

Australian Government

Department of the Environment and Energy Supervising Scientist internal report

The Department acknowledges the traditional owners of country throughout Australia and their continuing connection to land, sea and community. We pay our respects to them and their cultures and to their elders both past and present.

Updated procedure for the 72 hour algal growth inhibition toxicity test using *Chlorella* sp.

Ceiwen Pease, Thomas Mooney, Melanie Trenfield, Claire Costello and Andrew Harford

> Supervising Scientist Branch GPO Box 461, Darwin NT 0801

> > September 2016

Release status - unrestricted

Australian Government

Department of the Environment and Energy Supervising Scientist How to cite this report:

Pease C, Mooney T, Trenfield M, Costello C & Harford A 2016. Updated procedure for the 72 hour algal growth inhibition toxicity test using *Chlorella* sp. Internal Report 645, September, Supervising Scientist, Darwin.

Authors of this report:

Ceiwen Pease - Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia

Thomas Mooney - Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia

Melanie Trenfield - Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia

Claire Costello - Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia

Andrew Harford -Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia

The Supervising Scientist is a branch of the Australian Government Department of the Environment and Energy.

Supervising Scientist

Department of the Environment and Energy

GPO Box 461, Darwin NT 0801 Australia

environment.gov.au/science/supervising-scientist/publications

© Commonwealth of Australia 2016

IR645 is licensed by the Commonwealth of Australia for use under a Creative Commons By Attribution 3.0 Australia licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logo of the agency responsible for publishing the report, content supplied by third parties, and any images depicting people. For licence conditions see: http://creativecommons.org/licenses/by/3.0/au/

Disclaimer

The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment and Energy.

While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication.

Contents

1
2
3
4
5
6
7
8
9 9 9
11
12
13
15
16
17
18
19
20
20
20
20
21
22
22

2 Methods	22
3 Results and discussion	23
Annendia C. Defense as toxisity testing with your in	
Appendix C Reference toxicity testing with uranium in Synthetic Soft Water	24
	24
1 AllIIS 2 Method	24
2 Neulto	24
	24
	20
Appendix D Synthetic Soft water preparation	27
1 Safety	27
2 Preparation of solution	27
3 Making stocks	27
Appendix E Analysis of algal densities using the Accuri C6	
flow cytometer	29
1 Start-up Clean	29
2 Validation beads	29
3 Final clean	32
5 Shutdown procedure	34
Appendix F Calculation of algal growth constant	36
Appendix G Example end of test worksheet	40
Appendix H Lists of toxicity tests performed to determine	
nutrient concentrations and subsequent reference toxicity	
tests	41
Appendix I Water Quality measurements	42
Appendix J Chemical analyses	49
Appendix K Analytical reports	56

Executive summary

Chlorella sp. is one of five species routinely used in the Supervising Scientist ecotoxicology laboratory to derive site-specific water quality guideline values that are implemented in the creeks surrounding Ranger uranium mine in northern tropical Australia. Data for this species, which is native to the region, have contributed to the derivation of toxicity estimates for a number of contaminants of potential concern. The procurement of a new flow cytometer, which is able to quantify lower algal cell densities compared to previous methods, has allowed for the refinement of the test method to be more ecologically relevant.

Previous studies have demonstrated an increase in sensitivity of algae to metals associated with lower algal cell inoculation density (Moreno-Garrido et al 2000, Franklin et al 2002). Reducing the algal cell density within the test system also allows for a reduction in the concentration of nutrients added to the test medium. Dissolved metals and nutrients are known to interact, and this has the potential to interfere with the assessment of metal toxicity. Consequently, studies were undertaken to assess algal cell inoculation density and nutrient concentrations in order to optimise the sensitivity of the 72 h *Chlorella* sp. growth inhibition toxicity test. The outcome of these studies was an updated test method that uses an algal inoculation density of 3 x 10^3 cells ml⁻¹ (one order of magnitude lower than the original test method) and nitrate and phosphate concentrations of 3.63 mg L⁻¹ nitrate and 34.5 µg L⁻¹ phosphate (one quarter of the concentrations in the original test method). These refinements have resulted in a test system that is more representative of natural systems, which is an important requirement for developing toxicity tests. This report describes the revised test method and the studies used to define the test parameters.

1 Introduction

The tropical microalga, *Chlorella* sp. has been cultured continuously in the Supervising Scientist ecotoxicology laboratory for 25 years. This is one of five species routinely used to derive site-specific water quality guideline values, which are implemented in the creeks surrounding Ranger Uranium Mine in the Alligator Rivers Region in tropical northern Australia. The protocol, detailed in (Riethmuller et al 2003) uses an algal density of 3 x 10^4 cells ml⁻¹, and is measured by performing electronic cell enumeration using electro-zoning methods (i.e. Coulter Multisizer II Particle Analyser, Beckman-Coulter). This protocol has been effective for assessing the toxicity of contaminants to *Chlorella* sp.. The reproducibility of the protocol (as evident from results of these studies. While the protocol is currently effective, it is important to continue to refine and improve protocols to make them as reproducible and sensitive as possible.

Studies have shown increased sensitivity to metals in toxicity tests when lower initial densities of algae are used (Moreno-Garrido et al 2000, Franklin et al 2002). This reduced sensitivity is likely to be due to increased metal accumulation rates at lower densities (Franklin et al 2002). Lower algae densities also enable nutrients, which are required within the test medium, to be reduced to concentrations that better reflect those which occur in the environment. Nutrients, such as phosphate, readily bind with some contaminants and can reduce their bioavailability and toxicity (Mkandawire et al 2006, Mkandawire et al 2007). Therefore, reducing the levels of nutrients within the test medium often increases the sensitivity of the test. Therefore, it is ideal to minimise both initial algal cell densities and concentrations of nutrients to levels as close as possible to environmental concentrations.

The use of flow cytometry instead of electro-zonation or manual count methods for counting algal cells has made it possible to accurately measure much lower densities of microalgal cells per millilitre of test medium. The acquisition of a flow cytometer by the Supervising Scientist ecotoxicology laboratory has, thus, enabled the ability to optimise the 72 h *Chlorella* sp. growth inhibition toxicity test for both initial algal cell density and, consequently, nutrient concentrations. This report describes the revised method for the *Chlorella* sp. toxicity test, and also provides details of the studies undertaken to enable the method to be updated.

2 Objective

The objective of a test series (i.e. 3-4 definitive tests) is to determine the concentrations of a specified chemical or whole effluent that shows the median effect concentration (e.g. EC50). This is the concentration of a chemical in solution that is estimated to cause a 50% effect concentration of a sublethal response of test organisms. This is measured as the 50% effect population growth of the tropical alga *Chlorella* sp. over 72 h (Riethmuller et al 2003).

3 Principle of the test

Exponentially growing cells of *Chlorella* sp. are exposed to a concentration range of a toxicant or water of interest over a 72 h period. The cell counts are performed at 48 h, 72 h, and occasionally 24 h, to calculate cell division rates for the algal population over time. The concentration-response relationship is modelled using non-linear regression and toxicity estimates are derived from this model. This test is based on international standards, specifically:

- OECD (2011) test number 201: Freshwater alga and cyanobacteria, growth inhibition test; and
- USEPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th edition.

4 Test organism

The unicellular green alga, *Chlorella* sp., has been continuously cultured in the ecotoxicology laboratory for the past 25 years (see Riethmuller et al (2003) for details). *Chlorella* sp. was isolated from surface waters of Magela Creek in Kakadu National Park (Georgetown Billabong) by Armando Padovan in 1991.

5 Dilution water

Depending on the aim of the test, either synthetic soft water (SSW) or uncontaminated natural water (often Magela Creek water (MCW) for Ranger related toxicity tests) is used as the test diluent.

Magela Creek water is collected from one of two locations along the creek. When there is flow in the creek during the wet season, water is collected by boat near Georgetown Billabong (Map Grid of Australia (MGA) Zone 53, 275320.954 East, 8597972.198 North). Throughout the rest of the year water is collected from Bowerbird Billabong closer to the source of the creek (MGA Zone 53, 287190 East, 8587265 North) where there is a persistent water body during the drier months.

Synthetic soft water was created to simulate the inorganic composition of MCW during the wet season. As a result, it lacks any form of organic carbon. Magela Creek water is very soft and slightly acidic with low alkalinity and low electrical conductivity. The SSW is made using the method in Appendix D. SSW is prepared as close to the start of an experiment as possible and is stored in the refrigerator in sealed polyethylene containers for up to two weeks.

