2     | 156.5   | 316.2   |
| 1250    | NA   | 604.1 | 604.1    | 601.8      | 604.1     | 615.2   | 643.8   |
| 2500    | NA   | 1222  | 1222     | 1186       | 1222      | NA      | NA      |
| 5000    | NA   | 2593  | 2593     | 2600       | 2593      | NA      | NA      |

 Table C1
 Total Organic Carbon measurement of Flocculent Block test solutions

NA = Not analysed

| Table C1 | Total | Organic | Carbon | measu | rement | of | PAM | test | solutio | ns |
|----------|-------|---------|--------|-------|--------|----|-----|------|---------|----|
|----------|-------|---------|--------|-------|--------|----|-----|------|---------|----|

|                    |      | Ν     |       |       | 1     |         |
|--------------------|------|-------|-------|-------|-------|---------|
| Nominal PAM (mg/L) | Clad | Algoo |       | En/   |       | Hudro 2 |
|                    | Clau | Algae | Lenna | FIY   | пушат | nyura z |
| 0                  | 4.1  | 3.1   | 3.1   | 3.1   | 4.1   | 3.142   |
| 0.5                | 3.5  | NA    | NA    | NA    | NA    | NA      |
| 1                  | 3.8  | NA    | NA    | NA    | NA    | NA      |
| 2                  | 4.2  | NA    | NA    | NA    | NA    | NA      |
| 4                  | 4.8  | NA    | NA    | NA    | NA    | NA      |
| 8                  | 6.7  | NA    | NA    | NA    | NA    | NA      |
| 16                 | 10.2 | NA    | NA    | NA    | 6.6   | 6.4     |
| 32                 | 33.5 | NA    | NA    | NA    | 13.8  | 12.3    |
| 62                 | NA   | NA    | NA    | NA    | 61.5  | 24.0    |
| 125                | NA   | 49.0  | 61.8  | 49.0  | N.A.  | 49.0    |
| 250                | NA   | 124.9 | 123.6 | 98.5  | 144.1 | 98.5    |
| 500                | NA   | 245.7 | 253.8 | 198.1 | 226.9 | 198.1   |
| 1000               | NA   | 415.9 | 415.9 | 415.9 | NA    | NA      |
| 2000               | NA   | 1081  | 941   | 785.5 | NA    | NA      |

| Nominal PEG (mg/L) | Measured PEG TOC (mg/L) |
|--------------------|-------------------------|
| 0                  | 0                       |
| 375                | 170                     |
| 750                | 448.5                   |
| 1500               | 887                     |
| 3000               | 1750                    |
| 6000               | 3444.5                  |
| 12000              | 7002                    |

 Table C1
 Total Organic Carbon measurement of PEG surrogate solutions

# Appendix D Total Nitrogen analyses

| Nominal Floc Block | Measured Floc Block Total Nitrogen (mg/L) |        |        |      |         |         |         |  |  |  |  |
|--------------------|-------------------------------------------|--------|--------|------|---------|---------|---------|--|--|--|--|
| (mg/L)             | Clad                                      | Algae* | Lemna* | Fry  | Hydra 1 | Hydra 2 | Hydra 3 |  |  |  |  |
| 0                  | 0.11                                      | 0      | 0      | 0.07 | 0.08    | 0.14    | 0.16    |  |  |  |  |
| 1.22               | 0.22                                      | NA     | NA     | NA   | NA      | NA      | NA      |  |  |  |  |
| 2.44               | 0.38                                      | NA     | NA     | NA   | NA      | NA      | NA      |  |  |  |  |
| 4.88               | 0.55                                      | NA     | NA     | NA   | NA      | NA      | NA      |  |  |  |  |
| 9.75               | 1.39                                      | NA     | NA     | NA   | NA      | NA      | NA      |  |  |  |  |
| 19.5               | 1.93                                      | NA     | NA     | NA   | NA      | NA      | NA      |  |  |  |  |
| 39                 | 3.63                                      | NA     | NA     | NA   | NA      | 3.83    | 3.06    |  |  |  |  |
| 78                 | 7.00                                      | NA     | NA     | NA   | NA      | 7.29    | 6.01    |  |  |  |  |
| 156.25             | NA                                        | NA     | NA     | NA   | NA      | 15.2    | 11.4    |  |  |  |  |
| 312.5              | NA                                        | 27.7   | 17.8   | 32.1 | 18.2    | 30.6    | 25      |  |  |  |  |
| 625                | NA                                        | 47     | 36.3   | 63.3 | 36.7    | NA      | 45.9    |  |  |  |  |
| 1250               | NA                                        | 90.1   | 74.3   | 130  | 74.7    | 125     | 47.9    |  |  |  |  |
| 2500               | NA                                        | 189.1  | 141.6  | 285  | 142     | NA      | NA      |  |  |  |  |
| 5000               | NA                                        | 361.1  | 286.6  | 483  | 287     | NA      | NA      |  |  |  |  |

Table D1 Total Nitrogen measurement of Flocculent Block test solutions

\* Adjusted for the addition of nutrients to the test. NA = not analysed

| Neminal (mg/l) |      | Measure           | d Floc Block To | tal Nitrogen (m | g/L) |                   |
|----------------|------|-------------------|-----------------|-----------------|------|-------------------|
| Nominai (mg/L) | Clad | Hydra             | Algae*          | Lemna*          | Fry  | Hydra 2           |
| 0              | 0.33 | 0.18              | 0               | 0               | 0.37 | 0.17              |
| 0.5            | 0.19 | NA                | NA              | NA              | NA   | NA                |
| 1              | 0.29 | NA                | NA              | NA              | NA   | NA                |
| 2              | 0.52 | NA                | NA              | NA              | NA   | NA                |
| 4              | 0.84 | NA                | NA              | NA              | NA   | NA                |
| 8              | 1.19 | NA                | NA              | NA              | NA   | NA                |
| 16             | 2.62 | 2.57              | NA              | NA              | NA   | 2.5               |
| 32             | 4.68 | 5.36              | NA              | NA              | NA   | 5.4               |
| 62             | NA   | 21.2              | NA              | NA              | NA   | 44.9 <sup>a</sup> |
| 125            | NA   | 97.6 <sup>a</sup> | 2.1             | 17.0            | 5.6  | 20.6              |
| 250            | NA   | 54.6              | 4.2             | 40.0            | 5.7  | 88.8              |
| 500            | NA   | 103               | 12.7            | 58.6            | 10.9 | 148               |
| 1000           | NA   | NA                | 36.9            | 114.6           | 13.8 | NA                |
| 2000           | NA   | NA                | 320             | 273.6           | 320  | NA                |

 Table D2
 Total Nitrogen measurement of PAM test solutions

\* Adjusted for the addition of nutrients to the test

<sup>a</sup> Removed from analysis NA = not analysd

# Appendix E Statistical analyses (Nominal concentrations)

# 862B - Hyd\_FBloc\_01

| Green Hydra Population Growth Test-Population growth rate (k |            |        |           |                    |                      |        |                      |  |  |  |  |
|--------------------------------------------------------------|------------|--------|-----------|--------------------|----------------------|--------|----------------------|--|--|--|--|
| Start Date:                                                  | 10/09/2007 |        | Test ID:  | 862B               | Sample               | ID:    | FLOC BLOC            |  |  |  |  |
| End Date:                                                    | 14/09/2007 |        | Lab ID:   | ERISS-eriss ecoto  | xicology lal Sample  | Туре:  | FLOC BLOC            |  |  |  |  |
| Sample Date:                                                 |            |        | Protocol: | BTT B-eriss tropic | al freshwat Test Spe | ecies: | HV-Hydra viridissima |  |  |  |  |
| Comments:                                                    |            |        |           |                    |                      |        |                      |  |  |  |  |
| Conc-mg/L                                                    | 1          | 2      | 3         |                    |                      |        |                      |  |  |  |  |
| 0                                                            | 0.3271     | 0.3202 | 0.3402    |                    |                      |        |                      |  |  |  |  |
| 312.5                                                        | 0.2829     | 0.2389 | 0.2082    |                    |                      |        |                      |  |  |  |  |
| 625                                                          | 0.2291     | 0.2189 | 0.2389    |                    |                      |        |                      |  |  |  |  |
| 1250                                                         | 0.2082     | 0.2291 | 0.1855    |                    |                      |        |                      |  |  |  |  |
| 2500                                                         | 0.1971     | 0.1733 | 0.1855    |                    |                      |        |                      |  |  |  |  |
| 5000                                                         | 0.1469     | 0.1469 | 0.1733    |                    |                      |        |                      |  |  |  |  |

|           |        | _      | Transform: Untransformed |        |        |        | 1-Tailed |        |          | Isotonic |        |        |
|-----------|--------|--------|--------------------------|--------|--------|--------|----------|--------|----------|----------|--------|--------|
| Conc-mg/L | Mean   | N-Mean | Mean                     | Min    | Max    | CV%    | Ν        | t-Stat | Critical | MSD      | Mean   | N-Mean |
| 0         | 0.3292 | 1.0000 | 0.3292                   | 0.3202 | 0.3402 | 3.089  | 3        |        |          |          | 0.3292 | 1.0000 |
| *312.5    | 0.2433 | 0.7392 | 0.2433                   | 0.2082 | 0.2829 | 15.416 | 3        | 5.195  | 2.500    | 0.0413   | 0.2433 | 0.7392 |
| *625      | 0.2289 | 0.6955 | 0.2289                   | 0.2189 | 0.2389 | 4.371  | 3        | 6.065  | 2.500    | 0.0413   | 0.2289 | 0.6955 |
| *1250     | 0.2076 | 0.6306 | 0.2076                   | 0.1855 | 0.2291 | 10.504 | 3        | 7.355  | 2.500    | 0.0413   | 0.2076 | 0.6306 |
| *2500     | 0.1853 | 0.5629 | 0.1853                   | 0.1733 | 0.1971 | 6.430  | 3        | 8.705  | 2.500    | 0.0413   | 0.1853 | 0.5629 |
| *5000     | 0.1557 | 0.4731 | 0.1557                   | 0.1469 | 0.1733 | 9.765  | 3        | 10.494 | 2.500    | 0.0413   | 0.1557 | 0.4731 |

| Auxiliary Test                       | ts              |             |             |             |         |    | Statistic               |         | Critical |         | Skew    | Kurt    |
|--------------------------------------|-----------------|-------------|-------------|-------------|---------|----|-------------------------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's                       | s Test indic    | ates norm   | al distribu | tion (p > 0 | .01)    |    | 0.97073                 |         | 0.858    |         | 0.2984  | 0.99384 |
| Bartlett's Test                      | indicates e     | equal varia | ances (p =  | 0.41)       |         |    | 5.08543                 |         | 15.0863  |         |         |         |
| Hypothesis T                         | est (1-tail,    | 0.05)       | NOEC        | LOEC        | ChV     | ΤU | MSDu                    | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test                       | t               |             | <312.5      | 312.5       |         |    | 0.04133                 | 0.12554 | 0.01073  | 0.00041 | 4.6E-06 | 5, 12   |
| Treatments vs                        | Treatments vs 0 |             |             |             |         |    |                         |         |          |         |         |         |
| Linear Interpolation (200 Resamples) |                 |             |             |             |         |    |                         |         |          |         |         |         |
| Point                                | mg/L            | SD          | 95% C       | L(Exp)      | Skew    |    |                         |         |          |         |         |         |
| IC05*                                | 59.9003         | 14.3874     | 31.831      | 167.219     | 1.9250  |    |                         |         |          |         |         |         |
| IC10*                                | 119.801         | 28.7749     | 63.662      | 334.438     | 1.9250  |    |                         |         |          |         |         |         |
| IC15*                                | 179.701         | 41.8926     | 95.493      | 495.604     | 1.7111  |    | 1.0 <b>T</b>            |         |          |         |         | ٦       |
| IC20*                                | 239.601         | 55.3118     | 127.324     | 630.07      | 1.4756  |    |                         |         |          |         |         |         |
| IC25*                                | 299.502         | 90.1062     | 159.155     | 765.942     | 0.8064  |    | 0.9                     |         |          |         |         |         |
| IC40                                 | 1815.34         | 415.551     | 184.67      | 3193.95     | -0.1022 |    | 0.8 -                   |         |          |         |         |         |
| IC50                                 | 4250.32         |             |             |             |         |    | 1                       |         |          |         |         |         |
| * indicates IC                       | estimate le     | ess than th | e lowest c  | oncentrati  | on      |    | 0.7                     |         |          |         |         |         |
|                                      |                 |             |             |             |         |    | <b>9</b> 0.6 -          |         |          |         |         |         |
|                                      |                 |             |             |             |         |    | ű "                     |         |          |         | -       |         |
|                                      |                 |             |             |             |         |    | <u>ğ</u> <sup>0.5</sup> |         |          |         |         |         |
|                                      |                 |             |             |             |         |    | <b>ö</b> 0.4 -          |         |          |         |         |         |
|                                      |                 |             |             |             |         |    | <u> </u>                |         |          |         |         |         |





