

Department of the Environment

Supervising Scientist

Refinement of the reference toxicity test protocol for the tropical duckweed Lemna aequinoctialis

Ceiwen Pease, Melanie

Trenfield, Kim Cheng, Andrew

Harford, Alicia Hogan, Claire

Costello, Thomas Mooney, and

Rick van Dam

June 2016

Release status - unrestricted

Project number - COR-2009-010

		throughout Australia	
and their	n to land, sea and res and to their ela	pay our respects to the present.	m

Refinement of the reference toxicity test protocol for the tropical duckweed Lemna aequinoctialis

Ceiwen Pease, Melanie Trenfield, Kim Cheng, Andrew Harford, Alicia Hogan, Claire Costello, Thomas Mooney and Rick van Dam

> Supervising Scientist GPO Box 461, Darwin NT 0801

> > June 2016

(Release status – unrestricted)

How to cite this report:

Pease C, Trenfield M, Cheng K, Harford A, Hogan A, Costello C, Mooney T & van Dam R 2016. Refinement of the reference toxicity test protocol for the tropical duckweed *Lemna aequinoctialis*. Internal Report 644, June, Supervising Scientist, Darwin.

Project number - COR-2009-010

Authors of this report:

Ceiwen Pease – Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia Kim Cheng – Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia Andrew Harford – Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia Alicia Hogan – Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia Claire Costello – Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia Thomas Mooney – Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia Rick van Dam – Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia

Supervising Scientist is a branch of the Australian Government Department of the Environment.

Supervising Scientist
Department of the Environment
GPO Box 461, Darwin NT 0801 Australia

environment.gov.au/science/supervising-scientist/publications

© Commonwealth of Australia 2016

IR644 is licensed by the Commonwealth of Australia for use under a Creative Commons By Attribution 3.0 Australia licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logo of the agency responsible for publishing the report, content supplied by third parties, and any images depicting people. For licence conditions see: http://creativecommons.org/licenses/by/3.0/au/

Disclaimer

The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment.

While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication.

Contents

Executive summary				
1	Introduction	2		
2	Methods	3		
	2.1 Test organism and culture condition	3		
	2.2 General laboratory procedures	3		
	2.3 Test details	3		
	2.4 Physico-chemical measurements	4		
	2.5 Test medium trials	5		
	2.5.1 CAAC	5		
	2.5.2 SSW	5		
	2.5.3 Nutrient optimisation	5		
	2.5.4 Reference toxicity testing	5		
	2.6 Surface area measurement using ImageJ analysis	5		
	2.7 Data analysis	6		
3	Results	7		
	3.1 Growth trials with 0.5% CAAC	7		
	3.2 Toxicity testing using 2.5% CAAC	7		
	3.3 Toxicity testing using 1% CAAC	7		
	3.5 Trialling amended Synthetic Soft Water as a test diluent	9		
	3.6 Confirmation of suitable nutrient levels for toxicity testing	10		
	3.7 Toxicity testing using Synthetic Soft Water	12		
	3.8 Surface area as an endpoint	12		
	3.9 Quality control and metal analyses	13		
4	Discussion	14		
	4.1 Determining an optimal test medium	14		
	4.2 The use of surface area to determine growth rate	14		
5	Conclusions and recommendations	16		
6	References	17		
A	ppendix A: Growth inhibition protocol for <i>Lemna</i>			
	aequinoctialis using surface area and frond number as			
	endpoints	18		
	1 Objective	18		
	2 Principle of the test	18		
	3 Test organism	18		
	4 Dilution water	18		

5 Chemical solutions	19				
6 Test solutions	19				
7 Physico-chemical samples and water parameters	19				
8 Apparatus and test equipment	20				
8.1 Container preparation	20				
8.2 Temperature and photoperiod control	20				
8.3 Equipment	20				
9 Area for test preparation	21				
10 Recording data	21				
11 Test procedure	21				
12 Randomisation	23				
13 Reference toxicants	23				
14 Acceptability of test data	23				
15 Analyses of test data	24				
Appendix B List of tests	25				
Appendix C Using Gas-tight chambers for pH control	28				
1 Determination of CO ₂ volume	28				
2 Testing method	28				
Appendix D Measurement of frond surface area using ImageJ					
software	30				
Appendix E CAAC medium preparation	34				
1 Safety	34				
2 Preparation of a working solution	34				
3 Making stocks	34				
Appendix F Synthetic Soft water preparation	36				
1 Safety	36				
2 Preparation of solution	36				
3 Making stocks	36				
Appendix G Water Quality measurements for tests used in the					
control charts	37				
Appendix H Summary of metal analyses					
Appendix I Analytical reports					

Executive summary

The duckweed Lemna aequinoctialis is one of the routine test species of the reference toxicity testing program initiated in 2004 which is used by the Supervising Scientist Branch (SSB) ecotoxicology laboratory to assess uranium toxicity. Test protocols for four of the five routine test species (Mogurnda mogurnda, Hydra viridissima, Moinodaphnia macleayi and Chlorella sp.) have been used successfully for many years to develop a comprehensive data set. However, the reference toxicity test developed for L. aequinoctialis, was not ideal for several reasons. Firstly, the initial test medium was very nutrient rich. While this allowed for healthy plant growth, the excessive nutrients were also reducing the bioavailability of U and interfering with the assessment of U toxicity. Secondly, the test incorporated a single endpoint despite OECD guidelines recommending two endpoints be used. Frond number, which is the primary endpoint used in the initial test design, provided a good indication of cell division inhibition, however, fronds were counted regardless of size or colour (and health). In the search for a second endpoint, measuring plant weight proved to be unreliable. Surface area (SA) was recognised as a reliable endpoint but it has only been possible to measure this accurately with the use of digital imaging software.

The aims of this study were (i) to develop a successful test medium more representative of the natural waters which provides sufficient plant growth but does not interfere with U toxicity, and (ii) develop a reliable second endpoint based on frond surface area to be used in addition to frond number.

1 Introduction

In response to recommendations by the Alligator Rivers Region Technical Committee's (ARRTC) 14th meeting in 2004 and van Dam (2004), the SSB ecotoxicology laboratory has implemented a quality assurance/quality control (QA/QC) program of reference toxicant testing using uranium (U). Reference toxicity testing will allow early detection of changes in sensitivity of laboratory species as well as to measure the reproducibility within a test method by way of control charts. Control charts can be generated with a minimum of five tests with Effect Concentration (EC) data points. Reference toxicity tests should be conducted according to specific laboratory protocols (Environment Canada 1990). Test protocols for four of the five routine test species (i.e. Mogurnda mogurnda, Hydra viridissima, Moinodaphnia macleayi and Chlorella sp.) were developed. For the fifth species, Lemna aequinoctialis, reference toxicity testing proved to be problematic.

When developing a reference toxicity test it is important to use a suitable test medium for the species in question. The key challenge when selecting a test medium is finding a medium that promotes the growth of healthy individuals without detracting from the sensitivity of the test. For aquatic plants such as *L. aequinoctialis* this can prove difficult seeing as the addition of nutrients such as phosphate, which are required for healthy plant growth, can bind to U to form stable compounds, therefore becoming biologically unavailable and reducing toxicity (Mkandawire et al. 2006, 2007). Previously, synthetic soft water (SSW) was trialled as a potential test medium. However, the growth rates observed did not meet acceptability criteria and the plants appeared unhealthy (Appendix B). This resulted in SSW being discarded as a potential test medium and movement towards other potential media such as modifications of the culture medium (50% modified Hoagland's E and K medium (CAAC)) as can be seen in this report. We later returned to SSW as a potential test medium after we observed that *L. aequinoctialis* grew well in distillate from the Ranger brine concentrator (EC = 3 µS cm⁻¹) with only Ca, Na, K added at 0.4, 1 and 0.4 mg L⁻¹ respectively (a much simpler medium than SSW).

Currently, the SSB Ecotoxicology *L. aequinoctialis* test protocol endpoint is growth rate based on frond number. Frond number is a good indicator of cell division inhibition and is used as the primary measured endpoint. However, fronds are counted as a whole frond regardless of size or colour. Consequently, OECD (2006) recommends that at least one other endpoint is used to quantify phytotoxic effects, because some toxicants may reduce growth rates without a measured effect on the frond numbers. Either weight (wet or dry) or surface area (OECD 2006) should be used as a secondary endpoint. Past work has proven the use of weight as an endpoint to be unreliable for *L. aequinoctialis*, as the plants, when stressed, can produce starch granules and increase in weight (Dirilgen & İnel 1994). Surface area (SA) is a reliable endpoint when measured with digital imaging software and has the advantage of easily being captured throughout the toxicity test period (as opposed to an endpoint based on weight). The image can also be archived for future analyses. Moreover, digital image analyses are a powerful tool for detecting differences between healthy and chlorotic or necrotic tissue (Brain & Solomon 2007).

The aim of this report is to describe a series of experiments undertaken firstly to select an appropriate test medium for the *L. aequinoctialis* reference toxicant test protocol and secondly to incorporate the use of SA as an additional endpoint into the protocol.

2 Methods

2.1 Test organism and culture condition

Lemna aequinoctialis was originally collected from surface waters of Kakadu National Park in 1997 (Yellow Water Billabong, 12°53.77 S, 132°31.10 E). An axenic culture was maintained in 50% modified Hoagland's E and K medium (CAAC) at 29 \pm 1°C on a 12:12 h light to dark cycle (75 μ mol photons PAR m⁻²s⁻¹) (Riethmuller et al. 2003).

2.2 General laboratory procedures

The general toxicity test method was adapted from an existing formal protocol (Riethmuller et al. 2003, Hogan et al. 2009). Full details of the final test methods are provided in the following sections, with a summary of the general test procedure provided below. Riethmuller et al. (2003) was based on international standards, specifically: OECD (2006) test number 221: Lemna sp. Growth Inhibition Test and the ASTM (1992) Standard guide for conducting static toxicity tests with Lemna gibba.

All equipment that came into contact with test organisms, control water or test solutions were made of chemically inert materials (e.g. teflon, glass or polyethylene). All plastic and glassware were washed by soaking in 5% v/v nitric acid (HNO₃, Chem-supply, Gillman, Australia) for 24 h before undergoing a detergent wash (Neodisher Laboclean, phosphate free) and a rinse in a laboratory dishwasher (Miele, Gütersloh, Germany) with deionised reverse osmosis water (Elix, Millipore, Massachusetts, USA). All reagents used were analytical grade and stock solutions were made up in high purity water (18 M Ω , Milli-Q, Millipore, Massachusetts, USA). Glassware used in toxicity tests was silanised with 2% dimethyldichlorosilane in 1,1,1-trichloroethane (Coatasil, Thermofisher Scientific, Massachusetts, USA) to decrease U adsorption to the glass.

2.3 Test details

Diluent waters were prepared by diluting CAAC medium (CAAC composition in Appendix E) with high purity water or adding different salts to high purity water in the case of the SSW amended trials. Uranium test solutions were prepared using 5 g L⁻¹ or a 50 mg L⁻¹ stock solution (as uranyl sulfate, $UO_2SO_4.3H_2O$ Ajax Chemicals, Sydney Australia). Following addition of U stock solution, test solutions were pH adjusted to match that of the control (within \pm 0.5 units, ideally \pm 0.2 units). Adjustments were made with 0.1 g L⁻¹ potassium hydroxide and allowed at least 1 h to equilibrate before final checks and adjustments were made.

Vegetatively reproducing *L. aequinoctialis* plants were carefully removed from stock cultures using sterile, plastic inoculating loops, briefly placed in high purity water to rinse off any remaining CAAC medium, and then randomly placed into 250 ml borosilicate glass Erlenmeyer flasks containing 100 ml of test solution. A total of 4 plants, each with 3-fronds (i.e. 12 fronds in total) were added to each flask (Figure 1). Tests were conducted using three replicate flasks for each treatment and the flasks were incubated for 96 h at $29 \pm 1^{\circ}$ C on a 12:12 h light to dark cycle at $100-150 \,\mu$ mol photons PAR m⁻² s⁻¹. At the completion of the test, the numbers of fronds in each replicate were counted and the average specific growth rate (k, in terms of number of fronds or SA per day) was calculated using the following formula:

$$K = \frac{\ln(n_4) - \ln(n_0)}{T}$$

where n_4 = number of fronds (or SA) at the end of the four-day test period

 n_0 = number of fronds (n_0 = 12) or SA at the start of the test period

T = length of test period in days (T=4)

Figure 1 Example of the correct L. aequinoctialis stage for test start.

2.4 Physico-chemical measurements

For each toxicity test, sub-samples (at least 14 ml) of each treatment were collected in plastic sample bottles and acidified with 1% HNO₃. Samples were analysed at Northern Territory Environmental Laboratory (NTEL, Northern Territory, Australia), and later Envirolab (New South Wales, Australia) for Al, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Na, Ni, Pb, Se, SO₄, U and Zn using ICP-MS or ICP-OES. Physico-chemical water quality parameters - electrical conductivity (EC), pH (WTW Multiline P4 Meter, Weilheim, Germany) and dissolved oxygen (DO, WTW inoLab Multiline Level 1, Weilheim, Germany) - are measured at the start and conclusion of the test on pooled samples of each treatment. Several different instruments were used to monitor incubator temperature across the course of these tests. For the earlier tests (1026-1141L), temperature was read from a digital max-min thermometer stored in the plant growth cabinet. This was followed by the use of a Tinytag data logger (Hastings Data Loggers, NSW, Australia, tests 1167-1248L), with the most recent tests (1287–1475L) being monitored using the Testo SaverisTM (Lenzkirch, Germany) remote logging system with the temperature sensor placed in a 50 ml falcon tube filled with 30 ml of ultra-pure water to represent the temperature in test solutions.

Water quality data were considered acceptable if: (1) the recorded temperature of the incubator remained within $\pm 1^{\circ}$ C; (2) the recorded pH of the control group was within ± 1 unit of Day 1 values; (3) the EC for the control solution was within 10% of the values obtained on Day 1; and (4) the DO concentration was greater than 70% saturation throughout the test.

2.5 Test medium trials

2.5.1 CAAC

Due to its success as a growth medium, three dilutions of CAAC were trialled as test media. Six tests were conducted using 0.5% CAAC, a single test was conducted using 2.5% CAAC, and twelve tests were conducted using 1% CAAC (Appendix B). While the growth and overall health improved using CAAC, it ameliorated the toxicity of U to an unacceptable extent.

2.5.2 SSW

The use of SSW as a growth medium was revisited with four tests trialling different variants of our SSW (different combinations of ultra-pure water amended with trace metals and essential salts. Refer to Appendix B for SSW amended compositions).

2.5.3 Nutrient optimisation

Once an acceptable synthetic water was established, three nutrient optimisation tests were conducted, trialling a range of nitrate and phosphate concentrations to determine the minimum concentration of nutrients that could be added without affecting growth rates. Further growth optimisation and pH control was sought by conducting two tests in a CO₂ enriched environment (as per Appendix C).

2.5.4 Reference toxicity testing

An acceptability criterion of 0.4 doublings d⁻¹ was used as an approximate guide initially during reference toxicity testing however based on the tests performed in this study a acceptability criterion of 0.35 ± 0.1 cm² d⁻¹ was decided on. The final test medium was decided upon (SSW as the test media and nutrient concentrations of 1 mg L⁻¹ NO₃⁻ and 0.1 mg L⁻¹ PO₄⁻) and three reference toxicity tests were performed.

2.6 Surface area measurement using ImageJ analysis

At commencement of the test, three surrogate replicates of starting plants were placed in 50 ml crystallising dishes containing 50 ml of high pure water and a floating framed border with an inbuilt scale. The volume of water had enough depth to allow the plant stems to hang freely in order for the fronds to sit upright and flat at the surface. The floating frame was large enough to fit all plants on completion of the test without any overlapping (approx 35 x 25 mm). The dish containing the plants were placed on top of a light box (Snapper Displays, Western Australia) and photos were taken using a digital camera (Canon PowerShot S70, Tokyo, Japan and later a Sony DSC-TX30, Tokyo, Japan) secured to a tripod (Figure 2). To enable easy cropping of the photo prior to SA analysis, the floating frame was positioned square with the frame of the photo.

When photos were taken it was important to ensure that the fronds themselves were in focus and no other part of the image. This increases the quality of the fond images which improves SA analysis accuracy. A new camera was purchased to further improve the quality of our photos. The DSC-TX30 allows for focus point selection using the touch screen. By selecting a focus point on the Lemna fronds within the crystallising dish the camera will focus on the fronds in the photo, ensuring that the correct part of the image is in focus.

At the conclusion of the test, the process above is repeated for all treatments. The SA of the fronds was calculated using image analysis software (ImageJ, V1.44p, National Institute of Health, Bethesda, Maryland, USA and the threshold colour plug-in tool (V1.12,

<u>www.dentistry.bham.ac.uk/landinig/software/</u>software.html). Further details of the image analysis method are in Appendix D.

Figure 2 Set up of camera, tripod and light box for capturing surface area images

2.7 Data analysis

Linear interpolation is used to determine toxicity estimates of effective concentrations (ECs) that reduced the frond growth rate or SA by 10 and 50% relative to the controls. Measured total concentrations were used in the derivation of EC10s and EC50s. Toxicant concentration is log transformed in all analyses.

3 Results

The raw data for the following series of tests are located in Appendix I.

3.1 Growth trials with 0.5% CAAC

Six tests were conducted using 0.5% CAAC (Table 1). Specific frond growth rates ranged from 0.31-0.49 fronds d-1. Two of the six tests reached the minimum acceptable control growth rate of 0.4 fronds d-1 (i.e. a four-fold increase in frond numbers after 96 h). Additionally, plants were generally pale with signs of necrosis, indicating a lack of nutrients being available for growth.

Table 1 Summary of growth tests using 0.5% CAAC

Test Code	0.5% CAAC growth rate k, fronds d ⁻¹ (% CV)	Criterion met? Yes/No
802L	0.38 (3.5)	N
820L	0.49 (3.7)	Υ
825L	0.37 (9.0)	N
831L	0.36 (6.5)	N
943L	0.31 (13)	N
1167L	0.45 (6.7)	Υ

3.2 Toxicity testing using 2.5% CAAC

A single test was conducted using 2.5% CAAC, which resulted in no effect to plants exposed up to 19 600 μ g L⁻¹ U. Growth in all treatments was similar to that of the control (growth rate = 0.48 fronds d⁻¹). The control growth rate and variation met the minimum criteria of 0.4 fronds d⁻¹ and <20% CV in controls.

3.3 Toxicity testing using 1% CAAC

Twelve tests were conducted using 1% CAAC. All control growth rates (based on frond number) exceeded the protocol's minimum acceptable growth rate of 0.4 fronds d-1 with less than 20% CV (Table 2, Figure 3). No effects were observed up to $\sim 5600~\mu g~L^{-1}~U$ in most tests with the EC50s ranging from 8.2–22.0 mg L-1 (Table 2). Plants showed a higher level of sensitivity in test 1049L with exposure to 5000 $\mu g~L^{-1}~U$ resulting in a 30% reduction in growth compared to the control. The mean EC50 shown in Figure 3 (11140 $\mu g~L^{-1}~U$, 33% CV), was 43% lower than that observed in 2.5% CAAC.

 ∞

Table 2 Summary of uranium reference toxicity tests during 2009-2013 using 1% CAAC as growth medium

Growth Rate (Frond number)

		Gro	wth Rate (Frond nun	nber)		Growth Rate (SA)	
Test #	Test Code	Control Growth Rate (CV%)	EC10 mg L ⁻¹ (95%CL)	EC50 mg L ⁻¹ (95%CL)	Control Growth Rate (CV%)	EC10 mg L ⁻¹ (95%CL)	EC50 mg L ⁻¹ (95%CL)
1	1049L	0.5 (3.8)	1.3 (NCa, 3)	10 (8, 12)	NMb	NMb	NMb
2	1065L	0.48 (1.4)	3.8 (3, 4)	22 (20, 23)	NMb	NMb	NMb
3	1089L	0.46 (3)	1.9 (NCa, 7)	9 (7, 11)	NMb	NMb	NMb
4	1093L	0.52 (1.3)	6.4 (6, 7)	10 (9.5, 11)	0.38 (7.2)	6.3 (6, 6.3)	8.4 (8, 8.4)
5	1141L	0.54 (4.1)	6.8 (6, 7)	13 (12, 16)	NMb	NMb	NMb
6	1167L	0.47 (3.1)	7 (NCa, 7.4)	10.5 (10, 11)	0.38 (5.3)	13 (12, 13)	17 (15, 18)
7	1183L	0.51 (4.3)	4.8 (3, 5)	9.3 (7.6, 11.7)	0.43 (3.7)	3.8 (0.4, 6)	7.9 (7, 9)
8	1248L	0.48 (1.6)	4.8 (NCa, 5)	8.4 (6, 15)	0.41 (5.8)	1.8 (1, 3)	7 (6, 9)
9	1287L	0.48 (3.3)	5.8 (NCa, 6)	9.8 (9, 11)	0.46 (4.2)	5.9 (NCa, 7)	8.7 (7.7, 11)
10	1301L	0.52 (3.1)	6 (5.5, 7)	11.8 (10, 14)	0.46 (0.4)	5.8 (4, 6)	10.4 (9, 11)
11	1315L	0.48 (4.2)	5 (NCa, 6)	8.2 (7, 9)	0.44 (0.7)	5.4 (5, 6)	7.4 (7, 8)
12	1330L	0.43 (0.9)	6.9 (6, 7)	11 (9, 15)	0.44 (0.7)	6.1 (6, 6.3)	9 (8,10)

a - NC = Not calculated

b - NM = Not measured

Figure 3 Reference toxicant control chart for *L. aequinoctialis* using growth rate based on frond number as an endpoint in 1% CAAC medium. Data points represent EC50 μg L⁻¹ U toxicity estimates and their 95% confidence limits (CLs). Reference lines represent the following: dashed lines – upper and lower 99% CLs (± 3 standard deviations) of the whole data set; dotted lines – upper and lower warning limits (± 2 standard deviations); solid line – running mean

3.5 Trialling amended Synthetic Soft Water as a test diluent

Four tests were conducted using different modifications of our standard SSW. Very little difference was observed between the different SSW variants trialled (average growth rate based on frond number = 0.41 ± 0.005 , S.A. = 0.38 ± 0.004). As such it was decided to use unmodified SSW for ease and consistency with all other reference toxicity tests (Figure 4). 1% CAAC outperformed all other treatments (average growth rate based on frond number = 0.46 ± 0.007 , SA = 0.44 ± 0.01). However in these four tests the pH in the 1% CAAC control increased by more than one pH unit and this diluent was therefore unacceptable.

Figure 4 Growth rates of *L. aequinoctialis* on different modifications of SSW. 'SSW amended' is composed of ultra-pure water with the addition of 50 μg L⁻¹ of various salts (NaHCO₃, CaCl.2H₂O, KCl, Al(SO₄)₃.18H₂O, MgSO₄.7H₂O, FeCl₃.6H₂O)

3.6 Confirmation of suitable nutrient levels for toxicity testing

Three trials were performed with amended SSW with different concentrations of nitrate and phosphate added. Two of the trials included the use of gastight compartments enriched with carbon dioxide (CO_2 , see Appendix C for use). For all of the SSW amended treatments there was no added benefit of placing the Lemna into the gastight chambers (frond number: $F_{1,4} = 3.14$, p = 0.15, S.A. = $F_{1,4} = 2.11$, p = 0.220 (Sigmaplot)). However we saw a significant increase in growth rate in the 1% CAAC treatment for both the SA and frond number endpoint. A concentration of 1 mg L-1 of NO_3 - and 0.1 mg L-1 PO_4 - was selected as this was the lowest concentration of nutrients where we saw acceptable population growth rates in both end points (Figure 5 & 6). This is significantly lower than the concentrations added previously (3 mg L-1 of NO_3 - and 0.3 mg L-1 PO_4 -).

Figure 5 Surface area population growth rate of *L. aequinoctialis* at different concentrations of nutrients $(N = NO_3^-, P = PO_4^-)$

Figure 6 Frond number population growth rate for *L. aequinoctialis* at different concentrations of nutrients (N = NO_3^- , P = PO_4^-)

3.7 Toxicity testing using Synthetic Soft Water

A vast difference in sensitivity was observed between the two different endpoints. SA was a more sensitive endpoint in comparison to frond number. An EC50 obtained for one of the tests based on the frond number endpoint was more than 4 times greater than the average EC50 based on SA (852.6 μ g L⁻¹ compared to 204.4 μ g L⁻¹ U, Table 3).

Table 3 Summary of uranium reference toxicity tests during 2015 using SSW plus nutrients as a test medium

	Gro	wth Rate (Frond r	number)	Gro	wth Rate (Surface	e area)
Test Code	Control Growth Rate (CV%)	EC10 μg L ⁻¹ (95%CL)	EC50 μg L ⁻¹ (95%CL)	Control Growth Rate (CV%)	EC10 μg L ⁻¹ (95%CL)	EC50 μg L ⁻¹ (95%CL)
1465L	0.40 (7.8)	12.8 (NCa,130)	>1350 (NCa, NCa)	0.35 (4.8)	33.1 (NCa,61)	89.6 (64, 120)
1473L	0.39 (3.0)	108.6 (2, 188)	852.6 (NCa, NCa)	0.33 (5.7)	33.9 (NCa, 58)	222.7 (148, 322)
1475L	0.38 (3.1)	127.6 (38, 316)	>880 (NCa, NCa)	0.35 (3.7)	80.4 (7, 156)	300.9 (269, 337)

a NC = Not calculated

3.8 Surface area as an endpoint

Eight of the twelve tests conducted using 1% CAAC and 4 tests using amended SSW, measured SA as an endpoint. When comparing the growth rate based on frond number and SA, SA appeared to be consistently more sensitive than using frond number. The mean EC50 determined in 1% CAAC medium shown in Figure 7 (8962 µg L-1 U, 21% CV), was 24% lower than the EC50 based on frond number. These initial results suggested that SA growth rate correlates strongly with frond number growth rate and represents a measurable valuable endpoint (Figure 8).

Figure 7 Reference toxicant control chart for L. aequinoctialis using surface area growth rate as an endpoint. Data points represent EC50 μ g L^{-1} U toxicity estimates and their 95% confidence limits (CLs). Reference lines represent the following: dashed lines – upper and lower 99% CLs (\pm 3 standard deviations) of the whole data set; dotted lines – upper and lower warning limits (\pm 2 standard deviations); solid line – running mean

Figure 8 Correlation of EC50s based on frond number and total SA for 9 valid tests (R2 = 0.7168).

3.9 Quality control and metal analyses

Sixteen of the 30 tests performed had a pH change of >1 pH unit during the 96 h test period. This was predominantly in the 1% CAAC controls and reference toxicity tests that were performed using 1% CAAC as the test media (Appendix B). All other water quality was considered acceptable (Appendix G). All test temperatures were kept within the acceptable range of 29°C ± 1°C apart from 1330L, 1375L, 1372L and 1377L which were slightly under (average temp = 27.6°C). Metal analyses of the blanks, procedural blanks and control treatments showed no signs of metal contamination in the majority of the samples (See Appendix H for exceptions) however the responses observed in contaminated tests were as expected and as such the data were still used. Uranium loss in test solutions varied greatly between tests, however, the majority of loss was within 20% of nominal concentrations. Loss of U is common during reference toxicity testing due to the high binding affinity of U to glass and other materials. To compensate for this loss measured totals were used in analysis.

4 Discussion

4.1 Determining an optimal test medium

The results of this study indicate that the most suitable test medium for L. aequinoctialis reference toxicity testing is SSW with the addition of 1 mg L^{-1} of NO_3^- and 0.1 mg L^{-1} PO_4^- . The selection of SSW as the test medium was driven by the fact that much lower concentrations of U were required to observe a phytotoxic response (mean EC10 based on frond number = 82.99 μ g L^{-1} , and based on SA = 49.13 μ g L^{-1}). Also much smaller deviations in pH were observed in tests using SSW compared to the 0.5, 1 and 2.5% CAAC media.

While growth rates were acceptable in 2.5% CAAC medium, plants showed no signs of toxicity when exposed to up to 19 600 µg L-1 U. The CAAC at 0.5% strength was not a suitable medium as it resulted in unacceptably low and variable growth rates over 96 h. Uranium exposures in 1% CAAC medium consistently resulted in acceptable control growth rates and produced phytotoxic responses at concentrations above 6 mg L-1 U. An important thing to note here is that only 6 out of the 20 CAAC tests performed met the acceptability criteria of less than 1 pH unit variation within the 96 h test period. Toxicity of uranium is highly dependent on pH and as such it is important to have as much control over pH as possible. Thus, CAAC should be discounted as a suitable test medium.

The increased sensitivity of *L. aequinoctialis* to U when using SSW may be explained by the reduction of the concentration of potential metal ligands in the test system. Uranium in solution undergoes speciation changes when in the presence of ligands such as carbonates, phosphates, hydroxides, and organic matter (Markich 2002). This complexation is known to reduce U toxicity to freshwater organisms (Markich 2000, Trenfield 2011) and has been shown specifically for *Lemna gibba* by Mkandawire et al. (2006, 2007). Ethylenediaminetetraacetic acid (EDTA), a component of CAAC, is also a chelator that is essential for optimal growth of *Lemna* (Huebert and Shay 1992) but which may influence metal toxicity by reducing free ion activity. By using SSW and reducing the concentration of nutrients that are being added into the test medium the ionic interactions that will occur with U have been minimised.