6 Chemical solutions

All reagents used are analytical grade and stock solutions are made up in ultra-pure water (18 M Ω , Milli-Q, Millipore). The date of stock preparation, source and the person who made the solution are marked on each bottle. A label displaying the chemical name, formula and any required hazard symbols and first aid information must also be included on the bottle. These labels must adhere to the Supervising Scientist Branch (SSB) chemical labelling protocol (See SSB document WHS-029).

7 Test solutions

All test waters, regardless of diluent, need to be supplemented with nutrients in order to promote algal growth that is sufficient to measure a toxicological response. A buffer (1 mM HEPES; *N*-2hydroxypiperazine-*N*'-2ethanesulfonic acid) is required to minimise pH drift throughout the 72 h test period (Appendix B). The following steps must be followed when preparing test solutions:

- 5 L of nutrient-supplemented test water is made (using either MCW or SSW) to final nitrate and phosphate concentrations of 3.63 mg L⁻¹ nitrate (NO₃⁻) and 34.5 μ g L⁻¹ phosphate (PO₄³), respectively, and a final HEPES concentration of 1 mM.
- 500 ml of the above test water is allocated for each treatment.
- For each treatment, 50 ml aliquots are dispensed into three Erlenmeyer flasks. The remaining test solution for each treatment is used for the validation of toxicant and nutrient concentrations and water quality measurements.

The nutrient concentrations in this protocol differ from the original algal testing protocol (3.63 mg L^{-1} NO₃⁻ and 34.5 µg L^{-1} PO₄³⁻ compared to 14.51 mg L^{-1} NO₃⁻ and 138 µg L^{-1} PO₄³⁻ previously). The tests and method used to determine the new nutrient concentrations are shown in Appendix A.

8 Test conditions and quality analysis

At the start of each toxicity test, sub-samples (40 ml) of the control, a procedural blank and an ultra-pure water blank are collected in plastic sample bottles and acidified with 1% v/v nitric acid (HNO₃, Chem-supply). Samples are analysed by an analytical chemistry laboratory for Al, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Na, Ni, Pb, Se, SO₄, U and Zn using ICP-MS or ICP-OES. Samples are also taken from all other treatments and analysed for toxicants and modifying elements relevant to the test in question. Verification of nutrient concentrations (NO₃⁻ and PO₄³⁻) are performed by taking a 50 ml sub-sample from the control treatment and an ultra-pure water blank. Tests are conducted at 29 ± 1° C using a constant temperature growth cabinet with a 12 h light: 12 h dark photoperiod. Light intensity ranges between 100-150 µmol m⁻² s⁻¹ and is checked quarterly using a light meter.

Physico-chemical water quality parameters – i.e. electrical conductivity (EC), pH (WTW Multiline P4 Meter) and dissolved oxygen (DO, WTW inoLab Multiline Level 1) - are measured at the start and conclusion of the test using a pooled sample of each treatment. Temperature is monitored with a probe placed in a 50 ml vial containing 30 ml of ultrapure water at 5 min intervals and recorded using a remote logging system (Testo Saveris Professional, Lenzkirch, Germany). During the testing period, test containers are removed from the temperature controlled chamber for the minimum amount of time to maintain as constant temperature as possible throughout the test.

Results of the chemical analyses are considered acceptable if the control, procedural blank and ultra-pure water blank are free of contamination and the measured spiked toxicant concentrations are within 20% of nominal concentrations. Water quality data were considered acceptable if: the recorded temperature of the incubator remained at $29 \pm 1^{\circ}$ C; the recorded pH of the control group was within ± 1 unit of Day 1 values; the EC for the control solution was within 10% of the values obtained on Day 1; and the DO concentration was greater than 70% saturation throughout the test.

9 Apparatus and test equipment

9.1 Container preparation

All equipment that comes into contact with test organisms, control water or test solutions should be made of a material which is suitable to the toxicant in question. For metals, a plastic (e.g. polyethylene) should be used, where possible, whereas for organics, glass is a more suitable material. All plastic and glassware is washed by soaking in 5 % HNO₃ for 24 h before undergoing a detergent wash (Neodisher Laboclean, phosphate free, Miele, Gütersloh, Germany) and two rinses in a laboratory dishwasher (Miele, Gütersloh, Germany) with deionised reverse osmosis water (Elix, Millipore, Massachusetts, USA). If metals are being tested, glassware used for the incubation of algae in toxicity tests must be silanised with 2% dimethyldichlorosilane in 1,1,1-trichloroethane (Coatasil, Thermofisher Scientific, Massachusetts, USA) to decrease metal adsorption to the glass.

9.2 Equipment

- Flow cytometer (e.g. Accuri C6, BD)
- 15 ml glass tissue homogeniser with Teflon pestle
- Disposable 5 ml polystyrene round-bottomed tubes
- Light-tight constant temperature growth chamber (set at 29 °C)
- Merck ultra-pure water purification system or similar
- Refrigerator (set at 4 °C)
- pH, electrical conductivity and dissolved oxygen meters
- A-grade volumetric flasks (500 ml and 5 L)
- Chemicals and reagents
- Analytical balance and weigh boats
- Centrifuge 4 x 500 ml capacity with swing out buckets
- Plastic centrifuge tubes (50 ml)
- Vortex mixer
- Borosilicate glass 200 ml Erlenmeyer flasks with aluminium caps
- Automatic adjustable pipettes (100 µL, 1 ml and 5 ml)
- Disposable microlitre pipette tips
- Light meter
- Magnetic stirrer and stirrer bars
- Polyethylene storage containers (1 L)
- 120 ml polystyrene water parameter vials
- Cell scraper
- Testo SaverisTM temperature monitoring system
- Random number sheet

- 40 ml and 15 ml sterile plastic sample tubes
- 50 ml plastic bottles for nutrient samples

10 Area for test preparation

The preparation of test solutions should be carried out in an area with ample room and free of contamination from harmful vapours, dust or disturbance. Throughout the test workers should take care not to introduce any contaminants during daily observations and water exchanges by washing hands and arms and wearing disposable gloves. When working with uranium additional precautions must be taken such as using designated benches within the laboratory and disposing of uranium waste down specific sinks within the laboratory (See eriss ecotoxicology lab uranium ASA for the full requirements).

11 Recording data

The number of algal cells in each test flask is counted at 48 h, 72 h and, occasionally, 24 h after test commencement (see Section 12 and Appendix E for details). Two additional flasks are inoculated at the beginning of the test (i.e. Day 0) and these are counted to measure the starting algal cell density. These data are then used to calculate algal growth rate (Appendix G). The pH, dissolved oxygen and electrical conductivity are measured on a subsample of test waters at the start and end of the test. Continuous temperature data is collected throughout the test by the Testo SaverisTM temperature probe inside the incubator.

12 Test procedure

Day 0

Chlorella sp. cells are harvested from a 4-5 d old stock culture as these are in the exponential phase of growth. The algal cells should be centrifuged in a 50 ml plastic centrifuge tube at 1310 g for 7 minutes. The supernatant is then decanted and the cell-pellet resuspended in approximately 30 ml of ultra-pure water by vortexing. The washing process is repeated three times to ensure that the nutrient-enriched culture medium is removed.

After three rinses the pellet is resuspended in approximately 15 ml of ultra-pure water. Two dilutions of this cell suspension are prepared; a 1:10 dilution (e.g. 2 ml cells into 20 ml ultra-pure water) and a 1:100 dilution (0.2 ml of 1:10 dilution into 20 ml ultra-pure water). The 1:100 dilution is used to determine the volume of the 1:10 dilution inoculum required to have the correct final cell density.

Inoculum volume is determined from a 25 μ L sub-sample using the flow cytometer (for complete instructions on measuring algal density and setting up the Accuri C6 flow cytometer, see Electronic cell enumeration section below and Appendix E).

The cell count from the flow cytometer is multiplied by the dilution factors ($40 \times$ for the 25 µL subsample taken by the flow cytometer and $100 \times$ for the initial 1:100 dilution) to give the density of the washed cell suspension in cells ml⁻¹. This value is then divided by the desired final cell density in each 50 ml aliquot of test solution to give the volume of the 1:10 dilution to add to each test flask (see example below). Two additional flasks are also inoculated and sampled on day 0 to confirm that the cell inoculation density is 3×10^3 cells ml⁻¹.

Example:

= 709.25
= 70925
= 2.84 x 10 ⁶

 $\frac{3 \times 10^3 \times 50 \text{ mL}}{2.84 \times 10^6}$ = 0.0528 = 53 \u03c0 \u03c0 added to each test flask of 50 ml test solution

Test solutions are prepared as described in section 6 and are equilibrated for 2 h.

