

Australian Government

Department of the Environment Supervising Scientist internal report

Ecotoxicological assessment of distillate from the Ranger uranium mine's brine concentrator plant

Andrew J Harford,

Melanie A Trenfield and

Rick A van Dam

November 2014

Release status – unrestricted Project number –RES-2013-013 This page has been left blank intentionally.

Ecotoxicological assessment of distillate from the Ranger uranium mine's brine concentrator plant

Andrew J Harford, Melanie A Trenfield & Rick A van Dam

Supervising Scientist GPO Box 461, Darwin NT 0801

November 2014

(Release status - unrestricted)

Australian Government

Department of the Environment Supervising Scientist

How to cite this report:

Harford A, Trenfield M & van Dam R 2014. Ecotoxicological assessment of distillate from the Ranger uranium mine's brine concentrator plant. Internal Report 636, November, Supervising Scientist, Darwin.

Project number-RES-2013-013

Authors of this report:

Dr Andrew Harford – Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia

Melanie Trenfield – Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia

Dr Rick van Dam – Environmental Research Institute of the Supervising Scientist; GPO Box 461, Darwin NT 0801, Australia

The Supervising Scientist is a branch of the Australian Government Department of the Environment.

© Commonwealth of Australia 2014

Supervising Scientist Department of the Environment GPO Box 461, Darwin NT 0801 Australia

environment.gov.au/ssd/publications

IR636 is licensed by the Commonwealth of Australia for use under a Creative Commons By Attribution 3.0 Australia licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logo of the agency responsible for publishing the report, content supplied by third parties, and any images depicting people. For licence conditions see: <u>http://creativecommons.org/licenses/by/3.0/au/</u>

Disclaimer

The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment.

While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication.

Printed and bound in Darwin NT by Supervising Scientist

Contents

E	xecutive summary	iv
A	bbreviations	v
1	Introduction	1
2	Method	2
	2.1 Test water	2
	2.2 Test diluent	2
	2.3 Toxicity tests	2
	2.4 Quality control	3
	2.4.1 Chemistry	3
	2.4.2 General water quality	3
	2.4.3 Control responses	3
3	Results and discussion	5
	3.1 Quality Control	5
	3.2 Distillate Chemistry	5
	3.3 Toxicity data	6
4	Conclusion	7
5	References	8
6	Appendices	9
	Appendix A Water Quality Parameters	9
	Appendix B Chemical analyses	14
	Appendix C Toxicity test raw data and statistical analyses	22

Executive summary

The increasing process water inventory at the Ranger uranium mine has become a major operational issue for Energy Resources of Australia Ltd (ERA). Following an assessment of potential technology options, ERA decided that brine concentration was the most viable option to reduce the inventory. The full-scale brine concentrator plant at Ranger was commissioned in September 2013 and the electrical conductivity of the distillate was stabilised in early October 2013. The aims of this study were to assess the toxicity of a distillate sample from the full-scale brine concentrator plant, and to identify the cause/s of any observed effects.

On 7 October 2013, following the stabilisation of distillate water quality, samples of the distillate were collected. Five tropical freshwater species (*Chlorella* sp. (green algae), *Lemna aequinoctialis* (duckweed), *Hydra viridissima* (green hydra), *Moinodaphnia macleayi* (cladoceran) and *Mogurnda mogurnda* (fish)) were exposed to a limited concentration range of the distillate (0, 25, 50 and 100%). Additionally, for all species except *Chlorella* sp., undiluted samples of distillate were amended by adding calcium (Ca), sodium (Na) and potassium (K) at 0.5, 1.0 and 0.4 mg L⁻¹, respectively (termed "100% amended"). Amending these salts of the distillate to concentrations representative of local natural waters aimed to determine if observed effects were due to reduced essential ions.

Chemical analyses from the full-scale plant showed that the distillate sample was a highlypurified water and contained less metals and major ions compared to the sample from the pilot plant. The toxicity of the full-scale-plant distillate was higher than that of the pilot-plant product, which was consistent with the higher purity. Some degree of toxicity was observed for all five species. Addition of Ca, Na and K to the distillate sample resulted in markedly improved performance of the organisms and indicated that a major ion deficiency is the primary cause of effects observed in the distillate. The outcomes of this study have been used to inform regulatory approvals concerning discharge of the distillate to the environment.

Abbreviations

DO	Dissolved Oxygen
EC	Electrical Conductivity
ERA	Energy Resources of Australia Ltd
GC-MS	Gas Chromatograph-Mass Spectrometry
ICP-MS/OES	Inductively Coupled Plasma Mass Spectrometry/ Optical Emission Spectrometry
MCW	Magela Creek Water
QC	Quality Control
RT-TI	Rio Tinto – Technology and Innovation
TSF	Tailings Storage Facility
VOCs/sVOCs	Volatile/semi-Volatile Organic Compound analysis

1 Introduction

The increasing process water inventory at the Ranger uranium mine has become a major operational issue for Energy Resources of Australia Ltd (ERA). Following an assessment of potential technology options, ERA decided that brine concentration was the most viable option to reduce the volume of process water on the mine site. A brine concentrator would produce large volumes of a purified water product (distillate) and a waste stream containing the salts present in the process water (brine concentrate). The distillate will be released (following approval) into the environment via a yet-to-be determined method (at the time of this study being undertaken), while the brine concentrate will be returned to the tailings storage facility (TSF) or, eventually, directly injected into the bottom of Pit 3.

In 2011, Rio Tinto – Technology and Innovation (RT-TI, Bundoora, Victoria) was engaged by ERA to conduct trials on a pilot-scale brine concentrator plant. Two key aims of the RT-TI trial were to (i) demonstrate that the distillate does not pose risks to operator health or the environment, and (ii) provide data to assist with designing water management and disposal systems. To assist with addressing the aquatic environment protection aspect, *eriss* undertook a comprehensive toxicity testing program of the pilot plant distillate (Harford et al. 2013). The aims of the toxicity test work were to: (i) detect and quantify any residual toxicity of the pilot distillate and, (ii) in the event that effects were observed, to identify the toxic constituent(s) of the distillate.

Five tropical freshwater species (Chlorella sp. (green algae), Lemna aequinoctialis (duckweed), Hydra viridissima (green hydra), Moinodaphnia macleavi (cladoceran) and Mogurnda mogurnda (fish)) were exposed to a limited concentration range of the pilot distillate sample (0, 25, 50 and 100%). The distillate was toxic to only Hydra viridissima (50-100% effect when exposed to 100% distillate). A series of experiments demonstrated that the effect was not due to residual ammonia (~1 mg L-1 N) or trace organics, and could not definitively identify manganese (Mn; $130 - 230 \mu g L^{-1}$) as the cause. In contrast, the addition of calcium, sodium and potassium (at 0.5, 1.0 and 0.4 mg L⁻¹, respectively) resulted in 100% recovery of H. viridissima population growth rate. This indicated that ion deficiency must be considered as a potential stressor in risk/impact assessments of the discharge of purified waste waters, and that such waters may need to be supplemented with the deficient ions to reduce environmental impacts (Harford et al. 2013). Further assessment on the likelihood of Mn toxicity indicated that the residual Mn concentrations in the distillate were at levels that could inhibit the growth of H. viridissima, but further data were needed to fully assess the risk of Mn in low pH, soft waters (Harford et al. 2014).

The full-scale brine concentrator plant at Ranger was commissioned in September 2013 and the electrical conductivity of the distillate stabilised in early October 2013. The aims of the present study were to assess the toxicity of a distillate from the full-scale brine concentrator plant, and to identify the cause/s of any observed effects.

2 Method

2.1 Test water

On 7 October 2013, following the stabilisation of distillate water quality, samples of the distillate were collected in glass with Teflon septum lid and plastic containers, including samples for Volatile and semi-Volatile Organic Compound analysis (VOCs and sVOCs measured by Gas Chromatograph-Mass Spectrometry, GC-MS). The samples were transported to the Darwin laboratory and immediately measured for dissolved oxygen, pH and electrical conductivity (EC). The plastic containers were sub-sampled for a full-suite of metals and major ions by ICP-MS/OES (Envirolab, Chatswood, NSW). Additional sub-samples were analysed for alkalinity (APHA2320B), nitrate, phosphate and ammonia (Colourimetric methods, EPA 353.2, EPA 365.1, EPA 350.1).

