

Australian Government

Department of Sustainability, Environment, Water, Population and Communities Supervising Scientist internal report

Ecotoxicological assessment of distillate product from a pilot-scale brine concentrator

AJ Harford & RA van Dam

March 2012

(Release status - unrestricted)

This page has been left blank intentionally.

Ecotoxicological assessment of distillate product from a pilot-scale brine concentrator

AJ Harford & R A van Dam

Supervising Scientist Division GPO Box 461, Darwin NT 0801

March 2012

Registry File SSD2011/0132

(Release status – unrestricted)

Australian Government

Department of Sustainability, Environment, Water, Population and Communities Supervising Scientist How to cite this report:

Harford AJ & van Dam RA 2012. Ecotoxicological assessment of distillate product from a pilot-scale brine concentrator. Internal Report 599, March, Supervising Scientist, Darwin.

Location of final PDF file in SSDX Sharepoint:

<u>Supervising Scientist Division > PublicationWork > Publications and Productions > Internal</u> Reports (IRs) > Nos 500 to 599 > IR599 Distillate Ecotox (AJH-RvD)

Location of all key data files for this report in SSDX Sharepoint:

<u>Supervising Scientist Division > SSDX > Ecotoxicology of the Alligator Rivers Region ></u> <u>Brine Concentrator Pilot Plant</u>

Authors of this report:

Andrew J Harford – Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia

Rick A van Dam – Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia

The Supervising Scientist is part of the Australian Government Department of Sustainability, Environment, Water, Population and Communities.

© Commonwealth of Australia 2012

Supervising Scientist

Department of Sustainability, Environment, Water, Population and Communities GPO Box 461, Darwin NT 0801 Australia

This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Supervising Scientist. Requests and enquiries concerning reproduction and rights should be addressed to Publications Enquiries, Supervising Scientist, GPO Box 461, Darwin NT 0801.

e-mail: publications_ssd@environment.gov.au

Internet: www.environment.gov.au/ssd (www.environment.gov.au/ssd/publications)

The views and opinions expressed in this report do not necessarily reflect those of the Commonwealth of Australia. While reasonable efforts have been made to ensure that the contents of this report are factually correct, some essential data rely on references cited and/or the data and/or information of other parties, and the Supervising Scientist and the Commonwealth of Australia do not accept responsibility for the accuracy, currency or completeness of the contents of this report, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the report. Readers should exercise their own skill and judgment with respect to their use of the material contained in this report.

Printed and bound in Darwin NT by Supervising Scientist Division

Contents

Tables					
Figures	v				
Executive summary	VI				
Recommendations	VII				
1 Introduction	1				
2 Methods	3				
2.1 General laboratory procedures	3				
2.2 Test waters	3				
2.3 Test diluent	3				
2.4 Toxicity test species and methods	4				
2.5 Toxicity Identification Evaluation (TIE) tests	4				
2.5.1 Graduated pH	6				
2.5.2 EDTA addition	6				
2.5.3 Ammonia stripping	6				
2.5.4 Solid phase extraction (SPE) with Carbon 18 (C18)	7				
2.5.5 Major ion additions	7				
2.5.6 Effect of Mn in low major ion waters	8				
2.6 Quality control	8				
2.6.1 Chemistry	8				
2.6.2 General water quality	8				
2.6.3 Control responses	9				
2.7 Statistics	9				
3 Results and discussion	10				
3.1 Quality control	10				
3.2 Distillate chemistry	10				
3.3 Toxicity test results	10				
3.4 Toxicity identification evaluation (TIE) results	12				
4 Conclusions and recommendations	16				
5 Acknowledgments	17				
6 References	17				
Appendix A Measured water quality parameters for toxicity tests	19				
Appendix B Chemical analyses	30				
Appendix C Statistical summaries	41				

Tables

Table 1 Details of toxicity tests for the five Australian tropical	
freshwater species used to assess the toxicity of pilot-scale brine	_
	5
Lable 2 Loxicity Identification Evaluation toxicity tests using	6
Table 3 Composition of the process water before and after treatment	0
with the brine concentrator	11
Table 4 Toxicity of the pilot brine concentrator distillate	12
Table 5 Results of toxicity identification evaluation toxicity tests using	
H. viridissima	13
Appendix A Measured Water Quality Parameters for Toxicity Tests	
Table A1 1193D Clad_RBCP_01 Cladoceran toxicity test	19
Table A2 1194B Hyd_RBCP_01 Hydra toxicity test	20
Table A3 1195G Alg_RBCP_01 Green alga toxicity test	20
Table A4 1205L Lem_RBCP_01 Duckweed toxicity test	20
Table A5 1206E Fry_RBCP_01 Fry toxicity test	21
Table A6 1207B Hyd_RBCP_02 Hydra toxicity test	21
Table A7 1208D Clad_RBCP_02 Cladoceran toxicity test	22
Table A9 1209G Alg_RBCP_02 Green alga toxicity test	22
Table A10 1210B Hyd_RBCP_03 Hydra graduate pH TIE	23
Table A11 1211B Hyd_RBCP_04 Hydra EDTA addition TIE	24
Table A12 1212B Hyd_RBCP_04 Hydra Ca addition TIE	25
Table A13 1213B Hyd_RBCP_06 Hydra NH₃ stripped TIE	26
Table A14 1217B Hyd_RBCP_07 Hydra C18 Solid Phase Extraction	
TIE	26
Table A15 1220B Hyd_RBCP_08 Hydra major ion addition TIE	27
Table A16 1242B Hyd_RBCP_09 Modified SSW with Mn addition TIE	28
Table A17 pH measurements and adjustments for the graduate pH	
	29
Appendix B Chemical Analyses	
Nater (MCW) Synthetic Softwater (SSW) Procedural Blanks and	
Blanks	30
Table B2 Total and dissolved metals and major ions for the distillate	32
Table B3 Nitrate analysis of Blanks and QA/QC samples for the	
Lemna and Algae tests	34
Table B4 Alkalinity of Magela Creek Water, Distillate and the NaOH	
adjusted TIE samples	34
Table B5 Metal and major ion analyses of the pH adjusted TIE	05
(1210B) samples	35

Table B6 Measured 'bioavailable' Manganese (Chelex assay) in EDTA TIE (1211B)	36
Table B7 Metal and major ion analyses of the Ca addition TIE (1212B) samples	37
Table B8 Metal and major ion analyses of the ammonia stripping TIE (1213B) samples	37
Table B9 Metal and major ion analyses of the major ion addition TIE (1220B) samples	38
Table B10 Organic compounds detected by GC-MS scan	39
Table B11 Measured calcium, sodium, potassium, magnesium and manganese concentrations in the Mn toxicity TIE (1242B)	40

Figures

Figure 1 Schematic diagram of the pilot Brine Concentrator	2
Figure 2 Concentration-response plots of the five species to the pilot	
brine concentrator distillate	11
Figure 3 Effect of manganese on Hydra viridissima in modified	
Synthetic Soft Water (SSW)	15

Executive summary

Steadily increasing process water inventory at the Ranger uranium mine has become a major operational issue for Energy Resources of Australia Ltd (ERA). Following an assessment of potential technology options ERA decided that brine concentration was the most viable technology to reduce the process water inventory. A brine concentrator produces large volumes of a purified water product (distillate) and a waste stream containing the salts present in the process water (brine concentrate). The distillate will be released into the environment via a yet to be determined method, while the brine concentrate will be returned to the tailings storage facility (TSF). Rio Tinto – Technology and Innovation (RT-TI, Bundoora, Victoria) were engaged by ERA to conduct trials on a pilot-scale brine concentrator plant. Two key aims of RT-TI trial were to (i) demonstrate that the distillate does not pose risks to operator health or the environment, and (ii) provide data to assist with designing water management and disposal systems. To assist with addressing the aquatic environment protection aspect, *eriss* undertook a comprehensive toxicity testing program of the pilot plant distillate. The aims of the toxicity test work were to: (i) detect and quantify any residual toxicity of the distillate and, (ii) in the event effects were observed, to identify the toxic constituent(s) of the distillate.

Initial toxicity screening of the distillate was conducted with a limited range of dilutions of the distillate using three aquatic species which had previously displayed sensitivity to treated process water permeate from the Ranger Treatment Water Plant. Specifically, *Chlorella* sp. (72-h cell division rate), *Hydra viridissima* (96-h population growth rate) and *Moinadaphnia macleayi* (3-brood reproduction) were exposed to Magela Creek water (MCW) control and three dilutions of the distillate (ie 0, 25, 50 and 100% distillate). Further testing was conducted on a second batch of distillate using the same concentration range and two additional species, *Lemna aequinoctialis* (96-h growth rate) and *Mogurnda mogurnda* (96-h larval survival). The toxicity of the second batch of distillate was also assessed using *Chlorella* sp., *H. viridissima* and *M. macleayi*, although only at 0 (MCW) and 100% distillate, in order to assess the inter-batch reproducibility of the test methods.

In order to identify the toxic constituents of the distillate, a range of Toxicity Identification Evaluation (TIE) tests were conducted using the sole sensitive species, *H. viridissima*. The TIE tests involved assessing the relative toxicity of distillate samples produced by specific physical and chemical manipulations to change its composition or the speciation of specific constituents of potential concern. The results enable conclusions about potential primary toxicants. Six TIE tests were conducted to identify the cause of adverse effects on *H. viridissima*.

The distillation process reduced all major ions, ammonia and metals to near detection limits. Some organic compounds that were not detected in the feed water were detected at low μ g L⁻¹ concentrations in the distillate. The toxicity tests results showed that the distillate was of low toxicity to four of the five organisms tested. However, the population growth rate of *H. viridissima* was reduced by ~50% and 100% following exposure to undiluted (ie 100%) distillate samples from the first and second batch, respectively.

Initial chemical analysis of the distillate indicated that ammonia, manganese (Mn) and an organic component were potential candidate constituents for causing a toxic response. However, initial TIE results suggested none of these constituents were causing or contributing to the observed negative effect on *H. viridissima*. Specifically, pH manipulation (raising pH) and stripping to remove ammonia that was present indicated that ammonia was not causing the effect. Whilst the pH manipulation suggested Mn may be contributing to the effect, the effect of addition of Ethylenediamine tetraacetic acid (EDTA, a chelating agent) indicated

that this was unlikely. Removal of the organic component did not change the toxicity of the distillate, discounting organics as a cause of toxicity.

In light of the above negative findings, the issue of major ion deficiency was specifically investigated as a potential cause of the effect on *H. viridissima*. Firstly, Ca addition was investigated due to its importance for nematocyst function and other physiological processes in *H. viridissima*. The addition of 0.2 and 0.5 mg L⁻¹ Ca to the distillate resulted in a 61% and 66% recovery relative to the Synthetic Soft Water (SSW) control, suggesting Ca deficiency as a reason for the effect of distillate on *H. viridissima*. An additional test was conducted that involved the addition of sodium (Na), potassium (K) and Ca at concentrations that were 0, 50 and 100% that of SSW (SSW contains 0.5, 1.0 and 0.4 mg L⁻¹ of calcium, sodium and potassium, respectively). The results showed a 100% and 96% recovery of *H. viridissima* population growth rates with the addition of 50 and 100% major ions, respectively. This strongly indicates that the majority of the adverse effect from the distillate on *H. viridissima* was due to major ion deficiency issue rather than a chemical toxicity.

Despite the substantive removal of toxic effect by replacement of major cations, the concentrations of Mn in the distillate (130-230 μ g L⁻¹) remained a concern as they were higher than the IC₁₀ of 60 μ g L⁻¹ previously reported for *H. viridissima* in circumneutral pH (6.0–7.0) soft water. Additionally, the lack of major ions in the distillate had the potential to exacerbate Mn toxicity. Therefore, the effects of Mn in the presence of reduced concentrations of major ions were examined using modifed SSW (ie pH ~6.0 with 0, 50 and 100% Na, K and Ca concentrations). Manganese concentrations of 250 μ g L⁻¹ caused a 10–20% reduction in growth rate, independent of the major ions in the distillate, a potential for Mn toxicity was also identified.

Recommendations

- 1. Supplementation of the distillate with major ions (Ca, Na and K) may be required prior to its discharge to the off-site aquatic environment. This could be achieved actively by direct addition of relevant salts or passively by passing the distillate through a wetland system/watercourse and/or blending with mine site waters prior to discharge;
- 2. While the conditioning of the distillate through a wetland/watercourse is likely to improve water quality (by increasing major ion concentrations and, potentially, reducing dissolved Mn concentrations), the risk of exhausting of the system's capacity to sustainably contribute the required loading of salt may need to be considered if large volumes are to be flushed through the system;
- 3. Further site-specific data are needed to adequately assess the environmental risk of Mn in the distillate.
- 4. A baseline monitoring program for organic compounds in the TSF is needed to establish the likelihood of significant concentrations of sVOCs and VOCs entering the feed water, hence indicating the potential for transfer to the distillate. The distillate should also be monitored for organic compounds following the commissioning of the full-scale plant.
- 5. The effect of anti-scalant and anti-foaming agents that may be added to the concentrator's feed water needs to be assessed. This may be achieved with laboratory toxicity tests prior to the commissioning of the full-scale plant.
- 6. The distillate product from the full-scale plant will need to be assessed for toxicity and, if necessary, a TIE conducted to determine the cause(s) of any measured effects.

This page has been left blank intentionally.

Ecotoxicological assessment of distillate product from a pilot-scale brine concentrator

AJ Harford & RA van Dam

1 Introduction

Mine waters at Ranger uranium mine (Ranger) are segregated into four classes – process water, pond water, release waters and potable water – according to water quality. Process water includes all waters that have passed through or come into contact with the uranium (U) extraction circuit. It constitutes the poorest water quality on site, with key water quality characteristics typically as follows: pH: 3.7-4.0; electrical conductivity (EC): 22 000–27 000 μ S/cm; sulfate (SO₄): 24 000–34 000 mg/L; U: 18–25 mg/L; and ammonia (NH₃): 780–950 mg/L N (ERA, Water Management Plans 2005–2011, unpublished).

A steadily increasing process water inventory at Ranger has become a major operational issue. Throughout the operation of the mine a number of process water treatment methods have been investigated including: passive and enhanced solar evaporation such as conventional and covered solar evaporation ponds; enhanced evaporation techniques such as sprinklers, misters, vortex generators, waste heat utilisation, high density sludge and membrane technology; alternative dam designs (ie fixed and floating storage facility covers); chemical precipitation; and thermal treatment (ERA, unpublished data). Currently, process water is stored in the Tailings Storage Facility (TSF) and Pit 1, and the primary method of process water inventory reduction has been through passive evaporation. During the 2009 and 2010 dry seasons, process water was also treated using a high density sludge–membrane ultra-filtration reverse osmosis (HDS-UF/RO) water treatment plant. However, the plant did not meet the treatment capacity required to meet the production demand. Thus, following an assessment of potential technology options, ERA decided that brine concentration was the most viable technology to reduce the process water inventory.

The planned full-scale brine concentration facility will consist of three brine concentrator units configured in a two stage process with the first two units feeding the third. The brine concentrator is a falling film evaporator, which means that heated process water is cascaded down a falling film tube bundle. The resultant vapour passes through a chevron separator and a vapour washer, which removes entrained water droplets which may further improve the vapour quality. The vapour is then compressed to heat the falling film tubes and condenses into a purified water product (distillate). The full-scale brine concentrator is forecast to produce 1.83 GL/annum of a distillate and a waste stream containing the salts present in the process water (brine concentrate). The distillate will be released into the environment via a yet to be determined method, while the brine concentrate will be managed on-site.

Rio Tinto – Technology and Innovation (RT-TI, Bundoora, Victoria) was engaged by ERA to conduct trials on a pilot-scale brine concentrator plant (Figure 1; ERA, unpublished data). Two key aims of the RT-TI trial were to (i) demonstrate that the distillate does not pose risks to operator health or the environment, and (ii) provide data to assist with designing water management and disposal systems. To assist with addressing the aquatic environment protection aspect, the Environmental Research Institute of the Supervising Scientist (*eriss*) undertook a comprehensive toxicity testing program of the pilot plant distillate.

Figure 1 Schematic diagram of the pilot Brine Concentrator (ERA, unpublished)

There are numerous examples of mining operations that have used passive and/or active water treatments to improve water quality prior to environmental release (Masarczyk et al 1989, Driussi & Jansz 2006, Allen 2008, Butler et al 2011). However, a key consideration in choosing an appropriate treatment process is the extent to which the water quality is actually improved. The residual toxicity of the treated water can be assessed using traditional ecotoxicological protocols, while Toxicity Identification Evaluation (TIE) may be able to identify the toxic constituents of the water. Toxicity Identification Evaluations involve specific manipulations of a whole effluent in order to change the amount and/or speciation/bioavailability of potential toxic constituents, eg pH adjustment. The subsequent level of toxicity of the manipulated waters relative to the unmanipulated waters can then provide information on the likely toxic constituents. There are three phases that may be included in a TIE Phase I involves manipulations of the effluent that only enables broad screening of the toxic constituents. Phase II involves manipulations that specifically identify the toxicants of interest that have been indicated in Phase I. Phase III involves the reintroduction of the toxicants to confirm the toxicity of the suspected contaminants in the effluent (Mirenda & Hall 1992).

Toxicity Identification Evaluations have well-established USEPA protocols (Norberg-King et al 1991, Durhan et al 1993, Mount & Norberg-King 1993) and have been used to identify toxic constituents in a wide range of industrial, urban and mining effluents (Sauer et al 1997, Tietge et al 1997, Deanovic et al 1999, Neculita et al 2008). The information obtained from a TIE can inform the management strategy for waste water disposal and/or identify improvements in water treatment processes.

The hypothesis of the present study was that the distillate contained residual toxicity due to constituents that were not removed by the pilot-scale brine concentration. Consequently, the objectives of the toxicity test work were to: (i) detect and quantify any residual toxicity of the distillate and, (ii) in the event effects were observed, to identify the toxic constituent(s) of the distillate using TIE methods.

2 Methods

2.1 General laboratory procedures

All equipment which test organisms or media came in contact with, or were exposed to, was made of chemically inert materials (eg Teflon, glass or polyethylene). All plastics and glassware were washed by soaking in 5% (v/v) HNO₃ for 24 h before being washed with a non-phosphate detergent (Gallay Clean A powder, Gallay Scientific, Burwood, Australia) in a laboratory dishwasher operated with reverse osmosis/deionised water (Elix, Millipore, Molshiem, France). All reagents used were analytical grade and stock solutions were made up in high purity water (18 M Ω , Milli-Q Element, Millipore, Molshiem, France).

2.2 Test waters

Distillate waters were produced by a pilot-scale brine concentrator, which used a falling film evaporator process. The pilot-scale plant did not have a chevron or vapour washer, which is planned to be included in the full-scale facility and is predicted to further improve distillate water quality. Two separate batches of distillate were collected from the brine concentrator for toxicity testing. The first batch was a 20 L composite sample collected from 11–17 July 2011, and was used for the initial screening toxicity tests involving three species (see section 2.4). The second batch was a 20 L grab sample collected on 10 August 2011, and was used for the remainder of the toxicity and TIE tests. This sample was collected as a grab because the pilot-plant project was due to be terminated. Furthermore, an attempt to create scale within the brine concentrator had been initiated and there was a concern that the water quality of the distillate would degrade. Both batch samples were collected in acid-washed high-density polyethylene containers and immediately air-freighted at 4°C to the *eriss* laboratory.

On receipt of samples, the distillate was immediately sub-sampled for physico-chemical analyses. Specifically, pH, Dissolved Oxygen (DO), Electrical Conductivity (EC) and Dissolved Organic Carbon (DOC) were measured in-house. Additional sub-samples were sent to Envirolab Services (Envirolab; Chatswood, NSW) for measurement of alkalinity (APHA2320B), total and filtered (< 0.45 μ m) metals (Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) full scan), nitrate, phosphate, ammonia (Colourimetric methods, EPA 353.2, EPA 365.1, EPA 350.1), and volatile and semi-volatile organic analyses (Gas Chromatography – Mass Spectrometry (GC-MS) scan).

2.3 Test diluent

Natural Magela Creek water (MCW) was used as the control treatment and for dilution of the distillate samples in all tests, and was obtained from Bowerbird Billabong (latitude 12° 46' 15'', longitude 133° 02' 20''). This natural water has been extensively characterised and has been used as a diluent in toxicity testing for over 20 years in the *eriss* ecotoxicology laboratory. The water was collected in 20 L acid-washed plastic containers and placed in storage at $4 \pm 1^{\circ}$ C within 1 h of collection. The water was then transported to the laboratory in an air-conditioned vehicle. At the laboratory, it was stored at $4 \pm 1^{\circ}$ C prior to filtration through 3.0 µm pore size (Sartopure PP2 depth filter MidiCaps, Sartorius, Göttingen, Germany) within 3 days of collection. Throughout the testing period, the MCW had a pH of 6.2–6.8 units, an EC of 15–20 µS cm⁻¹ and DO of > 90% saturation.