|                |             |             |             | Cladocera    | n Reprod   | luction Te  | est-Total        | neonate    | s           |           |           |
|----------------|-------------|-------------|-------------|--------------|------------|-------------|------------------|------------|-------------|-----------|-----------|
| Start Date:    | 21/09/200   | )7          | Test ID:    | 863D         |            |             | Sample II        | D:         | FLOC BLO    | C         |           |
| End Date:      | 26/09/200   | )7          | Lab ID:     | ERISS-eri    | iss ecotox | icology la  | Sample T         | ype:       | FLOC BLO    | C         |           |
| Sample Date:   |             |             | Protocol:   | BTT G-eri    | ss tropica | l freshwa   | Test Spec        | cies:      | MOMA-M      | oinodaphr | nia macle |
| Comments:      |             |             |             |              |            |             |                  |            |             |           |           |
| Conc-gm/L      | 1           | 2           | 3           | 4            | 5          | 6           | 7                | 8          | 9           | 10        |           |
| MCW            | 40.000      | 33.000      | 38.000      | 38.000       | 36.000     | 30.000      | 37.000           | 40.000     | 39.000      | 38.000    |           |
| 0.039          | 6.000       | 5.000       | 5.000       | 5.000        | 6.000      | 5.000       | 5.000            | 7.000      | 5.000       | 7.000     |           |
| 0.078          | 0.000       | 0.000       | 0.000       | 0.000        | 0.000      | 0.000       | 0.000            | 0.000      | 0.000       | 0.000     |           |
| 0.156          | 0.000       | 0.000       | 0.000       | 0.000        | 0.000      | 0.000       | 0.000            | 0.000      | 0.000       | 0.000     |           |
| 0.313          | 0.000       | 0.000       | 0.000       | 0.000        | 0.000      | 0.000       | 0.000            | 0.000      | 0.000       | 0.000     |           |
| 0.625          | 0.000       | 0.000       | 0.000       | 0.000        | 0.000      | 0.000       | 0.000            | 0.000      | 0.000       | 0.000     |           |
| 1.25           | 0.000       | 0.000       | 0.000       | 0.000        | 0.000      | 0.000       | 0.000            | 0.000      | 0.000       | 0.000     |           |
| 2.5            | 0.000       | 0.000       | 0.000       | 0.000        | 0.000      | 0.000       | 0.000            | 0.000      | 0.000       | 0.000     |           |
|                |             |             |             | <b>T</b> (   |            |             |                  | Baal       | 4 7 . 1 . 1 |           |           |
| 0              |             |             |             | Transform    | n: Untran  | stormed     |                  | Rank       | 1-Talled    |           | ISOt      |
| Conc-gm/L      | Mean        | N-Mean      | Mean        | MIN          | Max        | 0.010       | <u>N</u>         | Sum        | Critical    |           | Mean      |
|                | 36.900      | 1.0000      | 36.900      | 30.000       | 40.000     | 8.613       | 10               | FF 00      | 00.00       |           | 36.900    |
| "0.039         | 5.600       | 0.1518      | 5.600       | 5.000        | 7.000      | 15.058      | 10               | 55.00      | 82.00       |           | 5.600     |
| 0.078          | 0.000       | 0.0000      | 0.000       | 0.000        | 0.000      | 0.000       | 10               |            |             |           | 0.000     |
| 0.156          | 0.000       | 0.0000      | 0.000       | 0.000        | 0.000      | 0.000       | 10               |            |             |           | 0.000     |
| 0.313          | 0.000       | 0.0000      | 0.000       | 0.000        | 0.000      | 0.000       | 10               |            |             |           | 0.000     |
| 0.625          | 0.000       | 0.0000      | 0.000       | 0.000        | 0.000      | 0.000       | 10               |            |             |           | 0.000     |
| 1.25           | 0.000       | 0.0000      | 0.000       | 0.000        | 0.000      | 0.000       | 10               |            |             |           | 0.000     |
| 2.5            | 0.000       | 0.0000      | 0.000       | 0.000        | 0.000      | 0.000       | 10               |            |             |           | 0.000     |
| Auxiliary Tes  | ts          |             |             |              |            |             | Statistic        |            | Critical    |           | Skew      |
| Shapiro-Wilk'  | s Test indi | cates non   | n-normal d  | istribution  | (p <= 0.01 | 1)          | 0.84579          |            | 0.868       |           | -1.5714   |
| F-Test indicat | es unequa   | l variance  | es (p = 5.2 | 24E-04)      |            |             | 14.2031          |            | 6.54109     |           |           |
| Hypothesis T   | est (1-tail | , 0.05)     |             |              |            |             |                  |            |             |           |           |
| Wilcoxon Two   | -Sample 1   | Fest indica | ates signif | icant differ | rences     |             |                  |            |             |           |           |
| Treatments vs  |             |             |             | Linoa        | r Interno  | ation (20   | 0 Rosam          | nlos)      |             |           |           |
| Point          | am/L        | SD          | 95%         | S CL         | Skew       | 1011011 (20 | U Nesain         | picaj      |             |           |           |
| IC05*          | 0.0023      | 0.0000      | 0.0023      | 0.0024       | 0.6128     |             |                  |            |             |           |           |
| IC10*          | 0.0046      | 0.0000      | 0.0045      | 0.0047       | 0.6128     |             |                  |            |             |           |           |
| IC15*          | 0.0069      | 0.0001      | 0.0068      | 0.0071       | 0.6128     |             | 10-              |            | •           |           | •         |
| IC20*          | 0.0092      | 0.0001      | 0.0090      | 0.0094       | 0.6128     |             | '.º I            | <b>~~~</b> |             |           | •         |
| IC25*          | 0.0115      | 0.0001      | 0.0113      | 0.0118       | 0.6128     |             | 0.9 -            |            |             |           |           |
| IC40*          | 0.0184      | 0.0002      | 0.0181      | 0.0188       | 0.6128     |             | 0.8              |            |             |           |           |
| IC50*          | 0.0230      | 0.0002      | 0.0226      | 0.0235       | 0.6128     |             | -                |            |             |           |           |
| * indicates IC | estimate l  | ess than t  | the lowest  | concentra    | ition      |             | 0.7              |            |             |           |           |
|                |             |             |             |              |            |             | <b>9</b> 0.6 -   |            |             |           |           |
|                |             |             |             |              |            |             | Ĕ.               |            |             |           |           |
|                |             |             |             |              |            |             | ğ <sup>0.5</sup> |            |             |           |           |
|                |             |             |             |              |            |             | <b>ö</b> 0.4 -   |            |             |           |           |
|                |             |             |             |              |            |             | 0.3              |            |             |           |           |
|                |             |             |             |              |            |             | 0.2              |            |             |           |           |
|                |             |             |             |              |            |             | 0.2              |            |             |           |           |
|                |             |             |             |              |            |             |                  |            |             |           |           |
|                |             |             |             |              |            |             | 0.0              |            | 1           | 2         |           |
|                |             |             |             |              |            |             |                  |            | Dose        | gm/L      |           |

# 863D – Clad\_FBloc\_01

Dose-Response Plot

3



### 864E - Fry\_FBloc\_01

| Gudgeon Sac Fry Survival Test-Number of fry |            |        |           |                    |                   |            |                       |  |  |  |
|---------------------------------------------|------------|--------|-----------|--------------------|-------------------|------------|-----------------------|--|--|--|
| Start Date:                                 | 12/09/2007 |        | Test ID:  | 864E               | Sar               | nple ID:   | FBLOC                 |  |  |  |
| End Date:                                   | 16/09/2007 |        | Lab ID:   | ERISS-eriss ecoto  | oxicology lal Sar | nple Type: | FLOC BLOC             |  |  |  |
| Sample Date:                                |            |        | Protocol: | BTT E-eriss tropic | cal freshwat Tes  | t Species: | MMO-Mogurnda mogurnda |  |  |  |
| Comments:                                   |            |        |           |                    |                   |            |                       |  |  |  |
| Conc-gm/L                                   | 1          | 2      | 3         |                    |                   |            |                       |  |  |  |
| 0                                           | 10.000     | 10.000 | 10.000    |                    |                   |            |                       |  |  |  |
| 312.5                                       | 10.000     | 10.000 | 10.000    |                    |                   |            |                       |  |  |  |
| 625                                         | 10.000     | 10.000 | 10.000    |                    |                   |            |                       |  |  |  |
| 1250                                        | 10.000     | 10.000 | 10.000    |                    |                   |            |                       |  |  |  |
| 2500                                        | 5.000      | 8.000  | 7.000     |                    |                   |            |                       |  |  |  |
| 5000                                        | 8.000      | 6.000  | 5.000     |                    |                   |            |                       |  |  |  |

|   |           |        |        | Transform: Untransformed |        |        |        |   | 1-Tailed |          |       |        |        |
|---|-----------|--------|--------|--------------------------|--------|--------|--------|---|----------|----------|-------|--------|--------|
|   | Conc-gm/L | Mean   | N-Mean | Mean                     | Min    | Max    | CV%    | Ν | t-Stat   | Critical | MSD   | Mean   | N-Mean |
| Ĩ | 0         | 10.000 | 1.0000 | 10.000                   | 10.000 | 10.000 | 0.000  | 3 |          |          |       | 10.000 | 0.0000 |
|   | 312.5     | 10.000 | 1.0000 | 10.000                   | 10.000 | 10.000 | 0.000  | 3 | 0.000    | 2.500    | 1.800 | 10.000 | 0.0000 |
|   | 625       | 10.000 | 1.0000 | 10.000                   | 10.000 | 10.000 | 0.000  | 3 | 0.000    | 2.500    | 1.800 | 10.000 | 0.0000 |
|   | 1250      | 10.000 | 1.0000 | 10.000                   | 10.000 | 10.000 | 0.000  | 3 | 0.000    | 2.500    | 1.800 | 10.000 | 0.0000 |
|   | *2500     | 6.667  | 0.6667 | 6.667                    | 5.000  | 8.000  | 22.913 | 3 | 4.629    | 2.500    | 1.800 | 6.667  | 0.3333 |
|   | *5000     | 6.333  | 0.6333 | 6.333                    | 5.000  | 8.000  | 24.119 | 3 | 5.092    | 2.500    | 1.800 | 6.333  | 0.3667 |
|   |           |        |        |                          |        |        |        |   |          |          |       |        |        |

| Auxiliary Tests                    |            |            |             |    | Statistic |         | Critical |         | Skew    | Kurt    |
|------------------------------------|------------|------------|-------------|----|-----------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates non- | normal dis | stribution | (p <= 0.01) |    | 0.76171   |         | 0.858    |         | -1E-16  | 2.44375 |
| Equality of variance cannot be con | ifirmed    |            |             |    |           |         |          |         |         |         |
| Hypothesis Test (1-tail, 0.05)     | NOEC       | LOEC       | ChV         | ΤU | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test                     | 1250       | 2500       | 1767.77     |    | 1.80021   | 0.18002 | 9.83333  | 0.77778 | 1.9E-04 | 5, 12   |
| Treatments vs 0                    |            |            |             |    |           |         |          |         |         |         |

| I reatments vs | s 0     |         |          |             |                 |          |          |                  |        |       |      |
|----------------|---------|---------|----------|-------------|-----------------|----------|----------|------------------|--------|-------|------|
|                |         |         |          | Ma          | aximum Likeliho | od-Logit |          |                  |        |       |      |
| Parameter      | Value   | SE      | 95% Fidu | cial Limits | Control         | Chi-Sq   | Critical | P-value          | Mu     | Sigma | lter |
| Slope          | 3.2057  | 1.10027 | 1.04918  | 5.36222     | 0               | 1.28866  | 7.81473  | 0.73             |        |       | 9    |
| Intercept      | -12.211 | 3.91463 | -19.884  | -4.5388     |                 |          |          |                  |        |       |      |
| TSCR           |         |         |          |             | 1.0             |          |          |                  |        | -1    |      |
| Point          | Logits  | gm/L    | 95% Fidu | cial Limits | 0.9             | 1        |          | $\left( \right)$ |        |       |      |
| EC01           | -4.595  | 237.617 | 0.88409  | 727.32      | 0.0             | -        |          |                  |        |       |      |
| EC05           | -2.944  | 777.675 | 32.3476  | 1511.92     | 0.8             | 1        |          | 11 /             |        |       |      |
| EC10           | -2.197  | 1330.11 | 162.23   | 2141.8      | 0.7             | -        |          | /                |        |       |      |
| EC15           | -1.735  | 1854.39 | 431.737  | 2709.59     | <b>%</b> 0.6    | 1        |          | /                |        |       |      |
| EC20           | -1.386  | 2381.51 | 876.531  | 3328.83     | ű.              | -        |          |                  |        |       |      |
| EC25           | -1.099  | 2928.15 | 1498.07  | 4143.58     | <b>8</b> 0.5    | 1        |          | /                |        |       |      |
| EC40           | -0.405  | 4817.45 | 3454.94  | 11076.2     | 0.4 ۋ           | -        |          |                  |        |       |      |
| EC50           | 0.000   | 6446.14 | 4472.21  | 24796.1     | 0.3             | 1        | <u> </u> | 1                |        |       |      |
| EC60           | 0.405   | 8625.46 | 5528.75  | 58123.8     | 0.0             | 1        | //       |                  |        |       |      |
| EC75           | 1.099   | 14190.8 | 7677.29  | 258045      | 0.2             | ]        |          |                  |        |       |      |
| EC80           | 1.386   | 17448   | 8750.92  | 481613      | 0.1             | 1        |          |                  |        |       |      |
| EC85           | 1.735   | 22407.8 | 10231.7  | 1027398     | 0.0             | 1        |          |                  |        |       |      |
| EC90           | 2.197   | 31240.1 | 12563.4  | 2817050     | (               | ).1 10   | 1000     | 100000 1         | E+07 1 | E+09  |      |
| EC95           | 2.944   | 53432   | 17443.9  | 1.4E+07     |                 |          |          |                  |        |       |      |
| EC99           | 4.595   | 174873  | 35763.1  | 4.9E+08     |                 |          |          |                  |        |       |      |