2.2 Test diluent

Natural Magela Creek Water (MCW) was used as the control treatment and for dilution of the distillate samples in all tests, and was obtained from Bowerbird Billabong (latitude 12° 46' 15", longitude 133° 02' 20"). This natural water has been extensively characterised and has been used as a diluent in toxicity testing for over 20 years in the **eriss** ecotoxicology laboratory. The water was collected in 20 L acid-washed plastic containers and placed in storage at $4 \pm 1^{\circ}$ C within 1 h of collection. The water was then transported to the laboratory in an air-conditioned vehicle. At the laboratory, it was stored at $4 \pm 1^{\circ}$ C prior to filtration through 3.0 µm pore size (Sartopure PP2 depth filter MidiCaps, Sartorius, Göttingen, Germany) within 3 days of collection. Throughout the testing period, the MCW had a pH of 6.2-6.8 units, an EC of 16-27 µS cm⁻¹ and DO of $\geq 85\%$ saturation.

Diluent water was sub-sampled for physico-chemical analyses. Specifically pH, DO, EC and DOC were measured in-house. Additional sub-samples were analysed at Envirolab for alkalinity (APHA2320B), a limited metal and major ion suite (totals only; Al, Cd, Co, C, Cu, Fe, Mn, Ni, Pb, Se, U, Zn, Ca, Mg, Na, SO₄ (analysed as S and converted)), nitrate, phosphate and ammonia (Colourimetric methods, EPA 353.2, EPA 365.1, EPA 350.1).

2.3 Toxicity tests

Five tropical freshwater species were used to test the toxicity of the distillate, using the standard protocols described in Reithmuller et al. (2003; Table 1). The exposure regimes differed for the five species, thus:

Hydra viridissima and M. macleayi, were exposed to a limited concentration range of the distillate diluted in Magela Creek Water (MCW; 0, 25, 50 and 100%). Additionally, an undiluted sample of distillate was amended by adding Ca, Na and K at 0.5, 1.0 and 0.4 mg L⁻¹, respectively (termed "100% amended"). The concentrations of the added Ca, Na and K are representative of those measured in Magela Creek and were added to determine whether the adverse effects observed in the pilot-plant study could be reversed. Magnesium was not added because the distillate from the pilot-scale plant contained residual Mg that was similar to concentrations measured in the creek, ~0.5 mg L⁻¹ Table 2). This differed from distillate produced by the full-scale plant, which contained Mg <0.1 mg L⁻¹.

2. Chlorella sp., L. aequinoctialis and M. mogurnda, were all initially exposed to 0 and 100% distillate treatments only. These species were expected to tolerate the distillate based on results from the pilot-plant study. However, toxicity observed in the 100% distillate treatment resulted in repetition of the toxicity tests for L. aequinoctialis (using 0, 25, 50 and 100%) and M. mogurnda (0, 50 and 100%). Both of the repeated toxicity tests included a 100% amended treatment, as used for the other three test species.

Test organism	Acute/ Chronic	Test code	Date	Treatments tested (% Distillate)
Chlorella sp. (unicellular alga)	Chronic	1356G	08/10/13	0, 100
Lemna aeqinoctialis (duckweed)	Chronic Chronic	1355L 1362L	08/10/13 14/10/13	0, 100 0, 25, 50, 100, 100 (amended)¹
<i>Hydra viridissima</i> (green hydra)	Chronic	1352B	08/10/13	0, 25, 50, 100, 100 (amended)
Moinodaphnia macleayi (cladoceran)	Chronic	1353D	10/10/13	0, 25, 50, 100, 100 (amended)
<i>Mogurnda mogurnda</i> (fish)	Acute Acute	1354E 1364E	25/10/13 1/11/13	0, 100 0, 50, 100, 100 (amended)

Table 1 Details of toxicity tests undertaken to assess distillate from the brine concentrator

¹ Amended: undiluted distillate with addition of 0.5, 1.0 and 0.4 mg L⁻¹ (nominal concentrations) Ca, Na and K, respectively.

2.4 Quality control

2.4.1 Chemistry

For each test, blanks and procedural blanks (i.e. ultra-pure water that has been exposed to all components of the test system) were also analysed for a limited metal and major ion suite (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, U, Zn, Ca, Mg, Na, SO_4 - analysed as S and converted). Chemistry data for the blanks and procedural blanks were initially assessed by searching for analyte concentrations higher than detection limits. There were no instances where contamination in the blanks was greater than 2 µg L⁻¹ and above background levels of MCW.

2.4.2 General water quality

For each test, data were considered acceptable if: the recorded temperature of the incubator remained within the prescribed limits (see test descriptions, above); the recorded pH was within ± 1 unit of values at test commencement (i.e. Day 0); the EC for each test solution was within 10% (or 5 μ S cm⁻¹ for samples with low conductivity) of the values at test commencement; and the DO concentration was greater than 70% throughout the test (see Appendix A for data). The occurrence of any significant water quality changes were investigated and discussed on a case-by-case basis.

2.4.3 Control responses

Tests were considered valid if the organisms in the Quality Control (QC) treatment (ie those in the MCW control) met the following criteria:

Chlorella sp. cell division rate test

- The algal growth rate is within the range 1.4 ± 0.3 doublings day¹; and
- There is <20% variability (i.e. co-efficient of variation, CV <20%) in growth rate.

L. aequinoctialis plant growth test

- The average increase in frond number in any flask at test conclusion is at least four times that at test start (i.e. a total of 60 fronds/flask or specific growth rate (k) > 0.4 day⁻¹); and
- There is <20% variability (CV <20%) in growth rate.

M. macleayi 3-brood reproduction test

- 80% or more of the cladocera are alive and female, and have produced three broods at the end of the test period;
- Reproduction in the control averages 30 or more live neonates per female over the test period; and

H. viridissima population growth test

- More than 30 healthy hydroids (i.e. specific growth rate specific growth rate (k) > 0.27 day-1) remain in each dish at the end of the test period; and
- There is <20% variability (CV <20%) in growth rate.

M. mogurnda larval fish survival test

- The mean mortality or presence of fungus on the fish does not exceed 20%; and
- There is <20% variability (CV <20%) in survival.

3 Results and discussion

3.1 Quality Control

The quality of the toxicity tests was assessed based on criteria for water quality measurements (Appendix A), chemical analyses of blank and procedural blank samples (Appendix B, Table B3) and control performance (Appendix C). All toxicity tests met the criteria for control performance.

Two tests 1368E and 1355L exhibited a pH shift of over a unit in the new water of the 100% distillate treatment (Appendix A, Tables A7 and A2, respectively). This was not unexpected due to the low buffering capacity of the water. Dissolved oxygen concentrations in all tests were acceptable (> 80% saturation). The EC of the new waters used in all tests did not shift by more than $3 \,\mu\text{S cm}^{-1}$.

Chemical analyses of the diluent, blank and procedural blank samples showed that all tests were free from confounding metal contaminants (Table B3). Hence, all tests reported here were of acceptable quality.

3.2 Distillate Chemistry

Chemical analyses from the full-scale plant showed that the distillate sample was a highlypurified water and contained less metals and major ions compared to the sample from the pilot plant (Table 2, Table B1). The EC of the distillate was 3 μ S cm⁻¹, all major ions were below detection limits and the ammonia concentration was 0.25 mg L⁻¹. Manganese and uranium (U) concentrations were lower in the distillate from the full-scale plant (7 μ g L⁻¹ and 0.05 μ g L⁻¹, respectively) compared to that produced by the pilot-scale plant (120-240 μ g L⁻¹ and 1.1-1.5 μ g L⁻¹, respectively). The only other inorganic elements measured above 0.5 μ g L⁻¹ were Al and B, which were 3 and 13 μ g L⁻¹, respectively (Table 2). All sVOC and VOCs were below detection limits (Table B2).