Diluent water was sub-sampled for physcio-chemical analyses. Specifically pH, DO, EC and DOC were measured in-house. Additional sub-samples were sent to Envirolab (Chatswood, NSW) for alkalinity (APHA2320B), a limited metal and major ion suite (totals only; Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, U, Zn, Ca, Mg, Na, SO₄ (analysed as S and converted)), nitrate, phosphate and ammonia (Colourimetric methods, EPA 353.2, EPA 365.1, EPA 350.1).

2.4 Toxicity test species and methods

The toxicity of the distillate was assessed using five Australian tropical freshwater species: the unicellular green alga (*Chlorella* sp); the duckweed (*Lemna aequinoctialis*); the green hydra (*Hydra viridissima*); the cladoceran (*Moinodaphnia macleayi*); and the Northern trout gudgeon (*Mogurnda mogurnda*). All the organisms were isolated from soft surface waters in Kakadu National Park and have been cultured continuously at the Environmental Research Institute of the Supervising Scientist over many years (10–25 years depending on the species). The test methods are described in detail by Riethmuller et al (2003). Key details of each test are provided in Table 1. For the *L. aequinoctialis* and *Chlorella* sp tests, nutrients (nitrate and phosphate) were added at the minimum concentrations that would sustain acceptable growth (see Table 1). The MCW used in the *Chlorella* sp tests also had 1 mM HEPES buffer added to maintain a stable pH.

Initial toxicity screening of the distillate was conducted with a limited range of dilutions of the distillate using three aquatic species which had previously displayed sensitivity to treated process water permeate from the Ranger Water Treatment Plant (van Dam et al 2011). Specifically, *Chlorella* sp (72-h cell division rate), *H. viridissima* (96-h population growth rate) and *M. macleayi* (3-brood reproduction) were exposed to MCW control and three dilutions of the distillate (ie 0, 25, 50 and 100% distillate).

Further testing was conducted on the second batch of distillate using the same concentration range (0, 25, 50 and 100% distillate) and two different species, *L. aequinoctialis* (96-h growth rate) and *M. mogurnda* (96-h larval survival). The toxicity of the second batch of distillate was also assessed using *Chlorella* sp, *H. viridissima* and *M. macleayi*, although only at 0 (MCW control) and 100% distillate, in order to assess the inter-batch reproducibility of the test methods.

2.5 Toxicity Identification Evaluation (TIE) tests

In order to identify the toxic constituents of the distillate, a range of Phase I TIE toxicity tests were conducted using the sole sensitive species, *H. viridissima*. A Phase II TIE test involving ammonia stripping was conducted, as ammonia was a toxicant of interest. No other Phase II or Phase III toxicity tests were deemed necessary due to the results returned by the Phase I TIE However, it should be noted that the TIE tests involving the addition of major ions (see below) would be classified as Phase II TIEs except that they are not standard USEPA methods, which focus on complex effluents containing organic and/or inorganic toxicants. The major ion TIEs were required due to the purity of the distillate and to specifically identify if the adverse effects were due to a lack of essential ions.

All TIE tests used the standard *H. viridissima* protocol described in section 2.4, except that the tests involved assessing the relative toxicity of distillate samples that had undergone specific physical and chemical manipulations to change their composition or the speciation of specific constituents of potential concern. The results enabled conclusions about potential primary toxicants. Six TIE tests were conducted to identify the cause of adverse effects on *H. viridissima* (Table 2).

Table 1 Details of toxicity tests for the five Australian tropical freshwater species used to assess the toxicity of pilot-scale brine concentrator distillate. Full details of the methods are provided in Riethmuller et al (2003).

Species (common name)	Test duration and endpoint	Control response acceptability criterion	Temperature, light intensity, photoperiod	Feeding/ nutrition	No. replicates (Individuals per replicate)	Test volume (mL)	Static/daily renewals
<i>Chlorella</i> sp (unicellular green alga)	72-h population growth rate	1.4 \pm 0.3 doublings day $^{-1};$ % CV a <20%	$29 \pm 1^{\circ}$ C 100-150 μ mol m ⁻² sec ⁻¹ 12:12h	14.5 mg L ⁻¹ NO₃ 0.14 mg L ⁻¹ PO₄	3 (3×10^4 cells mL ⁻¹)	50	Static
<i>Lemna aequinoctialis</i> (tropical duckweed)	96-h growth rate	Mean surface area growth rate (k, mm² day ⁻¹) ≥0.40; % CV <20%	29 ± 1°C 100-150 μmol m ⁻² sec ⁻¹ 12:12h	3 mg L^{-1} NO ₃ 0.3 mg L^{-1} PO ₄	3 (4 with 3 fronds)	100	Static
<i>Hydra viridissima</i> (green hydra)	72-h population growth rate	Mean population growth rate (k, day ⁻¹) ≥0.27; % CV <20%	$27 \pm 1^{\circ}C$ 30-100 μ mol m ⁻² sec ⁻¹ 12:12h	3-4 <i>Artemia</i> nauplii day ⁻¹	3 (10)	30	Daily renewals
<i>Moinodaphnia macleayi</i> (cladoceran)	3-brood (120 - 144-h) reproduction	Mean adult survival ≥80%; mean neonates per adult ≥30; % CV <20%	$\begin{array}{l} 27 \pm 1^{\circ}\text{C} \\ 30\text{-}100 \ \mu\text{mol m}^{-2} \ \text{sec}^{-1} \\ 12\text{:}12\text{h} \end{array}$	30 μI FFV ^b and 6 \times 10 ⁶ cells of Chlorella sp. d ⁻¹	10 (1)	30	Daily renewals
<i>Mogurnda mogurnda</i> (Northern trout gudgeon)	96-h survival	Mean larval survival ≥80%; % CV <20%	27 ± 1°C 30-100 μmol m ⁻² sec ⁻¹ 12:12h	Nil	3 (10)	30	Daily renewals

^a CV: Percent co-efficient of variation

σī

^b FFV: fermented food with vitamins. Represents an organic and bacterial suspension prepared by method described in Riethmuller et al (2003).

All TIE tests included a control water (MCW or Synthetic Soft water, SSW) and distillate that were treated as described below, as well as untreated control water (MCW and/or SSW) and distillate.

TIE test	Test solution manipulation	Reason for manipulation
Graduated pH	MCW and Distillate adjusted to pH (nominal) 5.5 and 7.5	Differentially alters speciation and toxicity of chemicals
EDTA ^a addition	0, 2.8, 5.5 and 11.0 mg/L EDTA added to MCW and distillate	EDTA binding reduces cationic metal bioavailability and toxicity
C18 Solid Phase Extraction (SPE)	MCW and distillate post-C18 column water tested. Eluate of distillate tested in MCW	Tests for toxicity of organic compounds
Major ion addition	0, 50 and 100% proportions (compared to SSW ^b) of sodium, calcium and potassium added to SSW and distillate	Reintroduction of essential elements

Table 2 Toxicity Identification Evaluation toxicity tests using H. viridissima

^a Ethylenediaminetetraacetic acid

^b Synthetic Soft Water contains 0.5, 1.0 and 0.4 mg L⁻¹ of calcium, sodium and potassium, respectively.

2.5.1 Graduated pH

Changing the pH of an effluent can change the speciation of toxicants, which subsequently can change their bioavailability and toxicity. For example, decreasing the pH can increase the proportion of toxic free metal ions, while increasing the pH can increase the proportion of toxic ammonia ions. The pH of the distillate and MCW was decreased from 6.5 to pH 5.5 using 1 M HCl and increased to pH 8.0 using 1 M NaOH. The pH adjustments were made daily (see Table A17 for pH measurements and adjustments).

Subsamples of the treatments were sent to Envirolab for measurement of a limited metal and major ion suite (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, U, Zn, Ca, Mg, Na, SO_4 - analysed as S and converted; Table B5). The controls (pH 6.5) and HCl treated solutions (pH 5.5) were also analysed for Cl⁻ (Table B5), while the controls (pH 6.5) and NaOH treated solutions (pH 8.0) were analysed for alkalinity (Table B4).

2.5.2 EDTA addition

Ethylenediamine Tetraacetic acid (EDTA) is a strong chelator of divalent cations such as Mn, which was the key elevated metal in the distillate. Hence, the addition of EDTA may reduce the bioavailability and toxicity of these cations.

Concentrations of 0, 2.8, 5.5 and 11 mg L^{-1} EDTA (BDH, Kilsyth, NSW, Australia) were added to both MCW and the distillate. These concentrations were based on a calculation of a 1:1 molar ratio of all major divalent cations and a Mn concentration of 230 µg L^{-1} , which was the concentration measured in the first batch of the distillate.

Sub-samples of the treatments were sent to Envirolab for chemical analysis of the 'bioavailable' Mn fraction using the Chelex assay (Table B6). The Chelex-100 resin will not react with Mn that is complexed with EDTA, but has a high affinity for free Mn^{2+} , which is considered the toxic chemical species (Haraldsson et al 1993).

2.5.3 Ammonia stripping

The unprotonated ammonia ion (NH_3) is relatively volatile compared to the protonated ammonium ion (NH_4^+) . The proportion of ammonia ions increases with increasing pH.

Consequently, raising the pH of the distillate combined with vigorous aeration effectively removes the ammonia from the effluent.

The day prior to the TIE test, 1 L of both the MCW and distillate were increased to pH 11 using 10 M NaOH. The pH was checked and re-adjusted throughout the day as the pH had the tendency to drift towards pH 9. The samples were left aerating overnight while covered at room temperature. The pH of the MCW and distillate were readjusted to pH 6.5 before initiation of the TIE test.

Ammonia content was assessed using a colourimetric NH_3 test kit (Merck, Darmstadt, Germany). After ~23 h of pH and aeration treatment, the distillate contained 0 mg L⁻¹ ammonia. Sub-samples of the treatments were sent for the measurement of total metal and major ion concentrations for a limited suite (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, U, Zn, Ca, Mg, Na, K and SO₄ - analysed as S and converted; Table B8).

2.5.4 Solid phase extraction (SPE) with Carbon 18 (C18)-based resin

Non-polar (lipophilic) organic constituents can be removed from an effluent using solid phase extraction (SPE) columns containing Carbon 18 (C18) moieties. However, these columns will also remove some metals and surfactants. In Phase I TIE testing, the waters are passed through the column at ambient pH and the column is then eluted using a small volume of methanol. The eluate is also added to the reference water and tested for toxicity. Hence, if an organic chemical is the cause of toxicity the filtrate should exhibit less toxicity but the toxicity should be transferred to the eluate-spiked water.

Both MCW and the distillate were treated by SPE by drawing 1 L through 1000 mg of C18 resin (Restek, Bellefonte, PA, USA) using a vacuum pump at a flow rate of \sim 5 mL min⁻¹. The fraction collected after passing through the column was designated 'filtrate'. The column was kept wet and the fraction retained on the C18 resin was eluted using 3 mL of pure methanol (BDH, Kilsyth, NSW, Australia). The eluate was added to MCW and tested for toxicity.

A subsample of the distillate filtrate was sent to Envirolab and analysed for volatile and semivolatile organics via a GC/MS scan (Table B10). The GC/MS scanning method used in this project is not a definitive method of organic compound identification. The retention peaks and mass spectra of the detected compounds are matched to a library, and estimates of concentrations are inferred from the closest surrogate compounds. Thus, all detected compounds are reported with a match quality score, and concentrations are considered estimates.

2.5.5 Major ion additions

Calcium is an essential element that is necessary for a variety of fundamental physiological processes in *Hydra* (Gitter et al 1994, Kawaii et al 1999, Zalizniak et al 2006). It is also a well-known ameliorator of metal and major ion toxicity (Markich & Jeffree 1994, van Dam et al 2010). Hence, the very low concentration of Ca in the distillate (Table 3) was initially targeted as a cause of the adverse effects of the distillate. In the first major ion addition TIE, SSW and distillate were prepared with nominal concentrations of 0.0, 0.2, 0.5 mg L⁻¹ Ca, which is equivalent to 0, 50 and 100% of the standard SSW Ca concentrations. An untreated MCW control was included as a QA/QC control because *H. viridissima* growth rates are known to be slightly lower in SSW.

However, it was also noted that the distillate contained concentrations of sodium (Na) and potassium (K) that were below detection limits (Table 3). Thus, it was hypothesised that the addition of the Ca, Na and K up to concentrations that were consistent with those in Magela Creek would improve the condition of the distillate for *H. viridissima*. Thus, in a second

major ion TIE, SSW and distillate were prepared with nominal concentrations of 0.0, 0.2 and 0.5 mg L^{-1} Ca, 0.0, 0.5 and 1.0 mg L^{-1} Na and 0.0, 0.2 and 0.4 mg L^{-1} K, which is equivalent to 0, 50 and 100% of the standard SSW concentrations. An untreated MCW control was included as a QA/QC control for reasons described above. Magnesium was measured in the distillate at environmentally relevant concentrations so was not considered in the TIE

Sub-samples of the treatments were sent for the measurement of total metal and major ion concentrations for a limited suite (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, U, Zn, Ca, Mg, Na, K and SO_4 - analysed as S and converted; Table B9)

2.5.6 Effect of Mn in low major ion waters

The concentrations of Mn in the distillate (130–230 μ g L⁻¹) were identified as a potential concern as they were higher than the IC₁₀ of 60 μ g L⁻¹ previously reported for *H. viridissima* in circumneutral pH (6.0–7.0) soft waters (Harford et al 2009). Additionally, the lack of major ions in the distillate had the potential to exacerbate Mn toxicity. Therefore, the effects of Mn in the presence of reduced concentrations of major ions were examined using modifed SSW (ie pH 6.0 with 0, 50 and 100% Na, K and Ca concentrations).

Three types of SSW were prepared with Ca, Na and K at concentrations equivalent to 0, 50 and 100% of the standard SSW concentrations (as described above). These waters were spiked with manganese to concentrations of 0, 130 and 230 μ g L⁻¹ Mn to produce 9 treatments (3 Mn concentrations × 3 major ion concentrations).

Sub-samples of the treatments were sent for the measurement of total metal and major ion concentrations for a limited suite (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, U, Zn, Ca, Mg, Na, K and SO₄ - analysed as S and converted). Additionally, dissolved (0.1 μ m filtered) and total Mn concentrations were measured in all treatments (Table B11).

2.6 Quality control

2.6.1 Chemistry

For each test, blanks and procedural blanks (ie ultra-pure water that has been exposed to all components of the test system) were also analysed for a limited metal and major ion suite (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, U, Zn, Ca, Mg, Na, SO₄ – analysed as S and converted). Chemistry data for the blanks and procedural blanks were initially assessed by searching for analyte concentrations higher than detection limits. Where these concentrations were greater than 2 μ g L⁻¹ and above background levels of MCW, duplicate procedural blank samples were re-analysed and/or the control water concentrations were compared to those in tests without blank contamination, to determine if the contamination was limited to the one sample bottle or experienced throughout the test. The likelihood that contamination may have confounded the toxicity test results was investigated and discussed on a case-by-case basis.

2.6.2 General water quality

For each test, data were considered acceptable if: the recorded temperature of the incubator remained within the prescribed limits (see test descriptions, above); the recorded pH was within ± 1 unit of values at test commencement (ie Day 0); the EC for each test solution was within 10% (or 5 μ S cm⁻¹ for samples with low conductivity) of the values at test commencement; and the DO concentration was greater than 70% throughout the test (see Appendix A for data). The occurrence of any significant water quality changes were investigated and discussed on a case-by-case basis.

2.6.3 Control responses

Tests were considered valid if the organisms in the QC treatment (ie those in the MCW or SSW control) met the following criteria:

Chlorella sp cell division rate test

- The algal growth rate is within the range 1.4 ± 0.3 doublings day⁻¹; and
- There is < 20% variability (ie co-efficient of variation, CV < 20%) in growth rate.

L. aequinoctialis plant growth test

- The average increase in frond number in any flask at test conclusion is at least four times that at test start (ie a total of 60 fronds/flask or specific growth rate (k) > 0.4 day⁻¹); and
- There is 20% variability (CV < 20%) in growth rate.

M. macleayi 3-brood reproduction test

- 80% or more of the cladocera are alive and female, and have produced three broods at the end of the test period;
- Reproduction in the control averages 30 or more live neonates per female over the test period; and

H. viridissima population growth test

- More than 30 healthy hydroids (ie specific growth rate specific growth rate (k) > 0.27 day⁻¹) remain in each dish at the end of the test period; and
- There is < 20% variability (CV < 20%) in growth rate.

M. mogurnda larval fish survival test

- The mean mortality or presence of fungus on the fish does not exceed 20%; and
- There is < 20% variability (CV < 20%) in survival.

2.7 Statistics

For the toxicity tests, linear interpolation or non-linear regression (2-parameter log-logistic) analysis were used to determine point estimates of Inhibitory Concentrations (ICs) that reduced endpoint responses by 10% and 50% (ie IC10 and IC50) relative to the control responses (Appendix C). Because the *M. mogurnda* test represents an acute exposure and measures lethality, a more conservative 5% effect/lethal concentration was estimated instead of a 10% effect/lethal concentration. All statistical analyses for the full dilution toxicity tests were undertaken using CETISTM (V 5.0.23, TidePool Scientific).

For the two major ion addition TIEs and the Mn toxicity test, two-way Analysis of Variance (ANOVA) and Tukey's post hoc tests ($\alpha = 0.05$) were performed using water type and major ion or Mn concentration as the two factors (Appendix C). Prior to ANOVA, the assumptions of normality and homoscedasticity were tested (SigmaPlot 11.0, Systat software, Germany). The failure of normality was not considered to be consequential to the analyses because sample sizes were the same across groups and the datasets had equal variances (Zar 1984). For the remaining TIEs, ANOVA results did not prove informative and are not reported. Rather, as recommended by the USEPA protocols (Norberg-King et al 1991), judgements on significance of the improvements or reductions in the *H. viridissima* population growth rate were made based on experience and knowledge of the speciation of the key chemicals of concern.

3 Results and discussion

3.1 Quality control

The quality of the toxicity tests and TIEs were assessed based on criteria for control performance, water quality measurements and chemical analyses of blank and procedural blank samples. All TIE and toxicity tests met the criteria for control performance except for the first *M. macleavi* test, which produced an average of 25 neonates per adult (see caption of Figure 2). However, this result was considered valid because the number of neonates produced was only marginally below the criterion of 30 neonates adult⁻¹, adult survival was 100% and the second cladoceran toxicity test, which was a valid test, produced a similar result. Electrical Conductivity increases of greater than 5 µS cm⁻¹ were measured in the MCW controls of the 'confirmatory' toxicity tests conducted with Chlorella sp, M. macleavi and H. viridissima using the second batch of distillate. However, the increases were inconsequential to the performance of controls and they were all similar to the results of the toxicity tests using the first distillate batch. Furthermore, the results of these tests could not be used to derive toxicity estimates because they consisted of only MCW control and 100% distillate treatments. In the duckweed toxicity test, the pH of the 100% distillate water was measured at 4.5 at the end of the 96-h test, which appeared anomalously low and may have been due to an erroneous reading or sample preparation. However, the growth rate of the group was the same as the control and therefore the pH change was inconsequential. Chemical analyses of the blank and procedural blank samples showed that all tests were free from confounding metal contaminants (Table B1). Hence, all tests reported here were of acceptable quality.

3.2 Distillate chemistry

The compositions (selected components) of the distillate and the process water feed are presented in Table 2 (see Appendix B for detailed results). The distillation process reduced all major ions, ammonia and trace metals to near detection limits. Some organic compounds that were not detected in the feed water were detected at low μ g L⁻¹ concentrations in the distillate. In this context, it is important to note that the sub-sampling of the second distillate batch for organic compounds was not ideal, in that plastic was used instead of glass, and some of the detected compounds are known to leach from plastics (Table 3). The decane, which had a 70% match quality score and was estimated at 2 μ g L⁻¹, may have been misidentified nonane because they are aliphatic hydrocarbons with 10 and 9 carbons, respectively. Nonane is also a major component of Shellsol, which was identified as an organic chemical of interest due to its use in the process circuit and occasional disposal in the TSF.