Dose gm/L



### 865L - Lem\_FBloc\_01

|                                |                                      |                                      |                                      | Lemna Growth I                          | nhibition                                | Incr. in b                              | iomass                               |                                        |                |
|--------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------|----------------|
| Start Date:                    | 10/09/2007                           | 7                                    | Test ID:                             | 865L                                    |                                          | Sample II                               | D:                                   | FBLOC                                  |                |
| End Date:                      | 14/09/2007                           | 7                                    | Lab ID:                              | ERISS-eriss ecotor                      | kicology la                              | Sample T                                | ype:                                 | FLOC BLOC                              |                |
| Sample Date:                   |                                      |                                      | Protocol:                            | BTT D-eriss tropica                     | al freshwa                               | Test Spec                               | cies:                                | LAE-Lemna                              | aequinoctialis |
| Comments:                      |                                      |                                      |                                      |                                         |                                          | -                                       |                                      |                                        | -              |
| Conc-gm/L                      | 1                                    | 2                                    | 3                                    | percentage of c                         | control                                  |                                         | mean                                 | se                                     |                |
| 1.723                          | 63.000                               | 63.000                               | 51.000                               | 106.78                                  | 106.78                                   | 86.4407                                 | 100                                  | 6.77966                                |                |
| 155.4                          | 66.000                               | 95.000                               | 64.000                               | 111.864                                 | 161.017                                  | 108.475                                 | 127.119                              | 16.9774                                |                |
| 303.2                          | 83.000                               | 75.000                               | 49.000                               | 140.678                                 | 127.119                                  | 83.0508                                 | 116.949                              | 17.3953                                |                |
| 604.1                          | 65.000                               | 78.000                               | 55.000                               | 110.169                                 | 132.203                                  | 93.2203                                 | 111.864                              | 11.2853                                |                |
| 1222                           | 71.000                               | 62.000                               | 44.000                               | 120.339                                 | 105.085                                  | 74.5763                                 | 100                                  | 13.453                                 |                |
| 2593                           | 47.000                               | 60.000                               | 61.000                               | 79.661                                  | 101.695                                  | 103.39                                  | 94.9153                              | 7.6428                                 |                |
| 303.2<br>604.1<br>1222<br>2593 | 83.000<br>65.000<br>71.000<br>47.000 | 75.000<br>78.000<br>62.000<br>60.000 | 49.000<br>55.000<br>44.000<br>61.000 | 140.678<br>110.169<br>120.339<br>79.661 | 127.119<br>132.203<br>105.085<br>101.695 | 83.0508<br>93.2203<br>74.5763<br>103.39 | 116.949<br>111.864<br>100<br>94.9153 | 17.3953<br>11.2853<br>13.453<br>7.6428 |                |

|           |        |        |        | Transform: Untransformed |        |        |   |        | 1-Tailed |        | Isotonic |        |  |
|-----------|--------|--------|--------|--------------------------|--------|--------|---|--------|----------|--------|----------|--------|--|
| Conc-gm/L | Mean   | N-Mean | Mean   | Min                      | Max    | CV%    | Ν | t-Stat | Critical | MSD    | Mean     | N-Mean |  |
| 1.723     | 59.000 | 1.0000 | 59.000 | 51.000                   | 63.000 | 11.743 | 3 |        |          |        | 67.667   | 1.0000 |  |
| 155.4     | 75.000 | 1.2712 | 75.000 | 64.000                   | 95.000 | 23.132 | 3 | -1.483 | 2.500    | 26.977 | 67.667   | 1.0000 |  |
| 303.2     | 69.000 | 1.1695 | 69.000 | 49.000                   | 83.000 | 25.763 | 3 | -0.927 | 2.500    | 26.977 | 67.667   | 1.0000 |  |
| 604.1     | 66.000 | 1.1186 | 66.000 | 55.000                   | 78.000 | 17.474 | 3 | -0.649 | 2.500    | 26.977 | 66.000   | 0.9754 |  |
| 1222      | 59.000 | 1.0000 | 59.000 | 44.000                   | 71.000 | 23.301 | 3 | 0.000  | 2.500    | 26.977 | 59.000   | 0.8719 |  |
| 2593      | 56.000 | 0.9492 | 56.000 | 47.000                   | 61.000 | 13.947 | 3 | 0.278  | 2.500    | 26.977 | 56.000   | 0.8276 |  |

| Auxiliary Tests                     |              |            |       |    | Statistic |         | Critical |         | Skew    | Kurt    |
|-------------------------------------|--------------|------------|-------|----|-----------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates nor   | mal distrib  | ution (p > | 0.01) |    | 0.95913   |         | 0.858    |         | -0.0603 | -0.8566 |
| Bartlett's Test indicates equal var | riances (p : | = 0.80)    |       |    | 2.34461   |         | 15.0863  |         |         |         |
| Hypothesis Test (1-tail, 0.05)      | NOEC         | LOEC       | ChV   | ΤU | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test                      | 2593         | >2593      |       |    | 26.9774   | 0.45724 | 158.4    | 174.667 | 0.50797 | 5, 12   |
| Treatments vs 1.723                 |              |            |       |    |           |         |          |         |         |         |

|       |         |    | Line        | ar Interpolatio | n (200 Resamples) |          |   |   |
|-------|---------|----|-------------|-----------------|-------------------|----------|---|---|
| Point | gm/L    | SD | 95% CL(Exp) | Skew            |                   |          |   |   |
| IC05  | 755.633 |    |             |                 |                   |          |   |   |
| IC10  | 1054.28 |    |             |                 |                   |          |   |   |
| IC15  | 1899.88 |    |             |                 | 1.0 -             |          |   | - |
| IC20  | >2593   |    |             |                 | 0.9               |          |   |   |
| IC25  | >2593   |    |             |                 | 0.8               |          |   |   |
| IC40  | >2593   |    |             |                 | 0.0               |          |   |   |
| IC50  | >2593   |    |             |                 | 0.7               |          |   |   |
|       |         |    |             |                 | 0.6               |          |   |   |
|       |         |    |             |                 | o <sup>0.5</sup>  |          |   |   |
|       |         |    |             |                 | <u>v</u> 0.4 -    |          |   |   |
|       |         |    |             |                 | <b>0</b> .3       |          |   |   |
|       |         |    |             |                 | <b>S</b> 0.2      |          | • |   |
|       |         |    |             |                 | <b>č</b> 0,1      | -        |   |   |
|       |         |    |             |                 |                   | <u> </u> |   |   |



Dose-Response Plot



# 866G - Alg\_FBloc\_02

|              |            |        |           | Algal Grow     | th Inhibition  | Test-Growth rate | 9                |  |
|--------------|------------|--------|-----------|----------------|----------------|------------------|------------------|--|
| Start Date:  | 10/09/2007 |        | Test ID:  | 866G           |                | Sample ID:       | FLOC BLOC        |  |
| End Date:    | 13/09/2007 |        | Lab ID:   | ERISS-eriss e  | cotoxicology I | lal Sample Type: | FLOC BLOC        |  |
| Sample Date: |            |        | Protocol: | BTT G-eriss tr | opical freshw  | at Test Species: | CH-Chlorella sp. |  |
| Comments:    |            |        |           |                | -              | -                | -                |  |
| Conc-gm/L    | 1          | 2      | 3         |                |                |                  |                  |  |
| 0            | 1.8778     | 1.9484 | 1.9412    |                |                |                  |                  |  |
| 312.5        | 1.8809     | 1.7951 | 1.8146    |                |                |                  |                  |  |
| 625          | 1.7488     | 1.7210 | 1.7816    |                |                |                  |                  |  |
| 1250         | 1.7399     | 1.7025 | 1.6946    |                |                |                  |                  |  |
| 2500         | 1.2840     | 1.1310 | 1.1431    |                |                |                  |                  |  |
| 5000         | 0.8052     | 0.6191 | 0.7204    |                |                |                  |                  |  |

|           |        |        | Transform: Untransformed |        |        |        |   |        | 1-Tailed |        | Isotonic |        |  |
|-----------|--------|--------|--------------------------|--------|--------|--------|---|--------|----------|--------|----------|--------|--|
| Conc-gm/L | Mean   | N-Mean | Mean                     | Min    | Max    | CV%    | Ν | t-Stat | Critical | MSD    | Mean     | N-Mean |  |
| 0         | 1.9225 | 1.0000 | 1.9225                   | 1.8778 | 1.9484 | 2.020  | 3 |        |          |        | 1.9225   | 1.0000 |  |
| 312.5     | 1.8302 | 0.9520 | 1.8302                   | 1.7951 | 1.8809 | 2.457  | 3 | 1.912  | 2.500    | 0.1206 | 1.8302   | 0.9520 |  |
| *625      | 1.7505 | 0.9105 | 1.7505                   | 1.7210 | 1.7816 | 1.735  | 3 | 3.565  | 2.500    | 0.1206 | 1.7505   | 0.9105 |  |
| *1250     | 1.7123 | 0.8907 | 1.7123                   | 1.6946 | 1.7399 | 1.414  | 3 | 4.354  | 2.500    | 0.1206 | 1.7123   | 0.8907 |  |
| *2500     | 1.1861 | 0.6169 | 1.1861                   | 1.1310 | 1.2840 | 7.170  | 3 | 15.260 | 2.500    | 0.1206 | 1.1861   | 0.6169 |  |
| *5000     | 0.7149 | 0.3719 | 0.7149                   | 0.6191 | 0.8052 | 13.038 | 3 | 25.023 | 2.500    | 0.1206 | 0.7149   | 0.3719 |  |

| Auxiliary Tests                       |              |           |         |    | Statistic |         | Critical |         | Skew    | Kurt    |
|---------------------------------------|--------------|-----------|---------|----|-----------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates norn    | nal distribu | tion (p > | 0.01)   |    | 0.97483   |         | 0.858    |         | 0.31768 | 0.11939 |
| Bartlett's Test indicates equal varia | ances (p =   | 0.44)     |         |    | 4.79589   |         | 15.0863  |         |         |         |
| Hypothesis Test (1-tail, 0.05)        | NOEC         | LOEC      | ChV     | ΤU | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test                        | 312.5        | 625       | 441.942 |    | 0.12064   | 0.06275 | 0.6648   | 0.00349 | 5.4E-11 | 5, 12   |
|                                       |              |           |         |    |           |         |          |         |         |         |







# 873B – Hyd\_FBloc\_02

|              |           |        | Green H   | ydra Population Growth     | Test-Population gro | owth rate (k         |  |
|--------------|-----------|--------|-----------|----------------------------|---------------------|----------------------|--|
| Start Date:  | 1/10/2007 |        | Test ID:  | 873B                       | Sample ID:          | FLOC BLOC            |  |
| End Date:    | 5/10/2007 |        | Lab ID:   | ERISS-eriss ecotoxicolog   | gy Ia Sample Type:  | FLOC BLOC            |  |
| Sample Date: |           |        | Protocol: | BTT B-eriss tropical fresh | hwa Test Species:   | HV-Hydra viridissima |  |
| Comments:    |           |        |           |                            |                     |                      |  |
| Conc-gm/L    | 1         | 2      | 3         |                            |                     |                      |  |
| MCW          | 0.2908    | 0.3338 | 0.3760    |                            |                     |                      |  |
| 0.039        | 0.3466    | 0.3704 | 0.3466    |                            |                     |                      |  |
| 0.078        | 0.3588    | 0.3402 | 0.3815    |                            |                     |                      |  |
| 0.156        | 0.3132    | 0.3202 | 0.3527    |                            |                     |                      |  |
| 0.3125       | 0.3202    | 0.3059 | 0.3338    |                            |                     |                      |  |
| 1.25         | 0.2908    | 0.3132 | 0.3588    |                            |                     |                      |  |

|           |        |        |        | Transform: Untransformed |        |        |   |        | 1-Tailed |        | Isotonic |        |  |
|-----------|--------|--------|--------|--------------------------|--------|--------|---|--------|----------|--------|----------|--------|--|
| Conc-gm/L | Mean   | N-Mean | Mean   | Min                      | Max    | CV%    | Ν | t-Stat | Critical | MSD    | Mean     | N-Mean |  |
| MCW       | 0.3335 | 1.0000 | 0.3335 | 0.2908                   | 0.3760 | 12.778 | 3 |        |          |        | 0.3494   | 1.0000 |  |
| 0.039     | 0.3545 | 1.0630 | 0.3545 | 0.3466                   | 0.3704 | 3.880  | 3 | -0.964 | 2.500    | 0.0545 | 0.3494   | 1.0000 |  |
| 0.078     | 0.3602 | 1.0799 | 0.3602 | 0.3402                   | 0.3815 | 5.739  | 3 | -1.224 | 2.500    | 0.0545 | 0.3494   | 1.0000 |  |
| 0.156     | 0.3287 | 0.9856 | 0.3287 | 0.3132                   | 0.3527 | 6.419  | 3 | 0.220  | 2.500    | 0.0545 | 0.3287   | 0.9408 |  |
| 0.3125    | 0.3200 | 0.9594 | 0.3200 | 0.3059                   | 0.3338 | 4.346  | 3 | 0.622  | 2.500    | 0.0545 | 0.3204   | 0.9171 |  |
| 1.25      | 0.3209 | 0.9622 | 0.3209 | 0.2908                   | 0.3588 | 10.795 | 3 | 0.578  | 2.500    | 0.0545 | 0.3204   | 0.9171 |  |

| Auxiliary Tests                     |             |            |       |    | Statistic |        | Critical |         | Skew    | Kurt    |
|-------------------------------------|-------------|------------|-------|----|-----------|--------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates nor   | mal distrib | ution (p > | 0.01) |    | 0.97067   |        | 0.858    |         | 0.23104 | -0.1651 |
| Bartlett's Test indicates equal var | iances (p   | = 0.61)    |       |    | 3.59897   |        | 15.0863  |         |         |         |
| Hypothesis Test (1-tail, 0.05)      | NOEC        | LOEC       | ChV   | TU | MSDu      | MSDp   | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test                      | 1.25        | >1.25      |       |    | 0.05446   | 0.1633 | 0.00088  | 0.00071 | 0.35024 | 5, 12   |
| Treatments vs MCW                   |             |            |       |    |           |        |          |         |         |         |

|       |        |    | Line        | ar Interpo | olation (200 Resamples) |
|-------|--------|----|-------------|------------|-------------------------|
| Point | gm/L   | SD | 95% CL(Exp) | Skew       |                         |
| IC05  | 0.1439 |    |             |            |                         |
| IC10  | >1.25  |    |             |            |                         |
| IC15  | >1.25  |    |             |            | 1.0 -                   |
| IC20  | >1.25  |    |             |            |                         |
| IC25  | >1.25  |    |             |            | 0.0                     |
| IC40  | >1.25  |    |             |            | 0.8                     |
| IC50  | >1.25  |    |             |            | 0.7 -                   |
|       |        |    |             |            | 0.6 -                   |
|       |        |    |             |            | <b>%</b> 0.5            |
|       |        |    |             |            | Ë at                    |
|       |        |    |             |            |                         |
|       |        |    |             |            | <b>ö</b> <sup>0.3</sup> |
|       |        |    |             |            | 0.2                     |
|       |        |    |             |            | 0.1                     |
|       |        |    |             |            | 0.0                     |