During optimisation of the test media for *L. aequinoctialis*, a small amount of transparency was observed in control test fronds for both types of media, which was not seen in the culture plants (see Figure 9a for an example). This was initially a concern as it was thought that plants with transparent patches may be less healthy or stressed. However given that transparency was observed throughout the controls in both the CAAC and SSW tests, and growth rates were acceptable it was determined that this was just an artefact of being transferred from the nutrient rich 50% CAAC culture medium to a simpler test medium. Future work could explore whether acclimation of *L. aequinoctialis* to a less nutrient rich medium would reduce this effect on the plants.

4.2 The use of surface area to determine growth rate

When under stress, *Lemna* plants can exhibit chlorosis, necrosis, colony break-up and root destruction (Figure 9b). It has long been established that frond numbers are irrelevant to frond size or biomass and that it does not necessarily provide an indication of live or dead plants (Wang 1990). ImageJ (when used with standardised Hue, Saturation and Brightness (HSB) parameters) can select the green area of a partially chlorotic frond. This allows endpoints to be based on chlorosis, and not just size alone. The HSB parameters were determined using acceptable healthy control plants. ImageJ will omit necrotic plants from the SA calculation, thereby eliminating human bias that can be introduced through deciding which fronds should be included in counts.

Figure 9 Examples of a) healthy fronds from a SSW control water treatment and b) fronds displaying chlorosis following exposure to a treated-mine water.

Growth rates calculated for healthy plants (i.e. unaffected) using SA were around 20% lower than those based on frond number. This is likely to be due to the increased accuracy of the SA measurement as it takes into account the size of the smaller, less developed fronds. This difference in growth rate between SA and front number increased markedly when comparing affected plants (i.e. chlorotic or necrotic, Figure 9). Growth rates based on SA were 80% lower than those based on frond number, due to the exclusion of chlorotic plants in the SA measurements. These lower growth rates translated to lower EC50 values (Table 2, Figure 9).

5 Conclusions and recommendations

Growth trials have found that SSW with added nutrients was a suitable test medium. Movement away from CAAC as a test medium will allow for much lower concentrations of U to be used during testing due to an increased sensitivity of L. aequinoctialis to U. It also creates consistency with the same diluent then being used for reference toxicity tests with all species in the SSB ecotoxicology laboratory.

Using SA as an endpoint further increased this sensitivity, resulting in a mean EC50 that was 15% lower than that based on frond number.

It is recommended that;

- A reference toxicity testing program be established using a medium composed of SSW with added nitrate and phosphate.
- Surface area should be used as an additional endpoint for all *L. aequinoctialis* toxicity tests.
- The acceptability criterion for SA growth rate should be greater than 0.35 ± 0.05 cm² d⁻¹ (based on the range of control growth rates to date).

6 References

- ASTM 1992. American Society for Testing and Materials. Standard guide for conducting static toxicity tests with *Lemna gibba*. E1415-91. Philadelphia, USA.
- Brain R & Solomon K 2007. A protocol for conduction 7-day daily renewal tests with *Lemna Gibba*. *Nature Protocols* 2, 979-987.
- Cleland C F & Briggs W R 1969. Gibberellin and CCC effects on flowering and growth in the long-day plant *Lemna gibba* G3. *Plant Physiology* 44, 503-507.
- Dirilgen N & İnel Y 1994. Effects of zinc and copper on growth and metal accumulation in duckweed, Lemna minor. *Bulletin of Environmental Contamination and Toxicology* 53, 442-449.
- Environment Canada 1990. Guidance document on control of toxicity test precision using reference toxicants. *Environmental Protection Series*. Minister of Supply and Services, Canada.
- Hogan AC, van Dam RA, Houston MA, Harford AJ & Nou S 2009. Uranium exposure to the tropical duckweed, *Lemna aequinoctialis*, and pulmonate snail, *Amerianna cumingi*: fate and toxicity. *Archives of Environmental Contamination and Toxicology* 59, 204-215
- Huebert D & Shay J 1992. The effect of EDTA on cadmium and zinc uptake and toxicity in Lemna triscula L. Archives of Environmental Contamination and Toxicology. 22, 313-318
- Markich SJ 2002. Uranium speciation and bioavailability in aquatic systems: An overview. *Scientific World Journal* 2, 707-729.
- Mkandawire M, Taubert B and Dudel EG 2006. Limitations of growth-parameters in *Lemna gibba* bioassays for arsenic and uranium under variable phosphate availability. *Ecotoxicology and Environmental Safety* 65, 118-128.
- Mkandawire M, Vogel K, Taubert B & Dudel EG 2007. Phosphate regulates uranium (VI) toxicity to Lemna gibba L. Environmental Toxicology 22, 9-16.
- OECD 2006. Test No. 221: Lemna sp growth inhibition test. OECD guidelines for testing of chemicals # 221. Organisation for Economic Co-operation and Development, Paris.
- Riethmuller N, Camilleri C, Franklin N, Hogan AC, King A, Koch A, Markich SJ, Turley C & van Dam R 2003. *Ecotoxicological testing protocols for Australian tropical freshwater ecosystems*. Supervising Scientist Report 173, Supervising Scientist, Darwin NT.
- Trenfield MA, Ng JC, Noller BN, Markich SJ, van Dam RA. 2011. Dissolved organic carbon reduces uranium bioavailability and toxicity.2. Uranium [VI] speciation and toxicity to three tropical freshwater organisms. *Environmental Science and Technology* 45, 3082-3089.
- van Dam R 2004. A review of the eriss Ecotoxicology Program. Supervising Scientist Report 182, Supervising Scientist, Darwin NT.

Appendix A: Growth inhibition protocol for Lemna aequinoctialis using surface area and frond number as endpoints

1 Objective

The objective of a test series (i.e. 3-4 definitive tests) is to determine the concentrations of a specified chemical or whole effluent that shows the effect concentration (e.g. EC50). This is the concentration of a chemical in solution that is estimated to cause a 50% effect concentration of a sublethal response of test organisms. This is measured as the 50% effect plant growth/frond numbers of test *Lemna aequinoctialis* over 96 h (ASTM 1992).

2 Principle of the test

A standard number of vegetatively reproducing lemna plants are exposed to a range of concentrations of a toxicant for 96h under controlled conditions. The number of fronds are counted at the end of the test and from this the increase in biomass is calculated. Surface area is also used as an endpoint. Photos are taken at the start and end of the test and using image analysis software the increase in surface area calculated. A test substance is considered toxic when a statistically significant concentration-dependent inhibition of lemna growth occurs.

This protocol has been modified from the protocol found in Riethmuller *et al.* (2003) with the addition of a secondary endpoint (surface area) and a reduction in the concentration of nutrients added to the test diluent (reduced from 3.0 mg L⁻¹ NO₃⁻ and 0.3 mg L⁻¹ PO₄³- to 1.0 mg L⁻¹ NO₃⁻ and 0.1 mg L⁻¹ PO₄³-). Riethmuller et al. (2003) was based on international standards, specifically: OECD (2006) test number 221: *Lemna* sp. Growth Inhibition Test and the ASTM (1992) Standard guide for conducting static toxicity tests with *Lemna gibba*.

3 Test organism

Lemna aequinoctialis Welwitsch (Lemnaceae, Spathiflorae) was originally collected from surface waters of Kakadu National Park in 1997 (Yellow Water Billabong, 12°53.77 S, 132°31.10 E) by C. Camilleri. An axenic culture is maintained in 50% modified Hoagland's E and K medium (CAAC) at 29 ± 1°C on a 12:12 h light to dark cycle (75 μmol photons PAR m⁻²s⁻¹, Riethmuller et al. 2003).

4 Dilution water

Depending on the aim of the test, either synthetic soft water (SSW) or uncontaminated natural water (often Magela Creek (MCW) for Ranger related toxicity tests) is used as the test diluent.

Magela Creek water is collected from one of two locations in the creek. When there is flow in the creek during the wet season water is collected by boat near Georgetown Billabong (Map Grid of Australia (MGA) Zone 53, 275320.954 East, 8597972.198 North). Throughout the rest of the year water is collected from Bowerbird Billabong closer to the source of the creek (MGA Zone 53, 287190 East, 8587265 North) where there is a persistent water body during the drier months.

SSW was created to emulate the inorganic composition of Magela Creek water during the wet season. Magela Creek water is very soft and slightly acidic with a low buffering and chemical binding capacity. These qualities make synthetic soft water useful as a worst case scenario for assessing toxicity. SSW is made using the method in Appendix F. SSW is prepared as close to the start of an experiment as possible and can be stored in sealed polyethylene containers and refrigerated for up to a month.

Alternatively the diluent water may be water provided from a specific location where testing is required.

5 Chemical solutions

All reagents used are analytical grade and stock solutions are made up in ultra-pure water (18 $M\Omega$, Milli-Q, Millipore). The date of stock preparation, source and the person who made the solution are all marked on the bottle. A label displaying the chemical name, formula and any required hazard symbols and first aid information must also be included on the bottle. These labels must adhere to the Supervising Scientist Branch (SSB) chemical labelling protocol (See SSB document WHS-029).

6 Test solutions

Test diluent waters are enriched with nutrients in order to promote healthy Lemna growth. Nutrient enriched water should be made in batches to ensure nutrient homogeneity between treatments; 5 L of diluent requires 1130 μL KNO₃ and 540 μL of KH₂PO₄ to make a solution of 1.0 mg L⁻¹ NO₃⁻ and 0.1 mg L⁻¹ PO₄³-. 1 L of test solution is made per treatment with a 100 ml aliquot dispensed into three 250 ml Erlenmeyer flasks. The remaining test solution is used for the validation of toxicant and nutrient concentrations, and water quality measurements.

7 Physico-chemical samples and water parameters

At the start of each toxicity test, sub-samples (40 ml) of the control, a procedural blank and an ultra-pure water blank are collected in plastic sample bottles and acidified with 1% HNO₃. Samples were analysed at Envirolab Services (New South Wales, Australia) for Al, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Na, Ni, Pb, Se, SO₄, U and Zn using ICP-MS or ICP-OES. Samples are also taken from all other treatments and analysed for elements relevant to the test in question. Verification of nutrient concentrations (nitrate and phosphate) are performed by taking a 50 ml subsample from the control treatment and an ultra-pure water blank. Chemical analyses are considered acceptable if the control, procedural blank and ultra-pure water blank are free of contamination and the measured U concentrations are within 20% of nominal concentrations.

Physico-chemical water quality parameters - electrical conductivity (EC), pH (WTW Multiline P4 Meter, Weilheim, Germany) and dissolved oxygen (DO, WTW inoLab Multiline Level 1, Weilheim, Germany) - are measured at the start and conclusion of the test on pooled samples of each treatment. Temperature was monitored using the Testo SaverisTM (Lenzkirch, Germany) remote logging system with the temperature sensor placed in a 50 ml falcon tube filled with 30 ml of ultra-pure water to represent the temperature in test solutions. Water quality data were considered acceptable if; the recorded temperature of the incubator remained at 29 ±1°C; the recorded pH of the control group was within ± 1 unit of Day 1 values; the EC for the control solution was within 10% of the values obtained on Day 1; and the DO concentration was greater than 70% saturation throughout the test.

8 Apparatus and test equipment

8.1 Container preparation

All equipment that comes into contact with test organisms, control water or test solutions should made of chemically inert materials (e.g. teflon, glass or polyethylene). All plastic and glassware should be washed by soaking in 5 % v/v nitric acid (HNO₃, Chem-supply, Gillman, SA) for 24 h before undergoing a detergent wash (Neodisher Laboclean, phosphate free, Hamburg, Germany) and two rinses in a laboratory dishwasher (Miele, Gütersloh, Germany) with deionised reverse osmosis water (Elix, Millipore, Massachusetts, USA). Glassware used in toxicity tests must be silanised with 2% dimethyldichlorosilane in 1,1,1-trichloroethane (Coatasil, Themofisher Scientific, Massachusetts, USA) to decrease U adsorption to the glass.

8.2 Temperature and photoperiod control

Tests are conducted at $29 \pm 1^{\circ}$ C using a constant temperature growth cabinet. The temperature of the test environment is monitored by the laboratory temperature monitoring system (Testo Saveris ProfessionalTM, Lenzkirch, Germany). During the testing period test containers are removed from the temperature controlled chamber for the minimum amount of time to maintain as constant temperature as possible throughout the test. Tests are conducted with a 12 h light: 12 h dark photoperiod. Light intensity ranges between 100-150 μ mol m⁻² s⁻¹ and is checked quarterly using a light meter.

8.3 Equipment

- Light-tight constant temperature incubator (set at 29 °C)
- Merck ultra-pure water purification system or similar
- Refrigerator (set at 4 °C)
- pH, electrical conductivity and dissolved oxygen meters
- A-grade volumetric flasks (1 L and 5 L)
- Chemicals and reagents
- Analytical balance and weigh boats
- Borosilicate glass 200 ml Erlenmeyer flasks with aluminium caps
- Automatic adjustable pipettes (100µL, 1 ml and 5 ml)
- Disposable microlitre pipette tips
- Light meter
- Magnetic stirrer and stirrer bars
- Polyethylene storage containers (1 L)
- 120 ml polystyrene water parameter vials
- Testo SaverisTM temperature monitoring system
- Random number sheet
- Light box
- Disposable sterilised inoculating loops
- Three 50 ml crystalysing dishes

- Magnifying lamp
- Needle-nosed forceps
- Sony Cybershot DSC-TX30 camera
- Camera Tripod
- Laminated scale grid
- Counter
- Image J Image analysis software

9 Area for test preparation

The preparation of test solutions should be carried out in an area with ample room and free of contamination from harmful vapours, dust or disturbance. Throughout the test workers should take care not to introduce any contaminants during daily observations and water exchanges by washing hands and arms and wearing disposable gloves.

10 Recording data

The number of Lemna plants and fronds in each test flask is counted 96 h after test commencement. Three surrogate control replicates are photographed at the start of the test to provide a starting test surface area and then all replicates are photographed at 96 h. Image analysis software is used to determine the surface area increase over the 96 h period. Both of these data are then used to calculate growth rate. The pH, dissolved oxygen and electrical conductivity are measured on a subsample of test waters at the start and end of the test. Continuous temperature data is collected throughout the test by the Testo SaverisTM temperature probe inside the incubator.

11 Test procedure

Day 0

- 1. Prepare test solutions, check pH and leave for at least one hour to equilibrate.
- 2. Dispense 100 ml aliquot of test solution into three erlemeyer flasks per treatment and 50 ml into a water parameter vial, place in incubator to warm to test temperature.
- 3. Once at testing temperature, a sterile plastic inoculation loop is used to place four Lemna plants with two full sized fronds and one new frond into each flask (Figure A1).
- 4. Place a piece of aluminium foil on the top of each flask and remove excess foil so that the shadow in the flask is minimised.
- 5. Check that each flask contains 4 x 3- fronded plants.
- 6. Use the random number sheet to place the flasks into the incubator.
- 7. Perform water quality checks and collect samples for chemical and nutrient analysis.

Figure A1 Example of the correct L. aequinoctialis stage for test start.

Days 1-3

- 8. At the appropriate time, i.e. at 24 h intervals, remove all test flasks from the incubator
- 9. Record the number of plants in each flask, whether there is any fungal or bacterial growth and any other observations on the test sheet.
- 10. Re-randomise flask positions within the incubator

Day 4

- 11. Remove flasks from the incubator and arrange them in order of ascending toxicity
- 12. Set up a magnification lamp, the camera and tripod (Figure A2)

Figure A2 Set up of camera, tripod and light box for capturing surface area images

13. Make general observations of plant health e.g. size and colour of fronds.

Surface area

- 14. Transfer all fronds within each flask into a 50 ml crystallising dish containing 50 ml of ultrapure water making sure that all plants are placed within the laminated scale grid with no overlapping plants (as in Figure A1).
- 15. The crystallising dish should then be placed on the lightbox directly under the camera with the treatment and replicate number placed next to it.

- 16. The camera should be zoomed to 4.8x zoom and the centre of the lemna fronds selected on the camera touch screen so that this will be the point of focus of the photo.
 NOTE: Selecting the centre of the lemna fronds is very important otherwise another point on the image may become the focus point and will decrease the resolution of the lemna fronds for analysis.
- 17. Half press the shutter button on the camera so that the box highlighting the centre of the lemna turns green. Then fully depress the shutter button to capture the image.
- 18. Repeat for each flask going up in ascending toxicity
- 19. Copy images off the camera and load them on to a computer with the appropriate image analysis software installed.
- 20. Following Appendix C calculate the surface area of each image.

Frond count

- 21. Once an image has been captured the crystallising dish is removed from the light box and placed under the magnification lamp.
- 22. Count the number of plants within the dish and record it on the test sheet
- 23. Using needle-nosed forceps gently remove each plant from the dish and count the fronds under magnification. A frond is counted, however small, when it is visible beyond the margin of the mother frond (Cleland and Briggs 1969). Place the frond on a tissue or white sheet of paper, discarding when count is complete.
- 24. Record the number of fronds on the test sheet.
- 25. Pour a sub-sample from each flask in each treatment into a water parameter vial and measure the water quality parameters.

12 Randomisation

Each day a new set of random numbers must be used to assign the position of each flask within the incubator. Each flask has a number written on the top of the tin foil lid and is placed into the incubator according to the order of the numbers on the random number sheet. The flasks need to be positioned on the edges of each shelf as close to the light source as possible to ensure that light exposure is maximised. Randomisation is an important part of the experimental design. Random numbers are obtained from a random number table or generator for each day of the test. A set of random numbers is unique for each test and is not to be reused.

13 Reference toxicants

The use of reference toxicants enables the response of the test organism to be assessed over time to ensure the response is reproducible. This process also checks the proficiency of operators and laboratory standards. Uranium (U, added as uranyl sulphate) is used in a concentration range from 50-1000 µg L-1. Synthetic soft water is used as the diluent. The EC50 value, calculated from the concentration-response curve, should fall within 3 standard deviations (SDs) of the mean on the quality control chart for the test species. If the value falls outside 2 SDs of the mean, it is a warning that there may be something wrong with the test. It is important to note that a control chart cannot be produced or considered reliable with less than 5 values.

14 Acceptability of test data

The test data is considered acceptable if:

1. The recorded temperature of the incubator remains within the prescribed limits (29 \pm 1°C)

- 2. The growth rate of the control treatment is within the range 0.35 ± 0.1 cm² d⁻¹ for the SA end point and 0.4 ± 0.1 fronds d⁻¹ for the frond count end point
- 3. There is < 20% variability in the control growth rate
- 4. The recorded pH is within the prescribed limits
- 5. The results of reference toxicity testing are within the set limits.

15 Analyses of test data

Growth rate for both surface area and frond count is calculated using the below formula:

$$K = \frac{\ln N_t - \ln N_0}{t}$$

Where

 N_t = number of fronds (or SA) at the end of the four-day test period

 N_0 = number of fronds (n₀ = 12) or SA at the start of the test period

t = length of test period in days (T=4)

The growth rates of each treatment are presented as a function of the control response and these are plotted against measured toxicant concentrations. Linear interpolation is used to calculate EC values when performing reference toxicity tests using uranium (U) however in all other toxicant tests three parameter logistic regression is used. Toxicant concentration is log transformed in all analyses.

Appendix B List of tests

Test Code	Date	Diluent	Treatments	Valid? Yes/No	Failure reason
716L	10/10/05	SSW	SSW, SSW + 15, 30, 60, 120, 240, 480, 960 µg L ⁻¹ U	Υ	
732L	23/01/06	SSW	SSW, SSW + 250, 500, 1000, 1500, 2000 µg L ⁻¹ U	N	Poor control growth
739L	22/02/06	SSW	SSW, SSW + 250, 500, 1000, 1500, 2000 µg L ⁻¹ U	Υ	
775L	20/11/06	SSW	MCW control + 0.3 mg L ⁻¹ PO ₄ ⁻ and 3 mg L ⁻¹ NO ₃ ⁻ , SSW + 1 mg L ⁻¹ NO ₃ ⁻ and 0.1 mg L ⁻¹ PO ₄ ⁻ , SSW + 0.3 mg L ⁻¹ PO ₄ ⁻ and 3 mg L ⁻¹ NO ₃ ⁻ , SSW + 1 mg L ⁻¹ PO ₄ ⁻ and 10 mg L ⁻¹ NO ₃ ⁻ , SSW + 3 mg L ⁻¹ PO ₄ ⁻ and 30 mg L ⁻¹ NO ₃ ⁻ , SSW + 10 mg L ⁻¹ PO ₄ ⁻ and 100 mg L ⁻¹ NO ₃ ⁻	N	Poor control growth
779L	20/11/06	SSW	MCW, SSW, SSW + 250, 500, 1000, 1500, 2000 μ g L ⁻¹ all treatments included 0.3 mg L ⁻¹ PO ₄ - and 3 mg L ⁻¹ NO ₃ -	N	Poor control growth
786L	6/12/06	SSW	MCW, SSW (pH 6), SSW (pH7), SSW + CoCl ₂ (3.54 μ g L ⁻¹ , pH 6), SSW + CoCl ₂ (3.54 μ g L ⁻¹ , pH 7), SSW + 1 mg L ⁻¹ NO ₃ ⁻ and 0.1 mg L ⁻¹ PO ₄ ⁻ , SSW + 1 mg L ⁻¹ PO ₄ ⁻ and 10 mg L ⁻¹ NO ₃ ⁻ , SSW + 3 mg L ⁻¹ PO ₄ ⁻ and 30 mg L ⁻¹ NO ₃ ⁻ , SSW + 10 mg L ⁻¹ PO ₄ ⁻ and 100 mg L ⁻¹ NO ₃ ⁻	N	Poor control growth
802L	22/02/07	0.5% CAAC	MCW, 0.5% CAAC, 1% CAAC, 1.5% CAAC, 2% CAAC, 2.5% CAAC	Υ	
820L	23/04/07	0.5% CAAC	MCW + 0.3 mg L ⁻¹ PO ₄ ⁻ and 3 mg L ⁻¹ NO ₃ ⁻ , Milli-Q + 0.3 mg L ⁻¹ PO ₄ ⁻ and 3 mg L ⁻¹ NO ₃ ⁻ , 0.5% CAAC, 1% CAAC, 1.5% CAAC, 2% CAAC, 2.5% CAAC	N	>1 pH unit increase
825L	28/05/07	0.5% CAAC	MCW + 0.3 mg L ⁻¹ PO $_4$ ⁻ and 3 mg L ⁻¹ NO $_3$ ⁻ , 0.5% CAAC, 250, 500, 1000, 1500, 2000 μ g L ⁻¹ U	N	>1 pH unit increase
831L	14/8/07	0.5% CAAC	MCW + 0.3 mg L ⁻¹ PO ₄ ⁻ and 3 mg L ⁻¹ NO ₃ ⁻ , 0.5% CAAC, 500, 1000, 2000, 4000 μ g L ⁻¹ , 0.25% CAAC, 0.25% CAAC + 2000 μ g L ⁻¹	Υ	
943L	02/09/08	0.5% CAAC	MCW + 0.3 mg L^{-1} PO ₄ ⁻ and 3 mg L^{-1} NO ₃ ⁻ , 0.25% CAAC, 0.5% CAAC	N	>1 pH unit increase
1167L	28/03/11	0.5% CAAC	0.5% CAAC, 1% CAAC, 0.5% CAAC + 1.56, 3.13, 6.25, 12.5, 25 mg L ⁻¹ U	N	>1 pH unit increase
1026L	12/10/09	2.5% CAAC	2.5% CAAC, 2.5% CAAC + 0.625, 1.25, 2.5, 5, 10, 20 mg L ⁻¹ U	N	>1 pH unit increase
1049L	20/11/09	1.0% CAAC	2.5% CAAC, 1% CAAC + 0.625, 1.25, 2.5, 5, 10, 20 mg L-1 U	Υ	
1065L	22/02/10	1.0% CAAC	2.5% CAAC, 1% CAAC, 1% CAAC + 1.25, 2.5, 5, 10, 20, 40 mg L ⁻¹ U	N	>1 pH unit increase
1089L	12/04/10	1.0% CAAC	2.5% CAAC,1% CAAC, 1% CAAC + 0.625, 1.25, 2.5, 5, 10, 20 mg L ⁻¹ U	Υ	
1093L	24/05/10	1.0% CAAC	1% CAAC, 1% CAAC + 0.78, 1.56, 3.13, 6.25, 12.5, 25 mg L ⁻¹ U	N	>1 pH unit increase

Test Code	Date	Diluent	Treatments	Valid? Yes/No	Failure reason
1141L	22/11/10	1.0% CAAC	1% CAAC, 1% CAAC + 0.78, 1.56, 3.13, 6.25, 12.5, 25 mg L ⁻¹ U	N	>1 pH unit increase
1167L	28/3/11	1.0% CAAC	0.5% CAAC, 1% CAAC, 1% CAAC + 1.56, 3.13, 6.25, 12.5, 25 mg L ⁻¹ U	Υ	
1183L	04/07/11	1.0% CAAC	1% CAAC, 1% CAAC + 1.56, 3.13, 6.25, 12.5, 25 mg L ⁻¹ U	N	>1 pH unit increase
1248L	21/11/11	1.0% CAAC	1% CAAC, 1% CAAC + 1.56, 3.13, 6.25, 12.5, 25 mg L-1 U	N	>1 pH unit increase
1287L	30/04/12	1.0% CAAC	1% CAAC, 1% CAAC + 1.56, 3.13, 6.25, 12.5, 25 mg L ⁻¹ U	N	>1 pH unit increase
1301L	24/09/12	1.0% CAAC	1% CAAC, 1% CAAC + 1.56, 3.13, 6.25, 12.5, 25 mg L-1 U	N	>1 pH unit increase
1315L	14/01/13	1.0% CAAC	1% CAAC, 1% CAAC + 1.56, 3.13, 6.25, 12.5, 25 mg L-1 U	N	>1 pH unit increase
1330L	19/08/13	1.0% CAAC	1% CAAC, 1% CAAC + 1.56, 3.13, 6.25, 12.5, 25 mg L ⁻¹ U	Υ	
1372L	18/11/15	1.0% CAAC	1% CAAC, 1% CAAC + 1.56, 3.13, 6.25, 12.5, 25 mg L ⁻¹ U, Milli-Q + 50 μ L L ⁻¹ of NaHCO ₃ , CaCl.2H ₂ O ₃ KCl and MgSO ₄ .7H ₂ O	N	>1 pH unit increase
1375L	02/12/13	SSW amended ^a	1% CAAC, SSW amended + No FeCl ₃ .6H ₂ O, SSW amended	N	Vrong volume of CAAC added
1377L	14/12/13	SSW amended ^a	1% CAAC, SSW amended, SSW amended 1.5x volume of salts, SSW amended 2x volume of salts, SSW amended + 0.3 mg $^{-1}$ PO $_4$ and 3mg $^{-1}$ NO $_3$	N	Nrong volume of CAAC added
1419L	18/08/14	SSW amended ^a	1% CAAC, SSW amended, SSW amended 1.5x volume of salts, SSW amended 2x volume of salts, MCW control. All treatments (apart from 1% CAAC) have 0.3 mg L ⁻¹ PO ₄ - and 3 mg L ⁻¹ NO ₃ - included	Y	
1420L	25/08/14	SSW amended ^a	1% CAAC, SSW amended, SSW amended + trace Mn, MilliQ amended + trace Mn, Cu, Zn, Pb, MCW control. All treatments (apart from 1% CAAC) have 0.3 mg L ⁻¹ PO ₄ ⁻ and 3 mg L ⁻¹ NO ₃ ⁻ included	Y	
1428L	17/11/14	SSW amended ^a	1% CAAC, SSW amended + 0.5 mg L ⁻¹ NO ₃ ⁻ and 0.05 mg L ⁻¹ PO ₄ ⁻ , SSW amended + 1 mg L ⁻¹ NO ₃ ⁻ and 0.1 mg L ⁻¹ PO ₄ ⁻ , SSW amended + 0.6 mg L ⁻¹ PO ₄ ⁻ and 6 mg L ⁻¹ NO ₃ ⁻	N	>1 pH unit increase
1454L	16/03/15	SSW amended ^a	1% CAAC, 1% CAAC (chamber), SSW amended + no nutrients, SSW amended + no nutrients (chamber), SSW amended + 0.025 mg L^{-1} PO ₄ ⁻ and 0.25 mg L^{-1} NO ₃ ⁻ , SSW amended + 0.05 mg L^{-1} PO ₄ ⁻ and 0.5 mg L^{-1} NO ₃ ⁻ , SSW amended + 0.05 mg L^{-1} PO ₄ ⁻ and 0.75 mg L^{-1} NO ₃ ⁻ , SSW amended + 0.1 mg L^{-1} PO ₄ ⁻ and 1 mg L^{-1} NO ₃ ⁻	N	>1 pH unit increase

1457L	06/04/15	SSW amended ^a	1% CAAC, 1% CAAC (chamber), SSW amended + 0.1 mg L^{-1} PO ₄ ⁻ and 1 mg L^{-1} NO ₃ ⁻ , SSW amended + 0.1 mg L^{-1} PO ₄ ⁻ and 1 mg L^{-1} NO ₃ ⁻ (chamber), SSW amended + 0.6 mg L^{-1} PO ₄ ⁻ and 6 mg L^{-1} NO ₃ ⁻ , SSW amended + 0.6 mg L^{-1} PO ₄ ⁻ and 6 mg L^{-1} NO ₃ ⁻ (chamber)	Υ
1465L	01/06/15	SSW	SSW, SSW + 100, 250, 500, 750, 1000, 1250, 1500 μ g L ⁻¹ U + 0.1 mg L ⁻¹ PO ₄ ⁻ and 1 mg L ⁻¹ NO ₃ ⁻ in each treatment	Υ
1473L	27/07/15	SSW	SSW, SSW + 25, 50, 100, 200, 350, 500, 1000, 1500, 2000 μ g L ⁻¹ U + 0.1 mg L ⁻¹ PO ₄ - and 1 mg L ⁻¹ NO ₃ - in each treatment	Υ
1475L	10/8/15	SSW	SSW, SSW + 50, 100, 250, 500, 750, 1000 $\mu g \ L^{-1} \ U + 0.1 \ mg \ L^{-1} \ PO_4^-$ and 1 $mg \ L^{-1} \ NO_3^-$ in each treatment	Υ

 $a-SSW\ amended\ is\ made\ up\ of\ the\ following\ constituents\ -\ 50\ \mu L\ L^{-1}\ of\ NaHCO_3,\ CaCl.2H_2O_3\ KCl,\ Al(SO_4)_3.18H_2O,\ MgSO_4.7H_2O\ and\ FeCl_3.6H_2O\ and\ Al(SO_4)_3.18H_2O,\ MgSO_4.7H_2O\ and\ FeCl_3.6H_2O\ and\ Al(SO_4)_3.18H_2O\ and\ Al(SO_4)_3$

Appendix C Using Gas-tight chambers for pH control

1 Determination of CO₂ volume

- The amount of CO₂ enriched gas required for a chamber will differ depending on the initial pH of the MCW, the toxicant being tested and test organism.
- When testing with a new batch of MCW it is essential that a 24 h trial is conducted to
 determine the volume of CO₂-enriched gas required to achieve the desired pH of the testing
 waters.
 - When MCW has a natural pH of 6.2–6.3, 80 ml of CO_2 enriched gas should be sufficient to maintain testing at pH \sim 6.
- Fill the chamber (Figure C1) with the number of vials/petri dishes which will be used during testing with the new MCW. Prime the chamber with CO₂ and leave in the test incubator overnight.