Analyte	Detection limit	Pilot-plant 1 st sample ^a	Pilot-plant 2 nd sample ^a	Full-scale plant	Magela Creek Water
рН	0.1	5.8	6.7	6.1	6.1
Electrical conductivity (µS cm ⁻¹)	1	17	12	3	16
DOC (mg L ⁻¹)	0.1	0.6	NM ^b	0.6	2.1
Calcium (mg L ⁻¹)	0.1	0.11	<0.1	<0.1	0.2
Magnesium (mg L ⁻¹)	0.1	0.6	0.4	<0.1	1.1
Sodium (mg L ⁻¹)	0.1	<0.1	<0.1	<0.1	1.3
Potassium (mg L ⁻¹)	0.1	<0.1	<0.1	<0.1	0.2
Biocarbonate (mg L ⁻¹ CaCO ₃)	1	7	6	<1	5
Ammonia (mg L ⁻¹ NH ₃ -N)	0.005	0.7	0.8	0.3	N.M.
Aluminium (μg L ⁻¹)	0.1	18.0	23.0	3.0	6.0
Manganese (µg L ⁻¹)	0.005	230	130	7.0	2.0
Boron (µg L ⁻¹)	0.5	100.0	88.0	13.0	N.M.
Uranium (µg L ⁻¹)	0.001	1.1	1.5	0.05	0.007

Table 2 Selected measured chemicals in the distillate (the full dataset is reported at Appendix B,Table B1).

^a Harford et al. (2013)

^b NM: Not measured

3.3 Toxicity data

The effects of the distillate on the five freshwater species are shown in Figure 1. The fullscale-plant distillate was higher in toxicity compared to the pilot-plant distillate (Harford et al. 2013), but this was most likely due to the lower concentrations of major ions in the full-scale plant distillate (see below). All species displayed some degree of adverse effects in 100% distillate. Chlorella sp. and M. mogurnda were the most tolerant species with statistically significant 8% and 17% reductions in growth and survival, respectively. Moinodaphnia macleayi and L. aequinoctialis were equally sensitive to the 100% distillate with 71% and 73% reductions in reproduction and growth, respectively. However, L. aequinoctialis showed higher growth rates following the addition of the major ions, returning to levels similar to controls. The reproduction of M. macleavi improved with the major ion addition but was still 40% lower than the controls. As observed in the pilotplant distillate, H. viridissima, did not grow in the 100% distillate and all organisms exposed to the water died in 96 h. The addition of the major ions resulted in 82% recovery (Figure 1), compared with100% recovery in the pilot-scale distillate (Harford et al. 2013). These results indicate that a major ion deficiency is the primary cause of effects observed in the distillate.

Figure 1 Toxicity of the full-scale-plant distillate to five local freshwater species. Test treatments represent percent distillate dilutions. See main text for details of the '100% amended' sample. Control responses were (mean \pm se); 1.7 \pm 0.02 dbl/d for *Chlorella* sp.; 0.32 \pm 0.0 cm²/d for *L. aequinoctialis*; 0.31 \pm 0.0 for *H. viridissima*; 29.7 \pm 1.5 neonates/adult for *M. macleayi*; and 95 \pm 10.0% survival for *M. mogurnda*.

Conclusion

The toxicity of the full-scale-plant distillate sample was higher than that of the pilot-plant samples. These results were consistent with the higher purity of the former water. Amending the undiluted distillate sample with Ca, Na and K eliminated or reduced its toxicity. It is possible the remaining effects observed for *H. viridissima* and *M. macleayi* in the amended distillate sample were due to the concentration of Mg not being sufficient for hydra and cladoceran growth and reproduction. The major ion concentrations in the amended waters were similar to those found in MCW with the exception of Mg, which was not added to the treatments because this was not required during the pilot-plant study (Table 2). Nonetheless, the improved performance of the organisms upon addition of Ca, Na and K indicates that a major ion deficiency was the primary cause of effects observed in the distillate. The outcomes of this study have been used to inform regulatory approvals concerning discharge of the distillate to the environment.

5 References

- Harford AJ, Jones DR & van Dam RA 2013. Highly treated mine waters may require major ion addition before environmental release. *Science of the Total Environment* 443(0), 1/15/, 143–151.
- Harford AJ, Trenfield MA, Cheng KL & van Dam RA 2014. Ecotoxicological assessment of manganese. Internal Report 630, April, Supervising Scientist, Darwin.
- Riethmuller N, Camilleri C, Franklin N, Hogan AC, King A, Koch A, Markich SJ, Turley C & van Dam R 2003. *Ecotoxicological testing protocols for Australian tropical freshwater ecosystems*. Supervising Scientist Report 173, Supervising Scientist, Darwin NT.

6 Appendices

Appendix A Water Quality Parameters

Table A1 1356G Chlorella sp.

Treatment (%)	МС	W	100%		
Parameter	0h	72h	0h	72h	
рН	6.2	6.6	6.6	6.0	
EC (µS cm ⁻¹)	47	45	34	32	
DO (%)	107	93	101	91	
Temp (°C)	24.8	19.1	22.9	19.1	

Table A2 1355L *L. aequinoctialis*

Treatment (%)	м	cw	100%		
Parameter	0h	72h	0h	72h	
рН	6.5	7.0	5.9	4.8	
EC (µS cm ⁻¹)	23	17	16	14	
DO (%)	100	89	103	89	
Temp (°C)	23.7	22.6	23.0	22.0	

Table A3 1362L L. aequinoctialis

Treatment (%) MCW		25%		50%		100%		100% (amended)		
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.7	6.7	6.6	6.9	6.4	6.9	5.7	5.8	6.6	6.5
EC (µS cm ⁻¹)	27	19	21	15	18	12	11	10	19	11
DO (%)	106	89	105	91	103	88	104	91	101	91
Temp (°C)	25.3	23.5	24.6	22.7	22.2	24.3	21.4	23.7	21.1	23.0

Table A4 1352B <i>H. viridissima</i>	
--------------------------------------	--

Treatment	(%)	N	NCW	2	5%	5	0%	10	0%	100 % (a	mended)
Parameter		0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
Day 0	рН	6.5	6.5	6.5	6.8	6.4	6.6	5.7	6.0	6.1	6.3
	EC (µS cm ⁻¹)	16	17	13	14	11	11	3	4	11	12
	DO (%)	98	91	100	93	97	92	96	92	96	90
	Temp (°C)	22.9	24.6	21.7	23.8	21.2	22.8	21	22	20	22.1
Day 1	рН	6.3	6.5	6.4	6.5	6.3	6.6	5.6	6.5	6.0	6.3
	EC (µS cm ⁻¹)	16	17	13	17	10	10	6	3	11	12
	DO (%)	101	91	103	93	102	91	97	91	101	92
	Temp (°C)	21.3	23.9	21.4	23.8	21.1	23.0	21.3	22.9	21.5	22.7
Day 2	рН	6.4	6.4	6.4	6.5	6.3	6.6	5.5	6.5	6.3	6.5
	EC (µS cm ⁻¹)	16	18	13	14	10	11	4	3	11	12
	DO (%)	99	91	104	93	102	92	98	94	101	92
	Temp (°C)	21.3	23.8	21.2	23.3	21.4	22.8	21.6	23	21.7	22.7
Day 3	рН	6.6	6.7	6.5	6.7	6.4	6.7	5.7	6.1	6.3	6.2
	EC (µS cm ⁻¹)	16	17	13	14	10	10	5	3	11	12
	DO (%)	109	93	107	95	108	93	108	90	109	93
	Temp (°C)	22.5	22.3	22.5	24.0	22.5	23.8	22.3	23.4	22.2	20.9