3.3 Toxicity test results

The toxicity test results showed that the distillate was of low toxicity to four of the five organisms tested (Table 4; Figure 2). However, the population growth rate of *H. viridissima* was reduced by ~50% following exposure to an undiluted (100%) sample of the first batch of distillate (Figure 2). The second batch of distillate was found to be higher in toxicity to *H. viridissima*, with a full toxic effect observed following exposure to 100% distillate (Table 4). In contrast, the second batch of distillate appeared to be of lower toxicity to *M. macleayi* and *Chlorella* sp. A toxicity estimate for *M. mogurnda* could not be calculated due to the limits in the dataset, eg a low number of treatments and variation within treatments. This resulted in concentration-response models not being able to significantly fit the dataset (see Appendix C).

Analyte	Detection limit	Process water (feed) ^a	First distillate batch	Second distillate batch
рН	0.1	4.1 – 4.5	5.8	6.7
Electrical Conductivity (µS cm ⁻¹)	1.0	20 900 – 29 700	17	12
DOC (mg L ⁻¹)	0.1	<1 – 6	0.6	NM c
Calcium (mg L ⁻¹)	0.1	300 – 341	0.11	<0.1
Magnesium (mg L-1)	0.1	3607 – 4123	0.6	0.4
Sodium (mg L-1)	0.1	73 - 107	<0.1	<0.1
Potassium (mg L ⁻¹)	0.1	67 - 115	<0.1	<0.1
Biocarbonate (mg L ⁻¹ CaCO ₃)	1.0	<1	7	6
Ammonia (mg L ⁻¹ N)	5.0 ×10 ⁻³	550 – 756	0.7	0.8
Manganese (mg L-1)	1.0 ×10-4	1367 – 1551	0.23	0.13
Uranium (µg L-1)	1.0 ×10 ⁻³	9600 – 25 300	1.1	1.5
Decane (µg L ⁻¹)	1.0	Not detected	NMc	2 d
Phenol, 3,5-bis (1,1-dimethylethyl) (μ g L ⁻¹) ^b	1.0	Not detected	NMc	6 ^d
Phenol, 2,4-bis (1,1-dimethylethyl) (μ g L ⁻¹) ^b	1.0	Not detected	NMc	12 ^d
1,2-Benzenedicarboxylic acid, buty (µg L ⁻¹) ^b	1.0	Not detected	NMc	10 d

 Table 3
 Composition of the process water before and after treatment with the brine concentrator

a Value ranges based on numerous composite samples of the feed taken from 10 July - 9 August 2011 (data provided by ERA).

^b Known to leach from plastics

° NM = Not measured

^d Not a definitive measurement. Concentration was estimated from the closest matching surrogate compound.

Figure 2 Concentration-response plots for the toxicity of the pilot brine concentrator distillate to five freshwater species (distillate batch 1 for *Chlorella* sp., *Hydra. viridissima* and *Moinodaphnia macleayi*; distillate batch 2 for *Lemna aequinoctialis* and *Morgurnda mogurnda*). Magela Creek Water control responses were; *Chlorella* sp. = 1.7 ± 0.3 doubling day-1; *H. viridissima* = 0.35 ± 0.01 day-1; *M. macleayi* = 25 ± 0.5 neonates adult-1; *L. aequinoctialis* = 0.35 ± 0.01 day-1; *M. mogurnda* = $90 \pm 5\%$ survival.

Table 4	Toxicity of	the pilot brine	concentrator distillate
---------	-------------	-----------------	-------------------------

Species	Endpoint	IC ₁₀ or IC ₅ ^a (95%	Percentage effect relative to the control (± CV% ^b) following exposure to 100% distillate			
		confidence limits)	1 st batch	2 nd batch		
<i>Chlorella</i> sp. (unicellular alga)	72-h cell division rate	79 (N.C.)℃	11 ± 2	0 ± 0		
<i>Lemna aequinoctialis</i> (duckweed)	96-h growth rate	>100 (N.C.) ^d	N.T.e	0 ± 0		
<i>Hydra viridissima</i> (green hydra)	96-h population growth rate	30 (N.C. – 77)	53 ± 5	100 ± 0		
<i>Moinodaphnia macleayi</i> (cladoceran)	3-brood (6-d) reproduction	72 (50 – 100)	13 ± 6	6 ± 13		
<i>Mogurnda mogurnda</i> (fish)	96-h survival	NC ^b	N.T.	7 ± 25		

a Inhibitory Concentrations (IC) are expressed as percentage of distillate that causes 10% or 5% effect, ie IC₁₀ for all species except for IC₅ for *M. mogurnda*

^b Percentage Coefficient of Variation

° NC = Not calculable

^e derived from test conducted on the 2nd batch

e N.T. = Not tested

3.4 Toxicity identification evaluation (TIE) results

Chemical analysis of the distillate (Table 3) indicated that ammonia, manganese (Mn) and an organic component were potential candidate constituents for causing a toxic response. However, initial TIE results suggested none of these constituents were causing or contributing to the observed negative effect on *H. viridissima* (Table 5).

Increasing the pH of the distillate to 7.5 decreased its toxicity and improved the growth of the *H. viridissima* relative to pH 6.5 control. This indicated that the toxicity was not due to ammonia, as the higher pH would have resulted in greater toxicity due to a higher proportion of toxic ammonia (NH₃) ions (Table 5). This was confirmed by the result of the ammonia stripping experiment, where ammonia in the distillate was reduced to below detection, but the distillate's toxicity was unchanged (Table 5).

The improved *H. viridissima* growth rate at pH 7.5 may have been due to one or more of several reasons, including: (i) the addition of sodium ions in the form of sodium hydroxide, which was used to increase the pH; (ii) an improved physiological/metabolical function of the *H. viridissima* at pH 7.5; and (iii) reduced toxicity of Mn (or metals in general) due to a reduction in the proportion of bioavailable free Mn ions compared with the lower pHs of 5.5 and 6.5.

However, the TIE based on the addition of EDTA to the distillate indicated that toxicity due to Mn was unlikely. Only the lowest concentration of EDTA (2.8 mg L⁻¹) provided informative results, as the higher EDTA concentrations resulted in no growth of the *H. viridissima* in MCW (Table 5). This was probably due to the binding of essential cations, such as Ca^{2+} , due to excess EDTA being added to the treatment. The calculation of EDTA needed for complete binding of all the Mn was based on the first batch of distillate, which contained 230 µg L⁻¹ Mn, while the second batch contained only half the concentration, ie 130 µg L⁻¹ Mn. Nevertheless, the addition of 2.8 mg L⁻¹ EDTA resulted in a *H. viridissima* population growth of 0.17 day⁻¹ in the MCW control but no growth in the distillate control. Thus, if the toxic effect of the distillate was due to Mn then it would have been expected that growth in the 2.8 mg L⁻¹ EDTA treated distillate would be similar to the MCW control. Furthermore, the results from the Chelex assay also

supported the conclusion that Mn was not the toxic component (Table B6). The fraction that was able to bind to the Chelex-100 resin was effectively reduced to below detection limits, but the toxicity of the distillate was not reduced. This indicated that Mn was not toxic in the second batch, which had a concentration of $110 \ \mu g \ L^{-1}$.

Treatment of the distillate using a C18 SPE column did not change the toxicity of the distillate (Table 5). The organic content of the distillate was low (~1-4 mg L⁻¹ TOC) but a GC-MS scan of the second batch estimated decane (70% match quality) at 2.0 μ g L⁻¹, phthalate (86% match quality) at 9.9 μ g L⁻¹ and two bis-phenols (>90% match quality) at 5.8 and 12.0 μ g L⁻¹. The phthalate and bis-phenols are known to leach from plastic and were probably present because the sample was held in polyethylene containers. However, the decane was unlikely to have leached from the plastic and may have been concentrated from the feedwater by the brine concentrator. Two chemicals that closely matched methyl ethyl ketone (MEK; 86% match quality) and phenol, 2-(1,1-dimethylethyl)-4-methyl- (97% match quality) were estimated in a blank sample at concentrations of 5.0 a 1.5 μ g L⁻¹, respectively.

TIE test	Treatment ^a	reatment ^a Control growth rate (mean day ⁻¹ ±SE) (i		Distillate compared to control (mean % ± SE)	
	TIEs with Mag	ela Creek Water as the	e control water		
Graduated pH	Daily pH adjusted to ~5.5	0.34 ± 0.02	0.00 ± 0.00	0.0	
	pH unadjusted (~6.5)	0.33 ± 0.00	0.04 ± 0.02	11 ± 6	
	Daily pH adjusted to ~7.5	0.34 ± 0.01	0.16 ± 0.03	50 ± 1	
EDTA addition	0 mg L ⁻¹ EDTA added	0.31 ± 0.02	0.04 ± 0.04	12 ± 12	
	2.5 mg L ⁻¹ EDTA added	0.17 ± 0.01	0.00 ± 0.00	0.0	
	5.0 mg L ⁻¹ EDTA added	0.00 ± 0.00	0.00 ± 0.00	0.0	
	10 mg L ⁻¹ EDTA added		0.00 ± 0.00	0.0	
Ammonia stripping	Unadjusted	0.32 ± 0.02	0.00 ± 0.00	0.0	
	pH increased and aerated 'NH ₃ stripped'	0.16 ± 0.01	0.00 ± 0.00	0.0	
C18 SPE ^b	Untreated	0.28 ± 0.01	0.14 ± 0.02	50 ± 6	
	Filtrate 'Organic stripped'	0.29 ± 0.01	0.16 ± 0.00	59 ± 1	
	Eluate added to MCW	0.27 ± 0.00	0.27 ± 0.01	94 ± 3	
	TIEs with Synt	hetic Soft Water as the	e control water		
Calcium addition	0.0 mg L ⁻¹ Ca added	0.14 ± 0.00	0.00 ± 0.00	0.0	
	0.2 mg L ⁻¹ Ca added	0.27 ± 0.01	0.16 ± 0.00	61 ± 2	
	0.5 mg L ⁻¹ Ca added	0.28 ± 0.00	0.18 ± 0.01	66 ± 5	
Major ion addition	0.0 mg L ⁻¹ Ca, Na and K added	0.04 ± 0.06	0.13 ± 0.01	353 ± 23 °	
	0.2, 0.5 and 0.2 mg L^{-1} Ca, Na and K added	0.29 ± 0.02	0.29 ± 0.01	100 ± 4	
	0.5, 1.0 and 0.4 mg L ⁻¹ Ca, Na and K added	0.34 ± 0.01	0.32 ± 0.02	96 ± 5	

 Table 5
 Results of toxicity identification evaluation toxicity tests using H. viridissima

^a Controls were either MCW or SSW that were treated the same as the distillate. ^b Solid Phase Extraction. ^c Growth rate in the distillate was three times higher compared to SSW with no major ions.

These chemicals were probably contaminants from the sampling method and highlight the sensitivity of the analytical method. No VOCs and sVOCs were detected in the batch of distillate used for the TIE studies, but two sVOCs that matched 2-Furancarboxaldehyde, 5-methyl- (93% match quality) and 2,5-Heptadien-4-one, 2,6-dimethyl- (92% match quality) were estimated at <1.5 μ g L⁻¹ (Table B10). The source of these compounds was unclear but they may have been acquired during the SPE treatment. Importantly, their presence in the filtrate did not change the toxicity of the water. Furthermore, no toxicity was observed in the MCW containing the eluate (Table 5). Hence, all results suggested that the toxicity of the distillate was not due to the presence of trace amounts of the organic compounds.

If organic chemicals are present in the feed water, there is a risk that these chemicals may be concentrated by the brine concentrator. A single sample taken on 27 July 2011 directly from the solvent extraction line (representing the most concentrated source of organic compounds that may contribute to the process water) contained naphthalene at 1000 μ g L⁻¹. No VOCs or sVOCs were detected in two samples of process water taken at the Ranger mine site on 8 and 10 August 2011. However, it should be noted that organic compounds that may be present at concentrations below detection limits in the process water could be concentrated by the brine concentrator. It is worth noting that the issue of organic compounds being concentrated could not be adequately assessed during this study. Of primary concern was that the process waters used to feed the pilot-scale plant were transported long distances (Darwin to Melbourne) and stored for long storage durations, which would have resulted in the evaporation of sVOCs and VOCs. Additionally, the process water used to produce the two batches of distillate tested in this study were obtained during the period of 8 to 24 June 2011 whilst the Ranger processing plant was not operating until 15 June 2011. This meant that the probability of organics being in process water was lower because the primary source of organics in the TSF is waste from the extraction circuit used during the processing of the ore. Regardless, the presence of organic chemicals in the TSF, the temporal variation and, ultimately, their ability to enter the feed water for the brine concentrator is unclear and needs to be better understood, eg through the monitoring of process water and distillate.

In addition to the issue of organic chemicals in the TSF process water, the fate and environmental risk of anti-scalant and anti-foaming chemicals was not adequately assessed during this project. Scale inhibiting organic chemicals (eg. amino-trimethylene phosphonic acid; ATMP), will be routinely added to the feed water to manage scaling of the brine concentrator units, while foam inhibiting chemicals (eg. silicon emulsions), will be added only when needed if foaming appears in the units. However, the distillates tested during this study did not contain such chemicals. Furthermore, the ability of chemical additives to report to the distillate is currently unclear, although analyses of two distillate samples that were produced from feed water dosed with anti-scalant (ATMP) and anti-foam (silicon emulsion) showed VOCs and sVOCs at below detection limits. However, another distillate sample that was also produced from this feed water with the chemical additives contained ethanol (95% match quality) and octanal (82% match quality) estimated at 5.0 and 1.0 μ g L⁻¹, respectively (Table B10). This indicates that the ability of chemical additives to report to the distillate

In light of the above negative findings, the issue of major ion deficiency was specifically investigated as a potential cause of the effect on *H. viridissima*. Firstly, Ca addition was investigated due to its importance for nematocyst function and other physiological processes in *Hydra* (Gitter et al 1994, Kawaii et al 1999, Zalizniak et al 2006). The addition of 0.2 and 0.5 mg L⁻¹ Ca to the distillate resulted in a significant (P < 0.001) 61% and 66% recovery relative to the SSW control, respectively, suggesting Ca deficiency as a major reason for the

effect of distillate on *H. viridissima* (Table 5). Subsequently, it was thought that full recovery of *H. viridissima* might be achieved through the addition of sodium (Na) and potassium (K), as well as Ca. The results showed a significant (P < 0.001) 100% and 96% recovery of *H. viridissima* population growth rates with the addition of 50 and 100% major ions, respectively (Table 5). Furthermore, there was no statistical difference (P = 0.293) between the SSW and distillate water types if the major ions were at the same concentrations. This strongly indicated that the majority of the adverse effect from the distillate on *H. viridissima* was due to major ion deficiency issue rather than a chemical toxicity.

Despite the substantive removal of adverse effect by replacement of major cations, the concentrations of Mn in the distillate (130-230 μ g L⁻¹) remained a concern as they were higher than the IC₁₀ of 60 μ g L⁻¹ previously reported for *H. viridissima* in circumneutral pH (6.0–7.0) soft waters (Harford et al 2009). Additionally, the lack of major ions in the distillate had the potential to exacerbate Mn toxicity (Peters et al 2011). Therefore, the effects of Mn in the presence of reduced concentrations of major ions were examined using modifed SSW (ie with 0, 50 and 100% of the major ion concentrations in unmodified SSW).

Chemical analyses of the test solutions measured Mn concentrations at 10, 130 and 250 μ g L⁻¹, close to the nominal concentrations of 0, 130 and 230 μ g L⁻¹ (Table B8). The measured concentrations of K in the no Ca, Na and K group were higher than expected and similar to the half concentrations of Ca, Na and K group (Table B8). Nevertheless, in all SSW types, Mn reduced the growth rate of *H. viridissima* relative to the relevant SSW type control. The effect was most noticeable in the SSW with half the Na, K and Ca concentrations where growth rate was reduced by 9 and 20% in the 130 and 250 μ g L⁻¹ treatments (Figure 3).

Figure 3 Effect of manganese on *Hydra viridissima* in modified Synthetic Soft Water (SSW). Data represent the mean \pm se (n = 3).

A two-way ANOVA of the results showed that the growth rates of *H. viridissima* in the 250 μ g L⁻¹ Mn treatments were statistically lower than the controls but there was no interaction between major ion concentration and Mn toxicity (P = 0.76). Thus, Mn caused a similar reduction in the growth rate of *H. viridissima* regardless of the SSW type. Consequently, despite the recognised issue with deficiencies of major ions in the distillate, a specific toxic response to Mn was identified. It is clear that further investigation of Mn

toxicity is warranted to better understand the potential for toxicity under various physicochemical conditions relevant to the catchments on the mine site to which distillate will be discharged, as well as Magela Creek itself. It is noteworthy that a current draft recommended environmental quality standard for Mn in the European Union is $62-123 \ \mu g \ L^2$ (Peters et al 2010). Consequently, it is recommended that further site-specific data are needed to adequately assess the environmental risk of Mn in the distillate.

4 Conclusions and recommendations

Whilst the undiluted distillate was generally of low toxicity, it did cause a 50–100% reduction in population growth rate of *H. viridissma*. Application of a Toxicity Identification Evaluation (TIE) procedure demonstrated that a lack of major ions was the primary factor causing the reduced rate of growth for the *H. viridissima*. Additional toxicity tests indicated that the highest concentrations of Mn (> 200 μ g L⁻¹) that were measured in the distillate may also have had a negative impact on *H. viridissima* growth rate.

Given the results of the study, it is concluded that brine concentrator distillate should not be directly discharged to Magela Creek. The following recommendations have been made to 'condition' the water along catchment flow lines such that the issues identified above can be remediated by the time the water is discharged:

- 1 Supplementation of the distillate with major ions (Ca, Na and K) may be required prior to its discharge to the off-site aquatic environment. This could be achieved actively by direct addition of relevant salts or passively by passing the distillate through a wetland system/watercourse and/or blending with mine site waters prior to discharge;
- 2 While the conditioning of the distillate through a wetland/watercourse is likely to improve water quality (by increasing major ion concentrations and, potentially, reducing dissolved Mn concentrations), the risk of exhausting of the system's capacity to sustainably contribute the required loading of salt may need to be considered if large volumes are to be flushed through the system;
- 3 Further site-specific data are needed to adequately assess the environmental risk of Mn in the distillate. Concentrations of Mn measured in the distillate inhibited the growth of *H. viridissima* and were above a previously reported IC₁₀ of 60 μg L⁻¹. Concentrations were also detected above a draft freshwater guideline of 62–123 μg L⁻¹, which is being recommended in Europe.

The issue of organic compounds could not be adequately assessed during this pilot study. The presence of organic chemicals in the TSF and their ability to enter the feed water for the brine concentrator, and for VOCs and sVOCs to report to the distillate, is unclear. Furthermore, the effects of the distillate produced from the full-scale brine concentrator will need to be specifically assessed as part of the risk assessment needed to be completed prior to release of the distillate. Accordingly, it is recommended that:

1 A baseline monitoring program for organic compounds in the TSF is needed to establish the likelihood of significant concentrations of sVOCs and VOCs entering the feed water, hence indicating the potential for transfer to the distillate. The distillate should also be monitored for organic compounds following the commissioning of the full-scale plant.

- 2 The effect of anti-scalant and anti-foaming agents that may be added to the concentrator's feed water needs to be assessed. This may be achieved with laboratory toxicity tests prior to the commissioning of the full-scale plant.
- 3 The distillate product from the full-scale plant will need to be assessed for toxicity and, if necessary, a TIE conducted to determine the cause(s) of any measured effects.

5 Acknowledgments

Approval for the ethical use of *M. mogurnda* was granted through the Charles Darwin University's Animal Ethics Committee. The authors would like to thank Kim Cheng, Claire Costello and Melanie Trenfield for their flawless execution of the toxicity and TIE tests. We would also like to thank the RT-TI team of Anna Zonneveld, Nicole Jarvie and Mark Coghill, and the ERA team of Shelly Iles, Nicole Jacobsen and Greg Sinclair, for their cooperation and provision of data and the distillate waters. We would also like to thank the Envirolab team, David Springer, Giovanni Agosti and Nancy Zhang, for their expert advice concerning organic analyses and for performing the chelex assay.