NOTE: Results from these trials should only be used as a guide and more or less CO₂ may be required depending on test organism and toxicant.

• During the wet season MCW has a natural pH of <6, therefore using this system may not be appropriate.

2 Testing method

- Dispense test solution into vials or petri dishes.
- Ensure magnetic mixing flea is in the centre of the bottom of each chamber.
- Add vials or petri dishes to chambers, 30 flea testing vials or 12 petri dishes (stacked) will fit per chamber.
- If multiple chambers are required ensure the same number of testing vials or petri dishes are in all chambers. This will help prevent differences in CO₂ concentrations among chambers.
- Seal the chamber.
- Fill the gas-tight syringe with CO₂ enriched air to the desired volume and inject it into the chamber using the left inlet hose. While the syringe is still attached to the inlet hose draw the syringe in and out 3 to 4 times to help mix the gases.

NOTE: Only draw the syringe out a maximum of 50 ml to prevent possible damage to the chamber.

- Put the chamber on a magnetic stirring plate, ensuring the flea is freely spinning at the bottom of the chamber. Leave for a minimum of 2 min to allow the gases in the chamber to mix thoroughly.
- Attach the syringe to the outlet hose (right hose) and repeat the process of drawing air in and out of the chamber 3 to 4 times to make sure the air is thoroughly mixed. Withdraw the volume of gas that was injected initially into the chamber and seal off the syringe and the chamber before detaching the syringe from the hose.
- Use the environmental gas monitor to measure the concentration of CO₂ in the chamber from the sample of gas that was just extracted (see environmental gas monitor method).

Figure C1 Gas-tight chamber.

- It is important to ensure that test waters have been primed in CO₂-enriched test chambers before the test organism is introduced. This is achieved by pre-priming the test waters in the chambers for a minimum of:
 - 2 h for petri dishes
 - 4 h for flea vials

Appendix D Measurement of frond surface area using ImageJ software

The ImageJ software can be downloaded from http://rsbweb.nih.gov/ij/index.html.

- 1) Open the picture in ImageJ
 - a) File → Open → Select photo. (Note it is easy to preview files and open them using the Windows photo browser and the "open with" function in the right click menu)
- 2) Set the scale using the line tool (Figure D1)
 - a) Select the line tool (i.e. 5th box from the left under the menu bar). Draw a line on the scale of the floating frame (zoom in (i.e. ctrl and +) for more accuracy).
 - b) Analyze \rightarrow Set scale. Add the length of your line enter in the scale (e.g. cm).
 - c) Check the global box so that all subsequent images will using this scale

Figure D1 Setting the scale

- 3) Choose SA as a measurement
 - a) Analyze → Set measurements. Select parameter(s) required (i.e. area). Check "Limit to threshold" box.
- 3) Rotate and Crop
 - a) If needed, rotate the image (Image \rightarrow Transform \rightarrow Rotate; Figure D2) so that the plastic frame is squared and aligned.
 - b) Crop the photo using the box tool (Image \rightarrow Crop; Figure D3). It is important to remove the scale and as much background as possible leaving only Lemna fronds.

Figure D2 Rotated image

Figure D3 Cropped image

- 4) Open the Threshold Colour tool
 - a) Open the dialogue box (Plugins →Analyze→ Threshold Colour; Figure D4).

The Threshold Colour plugin tool methods that could be used: i) HSB (Hue, Saturation and Brightness) ii) RGB (Red, Green, Blue) and iii) YUV (colour encoding system used for analogue television).

HSB system discriminates the Lemna leaves from the roots and was most useful for this method. Three histograms are shown and represent the HSB parameters, Hue (pure colour), Saturation (intensity of colour) and Brightness (relative to true colour).

Figure D4 Threshold Colour

- 5) Set threshold for green pixels
 - b) Lemna fronds have a green hue (hue = "pure" colour) Set bottom sliding bar on the Hue histogram to one 120 (Figure D5). By moving the sliding bar to 120 the roots and background within the image should have been removed.

Figure D5 Setting HSB threshold

6) Click 'Select' and a yellow border will appear around the fronds (Figure D6).

Figure D6 Selecting the fronds

9) Collect the measurement data

Figure D7 Example of a results table created in ImageJ

a) Analyze → Measure (Ctrl+M). A results table will appear with the area in the units specified in step 2 (e.g. cm², Figure D7). This can be saved or cut and pasted into an Excel spreadsheet for analysis.

Appendix E CAAC medium preparation

1 Safety

Check the SDSs for any chemicals you are about to use prior to starting to make any solutions to ensure you are aware of any WH&S issues and the appropriate PPE. There are no risks associated with CAAC due to the low concentrations of all chemicals added. Gloves, eye protection and a lab coat must be worn while preparing CAAC.

2 Preparation of a working solution

1. Weigh out 2.05 g sucrose into a plastic weigh boat and add to a partially filled 1 L flask of Milli-Q. Shake the flask to dissolve the sucrose.

Note: Sucrose is not kept as a stock solution as this can promote bacterial contamination.

2. Add the appropriate amount of the 7 solutions (see Table E1) to the flask. Make flask up to 1 L.

Note: These ingredients are stored at 4°C, and will require replacing at 18–24 month intervals.

- 3. Adjust medium to pH 6.0 (+/- 0.15) using 0.178 M KOH (1g KOH in 100 ml Milli-Q) or 10% HCl (usually around 60-70 drops of KOH are required per 1 L of medium)
- 4. Pour CAAC medium into 10 x 250 ml flasks, such that there is 100 ml per flask.
- 5. Use a bung to plug the top of each flask (refer to Laboratory manual method 6ECOTX09 for a description on bung construction). Cover the bung and mouth of flask with alfoil. Record the date the medium is autoclaved and medium type on a strip of autoclave tape and place on alfoil.
- 6. Autoclave at 121°C for 20 min.
- 7. Allow the medium to cool to room temperature before inoculating.
- 8. Medium may be stored at room temperature while not in use.

3 Making stocks

Stocks are made up every 18-24 months.

- Add the appropriate amount of chemical in column 2 of Table E1.
- Make up 1L stocks.

Table E1 Stock solutions used to prepare CAAC medium.

	Ingredient	Stock Solution (g L ⁻¹)	Volume of stock solution added to Milli-Q
1	KH ₂ PO ₄	50.32	5 ml L-1
2	KNO₃	88.9	5 ml L ⁻¹
3	Ca(NO ₃) ₂ .4H ₂ O	94.4	5 ml L ⁻¹
4	MgSO ₄ .7H ₂ O	50	5 ml L ⁻¹
5	EDTA	9	500 μL L ⁻¹
6	Tartaric acid	3	500 μL L ⁻¹
7	<u>Micronutrients</u>	<u>In 1 L add:</u>	500 μL L ⁻¹
	H₃BO₃	2.86	
	ZnSO ₄ .7H ₂ O	0.22	
	Na ₂ MoO ₄ .2H ₂ O	0.12	
	CuSO ₄ .5H ₂ O	0.08	
	MnCl ₂ .4H ₂ O	3.62	
	FeCl ₃ .6H ₂ O	5.4	

Appendix F Synthetic Soft water preparation

1 Safety

Check the SDSs for any chemicals you are about to use prior to making up solutions to ensure you are aware of any WH&S issues and the appropriate PPE. There are no risks associated with SSW due to the low concentrations of all chemicals added. Gloves, eye protection and a lab coat must be work while preparing Synthetic Soft Water.

2 Preparation of solution

- 1. Fill a 5 L volumetric flask with Milli-Q water and pour this into a clean 25 L plastic barrel designated for synthetic water preparation.
- 2. Partially refill the 5L flask with Milli-Q and add the appropriate amount of the 7 stock solutions (see Table F1) to the flask. Make the flask up to volume with Milli-Q and pour into the barrel.
- 3. Fill the 5 L flask twice more to make the volume in the barrel equal 20 L.
- 4. Aerate overnight to allow mixing and gaseous exchange.
- 5. Check pH after a minimum of 12 hours aeration and adjust to 6.0 ± 0.15 using 0.05 M H₂SO₄ or 0.05 M NaOH.
- 6. The water can be stored at 4°C for up to two weeks if necessary. The pH needs to be checked before use to ensure it remains within range.

3 Making stocks

Stocks are made up every 18-24 months.

- Add the appropriate amount of chemical in column 2 of Table C1.
- Make up 1 L of stocks at a time.

Table F1 Stock solutions used to prepare synthetic soft water.

	Ingredient	Stock Solution (g L ⁻¹)	Volume of stock per 20 L	Nominal concs. of element in SSW
1	NaHCO ₃	72.34	1 ml	0.99 mg L ⁻¹
2	$Al_2(SO_4)_3 \cdot 18H_2O^*$	17.26	1 ml	0.075 mg L ⁻¹
3	${\rm MgSO_4.7H_2O}$	121.52	1 ml	0.599 mg L ⁻¹
4	CaCl ₂ .2H ₂ O	32.96	1 ml	0.449 mg L ⁻¹
5	KCI	14.09	1 ml	0.3107 mg L ⁻¹
6	FeCl ₃ .6H ₂ O	10	1 ml	0.1285 mg L ⁻¹
7	Trace Element Solution CuSO ₄ .5H ₂ O ZnSO ₄ .7H ₂ O Pb(NO ₃) ₂ (from EnRad) MnSO ₄ .H ₂ O UO ₂ SO ₄ .3H ₂ O (use 5gL ⁻¹ U stock in fridge 2)	In 1 L add: 0.11 0.123 0.008 1.188 0.007	0.5 ml	0.975 μg L-1 0.699 μg L-1 0.125 μg L-1 9.654 μg L-1 0.1125 μg L-1

^{*}Requires heating to dissolve

Appendix G Water Quality measurements for tests used in the control charts

1049L Lem_reftox_09

Treatment	1% 0	CAAC	594 μ	g L ⁻¹ U	990 µ	g L ⁻¹ U	1600 μ	ıg L ⁻¹ U	4830 μ	ıg L ⁻¹ U	9320 μ	ıg L ⁻¹ U	16800	μg L ⁻¹ U
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.0	6.5	6.1	6.5	5.9	6.4	6.0	6.5	5.8	5.2	5.9	4.8	6.0	5.2
EC (μS cm ⁻¹)	20	13	22	16	19	14	20	15	25	15	29	31	43	45
DO (%)	97.5	83.9	94.5	85.1	91.7	92.0	88.5	86.8	91.1	93.0	93.9	93.2	93.2	88.8
Temp(Ave) (°C)											•			

Treatment	1% C	CAAC	1050 μ	g L ⁻¹ U	1700 μ	ug L⁻¹ U	2950 μ	ıg L⁻¹ U	10100 ן	ıg L ⁻¹ U	22000 ן	ug L ⁻¹ U	39900	μg L ⁻¹ U
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.0	6.8	6.0	6.8	5.9	6.8	5.9	6.7	5.9	4.9	5.7	4.5	6.0	5.3
EC (μS cm ⁻¹)	36	26	37	29	39	31	41	32	44	45	56	65	57	82
DO (%)	101.4	87.6	102.5	88.3	99.0	88.8	99.8	86.7	100.1	90.1	99.1	89.1	96.9	86.1
Temp (Ave) (°C)	ve) 28.0-31.9 (30.0)										•			

Treatment	1% C	CAAC	552 µ	g L ⁻¹ U	1100 µ	ıg L⁻¹ U	2450 μ	g L ⁻¹ U	5000 µ	ıg L⁻¹ U	9550 µ	ıg L⁻¹ U	18700	μg L ⁻¹ U
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	5.9	6.5	5.9	6.4	5.9	6.2	6.0	6.3	6.0	6.4	5.9	5.0	5.9	4.9
EC (μS cm ⁻¹)	32	26	44	56	34	27	34	29	37	32	41	42	42	42
DO (%)	106.4	107.8	103.6	109.4	104.6	100.5	107.3	109.0	106.4	108.0	102.6	108.9	106.6	107.7
Temp (Ave) (°C)	ve) 27-28.9 (28.0)													

1093L Lem_reftox_12

Treatment	1% (CAAC	690 µ	g L ⁻¹ U	1540 լ	ıg L⁻¹ U	3070 µ	ıg L⁻¹ U	5860 µ	ıg L ⁻¹ U	11800	µg L ⁻¹ U	22800	μg L ⁻¹ U
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
pН	5.2	6.8	5.3	6.4	5.1	6.4	5.1	6.2	5.1	6.3	5.0	4.8	5.2	4.7
EC (μS cm ⁻¹)	36	22	36	22	37	23	38	26	41	25	48	50	61	64
DO (%)	89.4	91.2	94.1	86.1	95.7	85.5	92.9	84.0	95.8	87.5	97.3	91.9	96.6	88.5
Temp (Ave) (°C)	26.5-29.3	(27.9)	•								•			

Treatment	1% C	CAAC	725 µ	g L ⁻¹ U	1560 μ	ug L⁻¹ U	3040 µ	ıg L ⁻¹ U	5880 լ	ıg L ⁻¹ U	13700	ug L ⁻¹ U	25400	μg L ⁻¹ U
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	5.7	6.8	5.7	6.5	5.7	6.7	5.7	6.5	5.7	6.5	5.7	5.1	5.7	4.9
EC (µS cm ⁻¹)	33	24	34	34	49	25	39	29	49	33	45	47	59	62
DO (%)	92.7	83.3	91.2	91.2	91.8	87.1	90.8	90.2	NA	87.9	90.2	92.6	92.9	93.3
Temp (Ave) (°C)	28.0-30.1	(29.1)	!								!			

Treatment	1% C	CAAC	1600 μ	ıg L⁻¹ U	3300 μ	ıg L⁻¹ U	6550 µ	g L ⁻¹ U	12500 ן	ug L ⁻¹ U	18900 ן	ug L ⁻¹ U
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	5.5	6.8	5.5	6.6	5.5	6.7	5.6	6.8	5.5	5.2	5.5	5.0
EC (μS cm ⁻¹)	34	25	35	27	37	30	47	39	45	46	59	62
DO (%)	91.9	88.0	89.9	90.5	92.1	89.9	90.5	92.2	91.9	91.9	91.6	90.0
Temp (Ave) (°C)	26.4-29.1	(28)	•									

1183L Lem_reftox_15

Treatment	1% C	CAAC	1190 բ	ıg L ⁻¹ U	2810 μ	ıg L ⁻¹ U	4840 µ	ıg L ⁻¹ U	13100	µg L ⁻¹ U	25800	µg L⁻¹ U
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	5.7	6.7	5.3	6.7	5.2	6.8	5.0	6.7	5.2	5.0	5.4	4.9
EC (µS cm ⁻¹)	40	22	36	24	38	25	41	30	46	48	60	64
DO (%)	93.6	87.4	96.8	88.1	98.3	85.0	93.5	87.6	89.1	89.3	95.1	90.4
Temp (Ave) (°C)	27.1-29.2 (28.3)										•	

Treatment	1% C	CAAC	1200 μ	ıg L ⁻¹ U	2300 μ	ıg L⁻¹ U	4700 µ	ıg L ⁻¹ U	9700 µ	ıg L ⁻¹ U	23000	µg L ⁻¹ U
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	5.6	6.8	5.6	6.9	5.9	6.2	5.5	6.2	5.6	4.7	5.7	4.9
EC (µS cm ⁻¹)	66	29	69	31	64	44	54	37	65	57	82	70
DO (%)	96.0	88.3	99.9	91.1	98.1	87.4	95.0	87.5	96.7	94.0	96.8	92.6
Temp (Ave) (°C)	26.7-29.1	(28.1)										

Treatment	1% C	CAAC	1500 µ	ıg L⁻¹ U	3100 µ	ıg L⁻¹ U	5700 µ	ıg L⁻¹ U	12000	μg L ⁻¹ U	25000	μg L ⁻¹ U
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	5.4	6.9	5.4	6.4	5.4	6.5	5.5	6.6	5.3	5.0	5.5	4.9
EC (μS cm ⁻¹)	37	28	37	33	37	33	39	31	46	48	62	65
DO (%)	95.5	88.0	97.8	89.5	98.7	84.6	94.9	88.1	98.7	88.7	94	87.7
Temp (Ave) (°C)	28.7-28.8	(28.8)	•									

1301L Lem_reftox_18

Treatment	1% C	CAAC	1500 բ	ıg L ⁻¹ U	3000 h	ıg L ⁻¹ U	5600 µ	g L ⁻¹ U	13000 ן	ug L ⁻¹ U	24000	µg L ⁻¹ U
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	5.5	6.8	5.6	6.7	5.6	6.7	5.6	6.6	5.7	5.4	5.7	5.3
EC (µS cm ⁻¹)	35	22	37	25	37	26	40	33	46	49	61	66
DO (%)	90.2	83.0	90.5	81.5	88.3	81.7	89.6	81	90.7	81.7	89.8	89.2
Temp (Ave) (°C)	29.0-29.1 (29.1)											

Treatment	1% C	CAAC	1300 µ	ıg L⁻¹ U	2600 μ	ıg L⁻¹ U	5300 µ	ıg L⁻¹ U	10000	µg L⁻¹ U	23000	µg L ⁻¹ U
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	5.8	7.3	5.8	6.7	5.7	6.7	5.7	6.7	5.7	5.5	5.7	5.4
EC (µS cm ⁻¹)	36	24	37	30	38	32	40	36	47	53	62	68
DO (%)	86.7	87.0	91.1	87.9	90.3	81.7	89.4	87.5	88.8	87.8	89.6	86.9
Temp (Ave) (°C)	29.3-29.7	(29.5)	•								•	

Treatment	1% C	CAAC	1500 բ	ıg L ⁻¹ U	3000 h	ug L⁻¹ U	6000 µ	ıg L⁻¹ U	13000	µg L ⁻¹ U	22000	µg L ⁻¹ U
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	5.8	6.3	5.9	6.6	5.7	6.6	5.9	6.5	5.9	5.3	5.8	5.0
EC (μS cm ⁻¹)	45	41	49	46	50	43	51	48	59	62	79	78
DO (%)	98.1	84.2	89.9	87.9	91.6	86.7	89.8	86.4	90.1	86.2	90.7	84.3
Temp (Ave) (°C)	27.3-27.6	(27.6)	•				•					

1372L Lem_reftox_21

Treatment	1% C	CAAC	1200 μ	ıg L ⁻¹ U	2200 ן	µg L⁻¹ U	4800 µ	ıg L ⁻¹ U	89000	μg L ⁻¹ U	20000	ug L ⁻¹ U	MQ +Na I M	
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	5.5	7.3	5.7	7.2	5.6	6.9	5.6	6.9	5.8	5.3	5.9	5.3	6.7	6.5
EC (μS cm ⁻¹)	49	37	50	41	50	44	53	47	60	60	74	76	16	13
DO (%)	94.1	81.7	94.6	87.8	93.1	90.5	93.1	91.5	90.7	89.6	90.9	86.4	91.8	92
Temp(Ave) (°C)	26.3-29.1	(27.6)	•				•							

1375L Lem_methoddev_01

Treatment	1% C	CAAC	MQ an	nended	MQ ame	nded + Fe
Parameter	0h	72h	0h	72h	0h	72h
рН	5.5	5.7	5.7	5.6	6.2	6.2
EC (μS cm ⁻¹)	4	3	18	16	26	23
DO (%)	96.5	88.5	89.8	89.2	93.2	89.0
Temp (Ave) (°C)	26.9-28.1	(27.6)	•			

Treatment	1% (CAAC	MQ ar	nended	MQ ame	nded x1.5	MQ ame	ended x2	MQ ame	nded + N d P
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.1	6.1	5.9	5.9	6.2	6.2	6.2	6.1	6.2	6.5
EC (μS cm ⁻¹)	3	3	18	16	30	28	33	31	26	21
DO (%)	95.1	86.7	97	86.5	96.8	88.2	97.5	88.2	96.8	87.3
Temp (Ave) (°C)	27.0-28.2	(27.7)	•				•			

1419L Lem_methoddev_04

Treatment	1% C	CAAC		led + N and	MQ amend			ded x2 + N d P	MCW +	N and P
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.0	6.6	6.1	6.8	6.1	7.0	6.1	6.9	6.4	7.1
EC (μS cm ⁻¹)	47	38	24	20	31	27	39	35	23	18
DO (%)	97.3	89.4	96.4	91.9	100.1	95.3	91	95	104.8	96.2
Temp (Ave) (°C)	28.6-30.0 (2	29.0)	•							

Treatment	1% C	CAAC		led + N and	MQ amend Mn + N		MQ amend Mn, Cu, Z and	n, Pb + N	MCW +	N and P
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	5.8	6.7	6.1	6.8	6.1	6.8	6.1	6.8	6.3	6.7
EC (μS cm ⁻¹)	48	38	25	19	25	20	23	18	22	17
DO (%)	94.5	86.1	97.4	92.6	101.8	93	101.8	92.4	111.6	94.3
Temp (Ave) (°C)	28.7-29.6 (2	29.0)	1				•			

1428L Lem_methoddev_06

Treatment	1% C	CAAC	MQ amer nutri	nded + no ents	mg/L NO	nded + 0.5 ₃ - and 0.05 . PO ₄ -	MQ amen mg/L NO ₃ mg/L	₃ - and 0.1	MQ amende NO ₃ - and PO	•	NO ₃ - and	ed + 6 mg/L I 0.6 mg/L O ₄ -
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	5.8	6.9	5.5	5.5 6.3		6.4	5.6	6.4	5.8	6.5	5.8	6.5
EC (μS cm ⁻¹)	49	40	19			14	20	14	24	18	31	25
DO (%)	90.1	83.6	97.2	88.2	95.3	87.0	103.8	86.9	103.5	86.3	97	89.0
Temp (Ave) (°C)	28.0-29.1 (2	28.7)	•				•		,		•	

Treatment	1% C	CAAC	1% CAAC	(chamber)		nded (no ents)		ended (no + chamber)	mg/L NO ₃	ded + 0.25 - and 0.025 - PO ₄ -	mg/L NO	nded + 0.5 ₃ - and 0.05 PO ₄ -	mg/L NO ₃ mg/L	nded + 0.5 3 ⁻ and 0.05 . PO ₄ ⁻ mber)	mg/L N	ded + 0.75 O ₃ - and g/L PO ₄ -	MQ amer mg/L NO; mg/L	
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	5.6	7.2	5.4	6.5	5.9	6.4	5.9	5.7	6.0	6.3	6.1	6.3	5.8	5.6	6.1	6.5	6.2	6.6
EC (μS cm ⁻¹)	48	37	49	32	16	13	16	14	16	13	18	14	17	13	17	13	18	14
DO (%)	97.5	93.6	95.5	102.3	100.8	94.3	98.7	98.3	99.6	99.0	99.7	98.0	96.1	98.8	98.1	97.4	99.1	98
Temp (Ave) (°C)	28.3-29.3	(28.8)	•				•				•				•			

1457L Lem methoddev 08

Treatment	1% C	CAAC	1% CAAC	(chamber)	mg/L NO:	nded + 1.0 3 ⁻ and 0.1 PO ₄ -	mg/L NO	PO ₄ -	mg/L NO:	nded + 3.0 3 ⁻ and 0.3 PO ₄ ⁻ mber)	mg/L NO	nded + 6.0 3 ⁻ and 0.6 PO ₄ -	MQ amen mg/L NOg mg/L (chan	₃ - and 0.6 PO ₄ -
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	5.7	6.5	5.8	5.8 6.6		6.4	5.9	5.6	5.8	5.9	6.0	6.5	5.9	6.2
EC (µS cm ⁻¹)	47	41	49			14	18	13	22	15	29	24	29	20
DO (%)	97.5	91	100.8	93	96.2	89.5	97.1	92	97.2	90.0	95.3	90.1	100.7	89.8
Temp (Ave) (°C)	28.6-29.9 (29.2)	•								•			

44

Treatment	Bç	gd	100 μς	g L ⁻¹ U	250 μς	g L⁻¹ U	500 μզ	g L⁻¹ U	750 µ	g L ⁻¹ U	1000 μ	g L ⁻¹ U	1250 µ	g L ⁻¹ U	1500 μ	g L ⁻¹ U
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
pН	6.1	6.2	6.0	6.2	6.0	6.0	6.0	5.9	5.9	5.8	5.9	5.9	5.9	5.9	6.0	5.9
EC (µS cm ⁻¹)	18	13	18	14	18	17	18	18	19	18	19	19	19	20	20	20
DO (%)	98.9	90.7	102.1	92.9	104.0	93.2	104.1	93.3	99.9	92.8	101.6	90.1	102.2	91.4	103.0	92.1
Temp (Ave) (°C)	28.7-29.2	(28.9)														

1473L Lem_reftoxnew_01

Treatment	B	gd	25 µg	L ⁻¹ U	50 μg	L ⁻¹ U	100 μς	g L ⁻¹ U	200 μς	g L ⁻¹ U	350 μ	g L ⁻¹ U	500 μς	g L ⁻¹ U	1000 μ	g L ⁻¹ U	1500 μ	g L ⁻¹ U	2000 μ	g L ⁻¹ U
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.3	6.6	6.2	6.6	6.2	6.6	6.1	6.5	6.1	6.4	6.1	6.3	6.0	6.2	6.0	6.0	6.1	6.2	6.1	6.2
EC (μS cm ⁻¹)	17	13	17	13	17	14	17	14	17	15	18	18	18	18	19	19	20	20	20	21
DO (%)	103.8	90.0	103.2	92.3	106.0	93.1	106.7	93.8	107.4	93.0	105.6	94.3	104.7	91.2	106.0	93.4	102.9	94.3	103.4	94.8
Temp (Ave) (°C)	28.2-29.	3 (28.8)	•				•				•				•				•	·

1475L Lem_reftoxnew_02

Treatment	В	gd	50 μg L ⁻¹ U		100 μg L ⁻¹ U		250 μς	g L ⁻¹ U	500 μς	g L ⁻¹ U	750 μς	j L ⁻¹ U	1000 μ	ıg L ⁻¹ U
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.0	6.7	6.1	6.7	6.1	6.7	6.0	6.3	6.0	6.1	5.9	6.1	5.9	6.0
EC (μS cm ⁻¹)	20	14	21	15	19	16	19	17	19	18	21	19	21	20
DO (%)	99.8	89.5	103.5	90.0	103.5	90.6	106.9	90.0	105.0	90.0	102.4	92.2	99.6	93.4
Temp (Ave) (°C)	28.2-29.2	(28.7)	•				•							

Appendix H Summary of metal analyses

Table H1 Metal and major ion analyses of QC waters for reference toxicity tests.