Tests are performed with three replicates per treatment at an algal cell density of 3 x 10³ cells ml⁻¹. Given the variability between replicates within a treatment is usually low ($\bar{x} = 2.31$ % CV in controls of tests to date), this design may be changed to two replicates per treatment if required. This also allows for more toxicant concentrations to be tested.

One flask with test solution but without algae is used as a background count correction for the flow cytometer for each treatment.

NOTE: If test solutions are similar in composition, one blank flask can use used for all treatments.

The test flasks are then placed randomly on the shelves in a light-tight constant temperature growth chamber at $29 \pm 1^{\circ}$ C on a 12:12 h light, dark cycle at 100-150 photons PAR m⁻² s⁻¹.

Days 1-3

Each flask is gently agitated by hand twice daily throughout the test to avoid gas limitation; this is done by swirling the solution approximately six times in the clockwise and anti-clockwise direction.

The cell density in each flask is determined at both 48 and 72 h by using the flow cytometer (as per Step 3 and Appendix E).

Electronic cell enumeration

Each flask should be gently agitated using a cell scraper to resuspend the algal cells. A 2 ml subsample is then taken and placed in a glass tissue grinder and homogenised using a Teflon pestle to break down any clumps of algal cells. $500 \,\mu$ L of this sample is then placed in a clean 2 ml test tube and placed on the flow cytometer sampling stage. Three 25 μ L sub-samples are analysed by the flow cytometer and an average taken of the number of events that occur within the gated region that represents algae auto-fluorescing in the red colour. This process is then repeated for each replicate per treatment with the blank flask containing no algae measured first to determine background levels of fluorescence.

The flow cytometer is back-flushed between each treatment. The homogeniser and pestle are also rinsed with ultra-pure water and two new test tubes are used for each treatment.

13 Randomisation

Each day, a new set of random numbers must be used to assign the position of each flask within the incubator. Each flask has a number written on the top of the tin foil lid and is placed into the incubator according to the order of the numbers on the random number sheet. The flasks need to be positioned on the edges of each shelf as close to the light source as possible to ensure that light exposure is maximised. Randomisation of flask position in the incubators is an important part of the experimental design. Random numbers are obtained from a random number table or generator for each day of the test. A set of random numbers is unique for each test and is not to be reused.

14 Reference toxicants

The use of reference toxicants enables the response of the test organism to be assessed over time to ensure the response is reproducible (see Appendix C for the current reference toxicity program). This process also checks the proficiency of operators and laboratory standards. Uranium (U, added as uranyl sulphate) is used in a concentration range from 5-80 μ g L⁻¹. Synthetic soft water is used as the diluent. The EC50 value, calculated from the concentration-response curve should fall within 3 standard deviations (SDs) of the mean on the quality control chart for the test species. If the value falls outside 2 SDs of the mean, it is a warning that there may be something wrong with the test or the sensitivity of the organism has changed. It is important to note that a control chart cannot be produced or considered reliable with less than 5 values.

15 Acceptability of test data

The test data are considered acceptable if:

- 1. The recorded temperature of the incubator remains within the prescribed limits ($29 \pm 1^{\circ}$ C),
- 2. The growth rate of the control algae is within the range 1.9 ± 0.15 (mean \pm standard deviation) doublings per day,
- 3. There is <20% co-efficient of variability (CV) in the control growth rate,
- 4. The recorded pH is within the prescribed limits and,
- 5. The results of reference toxicity testing are within the set limits.

16 Analyses of test data

The growth rate of the algae in each flask is calculated using linear regression analyses (Appendix F). A regression is plotted for \log_{10} cell density vs. time (h) to determine the slope of the line for each flask, which is equivalent to the cell division rate per h (μ) for each treatment. Doublings per day are calculated by multiplying the cell division rate by 24 (the hours in a day) then by the constant of 3.32. The algal population growth constant is based on calculations done by CSIRO and are shown in Appendix F. The growth rates of each treatment are presented as a function of the control response and these are plotted against measured toxicant concentrations. The endpoint of the algal growth test is measured as the 72 h EC50. Linear interpolation is used to calculate EC values when performing reference toxicity tests using uranium (U) to allow for comparison with historical reference toxicity data but in all other toxicant tests non-linear regressions (e.g. generally three parameter log-logistic models) are used as they provide a more accurate fit to the data. Toxicant concentration is log transformed in all analyses.

References

- Franklin NM, Stauber JL, Apte SC & Lim RP 2002. Effect of initial cell density on the bioavailability and toxicity of copper in microalgal bioassays. *Environmental Toxicology and Chemistry* 21 (4), 742-751.
- Markich SJ 2002. Uranium speciation and bioavailability in aquatic systems: An overview. *The Scientific World Journal* 2, 707-729.
- Mkandawire M, Taubert B & Dudel EG 2006. Limitations of growth-parameters in Lemna gibba bioassays for arsenic and uranium under variable phosphate availability. *Ecotoxicology and Environmental Safety* 65 (1), 118-128.
- Mkandawire M, Vogel K, Taubert B & Dudel EG 2007. Phosphate regulates uranium (VI) toxicity to Lemna gibba L. G3. *Environmental Toxicology* 22 (1), 9-16.
- Moreno-Garrido I, Lubián LM & Soares AMVM 2000. Influence of Cellular Density on Determination of EC50 in Microalgal Growth Inhibition Tests. *Ecotoxicology and Environmental* Safety 47 (2), 10//, 112-116.
- OECD. 2011. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test. OECD Publishing, Paris, <u>http://dx.doi.org/10.1787/9789264069923-en</u>.
- Riethmuller N, Camilleri C, Franklin N, Hogan AC, King A, Koch A, Markich SJ, Turley C & van Dam RA 2003. Ecotoxicological testing protocols for Australian tropical freshwater ecosystems. Supervising Scientist Report 173, Supervising Scientist, Darwin, Northern Territory, Australia.
- Trenfield MA, Ng JC, Noller BN, Markich SJ & Dam RAv 2011. Dissolved Organic Carbon Reduces Uranium Bioavailability and Toxicity. 2. Uranium[VI] Speciation and Toxicity to Three Tropical Freshwater Organisms. *Environmental Science & Technology* 45 (7), 2011/04/01, 3082-3089.
- USEPA 2002. Methods for Measuring the Acute Toxicity of Effulents and Receiving Waters to Freshwater and Marine organisms, 5th edition. EPA-821-R-02-012, U.S. Environmental Protection Agency, Office of Water, Washington D.C., USA.

Appendix A Nutrient reduction trials

1 Aims

Tests were performed to establish the minimum concentration of nitrate (NO₃⁻) and phosphate (PO₄³⁻) that can be added and produce acceptable algal growth over 72 h without nutrients being a limiting factor within the test system.

2 Method

Five tests were conducted with reduced cell density (3 x 10³ cells ml⁻¹) and reduced nutrients. Nutrient levels ranging from 1/64th of the original nutrient concentration (2.16 μ g L⁻¹ PO₄³⁻ and 227 μ g L⁻¹ NO₃⁻¹) to the full ration (14.51 mg L⁻¹ NO₃⁻ and 138 μ g L⁻¹ PO₄³⁻) were tested to determine the minimum concentration of nutrients required to maintain acceptable control growth (Table A1). The complete list of tests is shown in Appendix G. All tests were performed in SSW amended with different volumes of PO₄³⁻ and NO₃⁻ added using the method described above.

Table A1 Summary of reduced nutrient trials showing growth rate range and nutrient concentrations tested

Test Code	Growth rate range (doublings d ⁻¹)		Concentrations tested (µg L ⁻¹) ^a
12((C		Ν	453, 907, 1209, 1814, 3628, 7255, 14510
1300G	0.62 – 1.70	Р	4.31, 8.63, 11.5, 17.3, 34.5, 69, 138
1373G	1.35 – 1.89	Ν	907, 1209, 1814, 2418, 3628
		Р	8.63, 11.5, 17.3, 23, 34.5
127(0)		Ν	227, 453, 605, 907, 1209, 1814
13/0G	0.71 – 1.43		2.16, 4.31, 5.75, 8.63, 11.5, 17.3
1378G	0.91 – 1.70	Ν	907, 1209, 1451, 1814, 2418
		Р	8.63, 11.5, 13.8, 17.3, 23
12900	1.08 – 1.66	Ν	1209, 1451, 1814, 2418, 2902
1380G		Р	11.5, 13.8, 17.3, 23, 27.6

a The original concentration of $PO_{4^{-3}}$ and $NO_{3^{-}}$ added to test medium was 14.51 mg L⁻¹ $NO_{3^{-}}$ and 138 µg L⁻¹ $PO_{4^{-3}}$

3 Results

Algal population growth rates consistently above the original test acceptability criterion of 1.4 ± 0.3 doublings d⁻¹ (Figure A1.) were observed in all concentrations of nutrients above 1/8 of the original nutrient provision (i.e. 1.815 mg L⁻¹ NO₃⁻ and 17.3 µg L⁻¹ PO₄³⁻). Based on this information, a new nutrient concentration of ¹/₄ of the original nutrient dose was selected (i.e. $3.63 \text{ mg L}^{-1} \text{ NO}_{3}^{-}$ and $34.5 \text{ µg L}^{-1} \text{ PO}_{4}^{3-}$). This value was selected due to the consistently high growth rates and small variance observed. A lower concentration was not selected to ensure that nutrients would not become a limiting resource in the testing environment. All measured nutrient

concentrations and quality control checks associated with these data are shown in Appendices I and J.