1

1.5

Dose-Response Plot

-0.1 -0.2

0



|                 |              |           |                      | ladocer    | an Renroe   | duction T   | est-Total    | neonate | \$       |           |           |         |
|-----------------|--------------|-----------|----------------------|------------|-------------|-------------|--------------|---------|----------|-----------|-----------|---------|
| Start Date      | 3/10/2007    | ,         | Test ID <sup>.</sup> | 874D       | an Neprot   |             | Sample IF    | ):      | FLOC BI  | 00        |           |         |
| End Date:       | 8/10/2007    | ,         | Lab ID:              | ERISS-e    | riss ecoto  | kicoloav la | Sample T     | vpe:    | FLOC BL  | OC OC     |           |         |
| Sample Date:    |              |           | Protocol:            | BTT D-er   | iss tropica | al freshwa  | Test Spec    | cies:   | MOMA-M   | oinodaphr | nia macle | ayi     |
| Comments:       |              |           |                      |            |             |             | •            |         |          |           |           | ·       |
| Conc-mg/L       | 1            | 2         | 3                    | 4          | 5           | 6           | 7            | 8       | 9        | 10        |           |         |
| MCW             | 38.000       | 38.000    | 36.000               | 35.000     | 37.000      | 37.000      | 34.000       | 35.000  | 41.000   | 36.000    |           |         |
| 1.22            | 38.000       | 38.000    | 36.000               | 38.000     | 40.000      | 39.000      | 37.000       | 40.000  | 39.000   | 40.000    |           |         |
| 2.44            | 41.000       | 32.000    | 37.000               | 37.000     | 34.000      | 37.000      | 38.000       | 36.000  | 36.000   | 35.000    |           |         |
| 4.88            | 37.000       | 37.000    | 39.000               | 28.000     | 36.000      | 39.000      | 35.000       | 35.000  | 36.000   | 34.000    |           |         |
| 9.75            | 29.000       | 26.000    | 29.000               | 32.000     | 31.000      | 17.000      | 16.000       | 0.000   | 0.000    | 29.000    |           |         |
| 19.5            | 11.000       | 10.000    | 12.000               | 11.000     | 11.000      | 9.000       | 12.000       | 12.000  | 13.000   | 13.000    |           |         |
| 39              | 0.000        | 0.000     | 2.000                | 0.000      | 0.000       | 2.000       | 2.000        | 1.000   | 0.000    | 1.000     |           |         |
| 78              | 0.000        | 0.000     | 0.000                | 0.000      | 0.000       | 0.000       | 0.000        | 0.000   | 0.000    | 0.000     |           |         |
|                 |              |           |                      |            | Rank        | 1-Tailed    |              | Isot    | onic     |           |           |         |
| Conc-ma/L       | Mean         | N-Mean    | Mean                 | Min        | Max         | CV%         | N            | Sum     | Critical |           | Mean      | N-Mean  |
| MCW             | 36.700       | 1.0000    | 36.700               | 34.000     | 41.000      | 5.457       | 10           |         |          |           | 37.600    | 1.0000  |
| 1.22            | 38.500       | 1.0490    | 38.500               | 36.000     | 40.000      | 3.517       | 10           | 134.00  | 74.00    |           | 37.600    | 1.0000  |
| 2.44            | 36.300       | 0.9891    | 36.300               | 32.000     | 41.000      | 6.628       | 10           | 101.00  | 74.00    |           | 36.300    | 0.9654  |
| 4.88            | 35.600       | 0.9700    | 35.600               | 28.000     | 39.000      | 8.803       | 10           | 97.50   | 74.00    |           | 35.600    | 0.9468  |
| *9.75           | 20.900       | 0.5695    | 20.900               | 0.000      | 32.000      | 58.836      | 10           | 55.00   | 74.00    |           | 20.900    | 0.5559  |
| *19.5           | 11.400       | 0.3106    | 11.400               | 9.000      | 13.000      | 11.096      | 10           | 55.00   | 74.00    |           | 11.400    | 0.3032  |
| *39             | 0.800        | 0.0218    | 0.800                | 0.000      | 2.000       | 114.867     | 10           | 55.00   | 74.00    |           | 0.800     | 0.0213  |
| 78              | 0.000        | 0.0000    | 0.000                | 0.000      | 0.000       | 0.000       | 10           |         |          |           | 0.000     | 0.0000  |
| Auxiliary Tes   | ts           |           |                      |            |             |             | Statistic    |         | Critical |           | Skew      | Kurt    |
| Kolmogorov D    | D Test indic | ates non  | -normal di           | stribution | (p <= 0.0   | 1)          | 1.84534      |         | 1.035    |           | -1.9974   | 9.79344 |
| Bartlett's Test | indicates u  | unequal v | variances            | (p = 1.32  | E-18)       |             | 96.5441      |         | 16.8119  |           |           |         |
| Hypothesis T    | est (1-tail, | 0.05)     | NOEC                 | LOEC       | ChV         | TU          |              |         |          |           |           |         |
| Steel's Many-   | One Rank     | Test      | 4.88                 | 9.75       | 6.89783     |             |              |         |          |           |           |         |
| Treatments vs   | s MCW        |           |                      | 1.2        |             | L. (' (O)   | 0 D          | . 1     |          |           |           |         |
| Daint           |              | 60        | 05%                  | Line       | ar Interpo  | lation (20  | iu Resam     | pies)   |          |           |           |         |
| Point           | 1 462        | 1.060     | 2 1 0 2              | 5 0L       | 0 7112      |             |              |         |          |           |           |         |
| 1005            | 4.40Z        | 0.368     | 2.103                | 5.34Z      | -0.7112     |             |              |         |          |           |           |         |
| 1010            | 6.086        | 0.300     | 5 500                | 6 925      | 1 0530      |             | 1.0 <b>T</b> |         |          |           |           |         |
| 1010            | 6 709        | 0.568     | 6 040                | 7 994      | 1 2086      |             | 0.9          |         | /        |           |           |         |
| IC25            | 7 332        | 0.000     | 6 482                | 9 202      | 1 1367      |             | 0.8          |         |          |           |           |         |
| IC40            | 9 200        | 1 399     | 7 866                | 12 824     | 0.6540      |             | 0.7          |         |          |           |           |         |
| IC50            | 11.905       | 2.022     | 8.778                | 15.164     | -0.2504     |             | 0.7          | 7       |          |           |           |         |
|                 |              |           |                      |            |             |             | 0.6          | /       |          |           |           |         |
|                 |              |           |                      |            |             | JSe         | 0.5          | (       |          |           |           |         |
|                 |              |           |                      |            |             | ž           | 0.4          |         |          |           |           |         |
|                 |              |           |                      |            |             | est         | 0.3          |         |          |           |           |         |
|                 |              |           |                      |            |             | Ř           | 02           |         |          |           |           |         |
|                 |              |           |                      |            |             |             | ··- ] [      |         |          |           |           |         |

# 874D – Clad\_FBloc\_02



0.1 0.0 -0.1 -0.2

0

20

40 60 Dose mg/L

80

100



# 877B - Hyd\_FBloc\_03

| - |
|---|

|           |        | _      |        | Transforn | n: Untran | sformed |   | _      | 1-Tailed |        | Isotonic |        |  |
|-----------|--------|--------|--------|-----------|-----------|---------|---|--------|----------|--------|----------|--------|--|
| Conc-gm/L | Mean   | N-Mean | Mean   | Min       | Max       | CV%     | Ν | t-Stat | Critical | MSD    | Mean     | N-Mean |  |
| 0         | 0.2597 | 1.0000 | 0.2597 | 0.2389    | 0.2829    | 8.501   | 3 |        |          |        | 0.2597   | 1.0000 |  |
| 39        | 0.2130 | 0.8200 | 0.2130 | 0.1733    | 0.2574    | 19.843  | 3 | 2.308  | 2.530    | 0.0512 | 0.2352   | 0.9057 |  |
| 78        | 0.2542 | 0.9786 | 0.2542 | 0.2389    | 0.2662    | 5.484   | 3 | 0.274  | 2.530    | 0.0512 | 0.2352   | 0.9057 |  |
| 156       | 0.2385 | 0.9183 | 0.2385 | 0.2189    | 0.2483    | 7.128   | 3 | 1.048  | 2.530    | 0.0512 | 0.2352   | 0.9057 |  |
| *313      | 0.1762 | 0.6783 | 0.1762 | 0.1469    | 0.2082    | 17.451  | 3 | 4.126  | 2.530    | 0.0512 | 0.1762   | 0.6783 |  |
| *625      | 0.1515 | 0.5832 | 0.1515 | 0.1469    | 0.1605    | 5.153   | 3 | 5.346  | 2.530    | 0.0512 | 0.1515   | 0.5832 |  |
| *1250     | 0.1270 | 0.4890 | 0.1270 | 0.1014    | 0.1469    | 18.358  | 3 | 6.554  | 2.530    | 0.0512 | 0.1270   | 0.4890 |  |

| Auxiliary Tests                     |             |            |         |    | Statistic |         | Critical |         | Skew    | Kurt    |
|-------------------------------------|-------------|------------|---------|----|-----------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates nor   | mal distrib | ution (p > | » 0.01) |    | 0.98649   |         | 0.873    |         | 0.12918 | -0.0551 |
| Bartlett's Test indicates equal var | iances (p   | = 0.52)    |         |    | 5.1778    |         | 16.8119  |         |         |         |
| Hypothesis Test (1-tail, 0.05)      | NOEC        | LOEC       | ChV     | ΤU | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test                      | 156         | 313        | 220.971 |    | 0.05123   | 0.19727 | 0.00817  | 0.00062 | 4.5E-05 | 6, 14   |
| Treatments vs 0                     |             |            |         |    |           |         |          |         |         |         |

|             |               |            |           | Linea     | ar Interpola | tion (200 Resamples) |
|-------------|---------------|------------|-----------|-----------|--------------|----------------------|
| Point       | gm/L          | SD         | 95% C     | L(Exp)    | Skew         |                      |
| IC05*       | 20.6683       | 58.2368    | 0.88367   | 359.27    | 1.3754       |                      |
| IC10        | 159.903       | 74.2445    | 0         | 303.895   | -0.1530      |                      |
| IC15        | 194.426       | 58.3926    | 0         | 351.459   | -1.3387      | 1.0 -                |
| IC20        | 228.949       | 41.0833    | 105.38    | 413.262   | 0.2724       |                      |
| IC25        | 263.472       | 49.958     | 141.616   | 553.179   | 1.2550       | 0.9                  |
| IC40        | 569.748       | 152.394    | 2.60248   | 1311.84   | 0.5560       | 0.8                  |
| IC50        | 1176.79       |            |           |           |              | •                    |
| * indicates | IC estimate l | ess than t | he lowest | concentra | ation        | 0.7                  |
|             |               |            |           |           |              | <b>g</b> 0.6         |







### 883B - Hyd\_PAM\_01

|              |            |        | Green H   | lydra Popula | tion Growth    | Test-Population g  | owth rate (k |            |  |
|--------------|------------|--------|-----------|--------------|----------------|--------------------|--------------|------------|--|
| Start Date:  | 12/11/2007 | ,      | Test ID:  | 883B         |                | Sample ID:         | ST-Spiked T  | l oxicant  |  |
| End Date:    | 16/11/2007 |        | Lab ID:   | ERISS-eriss  | ecotoxicology  | y lal Sample Type: | PAM - Polya  | acrylamide |  |
| Sample Date: |            |        | Protocol: | BTT B-eriss  | tropical fresh | wate Test Species: | HV-Hydra vi  | iridissima |  |
| Comments:    |            |        |           |              |                |                    |              |            |  |
| Conc-mg/L    | 1          | 2      | 3         |              |                |                    |              |            |  |
| MCW          | 0.3647     | 0.3588 | 0.3402    |              |                |                    |              |            |  |
| 16.125       | 0.3466     | 0.3527 | 0.2985    |              |                |                    |              |            |  |
| 32.25        | 0.3588     | 0.3202 | 0.3527    |              |                |                    |              |            |  |
| 62.5         | 0.3059     | 0.3704 | 0.3202    |              |                |                    |              |            |  |
| 125          | 0.2291     | 0.2662 | 0.2574    |              |                |                    |              |            |  |
| 250          | 0.2291     | 0.2483 | 0.2483    |              |                |                    |              |            |  |
| 500          | 0.0238     | 0.0656 | 0.1014    |              |                |                    |              |            |  |

|           |        |        |        | Transform: Untransformed |        |        |   |        | 1-Tailed |        | Isotonic |        |  |
|-----------|--------|--------|--------|--------------------------|--------|--------|---|--------|----------|--------|----------|--------|--|
| Conc-mg/L | Mean   | N-Mean | Mean   | Min                      | Max    | CV%    | Ν | t-Stat | Critical | MSD    | Mean     | N-Mean |  |
| MCW       | 0.3546 | 1.0000 | 0.3546 | 0.3402                   | 0.3647 | 3.593  | 3 |        |          |        | 0.3546   | 1.0000 |  |
| 16.125    | 0.3326 | 0.9381 | 0.3326 | 0.2985                   | 0.3527 | 8.932  | 3 | 1.046  | 2.530    | 0.0531 | 0.3383   | 0.9540 |  |
| 32.25     | 0.3439 | 0.9700 | 0.3439 | 0.3202                   | 0.3588 | 6.028  | 3 | 0.507  | 2.530    | 0.0531 | 0.3383   | 0.9540 |  |
| 62.5      | 0.3322 | 0.9369 | 0.3322 | 0.3059                   | 0.3704 | 10.190 | 3 | 1.065  | 2.530    | 0.0531 | 0.3322   | 0.9369 |  |
| *125      | 0.2509 | 0.7076 | 0.2509 | 0.2291                   | 0.2662 | 7.730  | 3 | 4.939  | 2.530    | 0.0531 | 0.2509   | 0.7076 |  |
| *250      | 0.2419 | 0.6823 | 0.2419 | 0.2291                   | 0.2483 | 4.592  | 3 | 5.367  | 2.530    | 0.0531 | 0.2419   | 0.6823 |  |
| *500      | 0.0636 | 0.1794 | 0.0636 | 0.0238                   | 0.1014 | 61.024 | 3 | 13.862 | 2.530    | 0.0531 | 0.0636   | 0.1794 |  |