Treatment (%)		r	NCW		25%		50%		100%		100% (amended)	
Parameter		0h	72h									
Day 0	pН	6.5	6.8	6.5	6.7	6.3	6.6	5.6	6.6	6.3	6.6	
	EC (µS cm ⁻¹)	19	20	17	16	13	13	6	6	14	15	
	DO (%)	108	91	103	92	105	91	109	91	106	89	
	Temp (°C)	21.8	22.0	21.8	22.2	23.8	21.9	24.6	21.7	22.8	21.3	
Day 1	рН	6.7	6.6	6.6	6.6	6.5	6.6	5.6	6.3	6.6	6.7	
	EC (µS cm ⁻¹)	20	20	15	16	13	13	7	6	14	15	
	DO (%)	100	91	109	92	101	90	94	88	97	91	
	Temp (°C)	23.1	22.3	23.3	22.0	22.5	22.0	21.8	22.4	21.3	21.6	
Day 2	рН	6.4	6.7	6.5	6.7	6.5	6.5	5.6	6.3	6.3	6.5	
	EC (µS cm ⁻¹)	19	20	16	16	13	14	7	7	15	15	
	DO (%)	105	90	97	93	103	93	98	91	102	87	
	Temp (°C)	23.2	23.6	21.8	23.4	20.5	22.8	20.5	22.8	20.2	22.6	
Day 3	рН	6.5	6.8	6.5	6.8	6.4	6.7	6.0	6.5	6.5	6.6	
	EC (µS cm ⁻¹)	19	20	16	16	13	14	6	6	15	15	
	DO (%)	102	91	102	91	101	89	102	87	101	88	
	Temp (°C)	23.0	22.0	21.6	22.0	21.1	21.8	20.9	21.3	20.9	20.9	
Day 4	рН	6.6	6.7	6.6	6.6	6.4	6.6	6.0	6.2	6.6	6.6	
	EC (µS cm ⁻¹)	19	20	16	17	13	13	7	7	15	14	
	DO (%)	102	89	105	88	106	89	101	85	104	88	
	Temp (°C)	20.9	22.0	22.4	21.8	21.9	21.5	21.3	21.2	23.2	20.6	
Day 5	рН	6.7	6.99	6.54	6.86	6.6	6.69	5.87	6.23	6.33	6.66	
	EC (µS cm ⁻¹)	19	20	17	17	12	14	7	7	12	15	
	DO (%)	98	92	109	93	103	90	97	94	103	92	
	Temp (°C)	20.6	24.6	20.8	NM	20.7	NM	20.5	NM	20.2	NM	

Table A5 1353D M. macleayi

Tab	le A6	1354E	M. mo	gurnda
-----	-------	-------	-------	--------

Treatment	(%)	МС	w	100%		
Parameter		0h	72h	0h	72h	
Day 0	рН	6.6	6.6	6.1	6.6	
	EC (µS cm ⁻¹)	17	20	3	6	
	DO (%)	96	95	101	97	
	Temp (°C)	22.1	23.6	22.3	24.9	
Day 1	pН	6.3	6.8	5.6	6.3	
	EC (µS cm ⁻¹)	17	18	4	5	
	DO (%)	103	91	102	92	
	Temp (°C)	23.9	22.2	22.8	21.9	
Day 2	pН	6.5	6.8	5.8	6.4	
	EC (µS cm ⁻¹)	17	19	3	5	
	DO (%)	100	91	106	91	
	Temp (°C)	22.7	21.3	22.3	20.7	
Day 3	рН	6.6	6.8	5.8	6.7	
	EC (µS cm ⁻¹)	17	20	3	6	
	DO (%)	100	85	109	91	
	Temp (°C)	22.3	23.6	21.7	23.1	

Tab	le	Α7	1368E	Е М.	mog	jurnda
-----	----	----	-------	------	-----	--------

Treatment	(%)	I	MCW	5	0%	100%		100% (amended)	
Parameter		0h	72h	0h	72h	0h	72h	0h	72h
Day 0	pН	6.8	6.9	6.8	6.8	6.5	6.6	6.4	6.6
	EC (µS cm ⁻¹)	19	20	10	13	4	6	11	14
	DO (%)	101	95	104	97	105	94	106	92
	Temp (°C)	22.7	23.6	22.1	23.2	21.7	22.8	22.1	22.4
Day 1	рН	6.6	6.7	6.7	6.6	5.4	6.3	5.9	6.4
	EC (µS cm ⁻¹)	17	19	10	12	6	5	11	13
	DO (%)	104	94	115	91	116	95	115	94
	Temp (°C)	22.6	25	22.7	25.6	22.7	25	22.4	24.8
Day 2	pН	6.4	6.3	6.5	6.4	5.8	6.6	6.3	6.5
	EC (µS cm ⁻¹)	17	19	11	12	6	5	12	13
	DO (%)	108	92	109	93	106	91	110	94
	Temp (°C)	NM	24.1	NM	24.8	0	25.4	NM	26.2
Day 3	pН	6.7	6.8	6.6	6.9	5.4	6.7	5.8	6.6
	EC (µS cm ⁻¹)	17	22	10	13	5	6	11	13
	DO (%)	106	94	110	95	109	92	110	91
	Temp (°C)	22.7	25.6	22.5	25	22.2	24.4	21.9	23.7

Appendix B Chemical analyses

Analyte	Units	Detection Limit	Concentration
Aluminium	µg/L	0.1	3
Cadmium	µg/L	0.02	<0.02
Cobalt	µg/L	0.01	0.01
Chromium	µg/L	0.1	<0.1
Copper	µg/L	0.01	0.1
Iron	µg/L	1	<1
Manganese	µg/L	0.01	7
Nickel	µg/L	0.01	<0.01
Lead	µg/L	0.01	0.2
Selenium	µg/L	0.2	<0.2
Uranium	µg/L	0.001	0.05
Zinc	µg/L	0.1	<0.1
Silver	µg/L	0.05	<0.05
Arsenic	µg/L	0.05	<0.05
Gold	µg/L	0.01	<0.01
Boron	µg/L	0.5	13
Barium	µg/L	0.02	0.06
Beryllium	µg/L	0.05	<0.05
Bismuth	µg/L	0.01	<0.01
Bromine	µg/L	1	<1
Cerium	µg/L	0.01	<0.01
Caesium	µg/L	0.01	<0.01
Dysprosium	µg/L	0.01	<0.01
Erbium	µg/L	0.01	<0.01
Europium	µg/L	0.01	<0.01
Gallium	µg/L	0.01	<0.01
Gadolinium	µg/L	0.01	<0.01
Hafnium	µg/L	0.01	<0.01
Mercury	µg/L	0.02	<0.02
Holmium	µg/L	0.01	<0.01
Indium	µg/L	5	<5
Lanthanum	µg/L	0.01	<0.01
Lithium	µg/L	0.05	<0.05
Lutetium	µg/L	0.01	<0.01
Molybdenum	µg/L	0.05	<0.05
Niobium	µg/L	0.02	<0.02
Neodymium	µg/L	0.01	<0.01
Osmium	µg/L	0.1	<0.1
Palladium	µg/L	0.05	<0.05

Table B1 Inorganic analysis of distillate

Analyte	Units	Detection Limit	Concentration
Praseodymium	µg/L	0.01	<0.01
Rubidium	µg/L	0.01	<0.01
Rhenium	µg/L	0.01	<0.01
Antimony	µg/L	0.05	<0.05
Scandium	µg/L	0.5	<0.5
Samarium	µg/L	0.01	<0.01
Tin	µg/L	0.1	0.1
Strontium	µg/L	0.01	0.05
Tantalum	µg/L	0.05	<0.05
Terbium	µg/L	0.01	<0.01
Tellurium	µg/L	0.1	<0.1
Thorium	µg/L	0.01	<0.01
Titanium	µg/L	2	<2
Thallium	µg/L	0.01	<0.01
Thulium	µg/L	0.01	<0.01
Vanadium	µg/L	0.05	<0.05
Tungsten	µg/L	0.05	<0.05
Yttrium	µg/L	0.01	0.02
Ytterbium	µg/L	0.01	<0.01
Zirconium	µg/L	0.05	<0.05
Sulfur	mg/L	0.5	<0.5
Alkalinity as CaCO ₃	mg/L	1.0	2.0
Nitrate as N	mg/L	0.005	<0.005
Ammonia as N	mg/L	0.005	0.27
Phosphate as P	mg/L	0.005	<0.005
Calcium	mg/L	0.1	<0.1
Chloride	mg/L	1	<1.0
Magnesium	mg/L	0.1	<0.1
Sodium	mg/L	0.1	<0.1
Potassium	mg/L	0.1	<0.1