Analyte	Al	Cd	Co	Cr	Cu	Fe	Mn	Ni	Pb	Se	U	Zn	SO ₄	Ca	Na	Mg
Units	μg L ⁻¹	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	mg L-1	mg L-1	mg L-1	mg L-1
PQL	0.1	0.02	0.01	0.1	0.01	1	0.01	0.01	0.01	0.2	0.001	0.1	0.5	0.1	0.1	0.1
1026L Blk	<0.1	<0.1	<0.02	<0.01	<0.01	0.02	<20	<0.1	<0.01	NMa	0.07	0.03	<0.01	<0.02	<0.001	<0.01
1065L Blk	<0.1	<0.1	<0.02	<0.01	<0.1	0.03	<20	<0.1	<0.01	<0.1	0.05	0.02	<0.1	<0.2	0.001	0.2
1089L Blk	<0.1	<01	<0.02	<0.01	<0.1	0.1	<20	<0.1	<0.01	0.1	0.04	0.02	<0.1	<0.2	0.006	<0.1
1093L Blk	<0.1	<0.1	<0.02	<0.01	<0.1	0.05	<20	<0.1	<0.01	<0.1	0.04	0.01	<0.1	<0.2	<0.001	<0.1
1141L Blk	<0.1	<0.1	<0.02	<0.01	<0.1	0.01	<20	<0.1	<0.01	<0.1	0.02	0.01	<0.1	<0.2	0.002	<0.1
1167L Blk	<0.1	<0.1	<0.02	<0.01	<0.1	<0.01	<20	<0.1	<0.01	<0.1	0.05	<0.01	0.2	<0.2	<0.001	0.3
1183L Blk	<0.1	<0.1	<0.02	<0.01	<0.1	<0.01	<20	<0.1	<0.01	<0.1	0.04	<0.01	<0.1	<0.2	<0.001	<0.1
1248L Blk	<mark>32</mark>	0.1	<0.02	0.011	<0.10	0.10	1.6	0.3	0.063	<0.1	0.70	0.10	<0.5	<0.20	0.011	0.50
1287L Blk	<0.1	NMa	<0.02	<0.01	<0.1	0.073	<1.0	NMa	<0.01	NMa	0.12	<0.01	NMa	<0.2	<0.001	<0.1
1301L Blk	<0.1	<0.1	<0.02	<0.01	<0.1	0.069	<1.0	<0.1	<0.01	<0.1	0.12	<0.01	<0.5	<0.2	0.012	<0.1
1315L Blk	<0.1	<0.1	<0.02	<0.01	<0.1	<0.01	<1.0	<0.1	<0.01	<0.1	0.029	<0.01	<0.5	<0.2	<0.001	<0.1
1330L Blk	<0.1	<0.1	<0.02	<0.01	<0.1	<0.01	<1	<0.1	<0.01	<0.1	<0.01	<0.01	<0.5	<0.2	<0.001	<0.1
1372L Blk	<0.1	<0.1	<0.02	<0.01	<0.1	0.01	<1	<0.1	<0.01	<0.1	<0.01	<0.01	<0.5	<0.2	<0.001	<0.1
1375L Blk	<mark>5</mark>	<0.1	<0.02	<0.01	<0.1	2	<1	<0.1	0.05	0.1	0.08	0.07	<0.5	<0.2	0.02	0.9
1419L Blk	0.5	<0.1	<0.02	<0.01	<0.1	0.03	<1	<0.1	<0.01	<0.1	<0.01	<0.01	<0.1	<0.2	<0.001	<0.1
1420L Blk	0.3	<0.1	<0.02	<0.01	<0.1	0.03	<1	<0.1	<0.01	<0.1	0.01	<0.01	<1	<0.2	<0.001	<0.1
1454L Blk	0.2	<0.1	<0.02	<0.01	<0.1	0.06	<1	<0.1	<0.01	<0.1	<0.01	<0.01	<0.5	<0.2	<0.001	<0.1
1457L Blk	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa

Analyte	Al	Cd	Co	Cr	Cu	Fe	Mn	Ni	Pb	Se	U	Zn	so ₄	Ca	Na	Mg
Units	μg L ⁻¹	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹
PQL	0.1	0.02	0.01	0.1	0.01	1	0.01	0.01	0.01	0.2	0.001	0.1	0.5	0.1	0.1	0.1
1465L Blk	<0.1	<0.1	<0.02	<0.01	<0.1	0.04	<1	<0.1	<0.01	<0.1	0.01	<0.01	<0.5	<0.2	<0.001	<0.1
1473L Blk	0.3	<0.1	<0.02	<0.01	<0.1	0.06	<1	<0.1	<0.01	<0.1	<0.01	<0.01	<0.5	<0.2	<0.001	<0.1
1475L Blk	0.03	<0.1	<0.02	<0.01	<0.1	0.07	14	<0.1	0.1	<0.1	0.02	<0.01	NMa	<0.2	<0.001	<0.1
1026L Pro Blk	0.2	<0.1	<0.02	<0.01	<0.01	0.04	<20	<0.1	0.01	N.A	0.08	0.04	<0.01	<0.02	<0.001	<0.01
1049L Pro Blk	<0.01	<0.01	<0.02	<0.01	<0.1	0.02	<20	<0.1	<0.01	<0.1	0.04	0.02	<0.1	<0.2	0.005	<0.1
1065L Pro Blk	0.3	<0.1	<0.02	<0.01	<0.1	<mark>2.88</mark>	<20	<0.1	0.08	<0.1	0.38	0.08	<0.1	<0.2	0.019	<mark>3.2</mark>
1089L Pro Blk	0.2	<0.1	<0.02	<0.01	<0.1	0.21	<20	<0.1	<0.01	0.3	0.05	0.03	<0.1	<0.2	<0.001	<0.1
1093L Pro Blk	1	<0.1	<0.02	<0.01	<0.1	0.62	<20	<0.1	0.02	<0.1	0.07	0.02	<0.1	<0.2	0.006	0.7
1141L Pro Blk	<mark>3.3</mark>	<0.1	<0.02	<0.01	<0.1	0.56	<20	<0.1	0.07	<0.1	<mark>14.5</mark>	0.05	<0.1	<0.2	0.018	0.6
1167L Pro Blk	<0.1	<0.1	<0.02	<0.01	<0.1	0.05	<20	<0.1	0.02	<0.1	0.04	0.02	0.1	<0.2	<0.001	0.6
1183L Pro Blk	<0.1	<0.1	<0.02	<0.01	<0.1	0.03	<20	<0.1	<0.01	<0.1	0.05	0.03	<0.1	<0.2	0.003	<0.1
1248L Pro Blk	0.44	<0.1	<0.02	<0.01	<0.10	0.091	<1.0	<0.1	0.011	<0.1	0.12	0.011	<0.5	<0.20	0.004	<mark>6.3</mark>
1287L Pro Blk	0.71	NM^a	0.024	<0.01	<0.1	0.083	<1.0	NMa	<0.01	NMa	0.13	0.095	NMa	<0.2	0.023	<0.1
1301L Pro Blk	2.6	<0.1	0.039	<0.01	<0.1	0.073	<1.0	<0.1	<0.01	<0.1	0.13	0.1	<0.5	<0.2	0.002	0.23
1315L Pro Blk	0.35	<0.1	<0.02	<0.01	<0.1	<0.01	<1.0	<0.1	0.011	<0.1	0.031	0.071	<0.5	0.31	0.03	<0.1
1330L Pro Blk	<0.1	<0.1	<0.02	<0.01	<0.1	0.5	<1	<0.1	<0.01	<0.1	0.05	<0.01	<0.5	<0.2	0.01	<0.1
1372L Pro Blk	0.7	<0.1	<0.02	<0.01	<0.1	0.3	<1	<0.1	<0.01	<0.1	<0.01	0.03	<0.5	<0.2	0.03	<0.1
1375L Pro Blk	<mark>6</mark>	<0.1	<0.02	<0.01	<0.1	4	<1	<0.1	0.07	0.1	0.1	0.09	<0.5	<0.2	0.03	1
1419L Pro Blk	0.3	<0.1	<0.02	<0.01	<0.1	0.03	<1	<0.1	0.03	<0.1	<0.01	<0.01	<0.1	<0.2	<0.001	<0.1
1420L Pro Blk	0.4	<0.1	<0.02	<0.01	<0.1	0.03	<1	<0.1	0.01	<0.1	0.01	<0.01	<1	<0.2	<0.001	<0.1
Analyte	Al	Cd	Co	Cr	Cu	Fe	Mn	Ni	Pb	Se	U	Zn	SO ₄	Ca	Na	Mg
Units	μg L ⁻¹	μg L ⁻¹	μg L ⁻¹	μg L ⁻¹	μg L ⁻¹	μg L ⁻¹	μg L ⁻¹	μg L ⁻¹	μg L ⁻¹	μg L ⁻¹	μg L ⁻¹	μg L ⁻¹	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹

PQL	0.1	0.02	0.01	0.1	0.01	1	0.01	0.01	0.01	0.2	0.001	0.1	0.5	0.1	0.1	0.1
1454L Pro Blk	2	<0.1	<0.02	<0.01	<0.1	0.1	<1	<0.1	<0.01	<0.1	0.02	<0.01	<0.5	<0.2	0.01	<0.1
1457L Pro Blk	3	<0.1	<0.02	<0.01	<0.1	0.09	<1	<0.1	0.05	<0.1	0.5	<0.01	<0.5	<0.2	0.001	<0.1
1465L Pro Blk	0.3	<0.1	<0.02	<0.01	<0.1	0.05	<1	<0.1	<0.01	<0.1	0.01	<0.01	<0.5	<0.2	0.004	<0.1
1473L Pro Blk	0.9	<0.1	<0.02	0.02	<0.1	0.1	<1	<0.1	<0.01	<0.1	<0.01	0.03	<0.5	<0.2	0.007	0.1
1475L Pro Blk	1	<0.1	<0.02	<0.01	<0.1	0.06	<1	<0.1	<0.01	<0.1	0.01	0.03	NMa	<0.2	0.7	<0.1
1026L Control (2.5% CAAC)	1	4.1	<0.02	<0.01	<0.01	0.6	20	1.2	26.1	N.A	0.11	0.05	4.9	<0.02	0.127	2.4
1049L Control (1% CAAC)	0.2	0.8	<0.02	<0.01	<0.1	0.16	<20	0.3	5.01	0.3	0.12	0.04	1	<0.2	0.47	1
1065L Control (1% CAAC)	0.5	1.8	<0.02	<0.01	<0.1	<mark>2.09</mark>	<20	0.6	9.06	0.4	0.22	0.04	2.2	<0.2	0.006	1
1089L Control (1% CAAC)	0.2	1.5	<0.02	<0.01	<0.1	0.3	<20	0.5	8.7	0.3	0.1	0.04	2	<0.2	0.037	1.6
1093L Control (1% CAAC)	0.9	1.7	0.04	<0.01	<0.1	0.45	<20	0.7	15.6	<0.1	0.81	0.07	2.9	<0.2	0.023	1.9
1141L Control (1% CAAC)	<0.1	1.6	<0.02	<0.01	<0.1	0.39	<20	0.5	9.79	<0.1	0.25	0.04	2	<0.2	0.733	1
1167L Control (1% CAAC)	1.3	1.7	<0.02	<0.01	<0.1	0.25	<20	0.5	11.1	0.2	0.11	0.01	2	<0.2	0.098	1
1183L Control (1% CAAC)	0.5	1.7	<0.02	<0.01	<0.1	0.23	<20	0.5	9.41	<0.1	0.05	0.04	2.2	<0.2	1.06	1
1248L Control (1% CAAC)	0.67	1.4	<0.02	0.039	<0.10	0.27	9.1	0.5	8.8	<0.1	0.18	0.076	2.0	<0.20	0.94	0.69
1287L Control (1% CAAC)	0.72	NMa	0.022	0.012	<0.1	0.33	11.0	NMa	9.7	NMa	0.17	0.16	NMa	0.3	1.1	2.3
1301L Control (1% CAAC)	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa	NMa
1315L Control (1% CAAC)	0.77	1.5	<0.02	<0.01	<0.1	0.19	9.3	0.5	8.8	<0.1	0.094	0.068	2	<0.2	0.5	0.71
1330L Control (1% CAAC)	0.5	1.9	<0.02	<0.01	<0.1	0.08	21	1.6	11	<0.1	0.04	0.02	3	<0.2	0.2	0.6
1372L Control (1% CAAC)	8.0	1.9	<0.02	<0.01	<0.1	0.2	19	1.6	11	<0.1	<0.01	0.05	2	<0.2	0.07	0.4
1375L Control (1% CAAC)	0.5	<0.1	<0.02	<0.01	<0.1	0.03	<1	<0.1	0.1	<0.1	<0.01	<0.01	<0.5	<0.2	0.3	<0.2
Analyte	Al	Cd	Co	Cr	Cu	Fe	Mn	Ni	Pb	Se	U	Zn	SO ₄	Ca	Na	Mg
Units	μg L-1	μg L ⁻¹	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L ⁻¹	μg L-1	μg L-1	μg L-1	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹
PQL	0.1	0.02	0.01	0.1	0.01	1	0.01	0.01	0.01	0.2	0.001	0.1	0.5	0.1	0.1	0.1
1419L Control (1% CAAC)	<mark>4</mark>	1.8	<0.02	<0.01	<0.1	0.7	23	1.5	11	<0.1	0.08	0.07	2	<0.2	0.009	2

-																
1420L Control (1% CAAC)	1	1.9	0.04	0.01	<0.1	0.3	24	1.6	13	<0.1	0.2	0.06	2	<0.2	0.01	1
1454L Control (1% CAAC)	1	1.9	<0.02	<0.01	<0.1	0.3	11	1.6	12	<0.1	0.04	0.06	2	<0.2	0.1	0.7
1457L Control (1% CAAC)	2	2	<0.02	<0.01	<0.1	0.3	10	1.7	12	<0.1	0.1	0.04	2	<0.2	0.04	2
1465L Control (SSW)	8	4	<0.02	<0.01	<0.1	0.3	56.5	0.6	8	1	0.2	0.09	3	<0.2	0.03	0.8
1473L Control (SSW)	9	0.4	<0.02	<0.01	<0.1	0.5	56	0.6	9	1.1	0.05	0.09	2	<0.2	0.05	0.9
1475L Control (SSW)	18	0.4	<0.02	<0.01	<0.1	0.4	71	0.6	10	1.1	0.05	0.07	NMa	<0.2	0.06	0.7

^a Not measured

Highlighted entries are higher than what would usually be expected in controls

 Table H2 Measured uranium concentrations in reference toxicity tests.

Fest & treatment code	Nominal U concentration	Measured U concentration
code	(μg L ⁻¹)	(μg L ⁻¹)
1465L PRO BLK	-	0.004
1465L A	Bgd*	0.03
1465L B	100	35
1465L C	250	120
1465L D	500	310
1465L E	750	560
1465L F	1000	790
1465L G	1250	960
1465L H	1500	1300
1473L PRO BLK	-	0.007
1473L A	Bgd	0.05
1473L B	25	20
1473L C	50	42
1473L D	100	83
1473L E	200	170
1473L F	350	310
1473L G	500	460
1473L H	1000	900
1473L I	1500	1400
1473L J	2000	1800
1475L PRO BLK	-	0.7
1475L A	Bgd	0.06
1475L B	50	39.5
1475L C	100	77
1475L D	250	210
1475L E	500	420
1475L F	750	660
1475L G	1000	880

Table H3 Measured nitrate and phosphate concentrations in quality check waters in reference toxicity tests.

Test code and treatment	Measured nutrie	nt concentrations
	Nitrate as N (mg L ⁻¹)	Phosphate as P (mg L ⁻¹)
1465L BLK	<0.005	<0.005
1465L A	0.094	0.011
1473L BLK	<0.005	<0.005
1473L A	0.18	0.055
1475L BLK	<0.005	<0.005
1475L A	0.17	0.012

Appendix I Analytical reports

Analytical reports for tests measuring the sensitivity of *Lemna aequinoctialis* to uranium in different test media.

Figure I1 Test raw data and analysis report for test 1049L (frond count)

CETIS	S An	alytical Rep	ort					-	ort Date: Code:	09 Mar-12 13:12 (p 1 of 1049L 11-4530-01:
Lemna	Grow	th Inhibition								eriss ecotoxicology lab
Analysi		16-4830-8018		ndpoint:	Growth rate (fr				IS Version:	
Analyz	ed:	09 Mar-12 13:0)8 A i	nalysis:	Linear Interpola	ation (ICPIN))	Offic	ial Results	: Yes
Batch I	ID:	09-5958-4251	To	est Type:	Lemna Growth			Anal	yst: Kin	m Cheng
Start D	ate:	30 Nov-09	Pi	rotocol:	Lemna eriss tro	opical freshw	/ater	Dilue	ent: 1%	CAAC
Ending	Date:	: 04 Dec-09	S	pecies:	Lemna aequino	octialis		Brin	e: No	t Applicable
Duratio	on:	96h	S	ource:	In-House Cultu	re		Age	4d	
Sample	e ID:	18-0753-9836	C	ode:	6BBCDE7C			Clier	nt: Inte	ernal Lab
Sample	e Date	: 30 Nov-09	M	aterial:	Uranyl Sulphat	е		Proje	ect: Re	ference Toxicity Program
Receiv	e Date	e: 30 Nov-09	S	ource:	Reference Tox	ricant (U)				
Sample	e Age:	N/A	Si	ation:	In House					
Linear	Interp	olation Options								
X Tran	sform	Y Transform	n S	eed	Resamples	Exp 95%	CL Meth	od		
Log(X+	-1)	Linear	58	88516745	200	Yes	Two-	Point Interp	olation	
Point E	Estima	tes								
Level	mg/	L 95% LCL	95% UC	:L						
IC5	0.43	0.02052	1.509							
IC10	1.28	89 N/A	2.779							
IC15	2.17	9 1.126	5.489							
IC20	2.91	8 1.327	7.629							
IC25	3.83	1.466	8.147							
IC40	7.21	6 1.92	10.16							
IC50	10.0	7.592	12.13							
Growth	h rate	(fronds) Summar	y			Ca	lculated Var	iate		
Conc-n	ng/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect
0		Dilution Water	3	0.498	6 0.4774	0.5146	0.01105	0.01913	3.84%	0.0%
0.594			3	0.466		0.4805	0.009667	0.01674	3.59%	6.43%
0.99			3	0.449		0.4711	0.01073	0.01858	4.13%	9.79%
1.6			3	0.447		0.4548	0.007046	0.0122	2.73%	10.19%
4.83			3	0.351		0.4185	0.03611	0.06254	17.79%	29.5%
9.32 16.8			3 3	0.264 0.138		0.2882 0.1733	0.01478 0.02078	0.02561 0.03599	9.69% 26.05%	46.98% 72.28%
	h rate	(fronds) Detail							•	
Conc-n	ng/L	Control Type	Rep 1	Rep 2	Rep 3					
0		Dilution Water	0.5146	0.503						
0.594			0.4711	0.480	5 0.4479					
0.99			0.4373	0.440						
1.6			0.4548	0.454						
4.83			0.4185	0.341						
9.32			0.2882	0.237						
16.8			0.1733	0.101						

000-428-181-4 CETIS™ v1.8.1.2 Analyst:____ QA:____

Figure I1 Continued

CETIS Analytical Report

Report Date: Test Code: 09 Mar-12 13:13 (p 2 of 2) 1049L | 11-4530-0129

				Test Code.	10432 11-4330-0123
Lemna Growt	th Inhibition				eriss ecotoxicology lab
Analysis ID: Analyzed:	16-4830-8018 09 Mar-12 13:08	Endpoint: Analysis:	Growth rate (fronds) Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.8.1 Yes

Graphics

000-428-181-4 CETIS™ v1.8.1.2 Analyst:____ QA:____

Figure 12 Test raw data and analysis report for test 1065L (frond count)

CETIS Analytical Report					2000	ort Date: Code:		200	15:57 (p 1 of 2)			
Lemna (Growth	Inhibition										toxicology lab
Analysis Analyze		13-1658-9771 18 Sep-13 15:5		dpoint: alysis:		(fronds) polation (ICP	IN)		IS Versio		ISv1.8.7	
Batch ID):	05-9400-4482	Te	st Type:	Lemna Gro	wth		Ana	lyst: K	im Cheng		
Start Da	te:	22 Feb-10	Pro	otocol:	Lemna eris	s tropical fres	shwater	Dilu	ent: 1º	%CAAC		
Ending	Date:	26 Feb-10	Sp	ecies:	Lemna aeq	uinoctialis		Brin	e: N	ot Applica	ible	
Duration	n:	96h	So	urce:	In-House C	ulture		Age	: 4	d		
Sample		12-6681-8943	Co	de:	1065L			Clie		iternal Lat		
		22 Feb-10		terial:	Uranyl Sulp			Proj	ect: R	eference '	Toxicity Pro	gram
Receive				urce:		Toxicant (U)						
Sample	Age:	NA	Sta	ation:	In House							
Linear li	nterpo	lation Options										
X Trans	form	Y Transform	Se Se	ed	Resample	Exp 9	5% CL Met	hod				
Log(X+1)	Linear	58	4727	200	Yes	Two	-Point Interp	olation			
Residua	I Analy	ysis										
Attribute	-	Method			- Direction	Stat Critica	A CONTRACTOR OF THE PROPERTY O	Decision	ALCO SELECTION OF			
Extreme	Value	Grubbs Ex	treme Val	ue	3.228	2.734	0.0027	Outlier De	etected			
Point Es	stimate	es										
Level	mg/L	95% LCL	And the second second	Ļ								
IC5	3.058	2.019	3.453									
IC10	3.836	3.339 4.208	4.276 5.258									
IC15 IC20	4.762 5.865	5.25	6.448									
IC25	7.18	6.463	7.87									
IC40	13.75	12.25	14.94									
IC50	22.11	19.79	23.34									
Growth	rate (fi	ronds) Summar	у				Calculated Va	ariate				
C-mg/L	c	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Eff	ect	
0	19	% CAAC	3	0.478	4 0.471	0.4835	0.003715	0.006435	1.35%	0.0%	9	
1.05			3	0.465				0.03601	7.74%	2,779		
1.7			3	0.484					2.38%	-1.24		
2.95			3	0.458						4.23		
10.1			3	0.317			0.001961			33.7°		
39.9			3	0.151					7.51%	68.4		
Growth	rate (f	ronds) Detail		brieffett					Market Land			
C-mg/L		ontrol Type	Rep 1	Rep 2	2 Rep 3	i.						
0	19	% CAAC	0.4711	0.480								
1.05			0.5065	0.447								
1.7			0.4894	0.471	1 0.492	4						
2.95			0.4581	0.454	8 0.461	5						
10.1			0.3191	0.313	0.319	1						
22			0.2373	0.237	3 0.245	2						
39.9			0.1399	0.162	26 0.151	5						

Figure I2 Continued

CETIS Analytical Report

Report Date:

18 Sep-13 15:57 (p 2 of 2) 1065L | 05-2069-2414

Lemna Growth Inhibition

Test Code:

eriss ecotoxicology lab

Analysis ID: Analyzed:

13-1658-9771 18 Sep-13 15:53 Endpoint: Growth rate (fronds)
Analysis: Linear Interpolation (ICPIN)

Official Results: Yes

CETIS Version: CETISv1.8.7

Graphics

000-428-181-4

CETIS™ v1.8.7.4

Analyst:

QA:

Figure 13 Test raw data and analysis report for test 1089L (frond count)

CETIS Analytical Report									1	est Co	ode:		1089L 13-0676-372	
Lemna	Growth	Inhibition												eriss ecotoxicology lab
Analysi: Analyze		14-8301-7738 18 Sep-13 15:3		point: lysis:		wth rate (fro		В				Version Result		CETISv1.8.7 Yes
Analyze	u.		o Alla	iysis.	Line	sar interpola	tion (ICFIN	•)			Jiliciai	Result	5.	Tes
Batch II		03-4014-0219				nna Growth					Analys			Cheng
Start Da		12 Apr-10		tocol:		nna eriss tro		water			Diluent			AAC
Ending Duratio		16 Apr-10 96h		cies:		nna aequino Iouse Cultur					Brine: Age:	4d		pplicable
	1000	orania				-200				113		40.00		discount of the second
Sample		15-4184-0879	Coc		108						Client:			al Lab
		12 Apr-10 12 Apr-10		erial: rce:		nyl Sulphate erence Toxic				,	roject	II RE	eiei	ence Toxicity Program
Sample		NA		ion:		louse	cant (0)							
Linear I	nterpol	ation Options												
X Trans		Y Transform	See	d	Res	samples	Exp 95%	6 CL	Meth	od				
Log(X+1	1)	Linear	171	5775	200		Yes		Two-	Point In	terpola	ation		
Residua	al Analy	rsis	2.7/11	1000					7.713 145,000	1 30 11 12 12 12				
Attribut		Method				Test Stat	Critical	P-V	alue	Docis	ion(a:	5%)		
Extreme			treme Valu	e		1.927	2.734	0.94	1000	-70000-700		Detecte	d	
Point E	etimato	LUNCH TANKS		1		2018/20	72.4	- 100						
Level	mg/L		95% UCL											
C5	0.4771		2.675									-	_	
C10	1.927	N/A	8.625											
C15	5.199	N/A	5.86											
C20	5.621	4.367	6.301											
C25	6.072	4.917	6.846											
C40	7.617	6.366	8.868											
C50	8.83	7.32	10.98											
Growth	rate (fr	onds) Summar	У				Ca	lculat	ed Va	riate				
C-mg/L	301	ontrol Type	Count	Mean		Min	Max		Err	Std D		CV%		%Effect
0	Di	lution Water	3	0.463		0.4479	0.4743		07938	0.013		2.97%		0.0%
0.552			3	0.437		0.3895	0.4924		2991	0.051		11.8%		5.63%
1.1 2.45			3	0.423		0.3982	0.4615		1937	0.033		7.92%		8.63%
2.40 5			3	0.413		0.3939	0.4373		1264 1665	0.021		5.29% 7.11%		10.7% 12.5%
9.55			3	0.206		0.1626	0.2373		2261	0.028		18.9%		55.4%
18.7			3	0.134		0.1014	0.1733		2101	0.036		27.1%		71.1%
Growth	rate (fi	onds) Detail												
C-mg/L		ontrol Type	Rep 1	Rep 2	2	Rep 3								
0		lution Water	0.4743	0.468	_	0.4479								
0.552			0.4924	0.389		0.4299								
1.1			0.4615	0.398		0.4106								
2.45			0.4373	0.410		0.3939								
5			0.4337	0.376		0.4065								
9.55			0.2206	0.237		0.1626								
18.7			0.1014	0.173		0.1277								

CETIS™ v1.8.7.4

Analyst:_____ QA:____

000-428-181-4

Figure I3 Continued

CETIS Analytical Report

Report Date: Test Code:

18 Sep-13 15:38 (p 2 of 2) 1089L | 13-0676-3722

Lemna Growth Inhibition

eriss ecotoxicology lab

Analysis ID: Analyzed:

14-8301-7738 18 Sep-13 15:38 Endpoint: Growth rate (fronds) Analysis: Linear Interpolation (ICPIN)

Official Results: Yes

CETIS Version: CETISv1.8.7

Graphics

000-428-181-4

CETIS™ v1.8.7.4

Analyst:____ QA:_

Figure I4 Test raw data and analysis report for test 1093L (frond count)

CETIS	S Anal	lytical Repo	ort							ort Date: Code:	17 Sep-13 16:11 (p 1 of 2 1093L 05-8539-080
Lemna	Growth	Inhibition									eriss ecotoxicology lab
Analys Analyz		17-0974-3919 17 Sep-13 16:1		dpoint: alysis:		th rate (fro r Interpola	nds) tion (ICPIN)		S Version: ial Results:	CETISv1.8.7 Yes
Batch	ID:	05-5923-9934	Te	st Type:	Lemn	a Growth			Anal	yst: Kim	Cheng
Start D	ate:	24 May-10	Pr	otocol:	Lemn	a eriss tro	pical fresh	water	Dilue	nt: 1%C	AAC
Ending	Date:	28 May-10	Sp	ecies:	Lemn	a aequino	ctialis		Brine	e: Not A	Applicable
Duratio	on:	96h	So	urce:	In-Ho	use Cultur	е		Age:	4d	
Sampl	e ID:	06-4127-8879	Co	de:	10931				Clier	it: Inter	nal Lab
Sampl	e Date:	24 May-10	Ma	aterial:	Urany	Sulphate			Proje	ect: Refe	rence Toxicity Program
Receiv	e Date:	24 May-10	So	urce:	Refer	ence Toxic	cant (U)				
Sampl	e Age:	NA	St	ation:	In Ho	use					
Linear	Interpo	lation Options									
X Tran		Y Transform		ed		mples	Exp 95%				
Log(X+	-1)	Linear	27	4275	200		Yes	Two-	Point Interp	olation	
Residu	ial Analy	ysis									
Attribu	ite	Method			13	Test Stat	Critical	P-Value	Decision	a:5%)	
Extrem	e Value	Grubbs Ex	dreme Val	ue	- 7	2.095	2.734	0.5802	No Outlier	s Detected	
Point I	Estimate	s									
Level	mg/L	95% LCL	95% UC	L							
IC5	6.019	3.564	6.396								
IC10	6,38	5.733	6.744								
IC15	6.76	6.122	7.125								
IC20	7.159	6.551	7.513								
IC25	7.579	7.009	7.923								
IC40	8.972	8.499	9.352								
IC50	10.03	9.546	10.57				785	S Countries AV	E-1-		
		ronds) Summa					- N. 17	Iculated Va		(5.0 (8))	630453
C-mg/l	L C	ontrol Type	Count	Mean	_	Min	Max	Std Err	Std Dev	CV%	%Effect
0			3	0.520		0.5146	0.5276	0.003762	0.006516	1.25%	0.0%
0.69			3	0.533		0.525 0.5225	0.5399	0.004373	0.007574	1.42%	-2.43% -1.95%
1.54 3.07			3	0.539		0.5301	0.5446	0.004417	0.007837	1.45%	-3,52%
5.86			3	0.516		0.4924	0.5399	0.004313	0.02376	4.6%	0.8%
11.8			3	0.186		0.1733	0.2027	0.008633	0.01495	8.02%	64.2%
22.8			3	0,147		0.1277	0.1626	0.01031	0.01785	12.1%	71.7%
Growt	h rate (f	ronds) Detail									
C-mg/	L C	ontrol Type	Rep 1	Rep	2	Rep 3					
0			0.5146	0.527		0.5199					
0.69			0.535	0.539		0.525					
1.54			0.5326	0.537	5	0.5225					
3.07			0.5301	0.544	6 (0.5423					
			0.5172	0.539	9 (0.4924					
5.86					1767						
5.86 11.8			0.2027	0.183	35	0.1733					

