
 
 

 

Vegetation map for 

Magela Creek floodplain 

using WorldView - 2 

multispectral image data 
 

628 internal 
report 

T Whiteside & R Bartolo 

April 2014 

 

Release status – unrestricted 

Project number – RES-2012-011 



 
 

This page has been left blank intentionally. 



 
 

Vegetation map for Magela Creek floodplain 
using WorldView - 2 multispectral image data 

 

 

 

T Whiteside & R Bartolo 

 

Supervising Scientist Division 

GPO Box 461, Darwin NT 0801 

 

 

 

 

April 2014 

Project number RES-2012-011 

 

(Release status – unrestricted) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

T Whiteside & R Bartolo 2014. Vegetation map for Magela Creek floodplain using 
WorldView -2 multispectral image data. Internal Report 628, April, Supervising Scientist, 
Darwin. 

Project number – RES-2012-011 

Authors of this report: 

Tim Whiteside – Environmental Research Institute of the Supervising Scientist, GPO Box 461, 
Darwin NT 0801, Australia 
Renee Bartolo – Environmental Research Institute of the Supervising Scientist, GPO Box 461, 
Darwin NT 0801, Australia 

 
The Supervising Scientist is a division of the Australian Government Department of the 
Environment. 

Supervising Scientist 
Department of the Environment  
GPO Box 461, Darwin NT 0801 Australia 

© Copyright Commonwealth of Australia 2014 

 

 
 

IR 628 is licensed by the Commonwealth of Australia for use under a Creative Commons 
By Attribution 3.0 Australia licence with the exception of the Coat of Arms of the 
Commonwealth of Australia, the logo of the agency responsible for publishing the 
report, content supplied by third parties, and any images depicting people. For licence 
conditions see: http://creativecommons.org/licenses/by/3.0/au/  

Internet: environment.gov.au/ssd/publications 

The views and opinions expressed in this publication are those of the authors and do not 
necessarily reflect those of the Australian Government or the Minister for the 
Environment.  

While reasonable efforts have been made to ensure that the contents of this publication are 
factually correct, the Commonwealth does not accept responsibility for the accuracy or 
completeness of the contents, and shall not be liable for any loss or damage that may be 
occasioned directly or indirectly through the use of, or reliance on, the contents of this 
publication. 

 

Printed and bound in Darwin NT by Supervising Scientist Division 



 
iii 
 

Contents 
List of Figures 5 

List of Tables 9 

Executive summary 1 
Related publications 2 
Acknowledgments 2 
Abbreviations 3 

1 Introduction 4 
1.1 Project definition 4 
1.2 Project focus 4 
1.3 Background 5 
1.4 Previous mapping of the Magela Floodplain 6 
1.5 Use of satellite data for wetland mapping 7 
1.6 GEOBIA 8 
1.7 Outline of the report 9 

2 Study site 10 
2.1 Landscape 10 
2.2 Climate 10 
2.3 Drivers of variability 11 
2.4 Vegetation 14 

3 Methods 16 
3.1 Data sets and data acquisition 16 
3.2 Ancillary data 19 
3.3 Image pre-processing and analysis 22 
3.4 Image analysis and classification 24 
3.5 Accuracy assessment 47 

4 Results 49 
4.1 Classes or vegetation mapping units 50 
4.2 Accuracy assessment 74 

5 Discussion 76 
5.1 Advantages and limitations of incorporating a CHM as part of the 

data set. 77 
5.2 Advantages and limitations of WV-2 multispectral data for 

mapping wetlands 78 
5.3 Advantages and limitations of using a GEOBIA methodology. 78 



 
iv 
 

6 Conclusion 80 

7 References 81 

Appendix A 86 

Appendix B 87 
 

 



 
v 
 

List of Figures 
Figure 1.1 Location of Magela Creek floodplain, the study area for this 

project. 5 
Figure 1.2 Two of the ecological risks identified for Magela Creek 

floodplain; feral animals (pigs) and weeds (Para grass). Photo: 
Krissy Kai-Nielsen. 6 

Figure 2.2 Mean, maximum and minimum monthly rainfall statistics for 
Jabiru Airport (1971–2013). Source: www.bom.gov.au 11 

Figure 2.3 Mean maximum and mean minimum monthly temperatures 
for Jabiru Airport, 1971-2013. Source: www.bom.gov.au 11 

Figure 2.4  Generalised hydrological change on the Magela Creek 
floodplain. The dashed line represents variability. The diagram 
was adapted from Sanderson et al  (1983) by Finlayson et al  
(1990). 12 

Figure 2.5 Annual total rainfall for Jabiru Airport, 1971-2012. Absent 
bar indicates that there are incomplete records for that year. 
Source: www.bom.gov.au 13 

Figure 2.6 Discharge rates (cubic metres per second) for the Magela 
Creek 009 gauging station for the period September 1971 to 
June 2013. Blue records indicated good quality continuous data, 
dark green represents good quality edited data, and orange 
represents satisfactory quality data. Red stepped line is rainfall 
records for the Magela Creek 009 gauging station Source: eriss 13 

Figure 2.7 Fire frequencies over the Magela Creek floodplain for the 
period 2000-2012 (a) and the frequency of late fires (fires after 
31st July) for the same period (b). Source: www.firenorth.org.au 14 

Figure 2.8. Vegetation communities of the Magela Creek floodplain 
mapped by Finlayson et al. 1989. 15 

Figure 3.1 WorldView-2 images captured on 11 May 2010. Red 
polygon is the extent of Region 1 (R1), yellow polygon is 
boundary of region 2 (R2) and green polygon is extent of Region 
3 (R3). 17 

Figure 3.2 The position of the WV-2 satellite relative to the sun during 
image capture over the Magela Creek floodplain, 11 May 2010. 
The position of the red circles represents the mean azimuth 
(angle) and elevation (radial) of the satellite for each of the 
images. The yellow circle represents the solar azimuth and 
elevation at the time of image capture. 18 

Figure 3.3 A subsample of the radiometrically calibrated imagery 
showing the effect of sun glint on Region 1 (upper) compared to 
Region 2 (lower). 19 

Figure 3.4 DEMs of the Magela Creek floodplain region. (a) the 30 m 
SRTM based DEM and (b) is the 10 m DEM derived from 2004 
aerial photography. 20 



 
vi 
 

Figure 3.5 A heavily treed tile from the (a) CHM and (b) the DSM 
draped over the DEM. 21 

Figure 3.6 Returns for discrete LiDAR. Distance 1 is the first return 
and distance 4 is the last return. 21 

Figure 3.7 The image analysis approach used for wetland vegetation 
mapping. 22 

Figure 3.8 Image object hierarchy. Each object is topologically linked 
to its neighbours, its super object and its sub objects. 24 

Figure 3.9 The Open/Modify project dialogue within the eCognition 
software. 25 

Figure 3.10 Flow diagram for the application of masks upon the WV-2 
and ancillary data. FDI is Forest Discrimination Index  (Bunting & 
Lucas 2006). 26 

Figure 3.11 The Assign No Data Values dialogue enabled the 
elimination of null data from the analysis. 27 

Figure 3.12 Water mask ruleset for Regions 2 and 3. 28 
Figure 3.13 Water objects (outlined in red) created as a result of the 

water mask. 28 
Figure 3.14 The cloud mask rule set. 29 
Figure 3.15 The cloud mask at work: (a) a cloud in the image, (b) the 

chessboard segmentation, (c) the initial cloud objects, (d) merged 
cloud objects, (e) buffered cloud objects, and (f) the final cloud 
objects. 30 

Figure 3.16 The issues associated with using a DEM-based height 
threshold to delineate the floodplain boundary. The boundary as 
delineated by a 6 m threshold based on the 30m SRTM DEM (a), 
the boundary as delineated by the same threshold based on the 
10 m aerial photography DEM (a). Insets showing detail (c) and 
(d). 32 

Figure 3.17 The four criteria that determine the composition of 
homogeneity parameter during an image segmentation (after 
Trimble 2012). 33 

Figure 3.18 Diagram showing the effect on an object boundary of the 
weighting for smoothness versus compactness criterion. 
Increased weighting for smoothness provides optimised smooth 
borders (following the black border), whereas increased 
weighting for compactness optimises compact objects (ie 
following the red boundary). 34 

Figure 3.19 The flow diagram for creating treed classes (left) and its 
implementation (right). A potentially treed object (red polygon) 
(a), the CHM (b), and tree sub-objects (c). 35 

Figure 3.20 Masks applied to imagery. Red is region 1, yellow is 
regions 2 and 3. White is cloud, blue is water and black is either 
the non-floodplain landscape or cloud shadow. 37 

Figure 3.21 A subset of the imagery show a portion of the Magela 
Creek floodplain within Region 1 (a), and showing the results of 



 
vii 
 

the initial image multiresolution segmentation (b). The 
segmentation algorithm used equal weights for all bands, a scale 
parameter of 500, a shape factor of 0.3, and compactness value 
of 0.6. 38 

Figure 3.22 ‘Decision tree’ for the determination of spectral indices 
derived classes for Region 1. The clear boxes represent class 
splitting occurring on objects created with a scale parameter (SP) 
of 500 while the grey boxes have a SP of 100 and yellow boxes 
have a SP of 50. The colour borders on the terminal boxes 
correspond to the vegetation classes on the final map. 39 

Figure 3.23 The first classification step for Region 1 from the 
eCognition process tree based on FDI thresholds. 40 

Figure 3.24 Region 1 after the initial classification into the 5 FDI 
classes. White represents non-floodplain regions, black is cloud 
or cloud shadow. 40 

Figure 3.25 The second round of classifications for Region 1 from the 
eCognition process tree based on NDVI thresholds. 41 

Figure 3.26 Region 1 after the second classification round into 10 
NDVI classes. White is either non-floodplain regions or cloud, 
black is cloud shadow. 42 

Figure 3.27  A subset of the Magela Creek floodplain within Regions 2 
and 3 (a), and showing the results of the initial image 
multiresolution segmentation (b). The segmentation algorithm 
used equal weights for all bands, a scale parameter of 500, a 
shape factor of 0.3, and compactness value of 0.6. 43 

Figure 3.28 The ‘Decision tree’ for the determination of spectral 
indices derived classes for Regions 2 and 3. The clear boxes 
represent class splitting occurring on objects created with a scale 
parameter (SP) of 500 while the grey boxes have a SP of 200. 
The colour borders on the terminal boxes correspond to the 
vegetation classes on the final map. 44 

Figure 3.29 First classification step for regions 2 and 3. White 
represents non-floodplain regions,cloud and cloud shadow are 
black, dark blue is water. 45 

Figure 3.30 Regions 2 and 3 after the second classification round into 
8 NDVI classes. Black is either cloud or cloud shadow. 46 

Figure 3.31 Location of reference data sites. 47 
Figure 4.1 The vegetation map for the Magela Creek floodplain, May 

2010. 49 
Figure 4.2 Image chip for Hymenachne grassland from Region 1 (a) 

True colour image with RGB=Bands 5,3,2, (b) NIR false colour 
image with RGB = Bands 8,5,3, (c) LI image, (d) FDI image, (e) 
EVI image and (f) NDVI image. 51 

Figure 4.3 Image chip showing a sample of Melaleuca woodland (a) 
true colour RGB=5,3,2, (b) false colour RGB= 8,5,3, (c) False 
colour RGB= 8,6,2, (d) FDI, (e) LI, (f) CHM. 53 



 
viii 

 

Figure 4.4 Image chip for Melaleuca open forest (a) True colour RGB 
= bands 5,3,2, (b) False colour RGB = bands 8,5,3, (c) FDI, (d) 
LI, (e) EVI, and (f) CHM. 55 

Figure 4.5 An image chip showing an example of Oryza grassland:(a) 
true colour image RGB=5,3,2, (b) nir false colour image RGB = 
8,5,3, (c) red edge false colour image RGB = 8,6,2, (d) LI image, 
and (e) FDI image. 57 

Figure 4.6 An image chip showing Pseudoraphis grassland (a) true 
colour imager RGB=5,3,2, (b) nir false colour image RGB = 8,5,3, 
(c) LI image, (d) FDI image, (e) NDVI image and (f) EVI image. 59 

Figure 4.7 Image chip for Pseudoraphis/Hymenachne (a) True colour 
RGB =5,3,2, (b) false colour RGB=8,5,3, (c) LI, (d) FDI,and (e) 
EVI. 61 

Figure 4.8 Image chip showing Para grass: (a) true colour 
RGB=Bands 5,3,2, (b) false colour RGB=Bands 8,5,3, (c) false 
colour RGB=Bands 8,6,2, (d) FDI, (e) LI and (f) EVI. 63 

Figure 4.9 Image chip of Nelumbo herbland. (a) True colour RGB = 
Bands 5,3,2, (b) False colour NIR RGB=Bands 8,5,3, (c) False 
colour RGB = Bands 8, 6, 2, (d) LI, (e) FDI, (f) EVI and (g) NDVI. 65 

Figure 4.10 Image chip for Salvinia. (a) RGB = 5,3,2, (b) RGB = 8,5,3, 
(c) RGB = 8,6,2, (d) LI, and  (e) FDI. Note the smooth south 
eastern edge of infestation, matches prevailing winds at that time 
of year. 67 

Figure 4.11 Image chip showing are of Eleocharis: (a) true colour 
RGB =5,3,2, (b) false colour RGB = 8,5,3, (c) false colour RGB = 
8,6,2, (d) FDI, (e) LI and (f) EVI. 69 

Figure 4.12 Leersia mats: (a) RGB = Bands 5,3,2, (b) RGB = 8,5,3, 
(c) RGB = 8,6,2, (d) RGB = Bands 6,5,3, (e) LI, and (f) FDI . 71 

Figure 4.13 Image chip showing Mangrove community: (a) true colour 
RGB = Bands 5,3,2, (b) false colour RGB = Bands 7,5,3, (c) FDI, 
(d) LI and (e) EVI, (f) CHM. 73 

Figure B.1 Eleocharis sedgeland indicated by the areas of darker 
green vegetation. 87 

Figure B.2 Oryza grassland as indicated by red arrow. 88 
Figure B.3 Pseudoraphis spinescens grassland. 89 
Figure B.4 Hymenachne acutigluma grassland with Para grass 

encroaching on right hand side. 90 
Figure B.5 Melaleuca woodland with a mixed grass/ sedge 

understorey. 91 
Figure B.6 Melaleuca open forest. 91 
Figure B.7 Nelumbo herbland. 92 
Figure B.8 A large expanse of Nymphaea/Nymphoides herbland. 93 
Figure B.9 The invasive Para grass, Urochloa mutica. 94 
Figure B.10 The floating fern, Salvinia molesta. 94 
 



 
ix 
 

List of Tables 
Table 3.1. Spectral bands of the WorldView-2 sensor. 16 
Table 3.2. Summary of the specifications for the three WorldView-2 

images acquired for this study. 17 
Table 3.3. Parameters used for the multiresolution segmentation for 

Region 1. 38 
Table 3.4. The confusion matrix for assessing the accuracy of a 

classification of remotely sensed data. 48 
Table 4.1. Object feature values for the selected Hymenachne object 

in region 1 and regions 2 and 3. 51 
Table 4.2. Object feature values for the selected Melaleuca woodland 

object and tree sub-objects. 54 
Table 4.3. Object feature values for selected the Melaleuca open 

forest object and the tree sub-objects. 56 
Table 4.4. Object feature values for the selected Oryza object. 58 
Table 4.5. Object feature values for the selected Pseudoraphis object. 60 
Table 4.6. Object feature values for selected Pseudoraphis / 

Hymenachne object. 62 
Table 4.7. Object feature values for the selected para grass object. 64 
Table 4.8. Object feature values for the selected Nelumbo object. 66 
Table 4.9. Object feature values for selected Salvinia object. 68 
Table 4.10. Object feature values for selected Eleocharis sedgeland 

object. 70 
Table 4.11. Object feature values for selected Leersia object. 72 
Table 4.12. Object feature values for selected Mangrove object. 74 
Table 4.13. Confusion matrix for the 2010 Magela Creek floodplain 

vegetation map. 75 
Table 4.14. Producer and User accuracies for each vegetation 

community class. 75 
 



 
1 

Executive summary 
The significance of the wetlands of the Magela Creek floodplain in northern Australia 
and their biodiversity has been recognised through their listing by the Ramsar 
Convention on Wetlands. The wetlands have been identified as being at risk from a 
number of sources, chiefly the landscape-scale risks of weeds, fire and climate change. In 
addition, the Magela Creek floodplain is a downstream receiving environment for the 
Ranger uranium mine. Offsite monitoring of this area will become increasingly important 
in the years following closure and rehabilitation of the minesite (post 2026), as a key 
component of an integrated environmental monitoring framework (particularly relevant 
to Key Knowledge Need 2.6.2 pertaining to off-site monitoring). 