6 References

- Allen EW 2008. Process water treatment in Canada's oil sands industry: I. Target pollutants and treatment objectives. *Journal of Environmental Engineering and Science* 7 (2), 123-138.
- Butler BA, Smith ME, Reisman DJ & Lazorchak JM 2011. Metal removal efficiency and ecotoxicological assessment of field-scale passive treatment biochemical reactors. *Environmental Toxicology and Chemistry* 30 (2), 385–392.
- Deanovic L, Connor VM, Knight AW & Maier KJ 1999. The Use of Bioassays and Toxicity Identification Evaluation (TIE) Procedures to Assess Recovery and Effectiveness of Remedial Activities in a Mine Drainage-Impacted Stream System. Archives of Environmental Contamination and Toxicology 36 (1), 21–27.
- Driussi C & Jansz J 2006. Pollution minimisation practices in the Australian mining and mineral processing industries. *Journal of Cleaner Production* 14 (8), 673–681.
- Durhan EJ, Norberg-King TJ & Burkhard LP 1993. Methods for aquatic toxicity identification evaluations: Phase 2 toxicity identification procedures for samples exhibiting acute and chronic toxicity. EPA/600/R-92/080 Office of Research and Development, USEPA, Washington DC, USA.
- Gitter AH, Oliver D & Thurm U 1994. Calcium-and voltage-dependence of nematocyst discharge in Hydra vulgaris. *Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology* 175 (1), 115–122.
- Haraldsson C, Lyvén B, Pollak M & Skoog A 1993. Multi-element speciation of trace metals in fresh water adapted to plasma source mass spectrometry. *Analytica Chimica Acta* 284 (2), 327–336.
- Harford AJ, Hogan AC, Cheng K, Costello C, Houston M & van Dam RA 2009. Preliminary assessment of the toxicity of manganese to three tropical freshwater species. In *eriss research summary 2007–2008*. Supervising Scientist Report 200, Supervising Scientist, Darwin NT, 12–19.
- Kawaii S, Yamashita K, Nakai M, Takahashi M & Fusetani N 1999. Calcium dependence of settlement and nematocyst discharge in actinulae of the hydroid Tubularia mesembryanthemum. *The Biological Bulletin* 196 (1), 45–51.

- Markich SJ & Jeffree RA 1994. Absorption of divalent trace metals as analogues of calcium by Australian freshwater bivalves: An explanation of how water hardness reduces metal toxicity. *Aquatic toxicology* 29 (3–4), 257–290.
- Masarczyk J, Hansson C-H, Solomon R & Hallmans B 1989. Advances mine drainage water treatment, engineering for zero discharge. *Desalination* 75 (0), 259–287.
- Mirenda R & Hall W 1992. The application of effluent characterization procedures in toxicity identification evaluations. *Water Science & Technology* 25 (3), 39–44.
- Mount DI & Norberg-King TJ 1993. Methods for aquatic toxicity identification evaluations: Phase 3 toxicity confirmation. Procedures for samples exhibiting acute and chronic toxicity. EPA/600/R-92/081, Office of Research and Development, USEPA, Washington DC, USA.
- Neculita C-M, Vigneault B & Zagury GJ 2008. Toxicity and metal speciation in acid mine drainage treated by passive bioreactors. *Environmental Toxicology and Chemistry* 27 (8), 1659–1667.
- Norberg-King TJ, Mount D, Durhan E, Ankley GT & Burkhard L 1991. Methods for aquatic toxicity identification evaluations. Phase 1. Toxicity characterization procedures, Environmental Research Lab, US Environmental Protection Agency Duluth, Minnesota, United States.
- Peters A, Crane M, Maycock D, Merrington G, Simpson P, Sorokin N & Atkinson C 2010. Proposed EQS for Water Framework Directive Annex VIII substances: manganese (total dissolved). Bristol, United Kingdom: Environment Agency.
- Peters A, Lofts S, Merrington G, Brown B, Stubblefield W & Harlow K 2011. Development of biotic ligand models for chronic manganese toxicity to fish, invertebrates, and algae. *Environmental Toxicology and Chemistry* 30 (11), 2407–2415.
- Riethmuller N, Camilleri C, Franklin N, Hogan AC, King A, Koch A, Markich SJ, Turley C & van Dam R 2003. *Ecotoxicological testing protocols for Australian tropical freshwater ecosystems*. Supervising Scientist Report 173, Supervising Scientist, Darwin NT.
- Sauer TC, Costa HJ, Brown JS & Ward TJ 1997. Toxicity identification evaluations of produced-water effluents. *Environmental Toxicology and Chemistry* 16 (10), 2020–2028.
- Tietge JE, Hockett JR & Evans JM 1997. Major ion toxicity of six produced waters to three freshwater species: Application of ion toxicity models and tie procedures. *Environmental Toxicology and Chemistry* 16 (10), 2002–2008.
- van Dam RA, Hogan AC, Harford AJ, Cheng KC & Costello C 2011. Toxicity testing of Ranger process water permeate. In *eriss research summary 2009–2010*. Supervising Scientist Report 202, Supervising Scientist, Darwin NT, 28–31.
- van Dam RA, Hogan AC, McCullough CD, Houston MA, Humphrey CL & Harford AJ 2010. Aquatic toxicity of magnesium sulfate, and the influence of calcium, in very low ionic concentration water. *Environmental Toxicology and Chemistry* 29 (2), 410–421.
- Zalizniak L, Kefford BJ & Nugegoda D 2006. Is all salinity the same? I. The effect of ionic compositions on the salinity tolerance of five species of freshwater invertebrates. *Marine and freshwater research* 57 (1), 75–82.
- Zar JH 1984. *Biostatistical analysis*. 2nd edn, Prentice-Hall Inc, Englewood Cliffs, New Jersey, USA.

Appendix A Measured water quality parameters for toxicity tests

Treatment		0	%	25%		50%		100%	
Parameter		0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h
Day 0	pН	6.5	6.5	6.5	6.5	6.5	6.6	6.5	6.6
	EC (µS cm ⁻¹)	21.0	18.0	18.0	18.0	19.0	19.0	19.0	20.0
	DO (%)	109	91	101	94	114	91	107	92
	Temp (°C)	25.0	24.7	24.9	25.3	24.7	25.1	24.7	24.6
Day 1	pН	6.6	6.3	6.3	6.4	6.4	5.2 ^ª	5.7	6.3
	EC (µS cm ⁻¹)	17.0	20.0	17.0	20.0	18.0	26.0	23.0	21.0
	DO (%)	106	96	107	93	111	91	111	90
	Temp (°C)	27.3	26.5	27.3	26.7	27.1	26.2	25.3	25.7
Day 2	pН	6.5	6.8	6.5	6.9	6.5	6.4	6.1	6.4
	EC (µS cm ⁻¹)	17.0	18.0	20.0	20.0	19.0	23.0	22.0	20.0
	DO (%)	110	90	12	90	114	91	115	89
	Temp (°C)	26.6	23.3	26.9	23.3	27.3	23.1	26.8	23.0
Day 3	рН	6.7	6.6	6.8	6.8	6.7	6.7	6.6	6.7
	EC (µS cm ⁻¹)	21.0	19.0	21.0	19.0	20.0	20.0	21.0	21.0
	DO (%)	111	92	112	89	114	90	115	94
	Temp (°C)	24.2	24.3	23.8	23.9	23.7	23.8	23.6	23.9
Day 4	рН	6.7	6.9	6.7	6.9	6.6	6.9	6.5	6.8
	EC (µS cm ⁻¹)	22.2	23.0	19.0	25.0	19.0	20.0	20.0	21.0
	DO (%)	118	88	120	86	121	90	110	90
	Temp (°C)	26.1	22.9	24.9	23.5	24.5	24.9	24.3	25.0

 Table A1
 1193D Clad_RBCP_01 Cladoceran toxicity test

^a Likely erroneous measurement

Treatment		0	%	25%		50%		100%	
Parame	eter	0 h	24 h						
Day 0	pН	6.7	6.5	6.7	6.6	6.7	6.5	6.5	6.3
	EC (µS cm ⁻¹)	19	18	14	18	18	19	18	19
	DO (%)	114	92	114	91	110	93	106	90
	Temp (°C)	26	24.1	25.3	24.6	24.7	24.5	23.9	24.2
Day 1	pН	6.3	6.6	6.4	6.8	6.5	6.7	6.5	6.8
	EC (µS cm ⁻¹)	19	16	17	17	16	17	18	18
	DO (%)	113	90	121	91	116	92	116	92
	Temp (°C)	24.9	24.8	25.9	24.7	25.2	24.8	25.2	25.2
Day 2	pН	6.7	6.7	6.6	6.7	6.6	6.7	6.6	6.7
	EC (µS cm ⁻¹)	21	15	19	16	16	16	17	18
	DO (%)	116	92	113	92	110	91	111	92
	Temp (°C)	24.9	24.2	24.7	25	24.7	25.5	24.6	25.5
Day 3	pН	6.7	6.8	6.7	6.8	6.6	6.9	6.6	6.8
	EC (µS cm ⁻¹)	14	16	15	15	16	15	17	17
	DO (%)	110	95	120	92	114	92	113	91
	Temp (°C)	25	27.3	25.3	27	25.1	27	24.9	26.5

 Table A2
 1194B Hyd_RBCP_01 Hydra toxicity test

 Table A3
 1195G Alg_RBCP_01 Green alga toxicity test

Treatment	0	%	25	5%	50	1%	100%		
Parameter	0 h	24 h	0 h 24 h		0 h	24 h	0 h	24 h	
рН	6.4	6.9	6.3	6.2	6.2	6.3	6.1	6.0	
EC (µS cm ⁻¹)	42	40	44	44	45	41	48	46	
DO (%)	112	94	112	94	109	94	104	93	
Temp (°C)	24.9	23.1	25.2	23.5	25.2	23.7	25.2	24	

Table A4 1205L Lem_RBCP_01 Duckweed toxicity test

Treatment	0'	%	25	5%	50)%	10	0%
Parameter	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.4	6.9	6.4	6.9	6.3	6.5	6.3	4.5
EC (µS cm ⁻¹)	21	16	21	12	21	12	20	19
DO (%)	102	90	109	92	106	94	106	96
Temp (°C)	24.5	24.6	24	24.7	23 22.9		23	23.4

Treatm	ent	0	%	25	5%	50	%	100) %
Parame	eter	0 h	24 h						
Day 0	pН	6.2	6.6	6.3	6.6	6.2	6.7	6.3	6.7
	EC (µS cm ⁻¹)	15	21	14	19	13	19	12	17
	DO (%)	116	92	106	93	115	94	112	93
	Temp (°C)	24.0	25.6	24.1	24.1	24.0	24.4	24.1	24.4
Day 1	pН	6.3	6.7	6.3	6.7	6.2	6.7	6.2	6.6
	$EC (\mu S \text{ cm}^{-1})$	15	19	14	19	14	15	13	15
	DO (%)	101	96	107	100	101	92	106	96
	Temp (°C)	26.5	23.8	26.0	24.1	25.9	23.3	25.8	23.6
Day 2	pН	6.4	6.5	6.5	6.6	6.4	6.6	6.5	6.7
	EC (µS cm ⁻¹)	14	17	14	17	14	16	12	15
	DO (%)	118	90	115	89	118	88	115	87
	Temp (°C)	23.5	22.9	23.5	22.7	23.8	22.9	23.9	23
Day 3	pН	6.4	6.9	6.4	6.9	6.4	6.8	6.4	7.0
	EC (µS cm ⁻¹)	14	20	14	17	13	17	12	16
	DO (%)	117	89	118	91	115	89	117	92
	Temp (°C)	23.0	24.9	23.3	24.3	23.1	23.5	22.8	22.8

 Table A5
 1206E Fry_RBCP_01 Fry toxicity test

 Table A6
 1207B Hyd_RBCP_02 Hydra toxicity test

Treatm	ent	0	%	10	0%
Parame	eter	0 h	24 h	0 h	24 h
Day 0	pН	6.2	6.7	6.3	6.6
	EC (µS cm ⁻¹)	15	15	12	13
	DO (%)	109	101	105	101
	Temp (°C)	26	23.4	26	23.9
Day 1	pН	6.5	6.2	6.5	6.4
	EC (µS cm ⁻¹)	16	16	13	13
	DO (%)	120	94	118	92
	Temp (°C)	25	23.3	25	23.3
Day 2	pН	6.1	6.7	6.2	6.8
	EC (µS cm ⁻¹)	14	15	12	13
	DO (%)	118	96	107	97
	Temp (°C)	23.1	24.1	23.4	24.4
Day 3	pН	6.4	6.8	6.4	6.6
	EC (µS cm ⁻¹)	33	17	12	13
	DO (%)	119	93	118	96
	Temp (°C)	23.7	25.9	23.4	26

Treatm	ent	0'	%	10	0%
Parame	eter	0 h	24 h	0 h	24 h
Day 0	pН	5.9	6.3	6.2	6.4
	EC (µS cm ⁻¹)	21.0	21.0	18.0	16.0
	DO (%)	90	103	89	101
	Temp (°C)	24.2	23.9	24.1	24.0
Day 1	pН	4.3	5.9	6.2	6.0
	EC (µS cm ⁻¹)	34.0	20.0	18.0	25.0
	DO (%)	102	101	102	108
	Temp (°C)	25.3	23.9	24.9	23.9
Day 2	pН	6.2	6.4	6.3	6.2
	EC (µS cm ⁻¹)	19.0	33.0	17.0	15.0
	DO (%)	92	126	88	126
	Temp (°C)	24.3	24.3	23.4	24.0
Day 3	pН	6.2	6.2	6.2	6.2
	EC (µS cm ⁻¹)	25.0	20.0	16.0	15.0
	DO (%)	93	121	93	123
	Temp (°C)	23.7	24.3	23.8	24.4
Day 4	pН	6.5	6.0	6.2	6.2
	EC (µS cm ⁻¹)	25.0	18.0	17.0	15.0
	DO (%)	95	106	94	103
Temp (°C)		23.9	24.1	23.3	23.9

 Table A7
 1208D Clad_RBCP_02 Cladoceran toxicity test

Table A9	1209G Alg_	_RBCP_	02 Green	alga	toxicity	test
----------	------------	--------	----------	------	----------	------

			•	
Treatment	(0 %	10	0%
Parameter	0h	72 h	0h	72 h
pН	6.4	6.5	6.2	6.0
EC (µS cm ⁻¹)	50	42	43	39
DO (%)	100	93	102	100
Temp (°C)	24	23.2	23.8	23.5

Treatme	ent	MCW	pH 5.5	MCW	pH 6.4	MCW	pH 8.0	Distillate	e pH 5.5	Distillate	e pH 6.4	Distillate	e pH 8.0
Parame	eter	0h	24 h	0h	24 h	0h	24 h	0h	24 h	0h	24 h	0h	24 h
Day 0	pН	5.5	6.0	6.2	6.3	7.9	6.9	5.5	6.0	6.2	6.2	7.8	6.7
	EC (µS cm ⁻¹)	20	18	16	17	22	23	19	15	19	13	24	18
	DO (%)	105	96	107	96	105	93	105	96	103	96	101	96
	Temp (°C)	24.5	24.6	23.8	25.6	25.4	23.6	24.2	23.6	23.8	23.7	23.5	23.3
Day 1	pН	5.7	6.2	6.2	6.4	7.0	6.9	6.1	6.3	6.2	6.4	7.4	6.8
	EC (µS cm ⁻¹)	18	19	16	17	24	25	16	15	18	14	19	21
	DO (%)	99	92	95	96	96	93	97	95	96	94	96	95
	Temp (°C)	25	24.1	24.6	24.3	24.4	24	24.4	23.6	24.2	23.3	23.8	23.1
Day 2	pН	5.7	5.8	6.4	6.4	7.8	7.0	5.6	5.8	6.3	6.2	7.6	7.0
	EC (µS cm ⁻¹)	19	20	16	17	26	28	15	15	14	14	21	22
	DO (%)	94	95	95	97	93	94	95	96	91	93	92	96
	Temp (°C)	24	0	23.7	0	24.1	0	23.9	0	23.8	0	23.9	0
Day 3	pН	5.6	5.8	6.3	6.3	7.5	6.9	5.6	6.3	6.2	6.5	7.5	7.1
	EC (µS cm ⁻¹)	19	21	16	22	29	29	16	16	14	14	24	24
	DO (%)	95	92	97	93	94	94	95	95	96	96	95	96
	Temp (°C)	0	24.8	0	25.5	0	25.6	0	25.7	0	25.5	0	25.7

 Table A10
 1210B Hyd_RBCP_03 Hydra graduate pH TIE

Treatme	ent	MC 0 mg L	CW ¹ EDTA	M0 2.8 mg l	CW L ⁻¹ EDTA	M0 5.5 mg l	CW L ⁻¹ EDTA	M0 11 mg L	CW - ¹ EDTA	Dist 0 mg L	illate ⁻¹ EDTA	Disti 2.8 mg l	illate ₋¹ EDTA	Disti 5.5 mg L	illate ₋⁻¹ EDTA	Disti 11 mg L	illate ₋¹ EDTA
Parame	ter	0 h	24 h	0h	24 h	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h
Day 0	рН	6.2	6.3	6.4	6.4	6.3	6.5	6.4	6.4	6.3	6.3	6.4	6.4	6.5	6.4	6.4	6.5
	EC (µS cm ⁻¹)	15	16	16	17	17	18	20	21	12	13	15	16	16	16	19	19
	DO (%)	101	91	100	90	102	94	98	96	100	93	100	94	99	92	100	90
	Temp (°C)	25.7	0	25.9	0	25.6	0	25.4	0	25.3	0	25.5	0	25.4	0	25.4	0
Day 1	pН	6.5	6.6	6.5	6.6	6.5	6.6	6.4	6.6	6.4	6.4	6.5	6.4	6.6	6.5	6.6	6.6
	EC (µS cm ⁻¹)	15	16	16	17	18	19	20	21	13	13	15	16	15	16	19	20
	DO (%)	97	94	98	96	97	96	96	93	92	94	94	97	94	95	96	96
	Temp (°C)	23.2	24.9	23.2	25	23	25.1	22.8	25	23.1	25	23	24.8	23	24.9	23	24.9
Day 2	pН	6.2	6.7	6.4	6.7	6.5	6.7	6.5	6.8	6.4	6.6	6.4	6.6	6.4	6.6	6.5	6.6
	EC (µS cm ⁻¹)	15	17	16	18	18	19	20	21	12	15	15	16	15	16	19	21
	DO (%)	98	90	96	91	95	90	94	91	94	89	92	91	94	91	92	90
	Temp (°C)	24.8	24.3	24.8	23.6	24.2	25.3	24.5	25	24.3	25.1	24.3	25.2	24.2	24.6	24.3	24.8
Day 3	pН	6.6	6.7	6.6	6.8	6.7	6.9	6.6	6.9	6.6	6.6	6.6	6.7	6.6	6.7	6.6	6.6
	EC (µS cm ⁻¹)	15	16	16	18	18	19	20	20	12	13	15	15	15	16	19	20
	DO (%)	94	93	96	95	97	94	93	95	88	96	90	94	91	93	92	95
	Temp (°C)	23.6	24.5	23.4	24.6	23.5	25.3	23.9	25.2	22.5	25.1	22.4	25.6	22	25.9	21.9	26

 Table A11
 1211B
 Hyd_RBCP_04
 Hydra
 EDTA addition
 TIE

Treatm	ent	M	CW	SS no	SW Ca	SS 0.2 mg	SW j L⁻¹ Ca	SS 0.5 mg	SW ⊫L⁻¹ Ca	Disti no	illate Ca	Dist 0.2 mg	illate j L⁻¹ Ca	Disti 0.5 mg	illate ⊨L⁻¹ Ca
Parame	eter	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h
Day 0	pН	6.4	6.4	6.4	6.4	6.4	6.3	6.3	6.2	6.3	6.2	6.4	6.2	6.4	6.2
	EC (µS cm ⁻¹)	15	14	19	18	14	14	19	18	13	12	14	14	16	15
	DO (%)	94	111	94	86	95	90	93	92	95	109	95	107	92	109
	Temp (°C)	24.7	24.8	25	25.2	24.9	25.4	24.7	25.4	24.7	24.9	24.3	24.5	23.8	24.4
Day 1	pН	6.7	6.5	6.5	6.3	6.4	6.3	6.5	6.3	6.5	6.3	6.5	6.3	6.5	6.3
	EC (µS cm ⁻¹)	18	14	19	18	14	14	19	18	13	12	14	13	16	15
	DO (%)	93	100	94	101	97	101	96	99	94	113	95	117	93	115
	Temp (°C)	24	23.2	24.3	22.5	23	22.1	22.8	22.3	22.6	22.4	22.5	22.5	22.3	22.4
Day 2	pН	6.7	6.6	6.6	6.4	6.5	6.3	6.4	6.3	6.6	6.4	6.5	6.3	6.5	6.3
	EC (µS cm ⁻¹)	15	16	19	18	14	14	19	18	13	12	14	13	16	14
	DO (%)	93	118	92	107	92	111	97	109	95	118	95	118	97	122
	Temp (°C)	25.2	22.7	25.1	22.8	24.5	23	24.4	22.8	24	22.8	24.5	22.6	24.3	22.5
Day 3	pН	6.5	6.4	6.7	6.3	6.5	6.3	6.5	6.3	6.7	6.3	6.6	6.3	6.6	6.3
	EC (µS cm ⁻¹)	15	14	18	18	14	13	19	18	13	12	14	13	15	15
	DO (%)	96	118	96	111	96	113	94	113	95	119	94	122	92	122
	Temp (°C)	26.2	20.8	26.1	21.9	25.7	20.9	25.1	21.1	25.6	21.4	26.1	21.2	25.3	21.2

Table A12 1212B Hyd_RBCP_04 Hydra Ca addition TIE

Treatment		MC	W	Dist	illate	MC NH₃ st	W - ripped	Distil NH₃ st	late - tripped
Parameter		0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h
Day 0	pН	6.6	6.5	6.5	6.6	6.8	7.7	7.1	7.7
	EC (µS cm ⁻¹)	15	15	12	13	1086	1069	1132	1111
	DO (%)	115	97	113	98	101	95	101	96
	Temp (°C)	25	25.1	24.7	24.6	24.9	24.2	24.5	24.2
Day 1	pН	6.4	6.3	6.4	6.6	6.6	7.8	6.7	7.8
	EC (µS cm ⁻¹)	14	15	12	13	1095	1109	1136	1107
	DO (%)	116	100	118	95	114	94	111	94
	Temp (°C)	23.8	24.8	23.5	24.3	23.4	24.1	23.6	24.3
Day 2	pН	6.3	6.4	6.3	6.6	6.8	7.9	6.8	7.8
	EC (µS cm ⁻¹)	14	15	12	13	1084	1104	1139	1162
	DO (%)	118	96	119	94	115	94	115	94
	Temp (°C)	21.2	26.2	21	26.2	20.9	23.9	21.2	24.6
Day 3	pН	6.3	6.5	6.5	6.8	6.9	8.1	7.0	N.M.
	EC (µS cm ⁻¹)	16	14	12	12	1074	1115	1138	N.M.
	DO (%)	114	91	118	94	116	96	12	N.M
	Temp (°C)	24.3	26.5	24.9	26.9	24.4	26.5	23.9	N.M.