000-428-181-4 CETIS™ v1.8.7.4 Analyst: QA:_____

Figure I4 Continued

CETIS Analytical Report

Report Date:

17 Sep-13 16:11 (p 2 of 2) 1093L | 05-8539-0803

Lemna Growth Inhibition

Test Code:

eriss ecotoxicology lab

Analysis ID: Analyzed:

17-0974-3919 17 Sep-13 16:11

Endpoint: Growth rate (fronds) Analysis: Linear Interpolation (ICPIN)

CETIS Version: Official Results: Yes

CETISv1.8.7

Graphics

000-428-181-4

CETIS™ v1.8.7.4

Analyst:____ QA:_

Figure I5 Test raw data and analysis report for test 1093L (surface area)

CETR	5 Ana	lytical Repo	ort							port Date: st Code:	17 Sep-13 11:31 (p 1 of 2) 1093L 05-8539-0803
Lemna	Growth	Inhibition									eriss ecotoxicology lab
Analys Analyz		15-3335-0266 17 Sep-13 11:3		ndpoint: nalysis:		vth rate (su ar Interpola	and the same of the same of			TIS Version icial Result	
Batch	ID:	05-5923-9934	Te	est Type:	Lem	na Growth			An	alyst: Kir	m Cheng
Start D	Date:	24 May-10	P	rotocol:	Lem	na eriss tro	pical fresh	water	Dil	uent: 1%	CAAC
Ending	Date:	28 May-10	S	pecies:	Lem	na aequino	ctialis		Bri	ne: No	t Applicable
Durati	on:	96h	S	ource:	In-H	ouse Cultur	е		Ag	e: 4d	
Sampl	e ID:	06-4127-8879	C	ode:	1093	BL			Cli	ent: Int	ernal Lab
		24 May-10	M	aterial:	Uran	yl Sulphate			Pro	ject: Re	ference Toxicity Program
Receiv	e Date:	24 May-10	S	ource:	Refe	rence Toxic	cant (U)				
Sampl	e Age:	NA	Si	tation:	In H	ouse					
Linear	Interpo	lation Options									
X Tran	2.27.7.	Y Transform		eed	_	amples	Exp 95%				
Log(X+	-1)	Linear	17	737527	200		Yes	Two	-Point Inte	polation	
Residu	ial Analy	/sis									
Attribu	ite	Method				Test Stat	Critical	P-Value	Decisio	n(a:5%)	
Extrem	e Value	Grubbs E	ktreme Va	lue		2.456	2.734	0.1664	No Outli	ers Detected	
Point I	Estimate	s									
Level	mg/L	95% LCL	95% UC	CL.							
IC5	6.077	5.815	6.077								
IC10	6.302	6.045	6.302								
IC15	6.533	6.283	6.533								
IC20	6.771	6.529	6.771								
IC25	7.018	6.783	7.018								
IC40 IC50	7.804 8.371	7.597 8.187	7.804 8.371								
	1000		000000								
		urface area) Su	TOTAL PA			44.		Iculated Va		na cuio	
C-mg/l	L C	ontrol Type	Count	Mean	_	Min	Max	Std Err	Std Dev		%Effect
0 00			3	0.384		0.3527	0.4022	0.01585	0.02746		0.0%
0.69 1.54			3	0.414		0.4004	0.4215	0.006845			-7.76% -0.18%
3.07			3	0.401		0.3954	0.4097	0.003303			-4.41%
5.86			3	0.412		0.3949	0.4346	0.01172	0.0203	4.92%	-7.32%
11.8			3	0	7	0	0	0	0	113.44.14	100.0%
22.8			3	0		0	0	0	0		100.0%
Growt	h rate (s	urface area) De	etail								
C-mg/l	L C	ontrol Type	Rep 1	Rep 2		Rep 3					
0			0.398	0.402	2	0.3527					
0.69			0.4204	0.421		0.4004					
1.54			0.399	0.390	1	0.3658					
3.07			0.4097	0.395		0.3985					
5,86			0.4346	0.394	9	0.4077					
11.8			0	0		0					
22.8			0	0		0					

000-428-181-4 CETIS™ v1.8.7.4 Analyst:_____ QA:____

Figure I5 Continued

CETIS Analytical Report

Report Date:

17 Sep-13 11:31 (p 2 of 2) 1093L | 05-8539-0803

Lemna Growth Inhibition

Test Code:

eriss ecotoxicology lab

Analysis ID: Analyzed:

15-3335-0266 17 Sep-13 11:30 Endpoint: Growth rate (surface area) Analysis: Linear Interpolation (ICPIN)

Official Results: Yes

CETIS Version: CETISv1.8.7

Graphics

CETIS™ v1.8.7.4

Analyst:_ QA:_

Figure I6 Test raw data and analysis report for test 1141L (frond count)

									Tes	t Code:		1141L 10-2130-73
Lemna	a Growth	hInhibition										eriss ecotoxicology la
Analys Analyz		04-1651-7760 17 Sep-13 16:		Endpoint: Analysis:	Growth rate (fro Linear Interpola		N)			IS Version		TSv1.8.7
Batch	ID:	14-0173-7312		Test Type:	Lemna Growth				Ana	lyst: Kir	n Cheng	f and a second
Start D	Date:	22 Nov-10		Protocol:	Lemna eriss tro	pical fresh	water			Section 1	CAAC	
Ending	g Date:	26 Nov-10		Species:	Lemna aequino	ctialis			Brin	e: No	t Applica	able
Durati	on:	96h	B	Source:	In-House Cultu	re			Age	: 4d		
Sampl	e ID:	15-3733-8135	12	Code:	1141L				Clie	nt: Int	ernal Lat	o .
		22 Nov-10		Material:	Uranyl Sulphate	9			Proj	ect: Re	ference '	Toxicity Program
Receiv	e Date:	22 Nov-10	15	Source:	Reference Toxi	cant (U)						
Sampl	e Age:	NA	H	Station:	In House							
Linear	Interpo	lation Options										
	sform	Y Transform	n	Seed	Resamples	Exp 95%	CL N	Method				
Log(X+	-1)	Linear		331639	200	Yes	Т	wo-Poin	t Interp	oolation		
Residu	ial Analy	/sis										
Attribu	ite	Method			Test Stat	Critical	P-Valu	ie De	cision	(a:5%)		
Extrem	e Value	Grubbs E	xtreme \	/alue	1.745	2.734	1.0000			rs Detected	2 10	
Point E	Estimate	s										
Level	mg/L	95% LCL	95% L	ICL								
C5	6.237	4.041	6.536									
C10	6.759	5.883	7.122									
C15	7.319	6.443	7.753									
C20	7.92	7.006	8.431									
C25	8.564	7.597	9.169									
C40 C50	10.79	9.593	11.88									
114.7	12.55	11.05	14.13									
Growth	n rate (fr	onds) Summa	ry			Ca	lculated	Variate				
:-mg/L		ontrol Type	Count		Min	Max	Std Er	r Ste	d Dev	CV%	%Effe	ect
0.0073	19	6 CAAC	3	0.5352		0.5584	0.0127		2202	4.11%	0.0%	
0.725			3	0.525		0.5375	0.0060		1049	2.0%	1.77%	
1.56 3.04			3	0.5306		0.5399	0.0080		1395	2.63%	0.85%	
5.88			3	0.5503		0.5736	0.0116		2018	3.67%	-2.829	
3.7			3	0.236	The state of the s	0.5446	0.0083		1455	2.75% 10.3%	1.32% 55.8%	
25.4			3	0.1277		0.1277	0.0140	0.0	2420	0.0%	76.1%	
Growth	rate (fr	onds) Detail								W-5,002		
C-mg/L	Co	ontrol Type	Rep 1	Rep 2	Rep 3							
0.0073		6 CAAC	0.5146	16 men.								
7.725			0.5225									
.56			0.5375									
.04			0.5375									
.88			0,5446									
3.7			0.2604									

000-428-181-4

CETIS™ v1.8.7,4

Analyst:_____QA:____

Figure I6 Continued

CETIS Analytical Report

Report Date: Test Code: 17 Sep-13 16:09 (p 2 of 2) 1141L | 10-2130-7354

Lemna Grow	th Inhibition				eriss ecotoxicology lab
Analysis ID:	04-1651-7760	Endpoint:	Growth rate (fronds)	CETIS Version:	CETISv1.8.7
Analyzed:	17 Sep-13 16:08	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Graphics

000-428-181-4

CETIS™ v1.8.7.4

Analyst:_____QA:____

Figure I7 Test raw data and analysis report for test 1167L (found count)

Lemna Growth	Inhibition											
												eriss ecotoxicology lal
Analysis ID: Analyzed:	17-9542-1840 17 Sep-13 13:0		Endpoint: Analysis:	-	owth rate (fro	A 200 - 100	15			IS Version		CETISv1.8.7
Batch ID:	18-3764-1161					don (roi in	.,			2000	-	
Start Date:	28 Mar-11		Protocol:		nna Growth	nignt fromb			Ana			Cheng
Ending Date:			Species:		nna eriss tro nna aequino	A COLUMN TO THE PARTY OF THE PA	water		Dilu		%CA	
Duration:	96h		Source:		House Cultur				Brin Age		d	pplicable
Sample ID:	06-1760-4658		Code:	116	17L			-	Clie		ntern	al Lab
Sample Date:	28 Mar-11		Material:		nyl Sulphate				Proj	1001		ence Toxicity Program
Receive Date:	28 Mar-11		Source:		erence Toxi				3774	430	20,300	
Sample Age:	NA		Station:	In F	louse							
Linear Interpo	lation Options											
X Transform	Y Transform	1 5	Seed	Res	samples	Exp 95%	CL	Meth	od			
Log(X+1)	Linear	7	45464	200		Yes		Two-	Point Interp	oolation		
Residual Analy	ysis											
Attribute	Method				Test Stat	Critical	P-V	alue	Decision	(a:5%)		
Extreme Value	Grubbs Ex	treme V	alue		1.687	2.652	1.00	000	No Outlie	rs Detect	ed	
Point Estimate	s											
Level mg/L	95% LCL	95% U	CL									
IC5 6.685	N/A	7.085									_	
IC10 7.04	6.549	7.42										
IC15 7.412	6.937	7.784										
IC20 7.801	7.323	8.163										
IC25 8,208	7.708	8.568										
IC40 9.545	9	9.994										
IC50 10.54	9.94	11.13	_									
	ronds) Summar					Ca	lculat	ed Var	riate			
	ontrol Type	Count	1974 7574		Min	Max		Err	Std Dev	CV%		%Effect
	% CAAC	3	0.474		0.4581	0.4865		08352	0.01447	3.05%		0.0%
1.6		3	0.468		0.4444	0.4894		1306	0.02263	4.83%		1.2%
3.3 5.55		3	0.438		0.4262	0.4548		08566	0.01484	3.39%		7.55%
12.5		3	0.154		0.1399	0.5037		1174 19783	0.02033	4.23%		-1.46% 67.32%
18.9		3	0.100		0.08708	0.1277		1354	0.02346	23.31%		78.77%
Growth rate (fr	ronds) Detail				300000							
	ontrol Type	Rep 1	Rep 2		Rep 3							
0 19	% CAAC	0.4774			0.4581							
1.6		0.4444	0.489	4	0.4711							
3.3		0.4337			0.4548							
5.55		0.4647	0.503	7	0.4743							
12.5		0.1399	0.151	5	0.1733							
18.9		0.1277	0.087	80	0.08708							

000-428-181-4 CETIS™ v1.8.7.4 Analyst:_____ QA:____

Figure I7 continued

CETIS Analytical Report

Report Date: Test Code:

17 Sep-13 13:10 (p 2 of 2) 1167L | 11-1861-6767

Lemna Growth Inhibition eriss ecotoxicology lab

Analysis ID: Analyzed:

17-9542-1840 17 Sep-13 13:09 Endpoint: Growth rate (fronds) Analysis: Linear Interpolation (ICPIN)

CETISv1.8.7 **CETIS Version:**

Official Results: Yes

Graphics

000-428-181-4

CETIS™ v1.8.7.4

Analyst:___ QA:

Figure 18 Test raw data and analysis report for test 1183L

	-					_		Test	Code:		1183	_ 20-4425-128
Lemna	Growth	nInhibition									eriss eco	otoxicology lat
Analysi Analyzi		10-3313-8757 17 Sep-13 13:		Endpoint: Analysis:	Growth rate (fre Linear Interpola		4)		IS Versional		CETISv1.8.7 Yes	
Batch I	ID:	10-2866-4630	-	Test Type:	Lemna Growth			Anal	lyst: K	Cim C	Cheng	
Start D		04 Jul-11		Protocol:	Lemna eriss tro	opical fresh	water	Dilu	ent: S	Synth	etic Soft Water	
	Date:			Species:	Lemna aequino			Brin	e: N	Not A	pplicable	
Duratio	on:	96h		Source:	In-House Cultu	ire		Age:	4	ld		
Sample		11-6358-2600		Code:	1183L			Clier	nt: Ir	ntern	al Lab	
		17 Sep-13 13:		Material:	Uranyl Sulphate	е		Proj	ect: F	Refere	ence Toxicity Pro	gram
		17 Sep-13 13:2		Source:	Reference Tox	icant (U)						
Sample	e Age:	NA		Station:	In House							
		lation Options										
X Trans		Y Transform		Seed	Resamples	Exp 95%						
Log(X+	-	Linear		2141674	200	Yes	Two-	Point Interp	olation			
Residu	al Analy	/sis										
Attribut	-	Method			Test Stat	Critical	P-Value	Decision((a:5%)			
Extreme	e Value	Grubbs E	xtreme \	/alue	2.591	2.652	0.0673	No Outlier	rs Detecte	ed		
n-1-4 F												
Point E	stimate	s										
	stimate mg/L	95% LCL	95% L	JCL								
Level C5	mg/L 2.44	95% LCL N/A	7.148	JCL						_		
C5 C10	mg/L 2.44 4.778	95% LCL N/A 2.531	7.148 5.46	JCL						-		
Level IC5 IC10 IC15	mg/L 2.44 4.778 5.214	95% LCL N/A 2.531 4.457	7.148 5.46 5.977	JCL								
C10 C15 C20	mg/L 2.44 4.778 5.214 5.683	95% LCL N/A 2.531 4.457 4.925	7.148 5.46 5.977 6.619	JCL								
IC5 IC10 IC15 IC20 IC25	mg/L 2.44 4.778 5.214 5.683 6.187	95% LCL N/A 2.531 4.457 4.925 5.34	7.148 5.46 5.977 6.619 7.301	JCL						-		
C15 C20 C25 C40	mg/L 2.44 4.778 5.214 5.683	95% LCL N/A 2.531 4.457 4.925	7.148 5.46 5.977 6.619	JCL								
Level IC5 IC10 IC15 IC20 IC25 IC40	mg/L 2.44 4.778 5.214 5.683 6.187 7.94 9.34	95% LCL N/A 2.531 4.457 4.925 5.34 6.739 7.678	7.148 5.46 5.977 6.619 7.301 9.702 11.69	JCL		Ca	leulated Va	riato				
Level 105 1010 1015 1015 1015 1015 1015 1015	mg/L 2.44 4.778 5.214 5.683 6.187 7.94 9.34	95% LCL N/A 2.531 4.457 4.925 5.34 6.739 7.678 onds) Summar	7.148 5.46 5.977 6.619 7.301 9.702 11.69		Min		Iculated Va		CVP/		0/ F#act	
Level (C5) (C10 (C15) (C20 (C25) (C40 (C50) (C50	mg/L 2.44 4.778 5.214 5.683 6.187 7.94 9.34 rate (fr	95% LCL N/A 2.531 4.457 4.925 5.34 6.739 7.678 onds) Summar ontrol Type	7.148 5.46 5.977 6.619 7.301 9.702 11.69	t Mean	Min 8 0 4894	Max	Std Err	Std Dev	CV%	_	%Effect	
C5 C10 C15 C20 C25 C40 C50 Growth	mg/L 2.44 4.778 5.214 5.683 6.187 7.94 9.34 rate (fr	95% LCL N/A 2.531 4.457 4.925 5.34 6.739 7.678 onds) Summar	7.148 5.46 5.977 6.619 7.301 9.702 11.69		0.4894	Max 0.5276	Std Err 0.01271	Std Dev 0.02201	4.27%	(0.0%	
C5 C10 C15 C20 C25 C40 C50 Growth C-mg/L	mg/L 2.44 4.778 5.214 5.683 6.187 7.94 9.34 rate (fr	95% LCL N/A 2.531 4.457 4.925 5.34 6.739 7.678 onds) Summar ontrol Type	7.148 5.46 5.977 6.619 7.301 9.702 11.69 ry Count	t Mean 0.5148	0.4894 0.4953	Max	Std Err 0.01271 0.003381	Std Dev	4.27% 1.17%	(0.0% 2.53%	
C5 C10 C15 C20 C25 C40 C50 Growth C-mg/L 0.0011	mg/L 2.44 4.778 5.214 5.683 6.187 7.94 9.34 rate (fr	95% LCL N/A 2.531 4.457 4.925 5.34 6.739 7.678 onds) Summar ontrol Type	7.148 5.46 5.977 6.619 7.301 9.702 11.69 ry Count 3	t Mean 0.5148 0.5018	0.4894 0.4953 0.4711	Max 0.5276 0.5065	Std Err 0.01271	Std Dev 0.02201 0.005857	4.27% 1.17% 2.83%	1	0.0% 2.53% 5.56%	
Cevel C5 C10 C15 C20 C25 C40 C50 C50 C50 C50 C50 C50 C50 C50 C50 C5	mg/L 2.44 4.778 5.214 5.683 6.187 7.94 9.34 rate (fr	95% LCL N/A 2.531 4.457 4.925 5.34 6.739 7.678 onds) Summar ontrol Type	7.148 5.46 5.977 6.619 7.301 9.702 11.69 ry Count 3 3	Mean 0.5148 0.5018 0.4862	0.4894 0.4953 0.4711 0.4647	Max 0.5276 0.5065 0.4981	Std Err 0.01271 0.003381 0.00795	0.02201 0.005857 0.01377	4.27% 1.17%		0.0% 2.53%	
Level IC5 IC10 IC15 IC20 IC25 IC40	mg/L 2.44 4.778 5.214 5.683 6.187 7.94 9.34 rate (fr	95% LCL N/A 2.531 4.457 4.925 5.34 6.739 7.678 onds) Summar ontrol Type	7.148 5.46 5.977 6.619 7.301 9.702 11.69 ry Count 3 3 3	Mean 0.5148 0.5018 0.4862 0.4821	3 0.4894 3 0.4953 2 0.4711 1 0.4647 7 0.08708	Max 0.5276 0.5065 0.4981 0.4981	Std Err 0.01271 0.003381 0.00795 0.009661	0.02201 0.005857 0.01377 0.01673	4.27% 1.17% 2.83% 3.47%		0.0% 2.53% 5.56% 6.36%	
Cevel C5 C10 C15 C20 C25 C40 C50 C50 C50 C50 C50 C50 C50 C50 C50 C5	mg/L 2.44 4.778 5.214 5.683 6.187 7.94 9.34 n rate (fr	95% LCL N/A 2.531 4.457 4.925 5.34 6.739 7.678 onds) Summar ontrol Type	7.148 5.46 5.977 6.619 7.301 9.702 11.69 ry Count 3 3 3 3	Mean 0.5148 0.5018 0.4862 0.4821 0.1477	3 0.4894 3 0.4953 2 0.4711 1 0.4647 7 0.08708	Max 0.5276 0.5065 0.4981 0.4981 0.1933	Std Err 0.01271 0.003381 0.00795 0.009661 0.03156	0.02201 0.005857 0.01377 0.01673 0.05467	4.27% 1.17% 2.83% 3.47% 37.0%		0.0% 2.53% 5.56% 6.36% 71.3%	
Cevel C5 C10 C15 C20 C25 C40 C50 C50 C50 C50 C50 C50 C50 C50 C50 C5	mg/L 2.44 4.778 5.214 5.683 6.187 7.94 9.34 rate (fr	95% LCL N/A 2.531 4.457 4.925 5.34 6.739 7.678 onds) Summa ontrol Type 6 CAAC	7.148 5.46 5.977 6.619 7.301 9.702 11.69 ry Count 3 3 3 3	Mean 0.5148 0.5018 0.4862 0.4821 0.1477	8 0.4894 8 0.4953 2 0.4711 0.4647 7 0.08708 6 0.1014	Max 0.5276 0.5065 0.4981 0.4981 0.1933	Std Err 0.01271 0.003381 0.00795 0.009661 0.03156	0.02201 0.005857 0.01377 0.01673 0.05467	4.27% 1.17% 2.83% 3.47% 37.0%		0.0% 2.53% 5.56% 6.36% 71.3%	
Cevel IC5 IC5 IC60 IC61 IC61 IC62 IC62 IC62 IC62 IC65 IC64 IC65 IC65 IC65 IC65 IC65 IC65 IC65 IC65	mg/L 2.44 4.778 5.214 5.683 6.187 7.94 9.34 rate (fr	95% LCL N/A 2.531 4.457 4.925 5.34 6.739 7.678 onds) Summar ontrol Type 6 CAAC	7.148 5.46 5.977 6.619 7.301 9.702 11.69 Ty Count 3 3 3 3 3 3	Mean 0.5148 0.5018 0.4862 0.4821 0.1477 0.1226	3 0.4894 3 0.4953 2 0.4711 1 0.4647 7 0.08708 6 0.1014 Rep 3	Max 0.5276 0.5065 0.4981 0.4981 0.1933	Std Err 0.01271 0.003381 0.00795 0.009661 0.03156	0.02201 0.005857 0.01377 0.01673 0.05467	4.27% 1.17% 2.83% 3.47% 37.0%		0.0% 2.53% 5.56% 6.36% 71.3%	
Cevel C5 C10 C15 C20 C25 C40 C50 C50 C50 C50 C50 C50 C50 C50 C50 C5	mg/L 2.44 4.778 5.214 5.683 6.187 7.94 9.34 rate (fr	95% LCL N/A 2.531 4.457 4.925 5.34 6.739 7.678 onds) Summar ontrol Type 6 CAAC	7.148 5.46 5.977 6.619 7.301 9.702 11.69 Ty Count 3 3 3 3 3 3 3 3 3 3 3 4 8 8 9.702 0.5276 0.4953	Mean 0.5148 0.50148 0.4862 0.4824 0.1477 0.1226 Rep 2 0.4894 0.5037	8 0.4894 8 0.4953 2 0.4711 0.4647 7 0.08708 6 0.1014 Rep 3 4 0.5276	Max 0.5276 0.5065 0.4981 0.4981 0.1933	Std Err 0.01271 0.003381 0.00795 0.009661 0.03156	0.02201 0.005857 0.01377 0.01673 0.05467	4.27% 1.17% 2.83% 3.47% 37.0%		0.0% 2.53% 5.56% 6.36% 71.3%	
Cevel C5 C10 C15 C20 C25 C40 C50 C50 C50 C50 C50 C50 C50 C50 C50 C5	mg/L 2.44 4.778 5.214 5.683 6.187 7.94 9.34 rate (fr	95% LCL N/A 2.531 4.457 4.925 5.34 6.739 7.678 onds) Summar ontrol Type 6 CAAC	7.148 5.46 5.977 6.619 7.301 9.702 11.69 ry Count 3 3 3 3 3 3 3 3 3	Mean 0.5148 0.50148 0.4862 0.4824 0.1477 0.1226 Rep 2 0.4894 0.5037	8 0.4894 8 0.4953 2 0.4711 0.4647 7 0.08708 6 0.1014 Rep 3 4 0.5276 7 0.5065	Max 0.5276 0.5065 0.4981 0.4981 0.1933	Std Err 0.01271 0.003381 0.00795 0.009661 0.03156	0.02201 0.005857 0.01377 0.01673 0.05467	4.27% 1.17% 2.83% 3.47% 37.0%		0.0% 2.53% 5.56% 6.36% 71.3%	
Cevel C5 C5 C40 C50 C50 C50 C50 C50 C50 C50 C50 C50 C5	mg/L 2.44 4.778 5.214 5.683 6.187 7.94 9.34 rate (fr	95% LCL N/A 2.531 4.457 4.925 5.34 6.739 7.678 onds) Summar ontrol Type 6 CAAC	7.148 5.46 5.977 6.619 7.301 9.702 11.69 Ty Count 3 3 3 3 3 3 3 3 3 3 3 4 8 8 9.702 0.5276 0.4953	Mean 0.5148 0.50148 0.4862 0.4821 0.1477 0.1226 Rep 2 0.4894 0.5037 0.4894	8 0.4894 9 0.4953 2 0.4711 1 0.4647 7 0.08708 6 0.1014 Rep 3 1 0.5276 7 0.5065 1 0.4981	Max 0.5276 0.5065 0.4981 0.4981 0.1933	Std Err 0.01271 0.003381 0.00795 0.009661 0.03156	0.02201 0.005857 0.01377 0.01673 0.05467	4.27% 1.17% 2.83% 3.47% 37.0%		0.0% 2.53% 5.56% 6.36% 71.3%	
Cevel (C5) (C10) (C25) (C40) (C50) (mg/L 2.44 4.778 5.214 5.683 6.187 7.94 9.34 rate (fr	95% LCL N/A 2.531 4.457 4.925 5.34 6.739 7.678 onds) Summar ontrol Type 6 CAAC	7.148 5.46 5.977 6.619 7.301 9.702 11.69 Ty Count 3 3 3 3 3 3 3 3 3 3 3 3 4 0.5276 0.4953 0.4711	Mean 0.5148 0.50148 0.4862 0.4821 0.1477 0.1226 Rep 2 0.4894 0.5037 0.4894 0.4835 0.0870	8 0.4894 9 0.4953 2 0.4711 0.4647 7 0.08708 0.1014 Rep 3 1 0.5276 7 0.5065 1 0.4981 1 0.4647	Max 0.5276 0.5065 0.4981 0.4981 0.1933	Std Err 0.01271 0.003381 0.00795 0.009661 0.03156	0.02201 0.005857 0.01377 0.01673 0.05467	4.27% 1.17% 2.83% 3.47% 37.0%		0.0% 2.53% 5.56% 6.36% 71.3%	

000-428-181-4

CETIS™ v1.8.7.4

Analyst:_____ QA:____

Figure I8 Continued

CETIS Analytical Report

Report Date: Test Code:

17 Sep-13 13:30 (p 2 of 2) 1183L | 20-4425-1283

Lemna Growth Inhibition

eriss ecotoxicology lab

Analysis ID: Analyzed:

10-3313-8757 17 Sep-13 13:29 Endpoint: Growth rate (fronds)

Analysis: Linear Interpolation (ICPIN)

CETIS Version: Official Results: Yes

CETISv1.8.7

Graphics

000-428-181-4

CETIS™ v1.8.7.4

Analyst: QA:

Figure 19 Test raw data and analysis report for test 1183L (surface area)

								Test	Code:	1183L 20-4425-128
Lemna	Growth	nInhibition								eriss ecotoxicology lab
Analys Analyz		02-2889-0908 17 Sep-13 13:3		dpoint: alysis:	Growth rate (s Linear Interpol				IS Version: ial Results:	CETISv1.8.7 Yes
Batch I	D:	10-2866-4630	Te	st Type:	Lemna Growth			Anal	yst: Kim	Cheng
Start D	ate:	04 Jul-11	Pr	otocol:	Lemna eriss tr	opical fresh	water	Dilu		hetic Soft Water
Ending	Date:	08 Jul-11	Sp	ecies:	Lemna aequin	octialis		Brin	e: Not A	Applicable
Duratio	n:	96h	So	urce:	In-House Cultu	ire		Age:	4d	
Sample	ID:	11-6358-2600	Co	de:	1183L			Clie	nt: Inter	nal Lab
Sample	Date:	17 Sep-13 13:2	6 Ma	terial:	Uranyl Sulphat	е		Proj	ect: Refe	rence Toxicity Program
Receiv	e Date:	17 Sep-13 13:2	6 So	urce:	Reference Tox	icant (U)				
Sample	Age:	NA	Sta	tion:	In House					
Linear	Interpo	lation Options								
(Trans		Y Transform			Resamples	Exp 95%	CL Meth	od		
Log(X+	1)	Linear	33	9299	200	Yes	Two-	Point Interp	olation	
Residu	al Analy	/sis								
Attribu	te	Method			Test Stat	Critical	P-Value	Decision	a:5%)	
Extreme	e Value	Grubbs Ex	treme Val	ie	2.632	2.652	0.0551	No Outlier	s Detected	
Point E	stimate	es								
Level	mg/L	95% LCL	95% UCI							
C5	1.561	0.02711	4.638							
C10	3.804	0.4048	5.709							
C15	4.779	4.16	5.378							
C20	5.142	4.502	5.729							
C25 C40	5.528 6.839	4.865 6.013	6.168 7.659							
C50	7.856	6.857	8.989							
W. D.	20.00		45-04/00	_						
		urface area) Su		200	2.07		Iculated Va			
C-mg/L	_	ontrol Type	Count	Mean		Max	Std Err	Std Dev	CV%	%Effect
0.0011	15	6 CAAC	3	0.433		0.4452	0.009315	0.01613	3.72%	0.0%
2.81			3	0.418		0.4229	0.003451	0.005978	1.43%	3.48%
.48			3	0.387		0.3995	0.009935	0.01721	4.35%	8.86%
13.1			3	0.051	S. Service	0.09228	0.02717	0.01023	91.4%	10.6% 88.1%
25.8			3	0.023		0.0345	0.007755	0.01343	57.6%	94.6%
Growth	rate (s	urface area) De	tail							772
C-mg/L	Co	ontrol Type	Rep 1	Rep 2	Rep 3					
0.0011	19	6 CAAC	0.4407	0.415						
1.19			0.4118	0.421						
2.81			0.3786	0.394	0.413					
1.48			0.3941	0.399						
13.1			0	0.062	11 0.09228					
25.8			0.008421	0.034						