Vegetation within the wetland is spatially and temporally variable and, therefore, a robust 
methodology for mapping wetland vegetation at scales that can detect the variability is 
required. In addition, time series mapping of floodplain vegetation will provide a 
contemporary baseline of annual vegetation dynamics on the floodplain to assist with 
analysing change during and after minesite rehabilitation.  

The aim of this project is to: 

To establish a baseline dataset of natural variability in vegetation that could be used to 
monitor potential mine impacts through the production of a series of high resolution 
vegetation maps 2010–2014. 

 Specifically, the objectives of this report are to: 

a. Document the procedures for producing a map of the floodplain vegetation for 2010 
in a large wetland downstream from Ranger Uranium Mine. 

b. Determine the applicability of high spatial resolution (HSR) satellite imagery to map 
and monitor vegetation on the floodplain. 

c. Develop and record a GEOBIA-based methodology suitable for mapping and 
monitoring the offsite environment. 

HSR satellite imagery consists of pixels with a ground sample distance (GSD) less than 5 
m. HSR imagery, such as WorldView-2 provides data for spatially detailed analysis of 
landscapes. The increased spatial heterogeneity associated with the finer resolution of the 
data requires data aggregation to assist with classification. The research described here 
uses geographic object-based image analysis (GEOBIA) to classify the floodplain 
vegetation from 2010 WorldView-2 imagery. The GEOBIA used consisted of a step-wise 
rule-set driven approach using a series of segmentations and classifications. The rule-set 
implemented a number of well-known spectral indices and sensor band specific ratios to: 
(1) create and classify objects representing the major landscape units (floodplain and 
non-floodplain) and mask non-target land covers, and (2) extract objects representative 
of the vegetation communities within the floodplain. The input of a digital elevation 
model enabled the delineation of the floodplain boundary.  

The main output of this project is a map of the major 12 vegetation communities that 
exist on the Magela Creek floodplain and their distribution for May 2010. Based on the 
reference data the overall accuracy of the map is 78%. The rule set was able to 
distinguish the majority of the floodplain classes. Most of the error appears to be 
associated with confusion between classes that are spectrally similar such as the classes 
dominated by grasses. The other main output from this project is the development of a 
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robust methodology for mapping the vegetation on the Magela Creek floodplain for 
2010 and subsequent years using WorldView-2 imagery. 

The major findings of this project are that WorldView-2 multispectral imagery is an 
appropriate data set for a vegetation classification of the Magela Creek floodplain. The 
application of a GEOBIA methodology is a suitable method for the increase within field 
spectral variation associated with HSR data. 

The use of WV-2 high spatial resolution imagery enables boundary delineation between 
classes and also aids in the identification of individual or small clusters of plants. The red 
edge band within the imagery was useful for discrimination of a number of the classes. 
Limitations of the WV-2 data include the narrow spectral range (350–940 nm) and 
different view angle for the different images. The advantages of using a GEOBIA 
method included the ability to compile a rule set that is repeatable and potentially 
transferrable to other data, although it is limiting in lengthy processing time. The 
inclusion of a Canopy Height Model (CHM) was beneficial in enabling the accurate 
identification and mapping of treed areas within the floodplain although the coverage 
was not entire and is a different date to the WV-2 data. 

The methodology described in this report will be applied to the WV-2 imagery acquired 
annually by eriss for 2011–2014. Vegetation maps from each year will be used in analysis 
of the spatial and temporal variability of the communities. This analysis will inform the 
temporal frequency of image acquisitions over the region as part of an ongoing 
monitoring program during and post mine site rehabilitation. 
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1 Introduction 
1.1 Project definition 
This report presents work undertaken by eriss staff during 2010–2012 to map the 
floodplain vegetation in a large ecologically significant wetland downstream from Ranger 
Uranium Mine using data for May 2010 captured by the satellite-based WorldView-2 
(WV-2) sensor. Within the project the goals were to determine the applicability of high 
spatial resolution multispectral satellite data for mapping and monitoring floodplain 
vegetation and develop a methodology that would be transferable to WV-2 imagery for 
future years. The time series mapping of floodplain vegetation will provide a 
contemporary baseline of annual vegetation dynamics on the floodplain to assist with 
monitoring and analysing off-site change during and after rehabilitation. 

The aims of this project are to: 

1. To produce high resolution maps of the vegetation communities of the Magela Creek 
floodplain for the years 2010–2013 to as a baseline. 

2. To map and analyse annual change within vegetation communities on the floodplain. 

More specifically, the objectives of this report are to: 

a. Determine the applicability of very high resolution satellite imagery to map and 
monitor vegetation on the floodplain and thus establish a baseline dataset of 
variability that can be used monitor the potential impacts downstream from the 
rehabilitation of Ranger Uranium Mine. 

b. Develop a GEOBIA-based methodology suitable for mapping and monitoring the 
offsite environment. 

The outcomes of this project are: 

· A vegetation map of the Magela Creek floodplain for May 2010 

· The development of a methodology capable of producing vegetation maps of the 
Magela Creek floodplain for WorldView-2 imagery captured in May 2011, June 2012 
and June 2013. 

1.2 Project focus 
The geographical focus of this project is the Magela Creek floodplain (Figure 1.1) within 
the East Alligator River catchment of the Alligators Rivers Region of the Northern 
Territory of Australia. The floodplain is a downstream receiving environment for the 
Ranger Uranium Mine. 
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Figure 1.1  Location of Magela Creek floodplain, the study area for this project. 

The research focus of this project is twofold. Firstly, the project is assessing the utility of 
high spatial resolution satellite imagery (in this instance WorldView-2 multispectral 
imagery) for mapping Magela Creek floodplain vegetation. WorldView-2 data have 
increased spectral range compared to other high spatial resolution satellite imagery 
acquired by eriss, namely QuickBird and IKONOS imagery. Secondly the project is 
focussed on developing a methodology for mapping the floodplain vegetation for 2010 
and subsequent years to establish a baseline for the natural variability of vegetation 
within the Magela Creek floodplain. This baseline will assist with monitoring the 
potential downstream impacts associated with minesite rehabilitation.Vegetation 
community mapping will also inform ecological risk assessment for management of the 
floodplain. Current landscape level ecological risks within the region are identified as 
weeds, feral animals and unmanaged wildfire. The research undertaken for this project 
will also provide valuable information that will inform research such as the National 
Environmental Research Program’s North Australia Hub remote sensing of coastal 
habitats program. 

1.3 Background 
According to the criteria of the Ramsar Wetlands Convention, the wetlands within 
Kakadu National Park (KNP) have been designated as internationally 
important (Finlayson et al. 2006). The wetlands, including the floodplain within the 
Magela Creek catchment are significant not only in their biogeographical context, but 
also for the diversity of plant communities (Finlayson et al. 2006) and as habitat refuges 
for abundant and diverse waterbird populations (Bayliss & Yeomans 1990, Bellio et al. 
2004). Previous research has identified 10 major vegetation communities within the 
Magela Creek floodplain (Finlayson et al. 1989) and the species composition of these 
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communities is seasonally dynamic (Finlayson et al. 2006). The spatial distribution of a 
number of the communities is annually dynamic, although reasons for the dynamics are 
not fully understood. It is uncertain whether the annual change is a naturally occurring 
phenomenon, the result of anthropogenic influence or a combination of both and, 
despite the importance of these wetlands, there has been little research on the 
dynamics (Finlayson et al. 2006). Accurate mapping of the communities within the 
floodplain at the appropriate spatial and temporal scale will provide data that will enable 
analysis that may determine the drivers of the dynamics. Vegetation community mapping 
of the floodplain also informs the ecological risk assessment underlying park 
management strategies (Bayliss et al. 2012). Current landscape level ecological risks 
within the region are identified as weeds, feral animals (Figure 1.2) and unmanaged 
wildfire (Bayliss et al. 2012). In addition, the Magela Creek floodplain is a down-stream 
receiving environment for the Ranger uranium minesite and as such off-site monitoring 
of this area will become increasingly important in the years following mine closure and 
rehabilitation (post 2026). 

 
Figure 1.2  Two of the ecological risks identified for Magela Creek floodplain; feral animals (pigs) and 

weeds (Para grass). Photo: Krissy Kai-Nielsen. 

1.4 Previous mapping of the Magela Floodplain 
The most recent community level vegetation map for the Magela Creek floodplain was 
created using a nearest neighbour supervised classification of a time series of four 
Landsat 5 TM images (May–September) captured in 2006 (Boyden et al. 2013). This 
classification provided 16 classes which were then aggregated into 10 vegetation 
community types and described to an extent the seasonalvariation for that year. Prior to 
the 2006 map, the last published vegetation map for the floodplain was produced in 1989 
based on aerial photo interpretation and extensive field campaigns  (Finlayson et al. 
1989). The 1989 map consisted of ten classes accounting for the seasonal variations in 
vegetation cover. Each class was derived from several years data collected at times of 
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peak growth (typically during the wet season) with the names used for each class either 
reflecting the observed indicator species at the period of peak biomass (wet to early dry 
season), or else the class was assigned a general descriptive name. At the time, Finlayson 
et al. (1989) postulated that the major determinant in the composition of flora was the 
duration and period of inundation, with lesser contributions from other factors such as 
water flow velocity and depth (Finlayson et al. 1989). 

There have been three studies examining temporal change of the distribution of Melaleuca 
spp. on the floodplain. An analysis of aerial photography  (Williams 1984) determined 
that, although the area covered by Melaleuca trees did not change between 1950 and 1975, 
tree density in a number of areas decreased by up to 37%. Another study of aerial 
photography for 1975 and 1994  (Riley & Lowry 2002), found the tree densities to be 
greater in 1975 than Williams (1984) had measured. The study also found, although the 
distribution had increased, Melaleuca densities had declined by 21% between 1975 and 
1994. In addition, a study of the spatial and temporal distribution of Melaleuca spp. on a 
portion of the floodplain was undertaken using four dates of aerial photographs over a 
54 year period and an object-based image analysis (Staben 2008). This work showed that 
while overall canopy cover has remained relatively constant, the spatial distribution has 
been dynamic. 

1.5 Use of satellite data for wetland mapping 
Multispectral remote sensing has been used as a source of data to successfully map and 
monitor vegetation at a range of scales from local (Boyden et al. 2013), regional (Hayder 
2001), continental  (Lymburner et al. 2011) to global (Herold et al. 2008). Remote sensing 
is a relatively low cost means of acquiring continuous data over remote, inaccessible and 
potentially hazardous areas such as tropical wetlands. Higher spatial resolution (HSR) 
data (with a ground sample distance (GSD) < 5 m) has shown potential for vegetation 
mapping  (Moffett & Gorelick 2012, Mutanga et al. 2012, Jawak & Luis 2013). This is 
despite HSR imagery typically not having the range across the electromagnetic spectrum 
(EM) that is covered by moderate resolution sensors such as the Landsat satellite series. 
For example, WV-2 imagery while having 8 bands only captures data from the visible and 
near infrared (VNIR) portion of the EM spectrum, whereas Landsat data (with a GSD 30 
m), also capturing 8 bands, covers the VNIR, the short-wave infrared and long-wave 
infrared regions. 

Medium spatial resolution (MSR) imagery (10–30 m GSD), such as Landsat TM and 
SPOT data have proven insufficient for discriminating vegetation species in detailed 
wetland environments (Harvey and Hill 2001; McCarthy et al. 2005; May et al. 1997). 
According to Adam et al. (2010), this is due to three factors. Firstly, it is difficult to 
distinguish the fine ecological divisions between certain vegetation species in MSR data. 
Secondly, the broad nature of the spectral wavebands in the data results in difficulty 
detecting sharp ecological gradients within narrow vegetation units in wetland 
ecosystems. Thirdly, MSR data lacks the finer spectral and spatial resolution needed for 
the detection and mapping of vegetation types beneath a canopy of vegetation in densely 
vegetated wetlands. Harvey and Hill (2001) found that the spatial resolution of aerial 
photography was superior to medium resolution satellite imagery (SPOT and Landsat 
TM) for detailed mapping of tropical wetlands. They also found the increased spectral 
information available in Landsat TM data provided a more accurate classification than 
the higher spatial resolution SPOT data. Boyden et al. (2013) identified a number of 
challenges for remote sensing of monsoonal wetland environments, mostly associated 
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with the highly variable annual rainfall and subsequent variation in water extent and 
levels within the floodplain. These issues are of concern when applying image analysis 
methods based purely on per-pixel information. QuickBird multispectral data captured 
mid-Dry season has been used to successfully map primarily para grass (Urochloa mutica) 
on the central portion of the Magela Creek floodplain (Boyden et al. 2007).The study 
found that para grass typically displayed higher normalised difference vegetation index 
(NDVI) values than other vegetation types at that time of year, although NDVI variation 
within Para grass infestations was associated with variation in floodplain moisture.  

