

Australian Government

Department of Sustainability, Environment, Water, Population and Communities Supervising Scientist internal report

This page has been left blank intentionally.

Results of gamma dose rate surveys at remediated, former uranium mining and milling sites in the South Alligator River Valley

C Doering, B Ryan, A Bollhöfer, J Sellwood, T Fox & J Pfitzner

Supervising Scientist Division GPO Box 461, Darwin NT 0801

December 2010

Registry File SG2004/0169

(Release status - unrestricted)

Australian Government

Department of Sustainability, Environment, Water, Population and Communities Supervising Scientist How to cite this report:

Doering C, Ryan B, Bollhöfer A, Sellwood J, Fox T & Pfitzner J 2010. Results of gamma dose rate surveys at remediated, former uranium mining and milling sites in the South Alligator River Valley. Internal Report 586, December, Supervising Scientist, Darwin.

Location of final PDF file in SSDX Sharepoint:

Supervising Scientist Division > PublicationWork > Publications and Productions > Internal Reports (IRs) > Nos 500 to 599 > IR586 Gamma does rate survey SARV

Location of all key data files for this report in SSDX Sharepoint: (Author to provide)

Supervising Scientist Division > SSDX > Chemical and Radiological Site Assessment > Radiological > South Alligator Valley > South Alligator Survey 2010

Authors of this report:

Che Doering – Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia (currently Australian Radiation Protection and Nuclear Safety Agency, 619 Lower Plenty Road, Yallambie VIC 3085)

Bruce Ryan – Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia (currently Paulka Radiation & Environment, PO Box 39, Prospect South Australia 5082)

Andreas Bollhöfer – Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia

Jared Sellwood – Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia (currently Power and Water Corporation, Darwin NT 0801)

Thérèse Fox – Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia

John Pfitzner – Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia

The Supervising Scientist is part of the Australian Government Department of Sustainability, Environment, Water, Population and Communities.

© Commonwealth of Australia 2010

Supervising Scientist

Department of Sustainability, Environment, Water, Population and Communities GPO Box 461, Darwin NT 0801 Australia

This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Supervising Scientist. Requests and enquiries concerning reproduction and rights should be addressed to Publications Enquiries, Supervising Scientist, GPO Box 461, Darwin NT 0801.

e-mail: publications_ssd@environment.gov.au

Internet: www.environment.gov.au/ssd (www.environment.gov.au/ssd/publications)

The views and opinions expressed in this report do not necessarily reflect those of the Commonwealth of Australia. While reasonable efforts have been made to ensure that the contents of this report are factually correct, some essential data rely on references cited and/or the data and/or information of other parties, and the Supervising Scientist and the Commonwealth of Australia do not accept responsibility for the accuracy, currency or completeness of the contents of this report, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the report. Readers should exercise their own skill and judgment with respect to their use of the material contained in this report.

Printed and bound in Darwin NT by Supervising Scientist Division

Contents

1	1 Introduction	1							
2	Method								
3	3 Results	3							
	3.1 Tabulated results	3							
	3.2 Illustrative results	3							
	3.2.1 Rockhole Residues	3							
	3.2.2 Palette	5							
	3.2.3 El Sherana	6							
	3.3 Statistical summary	7							
4	4 Discussion	8							
5	5 Conclusions	9							
R	References	10							
A	Appendix 1 Details of gamma survey instruments	11							
Α	Appendix 2 Tabulated gamma survey results for Roo Residues	ckhole 12							
A	Appendix 3 Tabulated gamma survey results for Pale	ette 19							
A	Appendix 4 Tabulated gamma survey results for EI S	Sherana 21							

Tables

Table 1 Statistical summary of absorbed gamma dose rates at the remediated Rockhole Residues, Palette and El Sherana sites measured in the 2010 dry season	8
Table 2 Estimated annual effective dose from external gamma radiation to an adult and a child occupying the remediated sites or an environmental background area for a period of 1 month per year during the dry season	9
Table A1 Details of instruments used for post-remediation gamma dose rate surveys at the Rockhole Residues, Palette and El	
Sherana siles	11

Table A2 Eastings, northings, gamma survey instrument used, countsper 100 seconds, measured and calculated absorbed gammadose rates, uncertainty in calculated dose rates and commentsrecorded on fieldsheets	12
Table A3 Eastings, northings, gamma survey instrument used, counts per 100 seconds, measured and calculated absorbed gamma dose rates, uncertainty in calculated dose rates and comments recorded on fieldsheets	19
Table A4 Eastings, northings, gamma survey instrument used, counts per 100 seconds, measured and calculated absorbed gamma dose rates, uncertainty in calculated dose rates and comments recorded on fieldsheets	21

Figures

Figure 1 Alligator Rivers Region	1
Figure 2 Approximate outline of the remediated area and measured pre- and post-remediation absorbed gamma dose rates at the Rockhole Residues site overlaid on Quickbird satellite data acquired in 2004	4
Figure 3 Histogram and probability plot of the calculated absorbed gamma dose rates at the remediated Rockhole Residues site in 2010	4
Figure 4 Measured pre- and post-remediation absorbed gamma dose rates at Palette mine overlaid on an aerial photograph of the area	5
Figure 5 Histogram and probability plot of the calculated absorbed gamma dose rates at the remediated Palette mine in 2010	6
Figure 6 Measured pre- and post-remediation gamma dose rates at El Sherana mine overlaid on an aerial photograph of the area	6
Figure 7 Histogram and probability plot of the calculated absorbed gamma dose rates on top of the remediated El Sherana mine in 2010	7

Executive summary

Gamma dose rate surveys have been conducted at the former Rockhole Residues, Palette and El Sherana uranium mining and milling site in the South Alligator River Valley. These locations were rehabilitated during the 2009 dry season. The survey results show that the absorbed gamma dose rates at the sites have been reduced to a level which, on average, is less than the agreed guideline value of $1.25 \pm 0.25 \,\mu Gy \cdot h^{-1}$ for site clean-up.

The estimated annual effective dose from external gamma radiation for an adult and a child, assuming the unlikely scenario of one month occupancy per year during the dry season, is less than 1 mSv at all sites. The estimated annual effective dose to an individual from all exposure pathways under the assumed occupancy scenario potentially approaches 1 mSv at the Palette and El Sherana sites. The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) has imposed a total annual radiation dose reference level of less than 10 mSv for people in the South Alligator River Valley. Based on this reference value, there is presently no unacceptable radiation risk to a member of the general public accessing the remediated sites for the period of the assumed conservative occupancy scenario.

This page has been left blank intentionally.

Results of gamma dose rate surveys at remediated, former uranium mining and milling sites in the South Alligator River Valley

C Doering, B Ryan, A Bollhöfer, J Sellwood, T Fox & J Pfitzner

1 Introduction

There are several sites in the South Alligator River Valley, located inside the World Heritage listed Kakadu National Park, which are legacies of uranium mining and milling activities conducted in the 1950s and 1960s. Among these sites are the footprint of the former tailings area of the old South Alligator mill (Rockhole Residues) and the Palette and El Sherana mines. Figure 1 shows a map of the general area.

These sites, together with others in the area, were effectively abandoned by operators when the uranium resource was no longer considered economically viable, with no significant initial effort made to rehabilitate or clean-up the sites. The bulk of the Rockhole mill tailings were relocated to Moline between 1985 and 1986 for reprocessing to extract gold, and hazard reduction works on several sites were carried out in 1990–92. These latter works involved burying items of mill infrastructure and immediately associated materials in trenches. However, a significant amount of exposed above-background activity remained at several locations as documented in airborne radiometrics and ground truthing surveys conducted by the Supervising Scientist Division (Tims et al 2000, Pfitzner & Martin 2001, Pfitzner et al 2000, Pfitzner et al 2001a,b, Bollhöfer et al 2003, Bollhöfer et al 2007, Bollhöfer et al 2009a,b) A history of uranium mining, milling and past remediation activities in the South Alligator River Valley can be found in the literature (see Fisher 1968, Annabel 1977, Waggitt 2004, Bollhöfer et al 2009a).