000-428-181-4

CETIS™ v1.8.7.4

Analyst:_____QA:____

Figure I9 Continued

CETIS Analytical Report

Report Date: Test Code: 17 Sep-13 13:30 (p 2 of 2) 1183L | 20-4425-1283

Lemna Grow	th Inhibition				eriss ecotoxicology lab
Analysis ID:	02-2889-0908	Endpoint:	Growth rate (surface area)	CETIS Version:	CETISv1.8.7
Analyzed:	17 Sep-13 13:30	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Graphics

000-428-181-4

CETIS™ v1.8.7.4

Analyst: QA:

Figure 110 Test raw data and analysis report for test 1248G (found count)

CETIS	Ana	alytical Repo	ort						27.55	rt Date: Code:	09 Mar-12 15:42 (p 1 of 2) 1248L 20-3276-9210		
Lemna	Grow	th Inhibition		-0							eriss ecotoxicology lab		
Analys		16-1075-7117			Growth rate (fr	Contract of the contract of th			0.000	S Version:			
Analyz	ed:	09 Mar-12 15:4	2 AI	nalysis:	Linear Interpol	ation (ICPIN	4)		Offic	ial Results	: Yes		
Batch I	D:	10-3858-9713	Te	st Type:	Lemna Growth				Analy	st: Kim	Cheng		
Start D	ate:	21 Nov-11	Pr	otocol:	Lemna eriss to	opical fresh	water		Dilue	nt: 1%	CAAC		
Ending	Date:		S	pecies:	Lemna aequin	octialis			Brine	: Not	Applicable		
Duratio	on:	96h	Sc	ource:	In-House Culti	ire			Age:				
Sample	e ID:	19-0540-1338	C	ode:	71921DFA				Clien	t: Inte	rnal Lab		
Sample	e Date	: 21 Nov-11	M	aterial:	Uranyl Sulpha	te			Proje	ct: Ref	erence Toxicity Program		
0000000	9.5.0.5	: 21 Nov-11		ource:	Reference To	cicant (U)							
Sample	e Age:	N/A	St	ation:	In House								
Linear	Interp	olation Options											
X Tran	sform	Y Transform	Se	ed	Resamples	Exp 959	CL N	ethod					
Log(X+	1)	Linear	1.	789E+09	200	Yes	1	wo-Poi	nt Interpo	olation			
oint E	Estima	tes											
Level	mg/	L 95% LCL	95% UC	L									
IC5	1,74		2.799										
IC10	4.75	8 N/A	5.308										
IC15	5.11	9 4.314	5.724										
IC20	5.50	2 4.737	6.386										
IC25	5.90	9 5.129	7 059										
IC40	7.29		10.43										
IC50	8.36	1 6.284	14.8										
Growti	rate	(fronds) Summar	у			Ca	alculated	Variat	e				
Conc-r	ng/L	Control Type	Count	Mean	Min	Max	Std E	r S	td Dev	CV%	%Effect		
0		1% CAAC	3	0.478	3 0.4711	0.4865	0.0044	154 0.	007715	1.61%	0.0%		
1.2			3	0.483		0.5009	0.0115		01997	4.14%	-0.97%		
2.3			3	0.425		0.4373	0.0116	163 97	02017	4.74%	11.01%		
4.7			3	0.447		0.4774	0.0196		03399	7.6%	6.43%		
9.7 23			3	0.187		0.2676	0.0480		08328	44.43%	60.82%		
	7.10		3	0.131	0 0.1149	0.1399	0.0083	54 U	01445	10.98%	72.5%		
		(fronds) Detail	0.77	20.0									
		Control Type	Rep 1	Rep 2									
0		1% CAAC	0.4774	0.486									
1.2			0.5009	0.486									
2.3			0.4373	0.402									
4.7			0.4106	0.477									
9.7			0.2676	0.101									
23			0,1149	0.139	9 0.1399								

000-428-181-4

CETIS™ v1.8.1.2

Analyst QA:

Figure I10 Continued

CETIS Analytical Report

Report Date: Test Code:

09 Mar-12 15:42 (p 2 of 2) 1248L | 2O-3276-9210

Lemna Growth Inhibition

eriss ecotoxicology lab

Analysis ID: Analyzed:

16-1075-7117 09 Mar-12 15:42 Endpoint: Growth rate (fronds) Analysis: Linear Interpolation (ICPIN)

Official Results:

CETIS Version: CETISv1.8.1

Graphics

000-428-181-4

CETIS™ v1.8.1.2

Analyst:_ QA.

Figure I11 Test raw data and analysis report for test 1248L (surface area)

		lytical Rep	ort						port Date st Code:	91		17 Sep-13 12:42 (p 1 of 2 1248L 20-3276-9210
Lemna	Growt	h Inhibition										eriss ecotoxicology lab
Analys		01-3276-3810 17 Sep-13 12:		Endpoint: Analysis:	Growth rate (s Linear Interpol				TIS Vers		CET Yes	ISv1.8.7
Batch	ID:	10-3858-9713		Test Type:	Lemna Growth	6		An	alyst:	Kim C	Cheng	
Start D	Date:	21 Nov-11		Protocol:	Lemna eriss tr		water		uent:	1%C/	-	
Ending	g Date:	25 Nov-11		Species:	Lemna aequin	and the second			ne:		pplica	ble
Duratio	on:	96h		Source:	In-House Cultu	ire		Ag		.,,		
Sampl	e ID:	19-0540-1338		Code:	71921DFA			Cli	ent:	Intern	al Lab	
Sampl	e Date:	21 Nov-11		Material:	Uranyl Sulphat	e						Toxicity Program
Receiv	e Date:	21 Nov-11		Source:	Reference Tox	icant (U)		2.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· tolol	Ulluc .	oxioity r rogram
Sample	e Age:	NA	\$	station:	In House							
Linear	Interpo	lation Options										
X Tran	sform	Y Transforn	n S	eed	Resamples	Exp 95%	CL Me	ethod				
Log(X+	1)	Linear	1	823598	200	Yes	Tw	vo-Point Inter	polation			
Residu	al Analy	/sis							44.14.14.			
Attribu	te	Method			Test Stat	Critical	P-Value	e Decisio	n/a-5%\			
Extrem	e Value	Grubbs Ex	ktreme V	alue	2.72	2.652	0.0351	Outlier D		-		
Point E	stimate	s						20000	A WELLER			
Level	mg/L	95% LCL	95% U	CI								
IC5	1.489	0.9498	1.803	-					-		-	
IC10	1.815	1.283	2.547									
IC15	2.184	1.51	7.889									
IC20	4.906	N/A	5.526									
IC25	5.209	4.542	5.94									
IC40	6.212	5.437	7.642									
IC50	6.97	5.99	9.216									
Growth	rate (sı	urface area) Su	mmary			Ca	Iculated V	/ariate				
C-mg/L	Co	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%		%Effe	ct
0	1%	CAAC	3	0.4122	0.3943	0.4394	0.01381		5.8%		0.0%	
1.2			3	0.4194	0.4079	0.4297	0.00634	4 0.01099	2.62%		1.74%	
2.3			3	0.3198	0.2973	0.3418	0.01285	0.02225	6.96%	- 2	22.419	to
4.7			3	0.375	0.3394	0.3935	0.0178	0.03084	8.22%		9.03%	
9.7			3	0.0853	S - 5 - 775 - 1 -	0.1548	0.04538	0.0786	92.09%	6 7	79.299	la company de la
23			3	0.0730	2 0.06471	0.07792	0.00417	8 0.007236	9.91%	8	32.29%	ά
	rate (su	ırface area) De	tail									
C-mg/L		ntrol Type	Rep 1	Rep 2	Rep 3							
0	1%	CAAC	0.4031	0.4394	0.3943							
1.2			0.4297	0.4207	0.4079							
2.3			0.3205	0.2973	0.3418							
4.7			0.3394	0.3921	0.3935							
9.7			0.1548	0	0.1013							
			0.07644	0.0779	2 0.06471							

000-428-181-4

CETIS™ v1.8.7.4

Analyst:_____QA.___

Figure I11 Continued

CETIS Analytical Report

Report Date: Test Code:

17 Sep-13 12:42 (p 2 of 2) 1248L | 20-3276-9210

Lemna Growth Inhibition

eriss ecotoxicology lab

Analysis ID: Analyzed:

01-3276-3810 17 Sep-13 12:41 Endpoint: Growth rate (surface area)
Analysis: Linear Interpolation (ICPIN)

CETIS Version: CETISv1.8.7 Official Results: Yes

Graphics

CETIS™ v1.8.7.4

Analyst:___ QA:

000-428-181-4

Figure I12 Test raw data and analysis report for test 1287L (frond count)

EIR	S Ana	lytical Repo	rt						eport Date est Code:	Đ:		16 Aug-12 09:45 (p 1 of 1287L 06-2892-64
Lemna	Growth	nInhibition										eriss ecotoxicology la
Analys Analyz		09-1421-7615 16 Aug-12 9:44		Endpoint: Analysis:	Growth rate (f Linear Interpo		N)		ETIS Vers fficial Res			ISv1.8.5
Batch	ID:	12-7343-8284	9	Test Type:	Lemna Growth	7		A	nalyst:	Kim (Cheng	1
Start D	ate:	16 Jul-12		Protocol:	Lemna eriss to	ropical fresh	water	D	iluent:	1%C	AAC	
Ending	Date:	01 Aug-12		Species:	Lemna aequin	octialis		В	rine:	Not A	pplica	ble
Duratio	on:	16d 0h	1	Source:	In-House Culti	ure		A	ge:			
Sampl	e ID:	19-3580-6807	1	Code:	1287L			С	lient:	Interr	nal Lab)
Sampl	e Date:	11 Jul-12		Material:	Uranyl Sulpha	te		P	roject:	Refer	ence *	Toxicity Program
Receiv	e Date:	11 Jul-12		Source:	Reference Tox	cicant (U)						
Sampl	e Age:	5d 0h		Station:	In House							
Linear	Interpo	lation Options										
X Tran	sform	Y Transform		Seed	Resamples	Exp 95%	6 CL M	ethod				
Log(X+	1)	Linear	1	413920	200	Yes	Tv	wo-Point Int	erpolation			
Point I	Estimate	es										
Level	mg/L	95% LCL	95% L	JCL								
IC5	0.7216		11.3									
IC10	5.822		6.471									
IC15	6.227	5.586	6.859									
IC20	6.656		7.28									
IC25 IC40	7.11 8.643	6.485 7.777	7.785 9.494									
IC50	9.822		10.95									
100 100 100	1000 C	ronds) Summary				Ca	lculated	Variate				
C-mg/l		ontrol Type	Count	t Mean	Min	Max	Std En		v CV%		%Effe	ect
0.0011		% CAAC	3	0.483		0.4924	0.0092			_	0.0%	
1.5			3	0.413	0.3982	0.4262	0.00813	3 0.0140		6	14.53	%
3.1			3	0.455	0.4224	0.4953	0.0213	0.0369	8 8.12%	6	5.79%	
5.7			3	0.458	0.4337	0.4953	0.0186	0.0322	4 7.03%	6	5.01%	6
12			3	0.164	0.1277	0.1933	0.0194	0.0336	2 20.4%	6	65.9%	ó
25			3	0.1318	0.1277	0.1399	0.00406	66 0.0070	42 5.34%	ó	72.73	%
Growt	h rate (f	ronds) Detail										
C-mg/l	L C	ontrol Type	Rep 1	Rep 2	Rep 3							
0.0011	19	% CAAC	0.4924	0.492	0.4647							
1.5			0.4262									
3.1			0.4953	0.4224	0.4479							
5.7			0.4337									
12			0.1277	0.1933	0.1733							
			0.1277	0.127	0.1399							
25												
25												
25												

000-428-181-4

CETIS™ v1.8.5.5

Analyst:_____ QA:____

Figure I12 Continued

CETIS Analytical Report

Lemna Growth Inhibition

Report Date: Test Code: 16 Aug-12 09:45 (p 2 of 2) 1287L | 06-2892-6494

eriss ecotoxicology lab

Analysis ID: 09-1421-7615 Endpoint: Growth rate (fronds)
Analyzed: 16 Aug-12 9:44 Analysis: Linear Interpolation (I CPIN)

CETIS Version: CETISv1.8.5
Official Results: Yes

Graphics

000-428-181-4

CETIS™ v1.8,5.5

Analyst QA

Figure 113 Test raw data and analysis report for test 1287L (surface area)

EII	Alla	lytical Repo	ort							100000	oort Date: st Code:				A CONTRACTOR OF THE	46 (p 1 of : 6-2892-649
Lemna	Growth	nInhibition												eris	s ecotox	icology lat
Analys Analyz		18-3850-0708 16 Aug-12 9:45		dpoint: alysis:		ALC: A CONTRACT OF THE PARTY OF	urface area ation (I CPII				TIS Versi icial Resu	700		ISv1.8	.5	
Batch I	D:	12-7343-8284	Te	st Type:	Len	na Growth	í		-	An	alyst: I	Kim C	heng			
Start D	ate:	16 Jul-12		tocol:			opical fresh	water				1%C/				
Ending	Date:	01 Aug-12	Sp	ecies:		na aequino	3			Bri			pplica	ble		
Duratio	n:	16d 0h	So	urce:		iouse Cultu				Age						
Sample	D:	19-3580-6807	Co	de:	128	7L				Cli	ent: 1	ntern	al Lab	,		
Sample	Date:	11 Jul-12	Ma	terial:	Ura	nyl Sulphat	е			Pro	ject: f	Refer	ence 1	Toxicit	y Program	n
Receiv	e Date:	11 Jul-12	So	urce:	Ref	erence Tox	icant (U)									
Sample	Age:	5d 0h	Sta	tion:		louse										
inear	Interpo	lation Options														
X Trans	sform	Y Transform	Sec	ed	Res	amples	Exp 95%	6 CL	Meth	od						
.og(X+	1)	Linear	754	1968	200		Yes		Two-	Point Inter	polation			77		
oint E	stimate	95														
_evel	mg/L	95% LCL	95% UCL													
C5	1.275	N/A	11.09													
C10	5.954	N/A	6.614													
C15	6.252	5.66	6.974													
C20	6.563	5.945	7.448													
C25	6.888	6.214	7.904													
C40	7.947	7.105	9.428													
C50	8.731	7.712	10.53							7.35						
		urface area) Su						lculate	ed Var	riate						
C-mg/L		ontrol Type	Count	Mean		Min	Max	Std	-	Std Dev	CV%		%Effe	ect		
0.0011	15	% CAAC	3	0.436		0.4217	0.4573	0.01		0.01855	4.25%		0.0%			
1.5 3.1			3	0.392		0.3821	0.3978		5022	0.008699			10.18			
5.7			3	0.417	5	0.3675	0.4634	0.02		0.04806	11.51%		4.36%			
12			3	0.067	77	0.4078 -0.02268	0.4524	0.01		0.02291	5.37% 118.7%		2.18% 84.48°			
25			3	0.0550		0.03802	0.0765	0.01		0.01961	35.61%		87.38			
Growth	rate (s	urface area) Det	tail					_				-				
C-mg/L		ontrol Type	Rep 1	Rep 2		Rep 3										
0.0011		6 CAAC	0.4573	0.430	_	0.4217		_								
1.5			0.3978	0.382	1	0.3963										
1.1			0.3675	0.4634	4	0.4215										
5.7			0.4078	0.452	4	0.4208										
2			-0.02268	0.0946	3	0.1314										
25			0.03802	0.0506		0.0765										

00	0-4	28	1-1	81	-4

CETIS™ v1.8.5.5

Analyst:_____QA:____

Figure I13 Continued

CETIS Analytical Report

Report Date: Test Code: 16 Aug-12 09:46 (p 2 of 2) 1287L | 06-2892-6494

Lemna Growth Inhibition

eriss ecotoxicology lab

Analysis ID: Analyzed: 18-3850-0708 16 Aug-12 9:45 Endpoint: Growth rate (surface area)
Analysis: Linear Interpolation (I CPIN)

CETIS Version: CETISv1.8.5 Official Results: Yes

Graphics

000-428-181-4

CETIS™ v1.8.5.5

Analyst:_____QA:____

Figure I14 Test raw data and analysis report for test 1301L (frond count)

OLIN	J Alla	lytical Rep	OI C					10000	ort Date: t Code:		29 Aug-13 13:45 (p 1 o 1301L 05-8528-3
Lemna	Growt	h Inhibition						1177	2000		eriss ecotoxicology
Analys	is ID:	09-0673-6624	Е	ndpoint:	Growth rate (fro	onds)		CE	ris Versi	on:	CETISv1.8.7
Analyz	ed:	29 Aug-13 13:4	14 A	nalysis:	Linear Interpola	ation (ICPII	4)		cial Resu		
Batch	ID:	15-5205-4487	Т	est Type:	Lemna Growth	{		Ana	lyst:	Kim C	Cheng
Start D	ate:	24 Sep-12	P	rotocol:	Lemna eriss tro	pical fresh	water		1500	1%C/	IN REPORT IN THE PROPERTY OF
Ending	Date:	28 Sep-12	S	pecies:	Lemna aequino	octialis		Brin	ne: I	Not A	pplicable
Duratio	on:	96h	S	ource:	In-House Cultu	re		Age	:		
Sample	e ID:	00-5455-2785	C	ode:	34068D1			Clie	nt: I	ntern	al Lab
Section of the sectio		04 Oct-12	N	laterial:	Uranyl Sulphate	9		Pro	ject: F	Refer	ence Toxicity Program
		03 Oct-12		ource:	Uranyl Sulphate	е					
Sample	e Age:	NA	S	tation:							
Linear	Interpo	lation Options									
X Tran		Y Transform	-	eed	Resamples	Exp 95%					
Log(X+	1)	Linear	78	8372	200	Yes	Two-	Point Interp	oolation		
Residu	al Anal	ysis									
Attribu		Method			Test Stat	Critical	P-Value	Decision	(a:5%)		
Extrem	e Value	Grubbs Ex	treme Va	ilue	1.895	2.652	0.8535	No Outlie	rs Detect	ed	
Point E	stimate	s						11001			
Level	mg/L	95% LCL	95% UC	CL							
C5	5.723	3.308	6.336								
IC10	6.22	5.524	6.91								
IC15 IC20	6.754 7.328	6.045 6.622	7.435 8.185								
C25	7.944	7.175	8.942								
C40	10.08	8.781	11.75								
C50	11.78	10.01	14.14								
Growth	rate (fr	onds) Summar	у			Ca	Iculated Var	riate			
C-mg/L	C	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%		%Effect
0.0022	19	6 CAAC	3	0.516	0,5009	0.5326	0.009156	0.01586	3.07%		0.0%
1.5			3	0.5358	0.5146	0.5628	0.01422	0.02462	4.6%		-3.84%
3			3	0.5306		0.547	0.008316	0.0144	2.71%		-2.83%
3.6			3	0.508	0.4924	0.525	0.009455	0.01638	3.22%		1.56%
24			3	0.23 0.169	0.1933 0.1399	0.2676 0.1835	0.02146	0.03717	16.16%		55.43%
	rato (fr	onds) Detail		0.100	0.1000	0.1033	0.01455	0.02517	14.89%	. 1	67.26%
C-mg/L		ontrol Type	Rep 1	Rep 2	Don 2						
0.0022		6 CAAC	0.5146	0.5009	Rep 3 0.5326						
.5		THE PARTY OF THE P	0.5301	0.5628							
1			0.547	0.525	0.5199						
6.6			0.5065	0.525	0.4924						
3			0.1933	0.2291							
4			0.1835	0.1835							

000-428-181-4	CETIS™ v1.8.7.4	,

Figure I14 Continued

CETIS Analytical Report

Report Date: Test Code: 29 Aug-13 13:45 (p 2 of 2) 1301L | 05-8528-3131

Lemna Growth Inhibition

eriss ecotoxicology lab

Analysis ID: Analyzed:

09-0673-6624 29 Aug-13 13:44 Endpoint: Growth rate (fronds)
Analysis: Linear Interpolation (ICPIN)

CETIS Version: CET Official Results: Yes

n: CETISv1.8.7

Graphics

000-428-181-4

CETIS™ v1.8.7.4

Analyst: QA:

Figure 115 Test raw data and analysis report for test 1301L (surface area)

			ort					Tes	t Code:	1301L 05-8528-3
Lemna	Growth	Inhibition								eriss ecotoxicology I
Analysi Analyze		21-3130-8911 29 Aug-13 13:4		ndpoint: nalysis:	Growth rate (su Linear Interpola				TIS Version icial Results	
Batch I	D:	15-5205-4487	Т	est Type:	Lemna Growth			An	alyst: Kin	n Cheng
Start Da	ate:	24 Sep-12	P	rotocol:	Lemna eriss tro	opical fresh	water	Dil	uent: 1%	CAAC
Ending	Date:	28 Sep-12	S	pecies:	Lemna aequino	octialis		Bri	ne: No	t Applicable
Duratio	n:	96h	S	ource:	In-House Cultu	re		Ag	9:	
Sample		00-5455-2785		ode:	34068D1			Cli	ent: Inte	ernal Lab
San promised		04 Oct-12		laterial:	Uranyl Sulphat			Pro	ject: Re	ference Toxicity Program
		03 Oct-12		ource:	Uranyl Sulphat	e				
Sample	Age:	NA	S	tation:						
		lation Options								
X Trans		Y Transform		eed	Resamples	Exp 95%		No. of the last of		
Log(X+	1)	Linear	2	107876	200	Yes	Two	-Point Inter	polation	
Residu	al Analy	/sis								
Attribut	100110	Method		12.7	Test Stat	52.5	P-Value	Decisio		t
Extreme	e Value	Grubbs Ex	treme Va	alue	2.214	2.652	0.3135	No Outli	ers Detected	
Point E	stimate	s								
Level	mg/L	95% LCL		CL						
IC5	4.069	1.102	7.01							
IC10	5.795	4.131	6.277							
IC15 IC20	6.245	5.638 6.1	6.784 7.291							
IC25	7.237	6.612	7.893							
C40	8.985	8.047	9.903							
IC50	10.35	9.055	11.47							
Growth	rate (s	urface area) Su	mmary			Ca	lculated Va	riate		
C-mg/L	. с	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	cv%	%Effect
0.0022	19	% CAAC	3	0.463	1 0.4618	0.4652	0.001059	0.00183	4 0.4%	0.0%
1.5			3	0.499		0.5334	0.01752	0.03035	6.08%	-7.87%
3			3	0.469		0.4839	0.007628		2.82%	-1.29%
5.6			3	0.444		0.4506	0.00449	0.00777		4.11%
13 24			3	0.162		0.1808	0.01606	0.02781	17.16% 40.85%	65.01% 79.71%
Com - Com make	rato le	urface area) De	- 10 to				0.022.0	0.00000	10.0074	70.7.7.0
C-mg/L	110000000000000000000000000000000000000	ontrol Type	Rep 1	Rep 2	Rep 3					
0.0022		% CAAC	0.4618	0.462						
1.5			0.4904	0.533						
3			0.4839	0.458						
5.6			0.4462	0.450						
13			0.1301	0.180						
24			0.1161	0,116	0.04962					

000-428-181-4

CETIS™ v1.8.7.4

Analyst:_____ QA:____

Figure I15 Continued

CETIS Analytical Report

Report Date:

29 Aug-13 13:47 (p 2 of 2) 1301L | 05-8528-3131

Lemna Growth Inhibition

Test Code:

eriss ecotoxicology lab

Analysis ID: Analyzed:

21-3130-8911 29 Aug-13 13:47 Endpoint: Growth rate (surface area) Analysis: Linear Interpolation (ICPIN) CETIS Version: Official Results: Yes

CETISv1.8.7

Graphics

000-428-181-4

CETIS™ v1.8.7.4

Analyst:_____QA:__

Figure I16 Test raw data and analysis report for test 1315L (frond count)

		ytical Repo								Re Te	st Code:		1315L 06-2866-573
Lemna	Growth	Inhibition											eriss ecotoxicology lab
Analysi Analyze		00-9968-9152 05 Feb-13 10:3		dpoint: alysis:		wth rate (fro ear Interpola		1)			TIS Versio		CETISv1.8.7 Yes
Batch II	D:	03-3216-2797	Te	st Type:	Len	nna Growth				An	alyst: C	laire	e Costello
Start Da	ate:	14 Jan-13	Pr	otocol:	Len	nna eriss tro	pical fresh	water		Dil	uent: 1	%C	AAC
Ending	Date:	18 Jan-13	Sp	ecies:		nna aequino				Bri	ine: N	lot A	Applicable
Duratio	n:	96h	So	urce:	In-H	louse Cultur	е			Ag	e:		
Sample	ID:	15-0727-6789	Co	de:	59E	737F5				Cli	ent: Ir	nterr	nal Lab
Sample	Date:	24 Jan-13 13:2	5 M a	terial:		nyl Sulphate				Pre	oject: F	lefer	rence Toxicity Program
		24 Jan-13 13:2		urce:		erence Toxic	cant (U)						
Sample	Age:	NA	St	ation:	In F	louse							
Linear I	Interpo	lation Options											
X Trans	form	Y Transform	n Se	ed	_	samples	Exp 95%	CL	Meth				
Log(X+1	1)	Linear	31	3514	200		Yes		Two-	Point Inte	rpolation		
Residu	al Analy	ysis											
Attribut	te	Method				Test Stat	Critical	P-V	'alue	Decisio	n(α:5%)		
Extreme	Value	Grubbs Ex	treme Val	ue		2.59	2.652	0.08	376	No Outi	ers Detect	ed	
Point E	stimate	es											
Level	mg/L	95% LCL	95% UC	L									
IC5	1.477	0.2232	5.609										
IC10	5.017	N/A	6.113										
IC15	5.594	4.984	6.121										
IC20	5.909	5.258	6.504										
IC25	6.24	5.592	6.908										
IC40 IC50	7.329 8.146		8.252 9.272										
- Control of the Cont	The street of th		CONTROL CONTROL						ed Va	1.4.			
		ronds) Summa	-	Moon		Min	1000		Err	Std Dev	CV%		%Effect
C-mg/L 0.5		ontrol Type % CAAC	Count 3	Mean 0.477	200	0.4647	Max 0.5009	_	1157	0.02004			0.0%
1.3	**	70 07010	3	0.457		0.4299	0.4743		1384	0.02398			4.29%
2.6			3	0.436		0.4146	0.4514	0.0		0.01957			8.6%
5.3			3	0.429	5	0.4106	0.4479	0.0	1079	0.0187	4.35%		10.13%
10			3	0.144	6	0.08708	0.1733		2874	0.04977	34.43%	0	69.75%
23			3	0		0	0	0		0			100.0%
Growth	rate (f	ronds) Detail											
C-mg/L	С	ontrol Type	Rep 1	Rep 2	2	Rep 3							
0.5	15	% CAAC	0.5009	0.464		0.468			4				
1.3			0.468	0.429		0.4743							
2.6			0.4146	0.444		0.4514							
5.3			0.4299	0.410		0.4479							
10			0.1733	0.173	3	0.08708							
23			0	0		0							4.