1.6 GEOBIA 
An issue associated with the use of HSR data, particularly for vegetation mapping, is that 
the pixels are typically much smaller than the objects that are to be mapped. To ensure 
the likelihood of greater mapping accuracy there needs to be some form of aggregation 
of pixels to reduce the within class spectral variability (Blaschke 2010). One potential 
means to address this issue is to apply a geographic object-based image analysis 
(GEOBIA) methodology to the imagery. GEOBIA combines image segmentation and 
spatial, spectral and geographic information along with analyst experience with image-
objects in order to model geographic entities (Blaschke & Hay 2001). In other words, 
GEOBIA involves the partitioning of remotely sensed imagery into meaningful image-
objects, and analysing their characteristics through spatial, spectral and temporal scales. 
The requisites for GEOBIA are image segmentation, the attribution and classification of 
objects, and the ability to query and link individual objects based upon their spectral, 
spatial and temporal features  (Hay & Castilla 2008). 

Image pixels are cells within an arbitrary grid  (Hay et al. 2005) whose ground resolution 
is determined in earth observation by the resolution of the particular sensor. 
Subsequently, pixels bear little resemblance to real world features  (Fisher 1997, Cracknell 
1998). Pixels within medium to low resolution imagery (e.g. Landsat with a 30 m GSD) 
may contain combined or integrated signals from a number of land cover features, 
whereas pixels within a high resolution image will more closely approximate these 
features or their components (Hay et al. 2003). In addition, as the spatial resolution of 
imagery increases (or the GSD decreases) so does heterogeneity (or spectral within-field 
variability). This is particularly evident within recently commercially available high spatial 
resolution (HSR) imagery (such as WorldView-2) with a GSD of less than 5 
metres (Wulder et al. 2004).  

Pixel-based classifiers (such as the Maximum Likelihood and Nearest Neighbour 
classification algorithms) rely purely on the spectral values of the pixels and do not 
consider the spatial characteristics inherent in an image  (Blaschke & Strobl 2001). By not 
considering the spatial context of the features represented in remotely sensed data within 
the classification process, the misclassification of pixels within a particular land cover can 
occur providing ‘noise’ or a ‘salt and pepper’ effect  (Willhauck et al. 2000). Methods 
used to minimise this effect usually involve the reduction of the spatial complexity or 
heterogeneity of an image either by using some form of low pass filtering before or after 
the classification, the manual editing of the classification within a GIS, or by grouping 
pixels into regions or objects displaying homogeneous characteristics (image 
segmentation) prior to the classification. The latter method is the basis for GEOBIA 
which is increasingly the preferred image analysis method for classifying HSR data and 
the associated increase of spectral variability within land covers  (Blaschke 2010). 
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GEOBIA methodologies have been used successfully for a number of vegetation 
classification studies including deriving land cover classes for tropical savanna from MSR 
data (Whiteside et al 2011), forest delineation and tree crown extraction from very high 
spatial resolution hyperspectral data  (Bunting & Lucas 2006) and mapping the 
biophysical parameters of riparian vegetation from HSR imagery  (Johansen et al. 2008) 
and LiDAR (Johansen et al. 2010). Given the in-field spectral variability of HSR imagery 
(such as WorldView-2 data) and the fine detail vegetation variation shown in northern 
Australian floodplains, GEOBIA as a method is well suited for classifying the vegetation 
of the Magela Creek floodplain. 

1.7 Outline of the report 
This section (section 1) of the report has provided the definition, focus, aims and 
objectives of the report as well as background information regarding the application of 
remote sensing for mapping of wetland vegetation. Section 2 of this report describes the 
study site and its biophysical characteristics. Section 3 of this report describes the 
methods including the data sets used and their acquisition, the pre-processing of the data, 
and the analysis of the data to create the classified map. Section 3 also includes the data 
and method used to assess the accuracy of the classification. Section 4 describes the 
results of the analysis including the vegetation map for the Magela Creek floodplain and 
the description of the classes as well as the results of the accuracy assessment of the 
classification. Section 5 is a discussion of the results, implications of the uncertainty 
based on the accuracy assessment and the advantages and limitations of the data used 
and the application of the GEOBIA methodology. 
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2 Study site 
The Magela Creek sub-catchment is located on the boundary between Kakadu National 
Park and western Arnhem Land, in the Alligator Rivers Region (ARR) of Australia’s 
Northern Territory about 250 km east of Darwin (Figure 1.1). The 118.8 km long creek 
is a seasonally-flowing tributary of the East Alligator River, originating in the sandstone 
Arnhem Land plateau  (Williams 1979). The creek has been classified into ten reaches 
(Saynor & Erskine 2013) which can be grouped into five distinct sections: the channels 
intersecting the escarpment (Reaches 1–7); the braided sandbed channels of the lowlands 
(adjacent to Ranger Uranium Mine) (Reach 8); the narrow Mudginberri Corridor (a series 
of billabongs and connecting channels) and the Magela Creek floodplain (consisting 
mostly of seasonally-inundated black-clay with a number of permanent billabongs) 
(Reach 9); and a single channel that flows into the East Alligator River (Reach 10). The 
corridor and floodplain sections are the focus of this report. The floodplain extent is 
approximately 220 km2. 

2.1 Landscape  
The Magela Creek floodplain is typical of the low-relief sub-coastal Holocene floodplains 
that have formed along lower reaches of the region’s rivers and are typically 3–4 m above 
AHD (Australian Height Datum) and 0.2 to 1.2 m above the maximum high tide level. 
Thus the floodplains of the region are potentially at risk of salt water intrusion resulting 
from future potential sea level rise that has been associated with climate change  (Bartolo 
et al. 2008, Schaeffer et al. 2012). Soils of the floodplain typically consist of alluvial 
‘cracking clay’ sediments belonging to the class Vertosols, as described by Isbell (1996). 

2.2 Climate 
The regional climate is tropical monsoonal with two distinct seasons, a shorter hot and 
humid Wet season (typically December - March) and a longer slightly cooler Dry season. 
From 36 years of recorded weather observations (www.bom.gov.au), the mean annual 
rainfall for Jabiru Airport is 1584 mm with nearly all rain occurring in the Wet season 
(Figure 2.1). The period January–March has the highest mean monthly rainfall with 354, 
370 and 321 mm respectively for each month, whilst the mean monthly rainfall for 
November and December are 143 and 235 mm respectively. The mean maximum 
temperatures for Jabiru Airport range between 31.6–37.6ºC, with the hottest month 
being October and the coolest months, June–July (Figure 2.2). July has the lowest mean 
minimum temperature (18.5ºC) while the highest mean minimum (24.9ºC) occurs in 
November and December. While the floodplains in the region reliably receive an annual 
inundation, 95% of these areas are typically dry by the end of the dry season (Russell-
Smith et al. 1995). 
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Figure 2.1  Mean, maximum and minimum monthly rainfall statistics for Jabiru Airport (1971–2013). 

Source: www.bom.gov.au 

 

Figure 2.2  Mean maximum and mean minimum monthly temperatures for Jabiru Airport, 1971–2013. 
Source: www.bom.gov.au 

2.3 Drivers of variability 
The major drivers of variability of vegetation community distribution in the Magela 
Creek floodplain are identified as primarily the hydrological cycle (mostly the duration 
and period of inundation)  (Finlayson et al. 1989) and to a lesser extent fire (Roberts 
1997). The duration and period of inundation is linked to rainfall and discharge from the 
Magela Creek upstream. 

2.3.1 Rainfall and discharge 
The climate descriptors above in section 2.2, while giving an indication of the general 
patterns, tend to mask the variation in the timing and variation of the monsoonal activity 
(Finlayson 2005). Primarily, inundation of the large floodplains of  northern Australia is 
determined by the onset of the monsoon, its duration and intensity, including the impact 
of individual low pressure systems within the monsoon  (Wasson & Bayliss 2010). Figure 
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2.3 displays a generalised hydrological cycle for the Magela Creek floodplain. The dashed 
line on the diagram represents the variability that is present in the cycle predominant due 
to the annual variation in monsoonal activity.   

 

 
Figure 2.3  Generalised hydrological change on the Magela Creek floodplain. The dashed line 

represents variability. The diagram was adapted from Sanderson et al.  (1983) by Finlayson et al.  
(1990). 

Discharge in the Magela Creek is strongly influenced by El Nino Southern 
Oscillation (Wasson & Bayliss 2010) although other events such as cyclones also have an 
impact. Although the period of records is limited, rainfall and annual river flow for the 
Magela Creek have shown a decadal cycle of approximately 20 years (Wasson & Bayliss 
2010). The maximum and minimum monthly rainfall bars in Figure 2.1 do indicate the 
potential for variability within rainfall in the region. The annual rainfall totals for Jabiru 
Airport for the period 1971–2012, while an incomplete record, show the interannual 
variation in rainfall (Figure 2.4). The discharge data recorded over 40 years (1971–2013) 
for the Magela Creek 009 gauging station (located upstream from the floodplain) also 
display the seasonal and interannual variability (Figure 2.5). Peak discharge is closely 
related to high rainfall events. 
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 Figure 2.4  Annual total rainfall for Jabiru Airport, 1971–2012. Absent bar indicates that there are 
incomplete records for that year. Source: www.bom.gov.au 

 

Figure 2.5  Hydrograph showing discharge rates (cubic metres per second) for the Magela Creek 009 
gauging station for the period September 1971 to June 2013. Black records indicated good quality 

continuous data, dark green represents good quality edited data, and orange represents satisfactory 
quality data. Discharge Source: eriss  

2.3.2 Fire 
Fire is seen as a major influence in the prevalent savanna vegetation communities of 
northern Australia  (Andersen et al. 2003, Rossiter et al. 2003, Beringer et al. 2007) and 
modification of fire regimes affects the tree/grass balance within these ecosystems. 
Reductions in fire frequency and intensity tend to result in an increase in tree recruitment 
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whereas increased fire frequencies and intensities favour the grass component of savanna 
by suppressing tree growth and establishment  (Beringer et al. 2007). Within the 
floodplains, humic fires have been observed to have a detrimental impact  (Williams 
1984, Russell-Smith et al. 1995). Fire has also been shown to have an impact on woody 
species (Melaleuca spp.) within the floodplains of Kakadu National Park  (Roberts 1997). 
Tree mortality is significantly higher in areas exposed to fire, with high fire intensity (as 
experienced in the late dry season) causing high levels of mortality  (Roberts 1997). There 
has been little to no research of the impact of fire on the distribution of non-woody 
vegetation on the Magela floodplain. 

The North Australia Fire Information website (www.firenorth.org.au) provides spatial 
data sets of fire frequency for northern Australia using fire scar mapping derived from 
multi-temporal satellite data. Figure 2.6a shows the fire frequency over the Magela Creek 
floodplain for the period 2000 to 2012. The map shows that most of the floodplain has 
been burnt in 6 years or less within the 13 years period which contrasts noticeably with 
the surrounding savanna landscape. Figure 2.6b shows the frequency of late fires (after 
31st July) on the Magela Creek floodplain. Late fires can assumed as a surrogate for fire 
intensity. As can be seen from the map, most fires that do occur on the floodplain are 
not late fires. 

 
Figure 2.6  Fire frequencies over the Magela Creek floodplain for the period 2000–2012 (a) and the 

frequency of late fires (fires after 31st July) for the same period (b). Source: www.firenorth.org.au 

2.4 Vegetation 
The vegetation on the Magela Creek floodplain consists of paperbark forests and 
woodlands, open perennial and annual swamps, billabongs and grass/sedge/herb fields. 
Williams (1979) identified 6 major vegetation communities related to water depth based 
on data collected from non-peak vegetative growth periods and consequently, according 
to Finlayson et al. (1989), failed to identify classes containing seasonal vegetation such as 

   



 
15 

grass species, e.g. Oryza spp. In another study, peak Wet season herbaceous aquatic 
vegetation was mapped by Morley (1981) providing a classification consisting of 36 
communities, which were further clustered together into 8 major classes (Sanderson et al. 
1983). Eight key floodplain communities (Figure 2.7) have been identified by previous 
research and described based upon their dominant species (Story 1976, Finlayson et al. 
1989). Descriptions of the major communites are in Appendix B. 

 
Figure 2.7  Vegetation communities of the Magela Creek floodplain mapped by Finlayson et al. 1989. 
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3 Methods 
3.1 Data sets and data acquisition 
3.1.1 Multispectral data 
The primary data set for this project consisted of three overlapping scenes of 
WorldView-2 (WV-2) multispectral data captured at approximately 1130 CST, 11 May 
2010. The sensors onboard the WV-2 satellite capture data in 11-bit format. After 
geometric correction image pixels represent 2 m ground sample distance (GSD) at nadir. 
The multispectral data consist of 8 spectral bands (coastal, blue, green, yellow, red, red 
edge, NIR1, and NIR2). Also acquired was the WV-2 panchromatic imagery for the 
region. Data in the panchromatic band has a GSD of 0.5 m after geometric correction. 
Wavelength characteristics for each band are displayed in Table 3.1. A detailed 
description of the sensor and data characteristics may be found in  (Updike & Comp 
2010). 

Table 3.1  Spectral bands of the WorldView-2 sensor. 

Spectral band Wavelength centre (nm) Wavelength min - max (nm) 

Coastal 427 400 - 450 

Blue 478 450 - 510 

Green 546 510 - 580 

Yellow 608 585 - 625 

Red 659 630 - 690 

Red edge 724 705 - 745 

Near infrared 1 (NIR1) 831 770 - 895 

Near infrared 2 (NIR2) 908 860 - 1040 

Panchromatic 630 450 - 800 

 

A feature that distinguishes WV-2 data from other HSR multispectral satellite data is the 
inclusion of coastal (400–450 nm), yellow (585–625) and red edge (705–745 nm) bands. 
Of these bands, the one with most potential for this project is the red edge band, which 
is optimised for the spectral characterisation of chlorophyll and water content in 
vegetation biomass, thus the band is useful for detecting vegetation under stress (Clevers 
et al. 2002). Filella and Penuelas (1994) found a high correlation between the wavelength 
of the red edge peak and chlorophyll content. 

The imagery acquired covered approximately 730 km2 of the Magela Creek -catchment 
including the 225 km2 of the Magela floodplain (Figure 3.1). As the requested area for 
data capture exceeded the maximum swath width of the WorldView-2 satellite, three 
images were acquired during the satellite overpass. Table 2.3 lists the scene parameters 
for each image. There is approximately a 1 km2 and 40 km2 overlap between the imagery 
covering Regions 1and 2, and Regions 2 and 3, respectively. All imagery was supplied in a 
format suitable for scientific analysis (with no radiometric or geometric enhancements) 
and according to the specifications detailed in Appendix B of Whiteside et al. (2013). 
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Figure 3.1  WorldView-2 images captured on 11 May 2010. Red polygon is the extent of Region 1 (R1), 

yellow polygon is boundary of region 2 (R2) and green polygon is extent of Region 3 (R3). 