| Auxiliary Tests                      |              |              |         |    | Statistic |         | Critical |         | Skew    | Kurt    |
|--------------------------------------|--------------|--------------|---------|----|-----------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates norr   | nal distribu | ition (p > ) | 0.01)   |    | 0.95736   |         | 0.873    |         | -0.1171 | -0.5243 |
| Bartlett's Test indicates equal vari | ances (p =   | 0.67)        |         |    | 4.05402   |         | 16.8119  |         |         |         |
| Hypothesis Test (1-tail, 0.05)       | NOEC         | LOEC         | ChV     | ΤU | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test                       | 62.5         | 125          | 88.3883 |    | 0.05311   | 0.14978 | 0.03202  | 0.00066 | 1.4E-08 | 6, 14   |
| <b>T</b>                             |              |              |         |    |           |         |          |         |         |         |









|                 |              | -         |            |            |                    |             |                |         |          |                      |           |         |
|-----------------|--------------|-----------|------------|------------|--------------------|-------------|----------------|---------|----------|----------------------|-----------|---------|
| <u></u>         | 10/11/00     | -         | <u> </u>   | Cladocera  | an Repro           | duction T   | est-Total      | neonate | S        | · <del>-</del> · · · |           |         |
| Start Date:     | 12/11/200    | )7        | Test ID:   | 884D       |                    |             | Sample IL      | ):      | ST-Spike | d Ioxicant           |           |         |
| End Date:       | 17/11/200    | )/        | Lab ID:    | ERISS-er   | iss ecoto:         | kicology la | Sample I       | ype:    | PAM - Po | Iyacrylami           | de        |         |
| Sample Date:    |              |           | Protocol:  | BIID-er    | iss tropica        | al freshwa  | Test Spec      | ies:    | MOMA-M   | oinodaphr            | na maclea | ауі     |
| Conc-am/L       | 1            | 2         | 3          | 4          | 5                  | 6           | 7              | 8       | 9        | 10                   |           |         |
| MCW             | 40,000       | 41 000    | 25,000     | 44 000     | 39,000             | 40,000      | 21 000         | 43 000  | 43,000   | 39,000               |           |         |
| 0.5             | 37.000       | 39.000    | 37.000     | 33.000     | 40.000             | 38.000      | 36.000         | 37.000  | 37.000   | 40.000               |           |         |
| 1               | 36.000       | 39.000    | 31.000     | 34.000     | 36.000             | 34,000      | 31,000         | 38.000  | 37.000   | 38,000               |           |         |
| 2               | 32.000       | 30.000    | 33.000     | 32.000     | 31.000             | 27.000      | 31.000         | 0.000   | 33.000   | 31.000               |           |         |
| 4               | 27.000       | 24.000    | 25.000     | 27.000     | 26.000             | 24.000      | 28.000         | 25.000  | 26.000   | 28.000               |           |         |
| 8               | 10.000       | 10.000    | 10.000     | 13.000     | 11.000             | 12.000      | 12.000         | 11.000  | 10.000   | 11.000               |           |         |
| 16              | 0.000        | 0.000     | 3.000      | 3.000      | 3.000              | 5.000       | 5.000          | 0.000   | 0.000    | 0.000                |           |         |
| 32              | 0.000        | 0.000     | 0.000      | 0.000      | 0.000              | 0.000       | 0.000          | 0.000   | 0.000    | 0.000                |           |         |
|                 |              |           |            |            |                    |             |                |         |          |                      |           |         |
|                 |              |           |            | Transfori  | m: Untrar          | nsformed    |                | Rank    | 1-Tailed |                      | Isoto     | onic    |
| Conc-gm/L       | Mean         | N-Mean    | Mean       | Min        | Мах                | CV%         | Ν              | Sum     | Critical |                      | Mean      | N-Mean  |
| MCW             | 37.500       | 1.0000    | 37.500     | 21.000     | 44.000             | 21.044      | 10             |         |          |                      | 37.500    | 1.0000  |
| 0.5             | 37.400       | 0.9973    | 37.400     | 33.000     | 40.000             | 5.523       | 10             | 82.00   | 74.00    |                      | 37.400    | 0.9973  |
| 1               | 35.400       | 0.9440    | 35.400     | 31.000     | 39.000             | 8.012       | 10             | 76.00   | 74.00    |                      | 35.400    | 0.9440  |
| *2              | 28.000       | 0.7467    | 28.000     | 0.000      | 33.000             | 35.675      | 10             | 73.00   | 74.00    |                      | 28.000    | 0.7467  |
| *4              | 26.000       | 0.6933    | 26.000     | 24.000     | 28.000             | 5.734       | 10             | 72.00   | 74.00    |                      | 26.000    | 0.6933  |
| *8              | 11.000       | 0.2933    | 11.000     | 10.000     | 13.000             | 9.583       | 10             | 55.00   | 74.00    |                      | 11.000    | 0.2933  |
| *16             | 1.900        | 0.0507    | 1.900      | 0.000      | 5.000              | 112.198     | 10             | 55.00   | 74.00    |                      | 1.900     | 0.0507  |
| 32              | 0.000        | 0.0000    | 0.000      | 0.000      | 0.000              | 0.000       | 10             |         |          |                      | 0.000     | 0.0000  |
|                 | ts           |           |            |            |                    |             | Statistic      |         | Critical |                      | Skew      | Kurt    |
| Kolmogorov [    | ) Test indir | cates non | -normal di | stribution | (n < = 0.0)        | 1)          | 2 15778        |         | 1 035    |                      | -3 5202   | 17 0352 |
| Rartlett's Test | indicates    | unequal v | ariances l | 'n – 3 75F | (p <= 0.0<br>5-13) | •)          | 70 1808        |         | 16 8119  |                      | 0.0202    | 17.0002 |
| Hypothesis 1    | Test (1-tail | . 0.05)   | NOEC       |            | ChV                | TU          | 70.1000        |         | 10.0115  |                      |           |         |
| Steel's Many-   | One Rank     | Test      | 1          | 2          | 1 41421            |             |                |         |          |                      |           |         |
| Treatments ve   | s MCW        |           | •          | -          |                    |             |                |         |          |                      |           |         |
|                 |              |           |            | Linea      | ar Interpo         | lation (20  | 0 Resam        | oles)   |          |                      |           |         |
| Point           | gm/L         | SD        | 95%        | CL         | Skew               |             |                |         |          |                      |           |         |
| IC05            | 0.9438       | 0.3437    | 0.2704     | 1.3654     | -0.0754            |             |                |         |          |                      |           |         |
| IC10            | 1.2230       | 0.3366    | 0.5735     | 1.8381     | 0.2172             |             |                |         |          |                      |           |         |
| IC15            | 1.4764       | 0.3842    | 0.9528     | 2.4688     | 1.0085             |             | 1.0 <b>-</b>   |         |          | _                    | -         | ٦       |
| IC20            | 1.7297       | 0.5353    | 1.2743     | 3.1550     | 1.0109             |             |                |         | -        |                      |           |         |
| IC25            | 1.9831       | 0.7570    | 1.4863     | 3.8937     | 0.4310             |             | 0.9            |         |          |                      |           |         |
| IC40            | 4.9333       | 0.4261    | 4.1602     | 5.3289     | -3.0504            |             | 0.8 -          |         | /        |                      |           |         |
| IC50            | 5.9333       | 0.2670    | 5.3179     | 6.2421     | -0.4458            |             | 0.7            | 4       | /        |                      |           |         |
|                 |              |           |            |            |                    |             | 0.7            | Ţ       |          |                      |           |         |
|                 |              |           |            |            |                    |             | <b>9</b> 0.6 - |         |          |                      |           | 1       |
|                 |              |           |            |            |                    |             | Ë o F          |         |          |                      |           | 1       |
|                 |              |           |            |            |                    |             | <u>å</u> 0.3 ] |         |          |                      |           |         |
|                 |              |           |            |            |                    |             | <b>e</b> 0.4 - | /       |          |                      |           |         |
|                 |              |           |            |            |                    |             |                | 1       |          |                      |           |         |

### 884D - Clad \_PAM\_01



0.3 0.2 0.1 0.0

0

. 10 20

Dose gm/L

30

40



### 887L - Lem\_PAM\_01

|              |            |        |           | Lemna Growth       | Inhibition-Incr. in biomass | •                        |  |
|--------------|------------|--------|-----------|--------------------|-----------------------------|--------------------------|--|
| Start Date:  | 19/11/2007 | ,      | Test ID:  | 887L               | Sample ID:                  | ST-Spiked Toxicant       |  |
| End Date:    | 23/11/2007 | ,      | Lab ID:   | ERISS-eriss ecoto  | xicology la Sample Type:    | PAM-Polyacrylamide       |  |
| Sample Date: |            |        | Protocol: | BTT D-eriss tropic | al freshwa Test Species:    | LAE-Lemna aequinoctialis |  |
| Comments:    |            |        |           |                    |                             |                          |  |
| Conc-mg/L    | 1          | 2      | 3         |                    |                             |                          |  |
| MCW          | 51.000     | 57.000 | 63.000    |                    |                             |                          |  |
| 125          | 62.000     | 40.000 | 54.000    |                    |                             |                          |  |
| 250          | 21.000     | 28.000 | 56.000    |                    |                             |                          |  |
| 500          | 16.000     | 24.000 | 27.000    |                    |                             |                          |  |
| 1000         | 6.000      | 0.000  | 12.000    |                    |                             |                          |  |
| 2000         | 0.000      | 3.000  | 4.000     |                    |                             |                          |  |

|           |        |        |        | Transform: Untransformed |        |         |   |        | 1-Tailed |        | Isotonic |        |  |
|-----------|--------|--------|--------|--------------------------|--------|---------|---|--------|----------|--------|----------|--------|--|
| Conc-mg/L | Mean   | N-Mean | Mean   | Min                      | Max    | CV%     | Ν | t-Stat | Critical | MSD    | Mean     | N-Mean |  |
| MCW       | 57.000 | 1.0000 | 57.000 | 51.000                   | 63.000 | 10.526  | 3 |        |          |        | 57.000   | 1.0000 |  |
| 125       | 52.000 | 0.9123 | 52.000 | 40.000                   | 62.000 | 21.414  | 3 | 0.625  | 2.500    | 19.994 | 52.000   | 0.9123 |  |
| *250      | 35.000 | 0.6140 | 35.000 | 21.000                   | 56.000 | 52.915  | 3 | 2.751  | 2.500    | 19.994 | 35.000   | 0.6140 |  |
| *500      | 22.333 | 0.3918 | 22.333 | 16.000                   | 27.000 | 25.461  | 3 | 4.335  | 2.500    | 19.994 | 22.333   | 0.3918 |  |
| *1000     | 6.000  | 0.1053 | 6.000  | 0.000                    | 12.000 | 100.000 | 3 | 6.377  | 2.500    | 19.994 | 6.000    | 0.1053 |  |
| *2000     | 2.333  | 0.0409 | 2.333  | 0.000                    | 4.000  | 89.214  | 3 | 6.835  | 2.500    | 19.994 | 2.333    | 0.0409 |  |

| Auxiliary Tests                     |             |            |         |    | Statistic |         | Critical |         | Skew    | Kurt    |
|-------------------------------------|-------------|------------|---------|----|-----------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates nor   | mal distrib | ution (p > | » 0.01) |    | 0.95478   |         | 0.858    |         | 0.62911 | 1.38325 |
| Bartlett's Test indicates equal var |             |            | 7.72766 |    | 15.0863   |         |          |         |         |         |
| Hypothesis Test (1-tail, 0.05)      | NOEC        | LOEC       | ChV     | ΤU | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test                      | 125         | 250        | 176.777 |    | 19.9942   | 0.35078 | 1580.09  | 95.9444 | 5.2E-05 | 5, 12   |
| Treatments vs MCW                   |             |            |         |    |           |         |          |         |         |         |

| Treatments | 13 10000 |       |                                 |        |         |       |  |  |  |  |
|------------|----------|-------|---------------------------------|--------|---------|-------|--|--|--|--|
|            |          |       | Linear Interpolation (200 Resar |        |         |       |  |  |  |  |
| Point      | mg/L     | SD    | 95% CL                          | .(Exp) | Skew    |       |  |  |  |  |
| IC05*      | 71.25    | 51.34 | 0.00                            | 265.51 | 0.8205  |       |  |  |  |  |
| IC10       | 130.15   | 51.45 | 0.00                            | 395.63 | 0.6453  |       |  |  |  |  |
| IC15       | 151.10   | 51.41 | 0.00                            | 417.78 | 0.7371  | 1.0 - |  |  |  |  |
| IC20       | 172.06   | 54.82 | 0.00                            | 444.23 | 0.7258  |       |  |  |  |  |
| IC25       | 193.01   | 57.75 | 17.61                           | 474.68 | 0.6983  | 0.9   |  |  |  |  |
| IC40       | 265.79   | 70.44 | 100.09                          | 571.14 | 0.4728  | 0.8 - |  |  |  |  |
| IC50       | 378.29   | 85.16 | 46.53                           | 576.39 | -0.3159 | 1     |  |  |  |  |