Table A13 1213B Hyd_RBCP_06 Hydra NH₃ stripped TIE

N.M. = Not measured due to end of treatment

Treatme	ent	M	MCW Distillate		illate	MCW filtrate		Distillate filtrate		MCW + methanol		MCW with elaute	
Parame	ter	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h
Day 0	pН	6.6	6.6	6.5	6.6	6.6	6.6	6.6	6.7	6.5	6.7	6.4	6.6
	EC (µS cm ⁻¹)	15	16	12	15	16	18	13	15	14	16	14	16
	DO (%)	118	97	116	95	111	95	111	93	110	94	113	94
	Temp (°C)	23.4	23.9	23.2	23.6	23.1	23.6	23	23.3	23	23.4	23	23.3
Day 1	pН	6.7	6.8	6.7	6.7	6.7	7.0	6.7	7.0	6.6	6.8	6.5	6.9
	EC (µS cm ⁻¹)	15	16	13	14	16	17	14	15	14	16	15	16
	DO (%)	119	93	114	93	114	85	112	91	114	92	114	94
	Temp (°C)	23.2	23.9	23.2	23.9	23.1	23.9	23	24	23	23.8	22.9	23.7
Day 2	pН	6.8	6.8	6.6	6.7	6.7	6.7	6.7	6.6	6.6	6.6	6.6	6.6
	EC (µS cm ⁻¹)	15	16	13	13	16	17	14	14	14	16	15	16
	DO (%)	115	95	120	96	119	94	114	94	115	99	115	98
	Temp (°C)	23.3	23.9	23.2	23.9	23.1	24.3	23.2	24.5	23.2	23.9	23.1	23.8
Day 3	pН	6.7	6.9	6.6	7.0	6.5	6.8	6.6	6.8	6.5	6.8	6.4	6.7
	EC (µS cm ⁻¹)	15	15	13	13	16	17	14	13	15	15	15	15
	DO (%)	111	90	115	91	112	95	114	92	113	91	114	93
	Temp (°C)	23.1	23.2	22.8	23	22.4	23.4	22.4	23.3	22.4	23.1	22.4	23.2

ΊE
1

Treatment		MCW		SSW no major ions		SSW 50% major ions		SSW 100% major ions ^a		Distillate no major ions ^a		Distillate 50% major ions		Distillate 100% major ions	
Parame	ter	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h
Day 0	рН	6.8	6.7	6.9	6.5	6.5	6.4	6.5	6.4	6.5	6.5	6.6	6.5	6.5	6.6
	EC (µS cm ⁻¹)	19	16	10	11	13	14	16	16	13	14	17	18	21	22
	DO (%)	115	95	81	95	78	96	82	95	117	97	116	95	117	95
	Temp (°C)	23.7	24.3	24.3	24.7	24	24.2	24	24.2	23.7	24	23.6	24.2	23.6	23.9
Day 1	pН	6.8	6.7	6.7	6.6	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.6	6.6	6.7
	EC (µS cm ⁻¹)	21	16	10	11	13	16	16	17	13	14	17	18	21	22
	DO (%)	103	95	97	90	107	99	107	96	115	97	119	98	114	96
	Temp (°C)	23.4	25.1	23.6	25.5	23.4	25.9	23.5	25.6	23.4	27.7	23.4	27.3	23.1	25.1
Day 2	pН	6.5	6.5	6.3	6.3	6.1	6.1	6.2	6.2	6.3	6.4	6.4	6.4	6.5	6.5
	EC (µS cm ⁻¹)	15	16	10	12	13	14	16	17	13	14	17	18	21	23
	DO (%)	109	93	111	96	112	95	112	97	111	95	110	100	114	96
	Temp (°C)	24.2	23.8	23.8	23.9	23.8	24	23.7	24.6	23.6	24.5	23.5	24.3	23.3	24.2
Day 3	pН	6.2	6.8	6.1	6.7	6.1	6.3	6.2	6.2	6.3	6.3	6.3	6.5	6.4	6.6
	EC (µS cm ⁻¹)	17	15	11	11	13	13	16	16	14	13	17	17	22	21
	DO (%)	116	95	116	95	111	94	115	95	119	96	118	91	120	96
	Temp (°C)	23.7	24.7	23.7	24.6	23.8	25.1	23.6	25.2	23.6	25.2	23.4	25.3	23.3	24.9

 Table A15
 1220B Hyd_RBCP_08 Hydra major ion addition TIE

^a These treatments represent unmodified SSW and distillate

Treatment		SSW 0º ioi 0 µg	% major ns; L ⁻¹ Mn	SSW 0º ior 130 µg	SSW 0% major ions; 130 µg L-1 Mn		SSW 0% major SSW 50% r ions; ions; 230 μg L ⁻¹ Mn 0 μg L ⁻¹ M		50% major SSW 50% major ons; ions; g L ⁻¹ Mn 130 μg L ⁻¹ Mn		SSW 50% major ions; 230 µg L-1 Mn		SSW 100% major ions; 0 µg L-1 Mn		SSW 100% major ions; 130 µg L-1 Mn		SSW 100% major ions; 230 µg L ⁻¹ Mn		
Parame	ter	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h	0 h	24 h
Day 0	pН	6.2	6.1	6.1	6.0	6.1	6.1	6.0	6.1	5.9	6.1	6.0	6.1	6.0	6.1	6.0	6.1	6.5	6.1
	EC (µS cm ⁻¹)	19	11	11	11	11	12	13	13	13	14	13	14	17	18	18	19	23	19
	DO (%)	99	92	89	92	100	99	98	94	99	94	99	94	98	94	101	93	98	93
	Temp (°C)	25.2	24.2	24.6	24.4	24.2	24.1	23.1	24.1	24	24.2	24.1	24	23.7	24	23.5	24.2	23.3	24
Day 1	pН	5.8	6.1	5.9	6.0	6.0	6.2	6.0	6.1	6.0	6.3	6.0	6.2	6.0	6.2	6.0	6.2	6.0	6.2
	EC (µS cm ⁻¹)	16	10	12	11	12	12	12	14	13	15	13	14	17	18	17	18	18	19
	DO (%)	106	92	104	94	109	94	105	93	105	93	107	95	108	92	107	94	101	92
	Temp (°C)	23.2	25.6	23.5	25.8	23.6	25.1	23.5	25.3	23.2	25.3	23.5	25.1	23.3	25.1	23.3	25.2	23.3	25
Day 2	рН	5.8	6.0	6.0	6.1	6.0	6.1	6.0	6.2	6.0	6.3	6.0	6.2	6.0	6.2	6.1	6.2	6.1	6.2
	EC (µS cm ⁻¹)	16	11	11	11	11	12	12	13	13	13	13	14	17	18	18	19	18	19
	DO (%)	102	96	109	94	115	93	112	93	114	95	107	94	110	94	110	94	112	94
	Temp (°C)	25.8	24.9	26.2	25.3	25.7	25	25.4	25	25.4	25	25.5	24.9	25.4	24.8	25.4	25.1	25.4	24.9
Day 3	pН	6.1	6.1	6.0	6.2	6.1	6.2	6.0	6.3	6.0	6.4	6.0	6.3	6.0	6.3	6.0	6.3	6.0	6.3
	EC (µS cm ⁻¹)	13	12	11	11	11	11	12	13	13	13	13	13	13	17	18	18	18	19
	DO (%)	116	92	115	95	117	93	110	95	112	94	113	93	111	90	108	87	110	93
	Temp (°C)	24.2	27.1	24.1	27.7	23.9	27.1	23.7	26.9	23.6	26.6	23.8	26.1	23.6	26.1	23.6	25.2	23.8	25.2

Table A16 1242B Hyd_RBCP_09 Modified SSW with Mn addition TIE

		Mag	ela Creek V	Vater		Distillate	
Time	Measurement	pH 5.5	pH 6.6	pH 7.5	pH 5.5	pH 6.5	pH 7.5
- 24 h	Initial	6.4	6.4	6.4	6.4	6.4	6.4
	Adjusted	5.5	N.A.	8.1	5.5	N.A.	8.0
0 h	Initial	5.7	6.2	7.6	5.5	6.2	7.8
	Adjusted – start of test	5.5	N.A.	8.1	N.A.	N.A.	8.1
24 h	Initial	5.5	6.2	7.2	5.5	6.2	7.2
	Adjusted	N.A.	N.A.	8.1	N.A.	N.A.	8.1
48 h	Initial	5.8	6.2	7.1	5.7	6.1	7.2
	Adjusted	5.3	N.A.	8.1	5.4	N.A.	8.1
72 h	Initial	5.6	6.4	7.4	5.5	6.3	7.3
	Adjusted	N.A.	N.A.	8.1	N.A.	N.A.	8.1
96 h	Initial – end of test	5.8	6.3	6.9	6.2	6.5	7.1

 Table A17
 pH measurements and adjustments for the graduate pH TIE

Appendix B Chemical analyses

Table B1 Total measured metals and major ions for Magela Creek Water (MCW), Synthetic Softwater (SSW) Procedural Blanks and Blanks

Analyte	AI	Cd	Co	Cr	Cu	Fe	Mn	Ni	Pb	Se	U	Zn	Са	Mg	Na	SO₄
Units	μg L-1	μg L-1	μg L-1	µg L-¹	μg L-1	μg L-1	µg L-¹	µg L-¹	μg L-1	µg L-¹	μg L-1	µg L-1	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹
PQL	0.1	0.02	0.01	0.1	0.01	1	0.01	0.01	0.01	0.2	0.001	0.1	0.1	0.1	0.1	0.5
MCW	11	<0.02	0.033	0.13	0.16	50	1.3	0.37	0.12	<0.2	0.0083	0.5	0.1	0.8	1.0	<0.5
MCW (25/7/11)	11	<0.02	0.046	<0.1	0.15	61	1.5	0.07	0.01	<0.2	0.0072	<0.1	<0.5	0.9	1.1	<0.5
MCW	11	<0.02	0.048	<0.1	0.073	62	1.5	0.041	<0.01	<0.2	0.0082	<0.1	<0.5	0.9	1.1	<0.5
MCW (22/8/11)	14	<0.02	0.04	<0.1	0.1	55	1.0	0.3	0.02	<0.2	0.01	<0.1	0.2	0.9	0.2	1.0
MCW (05/09/11)	12	<0.02	0.04	<0.1	0.1	50	2.0	0.3	0.08	<0.2	0.006	<0.1	0.2	0.9	0.2	1.0
SSW (14/11/11)	17	0.033	0.018	<0.1	2.0	50	11	0.84	0.031	<0.2	0.056	4.2	0.5	0.6	1.1	3.0
1193D Pro blank	0.97	<0.02	<0.01	<0.1	<0.01	<1	0.03	0.19	<0.01	<0.2	<0.001	0.22	<0.5	<0.5	<0.5	<0.5
1194B Pro blank	0.8	<0.02	<0.01	<0.1	0.015	<1	0.014	<0.01	<0.01	0.25	0.0062	<0.1	<0.5	<0.5	<0.5	<0.5
1195G Pro blank	1.9	<0.02	<0.01	<0.1	<0.01	<1	<0.01	<0.01	0.028	<0.2	0.0025	<0.1	<0.5	<0.5	<0.5	<0.5
1205L Pro Blank	1.8	<0.02	<0.01	<0.1	0.11	<1	<0.01	0.74	0.06	<0.2	0.0063	0.67	<0.1	<0.1	<0.1	<0.5
1207B Pro Blank	0.88	<0.02	<0.01	<0.1	0.056	<1	<0.01	0.26	0.019	<0.2	0.0016	<0.1	<0.1	<0.1	<0.1	<0.5
1206E Pro Blank	0.2	<0.02	<0.01	<0.1	0.16	<1	<0.01	0.08	0.02	<0.2	0.02	0.1	<0.1	<0.1	<0.1	<0.1
1208D Pro Blank	1.3	<0.02	<0.01	<0.1	0.036	<1	<0.01	0.28	0.041	<0.2	0.0019	0.36	<0.1	<0.1	<0.1	<0.5
1209G Pro Blank	3.0	0.022	<0.01	<0.1	0.1	1.1	<0.01	0.29	0.33	<0.2	0.0043	4.4	<0.1	<0.1	0.1	<0.5
1210B Pro Blank	0.98	<0.02	<0.01	<0.1	0.077	<1	<0.01	0.27	0.018	<0.2	0.0024	<0.1	<0.1	<0.1	<0.1	<0.5
1212B Pro Blank	1.0	<0.02	<0.01	<0.1	0.03	<1	<0.01	0.2	<0.01	<0.2	0.01	<0.1	<0.1	<0.1	<0.1	<0.1
1213B Pro Blank	<0.1	<0.02	<0.01	<0.1	0.08	<1	<0.01	0.2	<0.01	<0.2	<0.001	<0.1	<0.1	<0.1	<0.1	<0.1
1220B Pro Blank	<0.1	<0.02	<0.01	<0.1	0.01	2.0	<0.01	0.2	<0.01	<0.2	<0.001	<0.1	<0.1	<0.1	<0.1	<0.1
1242B Pro Blank	<0.1	<0.02	0.011	<0.1	<0.01	<1	0.11	0.57	0.05	<0.2	0.051	<0.1	<0.1	<0.1	<0.1	<0.5

Analyte	AI	Cd	Со	Cr	Cu	Fe	Mn	Ni	Pb	Se	U	Zn	Ca	Mg	Na	SO₄
Units	µg L⁻¹	μg L-1	µg L⁻¹	μg L ⁻¹	µg L⁻¹	µg L⁻¹	µg L⁻¹	μg L ⁻¹	µg L⁻¹	µg L⁻¹	μg L-1	µg L⁻¹	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹
PQL	0.1	0.02	0.01	0.1	0.01	1	0.01	0.01	0.01	0.2	0.001	0.1	0.1	0.1	0.1	0.5
Blank (10/8/11)	1.5	<0.02	<0.01	<0.1	0.058	<1	<0.01	0.27	<0.01	<0.2	0.0022	<0.1	<0.1	<0.1	<0.1	<0.5
Blank (15/8/11)	0.72	<0.02	<0.01	<0.1	0.043	<1	<0.01	0.27	0.011	<0.2	0.003	<0.1	<0.1	<0.1	<0.1	<0.5
Blank (15/8/11)	0.97	<0.02	<0.01	<0.1	0.032	<1	<0.01	0.27	<0.01	<0.2	0.002	<0.1	<0.1	<0.1	<0.1	<0.5
Blank (17/8/11)	0.51	N.M.	N.M.	N.M.	<0.01	<1	0.016	N.M.	0.04	N.M.	0.002	<0.1	<0.5	<0.5	N.M.	N.M.
Blank (22/8/11)	<0.1	<0.02	<0.01	<0.1	<0.01	<1	<0.01	0.2	<0.01	<0.2	0.003	<0.1	<0.1	<0.1	<0.1	<0.1
Blank (05/09/11)	<0.1	<0.02	<0.01	<0.1	0.02	<1	<0.01	0.2	<0.01	<0.2	<0.001	<0.1	<0.1	<0.1	<0.1	<0.1
Blank (14/11/11)	<0.1	<0.02	<0.01	<0.1	<0.01	<1	0.04	0.54	0.045	<0.2	<0.001	<0.1	<0.1	<0.1	<0.1	<0.5

Table B1 (continued) Total measured metals and major ions for Magela Creek Water (MCW), Synthetic Softwater (SSW) Procedural Blanks and Blanks

Amelada	First dist	illate batch	Second distillate batch
Analyte	Totals (µg L ⁻¹)	Dissolved (µg L ⁻¹)	Totals (μg L ⁻¹)
Calcium	0.11	N.M.	<0.1
Magnesium	0.6	N.M.	0.4
Sodium	<0.1	N.M.	<0.1
Potassium	<0.1	N.M.	<0.1
Sulfur, SO4	N.M.	N.M.	2
Aluminium	18	<0.02	23
Cadmium	<0.02	0.45	<0.02
Cobalt	0.49	0.13	0.26
Chromium	0.17	0.61	<0.1
Copper	1.2	<1	0.25
Iron	3.5	230	1.4
Manganese	250	0.73	120
Nickel	0.84	0.016	0.64
Lead	0.17	<0.2	0.22
Selenium	0.39	0.69	<0.2
Uranium	1.5	0.35	1.1
Zinc	0.19	<0.05	2
Silver	<0.05	0.1	<0.05
Arsenic	0.3	0.1	0.1
Gold	0.4	110	0.07
Boron	100	0.09	88
Barium	0.1	<0.05	0.06
Beryllium	<0.05	0.01	<0.05
Bismuth	0.2	1	0.02
Bromine	4	<0.01	<1
Cerium	0.02	0.02	<0.01
Caesium	0.03	0.01	<0.01
Dysprosium	0.05	<0.01	0.02
Erbium	0.03	<0.01	<0.01
Europium	<0.01	0.01	<0.01
Gallium	0.02	<0.01	<0.01
Gadolinium	0.03	<0.01	<0.01
Hafnium	0.2	<0.02	0.07
Mercury	<0.02	<0.01	<0.02
Holmium	0.01	<0.01	<0.01
Indium	<0.01	<0.01	<5
Lanthanum	0.01	0.3	<0.01
Lithium	0.3	<0.01	0.2
Lutetium	<0.01	0.07	<0.01

 Table B2
 Total and dissolved metals and major ions for the distillate

Amelia	First dist	illate batch	Second distillate batch				
Analyte –	Totals (µg L ⁻¹)	Dissolved (µg L ⁻¹)	Totals (µg L ^{⁻¹})				
Molybdenum	0.4	0.2	0.2				
Niobium	0.5	<0.01	0.1				
Neodymium	0.02	0.1	<0.01				
Osmium	0.1	<0.05	<0.1				
Palladium	<0.05	<0.01	<0.05				
Praseodymium	<0.01	0.1	<0.01				
Rubidium	0.1	0.03	0.07				
Rhenium	0.03	0.8	<0.01				
Antimony	3	<0.5	2				
Scandium	<0.5	<0.01	<0.5				
Samarium	0.01	<0.1	<0.01				
Tin	0.2	0.8	0.2				
Strontium	0.9	0.1	0.4				
Tantalum	0.6	<0.01	0.2				
Terbium	0.01	0.3	<0.01				
Tellurium	0.7	<0.01	0.1				
Thorium	0.1	<2	0.03				
Titanium	<2	<0.01	<2				
Thallium	0.02	<0.01	<0.01				
Thulium	<0.01	0.06	<0.01				
Vanadium	0.07	0.3	<0.05				
Tungsten	0.9	0.03	0.3				
Yttrium	0.2	<0.01	0.1				
Ytterbium	0.02	<0.05	<0.01				
Zirconium	0.1	1.4	0.08				
Sulfur	8.1	N.M.	0.6				

Table B2 (continued) Total and dissolved metals and major ions for the distillate