Table 3.2  Summary of the specifications for the three WorldView-2 images acquired for this study. 
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11 May 2010 Region 1 Region 2 Region 3 

Time of capture 11:15:19 CST 11:14:28 CST 11:14:41 CST 

Scene centre 12° 19’ 26.28” S 
132° 50’ 7.23” E 

12° 26’ 56.68” S 
132° 50’ 19.5” E 

12° 32’ 21.55” S 
132° 53’ 6.92” E 

Mean off-nadir view angle 19.2° 18.3° 16.5° 

Mean satellite azimuth 237.2° 323.2° 311.2° 

Mean satellite elevation 68.4° 69.3° 71.3° 

Area covered 196 km2 183 km2 479 km2 

Proportional cloud cover 0.012 0.009 0.014 

 

The Region 1 image had a noticeable difference in mean satellite azimuth to Regions 2 
and 3 (Figure 3.2). As a result there was visible sun glint from patches of water in Region 
1, where this is not evident in Regions 2 and 3 (Figure 3.3). Sun glint is the specular 
reflection of directly transmitted sunlight from the water surface and occurs in imagery 
when the water surface orientation is such that the sun is directly reflected towards the 
sensor  (Kay et al. 2009). The result of sun glint is an increase in reflected radiance by a 
factor of 2 or more  (Kay et al. 2009), and in extreme cases the saturation of the sensor, 
making retrieval of information very difficult. Methods for correcting for sun glint in 
HSR data are based on algorithms that do not account for surface vegetation  (Kay et al. 
2009) and as such would not function in a wetland scenario. 

 
Figure 3.2  The position of the WV-2 satellite relative to the sun during image capture over the Magela 
Creek floodplain, 11 May 2010. The position of the red circles represents the mean azimuth (angle) and 
elevation (radial) of the satellite for each of the images. The yellow circle represents the solar azimuth 

and elevation at the time of image capture. 
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Figure 3.3  A subsample of the radiometrically calibrated imagery showing the effect of sun glint on 

Region 1 (upper) compared to Region 2 (lower). 

3.2 Ancillary data 
3.2.1 Digital elevation models 
The following ancillary data were incorporated into the project to aid in delineating the 
floodplain/uplands boundary and in masking out non-target land covers such as savanna 
and escarpment outliers. Terrain information in the form of two digital elevation models 
(DEMs) was included. The first DEM was Geoscience Australia’s 1 Second Digital 
Elevation Model Version 1.0 derived from the Shuttle Radar Topography Mission 
(SRTM) ( 
Figure 3.4a). The DEM, based on the SRTM data captured in 2000, has a horizontal  
spatial resolution of 30 m and was incorporated to enable the delineation the floodplain 
boundary. A finer 10 m horizontal resolution DEM derived from a 2004 aerial 
photograph survey of KNP was included for the purpose of delineating the upper 
reaches of the floodplain that were not well defined in the SRTM DEM ( 
Figure 3.4b). Both DEMs fully covered the spatial extent of the study area. The 
incorporation of terrain information has been shown to improve vegetation classification 
involving HSR imagery (Devhari & Heck 2009, Whiteside et al. 2011). 
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(a) (b) 

 
Figure 3.4  DEMs of the Magela Creek floodplain region. (a) the 30 m SRTM based DEM and (b) is the 

10 m DEM derived from 2004 aerial photography. 

3.2.2 Canopy height model 
A canopy height model (CHM) was incorporated with the intent to differentiate between 
treed land cover and spectrally similar but non-treed land cover (Figure 3.5a). The CHM 
was derived from a LiDAR capture conducted within KNP between 22 October and 16 
November 2011. A Leica ALS60 laser scanner was used to collect the discrete multiple 
return data. The horizontal and vertical accuracy of the data were 0.8 m and 0.3 m, 
respectively. The average point spacing was 2 m-2; the laser beam footprint was 0.32 m, 
and the flying height was 1409 AGL. A CHM is calculated by subtracting the bare earth 
model or DEM from the LiDAR data from the digital surface model (DSM) (Figure 
3.5b). The DEM is derived from last returns which are assumed to have hit the ground 
(Figure 3.6). The DSM is derived from first returns which are assumed to hit the top of 
vegetation. The derived CHM has a resolution of 2 m GSD.   
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(a) 

 
 (b) 

Figure 3.5  A heavily treed tile from the (a) CHM and (b) the DSM draped over the DEM. 

 
Figure 3.6  Returns for discrete LiDAR. Distance 1 is the first return and distance 4 is the last return. 
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3.3 Image pre-processing and analysis 
The steps within the image analysis approach used to produce the Magela Creek 
floodplain vegetation map are shown in Figure 3.7. Section 3.3.1 summarises the pre-
processing steps, section 0 describes the image analysis steps, section 3.5.1 describes the 
reference data used for accuracy assessment, while section 3.5.2 describes the accuracy 
assessment methods. 

 
Figure 3.7  The image analysis approach used for wetland vegetation mapping. 

3.3.1 Pre-processing 
Pre-processing of the data was undertaken to geometrically and radiometrically correct 
the imagery to characterise the floodplain and involved three steps: geometric 
rectification, radiometric calibration and mosaicking of the three images. Details of the 
procedures for both the geometric and radiometric correction of this imagery are 
described in detail in Whiteside et al. (2013) and summarised in sections 3.3.2 and 3.3.3. 
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3.3.2 Geometric rectification 
All imagery were geometrically orthorectified using the sensor’s rational polynomial 
coefficients (RPCs) and ground control points (GCPs) based on easily identifiable 
tarpaulins place throughout the scene with locations recorded using a differential GPS. 
The surface model for the orthorectification was the SRTM DEM data set. Accuracy 
assessment of the rectification was based on 6 independent GCPs with the mean RMSE 
1.82 m (Staben et al. 2012, Whiteside et al. 2013). 

3.3.3 Radiometric correction 
Radiometric correction of the imagery involved converting the 11-bit digital numbers 
(DNs) recorded directly by the sensor to floating point surface reflectance. First, the at-
sensor DNs were converted to top-of-atmosphere spectral radiance (LTOA) using the 
following equation (1): 

 𝐿𝑇𝑂𝐴 =
𝐾𝐵𝑎𝑛𝑑𝑄𝑃𝑖𝑥𝑒𝑙 ,𝐵𝑎𝑛𝑑

∆𝜆,𝐵𝑎𝑛𝑑
, (1) 

where LTOA represents the top-of-atmosphere spectral radiance image pixels in a given 
band, KBand is the absolute radiometric calibration factor for a given band, QPixel,Band is the 
radiometrically corrected image pixel (DN), and Δλ,Band is the effective bandwidth for a 
given band at wavelength, λ (Updike & Comp 2010). Both KBand and Δλ,Band are obtained 
from the metadata supplied with imagery. The LTOA images were then converted to 
surface reflectance (Ps) using the physics-based Fast Line-of-sight Atmospheric 
Adjustment using Spectral Hypercubes (FLAASH) atmospheric correction algorithm 
 (Adler-Golden et al. 1999). The FLAASH algorithm, which is available as a module 
within ENVI image analysis software, utilises sensor orientation data and the 
MODTRAN5 radiative transfer model  (Berk et al. 2006). Reflectance was scaled by a 
factor of 10000 to reduce processing time. 

3.3.4 Image mosaic 
Prior to creating a mosaic of the three reflectance images, null pixels (edge pixels that are 
not part of the imagery) were converted from the value 0 to -1500. If the default value of 
0 for null pixels was kept pixels within the reflectance images with an actual value of 0 in 
some bands (some pixels within water and shadows) would result in null sections within 
the image during the mosaic process. A mosaic was firstly created from the region 2 and 
3 images. The region 2 image was colour adjusted to the fixed Region 3 values using 
statistics from the overlapping areas in the regions and resampled using the Nearest 
Neighbour algorithm. Region 1 was then added to the Region 2 and 3 mosaic by colour 
adjusting Region 1 to the fixed mosaic of Region 2 and 3. Any null pixels in the final 
mosaic of all three images were given the value -1500 making it easy to eliminate these 
pixels from the analysis. 
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3.4 Image analysis and classification 
A GEOBIA approach was used to analyse and classify the WV-2 imagery. GEOBIA is 
typically a stepwise process involving a series of rules that implement segmentation, 
reshaping and classification algorithms. These rules establish and operate within a series 
of object and classification hierarchies (Figure 3.8).  

 
Figure 3.8  Image object hierarchy. Each object is topologically linked to its neighbours, its super object 

and its sub objects. 

For this project, the GEOBIA rule set was created using the eCognition software 
package. Figure 3.9 shows the project set up dialogue where the image data, thematic 
layers and extent are selected.  
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Figure 3.9  The Open/Modify project dialogue within the eCognition software. 

3.4.1 Masks 
Prior to any discrimination of the vegetation within the floodplain, a series of masks were 
applied to the mosaic to exclude regions of non-interest from the analysis (Figure 3.10). 
This was done to reduce unnecessary analysis involving non-relevant regions and 
redundant processing steps. 
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Figure 3.10  Flow diagram for the application of masks upon the WV-2 and ancillary data. FDI is Forest 

Discrimination Index  (Bunting & Lucas 2006). 

3.4.2 Masking out of non-image pixels 
When setting up the project in eCognition, a null data value can be assigned by clicking 
the No Data button seen in the Open Project dialogue (Figure 3.9) to eliminate null data 
pixels from the analysis. In this case, -1500 was used as the value for null data pixels as 
assigned during the creation of the mosaic (Figure 3.11). 
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Figure 3.11  The Assign No Data Values dialogue enabled the elimination of null data from the analysis. 

3.4.3 Water mask 
The NIR1 band (770–895 nm) displays low reflectance values over water bodies. 
Therefore, it was possible to delineate open water from the image mosaic by utilising a 
threshold based on the NIR1 band as well as a reshaping routine (Figure 3.12). The 
process involved creating seed objects for the water class using the multi-threshold 
segmentation algorithm that splits the image into objects belonging to two or more 
classes based on pixel values above or below the user-defined thresholds  (Trimble 2012). 
In this instance, water seed objects were created for Regions 2 and 3 from pixels below 
the threshold value of 400 for the NIR1 band. The threshold for Region 1 was 200. The 
reshaping routine involved the growing of the seed objects into neighbouring pixels to 
ensure surface water was sufficiently covered by the objects and shrinking to smooth the 
boundaries of the objects (Figure 3.13). 
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Figure 3.12  Water mask ruleset for Regions 2 and 3. 

 
Figure 3.13  Water objects (outlined in red) created as a result of the water mask. 

3.4.4 Cloud masks 
The Forest Discrimination Index (FDI), a spectral index developed by Bunting and 
Lucas (2006), was used as a basis to delineate clouds (Equation 5): 

 𝐹𝐷𝐼 = 𝑁𝐼𝑅2 − (𝑅𝐸 + 𝐵𝑙𝑢𝑒) (2) 

where NIR2, RE and Blue are the near infrared 2 (860–1040 nm), red edge (705–745 nm) 
and blue (450–510 nm) bands of the WV-2 imagery respectively. The index was useful 
for extracting clouds because although clouds have high values in the NIR2 and Red 
edge bands so does actively photosynthesising vegetation, and clouds also have high 
values for the Blue band as do highly reflective rocky outcrops. Thus by using FDI it is 
possible to readily differentiate clouds from other bright features in the landscape.  

A mask to extract clouds based on this index was created using a chessboard 
segmentation creating a grid of square objects, containing 10 x 10 pixels, and assigning 
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objects to the ‘Cloud’ class if their mean object FDI value was less than -900 (Figure 
3.14). Adjacent 100 m2 objects assigned to the ‘Cloud’ class were then merged to create 
‘Cloud’ object seeds, and the boundaries of the ‘Cloud’ object seeds were then grown 
iteratively to subsume neighbouring pixels with FDI value less than -850 (Figure 3.15). 
The boundary of the ‘Cloud’ mask was then buffered (extended) by a distance of 80 
pixels to ensure capturing as much cloud within the imagery as possible. 

 
Figure 3.14  The cloud mask rule set. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 3.15  The cloud mask at work: (a) a cloud in the image, (b) the chessboard segmentation, (c) the 
initial cloud objects, (d) merged cloud objects, (e) buffered cloud objects, and (f) the final cloud objects. 

The East Alligator River in the northern section of Region 1 was not detected by the 
water mask (Section 3.4.3) due to pixels representing the river showing high reflectance 
values in the bands that typically absorb clear water. This was most likely due to a 
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combination of the sun and sensor angles associated with the image as well as high levels 
of suspended material and surface roughness in the (tidal) portion of the river. 
Consequently, with the FDI threshold used delineate cloud objects, the river was 
included in the ‘Cloud’ class. The river was able to be extracted from ‘Cloud’ objects 
using a NIR1/NIR2 ratio threshold with the value for the East Alligator object being 
greater than 0.15. 

3.4.5 Floodplain differentiation 
After the various masks were applied, the next step involved partitioning the remaining 
imagery into floodplain and non-floodplain regions. Initially, the floodplain boundary 
was delineated using a height-based threshold based on digital elevation model (DEM) 
values. Two DEMs were trialled to evaluate their efficacy: version 1 of the Geoscience 
Australia DEM derived from the Shuttle Radar Topography Mission (SRTM) with 30 m 
pixels and a 10 m photogrammetry-derived DEM produced from a 2004 aerial 
photography capture of KNP. 

A threshold height (z) value of 6 m based on the SRTM DEM was used to split the 
imagery into floodplain (z < 6 m) and non-floodplain (z ≥ 6 m) super-objects. The lack 
of spatial detail in the coarser resolution DEM (30 m pixel) and potential mis-registration 
between the DEM and the WorldView-2 data appeared to affect the accuracy of 
delineating the floodplain boundary. This was particularly evident in the upper reaches of 
the floodplain (towards the southern extent of the imagery) where the boundary was 
poorly defined (Figure 3.16a). To attempt to compensate for this, the finer scale aerial 
photography based DEM (10 m pixel) was used for boundary delineation with the same 
threshold value. The boundary created by the aerial photography based DEM was better 
defined in the upper reaches but there were still issues with delineation further 
downstream (Figure 3.16b), where there was less accurate boundary delineation and a 
large area discarded in the northern section of the floodplain. Both DEMs displayed 
artefacts resulting from the influence of the flat terrain of the region (Figure 3.16c and d) 
and/or vegetation. 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 3.16  The issues associated with using a DEM-based height threshold to delineate the floodplain 
boundary. The boundary as delineated by a 6 m threshold based on the 30m SRTM DEM (a), the 

boundary as delineated by the same threshold based on the 10 m aerial photography DEM (a). Insets 
showing detail (c) and (d). 

Using height thresholds, neither DEM was totally successful in providing a boundary 
that aligned with the observed floodplain boundary. However, by combining the objects 
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derived from the 6 m threshold applied to both DEMs and using this as a boundary 
proxy. The outline was then manually adjusted within a GIS using visual interpretation of 
the WV-2 imagery to provide a more comprehensive and accurate floodplain boundary. 