\* indicates IC estimate less than the lowest concentration



Dose-Response Plot



### 888G - Alg\_PAM\_01

|              |            |        |           | Algal Growth Inh    | ibition Test-Growth rate |                    |  |
|--------------|------------|--------|-----------|---------------------|--------------------------|--------------------|--|
| Start Date:  | 20/11/2007 |        | Test ID:  | 888G                | Sample ID:               | ST-Spiked Toxicant |  |
| End Date:    | 23/11/2007 |        | Lab ID:   | ERISS-eriss ecotox  | icology la Sample Type:  | PAM-Polyacrylamide |  |
| Sample Date: |            |        | Protocol: | BTT G-eriss tropica | I freshwa Test Species:  | CH-Chlorella sp.   |  |
| Comments:    |            |        |           |                     |                          |                    |  |
| Conc-mg/L    | 1          | 2      | 3         |                     |                          |                    |  |
| MCW          | 1.7283     | 1.5495 | 1.5603    |                     |                          |                    |  |
| 125          | 1.2290     | 1.4085 | 1.4616    |                     |                          |                    |  |
| 250          | 0.8979     | 0.9647 | 1.2032    |                     |                          |                    |  |
| 500          | 0.8054     | 0.6627 | 0.7420    |                     |                          |                    |  |
| 1000         | 0.3591     | 0.3611 | 0.3654    |                     |                          |                    |  |
| 2000         | 0.0794     | 0.4102 | 0.1032    |                     |                          |                    |  |

|           |        | _      | Transform: Untransformed |        |        |        |   | 1-Tailed |          | Isotonic |        |        |
|-----------|--------|--------|--------------------------|--------|--------|--------|---|----------|----------|----------|--------|--------|
| Conc-mg/L | Mean   | N-Mean | Mean                     | Min    | Max    | CV%    | Ν | t-Stat   | Critical | MSD      | Mean   | N-Mean |
| MCW       | 1.6127 | 1.0000 | 1.6127                   | 1.5495 | 1.7283 | 6.218  | 3 |          |          |          | 1.6127 | 1.0000 |
| 125       | 1.3664 | 0.8473 | 1.3664                   | 1.2290 | 1.4616 | 8.919  | 3 | 2.465    | 2.500    | 0.2498   | 1.3664 | 0.8473 |
| *250      | 1.0219 | 0.6337 | 1.0219                   | 0.8979 | 1.2032 | 15.706 | 3 | 5.913    | 2.500    | 0.2498   | 1.0219 | 0.6337 |
| *500      | 0.7367 | 0.4568 | 0.7367                   | 0.6627 | 0.8054 | 9.707  | 3 | 8.768    | 2.500    | 0.2498   | 0.7367 | 0.4568 |
| *1000     | 0.3619 | 0.2244 | 0.3619                   | 0.3591 | 0.3654 | 0.889  | 3 | 12.519   | 2.500    | 0.2498   | 0.3619 | 0.2244 |
| *2000     | 0.1976 | 0.1225 | 0.1976                   | 0.0794 | 0.4102 | 93.381 | 3 | 14.164   | 2.500    | 0.2498   | 0.1976 | 0.1225 |

| Auxiliary Tests                      |             |            |         |    | Statistic |         | Critical |         | Skew    | Kurt    |
|--------------------------------------|-------------|------------|---------|----|-----------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates norr   | mal distrib | ution (p > | » 0.01) |    | 0.94355   |         | 0.858    |         | 0.633   | -0.3549 |
| Bartlett's Test indicates equal vari | iances (p : | = 0.03)    |         |    | 12.3803   |         | 15.0863  |         |         |         |
| Hypothesis Test (1-tail, 0.05)       | NOEC        | LOEC       | ChV     | ΤU | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test                       | 125         | 250        | 176.777 |    | 0.24977   | 0.15488 | 0.92888  | 0.01497 | 3.7E-08 | 5, 12   |
| Treatments vs MCW                    |             |            |         |    |           |         |          |         |         |         |

| Houdinonia |        |       |        |        |             |                      |
|------------|--------|-------|--------|--------|-------------|----------------------|
|            |        |       |        | Linea  | r Interpola | tion (200 Resamples) |
| Point      | mg/L   | SD    | 95% CL | _(Exp) | Skew        |                      |
| IC05*      | 40.92  | 12.84 | 10.16  | 111.60 | 1.2580      |                      |
| IC10*      | 81.85  | 22.12 | 20.31  | 188.87 | 0.3898      | 4.0                  |
| IC15*      | 122.77 | 22.63 | 30.47  | 196.15 | -0.3285     | 1.0                  |
| IC20       | 152.67 | 22.61 | 52.76  | 237.36 | -0.2419     | 0.9 -                |
| IC25       | 181.93 | 23.26 | 90.05  | 274.80 | 0.3610      |                      |
| IC40       | 297.60 | 45.43 | 147.93 | 471.23 | 0.3030      | 0.8                  |
| IC50       | 438.94 | 37.81 | 276.76 | 581.95 | -0.2479     | 0.7 -                |

\* indicates IC estimate less than the lowest concentration







# 891E – Fry\_PAM\_01

|              |           |        |           | Gudgeon        | Sac Fry Survi   | val Test-Survival |                       |
|--------------|-----------|--------|-----------|----------------|-----------------|-------------------|-----------------------|
| Start Date:  | 1/12/2007 |        | Test ID:  | 891E           |                 | Sample ID:        | PAM                   |
| End Date:    | 5/12/2007 |        | Lab ID:   | ERISS-eriss e  | cotoxicology la | al Sample Type:   | PAM                   |
| Sample Date: |           |        | Protocol: | BTT E-eriss tr | opical freshwa  | t Test Species:   | MMO-Mogurnda mogurnda |
| Comments:    |           |        |           |                |                 |                   |                       |
| Conc-mg/L    | 1         | 2      | 3         |                |                 |                   |                       |
| 0            | 0.9000    | 1.0000 | 0.9000    |                |                 |                   |                       |
| 125          | 0.9000    | 1.0000 | 1.0000    |                |                 |                   |                       |
| 250          | 0.9000    | 1.0000 | 1.0000    |                |                 |                   |                       |
| 500          | 1.0000    | 0.9000 | 1.0000    |                |                 |                   |                       |
| 1000         | 0.8000    | 1.0000 | 0.9000    |                |                 |                   |                       |
| 2000         | 0.9000    | 1.0000 | 1.0000    |                |                 |                   |                       |

|           |        |        | Tra    | Transform: Arcsin Square Root |        |        |   |        | 1-Tailed |        |   |    |
|-----------|--------|--------|--------|-------------------------------|--------|--------|---|--------|----------|--------|---|----|
| Conc-mg/L | Mean   | N-Mean | Mean   | Min                           | Max    | CV%    | Ν | t-Stat | Critical | MSD    |   |    |
| 0         | 0.9333 | 1.0000 | 1.3034 | 1.2490                        | 1.4120 | 7.219  | 3 |        |          |        | 2 | 30 |
| 125       | 0.9667 | 1.0357 | 1.3577 | 1.2490                        | 1.4120 | 6.930  | 3 | -0.627 | 2.500    | 0.2166 | 1 | 30 |
| 250       | 0.9667 | 1.0357 | 1.3577 | 1.2490                        | 1.4120 | 6.930  | 3 | -0.627 | 2.500    | 0.2166 | 1 | 30 |
| 500       | 0.9667 | 1.0357 | 1.3577 | 1.2490                        | 1.4120 | 6.930  | 3 | -0.627 | 2.500    | 0.2166 | 1 | 30 |
| 1000      | 0.9000 | 0.9643 | 1.2561 | 1.1071                        | 1.4120 | 12.145 | 3 | 0.546  | 2.500    | 0.2166 | 3 | 30 |
| 2000      | 0.9667 | 1.0357 | 1.3577 | 1.2490                        | 1.4120 | 6.930  | 3 | -0.627 | 2.500    | 0.2166 | 1 | 30 |
| 2000      | 0.000. |        |        |                               |        | 0.000  | Ũ | 0.02.  | 2.000    | 0.2.00 | • |    |

| Auxiliary Tests                     |              |              |       |    | Statistic |         | Critical |         | Skew    | Kurt    |
|-------------------------------------|--------------|--------------|-------|----|-----------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates nor   | mal distribu | ition (p > 0 | ).01) |    | 0.88264   |         | 0.858    |         | -0.2239 | -1.1336 |
| Bartlett's Test indicates equal var | iances (p =  | 0.98)        |       |    | 0.79451   |         | 15.0863  |         |         |         |
| Hypothesis Test (1-tail, 0.05)      | NOEC         | LOEC         | ChV   | τu | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test                      | 2000         | >2000        |       |    | 0.14669   | 0.15771 | 0.00553  | 0.01126 | 0.77654 | 5, 12   |
| Treatments vs 0                     |              |              |       |    |           |         |          |         |         |         |



### 892B - Hyd\_PAM\_02

|              |           |        | Green H   | ydra Popula | tion Growth    | Test-Population g  | growth rat | te (k             |  |
|--------------|-----------|--------|-----------|-------------|----------------|--------------------|------------|-------------------|--|
| Start Date:  | 3/12/2007 |        | Test ID:  | 892B        |                | Sample ID:         | PAM        |                   |  |
| End Date:    | 7/12/2007 |        | Lab ID:   | ERISS-eriss | s ecotoxicolog | gy la Sample Type: | PAM        |                   |  |
| Sample Date: |           |        | Protocol: | BTT B-eriss | tropical fresh | nwa Test Species:  | HV-F       | lydra viridissima |  |
| Comments:    |           |        |           |             | -              |                    |            | -                 |  |
| Conc-mg/L    | 1         | 2      | 3         |             |                |                    |            |                   |  |
| MCW          | 0.2829    | 0.2829 | 0.2908    |             |                |                    |            |                   |  |
| 16.125       | 0.2908    | 0.2483 | 0.2574    |             |                |                    |            |                   |  |
| 31.25        | 0.2291    | 0.2389 | 0.2389    |             |                |                    |            |                   |  |
| 62.5         | 0.2189    | 0.2389 | 0.2483    |             |                |                    |            |                   |  |
| 125          | 0.2082    | 0.1327 | 0.1605    |             |                |                    |            |                   |  |
| 250          | 0.1469    | 0.1733 | 0.1733    |             |                |                    |            |                   |  |
| 500          | 0.1605    | 0.1469 | 0.1855    |             |                |                    |            |                   |  |
|              |           |        |           |             |                |                    |            |                   |  |

|           |        |        | Transform: Untransformed |        |        |        |   |        | 1-Tailed |        | Isotonic |        |  |
|-----------|--------|--------|--------------------------|--------|--------|--------|---|--------|----------|--------|----------|--------|--|
| Conc-mg/L | Mean   | N-Mean | Mean                     | Min    | Max    | CV%    | Ν | t-Stat | Critical | MSD    | Mean     | N-Mean |  |
| MCW       | 0.2855 | 1.0000 | 0.2855                   | 0.2829 | 0.2908 | 1.605  | 3 |        |          |        | 0.2855   | 1.0000 |  |
| 16.125    | 0.2655 | 0.9300 | 0.2655                   | 0.2483 | 0.2908 | 8.424  | 3 | 1.213  | 2.530    | 0.0417 | 0.2655   | 0.9300 |  |
| *31.25    | 0.2356 | 0.8253 | 0.2356                   | 0.2291 | 0.2389 | 2.403  | 3 | 3.026  | 2.530    | 0.0417 | 0.2356   | 0.8253 |  |
| *62.5     | 0.2354 | 0.8244 | 0.2354                   | 0.2189 | 0.2483 | 6.389  | 3 | 3.042  | 2.530    | 0.0417 | 0.2354   | 0.8244 |  |
| *125      | 0.1671 | 0.5854 | 0.1671                   | 0.1327 | 0.2082 | 22.871 | 3 | 7.181  | 2.530    | 0.0417 | 0.1671   | 0.5854 |  |
| *250      | 0.1645 | 0.5762 | 0.1645                   | 0.1469 | 0.1733 | 9.244  | 3 | 7.339  | 2.530    | 0.0417 | 0.1645   | 0.5762 |  |
| *500      | 0.1643 | 0.5755 | 0.1643                   | 0.1469 | 0.1855 | 11.901 | 3 | 7.352  | 2.530    | 0.0417 | 0.1643   | 0.5755 |  |

| Auxiliary Tests                      |             |            |         |    | Statistic |        | Critical |         | Skew    | Kurt    |
|--------------------------------------|-------------|------------|---------|----|-----------|--------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates norr   | nal distrib | ution (p > | • 0.01) |    | 0.97111   |        | 0.873    |         | 0.42001 | 0.86464 |
| Bartlett's Test indicates equal vari | ances (p =  | = 0.18)    |         |    | 8.81876   |        | 16.8119  |         |         |         |
| Hypothesis Test (1-tail, 0.05)       | NOEC        | LOEC       | ChV     | τu | MSDu      | MSDp   | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test                       | 16.125      | 31.25      | 22.4479 |    | 0.04171   | 0.1461 | 0.00787  | 0.00041 | 5.0E-06 | 6, 14   |
| Treatments vs MCW                    |             |            |         |    |           |        |          |         |         |         |

|       |        |      |        | Linea  | ar Interpol | lation (200 Resamples)        |
|-------|--------|------|--------|--------|-------------|-------------------------------|
| Point | mg/L   | SD   | 95% CL | _(Exp) | Skew        |                               |
| IC05* | 11.51  | 4.81 | 0.32   | 30.43  | 0.4450      |                               |
| IC10  | 20.45  | 4.27 | 3.47   | 30.91  | -0.2631     |                               |
| IC15  | 27.68  | 8.80 | 15.07  | 103.73 | 3.3418      | 1.0                           |
| IC20  | 68.87  | 7.88 | 23.06  | 90.52  | -1.2049     |                               |
| IC25  | 81.95  | 7.62 | 62.29  | 122.21 | 1.4960      | 0.9                           |
| IC40  | 121.17 |      |        |        |             | 0.8                           |
| IC50  | >500   |      |        |        |             |                               |
|       |        |      |        |        |             | <b>%</b> 0.6 - <b>E</b> 0.5 - |
|       |        |      |        |        |             |                               |
|       |        |      |        |        |             | 0.2                           |
|       |        |      |        |        |             | 0.1                           |
|       |        |      |        |        |             | 0 200 400 600                 |
|       |        |      |        |        |             | Dose mg/L                     |