Table B1 (continued) Inorganic analysis of distillate

Analyte	Units	Detection Limit	Concentration
Dichlorodifluoromethane	µg/L	10	<10
Chloromethane	µg/L	10	<10
Vinyl Chloride	µg/L	10	<10
Bromomethane	µg/L	10	<10
Chloroethane	µg/L	10	<10
Trichlorofluoromethane	µg/L	10	<10
1,1-Dichloroethene	µg/L	1	<1
Trans-1,2-dichloroethene	µg/L	1	<1
1,1-dichloroethane	µg/L	1	<1
Cis-1,2-dichloroethene	µg/L	1	<1
Bromochloromethane	µg/L	1	<1
Chloroform	µg/L	1	<1
2,2-dichloropropane	µg/L	1	<1
1,2-dichloroethane	µg/L	1	<1
1,1,1-trichloroethane	µg/L	1	<1
1,1-dichloropropene	µg/L	1	<1
Cyclohexane	µg/L	1	<1
Carbon tetrachloride	µg/L	1	<1
Benzene	µg/L	1	<1
Dibromomethane	µg/L	1	<1
1,2-dichloropropane	µg/L	1	<1
Trichloroethene	µg/L	1	<1
Bromodichloromethane	µg/L	1	<1
trans-1,3-dichloropropene	µg/L	1	<1
cis-1,3-dichloropropene	µg/L	1	<1
1,1,2-trichloroethane	µg/L	1	<1
Toluene	µg/L	1	<1
1,3-dichloropropane	µg/L	1	<1
Dibromochloromethane	µg/L	1	<1
1,2-dibromoethane	µg/L	1	<1
Tetrachloroethene	µg/L	1	<1
1,1,1,2-tetrachloroethane	µg/L	1	<1
Chlorobenzene	µg/L	1	<1
Ethylbenzene	µg/L	1	<1
Bromoform	µg/L	1	<1
m+p-xylene	µg/L	2	<2
Styrene	µg/L	1	<1
1,1,2,2-tetrachloroethane	µg/L	1	<1
o-xylene	µg/L	1	<1
1,2,3-trichloropropane	µg/L	1	<1
Isopropylbenzene	µg/L	1	<1

Table B2 Volatile Organic Carbon and semi Volatile Organic Carbon analysis of distillate

Analyte	Units	Detection Limit	Concentration
Bromobenzene	µg/L	1	<1
n-propyl benzene	µg/L	1	<1
2-chlorotoluene	µg/L	1	<1
4-chlorotoluene	µg/L	1	<1
1,3,5-trimethyl benzene	µg/L	1	<1
Tert-butyl benzene	µg/L	1	<1
1,2,4-trimethyl benzene	µg/L	1	<1
1,3-dichlorobenzene	µg/L	1	<1
Sec-butyl benzene	µg/L	1	<1
1,4-dichlorobenzene	µg/L	1	<1
4-isopropyl toluene	µg/L	1	<1
1,2-dichlorobenzene	µg/L	1	<1
n-butyl benzene	µg/L	1	<1
1,2-dibromo-3-chloropropane	µg/L	1	<1
1,2,4-trichlorobenzene	µg/L	1	<1
Hexachlorobutadiene	µg/L	1	<1
1,2,3-trichlorobenzene	µg/L	1	<1
Phenol	µg/L	10	<10
Bis (2-chloroethyl) ether	µg/L	10	<10
2-Chlorophenol	µg/L	10	<10
1,3-Dichlorobenzene	µg/L	10	<10
1,4-Dichlorobenzene	µg/L	10	<10
2-Methylphenol	µg/L	10	<10
1,2-Dichlorobenzene	µg/L	10	<10
bis-(2-Chloroisopropyl) ether	µg/L	10	<10
3/4-Methylphenol	µg/L	20	<20
N-nitrosodi-n-propylamine	µg/L	10	<10
Hexachloroethane	µg/L	10	<10
Nitrobenzene	µg/L	10	<10
Isophorone	µg/L	10	<10
2,4-Dimethylphenol	µg/L	10	<10
2-Nitrophenol	µg/L	10	<10
bis (2-Chloroethoxy) methane	µg/L	10	<10
2,4-Dichlorophenol	µg/L	10	<10
1,2,4-Trichlorobenzene	µg/L	10	<10
Naphthalene	µg/L	10	<10
4-Chloroaniline	µg/L	10	<10
Hexachlorobutadiene	µg/L	10	<10
2-Methylnaphthalene	µg/L	10	<10
Hexachlorocyclopentadiene	µg/L	10	<10
2,4,6-Trichlorophenol	µg/L	10	<10

Table B2 (cont) Volatile Organic Carbon and semi Volatile Organic Carbon analysis of distillate

Analyte	Units	Detection Limit	Concentration
2,4,5-Trichlorophenol	µg/L	10	<10
2-Chloronaphthalene	µg/L	10	<10
2-Nitroaniline	µg/L	10	<10
Dimethyl phthalate	µg/L	10	<10
2,6-Dinitrotoluene	µg/L	10	<10
Acenaphthylene	µg/L	10	<10
3-Nitroaniline	µg/L	10	<10
Acenaphthene	µg/L	10	<10
2,4-Dinitrophenol	µg/L	100	<100
4-Nitrophenol	µg/L	100	<100
Dibenzofuran	µg/L	10	<10
Diethylphthalate	µg/L	10	<10
4-Chlorophenylphenylether	µg/L	10	<10
4-Nitroaniline	µg/L	10	<10
Fluorene	µg/L	10	<10
2-methyl-4,6-dinitrophenol	µg/L	100	<100
Azobenzene	µg/L	10	<10
4-Bromophenylphenylether	µg/L	10	<10
Hexachlorobenzene	µg/L	10	<10
Pentachlorophenol	µg/L	100	<100
Phenanthrene	µg/L	10	<10
Anthracene	µg/L	10	<10
Carbazole	µg/L	10	<10
Di-n-butylphthalate	µg/L	10	<10
Fluoranthene	µg/L	10	<10
Pyrene	µg/L	10	<10
Butylbenzylphthalate	µg/L	10	<10
Bis(2-ethylhexyl) phthalate	µg/L	10	<10
Benzo(a)anthracene	µg/L	10	<10
Chrysene	µg/L	10	<10
Di-n-octylphthalate	µg/L	10	<10
Benzo(b)fluoranthene	µg/L	10	<10
Benzo(k)fluoranthene	µg/L	10	<10
Benzo(a)pyrene	µg/L	10	<10
Indeno(1,2,3-c,d)pyrene	µg/L	10	<10
Dibenzo(a,h)anthracene	µg/L	10	<10
Benzo(g,h,i)perylene	µg/L	10	<10
Ethylmethanesulfonate	µg/L	10	<10
Aniline	µg/L	10	<10
Pentachloroethane	µg/L	10	<10

Table B2 (cont) Volatile Organic Carbon and semi Volatile Organic Carbon analysis of distillate