Major works to remediate the remaining radiological vestiges of past uranium mining and milling activities in the South Alligator River Valley were undertaken during the 2009 dry season. This concentrated program of work was the result of almost a decade of detailed site characterisation investigations and extensive consultation and negotiation with the traditional owners of the land. The works included the bulk removal of contaminated material from legacy mining and milling sites using heavy machinery and placement into a purpose built containment facility at the old El Sherana Airstrip. The works were finalised in the 2009–10 wet season, after approximately 20 000 m³ of material had been relocated to the new containment.

The remediation works were carried out as a condition of the 1996 lease agreement between the Gunlom Aboriginal Land Trust and the Director of National Parks, which required the lessee (Parks Australia) to develop and implement an environmental remediation plan for all legacy mine sites and associated workings in the South Alligator River Valley. The Supervising Scientist Division has provided specialist assistance to Parks Australia with the radiological assessment of the sites, including airborne (Pfitzner & Martin 2000, Pfitzner et al 2001a,b) and ground-based (Bollhöfer et al 2007, Bollhöfer et al 2009b) surveys. The results from these surveys provided the basis for the development of the remediation plan by delineating the extent and magnitude of those areas with enhanced radiological activity.

The gamma dose rate guideline value to be used as the remediation threshold for historic mining and milling sites in the SARV was set at $1.25 \pm 0.25 \,\mu\text{Gy}\cdot\text{hr}^{-1}$ (approximately 10 times higher than background levels). This guideline value was derived on the basis of being able to clearly distinguish, by field measurement, the radiological signal of mining-derived material from the regional background, whilst ensuring that likely annual doses to the public are well below the reference level (10 mSv/y) imposed by ARPANSA for remediated sites in the South Alligator River Valley.

The Rockhole Residues, Palette and El Sherana legacy sites had been previously characterised by the Supervising Scientist Division to provide the pre-remediation radiological baseline against which the success of the remediation works could be quantified (Bollhöfer et al 2007, Bollhöfer et al 2009b). This report presents the results of gamma dose rate clearance surveys conducted at the three sites in the 2010 dry season, approximately one year after the conclusion of remediation works. These are the first post-remediation radiological surveys of the sites to be carried out by the Supervising Scientist Division.

2 Method

Gridded gamma dose rate surveys were conducted at the Rockhole Residues site on 13 July 2010, at Palette on 14 July 2010 (top bench only, since the lower bench was not accessible following the remediation works) and at El Sherana on 8 September 2010 (pit and access tracks, top area to the north of pit, and top areas to the south and west of pit). The spacing of the measurements was approximately 15 m at Rockhole Residues, 5 m at Palette and 5–10 m at El Sherana. At each site, two gamma survey instruments of the same type (instrument

details provided in Table A1 in Appendix 1) were used to measure total counts over a 100 s interval and absorbed gamma dose rates at a height of 1 m above the ground level.

The geospatial coordinates – eastings and northings – of each measurement point at each site were determined by global positioning system (GPS). At the Rockhole Residues site only, the visual boundary of the remediated area was walked on foot and the trace recorded using GPS.

3 Results

3.1 Tabulated results

The survey results – eastings, northings, counts per 100 seconds and absorbed gamma dose rates – can be found in Table A2 in Appendix 2 for the Rockhole Residues site, in Table A3 in Appendix 3 for Palette and in Table A4 in Appendix 4 for El Sherana. These tables also show the calculated absorbed gamma dose rates based on the measured counts per 100 seconds and the instruments' response as determined from previous calibration against a ¹³⁷Cs source (Bollhöfer & Fawcett 2009, Bollhöfer et al 2009b). The reported uncertainty in the calculated dose rates is one standard deviation based on counting statistics alone. All geospatial data recorded in the tables in the appendixes was collected in the WGS84 coordinate system within Zone 53. The precision of the GPS reading is typically ± 10 m.

3.2 Illustrative results

3.2.1 Rockhole Residues

Figure 2 shows the pre- and post-remediation locations of the individual measurement points at the Rockhole Residues site, the magnitude of the calculated absorbed gamma dose rates, as well as the visual boundary of the remediated area, overlaid on a Quickbird satellite image acquired in 2004.

Figure 2 Approximate outline of the remediated area (white line) and measured pre- and postremediation absorbed gamma dose rates at the Rockhole Residues site overlaid on Quickbird satellite data acquired in 2004. Pre-remediation gamma dose rates are from Bollhöfer et al (2007).

Figure 3 shows a histogram and probability plot of the 2010 post-remediation calculated absorbed gamma dose rates at the Rockhole Residues site. None of the 150 dose rate measurements taken across the remediated area were above the guideline value of $1.25 \pm 0.25 \mu$ Gy·h⁻¹. The histogram for the site suggests that the results are lognormally distributed, and a lognormal function has been fitted to the data. From the probability plot it can be concluded that, with 95% confidence, effectively all gamma dose rates measured at the site will be below the guideline value.

Figure 3 Histogram and probability plot of the calculated absorbed gamma dose rates at the remediated Rockhole Residues site in 2010

3.2.2 Palette

Figure 4 shows the location of the individual measurement points at the remediated Palette mine, as well as the magnitude of the calculated absorbed gamma dose rates, overlaid on an aerial photograph of the site acquired in 2005. The figure also shows an equivalent plot of the pre-remediation gamma survey results for the site. Whereas both the upper and lower benches at the site were readily accessible at the time of the pre-remediation survey, only the upper bench was safely accessible following the remediation works, with the lower bench being covered by large boulders and rocks.

Figure 5 shows a histogram and probability plot of the calculated absorbed gamma dose rates at the remediated Palette mine in 2010, with a lognormal distribution fitted to the results. The probability plot for the site indicates that approximately 90% of the area surveyed is characterised by absorbed gamma dose rates less than the guideline value of $1.25 \pm 0.25 \mu$ Gy·h⁻¹. In general, dose rates above 1 μ Gy·h⁻¹ were only measured close to the cliff face. The one measurement exceeding 1.5μ Gy·h⁻¹ – the upper bound of the guideline value – was due to the presence of a single small piece of mineralised material (approximately 5 cm³), believed to be pitchblende, present on the ground surface.

Figure 4 Measured pre- and post-remediation absorbed gamma dose rates at Palette mine overlaid on an aerial photograph of the area. Pre-remediation gamma dose rates are from Bollhöfer et al (2009b).

Figure 5 Histogram and probability plot of the calculated absorbed gamma dose rates at the remediated Palette mine in 2010

3.2.3 El Sherana

Figure 6 shows the pre- and post-remediation locations of the individual measurement points at the remediated El Sherana mine, as well as the magnitude of the calculated absorbed gamma dose rates, overlaid on an aerial photograph of the site acquired in 2005.

Figure 6 Measured pre- and post-remediation gamma dose rates at El Sherana mine overlaid on an aerial photograph of the area. Pre-remediation gamma dose rates are from Bollhöfer et al (2009b).

Figure 7 shows a histogram and probability plot of the calculated absorbed gamma dose rates at the remediated El Sherana mine in 2010. Only the results for the top area to the north of the pit are included in the figure, since this was the only area at the site subject to extensive remediation works. The histogram for the remediated area north of the El Sherana pit suggests

that the results are lognormally distributed. The probability plot indicates that around 95% of this area is characterised by absorbed gamma dose rates less than the guideline value of 1.25 $\pm 0.25 \ \mu Gy \cdot h^{-1}$. Dose rates above 1 $\mu Gy \cdot h^{-1}$ were typically associated with small fragments of remnant mineralised material on the ground surface.