Figure A1 Pooled population growth rates for the five reduced nutrient trials performed (± S.E.). Red line represents the original population growth acceptability criteria of 1.4 doublings d⁻¹.

4 Discussion

We established that a reduction of nutrients to a quarter of the original ration provided sufficient nutrients to *Chlorella* sp. at a reduced cell density of 3×10^3 cells ml⁻¹. A nutrient reduction to $3.63 \text{ mg L}^{-1} \text{ NO}_3^-$ and $34.5 \mu \text{g L}^{-1} \text{ PO}_4^{-3-}$ produced an average control growth rate over the nine successful reference toxicity tests of 1.9 doublings d⁻¹. This growth rate was higher than the original test protocol acceptability criterion for population growth rate (1.4 doublings d⁻¹) and seeing as this is a new methodology a new acceptability criterion was created. A higher growth rate would be expected with a reduced algal cell density due to there being a lower number of cells per ml of medium and, as such, more capacity for growth before nutrients become a limiting factor. It may have been possible to reduce the nutrient levels further, as there was little reduction in population growth rate observed at nutrient concentrations as low as 1/8 of the initial ration. However, it was decided to select slightly higher concentrations to ensure that nutrients did not become limiting. Statistical reports associated with this data can be found in Appendix K.

Appendix B Use of HEPES buffer in algal toxicity tests

1 Aims

Tests were performed to establish whether HEPES (N-2hydroxypiperazine-N'-2ethanesulfonic acid) was required in the new test system. Due to the reduction in nutrients and *Chlorella* sp. population starting density within the new system it was possible that pH would remain within the acceptability criterion of 1 pH unit in the absence of a buffer as fewer waste products would be produced by the algae present.

2 Methods

Three tests were conducted with an additional control treatment without HEPES included. Tests were performed in SSW with a *Chlorella* sp. starting cell density of 3×10^3 cells ml⁻¹. Nutrients were added in the reduced concentrations of 3.63 mg L^{-1} of NO₃⁻ and $34.5 \,\mu\text{g L}^{-1}$ of PO₄³⁻. Algal population change was measured with flow cytometry using the method outlined in Section 12 of the main report. The complete list of tests is shown in Appendix H and associated quality control checks are in Appendices I and J. Nominal nutrient concentrations were used for analyses as the measured concentrations we received from an external analysis company were inaccurate (see Appendix J, Table J2). This has been an ongoing problem in the *Supervising Scientist* ecotoxicology lab for some time, a solution for measuring nitrate and phosphate accurately is needed.

Table B1 pH variation and percent coefficient of variation (% CV) in control treatments with and without 1mM of the buffer HEPES added to the test system after 72h (n=3). pH samples were measured from a pooled sample taken from the three test flasks.

	pH variation		% CV	
Test	1mM HEPES	No HEPES	1mM HEPES	No HEPES
1455G	0.31	0.48	0.72	13.9
1466G	0.07	0.59	0.19	1.63
1468G	0.09	0.34	0.93	21.5

Figure B1 *Chlorella* sp. population growth rate in SSW with and without the inclusion of 1mM HEPES (n = 3).

3 Results and discussion

Reducing the initial starting density notably improved pH control with, at most, a 0.2 unit drift in pH in the nutrient trials and 0.3 of a unit in reference toxicity testing. Even in the absence of the HEPES buffer, which is used to control pH in algal tests, a change of up to 0.59 units was observed. While pH control was within the 'acceptability criterion of 1 pH unit' in the absence of HEPES (Table B1) the population growth rates were lower (Figure B1) and more variable between replicates (%CV HEPES $\bar{x} = 0.61$, No HEPES $\bar{x} = 12.35$). Moreover, pH changes of around 0.5 of a unit can still result in marked changes in metal speciation and bioavailability. Consequently, it was considered appropriate to retain HEPES in the test medium. In two of the tests performed abnormally high concentrations of iron, aluminium and manganese were detected; this indicates a source of contamination. Results for these tests fit within our expectations and as such these tests were included in analyses.

Appendix C Reference toxicity testing with uranium in Synthetic Soft Water

1 Aims

On finalisation of the new methodology reference toxicity tests were performed to determine how the new method would affect the sensitivity of *Chlorella* sp. to uranium.

2 Method

Uranium (U) toxicity tests were performed using the reduced nutrient concentrations and starting cell density of 3 x 10^3 cells ml⁻¹ in SSW. Initially, 7 U concentrations were tested ranging between 5 and 160 µg L⁻¹ to establish definitive concentration–response curves. After 5 repeatable tests, this was reduced to 5 concentrations ranging between 20 and 160 µg L⁻¹.

Control growth rates for each test were higher than with the past protocol of 1.4 ± 0.3 doublings d⁻¹ (Reithmuller *et al.*, 2003, Table C1) and a new acceptability criterion for population growth rate was calculated. After six tests, a growth rate acceptability criterion was derived by calculating the average and standard deviation of the growth rate of the control treatment for each test. The average was made the acceptability criterion and the standard deviation was used as the acceptable variance surrounding the criterion. Based on the control treatment growth rates in the reference toxicity tests a new acceptability criterion of 1.90 ± 0.15 doublings day⁻¹ was calculated. All measured U concentrations and quality control checks associated with this data are shown in Appendices I, J and K.

3 Results

Nine valid U toxicity tests were performed in synthetic soft water (Appendix D) using the nutrient concentrations (¹/₄ of the original nutrients of Reithmuller et al (2003)) of 3.63 mg L⁻¹ NO₃⁻ and 34.5 μ g L⁻¹ PO₄³⁻. The 50% Effect Concentrations (EC50) for the nine tests ranged between 9 and 53 μ g L⁻¹. The current running mean (± 2 Standard Deviations, SD) for the new method is 35 (6, 63) μ g L⁻¹ compared to 42 (7, 76) μ g L⁻¹ of U in the original method (Figure C1).

Test Code	Date	rate (Doublings d ⁻¹)	EC50 (μg L ⁻¹ U)
1383G	03/02/14	1.84 (8.36)	40 (35, 45)
1389G	18/02/14	1.88 (2.39)	41 (37, 45)
1404G	13/05/14	1.86 (0.42)	39 (37, 40)
1415G	05/08/14	1.74 (3.44)	49 (46, 55)
1431G	09/12/14	1.78 (1.58)	53 (41, 86)
1455G	17/03/15	2.11 (0.72)	37 (28, 48)
1466G	09/06/15	2.17 (0.19)	9 (8, 10)
1468G	22/06/15	1.91 (0.93)	19 (18,19)
1479G	07/09/15	2.05 (2.78)	25 (23, 27)

Table C1 Control population growth rates and toxicity estimates for reference toxicity tests using a starting algal density of 3 x 10³ cells ml⁻¹. Values in parentheses in the 'Control population growth rate' column represent % CV and in the 'EC50' column represent 95% confidence limits.