Analyte	Units	Detection Limit	Concentration
Benzyl alcohol	µg/L	10	<10
Acetophenone	µg/L	10	<10
N-nitrosomorpholine	µg/L	10	<10
N-nitrosopiperidine	µg/L	10	<10
2,6-Dichlorophenol	µg/L	10	<10
Hexachloropropene-1	µg/L	10	<10
N-nitroso-n-butylamine	µg/L	10	<10
Safrole	µg/L	10	<10
1,2,4,5-Tetrachlorobenzene	µg/L	10	<10
Trans-iso-safrole	µg/L	10	<10
1,3-Dinitrobenzene	µg/L	10	<10
Pentachlorobenzene	µg/L	10	<10
1-Naphthylamine	µg/L	10	<10
2,3,4,6-Tetrachlorophenol	µg/L	10	<10
2-Naphthylamine	µg/L	10	<10
5-Nitro-o-toluidine	µg/L	10	<10
Diphenylamine	µg/L	10	<10
Phenacetin	µg/L	10	<10
Pentachloronitrobenzene	µg/L	10	<10
Dinoseb	µg/L	10	<10
Methapyrilene	µg/L	10	<10
p-Dimethylaminoazobenzene	µg/L	10	<10
2-Acetylaminofluorene	µg/L	10	<10
7,12-Dimethylbenz(a)anthracene	µg/L	10	<10
3-Methylcholanthrene	µg/L	10	<10
a-BHC	µg/L	10	<10
b-BHC	µg/L	10	<10
g-BHC	µg/L	10	<10
d-BHC	µg/L	10	<10
Heptachlor	µg/L	10	<10
Aldrin	µg/L	10	<10
Heptachlor Epoxide	µg/L	10	<10
g-Chlordane	µg/L	10	<10
a-Chlordane	µg/L	10	<10
Endosulfan I	µg/L	10	<10
p,p'-DDE	µg/L	10	<10
Dieldrin	µg/L	10	<10
Endrin	µg/L	10	<10
p,p'-DDD	µg/L	10	<10
Endosulfan II	µg/L	10	<10
Endrin Aldehyde	µg/L	10	<10

Table B2 (cont) Volatile Organic Carbon and semi Volatile Organic Carbon analysis of distillate

Analyte	Units	Detection Limit	Concentration
p,p'-DDT	µg/L	10	<10
Endosulfan Sulphate	µg/L	10	<10

Table B2 (cont) Volatile Organic Carbon and semi Volatile Organic Carbon analysis of distillate

Analvte	Units	Detection Limit	MCW ^a	1355L Blk	1355L Pro Blk	1356G Blk	1356G Pro Blk	1352B Blk	1352B Pro Blk	1353D Pro Blk	1353D Blk	1368E Pro Blk	1368E Blk
Aluminium	µg/L	0.1	6	2	4	<0.1	0.4	<0.1	<0.1	0.1	<0.1	0.6	1
Cadmium	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Cobalt	µg/L	0.01	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chromium	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Copper	µg/L	0.01	0.4	0.1	0.05	0.04	0.05	0.05	0.05	<0.01	<0.01	0.04	0.1
Iron	µg/L	1	31	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Manganese	µg/L	0.01	2	0.03	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.03
Nickel	µg/L	0.01	0.2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.04
Lead	µg/L	0.01	0.05	0.03	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.04
Selenium	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Uranium	µg/L	0.001	0.007	<0.001	0.03	<0.001	0.02	<0.001	<0.001	<0.001	<0.001	<0.001	0.001
Zinc	µg/L	0.1	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.6
Sulphate	mg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Table B3 Blank (Blk) and Procedural Blank (Pro Blk) chemistry for the toxicity tests

^a Magela Creek Water batch used for the toxicity tests.

Appendix C Toxicity test raw data and statistical analyses

CETIS Analytical Report								Repo Test	ort Date: Code:	13 Nov-13 11:53 (p 1 of 1352B 06-2500-43	2) 22
Green	Hydra F	opulation Grow	th Test							eriss ecotoxicology la	b
Analysis ID: 04-5565-8920 Endp Analyzed: 13 Nov-13 11:52 Analy				point: lysis:	it: Specific growth rate (96h)it: Linear Interpolation (ICPIN)				CETIS Version: CETISv1.8.7 Official Results: Yes		
Batch	ID:	03-1407-0036	Test	Type:	Hydra popula	tion growth		Anal	yst: And	rew J Harford	_
Start D	ate:	09 Oct-13 15:30	Prot	ocol:	Hydra eriss tr	opical freshw	ater	Dilu	ent: Mag	gela Creek Water	
Ending	g Date:	12 Oct-13 15:30) Spe	cies:	Hydra viridiss	lydra viridissima			e: Not	Applicable	
Duratio	on:	72h	Sou	rce:	In-House Cul	n-House Culture					_
Sample	e ID:	16-7335-7126	Cod	e:	315B0E11			Clier	nt: Ene	rgy Resources of Australia - Env	iro
Sample	e Date:	07 Oct-13 10:30	Mat	erial:	Ranger Brine	Concentrato	r Distillate	Proj	ect: Rar	ger Brine Concentrator Plant	
Receiv	e Date:	07 Oct-13 16:00	Sou	rce:	Ranger Brine	Concentrato	r Plant				
Sampl	e Age:	53h (25 °C)	Stat	ion:	N/A						
Linear	Interpo	lation Options									
X Tran	sform	Y Transform	See	d	Resamples	Exp 95%	CL Meth	od			_
Log(X+	·1)	Linear	575	101	200	Yes	Two-	Point Interp	olation		_
Residu	ual Anal	ysis									_
Attribu	ite	Method			Test Sta	at Critical	P-Value	Decision	(α:5%)		
Extrem	e Value	Grubbs Ex	treme Valu	Э	1.781	2.412	0.6932	No Outlie	rs Detected		_
Point E	Estimate	es									_
Level	%	95% LCL	95% UCL	τυ	95% LC	L 95% UCL					
IC5	51.62	14.84	51.95	1.937	1.925	6.739					_
IC10	53.45	47.95	53.78	1.871	1.86	2.085					
IC15	55.35	49.97	55.67	1.807	1.796	2.001					
IC20	57.32	52.07	57.63	1.745	1.735	1.92					
IC25	59.36	54.26	59.66	1.685	1.676	1.843					
IC40	65.9	61.36	66.17	1.517	1.511	1.63					
1C50	70.66	66.59	70.89	1.415	1.411	1.502					
Specif	ic grow	th rate (96h) Sur	mmary			Ca	Iculated Va	riate			
C-%	С	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	N	lagela Creek W	3	0.305	9 0.2985	0.3132	0.004247	0.007356	2.41%	0.0%	
25			3	0.307	5 0.2829	0.3338	0.01471	0.02549	8.29%	-0.54%	
50			3	0.305	3 0.2829	0.3271	0.01277	0.02212	7.25%	0.19%	
100			3	0	0	0	0	0		100.0%	
Specif	ic grow	th rate (96h) Det	ail								
C-%	С	ontrol Type	Rep 1	Rep 2	2 Rep 3						
0	N	lagela Creek Wa	0.3059	0.298	5 0.3132						
25			0.3338	0.305	9 0.2829						
50			0.2829	0.327	1 0.3059						
100			0	0	0						

000-428-181-1

CETIS™ v1.8.7.4

Analyst:_____ QA:____

CETIS And	alytical Report			Report Date:	13 Nov-13 11:53 (p 2 of 2)
Green Hydra	Population Growth	Test		Test Code.	eriss ecotoxicology lab
Analysis ID: Analyzed:	04-5565-8920 13 Nov-13 11:52	Endpoint: Analysis:	Specific growth rate (96h) Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.8.7 Yes
Graphics					
(1900) (1			X.		
0.15 0.10 0.05 0.00			80 100		
	c	-%			