Figure 7 Histogram and probability plot of the calculated absorbed gamma dose rates on top of the remediated El Sherana mine in 2010

A number of workings at the bottom of the pit were surveyed in 2008 before remediation started (Bollhöfer et al 2009b). These areas consisted of two waste piles and four benches in the pit wall to the southeast of the pit. The bench on top of the pit wall exhibited gamma dose rates of approximately 1 μ Gy·h⁻¹. The remaining three benches, the bottom of the pit, and the two waste piles exhibited average gamma dose rates of about 2 μ Gy·h⁻¹ and above. In particular there was a small area of mineralisation accessible from one of the benches that exhibited absorbed gamma dose rates of above 7 μ Gy·h⁻¹ before remediation. As part of the remediation at El Sherana the material from the two waste piles was shifted and pushed against the benches to the southeast of the pit also covering the small area of mineralisation, to reduce average gamma dose rates in the area.

It can be seen in Figure 6 that post-remediation absorbed gamma dose rates were lower after removal of the two waste piles south of the pit. However, absorbed gamma dose rates were still generally higher in the pit and along the upper small access track compared to other areas, due to remnant mineralised material. Highest dose rates $(3-4 \mu Gy \cdot h^{-1})$ were measured immediately to the southeast of the pit, in an area that was not subject to remediation.

3.3 Statistical summary

Table 1 provides a statistical summary of the calculated absorbed gamma dose rates across the remediated areas at each site, as well as for two areas at the El Sherana site – pit and access, and south and west of the pit – that were not subject to major remediation works. The corresponding pre-remediation values, calculated from the results of previous gamma dose rate surveys (Bollhöfer et al 2007, Bollhöfer et al 2009b) are also given in the table, shown in parentheses. The typical environmental background absorbed gamma dose rate in the general area is approximately $0.13 \mu Gy \cdot h^{-1}$ (Supervising Scientist 2008).

Statistic	Rockhole Residues	Palette (top bench)	El Sherana (N of pit)	El Sherana (pit & access)	El Sherana (S & W of pit)
Median	0.23 (0.35)	0.78 (1.66)	0.79 (1.47)	1.27 (1.87)	0.40
Mean	0.29 (0.57)	0.83 (1.88)	0.81 (2.62)	1.39 (1.85)	0.44
Geo mean	0.26 (0.40)	0.77 (1.66)	0.76 (1.57)	1.28 (1.47)	0.43
Min	0.13 (0.13)	0.21 (0.56)	0.44 (0.34)	0.70 (0.33)	0.32
Max	1.08 (3.89)	2.79 (4.34)	2.70 (13.63)	4.07 (7.28)	0.76
N	150 (258)	45 (20)	39 (90)	60 (60)	23

Table 1 Statistical summary of absorbed gamma dose rates (in μ Gy h⁻¹) at the remediated Rockhole Residues, Palette and El Sherana sites measured in the 2010 dry season. The numbers in parentheses are the corresponding pre-remediation values for the specified areas.¹

Pre-remediation values for the Rockhole Residues site were calculated from Bollhöfer et al (2007), and those for the Palette and El Sherana sites from Bollhöfer et al (2009b).

Within the remediated areas at each site, there has been a reduction by around a factor of two in absorbed gamma dose rates following the remediation works. 'Average' (geometric mean) dose rates within the remediated areas at all sites are currently below the $1.25 \pm 0.25 \,\mu Gy \cdot h^{-1}$ guideline value. Because the bottom of the pit and access tracks at the El Sherana site were not subject to any major remediation works, absorbed gamma dose rates in these areas have not changed substantially and exhibit an average value which is higher than for the remediated areas to the north of the pit, but within the tolerance of the guideline value.

4 Discussion

The remediation of legacy uranium mining and milling sites in the South Alligator River Valley was a prescribed radiation activity under the Australian Radiation Protection and Nuclear Safety Act 1998 which required the issue of a 'facility licence' to Parks Australia by the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Through issuing the licence, ARPANSA effectively imposed an upper bound on the gamma dose rate at 1 m above ground level of 7.5 μ Sv·h⁻¹ and a reference level on annual dose to an individual accessing the remediated sites of less than 10 mSv, commensurate with radiological criteria specified in the project plan (Parks Australia 2009).

Table 2 shows the estimated annual effective doses to an adult and a child from external gamma radiation assuming the possible albeit unlikely scenario that the remediated sites are occupied for one month (30 days) per year during the dry season. The doses were calculated on the basis of the geometric mean dose rates given in Table 1 of this report and using conversion factors of 0.69 Sv·Gy⁻¹ for an adult and 0.79 Sv·Gy⁻¹ for a child as given in Table 8 of Annex A of UNSCEAR (2000). The doses in Table 2 are also compared to annual effective doses that would be received at natural background sites in the South Alligator River Valley during the same one month occupancy period assuming an environmental background absorbed gamma dose rate of 0.13 μ Gy·h⁻¹ (Supervising Scientist 2008).

Estimated annual effective doses to an adult and child from external gamma radiation at the remediated Rockhole Residues site are approximately twice as high as the dose that would be received from typical environmental background radioactivity, and around six times higher at the remediated areas at Palette and El Sherana mines. In all cases, however, the estimated annual effective doses from external gamma radiation are less than 1 mSv.

Person	Rockhole Residues	Palette (top bench)	El Sherana (N of pit)	El Sherana (pit & access)	El Sherana (S & W of pit)	Background
Adult	0.13	0.38	0.38	0.64	0.21	0.065
Child	0.15	0.44	0.43	0.73	0.24	0.075

Table 2 Estimated annual effective dose (in mSv) from external gamma radiation to an adult and a child occupying the remediated sites or an environmental background area for a period of 1 month per year during the dry season.

The radiation dose from other pathways, such as inhalation of radon and particulate-bound radionuclides and ingestion of radionuclides through the consumption of bush foods, is believed to be small relative to the external gamma dose (see Waggit (2004) and references therein). For the assumed one month per year occupancy of the remediated sites, and assuming that doses from the ingestion and inhalation pathways are similar to the dose received from external gamma radiation, the total annual dose from all pathways at El Sherana and Palette potentially approaches 1 mSv, but is unlikely to be substantially higher. This level of dose is approximately a factor of ten less than the 10 mSv reference level on annual dose for remediated sites in the South Alligator River Valley imposed by ARPANSA through the licensing process.

5 Conclusions

The remediation works conducted in the 2009 dry season at the Rockhole Residues, Palette and El Sherana legacy sites have reduced the absorbed gamma dose rates at these sites to average levels that are below the $1.25 \pm 0.25 \,\mu\text{Gy}\cdot\text{h}^{-1}$ guideline value agreed for site clean-up. They are also well below the recommended limit of 7.5 μ Sv·h⁻¹ at 1 m above the ground surface imposed by ARPANSA for the remediation of the historical mine sites in the South Alligator River Valley. The average (geometric mean) absorbed gamma dose rates at 1 m above the ground surface are 0.26 μ Gy·h⁻¹ at the Rockhole Residues site (which is equal to an effective dose rate of 0.21 μ Sv·h⁻¹ for a child), 0.77 μ Gy·h⁻¹ at Palette (0.61 μ Sv·h⁻¹) and 0.76 μ Gy·h⁻¹ at El Sherana (0.60 μ Sv·h⁻¹) at the top area to the north of the pit. Individual measurements of absorbed gamma dose rate above the guideline value of 1.25 \pm 0.25 μ Gy·h⁻¹ at the Palette and El Sherana sites were generally associated with the occurrence of small quantities of remnant mineralised material.