Figure C1 Reference toxicant control chart for *Chlorella* sp. using population growth rate as an endpoint. Data points represent EC50 μg L⁻¹ U toxicity estimates and their 95% confidence limits (CLs). Reference lines represent the following: broken lines – upper and lower 99% confidence limits (± 3 standard deviations) of the whole data set; dotted lines – upper and lower warning limits (± 2 standard deviations); unbroken line – running mean

4 Discussion

At a reduced cell density and nutrient level, Chlorella sp. sensitivity to U increased slightly (17% reduction -42 to 35 µg L⁻¹), albeit non-significantly. This result was driven by the last three tests, which were more sensitive than the previous six tests (Figure C1). An increase in sensitivity would be expected, as ligands such as phosphate cause speciation changes when complexation occurs with U in solution (Markich 2002). This complexation is known to reduce U toxicity to freshwater organisms (Markich 2002, Trenfield et al 2011). The lower starting algal density would also contribute to the reduction in sensitivity as less metals have been found to bind to algal cells at higher algae densities (Franklin et al 2002). Seeing as only nine tests have been performed so far, it is difficult to determine whether the more sensitive results in the last three tests were due to a change in the Chlorella sp. culture or due to natural variation in U sensitivity. When a comparison is made between the variation in sensitivity of the current and previous method we see that it is similar, if not a little more variable in the old method (current test method EC50 range = 8.96 -53.17 μ g L⁻¹, old test method EC50 range = 10.12 - 74.91 μ g L⁻¹). Further reference toxicity testing will allow for this to be better characterised. In one of the reference toxicity tests abnormally high concentrations zinc were detected; this indicates a source of contamination (Table J3). The growth rate and toxicity estimate for this test fit within our expectations and as such this test was included in analysis. Statistical analyses associated with this data are found in Appendix K.

Appendix D Synthetic Soft water preparation

1 Safety

Check the SDSs for any chemicals you are about to use prior to making up solutions to ensure you are aware of any WH&S issues and the appropriate PPE. There are no risks associated with SSW due to the low concentrations of all chemicals added. Gloves, eye protection and a lab coat must be worn while preparing Synthetic Soft Water.

2 Preparation of solution

- Fill a 5 L volumetric flask with ultra-pure water and pour this into a clean 25 L plastic barrel designated for synthetic water preparation.
- Partially refill the 5L flask with ultra-pure water and add the appropriate amount of the 7 stock solutions (see Table 1) to the flask. Make the flask up to volume with ultra-pure water and pour into the barrel.
- Fill the 5 L flask twice more to make the volume in the barrel equal 20 L.
- Aerate overnight to allow mixing and gaseous exchange.
- Check pH after a minimum of 12 h aeration and adjust to 6.0 ± 0.15 using 0.05 M H₂SO₄ or 0.05 M NaOH.
- The water can be stored at 4°C for up to two weeks if necessary. The pH needs to be checked before use to ensure it remains within range.

3 Making stocks

Stock solutions are made up every 18 - 24 months.

- Add the appropriate amount of chemical in column 2 of Table D1.
- Make up 1 L of each stock solution at a time.

	Ingredient	Stock Solution (g L ⁻¹)	Volume of stock per 20 L	Nominal conc. of element in SSW
1	NaHCO ₃	72.34	1 ml	0.99 mg L ⁻¹
2	Al ₂ (SO ₄) ₃ .18H ₂ O*	17.26	1 ml	0.075 mg L ⁻¹
3	MgSO ₄ .7H ₂ O	121.52	1 ml	0.599 mg L ⁻¹
4	CaCl ₂ .2H ₂ O	32.96	1 ml	0.449 mg L ⁻¹
5	KCI	14.09	1 ml	0.3107 mg L ⁻¹
6	FeCl ₃ .6H ₂ O	10	1 ml	0.1285 mg L ⁻¹
7	Trace Element Solution	In 1 L add:	0.5 ml	
	CuSO ₄ .5H ₂ O	0.11		0.975 μg L ⁻¹
	ZnSO ₄ .7H ₂ O	0.123		0.699 µg L ⁻¹
	Pb(NO ₂) ₂ (from EnRad)	0.008		0.125 μg L ⁻¹
	MnSOH.O	1.188		9.654 µg L ⁻¹
	4 2 UO ₂ SO ₄ ·3H ₂ O (use 5gL ⁻¹ U stock in fridge 2)	0.007		0.1125 μg L ⁻¹

 Table D1 Stock solutions used to prepare synthetic soft water.

*Requires heating to dissolve

Appendix E Analysis of algal densities using the Accuri C6 flow cytometer

Prior to commencing algal density measurements the Accuri C6 must be run through a start-up process and performance check. The methods are detailed below.

1 Start-up clean

- Open the 'H₂O Start-up' file in the CFlow workspace.
- Select the back flush button in the workspace and wait for this process to run.
- Ensure there is a tube of at least 2 ml of ultra-pure water on the SIP.
- Select the next free data cell, label it with the date and run the ultra-pure water for 10 minutes.
- Save and close file.
- Place a tube of Extended Flow Cell Clean solution on the SIP.
- Open the 'Clean' file in the Maintenance folder.
- Select the next free data cell and run for 2 minutes.
- Save and close file. Reopen 'H₂O start-up' file.
- Select the back flush button in the workspace and wait for this process to run.
- Replace the tube of ultra-pure water on the SIP.
- Select the next free data cell and run the ultra-pure water again for another 10 minutes.
- Save and close file.

2 Validation beads

2.1 The need for validation

Prior to analysis of experimental samples, the performance of the Accuri C6 should be checked using validation beads. The validation should verify whether the lasers are correctly positioned.

The Accuri C6 should be able to distinguish a defined number of peaks within each fluorescence channel i.e. the 8-peak beads should show 8 peaks when a sample is run and the 6-peak beads should show 6 peaks. If these peaks are not discernible, there may be a problem with either the beads or the instrument. If it is a case of the latter, any data collected may be incorrect. Thus, each data collection event should be accompanied by a file that shows the validation bead data. It is important not to proceed with the analysis of any experimental samples until the validation process has been completed successfully.

2.2 Setup

A template for bead validation has been created which has pre-defined settings. The file name is 8 and 6 peak template.c6t. A workspace has been created for routine bead validations. Each workspace file has the capacity to hold 48 x 8-peak validation data points and 48 x 6-peak data points. The workspace should be saved with the date that corresponds with the first entry (e.g., 8 and 6 peak 200313). Once all 96 wells are filled, then a new workspace can be created, using the
pre-saved template. If for some reason, a new template needs to be created, ensure the following settings are entered:

Type 50000 in the *events* edit box and select *Ungated Sample* from the associated drop-down list (Figure E1). Set the fluidics to **Slow** rate (Under Fluidics Control in the Control Panel).

Rur	Limits	
Γ	Run Unlimited	
	50000	events
	00000	events
	in Ungated S.	ample 💌

Figure E1 Run Limit: 50000 Events.

Run 8-Peak Validation Beads

- 1. Open the current 8- and 6- peak validation workspace.
- 2. Prepare a sample of suspended 8-peak validation beads by adding 4 drops of the beads to 1 ml Ultra-pure water. A new set of validation beads is made up at the beginning of each test.
- 3. Vortex and place the tube on the Sample Introduction Platform (SIP).
- 4. Select the next empty data cell following the previous 8- peak validation. If this is the first run in a new template, select A1. Make sure the data cell in the CFlow template is empty before starting the run. If the button displays ADD TO, the cell already contains data.
- 5. Check that the fluidics is set to Slow
- 6. Click on the RUN button to start acquisition. Acquisition automatically stops after 50,000 total events are acquired.
- Name the sample by typing a name in the text box just above the Sample Grid. Include the date in the sample name to differentiate it from samples collected on other dates (Figure E2). Samples can be named before, during or after collection.
- 8. When the collection is finished, remove the sample tube
- Back flush the SIP. This can be achieved by either selecting the back flush icon or Instrument
 Run Back flush. Ensure a blotter or empty sample tube is under the SIP to catch the dripping fluid. Wipe excess fluid from the SIP with a lint-free Kimwipe.

NOTE: The R1 region may not encompass the main population of bead events on the FSC-H vs. SSC-H plot. This is common and acceptable at this stage.

A01 8-Peak Beads 20090218

Figure E2 Sample Name: 8-Peak Beads.

Run 6-Peak Validation Beads

- 1. Prepare a sample of suspended 6-peak validation beads by adding 3 drops each of Peak 1 and Peak 2 beads to 1 ml of Ultra-pure water.
- 2. Vortex and place the tube on the SIP.
- 3. Select the next empty data cell following the previous 6- peak validation and name the sample. If this is the first run in a new template, select E1 (Figure E3).
- 4. Again, verify that *Events* is still enabled and set at 50,000 in *Ungated Sample* and the fluidics is set to *Slow*.

- 5. Click on the RUN button.
- 6. Name the sample including the date in which it was processed.

NOTE: The R2 region may not encompass the main population of bead events on the FSC-H vs. SSC-H plot. This is common and acceptable at this stage.

```
E01 6-Peak Beads 20090218
```

Figure E3 Sample Name: 6-Peak Beads.

Saving validation bead data

By default, CFlow automatically saves validation bead data at the end of each run.

Sample and prompts you to save when moving between different workspaces. You can also save data manually at any time by selecting File > Save.