# 913G - Alg\_PEG\_01

|              |            |        |           | Algal Grow      | th Inhibition   | Test-Growth rate | •                  |  |
|--------------|------------|--------|-----------|-----------------|-----------------|------------------|--------------------|--|
| Start Date:  | 26/02/2008 |        | Test ID:  | 913G            |                 | Sample ID:       | ST-Spiked Toxicant |  |
| End Date:    | 29/02/2008 |        | Lab ID:   | ERISS-eriss ed  | cotoxicology la | al Sample Type:  | AMB1-Ambient water |  |
| Sample Date: |            |        | Protocol: | BTT G-eriss tro | pical freshwa   | t Test Species:  | CH-Chlorella sp.   |  |
| Comments:    |            |        |           |                 |                 |                  |                    |  |
| Conc-%       | 1          | 2      | 3         |                 |                 |                  |                    |  |
| 0            | 1.6524     | 1.6322 | 1.5366    |                 |                 |                  |                    |  |
| 448.5        | 1.5450     | 1.5033 | 1.5580    |                 |                 |                  |                    |  |
| 887          | 1.5579     | 1.5368 | 1.4720    |                 |                 |                  |                    |  |
| 1750         | 1.4937     | 1.5341 | 1.5312    |                 |                 |                  |                    |  |
| 3444.5       | 1.5715     | 1.6214 | 1.5553    |                 |                 |                  |                    |  |
| 7002         | 1.6756     | 1.4842 | 1.6155    |                 |                 |                  |                    |  |

|        |        |        |        | Transform: Untransformed |        |       |   | 1-Tailed |          |        | Isotonic |        |
|--------|--------|--------|--------|--------------------------|--------|-------|---|----------|----------|--------|----------|--------|
| Conc-% | Mean   | N-Mean | Mean   | Min                      | Max    | CV%   | Ν | t-Stat   | Critical | MSD    | Mean     | N-Mean |
| 0      | 1.6071 | 1.0000 | 1.6071 | 1.5366                   | 1.6524 | 3.847 | 3 |          |          |        | 1.6071   | 1.0000 |
| 448.5  | 1.5354 | 0.9554 | 1.5354 | 1.5033                   | 1.5580 | 1.863 | 3 | 1.606    | 2.500    | 0.1116 | 1.5504   | 0.9647 |
| 887    | 1.5222 | 0.9472 | 1.5222 | 1.4720                   | 1.5579 | 2.942 | 3 | 1.901    | 2.500    | 0.1116 | 1.5504   | 0.9647 |
| 1750   | 1.5197 | 0.9456 | 1.5197 | 1.4937                   | 1.5341 | 1.483 | 3 | 1.958    | 2.500    | 0.1116 | 1.5504   | 0.9647 |
| 3444.5 | 1.5827 | 0.9849 | 1.5827 | 1.5553                   | 1.6214 | 2.175 | 3 | 0.545    | 2.500    | 0.1116 | 1.5504   | 0.9647 |
| 7002   | 1.5918 | 0.9905 | 1.5918 | 1.4842                   | 1.6756 | 6.151 | 3 | 0.343    | 2.500    | 0.1116 | 1.5504   | 0.9647 |

| Auxiliary Tests                       |      |         |     |         | Statistic |         | Critical |         | Skew    | Kurt  |
|---------------------------------------|------|---------|-----|---------|-----------|---------|----------|---------|---------|-------|
| Shapiro-Wilk's Test indicates norm    |      | 0.95521 |     | 0.858   |           | -0.6557 | 0.6426   |         |         |       |
| Bartlett's Test indicates equal varia |      | 4.98722 |     | 15.0863 |           |         |          |         |         |       |
| Hypothesis Test (1-tail, 0.05)        | NOEC | LOEC    | ChV | TU      | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df    |
| Dunnett's Test                        | 7002 | >7002   |     | 0.01428 | 0.11157   | 0.06943 | 0.00444  | 0.00299 | 0.26515 | 5, 12 |
| Treatments vs 0                       |      |         |     |         |           |         |          |         |         |       |

|       | Linear Interpolation (200 Resamples) |    |             |      |               |  |  |  |  |  |  |  |  |  |
|-------|--------------------------------------|----|-------------|------|---------------|--|--|--|--|--|--|--|--|--|
| Point | %                                    | SD | 95% CL(Exp) | Skew |               |  |  |  |  |  |  |  |  |  |
| IC05  | >7002                                |    |             |      |               |  |  |  |  |  |  |  |  |  |
| IC10  | >7002                                |    |             |      |               |  |  |  |  |  |  |  |  |  |
| IC15  | >7002                                |    |             |      | 1.0           |  |  |  |  |  |  |  |  |  |
| IC20  | >7002                                |    |             |      | 0.9 -         |  |  |  |  |  |  |  |  |  |
| IC25  | >7002                                |    |             |      |               |  |  |  |  |  |  |  |  |  |
| IC40  | >7002                                |    |             |      | 0.8           |  |  |  |  |  |  |  |  |  |
| IC50  | >7002                                |    |             |      | 0.7           |  |  |  |  |  |  |  |  |  |
|       |                                      |    |             |      | <b>9</b> .0.6 |  |  |  |  |  |  |  |  |  |
|       |                                      |    |             |      | <b>bo</b> 0.5 |  |  |  |  |  |  |  |  |  |
|       |                                      |    |             |      | <b>80</b> 0.4 |  |  |  |  |  |  |  |  |  |
|       |                                      |    |             |      | 0.3           |  |  |  |  |  |  |  |  |  |

Dose-Response Plot

0.2 0.1 0.0

0

- - -

4000

Dose %

2000

6000

8000



# 919L - Lem\_PEG\_01

|              |            |        |          | Lemna     | Growthl    | nhibition-  | Incr. in b | iomass  |                          |
|--------------|------------|--------|----------|-----------|------------|-------------|------------|---------|--------------------------|
| Start Date:  | 31/03/2008 | 3      | Test ID: | 919L      |            |             | Sample I   | D:      | ST-Spiked Toxicant       |
| End Date:    | 4/03/2008  |        | Lab ID:  | ERISS-eri | ss ecoto   | xicology la | Sample T   | ype:    | PEG - Polyethylene gycol |
| Sample Date: |            |        | Protocol | BTT L-eri | ss tropica | I freshwat  | Test Spe   | cies:   | LAE-Lemna aequinoctialis |
| Comments:    |            |        |          |           |            |             |            |         |                          |
| Conc-mg/L    | 1          | 2      | 3        | ntage co  | 1          | 2           | 3          | mean    | SE                       |
| MCW          | 40.000     | 44.000 | 25.000   |           | 110.092    | 121.101     | 68.8073    | 100     | 15.9168                  |
| 750          | 41.000     | 41.000 | 36.000   | )         | 112.844    | 112.844     | 99.0826    | 108.257 | 4.58716                  |
| 1500         | 33.000     | 50.000 | 41.000   | )         | 90.8257    | 137.615     | 112.844    | 113.761 | 13.5146                  |
| 3000         | 39.000     | 28.000 | 41.000   | )         | 107.339    | 77.0642     | 112.844    | 99.0826 | 11.1233                  |
| 6000         | 43.000     | 36.000 | 45.000   | )         | 118.349    | 99.0826     | 123.853    | 113.761 | 7.5095                   |
| 12000        | 38.000     | 43.000 | 33.000   | )         | 104.587    | 118.349     | 90.8257    | 104.587 | 7.94519                  |

|           |        |        |        | Transform: Untransformed |        |        |   |        | 1-Tailed |        | lsotonic |        |
|-----------|--------|--------|--------|--------------------------|--------|--------|---|--------|----------|--------|----------|--------|
| Conc-mg/L | Mean   | N-Mean | Mean   | Min                      | Max    | CV%    | Ν | t-Stat | Critical | MSD    | Mean     | N-Mean |
| MCW       | 36.333 | 1.0000 | 36.333 | 25.000                   | 44.000 | 27.569 | 3 |        |          |        | 39.000   | 1.0000 |
| 750       | 39.333 | 1.0826 | 39.333 | 36.000                   | 41.000 | 7.339  | 3 | -0.540 | 2.500    | 13.878 | 39.000   | 1.0000 |
| 1500      | 41.333 | 1.1376 | 41.333 | 33.000                   | 50.000 | 20.576 | 3 | -0.901 | 2.500    | 13.878 | 39.000   | 1.0000 |
| 30 00     | 36.000 | 0.9908 | 36.000 | 28.000                   | 41.000 | 19.444 | 3 | 0.060  | 2.500    | 13.878 | 38.667   | 0.9915 |
| 60 00     | 41.333 | 1.1376 | 41.333 | 36.000                   | 45.000 | 11.433 | 3 | -0.901 | 2.500    | 13.878 | 38.667   | 0.9915 |
| 12000     | 38.000 | 1.0459 | 38.000 | 33.000                   | 43.000 | 13.158 | 3 | -0.300 | 2.500    | 13.878 | 38.000   | 0.9744 |

| Auxiliary Tests                     |             |             |       |    | Statistic |         | Critical |         | Skew    | Kurt    |
|-------------------------------------|-------------|-------------|-------|----|-----------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates nor   | mal distrib | oution (p > | 0.01) |    | 0.95084   |         | 0.858    |         | -0.4861 | -0.6372 |
| Bartlett's Test indicates equal var | riances (p  | = 0.70)     |       |    | 2.97032   |         | 15.0863  |         |         |         |
| Hypothesis Test (1-tail, 0.05)      | NOEC        | LOEC        | ChV   | τυ | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test                      | 12000       | >12000      |       |    | 13.8778   | 0.38196 | 16.5889  | 46.2222 | 0.86684 | 5, 12   |
| Treatments vs MCW                   |             |             |       |    |           |         |          |         |         |         |

| Linear Interpolation (200 Resamples) |        |    |             |      |              |  |  |  |  |  |  |  |
|--------------------------------------|--------|----|-------------|------|--------------|--|--|--|--|--|--|--|
| Point                                | mg/L   | SD | 95% CL(Exp) | Skew |              |  |  |  |  |  |  |  |
| IC05                                 | >12000 |    |             |      |              |  |  |  |  |  |  |  |
| IC10                                 | >12000 |    |             |      |              |  |  |  |  |  |  |  |
| IC15                                 | >12000 |    |             |      | 1.0 -        |  |  |  |  |  |  |  |
| IC20                                 | >12000 |    |             |      |              |  |  |  |  |  |  |  |
| IC25                                 | >12000 |    |             |      | 0.9          |  |  |  |  |  |  |  |
| IC40                                 | >12000 |    |             |      | 0.8          |  |  |  |  |  |  |  |
| IC50                                 | >12000 |    |             |      | 0.7          |  |  |  |  |  |  |  |
|                                      |        |    |             |      | 0.6          |  |  |  |  |  |  |  |
|                                      |        |    |             |      | <b>0</b> 0 F |  |  |  |  |  |  |  |



Dose-Response Plot


## 920B- Hyd\_PEG\_01

|              |            |        | Green H  | ydra Popu   | lation Gr  | owth Tes    | t-Populat | ion grow | th rate (k |                   |
|--------------|------------|--------|----------|-------------|------------|-------------|-----------|----------|------------|-------------------|
| Start Date:  | 8/04/2008  |        | Test ID: | 920B        |            |             | Sample II | D:       | ST-Spike   | d Toxicant        |
| End Date:    | 12/04/2008 | 3      | Lab ID:  | ERISS-eri   | ss ecoto   | kicology la | Sample T  | ype:     | PEG - Po   | lyetheylene Gycol |
| Sample Date: |            |        | Protocol | : BTT B-eri | ss tropica | I freshwa   | Test Spec | cies:    | HV-Hydra   | viridissima       |
| Comments:    |            |        |          |             |            |             |           |          |            |                   |
| Conc-%       | 1          | 2      | 3        | :ntage cc   | 1          | 2           | 3         | mean     | SE         |                   |
| 0            | 0.3400     | 0.3400 | 0.3500   |             | 99.0291    | 99.0291     | 101.942   | 100      | 0.97087    |                   |
| 750          | 0.3100     | 0.3100 | 0.3100   | )           | 90.2913    | 90.2913     | 90.2913   | 90.2913  | 0          |                   |
| 1500         | 0.2800     | 0.2700 | 0.3200   | )           | 81.5534    | 78.6408     | 93.2039   | 84.466   | 4.4491     |                   |
| 3000         | 0.3000     | 0.2900 | 0.2800   | )           | 87.3786    | 84.466      | 81.5534   | 84.466   | 1.6816     |                   |
| 6000         | 0.3000     | 0.3000 | 0.2100   | )           | 87.3786    | 87.3786     | 61.165    | 78.6408  | 8.73786    |                   |
| 12000        | 0.2600     | 0.2500 | 0.2700   | )           | 75.7282    | 72.8155     | 78.6408   | 75.7282  | 1.6816     |                   |

|        |        | _      |        | Transforn | n: Untran | sformed |   |        | 1-Tailed |        | Isot   | onic   |
|--------|--------|--------|--------|-----------|-----------|---------|---|--------|----------|--------|--------|--------|
| Conc-% | Mean   | N-Mean | Mean   | Min       | Max       | CV%     | Ν | t-Stat | Critical | MSD    | Mean   | N-Mean |
| 0      | 0.3433 | 1.0000 | 0.3433 | 0.3400    | 0.3500    | 1.682   | 3 |        |          |        | 0.3433 | 1.0000 |
| 750    | 0.3100 | 0.9029 | 0.3100 | 0.3100    | 0.3100    | 0.000   | 3 | 1.659  | 2.500    | 0.0502 | 0.3100 | 0.9029 |
| *1500  | 0.2900 | 0.8447 | 0.2900 | 0.2700    | 0.3200    | 9.123   | 3 | 2.654  | 2.500    | 0.0502 | 0.2900 | 0.8447 |
| *3000  | 0.2900 | 0.8447 | 0.2900 | 0.2800    | 0.3000    | 3.448   | 3 | 2.654  | 2.500    | 0.0502 | 0.2900 | 0.8447 |
| *6000  | 0.2700 | 0.7864 | 0.2700 | 0.2100    | 0.3000    | 19.245  | 3 | 3.650  | 2.500    | 0.0502 | 0.2700 | 0.7864 |
| *12000 | 0.2600 | 0.7573 | 0.2600 | 0.2500    | 0.2700    | 3.846   | 3 | 4.148  | 2.500    | 0.0502 | 0.2600 | 0.7573 |

| Auxiliary Tests                   |             |            |         |         | Statistic |        | Critical |         | Skew    | Kurt   |
|-----------------------------------|-------------|------------|---------|---------|-----------|--------|----------|---------|---------|--------|
| Shapiro-Wilk's Test indicates nor | mal distrib | ution (p > | » 0.01) |         | 0.86223   |        | 0.858    |         | -1.0766 | 3.5453 |
| Equality of variance cannot be co | onfirmed    |            |         |         |           |        |          |         |         |        |
| Hypothesis Test (1-tail, 0.05)    | NOEC        | LOEC       | ChV     | τu      | MSDu      | MSDp   | MSB      | MSE     | F-Prob  | df     |
| Dunnett's Test                    | 750         | 1500       | 1060.66 | 0.13333 | 0.05023   | 0.1463 | 0.00267  | 0.00061 | 0.01637 | 5, 12  |
| Treatments vs 0                   |             |            |         |         |           |        |          |         |         |        |
|                                   |             |            |         |         |           |        |          |         |         |        |