3.4.6 Floodplain analysis and classification 
The floodplain portion of the imagery then underwent multiresolution segmentation 
(Benz et al. 2004) whereby the image was partitioned into homogeneous clusters of 
pixels or image-objects. The multiresolution segmentation algorithm is based on the 
fractal net evolution approach (FNEA)  (Baatz & Schäpe 2000, Benz et al. 2004), 
whereby the segmentation of an image into image-objects is influenced by three 
parameters: scale, colour and form (Willhauck et al. 2000). The algorithm is primarily an 
iterative bottom-up segmentation method starting with individual pixels and merging 
these pixels based upon pixel heterogeneity and object shape and colour. These features 
are determined within the algorithm by two parameters; (a) colour versus form 
(homogeneity) and (b) scale (heterogeneity). The first parameter (a) within FNEA is the 
composition of homogeneity of the image objects (Figure 3.17). There are four criteria 
which define the relative homogeneity of image objects. These four criteria are grouped 
into two pairings: (i) colour versus shape and (ii) smoothness versus compactness.  In the 
first pairing (i), the shape criterion is a measure of spatial homogeneity while the colour 
criterion refers to the spectral homogeneity. By assigning less emphasis to the shape 
criterion the contribution of the spectral values of image layers is increased.  The shape 
criterion is influenced by the second pairing (ii). The smoothness criterion optimises 
image objects in relation to the smoothness of the borders whereas the compactness 
criterion optimises objects that are compact (Figure 3.18). The sum of the weightings for 
colour and shape combined equal one and the same applies for the sum of the 
weightings for smoothness and compactness. The second parameter (b) is the scale 
parameter (SP) which, although unit-less, determines the maximum allowable 
heterogeneity of pixels within objects, and hence the size of the objects resulting from 
segmentation. In addition each band within the image can be weighted to either increase 
or decrease that band’s importance in the segmentation. 

 

Composition of homogeneity

Colour

Shape

Compactness

Smoothness

 

Figure 3.17  The four criteria that determine the composition of homogeneity parameter during an 
image segmentation (after Trimble 2012). 
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Figure 3.18  Diagram showing the effect on an object boundary of the weighting for smoothness versus 

compactness criterion. Increased weighting for smoothness provides optimised smooth borders 
(following the black border), whereas increased weighting for compactness optimises compact objects 

(i.e. following the red boundary). 

3.4.7 Trees versus no trees 
The LiDAR derived CHM was used to distinguish objects that contained trees from 
objects with no trees (Figure 3.19). The first step identified objects that were potential 
candidates containing trees (Figure 3.19 a and b). This was done by using a mean height 
threshold of 0.8 m. This threshold value assumed that objects with a mean height above 
the threshold potentially contained trees. Within these potentially treed objects, sub-
objects representing trees or clusters were created using the threshold segmentation 
algorithm with trees assumed as being the areas within the CHM above 4 m (Figure 
3.19c). Sub-objects with spurious high values were removed from the tree sub-objects 
class using 25 m as a ceiling value.  Objects were eliminated from the potentially treed 
class if they contained no tree sub-objects. The remaining treed objects were then 
assigned to a tree class depending on the proportion of tree sub-objects per treed object: 
Open forest was greater than 50% proportional cover, Woodland 10–50% proportional 
cover, Open Woodland less than 10% proportional cover. These proportions are 
consistent with those described in the Australian Soil and Land Survey Field Handbook 
(Hnatiuk et al. 2009). 
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(a)  

(b)  

(c)  

Figure 3.19  The flow diagram for creating treed classes (left) and its implementation (right). A 
potentially treed object (red polygon) (a), the CHM (b), and tree sub-objects (c). 

3.4.8 Discriminating spectral cover classes within the floodplain  
Four band ratios or indices were identified as being useful for class segregation and were 
used to segment and classify the objects within the image. The process involved a series 
of segmentations and classifications based on thresholds of band ratios that progressively 
discriminated vegetation classes within the floodplain regions. The band ratios used in 
this study included a version of FDI  (Bunting & Lucas 2006) using NIR2, Red edge 
(RE) and Blue bands (Equation 5), an index created specifically for this project termed 
the Lily Index (LI) and the enhanced vegetation index EVI  (Huete et al. 2002) using the 
NIR2 band (Equation 4). A normalised difference vegetation index (NDVI) (after Rouse 
et al. 1973) using the NIR2 band (Equation 3) was also used . The LI (Equation 6) 
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treed objects
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WoodlandOpen forest No trees

Proportion of
tree sub-objects

Open woodland

Mean CHM
> 0.8 m?
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Input Process
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derived its name from its ability, when initially formulated and applied to this imagery, to 
readily identify expanses of Nelumbo nucifera. Subsequently, the index was further found to 
readily distinguish between senescent vegetation and bare ground.  

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅2 − 𝑅𝑒𝑑
𝑁𝐼𝑅2 + 𝑅𝑒𝑑

 (3) 

𝐸𝑉𝐼∗ =
𝐺 × (𝑁𝐼𝑅2 − 𝑅𝑒𝑑)

𝑁𝐼𝑅2 + (𝐶1 × 𝑅𝑒𝑑) + (𝐶2 × 𝐵𝑙𝑢𝑒) + 𝐿
 (4) 

𝐹𝐷𝐼 = 𝑁𝐼𝑅2 − (𝑅𝐸 + 𝐵𝑙𝑢𝑒) (5) 

𝐿𝐼 = (𝑁𝐼𝑅2 + 𝑅𝐸) − 𝐵𝑙𝑢𝑒 (6) 

where NIR2, B and R are the near infrared 2 (860 – 1040 nm), blue (450-510 nm) and red (625-690 nm) bands of the WV-2 data 
respectively.  *G=2.5, C1=6, C2=7.5 and L=1. 

3.4.9 Delineating Region 1 vegetation classes 
Due to the differing view angle for the Region 1 image (as described in section 3.1.1) and 
the increased reflective intensity from some surfaces (i.e. surface water), it was necessary 
to process Region 1 separately from Regions 2 and 3. Hence, a segment representing the 
Region 1 portion of the floodplain was separated from the other regions using a distance 
from pixel to bottom edge of image rule (Figure 3.20). The floodplain object was split so 
that Region 1 consisted of pixels that were of a distance greater than 17835 pixels from 
the bottom of the image. 
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Figure 3.20  Masks applied to imagery. Red is region 1, yellow is regions 2 and 3. White is cloud, blue 

is water and black is either the non-floodplain landscape or cloud shadow. 

Region 1 was then segmented with the multiresolution segmentation algorithm with the 
parameter values as listed in Table 3.3. These values were considered to be optimal (after 
an extensive visual trial and error assessment of a variety of parameter values) for 
segmenting the floodplain into objects displaying homogeneous vegetation community 
groups (Figure 3.21). After segmentation, the CHM process described in section 3.4.7 
was applied to delineate the objects containing trees and create the three treed classes: 
Open woodland, Woodland and Open forest. Objects from the Open forest class were 
then assigned into either Melaleuca or Mangrove class objects using the following rule: 
distance to East Alligator River. This rule is based on the assumption that Mangroves are 
adjacent to the tidally influenced river  

The remaining floodplain objects were subjected to a series of classification steps and 
some further finer segmentation. The steps formed a ‘decision tree’ with the end output 
being objects belonging to one of 29 classes (Figure 3.22). The threshold values at each 
step were determined through trial and error to be the best breaks in the continuous data 
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for the classification of the floodplain vegetation. The first classification step assigned the 
initial floodplain objects to one of four categories based upon FDI threshold values 
(Figure 3.23). The class FDI<-350 contained of objects with mean FDI values less than -
350, the class FDI<110 consisted of objects with mean FDI values between and 
including -350 and 109 (Figure 3.24). The class FDI<400 comprised of objects with 
mean FDI pixel values between and including 110 and 399. Segments within the class 
FDI≤1000 possessed mean FDI values from 400 up to and including 1000. Segments 
within the class FDI>1000 possessed mean FDI values greater than 1000. 

Table 3.3 Parameters used for the multiresolution segmentation for Region 1. 

Scale parameter Shape criterion Compactness Layer weights 

500 0.3 0.6 Image layers 
Coastal = 1 
Blue = 1 
Green = 1 
Yellow = 1 
Red = 1 
Red edge = 1 
NIR1 = 1 
NIR2 = 1 
CHM = 0 
 
Thematic layers 
Floodplain boundary = 0 

 

  
(a) (b) 

Figure 3.21  A subset of the imagery show a portion of the Magela Creek floodplain within Region 1 (a), 
and showing the results of the initial image multiresolution segmentation (b). The segmentation 
algorithm used equal weights for all bands, a scale parameter of 500, a shape factor of 0.3, and 

compactness value of 0.6. 
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Figure 3.22  ‘Decision tree’ for the determination of spectral indices derived classes for Region 1. The clear boxes represent class splitting occurring on objects created with a 
scale parameter (SP) of 500 while the grey boxes have a SP of 100 and yellow boxes have a SP of 50. The colour borders on the terminal boxes correspond to the vegetation 

classes on the final map. 
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Figure 3.23 The first classification step for Region 1 from the eCognition process tree based on FDI 

thresholds. 

 

Figure 3.24  Region 1 after the initial classification into the 5 FDI classes. White represents non-
floodplain regions, black is cloud or cloud shadow. 
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The second step of the classification process (Figure 3.25) involved splitting the four of 
the five FDI groups of classified objects created during the first processing step further 
into classes based on differences in NDVI (Figure 3.26). Again the threshold values at 
each step were determined through trial and error to be the best breaks in the continuous 
data for the further classification of the floodplain vegetation. Objects within the FDI<-
350 class were not reclassified because these objects were identified as belonging to the 
Cloud class as they were mostly adjacent to Cloud objects and displayed similar feature 
values. Further reclassification and segmentation was conducted until satisfactory object 
separation was achieved. The end classes from this process were then assigned to 
vegetation classes using expert knowledge.  

 
Figure 3.25  The second round of classifications for Region 1 from the eCognition process tree based 

on NDVI thresholds. 
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Figure 3.26  Region 1 after the second classification round into 10 NDVI classes. White is either non-
floodplain regions or cloud, black is cloud shadow. 

3.4.10 Delineating Regions 2 and 3 vegetation classes 
Similar to the processing for Region 1, the imagery for Regions 2 and 3 was initially 
partitioned into clusters of pixels using the multiresolution segmentation algorithm. The 
parameters for the algorithm were the same as for Region 1: a scale parameter of 500, a 
shape factor of 0.3, and compactness value of 0.6 (Figure 3.27). After segmentation, the 
floodplain objects were subjected to a series of classification steps and some further finer 
segmentation (Figure 3.28). 
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(a) (b) 

Figure 3.27  A subset of the Magela Creek floodplain within Regions 2 and 3 (a), and showing the 
results of the initial image multiresolution segmentation (b). The segmentation algorithm used equal 

weights for all bands, a scale parameter of 500, a shape factor of 0.3, and compactness value of 0.6. 

As per region 1, objects were identified as being potentially treed using a mean CHM 
value greater than 0.8 m within the potentially treed objects. Sub-objects representing 
trees or clusters were created using the threshold segmentation algorithm with trees 
being created from clusters of pixels within the CHM that were above 4 m. Sub-objects 
with spurious high values were removed from the tree sub-object class using 25 m as a 
ceiling value. The next step was to eliminate objects from the potentially treed objects if 
they contained no tree sub-objects. The remaining objects were then assigned to a tree 
class depending on proportional cover of tree in treed object: Open Forest was greater 
than 50% cover, Woodland 10–50% cover, Open Woodland < 10% cover  (after 
Hnatiuk et al. 2009). 

The remaining objects were then classified in steps that formed a ‘decision tree’ with the 
end output being objects belonging to one of 35 classes (Figure 3.28). The threshold 
values at each step were determined through trial and error to be the best breaks in the 
data for the classification of objects within the floodplain. Objects were first assigned to 
one of five classes based upon the five FDI threshold values (Figure 3.29). The class 
FDI<-350 segments contained pixels with FDI values less than -350, the class FDI<110 
segments contained pixels with values between and including -350 and 109. The class 
FDI<400 clustered pixels with values between and including 110 and 399. Segments 
within the class FDI≤1000 possessed pixels with FDI values from 400 up to and 
including 1000. Segments within the class FDI>1000 possessed pixels with FDI values 
from 400 up to and including 1000. The second step of the classification process 
involved splitting the four of the five FDI groups of classified objects from the first 
processing step further into classes based on differences in NDVI (Figure 3.28). Objects 
within the FDI<-350 class were not reclassified because these were identified as 
belonging to the Cloud class as they were mostly adjacent to Cloud objects and displayed 
cloud features. Further reclassification and segmentation was conducted until satisfactory 
object separation was achieved. The end classes from this process were then assigned to 
vegetation classes using expert knowledge.  
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Figure 3.28  The ‘Decision tree’ for the determination of spectral indices derived classes for Regions 2 and 3. The clear boxes represent class splitting occurring on objects created with 

a scale parameter (SP) of 500 while the grey boxes have a SP of 200. The colour borders on the terminal boxes correspond to the vegetation classes on the final map. 
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Figure 3.29  First classification step for regions 2 and 3. White represents non-floodplain regions,cloud 

and cloud shadow are black, dark blue is water. 
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Figure 3.30 Regions 2 and 3 after the second classification round into 8 NDVI classes. Black is either 

cloud or cloud shadow. 
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3.5 Accuracy assessment 
3.5.1 Field-based reference data 
Validation was undertaken using two reference data sets (Figure 3.31). A systematic 
helicopter survey was undertaken on 29 May 2010, providing 100 reference sites 
identifying location, with dominant species and proportional cover for each site recorded 
based both on vertical visual estimates and photos. A ‘ground’ plot survey, undertaken 
17–26 May 2010, provided a further 28 reference sites, each representing homogenous 
cover consisting of a single species. The sampling method used for the airboat survey 
was random with the reference data collected by the oblique visual estimation of the 
projected cover by species. These observations were made from the deck of an airboat 
while stationary. Classification accuracy at these sites was assessed against all the 
reference data using a confusion matrix (Congalton & Green 2009) and accuracy 
measures calculated.  

 
Figure 3.31  Location of reference data sites. 
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3.5.2 Accuracy measures 
To test the accuracy of the vegetation map, a site-specific accuracy 
assessment (Congalton & Green 2009) was conducted using a confusion matrix (Table 
3.4) to compare the vegetation map to the classes at specific locations identified from the 
field-based reference data.  

Table 3.4 The confusion matrix for assessing the accuracy of a classification of remotely sensed data. 

  Reference data   

  A B C Total UA 

C
la

ss
ifi

ed
 

da
ta

 

A nAA nAB nAC nA+ nAA/nA+ 

B nBA nBB nBC nB+ nBB/nB+ 

C nCA nCB nCC nC+ nCC/nC+ 

 Total n+A n+B n+C n  

 PA nAA/n+A nBB/n+B nCC/n+C   

Where n is the total number of samples, n+A, n+B, n+C are the number of samples classified into class A, B and C respectively in the 
classified map; nA+, nA+ and nA+ are the number of samples classified in to class A, B and C respectively in the reference data. nAA, 
nBB and nCC are the number of samples classified into class A,B and C respectively for both the classified and reference data. nAB, 
nAC, nBA, nBC, nCA and nCB are the number of samples where the classification and reference sample do not belong to the same class. 
PA is the Producer’s accuracy and UA is the User’s accuracy. 