Analysing and recording validation bead data

After you collect the bead data, analyse the data using the *Collect* tab of CFlow to ensure that the C6 is functioning properly. The template has already predefined appropriate gate settings for the 8-peak and 6-peak validations.

To analyse the bead data:

- 1. Click on the well that contains the most recent 8-peak bead data.
- On the first FSC-H vs. SSC-H plot (scatter plot) in the bead file, adjust the pre-drawn region (R1) to encompass the main population by dragging the border of the region (Figure E4). R1 should contain more than 75% of all events.

NOTE: There is usually a "shadow" population (called *bead doublets* or *clumps*) that is slightly higher in FSC-H than the main cluster of beads; this is normal for these beads. Do not include the shadow group in R1.

Figure E4 Plot with Bead Doublets.

Verify that the next three plots (FL1-H, FL2-H, and FL3-H) are gated on scatter region R1 and that the plots display the message R1 in all next to the *GATE* button (Figure E5). If it is not displayed, click on the *GATE* button and select *R1in all events* from the pop-up dialog box.

NOTE: Gates may need to be moved slightly when a new packet of beads are opened as different batches of beads have slightly different characteristics. Move the gate to encompass the main population of beads but not the "shadow" population.

Figure E5 Example of data for 8-peak beads. The number of expected peaks is: FL1-H (8), FL2-H (8) and FL3-H (6). The peaks in FL4-H are not relevant.

Monitoring the Validation Bead data

A convenient way to monitor the Validation Bead data, and thus the C6 performance, is to store the 8- and 6- peak validation bead data in a single CFlow file, saving the data from each day in its own cell. Then, using the Statistics tab, a table can be created of the Mean channel numbers and Coefficient of Variation (CVs) for the top peaks, and for the forward scatter of the beads to make it easy to determine if the C6 performance is stable.

However, on a daily basis, it is sufficient to record the R1 and R2 percentages along with the CV for each of the M1, M2 and M4 peaks in the lab record book. This allows the user to quickly compare the results with previous entries. The R1 and R2 percentages should be over 75% and the FSC-H, FL1-H and FL2-H CVs should be less than 6%.

3 Final clean

- 1. When the collection is finished, remove the sample tube from the SIP and wipe off the end of the SIP with a lint-free tissue.
- 2. Back flush the SIP.
- 3. Open the workspace "H₂O start-up" in the maintenance folder and advance to the next empty data cell.

- 4. Check that the *Time* check box (*Min Sec*) in the Instrument Control Panel is set to ten minutes and that the fluidics are set to *Fast*
- 5. Click on the RUN button.
- 6. When the run is finished, leave the tube on the SIP.

The C6 is ready for experimental work after successful completion of the validation beads analyses.

4 Analysis of test samples

A template specifically for *Chlorella* sp., has been created and the file is named *Chlorella* TEMPLATE. Templates will have file name ending with .c6t (e.g. *Chlorella* TEMPLATE.c6t). The *Chlorella* TEMPLATE has predefined settings in place specifically tailored for *Chlorella* sp., algal cells. Figure E6 shows healthy algal counts at 48h in the template workspace.

To open a file template select *File* > *Open CFlow File or Template* >*Templates*> *Chlorella* TEMPLATE.c6t. Automatically, a blank workspace will open with all required parameters set. The C6 will prompt you to save this file before the first analysis can proceed.

Figure E6 Typical control Chlorella sp., count setting at 48 h.

4.1 Preparing a sample

- 1. Thoroughly mix the sample so that a representative sub-sample can be taken. Scrape the bottom of the flask using a Teflon scraper before sub-sampling.
- Pipette a sub-sample (min. 500µL) into a tissue grinder and homogenise the sample. Pour the sample into sample tube. Suitable tubes for algal samples are polystyrene falcon tubes with round bottoms. Algal cells can stick to the surface of the container so it is recommended that

samples are prepared just before being analysed. I.e. do not allow the sample to sit for longer than a few minutes.

4.2 Analysing a sample

- 1. Shake or agitate the sample in the tube before placing it onto the SIP.
- 2. If you are working from a predefined template, all data cells should have been pre-labelled with the sample ID. If you are not working from a template, type your sample ID in the text box. Click on the data cell.
- 3. Check that run limits and fluidics settings are correct. If you are working from a predefined template, these parameters should already be set. *Chlorella* sp., fluidics should be set to *Medium* speed and $25 \,\mu$ L sample volume.
- 4. Ensure the traffic light is green.
- 5. If green, then click the Run button.
- Repeat steps 2-5 twice more for triplicate readings. Several readings can be done on the same sample to achieve higher replication.
- 7. Back flush the fluidics line before moving on to a new treatment.
- 8. Repeat the above steps for the remainder of the test.
- 9. For the Chlorella sp., template, the region being counted is gated to the P2 region (Figure E7).

Plot 1: A01 A1-1 Gated on M2	Count	Volume (µL)
This Plot	14,771	25
P2	14,583	25

Figure E7 Chlorella sp. gated region counts vs. full plot counts

5 Shutdown procedure

When you finish collecting samples, rinse out the SIP to ensure cells or other particles are not left in the SIP.

- 1. Open the 'H₂O shutdown' file in the Maintenance folder.
- 2. Place a tube with 2 ml of filtered, de-ionized water on the SIP and advance to any empty data cell.
- 3. It should be set to run for 10 minutes.
- 4. Click on the RUN button.
- 5. Save this file and open the 'Clean' file in the Maintenance folder. Place a tube with 2 ml of extended clean solution on the SIP.
- 6. Select an empty data cell.
- 7. The time should be set to two minutes and the fluidics speed to fast.
- 8. Click on the RUN button.
- 9. Once the run is finished, remove the tube of cleaning solution from the SIP.
- 10. Select the back flush button in the workspace and wait for this process to run.
- 11. Re-open the 'H₂O shutdown' file.
- 12. Place a tube with 2 ml of ultra-pure water on the SIP.

- 13. Select an empty data cell.
- 14. Click on the RUN button.
- 15. Once this is complete turn the C6 off.

Appendix F Calculation of algal growth constant

At any time (t), the number of cells (N) is expressed as:

$$N = N_0 e^{\mu t} \tag{1}$$

Where μ is the specific rate constant.

The actual rate is $\frac{dN}{dt}$

The specific growth rate -
$$\mu = \frac{1}{t} \frac{\ln N}{N_0}$$
 (Take logarithm of eq. 1.) (2)

Convert to natural log

$$\mu = \frac{1}{t} \log \frac{N}{N_0} \ge 2.303 \tag{3}$$

Meanwhile, using eq. 3 to take the time for the number of cells to double yield.

$$\mu = \frac{1}{t_{2x}} \log \frac{2N_0}{N_0} (2.303) = \frac{1}{t_{2x}} \ln 2$$
(4)

Rate of doubling

$$\frac{1}{t_{2x}} = \frac{\mu}{\ln 2} \tag{5}$$

Rate of doubling per day

$$\frac{\mu}{\ln 2} \times 24h/day$$
Since $\mu = \frac{1}{t} \log \frac{N}{N_0} 2.303$
(6)

Then substituting into eq. 6.

Rate of doubling per day

$$\frac{1}{t}\log\frac{N}{N_0} (2.303 \div \ln 2) \ge 24$$
$$\therefore \frac{1}{t}\log\frac{N}{N_0} 3.32 \ge 24$$

Where $\mu =$ slope of log $N \ge t$ in hrs

Specific growth rate (μ)

$$\mu = \frac{1}{t} \ln \frac{N}{N_0} \tag{1}$$

Convert to logs

$$\mu = \frac{1}{t} \log \frac{N}{N_0} 2.303 \tag{2}$$

Meanwhile, using eq. 2, calculate the doublings, i.e. time for the number of cells to double yield

$$\mu = \frac{1}{t_{2x}} \log \frac{2N_0}{N_0} \ 2.303 \tag{3}$$

Convert to natural log

$$\mu = \frac{1}{t_{2x}} \ln 2 \text{ (Note: } \log \frac{2 \, \mathcal{H}_0}{\mathcal{H}_0} = \log 2 \text{)} \tag{4}$$

Now, "rate of doubling" is $\frac{1}{t_{2x}}$ therefore using equation (4) "Rate of doubling" = $\frac{1}{t_{2x}} = \mu \div \ln 2$ (5)

And since
$$\mu = \frac{1}{t} \log \frac{N}{N_0} 2.303$$
 (eq. 2.)