Occupancy of the remediated sites for a period of 30 days per year during the dry season, which is considered an unlikely scenario, will result in an annual effective dose to an adult and a child from external gamma radiation of less than 1 mSv. For the same assumed occupancy scenario, a conservative estimate of the annual effective dose to an individual from all exposure pathways is 1 mSv, which is a factor of ten less than the reference level on total annual dose imposed by ARPANSA for remediated sites in the South Alligator River Valley. Consequently, there is not likely to be any unacceptable radiation dose to a person for the assumed 30 day occupancy.

References

Annabel RI 1977. The uranium hunters. Rigby, Adelaide.

- Bollhöfer A, Dunn L, Ryan B & Sellwood J 2007. Radiological field investigations at the Rockhole residue site, South Alligator River Valley, Australia. Internal Report 529, September, Supervising Scientist, Darwin. Unpublished paper.
- Bollhöfer A & Fawcett M 2009. Results of a gamma dose rate survey at the rehabilitated Sleisbeck mine, Northern Territory, Australia. Internal Report 561, April, Supervising Scientist, Darwin. Unpublished paper.
- Bollhöfer A, Ryan B, Fawcett M, Turner K & Jones D 2009a. Remediation of past uranium mining activities in the South Alligator River valley. In *eriss research summary 2008– 2009.* eds Jones DR & Webb A. Supervising Scientist Report 201, Supervising Scientist, Darwin NT, 194–200.
- Bollhöfer A, Fawcett M, Staben G, Sellwood J, Fox G, Ryan B & Pfitzner K 2009b. Gamma radiation surveys of the historic Palette and El Sherana mines, South Alligator River valley, Australia. Internal Report 556, March, Supervising Scientist, Darwin, Unpublished paper.
- Fisher WJ 1968. Mining practice in the South Alligator Valley. In: *Proceedings of a Symposium 'Uranium in Australia'*. AusIMM Rum Jungle Branch, 16–21 June 1968, AusIMM, Melbourne.
- Parks Australia 2009. Rehabilitation plan for abandoned mine sites & associated infrastructure, Gunlom Land Trust, Kakadu National Park Part B. Prepared by Fawcett Mine Rehabilitation Services Pty Ltd, February 2009. Unpublished paper.
- Pfitzner K & Martin P 2000. Airborne gamma survey of the South Alligator River valley: First report. Internal Report 353, Supervising Scientist, Darwin. Unpublished paper.
- Pfitzner K, Martin P & Ryan B 2001a. Airborne gamma survey of the upper South Alligator River valley: Second report. Internal Report 377, Supervising Scientist, Darwin. Unpublished paper.
- Pfitzner K, Ryan B, Bollhöfer & Martin P 2001b. Airborne gamma survey of the upper South Alligator River valley: Third Report. Internal Report 383, Supervising Scientist, Darwin. Unpublished paper.
- Supervising Scientist 2003. Annual report 2002–2003. Supervising Scientist, Darwin NT.
- Supervising Scientist 2008. Annual Report 2007–2008. Supervising Scientist, Darwin NT.
- Tims S, Ryan B & Waggitt PW 2000. γ Radiation survey of exposed tailings in the area around Rockhole mine. Internal Report 332, Supervising Scientist, Darwin. Unpublished paper.
- UNSCEAR 2000. United Nations Scientific Committee on the Effects of Atomic Radiation 2000 Report Vol. I. Sources and effects of ionizing radiation. Report to the General Assembly, with scientific annexes, United Nations Publication, New York.
- Waggit P 2004. Uranium mine rehabilitation: The story of the South Alligator Valley intervention. *Journal of Environmental Radioactivity* 76, 51–66.

Appendix 1 Details of gamma survey instruments

	GM1	GM3
Description	Environmental dose rate meter	Environmental dose rate meter
Manufacturer	Mini-instruments	Mini-instruments
Model	6-80	6-80
Serial number	01065	01049

 Table A1
 Details of instruments used for post-remediation gamma dose rate surveys at the Rockhole

 Residues, Palette and El Sherana sites

Appendix 2 Tabulated gamma survey results for Rockhole Residues

GPS	Way	Easting	Northing	GM	Counts	Meas	Calc	+/-	Comments
	pt			tube	100 s ⁻¹	µGy h⁻¹	µGy h⁻¹	µGy h⁻¹	
Gamma	dose ra	te survey re	sults	1					1
GPS1	3	225292	8508652	GM1	758	0.50	0.41	0.01	
GPS1	4	225302	8508657	GM1	662	0.40	0.36	0.01	
GPS1	5	225310	8508667	GM1	416	0.20	0.22	0.01	
GPS1	6	225322	8508676	GM1	363	0.20	0.19	0.01	
GPS1	7	225330	8508688	GM1	315	0.15	0.16	0.01	
GPS1	8	225375	8508653	GM1	289	0.15	0.15	0.01	
GPS1	9	225361	8508634	GM1	302	0.15	0.16	0.01	
GPS1	10	225342	8508620	GM1	401	0.20	0.21	0.01	
GPS1	11	225325	8508609	GM1	672	0.40	0.36	0.01	
GPS1	12	225321	8508606	GM1	1452	0.90	0.80	0.02	Natural
GPS1	13	225317	8508598	GM1	784	0.50	0.43	0.02	Natural
GPS1	14	225339	8508561	GM1	408	0.20	0.22	0.01	Natural
GPS1	15	225360	8508570	GM1	376	0.30	0.20	0.01	
GPS1	16	225380	8508575	GM1	570	0.40	0.31	0.01	
GPS1	17	225391	8508581	GM1	330	0.20	0.17	0.01	
GPS1	18	225421	8508531	GM1	479	0.30	0.26	0.01	
GPS1	19	225402	8508523	GM1	495	0.30	0.27	0.01	
GPS1	20	225376	8508517	GM1	548	0.40	0.29	0.01	Bottom gully
GPS1	21	225356	8508513	GM1	415	0.30	0.22	0.01	
GPS1	22	225359	8508461	GM1	436	0.25	0.23	0.01	
GPS1	23	225381	8508471	GM1	1052	0.60	0.58	0.02	
GPS1	24	225389	8508478	GM1	668	0.40	0.36	0.01	Fines
GPS1	25	225409	8508484	GM1	751	0.40	0.41	0.01	Fines
GPS1	26	225432	8508499	GM1	421	0.25	0.22	0.01	
GPS1	27	225515	8508503	GM1	427	0.25	0.23	0.01	Edge road
GPS1	28	225507	8508490	GM1	1027	0.50	0.56	0.02	Natural
GPS1	29	225501	8508478	GM1	1553	0.90	0.86	0.02	Natural
GPS1	30	225486	8508473	GM1	866	0.50	0.47	0.02	
GPS1	31	225461	8508465	GM1	626	0.40	0.34	0.01	
GPS1	32	225435	8508452	GM1	508	0.30	0.27	0.01	Fines
GPS1	33	225418	8508446	GM1	516	0.30	0.28	0.01	Fines
GPS1	34	225388	8508438	GM1	1318	0.80	0.73	0.02	Fines
GPS1	35	225369	8508427	GM1	966	0.60	0.53	0.02	

Table A2 Eastings, northings, gamma survey instrument (GM tube) used, counts per 100 seconds, measured and calculated absorbed gamma dose rates, uncertainty in calculated dose rates and comments recorded on fieldsheets