Analyte	Nitrate as N	Phosphate as P
Unit	mg L ⁻¹	mg L ⁻¹
PQL	0.005	0.005
MCW	0.65	0.095
100% Distillate	0.71	0.097
1205L Pro blank Blank	<0.005	<0.005
1205L Blank	<0.005	<0.005
1209G Pro Blank	<0.005	<0.005
1209G A	3	0.048
1209G B	3.1	0.061

 Table B3
 Nitrate analysis of Blanks and QA/QC samples for the Lemna and Algae tests

 Table B4
 Alkalinity of Magela Creek Water, Distillate and the NaOH adjusted TIE samples

Sample description	Hydroxide Alkalinity (OH ⁻) as CaCO ₃	Bicarbonate Alkalinity as CaCO₃	Carbonate Alkalinity as CaCO ₃	Total Alkalinity as CaCO₃
	mg L ⁻¹	mg L ⁻¹	mg L-1	mg L ⁻¹
Blank	<1	<1	<1	<1
MCW	<1	10	<1	10
MCW	<1	5	<1	5
100% Distillate	<1	6	<1	6
1210B B	<1	7	<1	7
1210B C	<1	10	<1	10
1210B E	<1	4	<1	4
1210B F	<1	10	<1	10

Analyte		Ca	Mg	Na	SO₄	AI	Cd	Со	Cr	Cu	Fe	Mn	Ni	Pb	Se	U	Zn	CI
Units		mg L ⁻¹	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹	μg L-1	µg L-1	µg L⁻¹	µg L⁻¹	µg L-1	µg L⁻¹	µg L⁻¹	µg L-1	µg L-1	μg L-1	µg L⁻¹	µg L-1	mg L ⁻¹
PQL		0.1	0.1	0.1	0.5	0.1	0.02	0.01	0.1	0.01	1	0.01	0.01	0.01	0.2	0.001	0.1	1
1210B A	totals	0.1	0.8	1.1	<0.5	15	<0.02	0.033	0.1	0.15	58	1.3	0.34	0.078	<0.2	0.11	0.17	3
	dissolved	0.1	0.9	1.1	N.M.	12	<0.02	0.032	<0.1	0.18	55	1.3	0.14	0.077	<0.2	0.1	0.45	N.M.
1210B B	totals	0.1	0.8	1	<0.5	13	<0.02	0.035	<0.1	0.13	59	1.3	0.34	0.078	<0.2	0.0096	<0.1	2
	dissolved	0.1	0.8	1.1	N.M.	12	<0.02	0.033	<0.1	0.19	56	1.2	0.13	0.067	<0.2	0.0083	0.27	N.M.
1210B C	totals	0.1	0.8	2.5	<0.5	13	<0.02	0.033	0.13	0.23	59	1.3	0.34	0.11	<0.2	0.016	1.6	N.M.
	dissolved	0.1	0.8	2.6	N.M.	12	<0.02	0.033	<0.1	0.14	56	1.2	0.14	0.084	<0.2	0.017	0.12	N.M.
1210B D	totals	<0.1	0.4	<0.1	2	19	<0.02	0.25	<0.1	0.22	1.3	130	0.65	0.11	<0.2	0.96	1.4	1
	dissolved	<0.1	0.4	<0.1	N.M.	13	<0.02	0.25	<0.1	0.2	<1	120	0.41	0.053	<0.2	0.87	1.6	N.M.
1210B E	totals	<0.1	0.4	<0.1	2	18	<0.02	0.25	<0.1	0.28	1.2	130	0.62	0.05	<0.2	0.94	1.4	<1
	dissolved	<0.1	0.4	<0.1	N.M.	14	<0.02	0.24	<0.1	0.27	<1	120	0.39	0.012	<0.2	0.92	1.3	N.M.
1210B F	totals	<0.1	0.3	1.3	2	22	<0.02	0.19	0.1	0.15	1.3	88	0.56	0.099	<0.2	0.3	0.31	N.M.
	dissolved	<0.1	0.3	1.3	N.M.	23	<0.02	0.16	<0.1	0.15	<1	72	0.58	0.067	<0.2	0.26	<0.1	N.M.

 Table B5
 Metal and major ion analyses of the pH adjusted TIE (1210B) samples

	Manganese dissolved (before Chelex)	Manganese-dissolved (% retained)
	μg L-1	%
Sample	0.1	1
Blank	0.0016	N.M.
MCW 0 mg L ⁻¹ EDTA	1	93
MCW 2.8 mg L ⁻¹ EDTA	1	<1
MCW 5.5 mg L ⁻¹ EDTA	1	<1
MCW 11 mg L ⁻¹ EDTA	1	<1
DISTILLATE 0 mg L ⁻¹ EDTA	110	100
DISTILLATE 2.8 mg L ⁻¹ EDTA	110	<1
DISTILLATE 5.5 mg L ⁻¹ EDTA	110	<1
DISTILLATE 11 mg L ⁻¹ EDTA	110	<1

 Table B6
 Measured 'bioavailable' Manganese (Chelex assay) in EDTA TIE (1211B)

Analyte	AI	Cd	Со	Cr	Cu	Fe	Mn	Ni	Pb	Se	U	Zn	Ca	Mg	К	Na	SO4
Units	µg L-1	µg L⁻¹	µg L⁻¹	µg L⁻¹	µg L-1	µg L-1	µg L⁻¹	µg L⁻¹	µg L-1	µg L-1	µg L⁻¹	µg L⁻¹	mg L ⁻¹				
PQL	0.1	0.02	0.01	0.1	0.01	1	0.01	0.01	0.01	0.2	0.001	0.1	0.1	0.1	0.1	0.1	0.5
SSW – no Ca	64	<0.02	0.01	<0.1	0.6	95	11	0.2	0.03	<0.2	0.3	0.2	<0.1	0.6	0.4	1.9	5
SSW – 0.25 mg L ⁻¹ Ca	69	<0.02	0.01	<0.1	0.6	97	10	0.2	0.04	<0.2	0.2	<0.1	0.2	0.6	0.4	0.9	3
SSW – 0.5 mg L ⁻¹ Ca ^a	62	<0.02	<0.01	<0.1	0.6	94	11	0.2	0.02	<0.2	0.2	0.2	0.4	0.6	0.4	1.5	4
Distillate – no Ca	17	<0.02	0.3	<0.1	0.2	<1	130	0.7	0.1	<0.2	0.8	1	<0.1	0.4	<0.1	<0.1	2
Distillate – 0.25 mg L ⁻¹ Ca	16	<0.02	0.3	<0.1	0.1	<1	130	0.6	0.1	<0.2	0.7	0.9	0.2	0.4	<0.1	<0.1	2
Distillate – 0.5 mg L-1 Ca	14	<0.02	0.3	<0.1	0.1	1	130	0.5	0.1	<0.2	0.7	0.8	0.4	0.4	<0.1	<0.1	2

 Table B7
 Metal and major ion analyses of the Ca addition TIE (1212B) samples

^a Unmodified Synthetic Soft Water (SSW) contains 0.5, mg L⁻¹ of Ca

37

Table B8 Metal and major ion analyses of the ammo	onia stripping TIE (1213B) samples
---	------------------------------------

Analyte	AI	Cd	Co	Cr	Cu	Fe	Mn	Ni	Pb	Se	U	Zn	Ca	Mg	к	Na	SO ₄
Units	µg L-¹	μg L-1	µg L⁻¹	μg L-1	μg L-1	μg L-1	µg L-1	µg L⁻¹	mg L ⁻¹								
PQL	0.1	0.02	0.01	0.1	0.01	1	0.01	0.01	0.01	0.2	0.001	0.1	0.1	0.1	0.1	0.1	0.5
MCW	11	<0.02	0.04	<0.1	0.1	52	1	0.4	0.1	<0.2	0.007	<0.1	0.2	0.9	0.2	1	<0.5
Distillate	13	<0.02	0.3	<0.1	0.3	<1	130	0.6	0.2	<0.2	0.7	1	<0.1	0.4	<0.1	<0.1	2
MCW – stripped	9	<0.02	0.04	0.3	9	38	6	1	0.5	<0.2	0.09	2	0.3	1	0.4	210	<0.5
Distillate - stripped	36	<0.02	0.2	0.2	1	4	95	1	0.2	<0.2	0.8	1	<0.1	0.4	0.9	210	2

Analyte	AI	Cd	Co	Cr	Cu	Fe	Mn	Ni	Pb	Se	U	Zn	Ca	Mg	к	Na	SO4
Units	µg L-1	μg L-1	µg L-1	μg L ⁻¹	μg L-1	μg L-1	μg L ⁻¹	µg L-1	μg L-1	µg L-1	μg L-1	μg L-1	mg L ⁻¹				
PQL	0.1	0.02	0.01	0.1	0.01	1	0.01	0.01	0.01	0.2	0.001	0.1	0.1	0.1	0.1	0.1	0.5
SSW – no Ca, K, N	66	<0.02	<0.01	<0.1	0.7	94	12	0.3	0.05	<0.2	0.2	<0.1	<0.1	0.6	<0.1	0.6	2
SSW – 1/2 Ca, K, Na	67	<0.02	0.01	<0.1	0.6	96	11	0.2	0.04	<0.2	0.2	<0.1	0.2	0.6	0.2	0.7	3
SSW – unmodified ^a	69	<0.02	<0.01	<0.1	0.6	99	10	0.2	0.03	<0.2	0.1	<0.1	0.4	0.6	0.4	0.9	3
Distillate - unmodified	14	<0.02	0.3	<0.1	0.2	<1	130	0.6	0.1	<0.2	0.8	1	<0.1	0.4	0.1	<0.1	2
Distillate – 1/2 Ca, K, Na	13	<0.02	0.3	<0.1	0.2	<1	140	0.6	0.04	<0.2	0.7	1	0.2	0.4	0.3	0.5	2
Distillate – full Ca, K, Na	13	<0.02	0.2	<0.1	0.2	<1	140	0.6	0.05	<0.2	0.7	1	0.4	0.4	0.5	1	2

 Table B9
 Metal and major ion analyses of the major ion addition TIE (1220B) samples

^a Unmodified Synthetic Soft Water (SSW) contains 0.5, 1.0 and 0.4 mg L⁻¹ of Ca, Na and K respectively

		Volatile Orgar	nic Compounds		Semi Volatile Organic Compounds						
Sample	Sample date	Best 75K NBS Library Match	Concentration (µg L ⁻¹) ^a	Match Quality	Best 75K NBS Library Match	Concentration (µg L ^{.1}) ^a	Match Quality				
Blank ^b	07/09/11	Methyl Ethyl Ketone (MEK)	1.3	86%	no peaks detected	N/A	N/A				
Process Water (feed water) ^b	07/09/11	no peaks detected	N/A	N/A	no peaks detected	N/A	N/A				
					Phenol, 3,5-bis (1,1-dimethylethyl)	5.8	93%				
Distillate °	12/08/11	Decane	20	70%	Phenol, 2,4-bis (1,1-dimethylethyl)	12.0	97%				
					1,2-Benzenedicarboxylic acid, butyl (2- methylpropyl) ester ^d	9.9	86%				
Blank ^a	08/09/11	Methyl Ethyl Ketone (MEK)	5.0	85%	Phenol, 2-(1,1-dimethylethyl)-4-methyl-	1.5	97%				
Distillate ^{b e}	08/09/11	no peaks detected	N/A	N/A	no peaks detected	N/A	N/A				
Distillate filtrate (SPE TIE)	20/09/11	no peaks detected	N/A	N/A	2-Furancarboxaldehyde, 5-methyl-	1.0	93%				
					2,5-Heptadien-4-one, 2,6-dimethyl-	1.4	92%				
Distillate ^{b f}	10/09/11	Ethanol	5.0	95%	no nooko dotastad	NI/A	NI/A				
		Octanal	1.0	82%	no peaks delected	IN/A	IN/A				

 Table B10 Organic compounds detected by GC-MS scan

^a Concentration estimated from closest surrogate compound. ^b Sampled into glass bottles at RioTinto Technology and Innovation, Bundoora; ^c Sampled from a polyethylene container at ERISS, Darwin; ^d Also known as Phthalate; ^e Water used in the SPE TIE; ^f Sample not use in toxicity or TIE tets. Anti-scalant and anit-foam was added to the feed water for this sample.

	Cal	cium	Pota	ssium	So	dium	Mag	nesium		Manganese	
Analyte	Nominal	Measured	Nominal	Measured	Nominal	Measured	Nominal	Measured	Nominal	Measured	Measured
	mg L ⁻¹	mg L⁻¹	mg L ⁻¹	µg L⁻¹	µg L⁻¹	μg L-1					
Sample	totals	totals	totals	totals	totals	totals	totals	totals	totals	dissolved (0.1 µm)	totals
SSW – No major ions 0 µg L ⁻¹ Mn	0	0.1	0.0	<0.1	0.0	0.4	0.6	0.6	0	17	17
SSW – No major ions 130 µg L-1 Mn	0	0.1	0.0	<0.1	0.0	0.5	0.6	0.6	130	140	140
SSW – No major ions 230 µg L-1 Mn	0	0.1	0.0	<0.1	0.0	0.5	0.6	0.6	230	250	260
SSW – 50% major ions 0 µg L-1 Mn	0.2	0.3	0.2	0.2	0.5	0.5	0.6	0.6	0	12	15
SSW – 50% major ions 130 µg L-1 Mn	0.2	0.3	0.2	0.3	0.5	0.8	0.6	0.6	130	130	130
SSW – 50% major ions 230 µg L-1 Mn	0.2	0.3	0.2	0.2	0.5	0.5	0.6	0.6	230	250	250
SSW – 100% major ions 0 µg L-1 Mn	0.5	0.5	0.4	0.5	1.0	1.1	0.6	0.6	0	10	11
SSW – 100% major ions 130 µg L-¹ Mn	0.5	0.4	0.4	0.5	1.0	1.1	0.6	0.6	130	130	130
SSW – 100% major ions 230 µg L ⁻¹ Mn	0.5	0.4	0.4	0.5	1.0	1.1	0.6	0.6	230	250	250

 Table B11
 Measured calcium, sodium, potassium, magnesium and manganese concentrations in the Mn toxicity TIE (1242B)

Appendix C Statistical summaries

CETIS	S Ana	lytical Repo	ort					Rep Test	ort Date: Code:	10 .	Jan-12 15: 1193D 1	54 (p 1 of 1) 2-6762-6525
Cladoc	eran Re	eproduction Tes	t							er	iss ecotox	icology lab
Analys Analyz	is ID: ed:	16-3873-9099 10 Jan-12 15:51	E 1 A	ndpoint: nalysis:	Total neonates Linear Interpola	ation (ICPIN)	CET Offic	IS Versio al Resu	on: CETISv1 lits: Yes	.8.1	
Batch I Start D Ending Duratio	D: ate: Date: on:	05-2916-7653 27 Jan-12 01 Aug-11 N/A	T P S S	est Type: rotocol: pecies: ource:	Cladoceran rep Clad (chronic) Moinodaphnia In-House Cultu	production eriss tropica macleayi re	l freshwate	Anal r Dilu Brin Age:	yst: A ent: M e: E	Andrew J Harfor Magela Creek V Brine distillate <6 h	rd Vater	
Sample Sample Receive Sample	e ID: e Date: e Date: e Date: e Age:	05-8160-6031 11 Jul-11 21 Jan-12 200d Oh	C M S S	ode: laterial: ource: tation:	22AA9A8F Ranger Brine C Ranger Brine C N/A	Concentrator	Distillate Plant	Clier Proj	nt: E ect: F	Energy Resourc Ranger Brine C	es of Aust	ralia - Enviro r Plant
Linear	Interpo form	lation Options		aad	Pesamples	Evp 95%	CI Met	hod				
Log(X+	1)	Linear	1.	360E+09	200	Yes	Two	-Point Interp	olation			
Point F	stimate											
Level	%	95% LCL	95% UC	L TU	95% LCL	95% UCL						
IC5	39.83	13.11	62.77	2.51	1.593	7.625						
IC10	71.87	47.6	N/A	1.391	N/A	2.101						
IC15	>100	N/A	N/A	<1	N/A	N/A						
IC20	>100	N/A	N/A	<1	N/A	N/A						
IC25	>100	N/A	N/A	<1	N/A	N/A						
IC40	>100	N/A	N/A	<1	N/A	N/A						
IC50	>100	N/A	N/A	<1	N/A	N/A						
Total n	eonates	s Summary				Ca	Iculated Va	ariate				
Conc-%	6 C	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect		
0	N	lagela Creek W	10	25.4	22	27	0.4761	1.506	5.93%	0.0%		
25			10	24.8	24	26	0.2494	0.7888	3.18%	2.36%		
100			10	23.8	22	20	0.3887	1.229	5.17%	6.3% 12.20%		
100			10	22	20	24	0.3344	1.247	J.07 %	13.33%		
Total n	eonates	s Detail										
Conc-%	<u>6 C</u>	ontrol Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	M	lagela Creek Wa	21	27	26	25 25	22	25	24	26	26	26
20 50			24 25	24	20	20 25	20	24	20	20 23	24	20
100			23	24	23	23	23	22	23	23	22	24
Graphi	cs.			2.			2.	20			2.	
Total monoraties	30 25 20 15 5		•		•							

000-428-181-1

Conc-%

CETIS™ v1.8.1.2

CETIS	S Ana	lytical Repo	ort					Repo Test	ort Date: Code:	10 Jan-12 15:39 (p 1 of 2) 1194B 12-0993-3878
Green	Hydra F	opulation Grow	th Test							eriss ecotoxicology lab
Analys Analyz	is ID: ed:	11-0374-6964 10 Jan-12 15:38	End Ana	point: lysis:	Specific growth Linear Interpola	rate (96h) tion (ICPIN)		CETI	S Version: ial Results:	CETISv1.8.1 Yes
Batch I Start D Ending Duratio	ID: ate: J Date: on:	04-0677-5006 25 Jul-11 13:00 01 Aug-11 6d 11h	Test Prot Spec Sou	Type: ocol: cies: rce:	Hydra populatio Alga eriss tropio Hydra viridissim In-House Cultur	on growth cal freshwate na re	er	Anal Dilue Brine Age:	yst: And ent: Mag e: Brine	rew J Harford lela Creek Water e distillate
Sample Sample Receiv Sample	e ID: e Date: e Date: e Age:	05-2878-0677 14 Jul-11 21 Jul-11 10:00 11d 13h (20 °C	Cod Mate Sou) Stat	e: erial: rce: ion:	528780677 Ranger Brine C Ranger Brine C	oncentrator oncentrator	Distillate Plant	Clier Proje	it: Ener ect: Ran	rgy Resources of Australia - Enviro ger Brine Concentrator Plant
Batch I	Note:	Verification data	I							
Sample	e Note:	Composite from	7 sampling	dates,	ie. 11/072011 to	17/07/2011				
Linear	Interpo	lation Options								
X Tran	sform	Y Transform	See	d	Resamples	Exp 95%	CL Meth	od		
Log(X+	1)	Linear	4743	363916	200	Yes	Two-	Point Interp	olation	
Point E	stimate	95								
Level	%	95% LCL	95% UCL	τu	95% LCL	95% UCL				
IC5	6.011	N/A	59.33	16.64	1.685	N/A				
IC10	29.99	N/A	76.64	3.334	1.305	N/A				
IC15	50.33	N/A	62.75	1.987	1.594	N/A				
IC20	55.09	29.31	67.03	1.815	1.492	3.412				
IC25	60.3	44.16	71.6	1.658	1.397	2.264				
IC40	78.99	67.46	88.09	1.266	1.135	1.482				
IC50	94.53	86.65	102.7	1.058	0.9738	1.154				
Specifi	c grow	th rate (96h) Sur	nmary			Cal	culated Var	riate		
Conc-%	6 C	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	lagela Creek W	3	0.350	7 0.34	0.359	0.005607	0.009712	2.77%	0.0%
25			3	0.321	3 0.298	0.353	0.01641	0.02843	8.85%	8.37%
50			3	0.299	3 0.266	0.327	0.01784	0.03089	10.32%	14.64%
100			3	0.164	3 0.16	0.173	0.004333	0.007506	4.57%	53.14%
Specifi	c grow	th rate (96h) Det	ail							
Conc-%	6 C	ontrol Type	Rep 1	Rep 2	2 Rep 3					
0	N	lagela Creek Wa	0.359	0.353	0.34					