Then "rate of doubling" = $\frac{1}{t} \log \frac{N}{N_0} 2.303 \div \ln 2$ (6)

Then rate of doubling per day = $\frac{1}{t} \log \frac{N}{N_0} 3.32 \times 24 h/day$

And say $\frac{1}{t} \log \frac{N}{N_0} = \mu, \mu$ is the slope of log N vs. *t*(hrs)

Therefore rate of doubling per day = $\mu \ge 3.32 \ge 24$

At any time t, the number of cells (N) is expressed as

$$N = N_0 e^{\mu t} \tag{1}$$

where μ is the specific rate constant for the cell division

The actual rate is given by

$$Rate = \frac{dN}{dt}$$
(2)

i.e. the change in number of cells, dN, over a period of time, dt

Taking the log of eq. 1 and further simplifying gives:

$$\mu = \frac{1}{t} \ln \frac{N}{N_0} = \frac{1}{t} \left(\log \frac{N}{N_0} \right) 2.303 \tag{3}$$

i.e. 2.303 comes about due to a change from natural log (ln) to \log_{10}

Doublings per day

Using equation 3 -
$$\mu = \frac{1}{t} \left(\log \frac{N}{N_0} \right) 2.303$$

i.e. $t = \frac{1}{\mu} \left(\log \frac{N}{N_0} \right) 2.303$ (4)

the time for the number of cells to double yield is (t_{2x})

$$t_{2x} = \frac{1}{\mu} \left(\log \frac{2N_0}{N_0} \right) 2.303$$

= $\frac{1}{\mu} (\log 2) 2.303$ (5)

Convert back to natural logs (ln) then;

$$t_{2x} = \frac{1}{\mu} \ln 2 \tag{6}$$

Now, "Rate of doubling" = $\frac{1}{t_{2x}}$ therefore reciprocal of (6) Rate of doubling = $\mu \frac{1}{\ln 2}$ And from equation 3 $\mu = \frac{1}{t} \left(\log \frac{N}{N_0} \right) 2.303$ \therefore rate of doubling = $\frac{1}{t} \log \frac{N}{N_0} \ge \frac{2.303}{\ln 2} = \frac{24h}{day}$

(7)

$$= \mu x 3.32 \times 24 \text{h/day}$$
$$\mu = \frac{1}{t} \log \frac{N}{N_0}$$

Specific growth rate (
$$\mu$$
)
 $\mu = \frac{1}{t} \ln \frac{N}{N_0}$

Convert to log;

$$\mu = \frac{1}{t} \log \frac{N}{N_0} 2.303 \tag{2}$$

(1)

Meanwhile, using eq. 2, calculate doublings.

i.e. time for the number of cells to double yield $(2N_0)$

$$\mu = \frac{1}{t_{2x}} \log \frac{2N_0}{N_0} \ 2.303 \tag{3}$$

Convert to natural log -
$$\mu = \frac{1}{t_{2x}} \ln 2$$
 (4)

Since
$$\log \frac{2H_0}{N_{\text{FF}}} = \log 2$$

Now, "rate of doubling" is
$$\frac{1}{t_{2x}}$$
 therefore using equation 4
"Rate of doubling" = $\frac{1}{t_{2x}} = \mu \div \ln 2$ (5)
And since $\mu = \frac{1}{t} \log \frac{N}{N_0} 2.303$ (eq. 2)

Then "rate of doubling" = $\frac{1}{t} \log \frac{N}{N_0} 2.303 \div \ln 2$ (6) And say; $\frac{1}{t} \log \frac{N}{N_0} = \mu$, then μ is the slope of log N vs. t(h) $\mu t = \log N - \log N_0$ $\log N = \mu t + \log N_0$ Therefore 'rate of doubling' = $\mu x \frac{2.303}{\ln 2}$ Therefore doublings per day = $\mu x \frac{2.303}{\ln 2} x 24h/day$ and hence doublings/day = $\mu x 3.32 x 24$ where μ = slope of log N v t(h).

Appendix G Example end of test worksheet

Figure G1 Algal population growth rate calculation table

		Î	72	72	72			72	72	72		72	72	72	Ĺ	72	72	72			72	72	72	
	erence only		48	48	48		7	48	48	48		48	48	48		48	48	48			48	48	48	
	selow values for formula ref		0	0	0			0	0	0		0	0	0		0	0	0			0	0	0	
	Day 3 E		4.2380461	4.4014005	4.4742163			4.55145	4.6748611	4.605305		4.7126497	4.9319661	4.854913		4.9159272	4.9903389	4.8215135			4.8573325	4.9969492	4.9921115	
 wth Rates	Day 2		4.2380461	4.4065402	4.30103			4.4014005	4.4814426	4.519828		4.5118834	4.5550944	4.5365584		4.5092025	4.587711	4.5327544			4.4857214	4.5932861	4.5786392	
Log of Gro	Day 1								10															
	Day 0		3.447158	3.447158	3.447158			3.447158	3.447158	3.447158		3.447158	3.447158	3.447158		3.447158	3.447158	3.447158			3.447158	3.447158	3.447158	
																				2				
% ue				5%					%90				23%				29%					2%		
Me				8					Ŧ				-				4					9		
% Control Mea		8	74%	8 %68	92%			100%	111% 11	106%		114%	131% 1	125%		129%	136% 1:	123%	2		124%	137% 13	136%	
Pearson % Control Mea			89% 74%	8 %68 %68	97% 92%			96% 100%	97% 111% 10	93% 106%		97% 114%	131% 131% 1	99% 125%		100% 129%	99% 136% 1	98% 123%			99% 124%	99% 137% 13	99% 136%	
e (dbings/da Pearson % Control Me	Mean		89% 74%	1.08 89% 89% 8	97% 92%			%001 %96	1.35 97% 111% 1	93% 106%		97% 114%	1.57 99% 131% 1	99% 125%		100% 129%	1.65 99% 136% 1	98% 123%			99% 124%	1.69 99% 137% 13	99% 136%	
Growth Rate (dblngs/da Pearson % Control Mex	Mean		0.94 89% 74%	1.13 1.08 89% 89% 8	1.18 97% 92%			1.27 96% 100%	1.41 1.35 97% 111% 11	1.35 93% 106%		1.45 97% 114%	1.67 1.57 99% 131% 1	1.59 99% 125%		1.65 100% 129%	1.73 1.65 99% 136% 1:	1.56 98% 123%			1.58 99% 124%	1.74 1.69 99% 137% 13	1.73 99% 136%	
Slope Growth Rate (dblngs/da Pearson % Control Me	Mean		0.01177 0.94 89% 74%	0.01422 1.13 1.08 89% 89% 8	0.01477 1.18 97% 92%	0.01358		0.01599 1.27 96% 100%	0.01769 1.41 1.35 97% 111% 1	0.01698 1.35 93% 106%	0,01689	0.01823 1.45 97% 114%	0.02097 1.67 1.57 99% 131% 1	0.02000 1.59 99% 125%	0.01974	0.02065 1.65 100% 129%	0.02177 1.73 1.65 99% 136% 1	0.01959 1.56 98% 123%	0.02067		0.01988 1.58 99% 124%	0.02186 1.74 1.69 99% 137% 13	0.02176 1.73 99% 136%	
Day 3 Slope Growth Rate (dbings/da Pearson % Control Me	nii) by 104 Mean		1.73 0.01177 0.94 89% 74%	2.52 0.01422 1.13 1.08 89% 89% 8	2.98 0.01477 1.18 97% 92%	2.41 0.01358	н ¹	3.56 0.01599 1.27 96% 100%	4.73 0.01769 1.41 1.35 97% 1111% 1	4.03 0.01698 1.35 93% 106%	4,11 0,01689	5.16 0.01823 1.45 97% 114%	8.55 0.02097 1.67 1.57 99% 131% 1	7.16 0.02000 1.59 99% 125%	6.96 0.01974	8.24 0.02065 1.65 100% 129%	9.78 0.02177 1.73 1.65 99% 136% 1	6.63 0.01959 1.56 98% 123%	8.22 0.02067		7.2 0.01988 1.58 99% 124%	9.93 0.02186 1.74 1.69 99% 137% 13	9.82 0.02176 1.73 99% 136%	(and the second se
Day 2 Day 3 Slope Growth Rate (dbings/da Pearson % Control Me	nts in (cells/mt) by 104 Mean		1.73 1.73 0.01177 0.94 89% 74%	2.55 2.52 0.01422 1.13 1.08 89% 89% 8	2 2.98 0.01477 1.18 97% 92%	2.09 2.41 0.01358		2.52 3.56 0.01599 1.27 96% 100%	3.03 4.73 0.01769 1.41 1.35 97% 1111% 1	3.31 4.03 0.01698 1.35 93% 106%	2.95 4.11 0.01689	3.25 5.16 0.01823 1.45 97% 114%	3.59 8.55 0.02097 1.67 1.57 99% 131% 1	3.44 7.16 0.02000 1.59 99% 125%	3.43 6.96 0.01974	3.23 8.24 0.02065 1.65 1.00% 129%	3.87 9.78 0.02177 1.73 1.65 99% 136% 1	3.41 6.63 0.01959 1.56 98% 123%	3.50 8.22 0.02067		3.06 7.2 0.01988 1.58 99% 124%	3.92 9.93 0.02186 1.74 1.69 99% 137% 13	3.79 9.82 0.02176 1.73 99% 136%	in (contrast) (and the contrast of the contras
Day0 Day2 Day3 Slope Growth Rate (dblngs/da Pearson % Control Me	All cell counts in (cells/mL) by 104 Mean		0.28 1.73 1.73 0.01177 0.94 89% 74%	0.28 2.55 2.52 0.01422 1.13 1.08 89% 89% 8	0.28 2.98 0.01477 1.18 97% 92%	Avrg 2.09 2.41 0.01358		0.28 2.52 3.56 0.01599 1.27 96% 100%	0.28 3.03 4.73 0.01769 1.41 1.35 97% 111% 1	0.28 3.31 4.03 0.01698 1.35 93% 106%	Avrg 2.95 4.11 0.01689	0.28 3.25 5.16 0.01823 1.45 97% 114%	0.28 3.59 8.55 0.02097 1.67 1.57 99% 131% 1	0.28 3.44 7.16 0.02000 1.59 99% 125%	Avrg 3.43 6.96 0.01974	0.28 3.23 8.24 0.02065 1.65 100% 129%	0.28 3.87 9.78 0.02177 1.73 1.65 99% 136% 1	0.28 3.41 6.63 0.01959 1.56 98% 123%	Avrg 3.50 8.22 0.02067		0.28 3.06 7.2 0.01988 1.58 99% 124%	0.28 3.92 9.93 0.02186 1.74 1.69 99% 137% 13	0.28 3.79 9.82 0.02176 1.73 99% 136%	and the second s