GPS	Way	Easting	Northing	GM	Counts	Meas	Calc	+/-	Comments
	pt			tube	100 s ⁻¹	µGy h⁻¹	µGy h⁻¹	µGy h⁻¹	
Gamma	a dose ra	ate survey re	sults						
GPS1	36	225351	8508422	GM1	584	0.35	0.32	0.01	
GPS1	37	225378	8508389	GM1	347	0.20	0.18	0.01	
GPS1	38	225396	8508395	GM1	409	0.25	0.22	0.01	Edge
GPS1	39	225417	8508402	GM1	417	0.25	0.22	0.01	Fines
GPS1	40	225434	8508411	GM1	543	0.30	0.29	0.01	
GPS1	41	225457	8508420	GM1	425	0.20	0.23	0.01	
GPS1	42	225481	8508437	GM1	463	0.30	0.25	0.01	
GPS1	43	225504	8508448	GM1	555	0.40	0.30	0.01	
GPS1	44	225525	8508459	GM1	359	0.25	0.19	0.01	
GPS1	45	225539	8508468	GM1	363	0.20	0.19	0.01	
GPS1	46	225569	8508430	GM1	375	0.20	0.20	0.01	Road
GPS1	47	225551	8508429	GM1	356	0.20	0.19	0.01	Natural
GPS1	48	225531	8508418	GM1	499	0.30	0.27	0.01	Natural
GPS1	49	225521	8508412	GM1	621	0.40	0.34	0.01	
GPS1	50	225501	8508404	GM1	624	0.35	0.34	0.01	
GPS1	51	225489	8508400	GM1	500	0.25	0.27	0.01	
GPS1	52	225472	8508389	GM1	491	0.30	0.26	0.01	
GPS1	53	225451	8508380	GM1	1942	1.25	1.08	0.02	
GPS1	54	225437	8508372	GM1	527	0.30	0.28	0.01	
GPS1	55	225423	8508367	GM1	971	0.60	0.53	0.02	
GPS1	56	225406	8508352	GM1	336	0.20	0.18	0.01	
GPS1	57	225393	8508347	GM1	288	0.15	0.15	0.01	
GPS1	58	225432	8508305	GM1	311	0.20	0.16	0.01	
GPS1	59	225442	8508316	GM1	299	0.20	0.16	0.01	
GPS1	60	225459	8508326	GM1	307	0.20	0.16	0.01	
GPS1	61	225470	8508330	GM1	349	0.20	0.18	0.01	
GPS1	62	225483	8508335	GM1	361	0.25	0.19	0.01	
GPS1	63	225492	8508336	GM1	368	0.25	0.19	0.01	
GPS1	64	225509	8508337	GM1	387	0.25	0.20	0.01	
GPS1	65	225529	8508351	GM1	347	0.25	0.18	0.01	
GPS1	66	225550	8508362	GM1	324	0.20	0.17	0.01	
GPS1	67	225567	8508370	GM1	286	0.15	0.15	0.01	
GPS1	68	225583	8508375	GM1	286	0.15	0.15	0.01	
GPS1	37	225378	8508389	GM1	347	0.20	0.18	0.01	
GPS2	3	225301	8508635	GM3	655	0.40	0.35	0.01	
GPS2	4	225315	8508643	GM3	713	0.40	0.39	0.01	
GPS2	5	225329	8508654	GM3	395	0.20	0.21	0.01	
GPS2	6	225340	8508667	GM3	305	0.15	0.16	0.01	Across road on ridge
GPS2	7	225349	8508678	GM3	278	0.15	0.14	0.01	Across road on ridge

GPS	Way	Easting	Northing	GM	Counts	Meas	Calc	+/-	Comments
	pt			tube	100 s ⁻¹	µGy h⁻¹	µGy h⁻¹	µGy h⁻¹	
Gamma	dose ra	ite survey re	sults						
GPS2	8	225367	8508666	GM3	272	0.15	0.14	0.01	Across road on ridge
GPS2	9	225356	8508655	GM3	279	0.175	0.14	0.01	Across road on ridge
GPS2	10	225342	8508642	GM3	616	0.20	0.33	0.01	Back across road
GPS2	11	225329	8508637	GM3	420	0.25	0.22	0.01	
GPS2	12	225319	8508630	GM3	504	0.30	0.27	0.01	
GPS2	13	225306	8508621	GM3	661	0.40	0.36	0.01	
GPS2	14	225297	8508617	GM3	402	0.20	0.21	0.01	
GPS2	15	225298	8508590	GM3	514	0.30	0.28	0.01	Gully into creek
GPS2	16	225318	8508588	GM3	727	0.45	0.40	0.01	
GPS2	17	225324	8508588	GM3	715	0.40	0.39	0.01	
GPS2	18	225349	8508594	GM3	580	0.35	0.31	0.01	Ripped Section
GPS2	19	225360	8508603	GM3	288	0.15	0.15	0.01	
GPS2	20	225378	8508612	GM3	343	0.175	0.18	0.01	
GPS2	21	225393	8508550	GM3	534	0.30	0.29	0.01	
GPS2	22	225401	8508555	GM3	337	0.175	0.18	0.01	
GPS2	23	225379	8508549	GM3	819	0.50	0.45	0.02	Ripped Section
GPS2	24	225363	8508545	GM3	525	0.35	0.28	0.01	Next to concreted section
GPS2	25	225351	8508538	GM3	366	0.20	0.19	0.01	
GPS2	26	225355	8508489	GM3	385	0.25	0.20	0.01	
GPS2	27	225373	8508487	GM3	340	0.20	0.18	0.01	
GPS2	28	225390	8508499	GM3	1291	1.00	0.71	0.02	Low point
GPS2	29	225412	8508502	GM3	344	0.20	0.18	0.01	
GPS2	30	225422	8508513	GM3	348	0.20	0.18	0.01	
GPS2	31	225471	8508486	GM3	357	0.20	0.19	0.01	
GPS2	32	225458	8508476	GM3	336	0.20	0.18	0.01	
GPS2	33	225441	8508470	GM3	575	0.40	0.31	0.01	
GPS2	34	225422	8508465	GM3	492	0.30	0.26	0.01	
GPS2	35	225402	8508456	GM3	533	0.35	0.29	0.01	
GPS2	36	225386	8508450	GM3	691	0.45	0.37	0.01	
GPS2	37	225368	8508443	GM3	464	0.30	0.25	0.01	
GPS2	38	225354	8508441	GM3	458	0.275	0.24	0.01	
GPS2	39	225357	8508407	GM3	347	0.20	0.18	0.01	
GPS2	40	225372	8508409	GM3	1214	0.90	0.67	0.02	
GPS2	41	225393	8508416	GM3	436	0.25	0.23	0.01	
GPS2	42	225408	8508425	GM3	489	0.25	0.26	0.01	
GPS2	43	225423	8508428	GM3	603	0.35	0.33	0.01	
GPS2	44	225438	8508433	GM3	395	0.20	0.21	0.01	
GPS2	45	225453	8508440	GM3	376	0.25	0.20	0.01	
GPS2	46	225470	8508448	GM3	532	0.35	0.29	0.01	