25

50 100 0.353

0.327

0.16

0.313

0.305

0.173

0.298

0.266

0.16

CETIS™ v1.8.1.2

CETIS /	Analytical Report			Report Date:	10 Jan-12 15:39 (p 2 of 2)
				Test Code:	1194B 12-0993-3878
Green Hy	dra Population Growth	Test			eriss ecotoxicology lab
Analysis	D: 11-0374-6964	Endpoint:	Specific growth rate (96h)	CETIS Version:	CETISv1.8.1
Analyzed	10 Jan-12 15:38	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes
Graphics					
	0.40 ⊑				
	0.35				
(1 96h)	0.30	-			
rate	0.25		<		
rowth	0.20				
cific g	0.15		`		
Spe	-				
	0.10				
	0.05				
	0.00 6				

Conc-%

000-428-181-1

CETIS™ v1.8.1.2

CETIS	Ana	lytical Repo	ort						Repo Test	ort Date Code:	: 10 Jan-12 16:00 (p 1 of 2) 1195G 01-3033-2488
Algal G	rowth	Inhibition Test									eriss ecotoxicology lab
Analysi Analyze	sID: ed:	20-2559-3607 02 Aug-11 12:0	End 1 Ana	point: lysis:	Growth rate (db Linear Interpola	o/d) ition (ICPIN))		CET	IS Versi sial Res	ion: CETISv1.8.1 ults: Yes
Batch II Start Da Ending Duratio	D: ate: Date: n:	07-4604-6695 25 Jul-11 29 Jul-11 96h	Test Prot Spe Sou	Type: ocol: cies: rce:	Algal growth inl Alga eriss tropic Chlorella sp. In-House Cultu	hibition cal freshwat re	er		Anal Dilue Brine Age:	yst: ent: e:	Magela Creek Water Not Applicable 4-5d
Sample Sample Receive Sample	ID: Date: Date: Age:	05-2878-0677 14 Jul-11 21 Jul-11 10:00 11d 0h (20 °C)	Cod Mate Sou Stat	e: erial: rce: ion:	528780677 Ranger Brine C Ranger Brine C N/A	concentrator concentrator	Distillate Plant	•	Clier Proje	nt: ect:	Energy Resources of Australia - Enviro Ranger Brine Concentrator Plant
Sample	Note:	Composite from	7 sampling	dates,	ie. 11/072011 to	17/07/2011					
Linear I	nterpo	lation Options									
X Trans	form	Y Transform	See	d	Resamples	Exp 95%	CL M	ethod			
Log(X+1	1)	Linear	5763	399713	200	Yes	Т	vo-Poir	nt Interp	olation	
Point E	stimate	es									
Level	%	95% LCL	95% UCL	τυ	95% LCL	95% UCL					
IC5	6.226	N/A	110.9	16.06	0.9018	N/A					
IC10	78.82	N/A	N/A	1.269	N/A	N/A					
IC15	>100	N/A	N/A	<1	N/A	N/A					
IC20	>100	N/A	N/A	<1	N/A	N/A					
IC25	>100	N/A	N/A	<1	N/A	N/A					
IC40	>100	N/A	N/A	<1	N/A	N/A					
IC50	>100	N/A	N/A	<1	N/A	N/A					
Growth	rate (d	lb/d) Summary				Cal	culated	Variate	•		
Conc-%	, c	ontrol Type	Count	Mean	i Min	Мах	Std Er	r St	d Dev	CV%	%Effect
0	N	lagela Creek W	3	1.736	1.674	1.78	0.0320	1 0.0	05545	3.19%	6 0.0%
25			3	1.529	1.392	1.602	0.0688	5 0.	1192	7.8%	11.91%
50			3	1.657	1.64	1.67	0.0090	01 0.	01559	0.94%	6 4.56%
100			3	1.546	1.511	1.571	0.0181	2 0.0	03138	2.03%	6 10.93%
Growth	rate (o	lb/d) Detail									
Conc-%	, c	ontrol Type	Rep 1	Rep 2	2 Rep 3						
0	N	lagela Creek Wa	1.674	1.755	1.78						
25			1.595	1.392	1.602						
50			1.64	1.662	1.67						
100			1.511	1.557	1.571						

CETIS™ v1.8.1.2

	nalytical Report			Report Date:	10 Jan-12 16:00 (p 2 of 2)
				Test Code:	1195G 01-3033-2488
Algal Grow	th Inhibition Test				eriss ecotoxicology lab
Analysis ID	: 20-2559-3607	Endpoint:	Growth rate (db/d)	CETIS Version:	CETISv1.8.1
Analyzed:	02 Aug-11 12.01	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes
Graphics					
1.8	_				
1.0					
1.6	•				
1.4	Ē				
2 1.2	E .				
ŧ	t				
(qp 1.0					
0.1 ate (db					
0.6 0.0 0.0					
0.0 8.0 0.0 0.0 0.0 0.0					
0.6 0.6					
(F) et al. (1.0) et al. (1.0					

Conc-%

000-428-181-1

CETIS™ v1.8.1.2

CETIS	S Ana	lytical Repo	ort						Report I Test Co	Date: de:	10 Jan-12 16:05 (p 1 of 1) 1205L 16-0995-0771
Lemna	Growt	h Inhibition									eriss ecotoxicology lab
Analys	is ID:	05-2095-7097	End	dpoint:	Surface area				CETIS V	ersion:	CETISv1.8.1
Analyz	ed:	10 Jan-12 16:04	4 Ana	alysis:	Linear Interpola	ation (ICPIN))		Official	Results:	Yes
Batch	ID:	14-6984-7174	Tes	st Type:	Lemna Growth				Analyst	Andr	ew J Harford
Start D	ate:	15 Aug-11 11:5	D Pro	tocol:	Lemna eriss tro	pical freshw	ater		Diluent:	Labo	ratory Water
Ending	J Date:	19 Aug-11 11:50) Spe	ecies:	Lemna aequino	octialis			Brine:	Not /	Applicable
Duratio	on:	96h	Sol	irce:	eriss ecotoxico	logy lab			Age:	4 d	
Sample	e ID:	21-4586-6685	Co	de:	528780677				Client:	Ener	gy Resources of Australia - Enviro
Sampl	e Date:	10 Aug-11 17:00	D Ma	terial:	Ranger Brine C	concentrator	Distillate	e	Project:	Rang	ger Brine Concentrator Plant
Receiv	e Date:	12 Aug-11 09:00) Soi	irce:	Ranger Brine C	concentrator	Plant				
Sample	e Age:	40 190	Sta	tion:	Not Applicable						
Linear	Interpo	lation Options									
X Tran	sform	Y Transform	See	ed	Resamples	Exp 95%	CL M	lethod			
Log(X+	1)	Linear	169	225357	200	Yes	Т	wo-Point I	nterpolat	ion	
Point E	stimate	es									
Level	%	95% LCL	95% UCL	. ти	95% LCL	95% UCL					
IC5	>100	N/A	N/A	<1	N/A	N/A					
IC10	>100	N/A	N/A	<1	N/A	N/A					
IC15	>100	N/A	N/A	<1	N/A	N/A					
1020	>100	N/A	N/A	<1	N/A	N/A					
IC25	>100	N/A	N/A	<1	N/A N/A	N/A					
IC50	>100	N/A	N/A	<1	N/A	N/A					
Surfac	e area (Summary				Cal	culated	Variate			
Conc-9	6 died 3	Control Type	Count	Mean	Min	Max	Std Er	r Std I	Dev C	V%	%Effect
0	N	lagela Creek W	3	53.87	53.87	53.87	0	0	0	.0%	0.0%
25			3	53.87	53.87	53.87	0	0	0	.0%	0.0%
50			3	53.87	53.87	53.87	0	0	0.	.0%	0.0%
100			3	53.87	53.87	53.87	0	0	0	.0%	0.0%
Surfac	e area 🛛	Detail									
Conc-9	% C	ontrol Type	Rep 1	Rep 2	2 Rep 3						
0	N	lagela Creek Wa	53.87	53.87	53.87						
25			53.87	53.87	53.87						
50			53.87	53.87	53.87						
100			53.87	53.87	53.87						
Graphi	cs										
	⁶⁰ Г										
	- -	•	•		•						
	50										

CETIS™ v1.8.1.2

CETIS	Analyti	cal Repo	ort					Rep Test	ort Date: Code:	10	Jan-12 10 (6:17 (p 1 of 2 04-6587-081
Gudgeo	on Sac Fry S	Survival Tes	st							e	riss ecoto	xicology lab
Analysi	s ID: 05-	1464-0067	End	point:	96h Survival Ra	ate		CET	IS Version	: CETISV	1.8.1	
Analyze	ed: 10.	Jan-12 16:10	o Ana	lysis:	Nonlinear Regr	ession		Offic	ial Result	s: Yes		
Batch II	D: 16-4	4401-2784	Tes	t Type:	Survival (96h)			Ana	yst: An	drew J Harf	ord	
Start Da	ate: 197	Aug-11 12:3	D Pro	tocol:	Gudgeon (acute	e) eriss tropi	ical freshwat	er Dilu	ent: Re	ceiving Wat	er	
Ending	Date: 23/	Aug-11 12:3	D Spe	cies:	Mogurnda mog	urnda		Brin	e: No	t Applicable		
Duratio	n: 96n		Sou	irce:	In-House Cultu	re		Age				
Sample	ID: 04-	5537-9340	Coc	le:	528780677			Clie	nt: En	ergy Resou	rces of Au	stralia - Envir
Sample	Date: 10/	Aug-11 17:0	D Mat	erial:	Ranger Brine C	concentrator	Distillate	Proj	ect: Ra	nger Brine (Concentrat	or Plant
Receive	Date: 12/	Aug-11 09:00) Sou	rce:	Ranger Brine C	oncentrator	Plant					
Sample	Age: 8d	20h	Stat	tion:	Not Applicable							
Non-Lir	near Regres	sion Option	ıs									
Model F	unction					X Trans	form Y Tra	nsform V	Veighting I	Function	PTBS Fu	nction
2P Log-	Logistic EV	[Y=1/(1+(X/[D)^C)]			None	None	N	lormal [W=	1]	Off [Y*=Y	
Reares	sion Summ	arv										
Iters	Log LL	AICo	BIC	Adi R	Ontimize	E Stat	Critical	P-Value	Decision)(a:5%)		
8	20.51	-35.69	-36.06	Auj Ka	Yes	1 102	4 459	0.3778	Non-Sig	nificant Lack	of Fit	
·	20.01							0.0110		Linearit Edit		
Point E	stimates											
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
LC5	46.79	N/A	104.1	2.137	0.9607	N/A						
LC10	71.25	N/A	121.6	1.404	0.8223	N/A						
LC50	245.4	N/A	N/A	0.4075	N/A	N/A						
Regres	sion Param	eters										
Parame	ter	Estimate	Std Error	95% L(CL 95% UCL	t Stat	P-Value	Decision	(α:5%)			
С		1.777	1.715	-2.044	5.598	1.036	0.3246	Non-Sign	ficant Para	meter		
D		245.4	245.2	-300.9	791.7	1.001	0.3405	Non-Sign	ficant Para	meter		
ANOVA	Table											
Source		Sum Squa	res Mea	n Squar	e DF	F Stat	P-Value	Decision	(α:5%)			
Model		0.012108	0.01	2108	1	0.8376	0.3816	Non-Sign	ficant			
Lack of	Fit	0.031225	0.01	5613	2	1.102	0.3778	Non-Sign	ificant			
Pure Eri	ror	0.113333	0.01	4167	8							
Residua	al	0.144559	0.01	4456	10							
Residua	al Analysis											
Attribut	•	Method			Test Stat	Critical	P-Value	Decision	(a:5%)			
Variance	es	Mod Lever	ne Equality	of Varian	ce 2.333	6 591	0 2155	Equal Va	iances			
Distribut	tion	Shapiro-W	ilk W Norm	ality	0.9414	0.8608	0.5170	Normal D	istribution			
		Anderson-	Darling A2	Normality	0.4684	2.492	0.2534	Normal D	istribution			
96h Sur	rvival Rate	Summarv				Calcu	lated Variat	e(A/B)				
Conc-%	Contr	ol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	_	
CONC-76	Magel	a Creek W	3	0.9	0.8	1	0.05774	0.1	11 11%	0.0%	27	30
0	mager	a creek w	3	1	1	1	0.03774	0	0.0%	-11.11%	30	30
0 25			-	0.9333	0.9	1	0.03333	0.05773	6.19%	-3.7%	28	30
0 25 50			3				0 1000	0.0000	24.98%	7 41%	25	30
0 25 50 100			3	0.8333	0.6	1	0.1202	0.2002			20	
0 25 50 100 96h Sur	rvival Rate I	Detail	3	0.8333	0.6	1	0.1202	0.2002			20	
0 25 50 100 96h Sur	rvival Rate I	Detail	3 3 Ren 1	0.8333	0.6	1	0.1202	0.2002			20	
0 25 50 100 96h Sur Conc-%	rvival Rate I	Detail ol Type a Creek Wa	3 3 Rep 1	0.8333 Rep 2	0.6 Rep 3	1	0.1202	0.2002			20	
0 25 50 100 96h Sur <u>Conc-%</u> 0 25	rvival Rate I 5 Contr Magel	Detail ol Type a Creek Wa	3 3 Rep 1 1 1	0.8333 Rep 2 0.9 1	0.6 Rep 3 0.8 1	1	0.1202	0.2062			20	
0 25 50 100 96h Sur <u>Conc-%</u> 0 25 50	rvival Rate I <u>6 Contr</u> Magel	Detail ol Type a Creek Wa	3 3 Rep 1 1 1 0.9	0.8333 Rep 2 0.9 1 0.9	0.6 Rep 3 0.8 1 1	1	0.1202	0.2062			20	

CETIS™ v1.8.1.2

CETIS™ v1.8.1.2

Green Hydra Population Growth Test Analysis ID: 11-6512-5155 12 Jan-12 11:50 Endpoint: Analysis: Specific growth rate (96h) Parametric-Two Sample CETIS Officia Batch ID: 13-9857-0343 Test Type: Hydra population growth Alga eriss tropical freshwater Diluen Diluen Brine: Batch ID: 13-9857-0343 Test Type: Hydra population growth Alga eriss tropical freshwater Diluen Brine: Date: 19 Aug-11 Protocol: Alga eriss tropical freshwater Diluen Brine: Duration: 96h Source: In-House Culture Age: Sample Date: 10 Aug-11 17:00 Material: Ranger Brine Concentrator Distillate Projec Receive Date: 11 Aug-11 09:00 Source: Ranger Brine Concentrator Plant Sample fails specific growth Data Transform Zeta Alt Hyp MC Trials Test Result Untransformed 0 C > T Not Run Sample fails specific growth Source Sum Squares Mean Square DF F Stat P-Value Between 0.1559633 0.1559633 1	Version: I Results: t: Andrev t: Magela Brine d Energy t: Range wth rate (96 Decision(α: Significant E	eriss ecoto CETISv1.8.1 Yes w J Harford a Creek Water distillate y Resources of Au er Brine Concentral PMSD sh) endpoint3.06% 5%) (ffect	stralia - Enviro tor Plant
Analysis ID: 11-6512-5155 Endpoint: Specific growth rate (96h) CETIS Analyzed: 12 Jan-12 11:50 Analysis: Parametric-Two Sample Officia Batch ID: 13-9857-0343 Test Type: Hydra population growth Analysis: Batch ID: 13-9857-0343 Test Type: Hydra population growth Analysis: Ending Date: 19 Aug-11 Protocol: Alga eriss tropical freshwater Diluen Ending Date: 19 Aug-11 Species: Hydra viridissima Brine: Duration: 96h Source: In-House Culture Age: Sample Date: 10 Aug-11 17:00 Material: Ranger Brine Concentrator Distillate Projec Sample Age: 4d 7h (10 *C) Station: Not Applicable Edits specific growth Edits specific growth Lintransform Zeta Alt Hyp KC Trila DF MSD P-Value Magela Creek Wate 100* 69.63 2.132 4 0.009872 <0.0001 Source Sum Squares Mean Square	Version: I Results: t: Andrev t: Magela Brine d Energy t: Range wth rate (96) Decision(α: Significant E	CETISv1.8.1 Yes w J Harford a Creek Water distillate y Resources of Au er Brine Concentral PMSD 5h) endpoint3.06% 5%) Effect	stralia - Enviro tor Plant
Batch ID: 13-9857-0343 Test Type: Hydra population growth Analys Start Date: 15 Aug-11 Protocol: Alga eriss tropical freshwater Diluen Ending Date: 19 Aug-11 Species: Hydra viridissima Brine: Duration: 96h Source: In-House Culture Age: Sample DI: 13-5466-1553 Code: 528780677 Client: Sample Age: 4d 7h (10 °C) Station: Not Applicable Projec Bata Transform Zeta Alt Hyp MC Trials Test Result Untransformed 0 C > T Not Run Sample fails specific growth Equal Variance t Two-Sample Test Control vs Conc-% Test Stat Critical DF MSD P-Value Magela Creek Wate 100° 69.63 2.132 4 0.009872 <0.0001 AnOVA Table Source Sum Squares Mean Square DF F Stat P-Value Between 0.1559633 0.1559955 5 5	t: Andrev t: Magela Brine d Energy t: Range wth rate (96 Decision(c:: Significant E	w J Harford a Creek Water distillate y Resources of Au er Brine Concentral PMSD ish) endpoint3.06% 5%) iffect	stralia - Enviro tor Plant
Sample ID:13-5465-1563Code:528780677Client:Sample Date:10 Aug-11 17:00Material:Ranger Brine Concentrator DistillateProjecSample Age:4d 7h (10 °C)Station:Not ApplicableTest ResultData TransformZetaAlt HypMC TrialsTest ResultUntransformed0C > TNot RunSample fails specific growthEqual Variance t Two-Sample TestConce%Test StatCriticalDFMSDP-ValueMagela Creek Wate100*69.632.13240.009872<0.0001	Energy t: Range wth rate (96 Decision(α: Significant E	y Resources of Au r Brine Concentrat PMSD ih) endpoint3.06% 5%) iffect	stralia - Enviro tor Plant
Data TransformZetaAlt HypMC TrialsTest ResultUntransformed0C > TNot RunSample fails specific growthEqual Variance t Two-Sample TestCriticalDFMSDP-ValueMagela Creek Wate100*69.632.13240.009872<0.0001	wth rate (96 Decision(α: Significant E	PMSD sh) endpoint3.06% 5%) sffect	
Untransformed 0 C > T Not Run Sample fails specific gro Equal Variance t Two-Sample Test Control vs Conc-% Test Stat Critical DF MSD P-Value Magela Creek Wate 100* 69.63 2.132 4 0.009872 <0.0001	wth rate (96 Decision(α: Significant E	5%) 5%)	
Equal Variance t Two-Sample Test Control vs Conc-% Test Stat Critical DF MSD P-Value Magela Creek Wate 100* 69.63 2.132 4 0.009872 <0.001	Decision(α: Significant E	5%) Effect	
Control vs Conc-% Test Stat Critical DF MSD P-Value Magela Creek Wate 100* 69.63 2.132 4 0.009872 <0.0001	Decision(α: Significant E	5%) Effect	
Magela Creek Wate 100 09.03 2.132 4 0.003072 <0.0001 ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Between 0.1559633 0.1559633 1 4849 <0.0001	Significant L	liect	
Source Sum Squares Mean Square DF F Stat P-Value Between 0.1559633 0.1559633 1 4849 <0.0001			
Source Sum squares Mean square DF F stat P-Value Between 0.1559633 0.1559633 1 4849 <0.0001			
Detroit 0.103030 0.103030 1 4043 50.001 Total 0.156092 0.1559955 5 Distributional Tests Test Test Stat Critical P-Value Decision(a: Attribute Test Test Stat Critical P-Value Decision(a: Variances Mod Levene Equality of Variance 1 98.5 0.4226 Equal Varian Distribution Shapiro-Wilk W Normality 0.8137 0.43 0.0778 Normal Distribution Specific growth rate (96h) Summary Conc-% Control Type Count Mean 95% LCL 95% UCL Min Max 0 Magela Creek W 3 0.3225 0.3194 0.3255 0.3132 0.3271 100 3 0 0 0 0 0 0 Specific growth rate (96h) Detail Conc-% Control Type Rep 1 Rep 2 Rep 3 0.004 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.004 0.0	Decision(a:	5%)	
Total 0.156092 0.1559955 5 Distributional Tests Test Stat Critical P-Value Decision(a: Attribute Test Test Stat Critical P-Value Decision(a: Variances Mod Levene Equality of Variance 1 98.5 0.4226 Equal Varian Distribution Shapiro-Wilk W Normality 0.8137 0.43 0.0778 Normal Distribution Specific growth rate (96h) Summary Conc-% Control Type Count Mean 95% LCL 95% UCL Min Max 0 Magela Creek W 3 0.3225 0.3194 0.3255 0.3132 0.3271 100 3 0 0 0 0 0 0 0 Specific growth rate (96h) Detail Conc-% Control Type Rep 1 Rep 2 Rep 3 0	Significant L	inect	
Distributional Tests Attribute Test Test Stat Critical P-Value Decision(c: Variances Mod Levene Equality of Variance 1 98.5 0.4226 Equal Variant Distribution Shapiro-Wilk W Normality 0.8137 0.43 0.0778 Normal Distribution Specific growth rate (96h) Surmary Conc-% Control Type Count Mean 95% LCL 95% UCL Min Max			
Attribute Test Test Stat Critical P-Value Decision(a: Decision(a: Decision(a: Shapiro-Wilk W Normality Out 98.5 0.4226 Equal Varian Normal Distribution Specific growth rate (96h) Summary 0.8137 0.43 0.0778 Normal Distribution Conc-% Control Type Count Mean 95% LCL 95% UCL Min Max 100 0 Magela Creek W 3 0.3225 0.3194 0.3255 0.3132 0.3271 0.00 0			
Variances Distribution Mod Levene Equality of Variance Shapiro-Wilk W Normality 1 98.5 0.4226 Equal Varian Normal Distribution Specific growth rate (96h) Summary Countol Type Count Mean 95% LCL 95% UCL Min Max 0 Magela Creek W 3 0.3225 0.3194 0.3255 0.3132 0.3271 0.3271 0.3255 0.3132 0.3271 0.3271 0.00 0	1%)		
Distribution Shapiro-Wilk W Normality 0.8137 0.43 0.0778 Normal Distribution Specific growth rate (96h) Summary Conc-% Control Type Count Mean 95% LCL 95% UCL Min Max 0 Magela Creek W 3 0.3225 0.3194 0.3255 0.3132 0.3271 0.3271 0.00 0	nces		
Specific growth rate (96h) Summary Conc-% Control Type Count Mean 95% LCL 95% UCL Min Max 0 Magela Creek W 3 0.3225 0.3194 0.3255 0.3132 0.3271 100 3 0 0 0 0 0 0 Specific growth rate (96h) Detail Conc-% Control Type Rep 1 Rep 2 Rep 3 - - - 0 Magela Creek W 0.3271 0.3132 0.3271 0.3271 0.3271 0.3132 0.3271 0.306 0.006 <t< td=""><td>ribution</td><td></td><td></td></t<>	ribution		
Conc-% Control Type Count Mean 95% LCL 95% UCL Min Max 0 Magela Creek W 3 0.3225 0.3194 0.3255 0.3132 0.3271 100 3 0 0 0 0 0 0 Specific growth rate (96h) Detail Rep 1 Rep 2 Rep 3 - <t< td=""><td></td><td></td><td></td></t<>			
0 Magela Creek W 3 0.3225 0.3194 0.3255 0.3132 0.3271 100 3 0 0 0 0 0 0 Specific growth rate (96h) Detail Conc-% Control Type Rep 1 Rep 2 Rep 3 0 Magela Creek W 0.3271 0.3132 0.3271 0.3271 100 0 0 0 0 0 Graphics Rejet Null	Std Err S	Std Dev CV%	%Effect
Specific growth rate (96h) Detail Rep 1 Rep 2 Rep 3 0 Magela Creek W 0.3271 0.3132 0.3271 100 0 0 0	D.004631 C	0.008021 2.49% n	0.0%
Specific growth rate (96h) Detail Conc-% Control Type Rep 1 Rep 2 Rep 3 0 Magela Creek W 0.3271 0.3132 0.3271 100 0 0 0 Graphics			100.070
Conc-% Control type Rep 1 Rep 2 Rep 3 0 Magela Creek W 0.3271 0.3132 0.3271 100 0 0 0 Graphics 0.35 0.006 0.006 0.30 0.25 0.006 0.0004 9 0.25 0.002 0.002			
00 0			
Graphics			
0.35 0.30 0.30 0.30 0.006 0.006 0.006 0.006 0.006 0.006 0.004 0.004 0.004 0.004 0.000 0.006 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0			
S S S S S S S S		•	