Dose-Response Plot



## 923E - Fry\_PEG\_01

|              |            |        |          | Gudgeon S   | Sac Fry S  | urvival To  | est-96 hı | r Surviva |          |                   |   |
|--------------|------------|--------|----------|-------------|------------|-------------|-----------|-----------|----------|-------------------|---|
| Start Date:  | 16/04/2005 | 5      | Test ID: | 923E        |            | 5           | Sample II | D:        | ST-Spike | d Toxicant        |   |
| End Date:    | 20/04/2005 | 5      | Lab ID:  | ERISS-eris  | s ecotoxi  | cology la S | Sample T  | ype:      | PEG - Po | lyetheylene Gycol |   |
| Sample Date: |            |        | Protocol | BTT E-erise | s tropical | freshwa 1   | Fest Spec | cies:     | MMO-Mo   | gurnda mogurnda   |   |
| Comments:    |            |        |          |             |            |             |           |           |          |                   |   |
| Conc-ug/L    | 1          | 2      | 3        | cntage cc   | 1          | 2           | 3         | mean      | SE       |                   | - |
| MCW          | 10.000     | 10.000 | 10.000   | )           | 100        | 100         | 100       | 100       | 0        |                   |   |
| 750          | 9.000      | 10.000 | 10.000   | 1           | 90         | 100         | 100       | 96.6667   | 3.33333  |                   |   |
| 1500         | 9.000      | 10.000 | 10.000   | 1           | 90         | 100         | 100       | 96.6667   | 3.33333  |                   |   |
| 3000         | 9.000      | 9.000  | 9.000    | 1           | 90         | 90          | 90        | 90        | 0        |                   |   |
| 6000         | 7.000      | 6.000  | 7.000    | 1           | 70         | 60          | 70        | 66.6667   | 3.33333  |                   |   |
| 12000        | 5.000      | 3.000  | 4.000    | )           | 50         | 30          | 40        | 40        | 5.7735   |                   |   |

|           |        |        | -      | Transforn | n: Untran | sformed |   |        | 1-Tailed |       |        |        |
|-----------|--------|--------|--------|-----------|-----------|---------|---|--------|----------|-------|--------|--------|
| Conc-ug/L | Mean   | N-Mean | Mean   | Min       | Max       | CV%     | Ν | t-Stat | Critical | MSD   | Mean   | N-Mean |
| MCW       | 10.000 | 1.0000 | 10.000 | 10.000    | 10.000    | 0.000   | 3 |        |          |       | 10.000 | 0.0000 |
| 750       | 9.667  | 0.9667 | 9.667  | 9.000     | 10.000    | 5.973   | 3 | 0.707  | 2.500    | 1.179 | 9.667  | 0.0333 |
| 1500      | 9.667  | 0.9667 | 9.667  | 9.000     | 10.000    | 5.973   | 3 | 0.707  | 2.500    | 1.179 | 9.667  | 0.0333 |
| 3000      | 9.000  | 0.9000 | 9.000  | 9.000     | 9.000     | 0.000   | 3 | 2.121  | 2.500    | 1.179 | 9.000  | 0.1000 |
| *6000     | 6.667  | 0.6667 | 6.667  | 6.000     | 7.000     | 8.660   | 3 | 7.071  | 2.500    | 1.179 | 6.667  | 0.3333 |
| *12000    | 4.000  | 0.4000 | 4.000  | 3.000     | 5.000     | 25.000  | 3 | 12.728 | 2.500    | 1.179 | 4.000  | 0.6000 |

| Auxiliary Tests                   |             |            |         |          | Statistic |         | Critical |         | Skew    | Kurt  |
|-----------------------------------|-------------|------------|---------|----------|-----------|---------|----------|---------|---------|-------|
| Shapiro-Wilk's Test indicates nor | mal distrib | ution (p : | > 0.01) |          | 0.88473   |         | 0.858    |         | -0.3865 | 0.425 |
| Equality of variance cannot be co | onfirmed    |            |         |          |           |         |          |         |         |       |
| Hypothesis Test (1-tail, 0.05)    | NOEC        | LOEC       | ChV     | ΤU       | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df    |
| Dunnett's Test                    | 3000        | 6000       | 4242.64 |          | 1.17851   | 0.11785 | 16.9     | 0.33333 | 1.2E-07 | 5, 12 |
| Treatments vs MCW                 |             |            |         |          |           |         |          |         |         |       |
|                                   |             |            | Maximum | l ikelih | ood-Probi | t       |          |         |         |       |

|           |         |         |          | Waxiiiiui    | n Likeimo | 00-F1001       | L        |         |                                                   |           |      |
|-----------|---------|---------|----------|--------------|-----------|----------------|----------|---------|---------------------------------------------------|-----------|------|
| Parameter | Value   | SE      | 95% Fidu | icial Limits | Control   | Chi-Sq         | Critical | P-value | Mu                                                | Sigma     | Iter |
| Slope     | 2.41475 | 1.06607 | 0.32525  | 4.50424      | 0         | 0.07487        | 7.81473  | 0.99    | 3.96993                                           | 0.41412   | 4    |
| Intercept | -4.5864 | 4.13619 | -12.693  | 3.52057      |           |                |          |         |                                                   |           |      |
| TSCR      |         |         |          |              |           | 1.0 -          |          |         |                                                   |           |      |
| Point     | Probits | ug/L    | 95% Fidu | icial Limits |           | 0.0            |          |         |                                                   | )         |      |
| EC01      | 2.674   | 1015.16 | 0.00258  | 2710.37      |           | 0.9            |          |         |                                                   |           |      |
| EC05      | 3.355   | 1944.26 | 0.31338  | 3943.49      |           | 0.8 -          |          |         |                                                   |           |      |
| EC10      | 3.718   | 2749.2  | 3.9901   | 4882.23      |           | 0.7 -          |          |         |                                                   |           |      |
| EC15      | 3.964   | 3473.08 | 21.9113  | 5714.61      |           | <b>8</b> 06    |          |         |                                                   |           |      |
| EC20      | 4.158   | 4182.07 | 83.4317  | 6584.72      |           | ű.             |          |         | 1 /                                               |           |      |
| EC25      | 4.326   | 4904.61 | 256.313  | 7621.86      |           | <u>ğ</u> 0.5   |          |         |                                                   |           |      |
| EC40      | 4.747   | 7328.39 | 2862.67  | 16687.5      |           | <b>ö</b> 0.4 - |          |         |                                                   |           |      |
| EC50      | 5.000   | 9330.94 | 5640.64  | 57944.8      |           | 0.3            |          |         | / 🛉                                               |           |      |
| EC60      | 5.253   | 11880.7 | 7644.33  | 292539       |           | 0.0            |          |         |                                                   |           |      |
| EC75      | 5.674   | 17752   | 10467.4  | 5224133      |           | 0.2 -          |          |         |                                                   |           |      |
| EC80      | 5.842   | 20819   | 11621    | 1.7E+07      |           | 0.1 -          |          |         | •                                                 |           |      |
| EC85      | 6.036   | 25068.9 | 13047.1  | 6.5E+07      |           | 0.0            |          |         | <mark>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</mark> |           |      |
| EC90      | 6.282   | 31669.7 | 15006.1  | 3.7E+08      |           | 0.0            | 001      | 1 1     | 000 10                                            | 00000 1E- | +09  |
| EC95      | 6.645   | 44781.2 | 18337    | 4.9E+08      |           | 0.0            |          |         |                                                   |           |      |
| EC99      | 7.326   | 85766.5 | 26411.3  | 4.9E+08      |           |                |          |         |                                                   |           |      |

Dose ug/L

Dose-Response Plot



## 927D - Clad\_PEG\_01

|              |           |        | C         | Cladocera  | n Reprod   | uction Te  | est-Total | neonate | 5         |                      |  |
|--------------|-----------|--------|-----------|------------|------------|------------|-----------|---------|-----------|----------------------|--|
| Start Date:  | 16/05/200 | 8      | Test ID:  | 927D       |            |            | Sample ID | ):      | ST-Spiked | Toxicant             |  |
| End Date:    | 21/05/200 | 5      | Lab ID:   | ERISS-eri  | ss ecotox  | icology la | Sample T  | ype:    | PEG - Pol | yethylene glycol     |  |
| Sample Date: |           |        | Protocol: | BTT D-eris | ss tropica | l freshwa  | Test Spec | ies:    | MOMA-M    | pinodaphnia macleayi |  |
| Comments:    |           |        |           |            |            |            |           |         |           |                      |  |
| Conc-mg/L    | 1         | 2      | 3         | 4          | 5          | 6          | 7         | 8       | 9         | 10                   |  |
| MCW          | 32.000    | 37.000 | 21.000    | 32.000     | 32.000     | 34.000     | 24.000    | 36.000  | 37.000    | 30.000               |  |
| 750          | 32.000    | 33.000 | 27.000    | 35.000     | 33.000     | 31.000     | 0.000     | 34.000  | 32.000    | 34.000               |  |
| 1500         | 31.000    | 34.000 | 25.000    | 35.000     | 0.000      | 29.000     | 34.000    | 29.000  | 33.000    | 31.000               |  |
| 3000         | 0.000     | 16.000 | 0.000     | 0.000      | 0.000      | 28.000     | 29.000    | 0.000   | 27.000    | 4.000                |  |
| 6000         | 23.000    | 4.000  | 19.000    | 0.000      | 0.000      | 0.000      | 14.000    | 0.000   | 14.000    | 0.000                |  |
| 12000        | 0.000     | 0.000  | 0.000     | 0.000      | 0.000      | 0.000      | 0.000     | 0.000   | 0.000     | 0.000                |  |

|           |        | _      |        | Transforn | n: Untrar | nsformed |    | Rank   | 1-Tailed | Isot   | onic   |
|-----------|--------|--------|--------|-----------|-----------|----------|----|--------|----------|--------|--------|
| Conc-mg/L | Mean   | N-Mean | Mean   | Min       | Max       | CV%      | Ν  | Sum    | Critical | Mean   | N-Mean |
| MCW       | 31.500 | 1.0000 | 31.500 | 21.000    | 37.000    | 16.948   | 10 |        |          | 31.500 | 1.0000 |
| 750       | 29.100 | 0.9238 | 29.100 | 0.000     | 35.000    | 35.949   | 10 | 101.00 | 75.00    | 29.100 | 0.9238 |
| 1500      | 28.100 | 0.8921 | 28.100 | 0.000     | 35.000    | 36.733   | 10 | 93.00  | 75.00    | 28.100 | 0.8921 |
| *3000     | 10.400 | 0.3302 | 10.400 | 0.000     | 29.000    | 125.958  | 10 | 61.00  | 75.00    | 10.400 | 0.3302 |
| *6000     | 7.400  | 0.2349 | 7.400  | 0.000     | 23.000    | 123.394  | 10 | 56.00  | 75.00    | 7.400  | 0.2349 |
| *12000    | 0.000  | 0.0000 | 0.000  | 0.000     | 0.000     | 0.000    | 10 | 55.00  | 75.00    | 0.000  | 0.0000 |

| Auxiliary Tests                   |           |             |               |    | Statistic | Critical | Skew    | Kurt    |
|-----------------------------------|-----------|-------------|---------------|----|-----------|----------|---------|---------|
| Kolmogorov D Test indicates non   | -normal d | istributior | n (p <= 0.01) | )  | 1.43838   | 1.035    | -0.8404 | 2.71049 |
| Equality of variance cannot be co | nfirmed   |             |               |    |           |          |         |         |
| Hypothesis Test (1-tail, 0.05)    | NOEC      | LOEC        | ChV           | τu |           |          |         |         |
| Steel's Many-One Rank Test        | 1500      | 3000        | 2121.32       |    |           |          |         |         |
| Treatments vs MCW                 |           |             |               |    |           |          |         |         |

|             |               |            |              | Linear    | Interpo | plation (200 Resamples) |
|-------------|---------------|------------|--------------|-----------|---------|-------------------------|
| Point       | mg/L          | SD         | 95% CI       | L         | Skew    |                         |
| IC05*       | 492.188       | 518.676    | 167.163 16   | 633.67    | 0.3870  |                         |
| IC10        | 1312.5        | 490.972    | 334.325 17   | 778.34 -  | 0.3611  |                         |
| IC15        | 1612.29       | 427.064    | 501.488 19   | 987.26 -  | 0.9690  | 1.0                     |
| IC20        | 1745.76       | 370.974    | 668.65 21    | 149.68 -  | 1.2464  |                         |
| IC25        | 1879.24       | 308.166    | 1048.79 2    | 2312.1 -  | 0.9164  | 0.9                     |
| IC40        | 2279.66       | 321.282    | 1713.83 28   | 347.48    | 1.1971  | 0.8                     |
| IC50        | 2546.61       | 471.812    | 2092.75 37   | 799.36    | 2.7237  |                         |
| * indicates | IC estimate I | ess than t | he lowest co | ncentrati | on      | 0.7 <b>•</b>            |
|             |               |            |              |           |         | <b>9</b> , 0.6 -        |
|             |               |            |              |           |         | <b>5</b> 05             |
|             |               |            |              |           |         | <del>G</del> , /        |
|             |               |            |              |           |         |                         |
|             |               |            |              |           |         | 0.3                     |
|             |               |            |              |           |         |                         |
|             |               |            |              |           |         | 0.2                     |
|             |               |            |              |           |         | 0.1 -                   |
|             |               |            |              |           |         |                         |
|             |               |            |              |           |         |                         |
|             |               |            |              |           |         | 0 5000 10000 15000      |
|             |               |            |              |           |         | Dose mg/L               |

Dose-Response Plot