000-428-181-1

CETIS™ v1.8.7.4

Analyst:_____ QA:_____

CETIS Analytical Report										Report Date: Test Code:			13 Nov-13 11:44 (p 1 of 2) 1353D 09-0341-1637		
Cladoc	eran Re	eproduction Tes	st										er	iss ecotox	icology lab
Analysis ID: 21-4309-6132 End Analyzed: 13 Nov-13 11:42 Ana				point: Total neonates lysis: Linear Interpolation (ICPIN)					CETIS Version: CETISv1.8.7 Official Results: Yes						
Batch ID: 07-2312-9691 Te Start Date: 10 Oct-13 14:15 Pr Ending Date: 16 Oct-13 14:15 Sr Duration: 6d 0h Sc				Type: cocol: cies: rce:	Clado Clad (Moino In-Hor	Xadoceran reproduction Xad (chronic) eriss tropical freshwater Aoinodaphnia macleayi n-House Culture				Analys Diluen Brine: Age:	st: A t: N N	Andre Magel Not A	w J Harfo la Creek V pplicable	rd Vater	
Sample ID: 08-2805-0961 C Sample Date: 07 Oct-13 10:30 M Receive Date: 07 Oct-13 16:00 S Sample Age: 76h (28 °C) S			Cod Mate Sou Stat	:: 315B0E11 rial: Ranger Brine Concentrator Distillate rce: Ranger Brine Concentrator Plant on: N/A				Client: Projec	t: F	Energ Range	y Resourd er Brine C	ces of Aust oncentrato	ralia - Enviro r Plant		
Linear I	Interpo	lation Options													
X Trans	form	Y Transform	Seed		Resamples		Exp 95%	% CL Method							
Log(X+1	1)	Linear	2002	2751	200		Yes	Two-	Point	oint Interpolation					
Residua	al Anal	ysis													
Attribut	e	Method			٦	Fest Stat	Critical	P-Value	Dec	cision(a:5%)					
Extreme	e Value	Grubbs Ex	treme Value	e	3	8.589	3.036	0.0033	Outl	ier Dete	cted				
Point E	stimate	es													
Level	%	95% LCL	95% UCL	τu	g	95% LCL	95% UCL								
IC5	30.99	1.088	52.66	3.226	1	.899	91.93								
IC10	50.33	3.359	55.55	1.987	1	1.8	29.77								
IC15	53.31	8.1	58.54	1.876	1	1.708	12.35								
IC20	56.46	18	61.7	1.771	1	1.621	5.556								
IC25	59.79	42.54	65.02	1.673	1	1.538	2.351								
IC40	70.99	58.06	76.9	1.409	1	1.3	1.722								
IC50	79.58	68.85	86.75	1.257	1	1.153	1.452								
Total ne	eonates	s Summary					Cal	culated Va	riate						
C-%	С	ontrol Type	Count	Mean	N	Min	Max	Std Err	Std	Dev	CV%		%Effect		
0	M	lagela Creek W	10	29.7	2	20	34	1.499	4.73	9	15.96%	6	0.0%		
25			10	28.8	0)	34	3.279	10.3	7	36.0%		3.03%		
50			10	26.9	0)	35	3.375	10.6	7	39.67%	6	9.43%		
100			10	8.9	C)	15	1.876	5.93	4	66.67%	6	70.03%		
Total ne	eonates	s Detail													
C-%	с	ontrol Type	Rep 1	Rep 2	2 F	Rep 3	Rep 4	Rep 5	Rep	6	Rep 7		Rep 8	Rep 9	Rep 10
0	M	agela Creek Wa	24	27	3	33	34	34	31		34		20	30	30
25		J	33	31		33	33	32	0		33		33	26	34
50			31	20		22	35	34	34		31		24	0	10
100			0	0	1	15	8	15	10		14		7	5	15

000-428-181-1

CETIS™ v1.8.7.4

Analyst:_____ QA:____

CETIS Ana	lytical Repo	ort		Repo Test	ort Date: Code:	15 Aug-14 11:41 (p 1 of 2) 1356G 09-6801-0271					
Algal Growth	Inhibition Test								eri	ss ecotox	icology lab
Analysis ID: Analyzed:	lysis ID: 04-3886-0442 Endpoint: lyzed: 18 Nov-13 10:41 Analysis:				/d) Sample		CETIS Version: CETISv1.8.7 Official Results: Yes				
Batch ID:	12-1379-3994 Test Type: Algal growth inhibition						Ana	yst: Andr	ew J Harfor	rd	
Start Date:	08 Oct-13 12:00	D	Protocol:	Alga eriss tropio	cal freshwat	er	Dilu	ent: Mag	ela Creek V	Vater	
Ending Date:	11 Oct-13 12:0	D	Species:	Chlorella sp.			Brin	e: Not /	Applicable		
Duration:	72h		Source:	eriss ecotoxicol	ogy lab		Age				
Sample ID:	05-5790-2620		Code:	315B0E11			Clier	nt: Ener	gy Resourc	es of Aust	ralia - Enviro
Sample Date:	07 Oct-13 10:3	D	Material:	Ranger Brine C	oncentrator	Distillate	Proj	ect: Rang	ger Brine Co	oncentrato	r Plant
Receive Date:	07 Oct-13 16:00	D	Source:	Ranger Brine C	oncentrator	Plant					
Sample Age:	26h		Station:	N/A							
Data Transfor	m	Zeta	Alt H	yp Trials	Seed		PMSD	Test Resu	ilt		
Untransformed	1	NA	C > T	NA	NA		2.07%	Fails grow	th rate (db/o	d)	
Equal Variance	e t Two-Sample	Test									
Control	vs C-%		Test	Stat Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Magela Creek	Wate 100*		7.457	2.132	0.035 4	0.0009	CDF	Significant	Effect		
Auxiliary Test	S										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:5%)			
Extreme Value Grubbs Extreme Value				1.723	1.887	0.2079	No Outliers Detected				
ANOVA Table											
Source	Sum Squa	ares	Mean	Square	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.0225908	}	0.022	5908	1	55.6	0.0017	Significant	Effect		
Error	0.0016251	67	0.000	4062916	4	_					
Total	0.0242159)6			5						
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance	Ratio F		26.36	199	0.0731	Equal Variances				
Distribution	Shapiro-V	Vilk W I	Normality	0.9286	0.43	0.5696	Normal D	istribution			
Growth rate (db/d) Summary										
C-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Magela Creek	3	1.699	1.629	1.768	1.691	1.675	1.73	0.01615	1.65%	0.0%
100		3	1.576	1.562	1.59	1.579	1.57	1.579	0.003151	0.35%	7.23%
Growth rate (db/d) Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3							
0	Magela Creek	1.675	1.73	1.691							
100		1.579	1.579	1.57							

000-428-181-1

CETIS™ v1.8.7.4

Analyst:_____ QA:____

000-428-181-1

CETIS™ v1.8.7.4

Analyst:_____

QA:__

CETIS Analytical Report										e :	13 Nov-1 136	3 12:02 (p 1 of 2) 2L 06-4267-5903
Lemna	Growth	n Inhibition									eriss eo	cotoxicology lab
Analys Analyz	is ID: ed:	11-0215-2872 13 Nov-13 12:0	End 0 Ana	point: ysis:	Growth rate (surface area) Linear Interpolation (ICPIN)				CETIS Version: CETISv1. Official Results: Yes			
Batch ID: 10-9755-9842 Start Date: 14 Oct-13 12:30 Ending Date: 18 Oct-13 12:30 Duration: 96h				Type: ocol: cies: rce:	Lemna Growth Lemna eriss tropical freshwater Lemna aequinoctialis In-House Culture				Analyst: Andrew J Harford Diluent: Magela Creek Water Brine: Not Applicable Age: Age:			
Sample ID: 08-3566-0399 Sample Date: 07 Oct-13 10:30 Receive Date: 07 Oct-13 16:00 Sample Age: 7d 2h (25 °C)			Cod Mate Sou Stat	e: erial: rce: on:	315B0E11 Ranger Brine C Ranger Brine C N/A	Concentrator Distillate Concentrator Plant			lient: roject:	Energ Rang	gy Resources of Jer Brine Concer	Australia - Enviro htrator Plant
Linear X Tran	Interpo sform	lation Options Y Transform	See	ł	Resamples	Exp 95%	CL Meth	nod				
Log(X+	·1)	Linear	1675	564	200	Yes	Two-	Point Int	erpolation			
Residu	al Anal	ysis										
Attribu	ite	Method			Test Stat	Critical	P-Value	Decisi	on(α:5%)			
Extrem	e Value	Grubbs Ex	treme Value)	1.508	2.412	1.0000	No Ou	tliers Deteo	cted		
Point E	Estimate	es										
Level	%	95% LCL	95% UCL	τu	95% LCL	95% UCL						
IC5 IC10 IC15 IC20 IC25 IC40 IC50	52.4 54.91 57.54 60.29 63.17 72.66 79.75	27.35 47.89 50.28 52.77 55.39 64.1 72.09	52.86 55.88 59.06 62.42 65.97 77.83 86.86	1.908 1.821 1.738 1.659 1.583 1.376 1.254	1.892 1.79 1.693 1.602 1.516 1.285 1.151	3.657 2.088 1.989 1.895 1.805 1.56 1.387						
Growt	h rate (s	urface area) Su	mmarv			Ca	culated Va	riate				
C-%	c	ontrol Type	Count	Mean	Min	Мах	Std Err	Std De	ev CV%		%Effect	
0 Magela Creek W 3 25 3 50 3 100 3		3 3 3 3	0.323 0.349 0.341 0.086	8 0.3096 4 0.3315 4 0.3131 72 0.06078	0.3476 0.3761 0.3654 0.1193	0.01199 0.0136 0.01523 0.01723	0.0207 0.0235 0.0263 0.0298	6 6.41% 6 6.74% 8 7.73% 4 34.41	% % %	0.0% -7.91% -5.44% 73.21%		
Growt	h rate (s	urface area) De	tail									
C-%	С	ontrol Type	Rep 1	Rep 2	Rep 3							
0 25 50 100	M	lagela Creek Wa	0.3096 0.3406 0.3456 0.1193	0.314 0.331 0.313 0.080	1 0.3476 5 0.3761 1 0.3654 05 0.06078							