User’s and Producer’s accuracies (Story & Congalton 1986) were calculated for each class 
along with the overall classification accuracy. The Producer’s accuracy is a measure of 
omission error and termed as such because the producer of the classified image/map is 
interested in how well the area under study can be mapped. The User’s accuracy 
measures errors of commission and named as such because the user is interested in the 
reliability of the map (how well the map represents what is really on the ground). The 
User’s accuracy was calculated by dividing the number of correctly identified sample 
units for a given class (e.g. nAA for class A in Table 3.4) by the total number of sample 
units for a given class according to the reference data (the row total e.g. nA+). The 
Producer’s accuracy was calculated by dividing the number of correctly identified sample 
units for a given class (e.g. nAA) by the total number of sample units for given class based 
on the classification (the column total e.g. n+A). The overall classification accuracy is 
given by dividing the total number of correctly identified sample units for all classes (the 
sum of the major diagonal e.g. nAA + nBB + nCC in Table 3.4) by the total number of 
sample units for all classes (n). 
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4 Results 
The map produced from the May 2010 WorldView-2 imagery contains 12 vegetation 
map classes representing typical vegetation communities found on the Magela Creek 
floodplain (Figure 4.1). The vegetation classes were named after the indicator or most 
abundant taxa for those objects at the time of data capture (early Dry season). 

 
Figure 4.1  The vegetation map for the Magela Creek floodplain, May 2010. 
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4.1 Classes or vegetation mapping units 
In May 2010, 828 ha were not mapped due to cloud cover or interference from cloud 
shadow and open water accounted for 3589 ha of the floodplain. The 12 vegetation 
mapping communities (Figure 4.1) are described below as is the extent and distribution 
of each of the classes at the time of data capture. For each community, image and 
derivative samples (chips) are provided along with descriptive written cues for the key 
interpretive elements that assisted in community discrimination. Selected feature values 
for representative objects for each community are also included. 

4.1.1 Hymenachne grassland 
The Hymenachne grassland class is dominated by Hymenachne acutigluma throughout the year. 
The community covers 3639 ha of the floodplain. Other species that may occur include 
Oryza meridionalis, Nymphaea spp., and Pseudoraphis spinescens  (Finlayson et al. 1989). 

For the visual interpretation of Hymenachne communities there were a number of cues 
that were useful. In the May 2010 imagery, objects tended to be bright or highly 
reflective in most bands, particularly in the Region 1 image. Objects consisting of 
Hymenachne displayed as light green in the RGB true colour image (Figure 4.2a), and white 
or pale blue in NIR false colour image (Figure 4.2b). Areas tended to have higher LI and 
lower FDI, EVI and NDVI values for the time of year (early Dry) compared to 
neighbouring vegetation (Figure 4.2c-f). In regions 2 and 3, Hymenachne objects show 
more as a pale light brown colour. Table 4.1 highlights some of the values for features of 
the selected Hymenachne objects for Region 1 and Regions 2 and 3. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.2  Image chip for Hymenachne grassland from Region 1 (a) True colour image with 
RGB=Bands 5,3,2, (b) NIR false colour image with RGB = Bands 8,5,3, (c) LI image, (d) FDI image, (e) 
EVI image and (f) NDVI image. 

Table 4.1  Object feature values for the selected Hymenachne object in region 1 (top) and regions 2 and 
3 (bottom). 

Object Object feature values 

Region 1 

 

Mean layer values 
Coastal 316.2 
Blue 563.63 
Green 1193.71 
Yellow 1200.8 
Red 1086.83 
Red edge 2909.56 
NIR1 3572.38 
NIR2 3376.50 
 
Ratio values 
EVI 1.009 
FDI -96.69 
NDVI 0.5130 
LI 5722.43 
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Regions 2 & 3 

 
 

Mean layer values 
Coastal 265.00 
Blue 519.10 
Green 959.26 
Yellow 1103.07 
Red 1077.75 
Red edge 2186.06 
NIR1 2631.40 
NIR2 2515.30 
 
Ratio values 
EVI 0.7061 
FDI -189.86 
NDVI 0.4001 
LI 4182.25 
 
 

 

4.1.2 Melaleuca woodland and open forest 
The classes Melaleuca woodland and Melaleuca open forest typically contain M. cajaputi and 
M. viridiflora in the northern regions and at the edges of the floodplain, and M. leucadendra 
in the backswamps that are inundated for most of the year (Finlayson et al. 1989). 
Woodland communities have 10–50% woody cover (covering 5039 ha), whereas open 
forest communities have 50–70% cover (covering 821.8 ha). These communities are 
typically inundated for 5–8 months of the year.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.3  Image chip showing a sample of Melaleuca woodland (a) true colour RGB=5,3,2, (b) false 
colour RGB= 8,5,3, (c) False colour RGB= 8,6,2, (d) FDI, (e) LI, (f) CHM. 

There were a number of cues valuable for the visual interpretation of Melaleuca woodland 
communities. Regions of woodland showed obvious trees with shadows. Trees are 
displayed as dark green in the RGB image (Figure 4.3a), and crimson to red in the NIR 
false colour image (Figure 4.3b). Across an object the trees were in an irregular pattern 
and spaced apart, and the texture was course and uneven. Within the CHM, trees (or 
clusters of trees) were obvious (Figure 4.3f). Table 4.2 displays some of the values for 
features within the selected Melaleuca woodland object. 
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Table 4.2  Object feature values for the selected Melaleuca woodland object (top) and tree sub-objects 
(bottom). 

Object Object feature values 

 

Mean layer values 
Coastal 218.38 
Blue 377.71 
Green 678.33 
Yellow 730.54 
Red 696.94 
Red edge 1689.63 
NIR1 2248.19 
NIR2 2169.05 
CHM 2.478 
 
Ratio values 
EVI 1.046 
FDI 101.71 
NDVI 0.5267 
LI 3480.97 
 

 

Relative area of sub-objects 
Tree 26.5% 

 

There were a number of cues that were useful for the visual interpretation of Melaleuca 
open forest objects. Within objects, trees displayed as dark green in the true colour RGB 
image (Figure 4.4a), or crimson in the NIR false colour image (Figure 4.4b). As trees are 
spaced close together and there are overlapping canopies, pixels within potential Melaleuca 
open forest objects displayed a regular pattern and fine texture. Shadows were obvious 
on the edges of stands but not so much for individual trees. In addition, trees were 
readily apparent in the CHM (Figure 4.4f). This land cover was mostly located in the 
southern reaches of the floodplain and around the perimeter. Table 4.3 shows some of 
the values for features of the selected Melaleuca open forest object. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.4  Image chip for Melaleuca open forest (a) True colour RGB = bands 5,3,2, (b) False colour 
RGB = bands 8,5,3, (c) FDI, (d) LI, (e) EVI, and (f) CHM. 
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Table 4.3  Object feature values for selected the Melaleuca open forest object (left) and the tree sub-
objects (right).  

Object Object feature values 

 

Mean layer values 
Coastal 116.58 
Blue 253.80 
Green 497.34 
Yellow 529.69 
Red 468.90 
Red edge 1502.42 
NIR1 2127.79 
NIR2 2188.58 
 
Ratio values 
EVI 1.387 
FDI 432.36 
NDVI 0.6471 
LI 3437.2 
 
 

 

Relative area of sub-objects 
Tree 51% 

 

4.1.3 Oryza grassland 
Objects within the Oryza grassland class are dominated by the annual grass, Oryza 
meridionalis towards the end of the Wet season. In the Dry season, these objects consist 
mostly of bare ground or dead Oryza. In 2010, the community occupied 4040 ha of the 
floodplain. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4.5  An image chip showing an example of Oryza grassland:(a) true colour image RGB=5,3,2, 
(b) nir false colour image RGB = 8,5,3, (c) red edge false colour image RGB = 8,6,2, (d) LI image, and 

(e) FDI image. 

There were a number of visual cues for the interpretation of Oryza grassland: Areas with 
Oryza tended to have high reflectance in the visible bands (Figure 4.5a) and low NIR 
values (Figure 4.5b and c) typically associated with senescing vegetation. Areas 
dominated by Oryza also tended to display lower FDI values than the surrounding 
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vegetation types. Table 4.4 highlights some of the feature values for the selected Oryza 
object. 

Table 4.4  Object feature values for the selected Oryza object. 

Object Object feature values 

 

Mean layer values 
Coastal 230.40 
Blue 475.39 
Green 828.57 
Yellow 967.39 
Red 963.88 
Red edge1885.55 
NIR1 2349.80 
NIR2 2198.57 
 
Ratio values 
EVI 0.6988 
FDI -162.37 
NDVI 03904 
LI 3608.73 

 

4.1.4 Pseudoraphis grassland 
The Pseudoraphis grassland class is dominated by the perennial grass, Pseudoraphis spinescens. 
The class occupied 943 ha, particularly in the southern half of the floodplain. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.6  An image chip showing Pseudoraphis grassland (a) true colour imager RGB=5,3,2, (b) nir 
false colour image RGB = 8,5,3, (c) LI image, (d) FDI image, (e) NDVI image and (f) EVI image. 

There were a number of cues that assisted in the visual interpretation of communities 
dominated by Pseudoraphis spinescens. Objects often contained vegetation mixed with water 
and as such displayed an irregular pattern and coarse texture. Plants typically displayed as 
dark green clumps in RGB imagery (Figure 4.6a), and purple in NIR false colour (Figure 
4.6b). Table 4.5 highlights some of the values for features of the selected Pseudoraphis 
object. 
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Table 4.5  Object feature values for the selected Pseudoraphis object. 

Object Object feature values 

 

Mean layer values 
Coastal 94.64 
Blue 249.44 
Green 699.88 
Yellow 611.73 
Red 420.35 
Red edge 1742.06 
NIR1 2066.79 
NIR2 1896.77 
 
Ratio values 
EVI 1.448 
FDI -94.73 
NDVI 0.6372 
LI 3389.38 
 

 

 

4.1.5 Pseudoraphis/Hymenachne grassland 
The class, Pseudoraphis/Hymenachne contains objects that are co-dominated by 
Pseudoraphis spinescens and Hymenachne acutigluma. The class covers approximately 375 ha of 
the floodplain. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 4.7  Image chip for Pseudoraphis/Hymenachne (a) True colour RGB =5,3,2, (b) false colour 
RGB=8,5,3, (c) LI, (d) FDI,and (e) EVI. 

There are a number of cues that assisted with the visual interpretation of 
Pseudoraphis/Hymenachne grassland: Objects contained a mixture of green (Pseudoraphis) 
and light brown (Hymenachne) in the true colour RGB image (Figure 4.7a). Within the 
NIR false colour image, objects were a mixture of purple (Pseudoraphis) and green 
(Hymenachne) with the pink portions being Para grass (Fig 4.7b). There were pixels 
representing each species within the objects, thus displaying an irregular pattern and 
uneven texture (Figure 4.7c). Within and between the objects there was usually some 
water present (shown as dark patches). Table 4.6 highlights feature values for the selected 
Pseudoraphis/Hymenachne object. 
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Table 4.6  Object feature values for selected Pseudoraphis / Hymenachne object. 

Object Object feature values 

 

Mean layer values 
Coastal 160.70 
Blue 349.13 
Green 730.97 
Yellow 763.21 
Red 664.24 
Red edge 1859.55 
NIR1 2370.49 
NIR2 2283.78 
 
Ratio values 
EVI 1.109 
FDI 75.10 
NDVI 0.5494 
LI 3794.20 
 

 

 

4.1.6 Para grass 
The weed grass, Urochloa mutica (Para grass), is an invasive species introduced from Africa 
as a pasture grass. It forms dense monocultures and can outcompete native vegetation in 
communities of Hymenachne, Oryza and Eleocharis. Based on the 2010 map, the community 
covered 2181 ha of the floodplain mostly in the central plains region. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.8  Image chip showing Para grass: (a) true colour RGB=Bands 5,3,2, (b) false colour 
RGB=Bands 8,5,3, (c) false colour RGB=Bands 8,6,2, (d) FDI, (e) LI and (f) EVI. 

There were a number of cues for the visual interpretation of Para grass. Objects were of 
a typically smooth texture with irregular boundaries. Homogeneous areas displayed as a 
moss green colour in RGB imagery (Figure 4.8a) but with smoother texture than the 
similar coloured Pseudoraphis. Para grass also showed as bright pink in the NIR false 
colour whereas Pseudoraphis showed as purple and Hymenachne, greyish (Figure 4.8b). 
Smaller outbreaks tended to be elliptical in shape, due to runner activity. Table 4.7 lists 
some of the feature values for the selected para grass object. 
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Table 4.7  Object feature values for the selected para grass object. 

Object Object feature values 

 

Mean layer values 
Coastal 144.56 
Blue 313.26 
Green 765.35 
Yellow 672.60 
Red 500.18 
Red edge 2373.69 
NIR1 3425 
NIR2 3427.44 
 
Ratio values 
EVI 1.794 
FDI 740.48 
NDVI 0.7453 
LI 5487.86 
 

 

 

4.1.7 Nelumbo herbland 
In 2010, the class Nelumbo herbland occupied 243.3 ha of the floodplain. This community 
is dominated by the water lilies, Nelumbo nucifera or to a lesser extent Nymphoides spp. 
These communities occur in permanent and semi permanent wet areas. Other species 
that may be present include Leersia hexandra, Hymenachne acutigluma, Nymphaea spp. The 
largest community is found on the eastern of Red Lily Swamp (the open body of water in 
the western part of the floodplain). 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Figure 4.9  Image chip of Nelumbo herbland. (a) True colour RGB = Bands 5,3,2, (b) False colour NIR 
RGB=Bands 8,5,3, (c) False colour RGB = Bands 8, 6, 2, (d) LI, (e) FDI, (f) EVI and (g) NDVI. 

There are several cues that assisted in the visual interpretation of Nelumbo herbland. The 
laminae of N. nucifera displayed as bright green in true colour RGB imagery (Figure 4.9a) 
and bright pink in NIR false colour imagery (Figure 4.9b). Nelumbo cover appeared 
bright in LI image (Figure 4.9c) but not in the FDI image (Figure 4.9d). Between the 
laminae water maybe visible; this was manifested as a blotchy appearance. This was 
characterised by a fine scale uneven texture.  Large patches of Nelumbo adjacent to open 



66 

water were characterised by a ragged boundary. Additionally, there were small patches of 
other cover types apparent within Nelumbo communities. Table 4.8 highlights the key 
feature values for the selected Nelumbo object. 

Table 4.8  Object feature values for the selected Nelumbo object. 