CETIS™ v1.8.7.4

Analyst:_____ QA:____

000-428-181-3

Figure I16 Continued

CETIS Analytical Report

Report Date: Test Code:

05 Feb-13 10:38 (p 2 of 2) 1315L | 06-2866-5739

Lemna Growth Inhibition

eriss ecotoxicology lab

Analysis ID: Analyzed:

00-9968-9152 05 Feb-13 10:36 Endpoint: Growth rate (fronds)
Analysis: Linear Interpolation (ICPIN)

CETIS Version: Official Results: Yes

CETISv1.8.7

Graphics

000-428-181-3

CETIS™ v1.8.7.4

Analyst:_____QA:__

Figure 117 Test raw data and analysis report for test 1315L (surface area)

CETIS Analytical Report

Lemna Growth Inhibition

000-428-181-4

29 Aug-13 13:41 (p 1 of 2) 1315L | 06-2866-5739

eriss ecotoxicology lab

Analyst:_____QA:___

Report Date: Test Code:

C5 3.841 0.9942 5.412 C10 5.413 5.206 5.543 C15 5.629 5.421 5.777 C20 5.852 5.629 6.016 C25 6.083 5.836 6.274 C40 6.824 6.493 7.146 C50 7.36 6.959 7.804 Control Type Count Mean Min Max Std Err Std Dev CV% MEffect	Alternative and the	a described to	III Decidence and Control								11.077.70	
Start Date						THE RESERVE OF THE PARTY OF THE		***				B.7
Start Date	Batch	ID:	03-3216-2797	Tes	st Type:	Lemna Growth	ì		Anal	vst: Kir	m Chena	
Duration Simple In 15-072-6789								water				
Sample Dr. 15-0727-6789	Ending	Date:	18 Jan-13	Sp	ecies:	Lemna aequin	octialis		Brin	e: No	t Applicable	
Project Project Project Project Project Reference Toxicity Program Project Reference Toxicity Program Project Reference Toxicity Program Project Reference Toxicity Program Project Project Reference Toxicity Program Project	Duratio	on:	96h	So	urce:	In-House Cultu	ire		Age:			
Receive Date: 24 Jan-13 13:25 Saurice: Station: In House I	Sample	e ID:	15-0727-6789	Co	de:	59D737F5			Clie	nt: Int	ernal Lab	
Sample Age Na Station: In House St	Sample	e Date:	24 Jan-13 13:2	5 Ma	terial:	Uranyl Sulphat	te		Proj	ect: Re	ference Toxici	ty Program
National National						Reference Tox	ricant (U)					
	Sample	e Age:	NA	Sta	ition:	In House						
	Linear	Interpo	lation Options									
Attribut	X Tran	sform	Y Transforn	n See	ed	Resamples	Exp 95%	6 CL Meth	od			
Attribute	Log(X+	1)	Linear	100	08287	200	Yes	Two-	Point Interp	olation		
Point Estimates Point Esti	Residu	al Analy	/sis									
Point Star	Attribu	te	Method			Test Stat	Critical	P-Value	Decision	(a:5%)		
	Extrem	e Value	Grubbs Ex	treme Valu	16	2.232	2.652	0.2938	No Outlier	s Detected	i	
C5 3.841 0.9942 5.412 C10 5.413 5.206 5.543 C15 5.629 5.421 5.777 C20 5.852 5.629 6.016 C25 6.083 5.836 6.274 C40 6.824 6.493 7.146 C50 7.36 6.959 7.804 Control Type Count Mean Min Max Std Err Std Dev CV% MEffect	Point E	Estimate	es									
C10	Level	mg/L	95% LCL	95% UCL								
C15	IC5		0.9942	5.412								
C20	IC10											
C25 6.083 5.836 6.274 C40 6.824 6.493 7.146 C50 7.36 6.959 7.804 Growth rate (surface area) Summary C-mg/L Control Type Count Mean Min Max Std Err Std Dev CV% %Effect 0.5 1% CAAC 3 0.4374 0.4343 0.4407 0.001857 0.003217 0.74% 0.0% 1.3 3 0.434 0.4091 0.4494 0.01258 0.02179 5.02% 0.78% 2.6 3 0.427 0.4145 0.4396 0.00726 0.01257 2.95% 2.39% 3.3 0.4054 0.3952 0.4122 0.005182 0.008976 2.21% 7.33% 3.0 0.03759 0.005997 0.06944 0.01831 0.03172 84.38% 91.41% 2.3 0.4070 1.4091 0.4494 0.01831 0.03172 84.38% 91.41% 3.0 0.4070 0.4435 3.0 0.4494 0.4091 0.4435 3.0 0.4494 0.4091 0.4435 3.0 0.4087 0.4122 3.0 0.06944 0.005997 0.03734												
C40												
Compt Comp												
C-mg/L Control Type Count Mean Min Max Std Err Std Dev CV% %Effect	IC50											
0.5 1% CAAC 3 0.4374 0.4343 0.4407 0.001857 0.003217 0.74% 0.0% 0.0% 0.33 0.434 0.4091 0.4494 0.01258 0.02179 5.02% 0.78% 0.65 3 0.427 0.4145 0.4396 0.00726 0.01257 2.95% 2.39% 0.33 0.4054 0.3952 0.4122 0.005182 0.008976 2.21% 7.33% 0.03759 0.005997 0.06944 0.01831 0.03172 84.38% 91.41% 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Growth	rate (s	urface area) Su	ımmary		-11	Ca	iculated Va	riate			
3 0.434 0.4091 0.4494 0.01258 0.02179 5.02% 0.78% 2.6 3 0.427 0.4145 0.4396 0.00726 0.01257 2.95% 2.39% 5.3 3 0.4054 0.3952 0.4122 0.005182 0.008976 2.21% 7.33% 10 3 0.03759 0.005997 0.06944 0.01831 0.03172 84.38% 91.41% 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C-mg/L	C	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	
2.6 3 0.427 0.4145 0.4396 0.00726 0.01257 2.95% 2.39% 5.3 3 0.4054 0.3952 0.4122 0.005182 0.008976 2.21% 7.33% 10 3 0.03759 0.005997 0.06944 0.01831 0.03172 84.38% 91.41% 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5	19	% CAAC	3	0.4374	0.4343	0.4407	0.001857	0.003217	0.74%	0.0%	
3 0.4054 0.3952 0.4122 0.005182 0.008976 2.21% 7.33% 10 3 0.03759 0.005997 0.06944 0.01831 0.03172 84.38% 91.41% 100.0% 1	1.3					0.4091	0.4494	0.01258	0.02179	5.02%	0.78%	
3 0.03759 0.005997 0.06944 0.01831 0.03172 84.38% 91.41% 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.6											
3 0 0 0 0 0 0 0 100.0% Growth rate (surface area) Detail C-mg/L Control Type Rep 1 Rep 2 Rep 3 0.5 1% CAAC 0.4372 0.4407 0.4343 1.3 0.4494 0.4091 0.4435 2.6 0.4145 0.4396 0.4268 5.3 0.3952 0.4087 0.4122 10 0.06944 0.005997 0.03734	5.3											
Growth rate (surface area) Detail C-mg/L Control Type Rep 1 Rep 2 Rep 3 0.5 1% CAAC 0.4372 0.4407 0.4343 1.3 0.4494 0.4091 0.4435 2.6 0.4145 0.4396 0.4268 5.3 0.3952 0.4087 0.4122 10 0.06944 0.005997 0.03734										84.38%		
C-mg/L Control Type Rep 1 Rep 2 Rep 3 0.5 1% CAAC 0.4372 0.4407 0.4343 1.3 0.4494 0.4091 0.4435 2.6 0.4145 0.4396 0.4268 5.3 0.3952 0.4087 0.4122 0 0.06944 0.005997 0.03734					U	U	U	U	0		100.0%	
0.5 1% CAAC 0.4372 0.4407 0.4343 1.3 0.4494 0.4091 0.4435 2.6 0.4145 0.4396 0.4268 6.3 0.3952 0.4087 0.4122 10 0.06944 0.005997 0.03734												
0.3 0.4494 0.4091 0.4435 0.6 0.4145 0.4396 0.4268 0.3 0.3952 0.4087 0.4122 0 0.06944 0.005997 0.03734				000000000000000000000000000000000000000			-					
2.6 0.4145 0.4396 0.4268 5.3 0.3952 0.4087 0.4122 0 0.06944 0.005997 0.03734		19	6 CAAC									
0.3952 0.4087 0.4122 0 0.06944 0.005997 0.03734												
0.06944 0.005997 0.03734												
	23			0	0	0						
	10 23			0.06944	0.0059	997 0.03734						

CETIS™ v1.8.7.4

Figure I17 Continued

CETIS Analytical Report

Report Date:

29 Aug-13 13:41 (p 2 of 2) 1315L | 06-2866-5739

Lemna Growth Inhibition

Test Code:

eriss ecotoxicology lab

Analyzed:

Analysis ID: 04-7066-0293 29 Aug-13 13:41 Endpoint: Growth rate (surface area)
Analysis: Linear Interpolation (ICPIN)

CETIS Version: Official Results: Yes

CETISV1.8.7

Graphics

CETIS™ v1.8.7.4

Analyst:_____ QA:___

Figure I18 Test raw data and analysis report for test 1330L (frond count)

	S Anal	lytical Repo	ort								eport Dat est Code:		18 Sep-13 11:08 (p 1 of 1330L 01-4902-46
Lemna	Growth	Inhibition											eriss ecotoxicology la
Analys Analyz		15-9778-4234 18 Sep-13 11:0		indpoint: inalysis:		vth rate (fro ar Interpola	C. C. C. C. C. C. C. C. C. C. C. C. C. C	I)			ETIS Ver		CETISv1.8.7 Yes
Batch	ID:	06-5914-8762	Т	est Type:	Lem	na Growth				А	nalyst:	Kim (Cheng
Start D	ate:	19 Aug-13	P	rotocol:	Lem	na eriss tro	pical freshwater			D	iluent:	1%C	AAC
Ending	Date:	24 Aug-13	S	pecies:	Lem	na aequino	ctialis				rine:	Not A	pplicable
Duratio	on:	5d 0h	S	ource:	In-H	ouse Cultur	e			Α	ge:		
Sampl		05-1061-3581		ode:	1330						lient:		nal Lab
		19 Aug-13		Material: Uranyl Sulpha						P	roject:	Refer	ence Toxicity Program
		26 Aug-13 13:5		ource:		rence Toxi	cant (U)						
Sampl	e Age:			Station: In House		ouse							
		lation Options											
X Tran		Y Transform		eed		amples	Exp 95%	6 CL	Meth				
Log(X+	1)	Linear	04452	200		Yes		Two-	Point Int	erpolation			
Residu	al Analy	ysis											
Attribu	DOM: N	Method		A Colonia		Test Stat	/ OF STREET		/alue		on(α:5%)		
Extrem	e Value	Grubbs Ex	dreme Va	alue		2.82	2.652	0.0	202	Outlier	Detected		
Point E	stimate	es											
Level	mg/L	95% LCL		CL									
IC5	6.413		6.588										
IC10	6.851	6.426	7.222										
IC15	7.315	6.696	7.907										
IC20 IC25	7.806 8.326	6.973 7.23	8.647 9.446										
IC40	10.08	8.03	12.25										
IC50	11.42	8.587	14.52										
Growti	rate (fi	ronds) Summar	у				Ca	Iculat	ted Va	riate			
C-mg/L	. с	ontrol Type	Count	Mean		Min	Max		Err	Std De	v CV%		%Effect
0	19	% CAAC	3	0.429	9	0.4262	0.4337	0.0	02154	0.0037	32 0.87	%	0.0%
1.5			3	0.438	1	0.3982	0.4581	0.02	2	0.0346	3 7.9%)	-1.91%
3			3	0.450	1	0.4373	0.4581	0.0	06462	0.0111	9 2.49	%	-4.69%
6			3	0.448		0.4337	0.468	0.0	1013	0.0175			-4.36%
13			3	0.174		0.1014	0.2206		3713	0.0643			59.3%
22			3	0.114	9	0.1149	0.1149	0		0	0.0%	1	73.3%
	1000	ronds) Detail	D. 1			_							
· -raceff		ontrol Type % CAAC	Rep 1 0.4299	0.426	_	Rep 3 0.4337							
	1.	70 CPAC	0.3982	0.428									
0			0.3562	0.437		0.4581 0.4548							
0 1.5						0.4346							
0 1.5 3			0.468		T	0.7001							
C-mg/L 0 1.5 3 6 13			0.468	0.444		0.2206							

000-428-181-4

CETIS™ v1.8.7.4

Analyst:_____ QA:____

Figure I18 Continued

CETIS Analytical Report

Report Date: Test Code:

18 Sep-13 11:08 (p 2 of 2) 1330L | 01-4902-4691

eriss ecotoxicology lab

Lemna Growth Inhibition

Analysis ID: 15-9778-4234 18 Sep-13 11:08 Endpoint: Growth rate (fronds)
Analysis: Linear Interpolation (ICPIN)

CETIS Version: Official Results: Yes

CETISv1.8.7

Analyzed: Graphics

CETIS™ v1.8.7.4

Analyst:____ QA:_

Figure 119 Test raw data and analysis report for test 1330L (surface area)

CETIS	S Ana	lytical Repo	ort						teport Date est Code:) :	19 Sep-13 11:18 (p 1 of 2 1330L 01-4902-469
Lemna	Growth	Inhibition									eriss ecotoxicology lal
Analys Analyz		05-6152-6537 19 Sep-13 11:1		dpoint: alysis:	Growth rate (su Linear Interpola				ETIS Vers		CETISv1.8.7 Yes
Batch	ID:	06-5914-8762	Tes	st Type:	Lemna Growth			-	nalyst:	Kim (Cheng
Start D	ate:	19 Aug-13	Pro	tocol:	Lemna eriss tro	pical fresh	water	r	iluent:	1%C	AAC
Ending	Date:	24 Aug-13	Sp	ecies:	Lemna aequino	ctialis		E	Brine:	Not A	Applicable
Duratio	on:	5d 0h	So	urce:	In-House Cultu	re		,	ige:		
Sample	e ID:	05-1061-3581	Co	de:	1330L				lient:	Interr	nal Lab
		19 Aug-13		terial:	Uranyl Sulphate			F	roject:	Refe	rence Toxicity Program
Receiv	e Date:	26 Aug-13 13:5	4 So	urce:	Reference Toxicant (U)						
Sample	e Age:	NA	Sta	tion:	In House						
Linear	Interpo	lation Options									
X Tran	sform	Y Transform			Resamples	Exp 95%	201111	thod			
Log(X+	-1)	Linear	645	859	200	Yes	Tw	o-Point In	terpolation		
Residu	ial Anal	ysis									
Attribu		Method			Test Stat		P-Value		ion(α:5%)	10-1-20-1-1	
Extrem	e Value	Grubbs Ex	treme Vali	ne	1.733	2.652	1.0000	No Ou	tliers Dete	cted	
Point E	Estimate	es									
Level	mg/L	95% LCL	95% UCI	-							
IC5	6.377	6.335	6.438								
IC10	6.775	6.7	6.904								
IC15	7.194	7.088	7.398								
IC20	7.636	7.487	7.923								
IC25 IC40	8.101 9.654	7.907 9.293	8.481 10.37								
IC50	10.83	10.33	11.83								
Growti	h rate (s	urface area) Su	mmary			Ca	Iculated V	/ariate			
C-mg/l		ontrol Type	Count	Mean	Min	Max	Std Err	Std D	ev CV%		%Effect
0	-	% CAAC	3	0.411		0.4173	0.00504	100000000000000000000000000000000000000			0.0%
1.5			3	0.426	3 0.4096	0.4351	0.00839	3 0.014	3.419	6	-3.7%
3			3	0.439	6 0.4351	0.448	0.00416	5 0.007	213 1.649	6	-6.94%
6			3	0.437	1 0.4262	0.4546	0.00884	4 0.015	3.5%		-6.33%
13			3	0.145	7 0.1351	0.1659	0.01011	0.017	51 12.09	6	64.6%
22			3	0.102	1 0.08305	0.1134	0.00958	3 0.016	16.3%	6	75.2%
Growtl	h rate (s	urface area) De	tail								
C-mg/L		ontrol Type	Rep 1	Rep 2							
0	19	% CAAC	0.4149	0.401	A CONTRACTOR OF THE PARTY OF TH						
1.5			0.4096	0.434							
3			0.448	0.435							
6			0.4546	0.430							
13			0.136	0.135							
22			0.08305	0.109	8 0.1134						

Figure I19 Continued

CETIS Analytical Report

Report Date:

19 Sep-13 11:18 (p 2 of 2)

Test Code:

1330L | 01-4902-4691 eriss ecotoxicology lab

Lemna Growth Inhibition

05-6152-6537 Analysis ID: 19 Sep-13 11:18

Endpoint: Growth rate (surface area) Analysis: Linear Interpolation (ICPIN) **CETIS Version:** Official Results:

CETISv1.8.7

Analyzed: Graphics

CETIS™ v1.8.7.4

Analyst:_____ QA:___

Figure I20 Test raw data and analysis report for test 1465L (frond count)

CETIS	S Ana	lytical Repo	ort						ort Date: Code:		.2		09:55 (p 1 c 16-9015-9
Lemna	Growth	Inhibition										riss eco	toxicology
Analys Analyz		10-5985-2838 13 Jul-15 13:05		ndpoint: nalysis:	Growth rate (fro		N)		IS Versio		CETIS\ Yes	1.8,7	
Batch	ID:	13-2263-8351	Te	est Type:	Lemna Growth			Anal	yst: C	eiwe	en Pease		
Start D	ate:	01 Jun-15		otocol:	Lemna eriss tro		water	Dilu	ent: S	ynth	etic Soft	Water	
Ending	Date:	05 Jun-15	Sp	pecies:	Lemna aequino	octialis		Brin	e: N	lot A	pplicable		
Duratio	on:	96h	Sc	ource:	In-House Cultu	re		Age:	4				
Sample	e ID:	00-8544-0082	Co	ode:					nt: I	ntern	al Lab		
Sample	e Date:	05 Jun-15 15 27	M	aterial:	Uranyl Sulphate Reference Toxicant (U)			Proj	ect: F	Refer	ence To	kicity Pro	gram
Receiv	e Date:	05 Jun-15 15:27		ource:									
Sample	e Age:	NA	St	ation:	In House								
Linear	Interpo	lation Options											
X Tran	sform	Y Transform	Se	ed	Resamples	Exp 959	% CL Meth	od					
Log(X+	1)	Linear	50	8551	200	Yes	Two-	Point Interp	olation				
Residu	ial Anal	ysis											
Attribu	ite	Method			Test Stat	Critical	P-Value	Decision	According to the second				
Extrem	e Value	Grubbs Ex	treme Va	lue	2.531	2.62	0.0775	No Outlier	s Detect	ed			
Point E	Estimate	es											
Level	μg/L	95% LCL	95% UC	L									
IC5	2.765	N/A	27.79										
IC10	12.76	N/A	130.3										
IC15	39.76	N/A	145.2										
1C20	64.94		222.9										
IC25	105.7	N/A	361.6										
IC40 IC50	373.4 >1350		745.1 N/A										
	-						-1	- C-					
100		ronds) Summar		- Minn	Milia	-3-	alculated Va		CV%	-	W Maria		
0.03		ontrol Type ynthetic Soft W	Count 3	Mean 0.395		Max 0.4299	0.01769	0.03064	7.75%		%Effect 0.0%		
35		yikiiciio Coli vv	2	0.341		0.3466	0.00532	0.007524			13.71%		
120			2	0.291		0.2947	0.003247	0.004591			26.31%		
305			2	0.252	8 0.2452	0.2604	0.007578	0.01072	4.24%		36.08%		
555			2	0.197	7 0.1835	0.2118	0.01417	0.02003	10.149	6	50.02%		
775			2	0.168	0.1626	0.1733	0.00532	0.007524	4.48%		57.53%		
950			2	0.228		0.2373	0.008336	0.01179	5.15%		42.11%		
1350			2	0,232	9 0.2206	0.2452	0.01231	0.0174	7.47%	- 1	41.11%		
Growth	n rate (fi	ronds) Detall											
C-µg/L		ontrol Type	Rep 1	Rep 2									
0.03	S	ynthetic Soft Wa		0.429									
35			0.3466	0.335									
120			0.2947	0,288									
305			0.2452	0.260									
555			0.2118	0.183									
775			0.1733	0.162									
950			0.2373	0.220									
1350			0.2206	0.245	6								
							-day						

CETIST V1.8.7.4

Analyst._____ OA:___

000-428-181-5

Figure I20 Continued

CETIS Analytical Report

Report Date: Test Code: 22 Jul-15 09:55 (p 2 of 2) 1465L | 16-9015-9188

Lemna Growth Inhibition eriss ecotoxicology lab

 Analysis ID:
 10-5985-2838
 Endpoint:
 Growth rate (fronds)
 CETIS Version:
 CETIS V1.8.7

 Analyzed:
 13 Jul-15 13:05
 Analysis:
 Linear Interpolation (ICPIN)
 Official Results:
 Yes

Graphics

000-428-181-5 CETISTM v1.8.7.4

Analyst:_____ QA:____

Figure I21 Test raw data and analysis report for test 1465L (surface area)

Lemna	Sec. 1	TO ETECTIVE						3,540	Code:		asa saarawa sasa oo
	27,100	Inhibition	- 13.5			5336.0		7.00			riss ecotoxicology lai
Analysi Analyz		20-5565-4242 13 Jul-15 13:05	C 47 39	. 5	rowth rate (su near Interpola).	-0.75	S Version: ial Results	2 - 2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	1,8,7
Batch I	D:	13-2263-8351	Test	Type: Le	emna Growth			Anal	yst: Cei	wen Pease	
Start D		01 Jun-15			emna eriss tro		ater	Dilue	2.0 C.43	thetic Soft	Water
Ending		05 Jun-15	Spec		emna aequino			Brine		Applicable	
Duratio	n:	96h	Sour	4.10	-House Cultur	e		Age:			
Sample		00-8544-0082	Code		165L			Cilen		rnal Lab	Name of Colors
	2	05 Jun-15 15:27 05 Jun-15 15:27		erial: Uranyi Sulph				Proje	ect: Ref	erence roxi	icity Program
	Age:		Sour Stati		eference Toxi House	Cant (U)					
		ation Options			,,,,,,,,,						
X Trans		Y Transform	Seed	R	esamples	Exp 95%	CL Meth	od			
Log(X+	-	Linear	6604		120 3 19 22 2	Yes		Point Interpe	olation		
						*****	56.00		0.3404,		
	al Analy	Method			Test Stat	Celtiani	P-Value	Decision	er E0/ \		
Attribut	te e Value		treme Value		1.693	Critical 2.62	1.0000	Decision(a:5%) s Detected	_	
			reme value		1,030	2.02	1,0000	No Outlier	s Detected		
	stimate		new Hel								
Level IC5	µg/L 4.925	95% LCL N/A	95% UCL 128.6								
IC10	33.09	N/A	60.52								
	39.27	N/A	60.19								
1015			00.10								
	44.22	22.61	65.61								
IC20 IC25	44.22 49.77	22.61 27.62	65.61 71.46								
IC20 IC25 IC40	44.22 49.77 70.85	22.61 27.62 48.64	65.61 71.46 93.92								
IC20 IC25 IC40 IC50	44.22 49.77 70.85 89.58	22.61 27.62 48.64 63.74	65.61 71.46 93.92 120.2				2-12-22				
IC20 IC25 IC40 IC50 Growth	44.22 49.77 70.85 89.58	22.61 27.62 48.64 63.74 urface area) Su	65.61 71.46 93.92 120.2	7			culated Var	(A. C. A. C. C.	2000		
IC20 IC25 IC40 IC50 Growth C-µg/L	44.22 49.77 70.85 89.58 rate (s	22.61 27.62 48.64 63.74 urface area) Su ontrol Type	65.61 71.46 93.92 120.2 mmary	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	
IC20 IC25 IC40 IC50 Growth C-µg/L 0.03	44.22 49.77 70.85 89.58 rate (s	22.61 27.62 48.64 63.74 urface area) Su	65.61 71.46 93.92 120.2 mmary Count	0.3464	0.3344	Max 0.3655	Std Err 0.009656	Std Dev 0.01672	4.83%	0.0%	
IC20 IC25 IC40 IC50 Growth C-µg/L 0.03	44.22 49.77 70.85 89.58 rate (s	22.61 27.62 48.64 63.74 urface area) Su ontrol Type	65.61 71.46 93.92 120.2 mmary Count 3	0.3464 0.3112	0.3344 0.2995	Max 0.3655 0.3229	Std Err 0.009656 0.0117	Std Dev 0.01672 0.01655	4.83% 5.32%	0.0% 10.16%	-
IC20 IC25 IC40 IC50 Growth C-µg/L 0 03 35 120	44.22 49.77 70.85 89.58 rate (s	22.61 27.62 48.64 63.74 urface area) Su ontrol Type	65.61 71.46 93.92 120.2 mmary Count	0.3464	0.3344 0.2995 0.1215	Max 0.3655	Std Err 0.009656	Std Dev 0.01672	4.83%	0.0%	-
IC20 IC25 IC40 IC50 Growth C-µg/L 0 03 35 120 305	44.22 49.77 70.85 89.58 rate (s	22.61 27.62 48.64 63.74 urface area) Su ontrol Type	65.61 71.46 93.92 120.2 mmary Count 3 2	0.3464 0.3112 0.1299	0.3344 0.2995 0.1215	Max 0.3655 0.3229 0.1383	Std Err 0,009656 0,0117 0,008399	Std Dev 0.01672 0.01655 0.01188	4.83% 5.32% 9.15% -105.7% -5.81%	0.0% 10.16% 62.5% 107.1% 126.2%	
IC20 IC25 IC40 IC50 Growth C-µg/L 0 03 35 120 305 555 775	44.22 49.77 70.85 89.58 rate (s	22.61 27.62 48.64 63.74 urface area) Su ontrol Type	65.61 71.46 93.92 120.2 mmary Count 3 2 2 2 2 2	0.3464 0.3112 0.1299 -0.02466 -0.0909 -0.1464	0.3344 0.2995 0.1215 -0.04309 -0.09464 -0.149	Max 0.3655 0.3229 0.1383 -0.00623 -0.08717 -0.1438	Std Err 0.009656 0.0117 0.008399 0.01843 0.003732 0.002588	Std Dev 0.01672 0.01655 0.01188 0.02607 0.005277 0.00366	4.83% 5.32% 9.15% -105.7% -5.81% -2.5%	0.0% 10.16% 62.5% 107.1% 126.2% 142.3%	
IC20 IC25 IC40 IC50 Growth C-µg/L 0 03 35 120 305 555 775 950	44.22 49.77 70.85 89.58 rate (s	22.61 27.62 48.64 63.74 urface area) Su ontrol Type	65.61 71.46 93.92 120.2 mmary Count 3 2 2 2 2 2 2	0.3464 0.3112 0.1299 -0.02466 -0.0909 -0.1464 -0.07616	0.3344 0.2995 0.1215 -0.04309 -0.09464 -0.149 -0.09803	Max 0.3655 0.3229 0.1383 -0.00623 -0.08717 -0.1438 +0.0543	Std Err 0.009656 0.0117 0.008399 0.01843 0.003732 0.002588 0.02186	Std Dev 0.01672 0.01655 0.01188 0.02607 0.005277 0.00366 0.03092	4.83% 5.32% 9.15% -105.7% -5.81% -2.5% -40.59%	0.0% 10.16% 62.5% 107.1% 126.2% 142.3% 122.0%	
GC20 IC25 IC40 IC50 Growth C-µg/L 0 03 335 120 305 555 775 950 1350	44.22 49.77 70.85 89.58 1 rate (s	22.61 27.62 48.64 63.74 urface area) Sur ontrol Type ynthetic Soft W	65.61 71.46 93.92 120.2 mmary Count 3 2 2 2 2 2 2 2	0.3464 0.3112 0.1299 -0.02466 -0.0909 -0.1464	0.3344 0.2995 0.1215 -0.04309 -0.09464 -0.149	Max 0.3655 0.3229 0.1383 -0.00623 -0.08717 -0.1438	Std Err 0.009656 0.0117 0.008399 0.01843 0.003732 0.002588	Std Dev 0.01672 0.01655 0.01188 0.02607 0.005277 0.00366	4.83% 5.32% 9.15% -105.7% -5.81% -2.5% -40.59%	0.0% 10.16% 62.5% 107.1% 126.2% 142.3%	
IC20 IC25 IC40 IC50 Growth C-µg/L 0 03 35 120 305 555 775 950 1350 Growth	44.22 49.77 70.85 89.58 1 rate (s	22.61 27.62 48.64 63.74 urface area) Su ontrol Type ynthetic Soft W	65.61 71.46 93.92 120.2 mmary Count 3 2 2 2 2 2 2 2 2 2	0.3464 0.3112 0.1299 -0.02466 -0.0909 -0.1464 -0.07616 -0.1646	0.3344 0.2995 0.1215 0.04309 -0.09464 -0.149 0.09803 -0.1674	Max 0.3655 0.3229 0.1383 -0.00623 -0.08717 -0.1438 +0.0543	Std Err 0.009656 0.0117 0.008399 0.01843 0.003732 0.002588 0.02186	Std Dev 0.01672 0.01655 0.01188 0.02607 0.005277 0.00366 0.03092	4.83% 5.32% 9.15% -105.7% -5.81% -2.5% -40.59%	0.0% 10.16% 62.5% 107.1% 126.2% 142.3% 122.0%	
Growth C-µg/L 0.03 35 120 305 555 775 950 1350 Growth C-µg/L	44.22 49.77 70.85 89.58 1 rate (s	22.61 27.62 48.64 63.74 urface area) Su ontrol Type ynthetic Soft W	65.61 71.46 93.92 120.2 mmary Count 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 8	0.3464 0.3112 0.1299 -0.02466 -0.0909 -0.1464 -0.07616 -0.1646	0.3344 0.2995 0.1215 0.04309 -0.09464 -0.149 0.09803 -0.1674	Max 0.3655 0.3229 0.1383 -0.00623 -0.08717 -0.1438 +0.0543	Std Err 0.009656 0.0117 0.008399 0.01843 0.003732 0.002588 0.02186	Std Dev 0.01672 0.01655 0.01188 0.02607 0.005277 0.00366 0.03092	4.83% 5.32% 9.15% -105.7% -5.81% -2.5% -40.59%	0.0% 10.16% 62.5% 107.1% 126.2% 142.3% 122.0%	
IC20 IC25 IC40 IC50 Growth C-µg/L 0 03 35 120 306 555 775 950 1350 Growth C-µg/L 0 03	44.22 49.77 70.85 89.58 1 rate (s	22.61 27.62 48.64 63.74 urface area) Su ontrol Type ynthetic Soft W	65.61 71.46 93.92 120.2 mmary Count 3 2 2 2 2 2 2 2 2 2 2 2 10.3393	0.3464 0.3112 0.1299 -0.02466 -0.0909 -0.1464 -0.07616 -0.1646 Rep 2 0.3655	0.3344 0.2995 0.1215 0.04309 -0.09464 -0.149 0.09803 -0.1674	Max 0.3655 0.3229 0.1383 -0.00623 -0.08717 -0.1438 +0.0543	Std Err 0.009656 0.0117 0.008399 0.01843 0.003732 0.002588 0.02186	Std Dev 0.01672 0.01655 0.01188 0.02607 0.005277 0.00366 0.03092	4.83% 5.32% 9.15% -105.7% -5.81% -2.5% -40.59%	0.0% 10.16% 62.5% 107.1% 126.2% 142.3% 122.0%	
IC20 IC25 IC40 IC50 Growth C-µg/L 0 03 35 120 305 5555 775 950 1350 Growth C-µg/L 0 03 35	44.22 49.77 70.85 89.58 1 rate (s	22.61 27.62 48.64 63.74 urface area) Su ontrol Type ynthetic Soft W	65.61 71.46 93.92 120.2 mmary Count 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 10.3393 0.2995	0.3464 0.3112 0.1299 -0.02466 -0.0909 -0.1464 -0.07616 -0.1646 Rep 2 0.3655 0.3229	0.3344 0.2995 0.1215 0.04309 -0.09464 -0.149 0.09803 -0.1674	Max 0.3655 0.3229 0.1383 -0.00623 -0.08717 -0.1438 +0.0543	Std Err 0.009656 0.0117 0.008399 0.01843 0.003732 0.002588 0.02186	Std Dev 0.01672 0.01655 0.01188 0.02607 0.005277 0.00366 0.03092	4.83% 5.32% 9.15% -105.7% -5.81% -2.5% -40.59%	0.0% 10.16% 62.5% 107.1% 126.2% 142.3% 122.0%	
GC20 IC25 IC40 IC50 Growth C-µg/L 0 03 35 120 305 5555 7775 950 1350 Growth C-µg/L 0 03 35	44.22 49.77 70.85 89.58 1 rate (s	22.61 27.62 48.64 63.74 urface area) Su ontrol Type ynthetic Soft W	65.61 71.46 93.92 120.2 mmary Count 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.3393 0.2995 0.1383	0.3464 0.3112 0.1299 -0.02466 -0.0909 -0.1464 -0.07616 -0.1646 Rep 2 0.3655 0.3229 0.1215	0.3344 0.2995 0.1215 -0.04309 -0.09464 -0.149 -0.09803 -0.1674 Rep 3	Max 0.3655 0.3229 0.1383 -0.00623 -0.08717 -0.1438 +0.0543	Std Err 0.009656 0.0117 0.008399 0.01843 0.003732 0.002588 0.02186	Std Dev 0.01672 0.01655 0.01188 0.02607 0.005277 0.00366 0.03092	4.83% 5.32% 9.15% -105.7% -5.81% -2.5% -40.59%	0.0% 10.16% 62.5% 107.1% 126.2% 142.3% 122.0%	
IC20 IC25 IC40 IC50 Growth C-µg/L 0 03 35 120 305 5555 7775 950 1350 Growth C-µg/L 0 03 35 120 305	44.22 49.77 70.85 89.58 1 rate (s	22.61 27.62 48.64 63.74 urface area) Su ontrol Type ynthetic Soft W	65.61 71.46 93.92 120.2 mmary Count 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 10.3393 0.2995	0.3464 0.3112 0.1299 -0.02466 -0.0909 -0.1464 -0.07616 -0.1646 Rep 2 0.3655 0.3229	0.3344 0.2995 0.1215 6 -0.04309 -0.09464 -0.149 6 -0.09803 -0.1674 Rep 3	Max 0.3655 0.3229 0.1383 -0.00623 -0.08717 -0.1438 +0.0543	Std Err 0.009656 0.0117 0.008399 0.01843 0.003732 0.002588 0.02186	Std Dev 0.01672 0.01655 0.01188 0.02607 0.005277 0.00366 0.03092	4.83% 5.32% 9.15% -105.7% -5.81% -2.5% -40.59%	0.0% 10.16% 62.5% 107.1% 126.2% 142.3% 122.0%	
IC20 IC25 IC40 IC50 Growth C-µg/L 0 03 35 120 305 555 775 950 1350 Growth C-µg/L 0 03 35 120 35 120 35	44.22 49.77 70.85 89.58 1 rate (s	22.61 27.62 48.64 63.74 urface area) Su ontrol Type ynthetic Soft W	65.61 71.46 93.92 120.2 mmary Count 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 10.3393 0.2995 0.1383 -0.04309	0.3464 0.3112 0.1299 -0.02466 -0.0909 -0.1464 -0.07616 -0.1646 Rep 2 0.3655 0.3229 0.1215 -0.00623	0.3344 0.2995 0.1215 6 -0.04309 -0.09464 -0.149 6 -0.09803 -0.1674 Rep 3	Max 0.3655 0.3229 0.1383 -0.00623 -0.08717 -0.1438 +0.0543	Std Err 0.009656 0.0117 0.008399 0.01843 0.003732 0.002588 0.02186	Std Dev 0.01672 0.01655 0.01188 0.02607 0.005277 0.00366 0.03092	4.83% 5.32% 9.15% -105.7% -5.81% -2.5% -40.59%	0.0% 10.16% 62.5% 107.1% 126.2% 142.3% 122.0%	
IC20 IC25 IC40 IC50 Growth C-µg/L 0 03 35 120 305 555 775 950 1350 Growth	44.22 49.77 70.85 89.58 1 rate (s	22.61 27.62 48.64 63.74 urface area) Su ontrol Type ynthetic Soft W	65.61 71.46 93.92 120.2 mmary Count 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 10.3393 0.2995 0.1383 -0.04309 -0.09464	0.3464 0.3112 0.1299 -0.02466 -0.0909 -0.1464 -0.07616 -0.1646 Rep 2 0.3655 0.3229 0.1215 -0.00623 -0.08717	0.3344 0.2995 0.1215 6 -0.04309 -0.09464 -0.149 6 -0.09803 -0.1674 Rep 3	Max 0.3655 0.3229 0.1383 -0.00623 -0.08717 -0.1438 +0.0543	Std Err 0.009656 0.0117 0.008399 0.01843 0.003732 0.002588 0.02186	Std Dev 0.01672 0.01655 0.01188 0.02607 0.005277 0.00366 0.03092	4.83% 5.32% 9.15% -105.7% -5.81% -2.5% -40.59%	0.0% 10.16% 62.5% 107.1% 126.2% 142.3% 122.0%	