GPS	Way	Easting	Northing	GM	Counts	Meas	Calc	+/-	Comments
	pt			tube	100 s ⁻¹	µGy h⁻¹	µGy h⁻¹	µGy h⁻¹	
Gamma	a dose ra	ate survey re	sults						
GPS2	47	225493	8508459	GM3	443	0.30	0.24	0.01	
GPS2	48	225504	8508468	GM3	1156	0.75	0.64	0.02	
GPS2	49	225512	8508470	GM3	404	0.30	0.21	0.01	
GPS2	50	225524	8508480	GM3	516	0.35	0.28	0.01	
GPS2	51	225559	8508452	GM3	379	0.25	0.20	0.01	
GPS2	52	225549	8508445	GM3	345	0.20	0.18	0.01	
GPS2	53	225536	8508437	GM3	682	0.40	0.37	0.01	
GPS2	54	225522	8508428	GM3	747	0.50	0.41	0.01	
GPS2	55	225509	8508421	GM3	382	0.20	0.20	0.01	
GPS2	56	225496	8508415	GM3	436	0.25	0.23	0.01	
GPS2	57	225480	8508408	GM3	433	0.25	0.23	0.01	
GPS2	58	225464	8508402	GM3	430	0.25	0.23	0.01	
GPS2	59	225450	8508398	GM3	624	0.35	0.34	0.01	
GPS2	60	225434	8508389	GM3	1455	1.00	0.80	0.02	
GPS2	61	225415	8508379	GM3	650	0.40	0.35	0.01	
GPS2	62	225401	8508374	GM3	281	0.15	0.15	0.01	On old road
GPS2	63	225378	8508360	GM3	293	0.15	0.15	0.01	Other side of old road
GPS2	64	225568	8508409	GM3	269	0.15	0.14	0.01	Creek on new road
GPS2	65	225554	8508407	GM3	260	0.175	0.13	0.01	
GPS2	66	225537	8508401	GM3	340	0.20	0.18	0.01	
GPS2	67	225525	8508396	GM3	436	0.30	0.23	0.01	
GPS2	68	225507	8508387	GM3	642	0.40	0.35	0.01	
GPS2	69	225490	8508385	GM3	541	0.30	0.29	0.01	
GPS2	70	225474	8508380	GM3	622	0.35	0.34	0.01	
GPS2	71	225459	8508372	GM3	1068	0.70	0.59	0.02	
GPS2	72	225447	8508359	GM3	650	0.35	0.35	0.01	
GPS2	73	225431	8508354	GM3	445	0.30	0.24	0.01	
GPS2	74	225419	8508347	GM3	278	0.15	0.14	0.01	
GPS2	75	225409	8508338	GM3	266	0.15	0.14	0.01	
GPS2	76	225415	8508318	GM3	286	0.175	0.15	0.01	
GPS2	77	225429	8508325	GM3	298	0.175	0.15	0.01	
GPS2	78	225445	8508336	GM3	298	0.20	0.15	0.01	
GPS2	79	225457	8508341	GM3	561	0.40	0.30	0.01	
GPS2	80	225475	8508349	GM3	1884	1.40	1.04	0.02	
GPS2	81	225488	8508357	GM3	969	0.60	0.53	0.02	
GPS2	82	225504	8508362	GM3	755	0.45	0.41	0.01	
GPS2	83	225521	8508367	GM3	537	0.30	0.29	0.01	
GPS2	84	225542	8508376	GM3	275	0.20	0.14	0.01	
GPS2	85	225560	8508381	GM3	258	0.175	0.13	0.01	

		r			r	1		1	
GPS	Way	Easting	Northing	GM	Counts	Meas	Calc	+/-	Comments
	pt			tube	100 s ⁻¹	µGy h⁻¹	µGy h⁻¹	µGy h⁻¹	
Gamma	dose ra	te survey re	sults			-	_		
GPS2	86	225572	8508388	GM3	256	0.175	0.13	0.01	Edge of new road
Trace of	f visual b								
GPS2	87	225520	8508449						
GPS2	88	225530	8508437						
GPS2	89	225533	8508430						
GPS2	90	225530	8508427						
GPS2	91	225528	8508424						
GPS2	92	225527	8508418						
GPS2	93	225522	8508416						
GPS2	94	225519	8508412						
GPS2	95	225520	8508397						
GPS2	96	225531	8508396						
GPS2	97	225536	8508395						
GPS2	98	225549	8508387						
GPS2	99	225556	8508375						
GPS2	100	225565	8508365						
GPS2	101	225561	8508358						
GPS2	102	225552	8508356						
GPS2	103	225540	8508366						
GPS2	104	225531	8508369						
GPS2	105	225519	8508363						
GPS2	106	225516	8508350						
GPS2	107	225510	8508349						
GPS2	108	225499	8508359						
GPS2	109	225488	8508364						
GPS2	110	225476	8508362						
GPS2	111	225470	8508367						
GPS2	112	225461	8508374						
GPS2	113	225452	8508383						
GPS2	114	225449	8508390						
GPS2	115	225443	8508396						
GPS2	116	225439	8508402						
GPS2	117	225429	8508407						
GPS2	118	225422	8508396						
GPS2	119	225418	8508387						
GPS2	120	225412	8508388		1			1	
GPS2	121	225401	8508387						
GPS2	122	225412	8508356					1	
GPS2	123	225399	8508373						
	1		1	1	1	1	1	1	1

GPS	Way	Easting	Northing	GM	Counts	Meas	Calc	+/-	Comments
	pt			tube	100 s ⁻¹	µGy h⁻¹	µGy h⁻¹	µGy h⁻¹	
Trace o	f visual b	coundary of	remediated a	area					
GPS2	124	225393	8508386						
GPS2	125	225388	8508396						
GPS2	126	225383	8508408						
GPS2	127	225379	8508424						
GPS2	128	225374	8508436						
GPS2	129	225369	8508450						
GPS2	130	225366	8508461						
GPS2	131	225364	8508482						
GPS2	132	225363	8508504						
GPS3	1	225521	8508447						
GPS3	2	225506	8508458						
GPS3	3	225498	8508470						
GPS3	4	225499	8508477						
GPS3	5	225486	8508483						
GPS3	6	225486	8508473						
GPS3	7	225476	8508471						
GPS3	8	225468	8508475						
GPS3	9	225465	8508483						
GPS3	10	225455	8508482						
GPS3	11	225452	8508475						
GPS3	12	225438	8508481						
GPS3	13	225425	8508494						
GPS3	14	225417	8508505						
GPS3	15	225410	8508516						
GPS3	16	225399	8508530						
GPS3	17	225388	8508541						
GPS3	18	225380	8508548						
GPS3	19	225380	8508566						
GPS3	20	225377	8508584						
GPS3	21	225373	8508599						
GPS3	22	225379	8508622						
GPS3	23	225363	8508634						
GPS3	24	225350	8508644						
GPS3	25	225331	8508654						
GPS3	26	225321	8508658						
GPS3	27	225308	8508668						
GPS3	28	225294	8508652						
GPS3	29	225302	8508636						
GPS3	30	225312	8508624						

GPS	Way	Easting	Northing	GM	Counts	Meas	Calc	+/-	Comments
	pt			tube	100 s ⁻¹	µGy h⁻¹	µGy h⁻¹	µGy h⁻¹	
Trace o	f visual I	coundary of	remediated a	area					·
GPS3	31	225323	8508619						
GPS3	32	225327	8508600						
GPS3	33	225318	8508591						
GPS3	34	225305	8508594						
GPS3	35	225293	8508593						
GPS3	36	225298	8508586						
GPS3	37	225310	8508583						
GPS3	38	225324	8508582						
GPS3	39	225335	8508579						
GPS3	40	225342	8508563						
GPS3	41	225349	8508548						
GPS3	42	225356	8508531						
GPS3	43	225363	8508517						
GPS3	44	225363	8508504						