Object Object feature values 

 

Mean layer values 
Coastal 232.55 
Blue 348.36 
Green 743.50 
Yellow 614.09 
Red 457.85 
Red edge 2391.47 
NIR1 3157.34 
NIR2 3055.98 
 
Ratio values 
EVI 2.035 
FDI 316.15 
NDVI 0.7394 
LI 5099.09 
 

 

 

4.1.8 Salvinia  
The class Salvinia, is dominated by the floating fern, Salvinia molesta.  This weed can 
completely cover small areas of open water that are protected from wind. On larger 
stretches of open water, the fern can be found on the leeward edge. In the early Dry, the 
predominant wind is south easterly. This class covers 107.5 ha. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 4.10  Image chip for Salvinia. (a) RGB = 5,3,2, (b) RGB = 8,5,3, (c) RGB = 8,6,2, (d) LI, and  (e) 
FDI. Note the smooth south eastern edge of infestation, matches prevailing winds at that time of year. 

There were a number of cues for the visual interpretation of communities dominated by 
the floating fern, Salvinia molesta. Infestations abutting open water exhibited a smooth 
edge on leeward side (south east in the Dry season). Objects displayed a smooth texture 
although containing patches of other vegetation. Infestations displayed as a dull drab 
green colour in a RGB image (Figure 4.10a). Table 4.9 lists some of the values for key 
features for the selected Salvinia object. 

  



68 

Table 4.9.  Object feature values for selected Salvinia object. 

Object Object feature values 

 

Mean layer values 
Coastal 66.58 
Blue 222.12 
Green 670.87 
Yellow 828.83 
Red 676.05 
Red edge 2753.21 
NIR1 4076.17 
NIR2 4399.86 
 
Ratio values 
EVI 1.371 
FDI 1424.53 
NDVI 0.7336 
LI 6930.95 
 

 

4.1.9 Eleocharis sedgeland 
The class, Eleocharis, dominated by the sedge, Eleocharis dulcis covers 1054 ha with larger 
areas mostly occupying the northern areas of the floodplain.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.11  Image chip showing are of Eleocharis: (a) true colour RGB =5,3,2, (b) false colour RGB = 
8,5,3, (c) false colour RGB = 8,6,2, (d) FDI, (e) LI and (f) EVI. 

There were several key cues that assisted in the visual interpretation of Eleocharis. These 
included cover consisting of irregular and overlapping circles, intermingled with grass 
covers. The major regions for occurrence were in the backwater sections of the 
floodplain and downstream near East Alligator River. Objects containing Eleocharis were 
typically a dark green colour in RGB image. Table 4.10 lists some of the feature values of 
the selected Eleocharis object. 
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Table 4.10  Object feature values for selected Eleocharis sedgeland object. 

Object Object feature values 

 

Mean layer values 
Coastal 143.25 
Blue 316.74 
Green 696.68 
Yellow 898.10 
Red 906.91 
Red edge 2432.22 
NIR1 3467.80 
NIR2 3781.63 
 
Ratio values 
EVI 1.049 
FDI 1032.67 
NDVI 0.6131 
LI 5897.1 
 
 

 

4.1.10 Leersia grassland 
The class, Leersia grassland covered 967 ha of the floodplain. Larger floating mats of 
Leersia hexandra can be found on the western border of Red Lily Swamp. As can be seen 
from Figure 4.12, the mats are distinctive, particularly in the LI image (Figure 4.12e). 

 
(a) 

 
(b) 
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(c) 
 

(d) 

 
(e) 

 
(f) 

Figure 4.12  Leersia mats: (a) RGB = Bands 5,3,2, (b) RGB = 8,5,3, (c) RGB = 8,6,2, (d) RGB = Bands 
6,5,3, (e) LI, and (f) FDI . 

There were a number of cues useful for the visual interpretation of Leersia mats. The 
mats were generally elliptical in shape and display as light green in true colour image 
(Figure 4.12a). The mats are highly mobile when comparing imagery from different years. 
Some of the mats had a number of small trees growing on them. Most of the mats were 
located in the Red Lily Swamp in the western region of the floodplain. The mats 
appeared bright in LI image (Figure 4.12e) but not so in the FDI image (Figure 4.12f). 
Table 4.11 highlights some of the feature values for the selected Leersia object. 
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Table 4.11  Object feature values for selected Leersia object. 

Object Object feature value 

 

Mean layer values 
Coastal 99.82 
Blue 235.07 
Green 711.67 
Yellow 627.28 
Red 461.81 
Red edge 2556.66 
NIR1 3862.26 
NIR2 4030.47 
 
Ratio values 
EVI 1.770 
FDI 1238.73 
NDVI 0.7944 
LI 6352.06 
 

 

 

4.1.11 Mangrove 
The Mangrove community covered 249 ha, and is located mostly bordering the Magela 
Creek as it enters the East Alligator River. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.13  Image chip showing Mangrove community: (a) true colour RGB = Bands 5,3,2, (b) false 
colour RGB = Bands 7,5,3, (c) FDI, (d) LI and (e) EVI, (f) CHM. 

Key interpretive cues for mangroves included: Mangrove objects consisted of trees that 
were dark green and closely spaced in RGB image (Figure 4.13a), with a mostly 
overlapping canopy. Mangrove objects also tended to be adjacent to tidal influenced 
channels. The land cover displayed a fairly smooth texture with a regular pattern. Tree 
shadows were evident on the edges (Figure 4.13d). In the CHM image, mangroves could 
be distinguished from the surrounding woodland by texture (ie the dense canopy and 
similar heights of mangrove trees produced a smoother texture) (Figure 4.13f). Table 
4.12 displays the feature values for the selected mangrove object. 
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Table 4.12  Object feature values for selected Mangrove object. 

Object Object feature value 

 

Mean layer values 
Coastal 32.66 
Blue 123.83 
Green 501.17 
Yellow 381.12 
Red 175.18 
Red edge 2518.3 
NIR1 4286.96 
NIR2 4231.93 
 
Ratio values 
EVI 2.329 
FDI 1589.8 
NDVI 0.9205 
LI 6626.4 
 
Relative area of sub objects 
Trees 98% 

4.2 Accuracy assessment 
The confusion matrix comparing reference data to the classification is displayed in Table 
4.13. Overall accuracy for the map is 77.8%. User’s and Producer’s accuracies for each 
class are shown in Table 4.14. Based on the reference data, the most accurately delineated 
classes were Leersia, Melaleuca woodland and Para Grass with Producer’s accuracies of 
80.1%, 90%, and 87.5%, and User’s accuracies of 100%, 90% and 87.5% respectively. 
The Mangrove and Melaleuca open forest classes also had high accuracies (Producer’s 
accuracies of 100% and User’s accuracies of 75%) however, the total number of 
reference samples for each of these classes was quite low (3 each). A low Producer’s 
accuracy (57.9%) indicates there was confusion where Eleocharis was misclassified as 
Hymenachne (4 instances), Oryza (2 instances), Mangroves or Melaleuca woodland (both 1 
instance). Of those classes with low User’s accuracies, 24 sites that where classed as 
Hymenachne, 9 were other classes according to the reference data with 4 being Eleocharis. 
In addition, there was some confusion between the Pseudoraphis/Hymenachne class and the 
separate Pseudoraphis and Hymenachne classes. 
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Table 4.13  Confusion matrix for the 2010 Magela Creek floodplain vegetation map. 

    Reference data 
    El Hy Le Ma MOF MW Ne Or PG PH Ps S W Total 

C
la

ss
ifi

ed
 d

at
a 

El 11 1 0 0 0 0 0 0 0 0 0 0 0 12 

Hy 4 15 0 0 0 1 0 1 1 1 0 1 0 24 

Le 0 0 4 0 0 0 0 0 0 0 0 0 0 4 

Ma 1 0 0 3 0 0 0 0 0 0 0 0 0 4 

MOF 0 0 0 0 3 0 0 0 0 0 0 0 1 4 

MW 1 2 2 0 0 5 0 0 0 0 0 0 0 10 

Ne 0 0 1 0 0 0 5 0 0 0 0 0 1 7 

Or 2 0 0 0 0 0 0 6 0 0 0 0 0 8 

PG 0 1 0 0 0 0 0 0 7 0 0 0 0 8 

PH 0 1 0 0 0 0 0 0 0 13 2 2 0 18 

Ps 0 0 0 0 0 0 0 0 0 2 5 0 1 8 

S 0 0 0 0 0 0 0 0 0 0 0 8 2 10 

  W 0 0 0 0 0 0 0 0 0 0 0 0 9 9 

 Total 19 20 7 3 3 6 5 7 8 16 7 11 14 126 

Overall Accuracy 98/126 = 77.8% 

Note: El=Eleocharis, Hy=Hymenachne, Le=Leersia, Ma=mangrove, MOF=Melaleuca open forest, MW=Melaleuca woodland, 
Ne=Nelumbo, Or=Oryza, PG=Para grass, PH= Pseudoraphis/Hymenachne, Ps=Pseudoraphis, S=Salvinia, W=water. 

 

Table 4.14  Producer and User accuracies for each vegetation community class (plus water), based on 
confusion matrix results displayed in Table 4.13. 
 

Class name Producer’s accuracy User’s Accuracy 

Eleocharis 57.9 91.7 

Hymenachne 83.3 62.5 

Leersia 80.1 100.0 

Mangrove 100.0 75.0 

Melaleuca open forest 100.0 75.0 

Melaleuca woodland 90.0 90.0 

Nelumbo 100.0 71.4 

Oryza 85.7 75.0 

Para grass 87.5 87.5 

Pseudoraphis/Hymenachne 81.3 72.2 

Pseudoraphis 71.4 62.5 

Salvinia 72.7 80.0 

Water 64.3 100.0 
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5 Discussion 
The vegetation classification process was able to distinguish between the spectrally and 
structurally distinct vegetation communities within the floodplain. The use of multiple 
indices and ratios were able to mostly differentiate between classes that appeared 
spectrally similar. From the results of the confusion matrix, there were a number of 
instances where objects were either not detected or misclassified. There was some 
difficulty in distinguishing between vegetation classes that are spectrally similar, most 
notably between the classes dominated by grasses. Previously, there has been noted some 
spectral similarity between different covers namely Oryza and Para grass  (Boyden et al. 
2007). In addition, there were objects that were of the same class that were spectrally 
different. This is possibly due to differences in growth phases as a result of water 
availability. For example, grasses on the edge of the floodplain will dry out quicker and 
either die or senesce earlier than those in the in the centre of the floodplain with access 
to water longer. 

Due to sun glint it was difficult to detect open water and floating vegetation within 
Region 1. In addition, due to changes in reflectance associated with the view angle, the 
class rulesets developed for Regions 2 and 3 did not satisfactorily detect the classes in 
Region 1. This required a modified set of rules and threshold values for Region 1. Future 
data requests for WV-2 imagery need to ensure that imagery captured on a certain date 
has a consistent view angle, satellite azimuth and elevation. This may require a slight 
narrowing of the study area so that the image can be captured along a single path. 

Although unable to successfully delineate the floodplain boundary using a simple height 
threshold based, the DEM data was useful in providing an initial delineation of the 
floodplain boundary that could be easily manually adjusted. This would have not been 
possible using only WV-2 imagery due to spectral similarities between floodplain and 
non-floodplain surfaces. However, both DEMs appear to contain uncertainty in 
elevation associated primarily with vegetation effects, consequently the boundary was not 
as accurate as was required and a manual modification of the boundary was necessary 
based upon visual interpretation of the multispectral imagery. This was possibly due to 
30 m GSD of the SRTM DEM being too coarse a resolution whereas the 10 m aerial 
photograph derived DEM appeared to suffer from vegetation effects. 

This report also highlights the development of the interpretive key. After decades of 
research and sporadic mapping the Magela Creek floodplain vegetation, this report 
contains the first documented attempt to provide key visual and image based cues for the 
interpretation and classification of vegetation within the Magela Creek floodplain. The 
key will be a valuable tool in the development of an ongoing systematic monitoring 
program for the floodplain. 

The classification of HSR imagery does lead to an interesting problem associated with 
the scale and resolution. The high resolution (GSD = 2 m) of the WV-2 imagery 
produces a map scale including a level of detail that may mean some small objects only 
contain one individual of a species. For example, an object of 25 pixels that has been 
classified as Melaleuca open forest may in fact be a single tree. Objects of this scale may 
not be suitable for broader landscape analysis, therefore classes will need to be less broad 
in their inclusion and more specific and can describe an individual organism of a single 
species. Thus describing a class as a community dominated by a certain taxa may not be 
appropriate at finer scales. 
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The vegetation map within this report is representative of the vegetation that was on the 
floodplain in May 2010. The seasonal variation that is known to occur has not been 
captured on this map, such as changes in community composition associated with the 
water level and soil moisture in the floodplain. This mapping would be difficult to 
achieve, although  (Boyden et al. 2013) achieved it to an extent for the 2006 dry season 
using Landsat data. For a large interval of the year, suitable quality data is unavailable due 
to either cloud cover or smoke haze and as the year progresses so does the area of fire 
affected land cover . In addition, using HSR data from a commercial satellite means data 
collection of such intensity will be cost prohibitive.  As a result of the map being based 
on data from one date, the seasonal and inter-annual variation as described in the 
literature (e.g. Finlayson et al. 1989, Boyden et al. 2013) has not been captured in this 
map. The amount and periodicity of rainfall varies annually leading to different water 
levels and soil moisture availability means community distributions can vary greatly 
between years. 

For reference data, it would be preferable to have more points to increase the rigour of 
the accuracy assessment, as several of the classes have limited reference data. However, 
gaining sufficient reference data is difficult to achieve using standard observation 
techniques due to accessibility issues associated with the landscape and the remote 
location, and resource limitations. For HSR image analysis, a number of studies have 
used the visual analysis of the base imagery to provide sufficient reference data for 
ground truthing providing what has been referred to as a pseudo accuracy 
assessment (Congalton & Green 2009). While this may be possible to undertake for 
easily discernible land covers, spectrally and texturally similar vegetation may be difficult 
to differentiate resulting in error. Further bias may be introduced by user influence 
(Foody 2002). New techniques for reference data collection using helicopter based GPS 
enabled videography and still photography at higher spatial resolutions than the satellite 
imagery will be trialled for future data captures to enable increased number of reference 
sites relative to field sampling effort. 

5.1 Advantages and limitations of incorporating a CHM as 
part of the data set. 

The inclusion of the CHM from the 2011 LiDAR data was extremely useful in 
discriminating between treed and non-treed vegetation cover classes. During the early 
development stage it was difficult to distinguish between Melaleuca classes and spectrally 
similar non-treed vegetation. Consequently on the map produced there was some 
confusion between these classes. This confusion occurred particularly where tree density 
was low, but also where objects of non-treed vegetation had similar spectral, spatial and 
textural features to treed objects. This issue was virtually eliminated using the CHM to 
define the treed classes.  