000-428-181-1

CETIS™ v1.8.7.4

Analyst:_____ QA:_____

CETIS	Analytical Report			Report Date:	13 Nov-13 12:02 (p 2 of 2)
				Test Code:	1362L 06-4267-5903
Lemna C	Growth Inhibition			eriss ecotoxicology lab	
Analysis	ID: 11-0215-2872	Endpoint:	Growth rate (surface area)	CETIS Version:	CETISv1.8.7
Analyzed	13 Nov-13 12:00	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes
Graphics	\$				
	0.35				
	0.30				
Ē					
e are	0.25	$\langle \rangle$			
surfac	0.20	```````````````````````````````````````	\backslash		
rate (0.15		\backslash		
owth	0.15				
G	0.10		•		
	0.05				
	0.00				
	0 20 40	60	80 100		
	c	C-%			

000-428-181-1

CETIS™ v1.8.7.4

Analyst:_____ QA:____

CETIS Ana	lytical Repo					Report Date: Test Code:			18 Nov-13 10:48 (p 1 of 2) 1368E 20-7697-1303					
Gudgeon Sac	Fry Survival Te	st										eri	ss ecotoxi	cology lab
Analysis ID: Analyzed:	13-7671-2480 Endpoint: 96h % 18 Nov-13 10:47 Analysis: Para				l Survival Rate ametric-Control vs Treatments				CETIS Version: CETISv1.8.7 Official Results: Yes					
Batch ID: Start Date: Ending Date: Duration:	07-0136-5224 Test Type: Surv 11 Nov-13 17:30 Protocol: Gud : 15 Nov-13 17:30 Species: Mog 96h Source: eriss			urvival (96h) iudgeon (acute) eriss tropical freshwater logurnda mogurnda riss ecotoxicology lab				Analyst: Andrew J Harford Diluent: Magela Creek Water Brine: Not Applicable Age: Image: Creek Water						
Sample ID: Sample Date: Receive Date: Sample Age:	00-3741-7835 Code: 315 te: 07 Oct-13 10:30 Material: Ran te: 07 Oct-13 16:00 Source: Ran e: 35d 7h Station: N/A			1580E11 anger Brine Concentrator Distillate anger Brine Concentrator Plant I/A				Client: Energy Resources of Australia - Envir Project: Ranger Brine Concentrator Plant				alia - Enviro Plant		
Data Transfor	m	Zeta	Alt H	ур	Trials	Seed		PMS	SD	NOEL	LOE	L	TOEL	τu
Angular (Corre	cted)	NA	C > T		NA	NA		35.8	%	100	>100		NA	1
Dunnett Multi	ple Comparisor	Test												
Control	vs C-%		Test \$	Stat	Critical	MSD D	F P-Value	P-T	ype	Decis	ion(α:5%)			
1	50		-0.221	4	2.337	0.408 4	0.7462	CDF	-	Non-S	Significant E	Effect		
1	100		0.581	8	2.337	0.408 4	0.4300	CDF	-	Non-S	Significant E	Effect		
Auxiliary Test	s Tost				Tost Stat	Critical	P-Value	Dec	icion	(a.2%)				
Extreme Value	Grubbs F	xtreme	Value		1 515	2 215	0.9958	No	Dutlie	(u.5%) rs Detec	ted			
		Arenie	value		1.010	2.210	0.0000	110	June	Dette				
Source	Sum Sau	ares	Mean	Sau	are	DE	E Stat	P-V	alua	Decis	ion(a:5%)			
Between	0.0315023	84	0.015	7511	7	2	0 3442	0.72	19	Non-9	Significant	ffect		
Error Total	0.2745516 0.0457586 0.3060539			7586		6 8	_	0.72			- and -			
Distributional	Tests													
Attribute	Test				Test Stat	Critical	P-Value	Dec	ision	(a:1%)				
Variances	Bartlett E	quality	of Variance		0.1685	9.21	0.9192	Equ	Equal Variances					
Distribution	Shapiro-V		Normanty		0.3023	0.7007	0.2031	NUT	nai D	ISTIDUTE				
96h Survival I	Rate Summary													
C-%	Control Type	Cour	nt Mean		95% LCL	95% UCL	Median	Min		Мах	Std I	rr	CV%	%Effect
1 50	Magela Creek	3 3 2	0.9	3	0.4697	1	1 1	0.7 0.8		1	0.1	667	19.25% 12.37%	0.0% -3.7%
100		3	0.033	5	0.4559	1	0.0	0.7		1	0.000	519	10.33%	7.4170
Angular (Corr	ected) Transfor	med S	ummary					_				_		
C-%	Control Type	Cour	nt Mean		95% LCL	95% UCL	Median	Min		Max	Std I	rr	CV%	%Effect
1	Magela Creek	3	1.272		0.6681	1.875	1.412	0.99	12	1.412	0.140	13	19.11%	0.0%
100		3	1.31		0.6301	1.740	1.412	0.99	12	1.412	0.10	55	13.43% 18.58%	-3.04 % 7.99%
96h Survival I	Rate Detail													
C-%	Control Type	Rep	1 Rep 2		Rep 3									
1	Magela Creek	1	0.7		1									
50		1	0.8		1									
100		0.7	0.8		1									
Angular (Corr	ected) Transfor	med D	etail											
C-%	Control Type	Rep	1 Rep 2		Rep 3									
1	Magela Creek	1.412	0.991	2	1.412									
50		1.412	2 1.107		1.412									
100		0.991	12 1.107		1.412									
000-428-181-1						CETIS™ v′	1.8.7.4				Analys	t:	Q	A:

CETIS An	alytical Rep	ort			Report Date: Test Code:	18 Nov-13 10:48 (p 2 of 2) 1368E 20-7697-1303
Gudgeon Sa	c Fry Survival Te	est				eriss ecotoxicology lab
Analysis ID:	13-7671-2480 E		Endpoint:	96h Survival Rate	CETIS Version:	CETISv1.8.7
Analyzed:	18 Nov-13 10:4	47	Analysis:	Parametric-Control vs Treatments	Official Results:	Yes
96h Survival	Rate Binomials					
C- %	Control Type	Rep 1	Rep 2	Rep 3		
1	Magela Creek	10/10	7/10	10/10		
50		10/10	8/10	10/10		
100		7/10	8/10	10/10		

Graphics

000-428-181-1

CETIS™ v1.8.7.4

Analyst:_____ QA:____