CETIS™ v1.8.1.2

CETIS Ana	alytical Repo	ort					Rep Test	ort Date: t Code:	12	Jan-12 11:4 1208D 0	13 (p 1 of 1) 5-9175-0772
Cladoceran R	eproduction Tes	st							er	iss ecotox	icology lab
Analysis ID: Analyzed:	21-3945-8834 12 Jan-12 11:43	Ei 3 Ai	ndpoint: nalysis:	Total neonates Parametric-Two	Sample		CET	'IS Version: cial Results	CETISv1	.8.1	
Batch ID: Start Date: Ending Date: Duration:	06-3413-4192 14 Aug-11 19 Aug-11 5d 0h	Te Pi Sj So	est Type: (rotocol: (pecies: I ource: I	Cladoceran rep Clad (chronic) e Moinodaphnia r n-House Cultur	roduction eriss tropical nacleayi re	freshwater	Ana Dilu Brin Age	lyst: And ent: Ma le: Brir : <6	drew J Harfo gela Creek V ne distillate h	rd Vater	
Sample ID: Sample Date: Receive Date: Sample Age:	13-5465-1553 10 Aug-11 17:0 : 11 Aug-11 09:0 79h (10 °C)	0 M 0 So St	ode: { aterial: F ource: F tation: N	528780677 Ranger Brine C Ranger Brine C Not Applicable	oncentrator oncentrator	Distillate Plant	Clie Proj	nt: Ene ect: Rai	ergy Resourd nger Brine C	ces of Austr oncentrator	alia - Enviro Plant
Data Transfor	rm	Zeta	Alt Hy	p MC Trials		Test Res	ult			PMSD	
Untransformed	ł	0	C > T	Not Run		Sample p	asses total	neonates er	Idpoint	9.38%	
Equal Variance	ce t Two-Sample	Test									
Control	vs Conc-%		Test St	at Critical	DF	MSD	P-Value	Decision	(α:5%)		
Magela Creek	Wate 100		1.17	1.734	18	2.963	0.1285	Non-Sign	ificant Effect	t	
ANOVA Table	•										
Source	Sum Squa	ares	Mean S	Square	DF	F Stat	P-Value	Decision	(a:5%)		
Between	20		20		1	1.37	0.2571	Non-Sign	ificant Effect		
Error	262.8		14.6		18	_					
Total	282.8		34.6		19						
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance	Ratio F		1.015	6.541	0.9823	Equal Va	riances			
Distribution	Shapiro-V	Vilk W No	rmality	0.9337	0.866	0.1819	Normal D	istribution			
Total neonate	s Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Мах	Std Err	Std Dev	CV%	%Effect
0	Magela Creek W	/ 10	31.6	30.14	33.06	24	37	1.213	3.836	12.14%	0.0%
100		10	29.6	28.15	31.05	21	34	1.204	3.806	12.86%	6.33%
Total neonate	es Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Magela Creek W	36	31	24	29	32	32	35	29	37	31
100		32	34	28	33	27	28	21	31	30	32
Graphics											
40] 		• Feject Null	Contraved	6 - 4 0 2 0 0 0 0 0 0 	••	• • • •		•••	

CETIS™ v1.8.1.2

Analyst: QA:_

CETIS Ana	lytical Repo	ort							Rep Test	ort Date: Code:	1	2 Jan-12 11 1209G	1:56 (p 1 of 1) 09-0423-3577
Algal Growth	Inhibition Test											eriss ecoto	xicology lab
Analysis ID: Analyzed:	12-1303-0687 12 Jan-12 11:5	5	Endpoint: Analysis:	Gro Par	wth rate (db ametric-Two	/d) Sample			CET Offic	IS Versio	n: CETIS ts: Yes	v1.8.1	
Batch ID: Start Date: Ending Date: Duration: Sample ID:	09-6499-7729 15 Aug-11 11:4 18 Aug-11 11:4 72h 13-5465-1553	5	Test Type: Protocol: Species: Source: Code:	Alga Alga Chl In-F	al growth inh a eriss tropic orella sp. House Cultur 780677	nibition cal freshwate re	er		Anal Dilue Brin Age: Clier	lyst: A ent: M e: N : 40 nt: E	ndrew J Har lagela Creek ot Applicabl d nergy Resou	ford Water e irces of Aus	stralia - Enviro
Sample Date: Receive Date: Sample Age:	10 Aug-11 17:00 11 Aug-11 09:00 4d 19h (10 °C)	0	Material: Source: Station:	Rar Rar Not	nger Brine C nger Brine C Applicable	oncentrator oncentrator	Distillate Plant		Proj	ect: R	anger Brine	Concentrat	or Plant
Data Transfor	m	Zeta	Alt H	lyp	MC Trials		Test Res	ult				PMSD	
Untransformed	I	0	C > T		Not Run		Sample p	asses	growt	h rate (db	/d) endpoint	1.3%	
Equal Varianc	e t Two-Sample	Test											
Control	vs Conc-%		Test	Stat	Critical	DF	MSD	P-V	alue	Decisio	on(α:5%)		
Magela Creek	Wate 100		0.301	5	2.132	4	0.02357	0.38	390	Non-Sig	nificant Effe	ect	
ANOVA Table													
Source	Sum Squa	ares	Mean	Squ	are	DF	F Stat	P-V	alue	Decisio	on(α:5%)		
Between	1.666703E	-05	1.666	703E	E-05	1	0.09091	0.77	'80	Non-Sig	nificant Effe	ct	
Error	0.0007333	351	0.000	1833	338	4	_						
TOTAL	0.0007500	021	0.000	2000	008	9							
Distributional	Tests												
Attribute	Test				Test Stat	Critical	P-Value	Dec	ision	(α:1%)			
Variances	Variance Shapiro V	Ratio I	Normality		1.75	199	0.7273	Equ	al Vai mal D	riances			
Growth rate (o	db/d) Summary	THE T	Normanty		0.0000	0.40	0.2100	Non		istribution			
Conc-%	Control Type	Cour	nt Mean		95% LCL	95% UCL	Min	Мах	(Std Err	Std De	v CV%	%Effect
0	Magela Creek W	/ 3	1.807		1.801	1.812	1.79	1.82	2	0.00881	8 0.01527	0.85%	0.0%
100		3	1.803		1.799	1.808	1.79	1.81		0.00666	64 0.01154	0.64%	0.18%
Growth rate (db/d) Detail												
Conc-%	Control Type	Rep	1 Rep 2	2	Rep 3								
0	Magela Creek W	1.82	1.79		1.81								
100		1.81	1.79		1.81								
Craphics 2.0 1.8 (p) 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 0.6 0.8 0.6 0.6 0.4 0.2		P			Reject Null	- Cantraced	0.015 0.010 0.0000 0.0000 0.000000			•	•		
0.0	0			100		-	-0.020 - -1.5	-	1.0	-0.5	0.0 0.5	1.0	1.5

Conc-%

CETIS™ v1.8.1.2

-1.0

-0.5

0.0 Rankits

0.5

Analyst: ____QA:__

1.0

1.5

1212B Calcium addition TIE

Two Way Analysis of Variance

 Data source: Data 1 in 1212B two-way ANOVA

 Balanced Design

 Dependent Variable: Pop growth rate

 Normality Test (Shapiro-Wilk)
 Passed (P = 0.187)

 Equal Variance Test:
 Passed (P = 1.000)

Source of Variation	DF	SS	MS	F	Р
Water type	1	0.0584	0.0584	429.777	<0.001
Ca (mg/L)	2	0.0950	0.0475	349.655	<0.001
Water type x Ca (mg/L)	2	0.00186	0.000928	6.829	0.010
Residual	12	0.00163	0.000136		
Total	17	0.157	0.00923		

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Water type depends on what level of Ca (mg/L) is present. There is a statistically significant interaction between Water type and Ca (mg/L). (P = 0.010)

Power of performed test with alpha = 0.0500: for Water type : 1.000Power of performed test with alpha = 0.0500: for Ca (mg/L) : 1.000Power of performed test with alpha = 0.0500: for Water type x Ca (mg/L) : 0.775

 Group
 Mean

 SSW
 0.230

 Distillate
 0.116

 Std Err of LS Mean = 0.00389

Least square means for Ca (mg/L) : **Group Mean** 0.000 0.0711 0.250 0.217 0.500 0.232 Std Err of LS Mean = 0.00476

Least square means for Water type x Ca (mg/L) : Group Mean SSW x 0.000 0.142 SSW x 0.250 0.269 SSW x 0.500 0.280 Distillate x 0.000 0.000 Distillate x 0.250 0.165 Distillate x 0.500 0.185 Std Err of LS Mean = 0.00673

All Pairwise Multiple Comparison Procedures (Tukey Test):

Comparisons for factor:	Ca (mg/L) within SSW	1			
Comparison	Diff of Means	р	q	Р	P<0.05
0.500 vs. 0.000	0.138	3	20.496	<0.001	Yes
0.500 vs. 0.250	0.0112	3	1.666	0.488	No
0.250 vs. 0.000	0.127	3	18.830	<0.001	Yes
Comparisons for factor:	Ca (mg/L) within Dist	llate			
Comparison	Diff of Means	р	q	Р	P<0.05
0.500 vs. 0.000	0.185	3	27.449	<0.001	Yes
0.500 vs. 0.250 0.0200			2.970	0.132	No
0.250 vs. 0.000	0.165	3	24.479	<0.001	Yes
Comparisons for factor:	Water type within 0				
Comparison	Diff of Means	р	q	Р	P<0.05
SSW vs. Distillate	0.142	2	21.127	<0.001	Yes
Comparisons for factor:	Water type within 0.2	5			
Comparison	Diff of Means	р	q	Р	P<0.05
SSW vs. Distillate	0.104	2	15.478	<0.001	Yes
Comparisons for factor:	Water type within 0.5				
Comparison	Diff of Means	р	q	Р	P<0.05
SSW vs. Distillate	0.0954	2	14.175	< 0.001	Yes

1220B Major ion addition TIE

Wednesday, January 11, 2012, 12:10:31 PM

Two Way Analysis of Variance

 Data source: Data 1 in 1220B

 Balanced Design

 Dependent Variable: Pop growth rate

 Normality Test (Shapiro-Wilk)

 Failed
 (P < 0.050)</td>

 Equal Variance Test:
 Passed
 (P = 0.430)

Source of Variation	DF	SS	MS	F	Р
Water Type	1	0.00318	0.00318	1.209	0.293
Major Ion strength (%)	2	0.210	0.105	39.935	<0.001
Water Type x Major Ion str	2	0.0106	0.00531	2.017	0.176
Residual	12	0.0316	0.00263		
Total	17	0.256	0.0150		

The difference in the mean values among the different levels of Water Type is not great enough to exclude the possibility that the difference is just due to random sampling variability after allowing for the effects of differences in Major Ion strength (%). There is not a statistically significant difference (P = 0.293).

The difference in the mean values among the different levels of Major Ion strength (%) is greater than would be expected by chance after allowing for effects of differences in Water Type. There is a statistically significant difference (P = <0.001). To isolate which group(s) differ from the others use a multiple comparison procedure.

The effect of different levels of Water Type does not depend on what level of Major Ion strength (%) is present. There is not a statistically significant interaction between Water Type and Major Ion strength (%). (P = 0.176)

Power of performed test with alpha = 0.0500: for Water Type : 0.0677Power of performed test with alpha = 0.0500: for Major Ion strength (%) : 1.000Power of performed test with alpha = 0.0500: for Water Type x Major Ion str : 0.181

Least square means for Water Type :GroupMeanSSW0.223Distillate0.250Std Err of LS Mean = 0.0171

Least square means for Major Ion strength (%) :

 Group
 Mean

 0.000
 0.0849

 50.000
 0.293

 100.000
 0.331

 Std Err of LS Mean = 0.0210

Least square means for Water Type x Major Ion str :

Group	Mean
SSW x 0.000	0.0375
SSW x 50.000	0.294
SSW x 100.000	0.338
Distillate x 0.000	0.132
Distillate x 50.000	0.293
Distillate x 100.000	0.323
Std Err of LS Mean = 0.0296	

All Pairwise Multiple Comparison Procedures (Tukey Test):

Comparisons for factor:	Water Type				
Comparison	Diff of Means	р	q	Р	P<0.050
Distillate vs. SSW	0.0266	2	1.555	0.293	No
Comparisons for factor:	Major Ion strength (%)			
Comparison	Diff of Means	, p	q	Р	P<0.050
100.000 vs. 0.000	0.246	3	11.727	<0.001	Yes
100.000 vs. 50.000	0.0373	3	1.782	0.443	No
50.000 vs. 0.000	0.208	3	9.945	<0.001	Yes
Comparisons for factor:	Major Ion strength (%) withi	n SSW		
Comparison	Diff of Means	, p	q	Р	P<0.05
100.000 vs. 0.000	0.300	3	10.134	<0.001	Yes
100.000 vs. 50.000	0.0440	3	1.487	0.561	No
50.000 vs. 0.000	0.256	3	8.647	< 0.001	Yes

Comparisons for factor: Major Ion strength (%) within Distillate								
Comparison	Diff of Means	р	q	Р	P<0.05			
100.000 vs. 0.000	0.191	3	6.450	0.002	Yes			
100.000 vs. 50.000	0.0306	3	1.033	0.751	No			
50.000 vs. 0.000	0.161	3	5.417	0.006	Yes			
Comparisons for factor: Wate	er Type within 0							
Comparison	Diff of Means	р	q	Р	P<0.05			
Distillate vs. SSW	0.0949	2	3.203	0.043	Yes			
Comparisons for factor: Wate	er Type within 50							
Comparison	Diff of Means	р	q	Р	P<0.05			
SSW vs. Distillate	0.000814	2	0.0275	0.985	No			
Comparisons for factor: Wate	Comparisons for factor: Water Type within 100							
Comparison	Diff of Means	р	q	Р	P<0.05			
SSW vs. Distillate	0.0143	2	0.481	0.740	No			

1242B Effect of Mn in low major ion waters

Two Way Analysis of Variance

Monday, October 24, 2011, 3:03:44 PM

 Data source: Data 1 in Notebook1

 Balanced Design

 Dependent Variable: Col 3

 Normality Test (Shapiro-Wilk)
 Passed (P = 0.578)

 Equal Variance Test:
 Passed (P = 0.271)

Source of Variation	DF	SS	MS	F	Р
Diluent	2	0.0838	0.0419	58.816	<0.001
Mn	2	0.00813	0.00406	5.705	0.012
Diluent x Mn	4	0.00130	0.000326	0.457	0.766
Residual	18	0.0128	0.000712		
Total	26	0.106	0.00408		

The difference in the mean values among the different levels of Diluent is greater than would be expected by chance after allowing for effects of differences in Mn. There is a statistically significant difference (P = <0.001). To isolate which group(s) differ from the others use a multiple comparison procedure.

The difference in the mean values among the different levels of Mn is greater than would be expected by chance after allowing for effects of differences in Diluent. There is a statistically significant difference (P = 0.012). To isolate which group(s) differ from the others use a multiple comparison procedure.

The effect of different levels of Diluent does not depend on what level of Mn is present. There is not a statistically significant interaction between Diluent and Mn. (P = 0.766)

Power of performed test with alpha = 0.0500: for Diluent : 1.000Power of performed test with alpha = 0.0500: for Mn : 0.717Power of performed test with alpha = 0.0500: for Diluent x Mn : 0.0500

Least square means for Diluent : **Group** Mean 0.000 0.161 0.500 0.278 1.000 0.281 Std Err of LS Mean = 0.00890

 Least square means for Mn :

 Group
 Mean

 0.000
 0.261

 110.000
 0.241

 220.000
 0.218

 Std Err of LS Mean = 0.00890

Least square means for Diluent x Mn :

Group	INICALL
0.000 x 0.000	0.173
0.000 x 110.000	0.160
0.000 x 220.000	0.151
0.500 x 0.000	0.308
0.500 x 110.000	0.280
0.500 x 220.000	0.245
1.000 x 0.000	0.301
1.000 x 110.000	0.284
1.000 x 220.000	0.259
Std Err of LS Mean =	= 0.0154

All Pairwise Multiple Comparison Procedures (Tukey Test):

Comparisons for factor:	Diluent					
Comparison	Diff of Means	р	(q	Р	P<0.050
1.000 vs. 0.000	0.120	3	13.	459	<0.001	Yes
1.000 vs. 0.500	0.00318	3	0.	357	0.966	No
0.500 vs. 0.000	0.117	3	13.	101	<0.001	Yes
Comparisons for factor:	Mn					
Comparison	Diff of Mea	ns	р	q	Р	P<0.050
0.000 vs. 220.000	0.0425		3	4.772	0.009	Yes
0.000 vs. 110.000	0.0196		3	2.204	0.289	No
110.000 vs. 220.000	0.0228		3	2.568	0.193	No