One disadvantage, however, was that the CHM did not cover the entire area of Magela 
Creek floodplain with some upper reaches and backwater swamps being excluded from 
the coverage. Unfortunately, these areas are mostly treed. The treed classes on the areas 
outside the CHM were able to be discriminated using the spectral classification process. 
Another disadvantage in using the CHM was the difference in the dates of capture 
between the CHM and the WV-2 imagery (May 2010 for imagery and October 2011 for 
the LiDAR data). Therefore, an assumption was made that there was little change in tree 
cover during that time. 
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5.2 Advantages and limitations of WV-2 multispectral data for 
mapping wetlands 

A spatial advantage of using WV-2 data is the resolution (2m GSD). Individual pixels 
within the data are generally one type of land cover or plant species. This is in contrast to 
data from moderate spatial resolution RS data (such as Landsat), where pixels may 
comprise multiple land cover or vegetation types. Thus, the spatial resolution of the WV-
2 imagery was sufficient to readily identify most plants visually, which then provided 
some clues as to what to include in a class rule.  In addition, the HSR data enables the 
analyst to readily identify class boundaries between classes that are spectrally distinct. 

A spectral advantage of using WV-2 data is the inclusion of the red edge band which was 
found to be useful in vegetation analysis and discrimination, and consequently was 
included in two of the four indices used to classify objects into various communities. 

Although containing 8 spectral bands, the WV-2 multispectral data only covers the 
VNIR (400–1050 nm) portion of the EM spectrum. The limited spectral range can 
inhibit spectral discrimination between classes. For example, information from the 
shortwave infrared (1400–1600 nm) can be useful in deriving the hydrological conditions 
that differentiate vegetation classes  (Boyden et al. 2013). Using an image from a single 
date also limits opportunities to use the spectral variation of plant growth stages for 
discrimination between classes. The lack of temporal resolution means that the 
phenology of floodplain vegetation such as the grasses is limited as a tool for 
differentiation. Additionally, if imagery were acquired at intervals that could display the 
phenology of the different grasses, then cost becomes a limiting factor due to WV-2 
being a commercial satellite. 

Another limiting factor of using WV-2 data to consider is the potential variation in off-
nadir sensor angles between multi-date imagery. The variation can make it difficult to 
compare between dates because even if radiometric calibration corrects for atmospheric 
effects, the differing view angle and relative position of the sun, some land covers will 
differ greatly in their spectral signature. Examples include highly reflective surfaces and 
vegetation with particular leaf angles. 

5.3 Advantages and limitations of using a GEOBIA 
methodology. 

There are a number of advantages in using a GEOBIA methodology including 
repeatability and semi –automation of the process. Once written a process is consistently 
repeatable, therefore rerunning the ruleset using the same parameters on the same data 
provides exactly same results. The ruleset is transparent in that the steps are visible and 
easy for any trained operator to follow. Once a rule set has been created and tested the 
classification procedure then becomes a semi-automated approach and can be 
implemented on other imagery with minimal adjustments to thresholds required. The 
iterative step wise approach enables a decision tree approach to classification, thus allows 
the input of expert knowledge of the land covers within the study area into the 
classification process. 

The limitations of using a GEOBIA methodology include the software required to run a 
GEOBIA classification can be computer resource intensive and it may take a long time 
to process data unless the data is split into smaller regions. The rule sets for classifying 
such a heterogeneous landscape as the Magela Creek floodplain can take a long time to 
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create and refine. However once a ruleset has been written and tested, it is readily 
transferrable to imagery over the study area from different dates although threshold 
values may need altering (due to differences in spectral information between images). 
The GEOBIA method also requires an a priori knowledge of the land covers and their 
features. This may not be possible if a researcher has limited or no experience in the 
region. As such, a successful classification relies on the extensive body of knowledge of 
Magela floodplain vegetation within the organisation that has been developed over many 
years of research. 

A method that uses accurate training samples and a supervised statistical classifier such as 
Support Vector Machines  (Cristianini & Shawe-Taylor 2000) or Random Forests ® 
(Breiman 2001), would reduce the need for expert knowledge in the classification; 
however the availability of reference data for this study was limited to 128 samples. This 
number of samples was not enough to provide both sufficient training and testing 
samples so all were used for testing. 
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6 Conclusion 
This research highlights the application of GEOBIA for mapping variable floodplain 
vegetation using WorldView-2 high spatial resolution imagery. The method used 
produced a vegetation map of the Magela Creek floodplain for May 2010. Based on the 
field reference data the overall accuracy of the map was 78% with the majority of error 
being associated with confusion between classes that were spectrally similar but 
dominated by different species. The map, however, does not account for the temporal 
variability (seasonal or annual) of the extent and distribution of the communities. Due to 
the repeatability and semi-automated approach the method of iterative segmentation and 
classification based on spectral indices will be applied to mapping the floodplain 
vegetation in subsequent years to monitor the annual variation in distribution and extent 
of the communities. By applying relative measures (such as spectral indices) as opposed 
to absolute values (such as band values), we anticipate the rule set will be transferrable 
with minor threshold tweaks associated with radiometric differences as associated with 
growth as well as sun and view angle differences. Therefore the approach will be applied 
to imagery captured for May 2011, June 2012 and June 2013 and will form an integral 
component of an operational landscape scale off-site monitoring program. 

Analysis will provide a quantitative measure of the interannual variation described 
previously in the literature but not measured  (Finlayson et al. 1989). The program will 
enable quantitative analysis of the temporal and spatial change in vegetation communities 
within the downstream receiving environment for Ranger Uranium Mine. Future 
research may demonstrate the ability to link the monitoring of the health of vegetation 
communities using satellite imagery with the effects of mine rehabilitation. 
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Appendix A 
Project data is located in the following folders: 

Vegetation map 

\\pvnt01flpr01\nas2\2010_Magela_veg_map\GIS\veg_map 

 

WV-2 image data 

\\pvnt01flpr01\gis\MASTER_RASTER\Magela\WorldView2\2010-05-11 

 

Image mosaic 

\\pvnt01flpr01\nas2\2010_Magela_veg_map\Mosaic 

 

CHM data 

\\pvnt01flpr01\nas2\2010_Magela_veg_map\CHM 

 

Floodplain boundary data 

\\pvnt01flpr01\nas2\2010_Magela_veg_map\GIS\fp_bound 

 

eCognition project file and process tree 

\\pvnt01flpr01\nas2\2010_Magela_veg_map\eCog_project 

\\pvnt01flpr01\nas2\2010_Magela_veg_map\ecog_ruleset 
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Appendix B 
Descriptions of the major vegetation communities within the Magela Creek floodplain. 

B.1 Eleocharis spp. sedgeland 
Eleocharis sedgelands (Figure B.1) are dominant in the Wet season but are usually replaced 
by herblands (such as Phyla nodiflora and Heliotropium indicum) during the Dry season. This 
community occurs in shallow flooded areas mostly in the northern portion the 
floodplain. For most species of Eleocharis, flowering is from May to September while 
fruiting is April to September. The growth habit of E. dulcis, the most common species of 
Eleocharis on the floodplain, grows to 1 m tall but tends to be smaller in shallower water 
with some saline influence  (Cowie et al. 2000). E. sphacelata grows to 1.5 m. 

 

 
Figure B.1 Eleocharis sedgeland indicated by the areas of darker green vegetation. 
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B.2 Oryza spp. (wild rice) grassland 
The dominant annual, Oryza meridionalis is at its vegetative peak toward the end of the wet 
season. Plants can be between 0.3 and 2 m tall with linear leaf blades 6-35 cm 
long (Cowie et al. 2000). In the Dry season, the grassland is mostly bare ground or dead 
stems (Figure B.2). O. meridionalis is germinated by early Wet season storms along with 
other annual species such as Digitaria sp., Hygrochloa aquatica and Heliotropum indicum. 
These species are reliant on flooding up to 1 m for successful establishment. Once 
flooding has commenced other species such as Nymphaea spp., Nymphoides spp. and 
Eleocharis spp. may occur amongst the grass. Flowering and fruiting occurs between April 
and August  (Cowie et al. 2000). In the drying out phase there is an increased abundance 
of Ludwigia adscendens and a number of herbs  (Finlayson et al. 1989). 

 

 
Figure B.2 Oryza grassland as indicated by red arrow. 
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B.3 Pseudoraphis spinescens grassland 
P. spinescens is a perennial emergent grass. In the Dry season it displays a turf like habit, 
whereas in the Wet season it grows up through the water (Figure B.3) (Finlayson et al. 
1989). Plants are either prostrate of decumbent 20–50 cm tall with linear or triangular 
linear leaves 1–2 cm long (Cowie et al. 2000). Flowering and fruiting occur mainly from 
January to June. During the Wet season, aquatic plants including Eleocharis spp., 
Nymphaea spp., Najas tenuifolia, and Salvinia molesta can exist amongst this grass  (Finlayson 
et al. 1989). 

 

 
Figure B.3 Pseudoraphis spinescens grassland. 

  



90 

B.4 Hymenachne acutigluma grassland 
This is a perennial grassland occurring year long. Plants can be up to 1.3 m tall with linear 
or linear triangular blades 8–30 cm long.  Flowering and fruiting occur between January 
and October  (Cowie et al. 2000). Minor species that may occur in the grassland include 
Ludwigia adscendens, Oryza meridionalis and Pseudoraphis spinescens.  According to Finlayson et 
al.  (1989) the community is susceptible to invasion from Para grass (Figure B.4). 

 

 
Figure B.4 Hymenachne acutigluma grassland with Para grass encroaching on right hand side. 
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B.5 Melaleuca spp. woodland and open forest 
Melaleuca spp. woodland (Figure B.5) and open forest (Figure B.6) communities are 
dominated by trees from one or more Melaleuca spp. Floodplain edges and the northern 
region tend to be dominated b M viridiflora and M. cajaputi, while M leucadendra is prevalent 
in the backswamps that are inundated for most of the year. Understorey in these 
communities is varied most likely as a response to water depth and shade (Finlayson et al. 
1989). In areas with a dense canopy, the understorey tends to consist of shade tolerant 
species, in the more open areas the understorey is similar to adjacent grassland 
communities with Hymenachne acutigluma, Pseudoraphis spinescens or Oryza meridionalis present 
 (Finlayson et al. 1989). 

 
Figure B.5 Melaleuca woodland with a mixed grass/ sedge understorey. 

 
Figure B.6 Melaleuca open forest. 
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B.6 Nelumbo nucifera (red lily) herbland 
This community (Figure B.7) occurs in permanently or semi-permanently wet areas. 
Perennial and emergent N. nucifera can form dense stands in the Dry season. N. nucifera is 
typified by large orbicular blue green leaf blades (18–70 cm in diameter) that are either 
floating or emergent from the water  (Cowie et al. 2000). Flowering occurs between 
March and December while fruiting occurs between June and December. 

 
Figure B.7 Nelumbo herbland. 
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B.7 Nymphoides/Nymphaea (small lilies) herbland 
Nymphoides/Nymphaea (small lilies) herbland are aquatic communities with floating leaves 
(Figure B.8). Nymphoides spp. leaf blades are much smaller (typically less than 10 cm 
diameter) than the leaf blades of Nymphaea spp. 

 
Figure B.8 A large expanse of Nymphaea/Nymphoides herbland. 

B.8 Leersia hexandra grassland 
The Leersia hexandra grassland that commonly occurs in floating mats located on 
floodplain and backwater swamps (Cowie et al. 2000). Plants are tall and slender (0.6–2 
m long) with linear-acuminate blue-green leaf blades, 4–20 cm long. L hexandra flowers 
and fruits between March and June. 

B.9 Other vegetation 
The major ecological weed within the floodplain is Para Grass, Urochloa mutica  (Boyden 
et al. 2007, Boyden et al. 2013), occupying a large area in the central plains region of the 
floodplain (Figure B.9). Other weeds include Mimosa pigra and Salvinia molesta (Figure 
B.10) but these are under effective biological control on the floodplain (Cowie et al. 
1988, Walden et al. 2012). Vegetation surrounding the floodplain is primarily a tropical 
savanna matrix consisting of the co-dominants: a continuous annual grass cover and a 
discontinuous tree cover (mostly Eucalyptus spp.) (Story 1976).  
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Figure B.9 The invasive Para grass, Urochloa mutica. 

 

 
Figure B.10 The floating fern, Salvinia molesta. 


	List of Figures
	List of Tables
	Executive summary
	Related publications
	Acknowledgments
	Abbreviations

	1 Introduction
	1.1 Project definition
	1.2 Project focus
	1.3 Background
	1.4 Previous mapping of the Magela Floodplain
	1.5 Use of satellite data for wetland mapping
	1.6 GEOBIA
	1.7 Outline of the report

	2 Study site
	2.1 Landscape 
	2.2 Climate
	2.3 Drivers of variability
	2.3.1 Rainfall and discharge
	2.3.2 Fire

	2.4 Vegetation

	3 Methods
	3.1 Data sets and data acquisition
	3.1.1 Multispectral data

	3.2 Ancillary data
	3.2.1 Digital elevation models
	3.2.2 Canopy height model

	3.3 Image pre-processing and analysis
	3.3.1 Pre-processing
	3.3.2 Geometric rectification
	3.3.3 Radiometric correction
	3.3.4 Image mosaic

	3.4 Image analysis and classification
	3.4.1 Masks
	3.4.2 Masking out of non-image pixels
	3.4.3 Water mask
	3.4.4 Cloud masks
	3.4.5 Floodplain differentiation
	3.4.6 Floodplain analysis and classification
	3.4.7 Trees versus no trees
	3.4.8 Discriminating spectral cover classes within the floodplain 
	3.4.9 Delineating Region 1 vegetation classes
	3.4.10 Delineating Regions 2 and 3 vegetation classes

	3.5 Accuracy assessment
	3.5.1 Field-based reference data
	3.5.2 Accuracy measures


	4 Results
	4.1 Classes or vegetation mapping units
	4.1.1 Hymenachne grassland
	4.1.2 Melaleuca woodland and open forest
	4.1.3 Oryza grassland
	4.1.4 Pseudoraphis grassland
	4.1.5 Pseudoraphis/Hymenachne grassland
	4.1.6 Para grass
	4.1.7 Nelumbo herbland
	4.1.8 Salvinia 
	4.1.9 Eleocharis sedgeland
	4.1.10 Leersia grassland
	4.1.11 Mangrove

	4.2 Accuracy assessment

	5 Discussion
	5.1 Advantages and limitations of incorporating a CHM as part of the data set.
	5.2 Advantages and limitations of WV-2 multispectral data for mapping wetlands
	5.3 Advantages and limitations of using a GEOBIA methodology.

	6 Conclusion
	7 References
	Appendix A
	Appendix B
	B.1 Eleocharis spp. sedgeland
	B.2 Oryza spp. (wild rice) grassland
	B.3 Pseudoraphis spinescens grassland
	B.4 Hymenachne acutigluma grassland
	B.5 Melaleuca spp. woodland and open forest
	B.6 Nelumbo nucifera (red lily) herbland
	B.7 Nymphoides/Nymphaea (small lilies) herbland
	B.8 Leersia hexandra grassland
	B.9 Other vegetation