Appendix 3 Tabulated gamma survey results for Palette

GPS	Way	Easting	Northing	GM	Counts	Meas	Calc	+/-	Comments
	pt			tube	100 s ⁻¹	µGy h⁻¹	µGy h⁻¹	µGy h⁻¹	
Top ber	nch								
GPS1	98	236211	8502432	GM1	631	0.40	0.34	0.01	
GPS1	99	236217	8502426	GM1	1879	1.00	1.04	0.02	
GPS1	100	236218	8502422	GM1	1556	0.90	0.86	0.02	
GPS1	101	236221	8502417	GM1	1184	0.70	0.65	0.02	
GPS1	102	236223	8502414	GM1	1345	0.80	0.74	0.02	
GPS1	103	236224	8502409	GM1	1061	0.60	0.58	0.02	
GPS1	104	236227	8502400	GM1	1700	0.90	0.94	0.02	
GPS1	105	236228	8502391	GM1	1327	0.70	0.73	0.02	
GPS1	106	236229	8502387	GM1	1543	0.90	0.85	0.02	
GPS1	107	236234	8502381	GM1	1593	0.90	0.88	0.02	
GPS1	108	236235	8502376	GM1	1700	1.00	0.94	0.02	
GPS1	109	236233	8502372	GM1	1677	1.00	0.93	0.02	
GPS1	110	236233	8502367	GM1	1791	1.00	0.99	0.02	
GPS1	111	236223	8502365	GM1	1536	0.90	0.85	0.02	
GPS1	112	236218	8502373	GM1	1492	0.80	0.82	0.02	
GPS1	113	236215	8502375	GM1	1345	0.70	0.74	0.02	
GPS1	114	236215	8502389	GM1	1521	0.90	0.84	0.02	
GPS1	115	236219	8502396	GM1	2697	1.50	1.50	0.03	
GPS1	116	236218	8502401	GM1	1427	0.80	0.79	0.02	
GPS1	117	236218	8502408	GM1	1027	0.60	0.56	0.02	
GPS1	118	236214	8502415	GM1	1146	0.70	0.63	0.02	
GPS2	163	236208	8502428	GM3	388	0.25	0.21	0.01	
GPS2	164	236213	8502424	GM3	596	0.30	0.32	0.01	
GPS2	165	236213	8502421	GM3	1129	0.70	0.62	0.02	
GPS2	166	236217	8502415	GM3	1006	0.55	0.55	0.02	
GPS2	167	236220	8502410	GM3	1390	0.90	0.77	0.02	
GPS2	168	236222	8502407	GM3	1102	0.70	0.61	0.02	
GPS2	169	236223	8502403	GM3	1415	0.75	0.78	0.02	
GPS2	170	236223	8502403	GM3	1414	0.80	0.78	0.02	
GPS2	171	236223	8502393	GM3	1178	0.70	0.65	0.02	
GPS2	172	236227	8502387	GM3	1092	0.65	0.60	0.02	
GPS2	173	236227	8502383	GM3	1110	0.55	0.61	0.02	
GPS2	174	236228	8502378	GM3	1230	0.70	0.68	0.02	
GPS2	175	236228	8502374	GM3	1656	1.00	0.92	0.02	

Table A3 Eastings, northings, gamma survey instrument (GM tube) used, counts per 100 seconds, measured and calculated absorbed gamma dose rates, uncertainty in calculated dose rates and comments recorded on fieldsheets

GPS	Way	Easting	Northing	GM	Counts	Meas	Calc	+/-	Comments				
	pt			tube	100 s ⁻¹	µGy h⁻¹	µGy h⁻¹	µGy h⁻¹					
Top ber	Top bench												
GPS2	176	236226	8502369	GM3	1812	1.00	1.00	0.02					
GPS2	177	236230	8502367	GM3	1187	0.65	0.65	0.02					
GPS2	178	236206	8502377	GM3	1647	1.00	0.91	0.02					
GPS2	179	236215	8502378	GM3	2260	1.50	1.25	0.03					
GPS2	180	236210	8502386	GM3	1742	1.00	0.96	0.02					
GPS2	181	236210	8502386	GM3	2246	1.25	1.25	0.03					
GPS2	182	236211	8502387	GM3	5001	3.00	2.79	0.04					
GPS2	183	236211	8502388	GM3	1894	1.25	1.05	0.02					
GPS2	184	236214	8502381	GM3	1353	0.70	0.75	0.02					
GPS2	185	236215	8502380	GM3	1369	0.90	0.75	0.02					
GPS2	186	236214	8502378	GM3	1509	0.90	0.83	0.02					

Appendix 4 Tabulated gamma survey results for El Sherana

GPS	Way	Easting	Northing	GM	Counts	Meas	Calc	+/-	Comments
	pt			tube	100 s ⁻¹	µGy h⁻¹	µGy h⁻¹	µGy h⁻¹	
Pit and a	access t	racks							
GPS2	303	231614	8505204	GM3	1628	0.80	0.90	0.02	
GPS2	304	231607	8505196	GM3	1423	0.80	0.78	0.02	
GPS2	305	231624	8505210	GM3	1277	0.60	0.70	0.02	
GPS2	306	231629	8505206	GM3	1355	0.70	0.75	0.02	
GPS2	307	231627	8505200	GM3	1592	0.80	0.88	0.02	
GPS2	308	231628	8505192	GM3	2228	1.00	1.24	0.03	
GPS2	309	231631	8505188	GM3	2896	1.25	1.61	0.03	
GPS2	310	231634	8505184	GM3	3222	1.50	1.79	0.03	
GPS2	311	231637	8505181	GM3	3456	1.75	1.92	0.03	
GPS2	312	231640	8505176	GM3	2978	1.50	1.66	0.03	
GPS2	313	231643	8505174	GM3	2426	1.25	1.35	0.03	
GPS2	314	231647	8505172	GM3	2271	1.00	1.26	0.03	
GPS2	315	231649	8505165	GM3	2313	1.00	1.28	0.03	
GPS2	316	231654	8505162	GM3	2389	1.25	1.33	0.03	
GPS2	317	231657	8505157	GM3	2201	1.00	1.22	0.03	
GPS2	318	231661	8505157	GM3	1927	0.90	1.07	0.02	
GPS2	319	231667	8505156	GM3	1545	0.80	0.85	0.02	
GPS2	320	231673	8505157	GM3	1530	0.70	0.84	0.02	
GPS2	321	231675	8505156	GM3	1669	0.80	0.92	0.02	
GPS2	322	231675	8505153	GM3	1411	0.70	0.78	0.02	
GPS2	323	231673	8505152	GM3	1747	0.80	0.97	0.02	Second level (untouched)
GPS2	324	231671	8505153	GM3	2880	1.25	1.60	0.03	Second level (untouched)
GPS2	325	231664	8505145	GM3	3586	1.50	2.00	0.03	Second level (untouched)
GPS2	326	231667	8505148	GM3	5308	2.50	2.96	0.04	Second level (untouched)
GPS2	327	231670	8505141	GM3	7287	3.50	4.07	0.05	Second level (untouched)
GPS2	328	231682	8505151	GM3	2049	1.00	1.14	0.03	Third level (untouched)
GPS2	339	231632	8505170	GM3	1548	0.70	0.85	0.02	Inlet
GPS2	340	231621	8505167	GM3	1540	0.70	0.85	0.02	Inlet
GPS2	341	231607	8505165	GM3	1312	0.50	0.72	0.02	Inlet
GPS2	342	231588	8505167	GM3	1542	0.70	0.85	0.02	Inlet
GPS3	161	231615	8505198	GM1	2370	1.30	1.32	0.03	Pit access
GPS3	162	231597	8505192	GM1	1279	1.00	0.70	0.02	
GPS3	163	231621	8505207	GM1	2118	1.20	1.17	0.03	Base of pit
GPS3	164	231623	8505202	GM1	1481	1.20	0.82	0.02	Base of pit

Table A4 Eastings, northings, gamma survey instrument (GM tube) used, counts per 100 seconds, measured and calculated absorbed gamma dose rates, uncertainty in calculated dose rates and comments recorded on fieldsheets