CETIS™ v1.8.7.4

Analyst: ____ QA:___

000-428-181-5

Figure I21 Continued

CETIS Analytical Report

Report Date: Test Code: 22 Jul-15 09:54 (p 2 of 2) 1465L | 16-9015-9188

Lemna Grow	th Inhibition				eriss ecotoxicology lab
Analysis ID:	20-5565-4242	Endpoint:	Growth rate (surface area)	CETIS Version:	CETISv1.8.7
Analyzed:	13 Jul-15 13:05	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Graphics

000-428-181-5

CETIS™ v1.8.7.4

Analyst:_____OA:____

Figure I22 Test raw data and analysis report for test 1473L (frond count)

	Growth	Inhibition									eriss ecotoxicology lab
		14-9150-2214		ndhalati	Crouth rate (f	rande V		-	ETIS Vers	low	
Analys Analyz		02 Sep-15 14:2		ndpoint: nalysis:	Growth rate (fi	7	(I)		official Res		CETISV1.9.0 Yes
Batch		16-3768-2890			Lemna Growth		-		nalyst:		en Pease
Start D		27 Jul-15		rotocol:	Lemna eriss tr		water				etic Soft Water
Ending	Date:	31 Jul-15	s	pecies:	Lemna aequin	octialis		E	rine:	Not A	pplicable
Durati	n:	96h	S	ource:	In-House Culture				ge:		
Sampl	e ID:	06-3487-6220	C	ode:	1473L				llent:	Intern	al Lab
Sampl	e Date:	31 Jul-15 15:00	N	laterial:	Uranyi Sulphate				roject:	Refer	ence Toxicity Program
Receip	t Date:	31 Jul-15 15:00	S	ource;	Reference To:	(U)					
Sampl	e Age: 1	n/a	S	tation:	In House						
Linear	Interpol	ation Options	,								
X Tran	sform	Y Transform	s	eed	Resamples	Exp 95%	CL M	ethod			
Log(X+	_	Linear 287999			200		wo-Point Int	erpolation			
Point I	Estimate	s									
Level	µg/L	95% LCL	95% U	CL							
IC5	32.39	n/a	257.9								
IC10	108.6	1.827	187.7								
C15	159.3	59.5	232.5								
IC20	193,4	148.1	269.2								
IC25	226 494	154	346.9 1103								
C50	852.6	n/a n/a	n/a								
-		onds) Summar	_				alculated	Variate			
				44.74	400			7.00		-	N/FWt
Conc- 0.05	Jg/L	Code	Count 3	Mean 0,389		Max. 0.3982	0.0067				% Effect 0.00%
20		33	2	0.380		0.3851	0.0045				2.26%
42			2	0.364		0.3713	0.0072				6.50%
83			2	0.364	1 0.3568	0.3713	0.0072	83 0.0103	2.839	6	6.50%
170			2	0,327		0.3304	0.0028				15.85%
310			2	0,252	2,127,32	0.2676	0.0151				35.16%
460 900			2	0.238		0.2747	0.0359				38.70% 59.78%
1400			2	0.182		0.1733	0.0200				53.08%
1800			2	0.233		0.2373	0.0040				40.11%
Growt	rate (fr	onds) Detail									
Conc.		Code	Rep 1	Rep 2	Rep 3						
0.05	igr.c.	SS	0.3982								
20		7.	0.3851	0.376							
			0.3713								
			0.3713								
42			0.3248								
42 83 170			0.2373	0.267							
42 83 170 310											
42 83 170 310 460			0.2027								
42 83 170 310 460 900			0.2027 0.1399	0.173	3						
42 83 170 310 460			0.2027		3 7						

007-240-543-9 CETIS™ v1 9.0.9 Analys! OA:_____

Figure I22 Continued

CETIS Analytical Report

Report Date: Test Code: 02 Sep-15 14:26 (p 2 of 2) 1473L | 20-1504-1404

Lemna Growth Inhibition

eriss ecotoxicology lab

Analysis ID: 14-9150-2214 Endpoint: Growth rate (fronds) CETIS Version: CET(Sv1.9.0 Analyzed: 02 Sep-15 14:25 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Graphics

007-240-543-9 CETIS™ v1.9.0.9

Analyst.____ OA:___

Figure 123 Test raw data and analysis report for test 1473L (surface area)

l omna	Grovet	h Inhibition								- 10	st Code:		1473L 20-1504-14
			_		T	A contract				-			
Analys Analyz		09-8002-0738 02 Sep-15 14;2		Endpoint: Analysis:			rface area) ition (ICPIN	Y			TIS Vers ficial Res		CETISV1.9.0 Yes
Batch	ID:	16-3768-2890		Test Type:	Len	na Growth				An	alyst:	Ceiw	en Pease
Start D		27 Jul-15		Protocol:	Lemna eriss tropical freshwater					luent:		etic Soft Water	
		31 Jul-15		Species:		na aequino				100		Not A	pplicable
Duratio	on:	96h		Source:	In-House Culture			Ag	le:				
Sampl		06-3487-6220		Code:	147						ient:		al Lab
	7	31 Jul-15 15:00	Material:			nyl Sulphate				Pr	oject:	Refer	ence Toxicity Program
34000	t Date: e Age:	31 Jul-15 15:00	Source: Station:		Reference Toxicant (U) In House								
	- 0,-			atation:	10. 1	louse							
	J. 72	lation Options			D	بال الماليات	For 0694	01	No other	Jan 1			
X Tran Log(X+		Y Transform Linear				amples	Exp 95% CL		Metho		rpolation		
			410032	200		Yes		IWIE	On inte	r poration			
	Estimate		050/	101									
C5	μg/L 25.89	95% LCL n/a	95% L										
C10	33.91		58.2										
C15	85	n/a	129.9										
C20	104.9	29,67	190.3										
C25	129.5	25.11	294.1										
C40	192.5	108	264.6										
C50	222.7	148	321.7	1									
Growti	n rate (s	surface area) Su	mmary				Cal	culate	d Vari	iate			
Conc-	ıg/L	Code	Coun	t Mean	9	Min	Max	Std I	Err	Std De	v CV%		%Effect
0.05		SS	3	0.330		0.3105	0.3481	0.010		0.01888	100000	_	0.00%
20			2	0.329		0.3119	0.3465	0.017		0.02446		7	0.26%
42			2	0.283		0.277	0.2907	0.000		0.00967			13.99%
83 170			2	0.282		0.2778	0.2871	0.019		0.00659			14.44% 31.47%
310			2	0.089		0.06379	0.1161	0.020		0.03698			72.75%
460			2	0.081		0.0284	0.1353	0.053		0.07558			75.20%
900			2	-0.02		-0.03758	-0.01057	0.013		0.0191	-79.3		107,29%
1400			2	-0.06		-0.09065	-0.03842	0.026	3000	0.03693			119.55%
1800			2	-0.06	951	-0.09378	-0.04524	0.024	427	0.03432	-49,3	8%	121 06%
Growti	rate (s	surface area) De	tali										
Conc-	ig/L	Code	Rep 1	Rep 2	2	Rep 3							
0.05		SS	0.348	1 0.331	6	0.3105							
20			0.311	9 0.346	5								
12			0,277	0.290	7								
33			0.287	1 0.277	8								
170			0.245	6 0.206	8								
			0.063		1								
			0.028		3								
			-0.037										
460 900			-0.090										
460 900 1400			-0.093	378 -0.04	524								
310 460 900 1400 1800													
460 900 1400													
460 900 1400													

95

CETIS™ V1.9.0.9

007-240-543-9

___ QA:___

Figure I23 Continued

CETIS Analytical Report

Lemna Growth Inhibition

Report Date:

02 Sep-15 14:32 (p 2 of 2) 1473L | 20-1504-1404

Test Code:

eriss ecotoxicology lab

Analysis ID: 09-8002-0738 Endpoint: Growth rate (surface area) CETIS Version: CETISV1.9.0

Analyzed: 02 Sep-15 14:25 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Graphics

007-240-543-9 CETIS™ v1.9.0.9

Analyst: OA:

Figure I24 Test raw data and analysis report for test 1475L (frond count)

-900	5 Ana	lytical Repo	ort					10.00	ort Date: Code:	02 Sep-15 13:45 (p 1 of 2 1475L 17-5248-799:
Lemna	Growth	Inhibition								eriss ecotoxicology lab
Analys Analyz	is ID: ed:	06-7143-0582 02 Sep-15 13:4		dpoint: alysis:	Growth rate (fr Linear Interpol)		S Version: ial Results:	CETISv1.9.0 Yes
Batch Start D Ending Durati	Date: g Date:	14-5612-6797 10 Aug-15 14 Aug-15 96h	Pro Sp	st Type: otocol: ecles: urce:	Lemna Growth Lemna eriss tr Lemna aequin In-House Cultu	opical fresh octialis	water	Anal Dilus Brine Age:	ont: Synt	ven Pease hetic Soft Water Applicable
Receip	e Date:	11-3511-1468 18 Aug-15 11:34 18 Aug-15 11:34 n/a	Ma So	de: terial: urce: ation:	1475L Uranyi Sulpha Reference Tox In House			Clier Proje		nal Lab rrence Toxicity Program
		lation Options			******		A1 10 10			
X Tran	sform	Y Transform Linear		4993	Resamples 200	Exp 95% Yes		od Point Interp	olation	
	Estimate	1940/-940	14	4993	200	165	IWO	- Onte interp	Olditon	
		95% LCL	95% UC							
Level C5	μg/L 92.8	30.03	180.9	0						
C10	127.6		316.3							
C15	175.3		400.2							
C20	232.6	0.000	410							
IC25	294.9		438.4							
C40	598	397.6	n/a							
- A	190.00									
C50	>880	n/a	n/a							
			n/a			Ca	Iculated Var	late		
Growt	h rate (f	n/a ronds) Summar Code	n/a	Mean	Min	Ca	lculated Var	riate Std Dev	CV%	%Effect
Growt Conc-	h rate (f	ronds) Summar	n/a y	Mean 0.377					CV% 3.06%	%Effect
Growt Conc-J	h rate (f	ronds) Summar Code	n/a y Count		4 0.3666	Max	Std Err	Std Dev		
Growt Conc- 0.06	h rate (f	ronds) Summar Code	n/a y Count 3	0.377	4 0.3666 4 0.4024	Max 0.3895	Std Err 0.00666	Std Dev 0.01154	3.06%	0.00%
Growt Conc- 0.06 40	h rate (f	ronds) Summar Code	n/a y Count 3	0.377	4 0.3666 4 0.4024 8 0.376	Max 0.3895 0.4065	Std Err 0.00666 0.002066	Std Dev 0.01154 0.002922	3.06% 0.72%	0.00% -7.17%
Growt Conc-1 0,06 40 77 210	h rate (f	ronds) Summar Code	y Count 3 2 2 2 2	0.377 0.404 0.382	4 0.3666 4 0.4024 8 0.376 2 0.301	Max 0.3895 0.4065 0.3895	Std Err 0.00666 0.002066 0.006759	5td Dev 0.01154 0.002922 0.009558	3.06% 0.72% 2.50% 8.88%	0.00% -7.17% -1.43%
Growt Conc-1 0.06 40 77 210 420 660	h rate (f	ronds) Summar Code	y Count 3 2 2 2 2 2	0.377 0.404 0.382 0.321 0.264 0.211	4 0.3666 4 0.4024 8 0.376 2 0.301 0.2604 7 0.2027	Max 0.3895 0.4065 0.3895 0.3413 0.2676 0.2206	Std Err 0.00666 0.002066 0.005759 0.02016 0.003623 0.008932	Std Dev 0.01154 0.002922 0.009558 0.02851 0.005124 0.01263	3.06% 0.72% 2.50% 8.88% 1.94% 5.97%	0.00% -7.17% -1.43% 14.90% 30.05% 43.91%
Growt Conc-1 0,06 40 77 210 420 660	h rate (f	ronds) Summar Code	y Count 3 2 2 2 2	0.377 0.404 0.382 0.321 0.264	4 0.3666 4 0.4024 8 0.376 2 0.301 0.2604 7 0.2027	Max 0.3895 0.4065 0.3895 0.3413 0.2676	Std Err 0.00666 0.002066 0.006759 0.02016 0.003623	5td Dev 0.01154 0.002922 0.009558 0.02851 0.005124	3.06% 0.72% 2.50% 8.88% 1.94%	0.00% -7.17% -1.43% 14.90% 30.05%
Growt Conc-J 0,06 40 77 210 420 660 880	h rate (fl	ronds) Summar Code	y Count 3 2 2 2 2 2	0.377 0.404 0.382 0.321 0.264 0.211	4 0.3666 4 0.4024 8 0.376 2 0.301 0.2604 7 0.2027	Max 0.3895 0.4065 0.3895 0.3413 0.2676 0.2206	Std Err 0.00666 0.002066 0.005759 0.02016 0.003623 0.008932	Std Dev 0.01154 0.002922 0.009558 0.02851 0.005124 0.01263	3.06% 0.72% 2.50% 8.88% 1.94% 5.97%	0.00% -7.17% -1.43% 14.90% 30.05% 43.91%
Growti Conc-1 0.06 40 77 210 420 660 880 Growti	h rate (f µg/L h rate (f	ronds) Summar Code SS So ronds) Detail Code	n/a y Count 3 2 2 2 2 2 2 Rep 1	0.377 0.404 0.382 0.321 0.264 0.211 0.241	4 0.3666 4 0.4024 8 0.376 2 0.301 0.2604 7 0.2027 0.2291	Max 0.3895 0.4065 0.3895 0.3413 0.2676 0.2206	Std Err 0.00666 0.002066 0.005759 0.02016 0.003623 0.008932	Std Dev 0.01154 0.002922 0.009558 0.02851 0.005124 0.01263	3.06% 0.72% 2.50% 8.88% 1.94% 5.97%	0.00% -7.17% -1.43% 14.90% 30.05% 43.91%
Growt Conc-J 0.06 40 77 210 420 660 880 Growt Conc-J 0.06	h rate (f µg/L h rate (f	ronds) Summar Code SS S	n/a y Count 3 2 2 2 2 2 2 1 Rep 1 0.3895	0.377 0.404 0.382 0.321 0.264 0.211 0.241 Rep 2	4 0.3666 4 0.4024 8 0.376 2 0.301 0.2604 7 0.2027 0.2291 2 Rep 3 6 0.376	Max 0.3895 0.4065 0.3895 0.3413 0.2676 0.2206	Std Err 0.00666 0.002066 0.005759 0.02016 0.003623 0.008932	Std Dev 0.01154 0.002922 0.009558 0.02851 0.005124 0.01263	3.06% 0.72% 2.50% 8.88% 1.94% 5.97%	0.00% -7.17% -1.43% 14.90% 30.05% 43.91%
Growti Conc-j 0.06 40 77 210 420 660 880 Growti Conc-j 0.06	h rate (f µg/L h rate (f	ronds) Summar Code SS So ronds) Detail Code	n/a y Count 3 2 2 2 2 2 2 1 Rep 1 0.3895 0.4024	0.377 0.404 0.382 0.321 0.264 0.211 0.241 Rep 2 0.366 0.406	4 0.3666 4 0.4024 8 0.376 2 0.301 0.2604 7 0.2027 0.2291 2 Rep 3 6 0.376 5	Max 0.3895 0.4065 0.3895 0.3413 0.2676 0.2206	Std Err 0.00666 0.002066 0.005759 0.02016 0.003623 0.008932	Std Dev 0.01154 0.002922 0.009558 0.02851 0.005124 0.01263	3.06% 0.72% 2.50% 8.88% 1.94% 5.97%	0.00% -7.17% -1.43% 14.90% 30.05% 43.91%
Growti Conc-1 0.06 40 77 210 420 660 880 Growti Conc-1 0.06 40	h rate (f µg/L h rate (f	ronds) Summar Code SS so ronds) Detail Code	n/a y Count 3 2 2 2 2 2 2 1 0.3895 0.4024 0.376	0.377 0.404 0.382 0.321 0.264 0.211 0.241 Rep 2 0.366 0.406 0.389	4 0.3666 4 0.4024 8 0.376 2 0.301 0.2604 7 0.2027 0.2291 2 Rep 3 6 0.376 5	Max 0.3895 0.4065 0.3895 0.3413 0.2676 0.2206	Std Err 0.00666 0.002066 0.005759 0.02016 0.003623 0.008932	Std Dev 0.01154 0.002922 0.009558 0.02851 0.005124 0.01263	3.06% 0.72% 2.50% 8.88% 1.94% 5.97%	0.00% -7.17% -1.43% 14.90% 30.05% 43.91%
Conc- 0.06 40 77 210 420 660 880 Growt Conc- 0.06 40 77 210	h rate (f µg/L h rate (f	ronds) Summar Code SS so ronds) Detail Code	n/a y Count 3 2 2 2 2 2 2 1 0.3895 0.4024 0.376 0.301	0.377 0.404 0.382 0.321 0.264 0.211 0.241 Rep 2 0.366 0.406 0.389 0.341	4 0.3666 4 0.4024 8 0.376 2 0.301 0.2604 7 0.2027 0.2291 2 Rep 3 6 0.376 5 5	Max 0.3895 0.4065 0.3895 0.3413 0.2676 0.2206	Std Err 0.00666 0.002066 0.005759 0.02016 0.003623 0.008932	Std Dev 0.01154 0.002922 0.009558 0.02851 0.005124 0.01263	3.06% 0.72% 2.50% 8.88% 1.94% 5.97%	0.00% -7.17% -1.43% 14.90% 30.05% 43.91%
Growti Conc-j 0.06 40 77 210 420 660 880 Growti Conc-j 0.06 40 77 210 420	h rate (f µg/L h rate (f	ronds) Summar Code SS so ronds) Detail Code	n/a y Count 3 2 2 2 2 2 2 1 0.3895 0.4024 0.376 0.301 0.2604	0.377 0.404 0.382 0.321 0.264 0.211 0.241 Rep 2 0.366 0.406 0.389 0.341 0.267	4 0.3666 4 0.4024 8 0.376 2 0.301 0.2604 7 0.2027 0.2291 2 Rep 3 6 0.376 5 5 3	Max 0.3895 0.4065 0.3895 0.3413 0.2676 0.2206	Std Err 0.00666 0.002066 0.005759 0.02016 0.003623 0.008932	Std Dev 0.01154 0.002922 0.009558 0.02851 0.005124 0.01263	3.06% 0.72% 2.50% 8.88% 1.94% 5.97%	0.00% -7.17% -1.43% 14.90% 30.05% 43.91%
Growti Conc-1 0.06 40 77 210 420 660 880 Growti Conc-1 0.06 40 77 210	h rate (f µg/L h rate (f	ronds) Summar Code SS so ronds) Detail Code	n/a y Count 3 2 2 2 2 2 2 1 0.3895 0.4024 0.376 0.301	0.377 0.404 0.382 0.321 0.264 0.211 0.241 Rep 2 0.366 0.406 0.389 0.341	4 0.3666 4 0.4024 8 0.376 2 0.301 0.2604 7 0.2027 0.2291 2 Rep 3 6 0.376 5 5 3	Max 0.3895 0.4065 0.3895 0.3413 0.2676 0.2206	Std Err 0.00666 0.002066 0.005759 0.02016 0.003623 0.008932	Std Dev 0.01154 0.002922 0.009558 0.02851 0.005124 0.01263	3.06% 0.72% 2.50% 8.88% 1.94% 5.97%	0.00% -7.17% -1.43% 14.90% 30.05% 43.91%

Figure I24 Continued

CETIS Analytical Report

Report Date: Test Code: 02 Sep-15 13:45 (p 2 of 2) 1475L | 17-5248-7993

Lemna Growth Inhibition

eriss ecotoxicology lab

Analysis ID: 06-7143-0582 Endpoint: Growth rate (fronds). CETIS Version: CETISv1.9.0
Analyzed: 02 Sep-15 13:42 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Graphics

007-240-543-9 CETIS™-V1.9:0.9

Analyst:_____QA:____

Figure I25 Test raw data and analysis report for test 1475L (surface area)

CETI	S Ana	lytica	al Repo	ort							ort Date: Code:	02 Sep-15 13:45 (p 1 of 1475L 17-5248-79		
Lemna	Growth	h inhib	ition									eriss ecotoxicology la		
Analys Analyz		100	48-3504 p-15 13:4		Endpoi Analysi		rowth rate (su near interpola)		1S Version: cial Results			
Batch	ID:	14-561	2-6797		Test Ty	pe: Le	emna Growth			Ana	lyst: Ceiv	ven Pease		
Start D	ate:	10 Aug	g-15		Protoco	ol: Le	emna eriss tro	pical freshy	ater	DIL	ent: Syn	thetic Soft Water		
Ending	Date:	14 Aug	g-15		Species	: L	emna aequino	octialis	tialis		e: Not	Applicable		
Durati	on:	96h		-	Source	In	In-House Culture			Age	1			
Sampl	e ID:	11-351	1-1468	6	Code:	14	1475L			Clie	nt: Inte	mal Lab		
Sampl	e Date:	18 Aug	j-15 11:34		Material: L		ranyl Sulphate	e		Pro	ect: Refe	erence Toxicity Program		
Receip	t Date:	18 Aug	g-15 11:34				Reference Toxicant (U)							
Sampl	e Age:	n/a		- 3	Station	In	House							
Linear	Interpo	lation	Options		73			TV-						
X Tran			ransform		Seed		esamples	Exp 95%		thod				
Log(X+	1)	Lin	ear		1275820	20	00	Yes	Two	-Point Inter	olation			
Point !	Estimate	es												
Level	µg/L		95% LCL	95% L	JCL									
IC5	57.69		26.23	161.5										
C10	80.4		5.833	156.2										
C15	99.02		11.53 39.13	172.6										
IC25	150		76	221.7										
IC40	243.2		206.9	279										
C50	300.9		268.5	336.9										
Growt	h rate (s	urface	area) Su	mmary				Cal	culated V	ariate				
Conc-			Code	Count	_	ean	Min	Max	Std Err	Std Dev	CV%	%Effect		
0.06			SS	3	0.	3451	0.3344	0.3593	0.00741	0.01283	3.72%	0.00%		
40				2	0.	4004	0.39	0.4109	0.01042	0.01473	3.68%	-16.03%		
77				2	0.	3394	0.3224	0.3563	0.01693	0.02395	7.06%	1.67%		
210				2	0.	2493	0.2451	0.2535	0.00418	0.005911	2.37%	27.76%		
420				2		128	0.1271	0.1288	0.000849			62.91%		
660				2	1.00	04194	0.02937	0.05451	0.01257	0.01778	42.39%	87.85%		
880				2	-0	.01903	-0.04572	0.007671	0.0267	0.03775	-198.45%	105.51%		
Growt	h rate (s	urface	area) De	tall										
Conc-	ıg/L		Code	Rep 1		ep 2	Rep 3							
0.06			SS	0.341		3593	0.3344							
40				0.39		4109								
				0.322	5 1.25	3563								
				0.253		2451								
210				0.127		1288								
77 210 420				The last law are										
210				0.054		02937 .04572								

007-240-543-9 CETIS^{-III} v1.9.0.9 Analyst QA:______

Figure I25 Continued

CETIS Analytical Report

Report Date: Test Code: 02 Sep-15 13:45 (p 2 of 2) 1475L | 17-5248-7993

Lemna Growth Inhibition eriss ecotoxicology lab

Analysis ID: 20-1848-3504 Endpoint: Growth rate (surface area) CETIS Version: CETIS V1.9.0

Analyzed: 02 Sep-15 13:42 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Graphics

007-240-543-9 CETIS™ ∨1.9.0.9 Analyst:_____ QA:_____

ASTM, 1992.. Standard guide for conducting static toxicity tests with Lemna gibba. *American Society for Testing and Materials*. E1415-91. Philadelphia, USA.