	1			1					
GPS	Way pt	Easting	Northing	GM	Counts	Meas		+/-	Comments
Dit ond		rooko		tube	100 S ⁻¹	µGy n-	µGy n-	µGy n-	
CPS3	165	231623	8505202	GM1	2021	1 20	1 12	0.02	Base of nit
GPS3	166	231626	8505202	GM1	25/0	1.20	1.12	0.02	Base of pit
CDS3	167	231020	8505200	CM1	2049	1.00	1.42	0.03	Base of pit
GF33	107	231029	8505190	GIVIT	2000	1.00	1.01	0.03	Base of pit
GPS3	168	231633	8505193	GM1	2739	1.80	1.52	0.03	Base of pit
GPS3	169	231637	8505187	GM1	2420	1.00	1.34	0.03	Base of pit
GPS3	170	231642	8505182	GM1	2325	1.00	1.29	0.03	Base of pit
GPS3	171	231643	8505182	GM1	2261	1.10	1.25	0.03	Base of pit
GPS3	172	231647	8505178	GM1	2332	1.50	1.29	0.03	Base of pit
GPS3	173	231651	8505176	GM1	2769	1.50	1.54	0.03	Base of pit
GPS3	174	231658	8505167	GM1	2165	1.50	1.20	0.03	Base of pit
GPS3	175	231658	8505160	GM1	3480	2.00	1.94	0.03	Washout 0.5 m deep
GPS3	176	231666	8505157	GM1	2635	1.50	1.46	0.03	Washout 1 m deep
GPS3	177	231666	8505156	GM1	2472	1.50	1.37	0.03	Upper pit
GPS3	178	231670	8505152	GM1	2283	1.50	1.27	0.03	Upper pit
GPS3	179	231657	8505160	GM1	3738	2.00	2.08	0.03	Upper access
GPS3	180	231648	8505154	GM1	5192	3.40	2.90	0.04	Upper access
GPS3	181	231646	8505155	GM1	3696	2.00	2.06	0.03	Upper access
GPS3	182	231638	8505153	GM1	4190	2.30	2.33	0.04	Fence corner
GPS3	183	231632	8505152	GM1	4963	3.00	2.77	0.04	
GPS3	184	231623	8505155	GM1	3479	2.00	1.94	0.03	
GPS3	185	231614	8505151	GM1	3169	2.00	1.76	0.03	Fence corner
GPS3	186	231607	8505154	GM1	2291	1.50	1.27	0.03	
GPS3	194	231632	8505175	GM1	1985	1.30	1.10	0.02	Pit entry
GPS3	195	231622	8505168	GM1	1710	1.10	0.95	0.02	
GPS3	196	231608	8505164	GM1	1310	0.80	0.72	0.02	
GPS3	197	231594	8505162	GM1	1270	0.70	0.70	0.02	
Top are	a north o	of pit		I			I	I	
GPS2	346	231648	8505226	GM3	883	0.35	0.48	0.02	Top area
GPS2	347	231655	8505229	GM3	908	0.40	0.50	0.02	
GPS2	348	231656	8505231	GM3	1332	0.70	0.73	0.02	
GPS2	349	231667	8505244	GM3	1172	0.60	0.64	0.02	
GPS2	350	231667	8505247	GM3	817	0.40	0.45	0.02	
GPS2	351	231673	8505253	GM3	1223	0.60	0.67	0.02	
GPS2	352	231676	8505259	GM3	1258	0.50	0.69	0.02	
GPS2	353	231682	8505247	GM3	1331	0.60	0.73	0.02	New line, top area
GPS2	354	231670	8505243	GM3	1078	0.50	0.59	0.02	
GPS2	355	231666	8505237	GM3	932	0.50	0.51	0.02	
GPS2	356	231662	8505233	GM3	1766	0.90	0.98	0.02	
GPS2	357	231658	8505227	GM3	799	0.35	0.44	0.02	
-				-					

GPS	Way	Easting	Northing	GM	Counts	Meas	Calc	+/-	Comments
	pt			tube	100 s ⁻¹	µGy h⁻¹	µGy h⁻¹	µGy h⁻¹	
Top are	a north	of pit		-					
GPS2	358	231653	8505222	GM3	902	0.45	0.49	0.02	
GPS2	359	231607	8505242	GM3	1183	0.60	0.65	0.02	New line, top area
GPS2	360	231613	8505248	GM3	1647	0.80	0.91	0.02	
GPS2	361	231622	8505254	GM3	1539	0.80	0.85	0.02	
GPS2	362	231625	8505261	GM3	2218	1.00	1.23	0.03	
GPS2	363	231626	8505268	GM3	2226	1.25	1.23	0.03	
GPS2	364	231633	8505269	GM3	1130	0.60	0.62	0.02	
GPS2	365	231639	8505275	GM3	1514	0.80	0.84	0.02	
GPS3	201	231642	8505226	GM1	974	0.60	0.53	0.02	Upper pad
GPS3	202	231647	8505235	GM1	1431	0.80	0.79	0.02	
GPS3	203	231649	8505238	GM1	1559	0.80	0.86	0.02	
GPS3	204	231653	8505243	GM1	1588	0.80	0.88	0.02	
GPS3	205	231657	8505249	GM1	1843	1.00	1.02	0.02	
GPS3	206	231662	8505258	GM1	1455	0.80	0.80	0.02	
GPS3	207	231661	8505266	GM1	1542	0.80	0.85	0.02	
GPS3	208	231663	8505274	GM1	1008	0.60	0.55	0.02	End run 1
GPS3	209	231657	8505271	GM1	1070	0.60	0.59	0.02	Start run 2
Top are	a south	of pit							
GPS2	329	231671	8505119	GM3	834	0.30	0.46	0.02	Second area (cleared)
GPS2	330	231664	8505121	GM3	868	0.35	0.47	0.02	Second area (cleared)
GPS2	331	231661	8505128	GM3	901	0.40	0.49	0.02	Second area (cleared)
GPS2	332	231658	8505132	GM3	1191	0.50	0.65	0.02	Second area (cleared)
GPS2	333	231653	8505136	GM3	986	0.40	0.54	0.02	Second area (cleared)
GPS2	334	231649	8505138	GM3	1372	0.60	0.76	0.02	Second area (cleared)
GPS2	335	231644	8505134	GM3	834	0.40	0.46	0.02	Second area (cleared)
GPS2	336	231640	8505134	GM3	795	0.35	0.43	0.02	Second area (cleared)
GPS2	337	231635	8505135	GM3	1097	0.50	0.60	0.02	Second area (cleared)
GPS2	338	231628	8505136	GM3	1316	0.60	0.72	0.02	Second area (cleared)
GPS3	187	231667	8505117	GM1	664	0.40	0.36	0.01	Pad
GPS3	188	231659	8505114	GM1	599	0.40	0.32	0.01	
GPS3	189	231650	8505117	GM1	619	0.40	0.33	0.01	
GPS3	190	231645	8505119	GM1	619	0.40	0.33	0.01	
GPS3	191	231638	8505122	GM1	642	0.35	0.35	0.01	
GPS3	192	231631	8505125	GM1	677	0.40	0.37	0.01	
GPS3	193	231626	8505123	GM1	751	0.45	0.41	0.01	
Top are	a west c	of pit							
GPS2	343	231573	8505172	GM3	734	0.35	0.40	0.01	Pad
GPS2	344	231572	8505178	GM3	630	0.25	0.34	0.01	Pad
GPS2	345	231562	8505187	GM3	680	0.30	0.37	0.01	Pad

GPS	Way	Easting	Northing	GM	Counts	Meas	Calc	+/-	Comments		
	pt			tube	100 s ⁻¹	µGy h⁻¹	µGy h⁻¹	µGy h⁻¹			
Top area west of pit											
GPS3	198	231570	8505165	GM1	662	0.40	0.36	0.01	Pad		
GPS3	199	231561	8505171	GM1	631	0.35	0.34	0.01			
GPS3	200	231554	8505175	GM1	650	0.35	0.35	0.01			