	129%				132%			
04.671	136%	123%	28 2	124%	137%	136%		
100%	99%	%86		%66	%66	%66		
100000	1.65				1.69			
1.00	1.73	1.56		1.58	1.74	1.73		
conzu.u	0.02177	0.01959	0.02067	0.01988	0.02186	0.02176	0.02117	
0.24	9.78	6.63	8.22	7.2	9.93	9.82	8.98	
0.40	3.87	3.41	3.50	3.06	3.92	3.79	3.59	
0.20	0.28	0.28	Avrg	0.28	0.28	0.28	Avrg	
2	SSW	1/6		ш	SSW	1/5		

		Growth Rat	te (dblngs/da)	\$	
		Mean	Std dev	%cv	ß
	0.94				
0.08	1.13	1.08	0.13	11.75	0.07342
	1.18				
9					
	1 27				

A

	1.27				
0.10	1.41	1.35	0.07	5.08	0.03945
	1.35				
		Growth Rat	e (dblngs/da	Ŵ	
		Mean	Std dev	VO%	SE
	1.45				
0.13	1.67	1.57	0.11	7.04	0.06389
	1.59				

q

S

Q

1.73

щ

Appendix H

Lists of toxicity tests performed to determine nutrient concentrations and subsequent reference toxicity tests

Table H1 Details of each of the tests undertaken to determine the minimum amount of nutrients that can be added to a test and result in an acceptable population growth rate

Test code	Test start	SSW			Valid test?
	date	production date	Con	centrations tested (μg L ⁻¹)	(Y/N)
40000	05/44/40	40/40/40	Ν	453, 907, 1209, 1814, 3628, 7255, 14510	X
1366G	05/11/13	16/10/13	Р	4.31, 8.63, 11.5, 17.3, 34.5, 69, 138	Ŷ
10700	05/11/10	15/11/10	Ν	907, 1209, 1814, 2418, 3628	Y
1373G	25/11/13	15/11/13	Ρ	8.63, 11.5, 17.3, 23, 34.5	Ŷ
40700	00/40/40	0/40/44	Ν	227, 453, 605, 907, 1209, 1814	X
1376G	09/12/13	6/12/14	Ρ	2.16, 4.31, 5.75, 8.63, 11.5, 17.3	Ŷ
40700	40/04/44	40/4/44	Ν	907, 1209, 1451, 1814, 2418	X
1378G	13/01/14	10/1/14	Ρ	8.63, 11.5, 13.8, 17.3, 23	Ŷ
40000	00/04/44	40/4/44	Ν	1209, 1451, 1814, 2418, 2902	X
1380G	20/01/14	10/1/14	Ρ	11.5, 13.8, 17.3, 23, 27.6	ř

Table H2 Details of each of the reference toxicity tests performed with the reduced starting algal density and reduced nutrients

Test Code	Test start date	SSW production date	U concentrations tested (µg L ⁻¹)	Valid test? (Y/N)
1383G	03/02/14	31/01/14	0, 5, 10, 20, 40, 80, 160	Y
1389G	18/02/14	17/02/14	0, 5, 10, 20, 40, 80, 160	Y
1404G	13/05/14	11/05/14	0, 5, 10, 20, 40, 80, 160	Y but temp problems
1415G	05/08/14	22/07/14	0, 5, 10, 20, 40, 80, 160	Y
1431G	09/12/14	04/12/14	0, 5, 10, 20, 40, 80, 160	Y
1455G	17/03/15	07/03/15	0, 0 no HEPES, 20, 40, 80, 160	Y
1466G	09/06/15	28/05/15	0, 0 no HEPES, 20, 40, 80, 160	Y
1468G	22/06/15	12/06/15	0, 0 no HEPES, 20, 40, 80, 160	Y
1479G	07/09/15	04/09/15	0, 20, 40, 80, 160	Υ

Appendix I Water Quality measurements

Table I1 Nutrient reduction tests

1366G Alg_@3x10³_03

Treatment (%)	0.031		0.063		0.125		0.250		0.5		1	
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
pН	6.1	6.3	6.1	6.3	6.1	6.3	6.2	6.3	6.1	6.3	6.2	6.4
EC (μS cm-1)	22	22	22	22	24	24	27	27	34	34	48	48
DO (%)	112	94	110	93	109	95	110	95	107.5	95	108.1	94
Temp (°C)	22.6	24	22.4	24.3	22.1	24.4	22.1	24.6	22	24.9	21.8	24.9

1373G Alg_@3x10³_04

Treatment (%)	0.063		0.083		0.125		0.167		0.25	
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.1	6.2	6.1	6.2	6.1	6.2	6.1	6.2	6.1	6.2
EC (μS cm-1)	21	21	22	22	23	22	24	23	26	26
DO (%)	103	91	109	93	108	93	106	93	106.7	91.5
Temp (°C)	22.4	24	22.5	24.3	22.4	24	22.1	24.2	21.9	24.7

1376G Alg_@3x10³_05

Treatment (%)	0.016		0.031		0.042		0.063		0.083		0.125	
Parameter	0h	72h										
pН	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.2
EC (μS cm-1)	20	20	20	20	20	20	21	21	22	22	23	22
DO (%)	110	90	111	92	108	89	104	91	104.5	89.7	104.9	91.3
Temp (°C)	24	24.3	24	24.9	23.7	25.1	23.1	25.3	22.5	24.3	22	24.6

1378G Alg_@3x10³_06

Treatment (%)	0.063		0.083		0.100		0.125		0.167	
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.0	6.0	6.0	6.1	6.0	6.1	6.0	6.0	6.0	6.0
EC (μS cm ₋₁)	21	21	23	23	22	22	23	22	24	24
DO (%)	109	96	114	92	110	88	103	93	107.8	92.5
Temp (°C)	25	22.9	25.2	23.4	24.7	23.5	23.1	25	22.8	24.4

1380G Alg_@3x10³_07

Treatment (%)	0.083		0.100		0.125		0.167		0.2	
Parameter	0h	72h								
pН	6.0	6.1	6.0	6.1	5.9	6.1	5.9	6.1	5.9	6.0
EC (μS cm-1)	22	24	22	22	23	23	24	24	25	24
DO (%)	104	85	108	85	105	91	103	89	102.5	89
Temp (°C)	26.4	25.4	25.9	25.4	25.5	25.7	25.5	24.9	24.2	24.9

Table 12 Reference toxicity tests

1383G Alg_Reftox_01

Treatment (µg L ⁻¹)	0	0 5			10		20		40		80		160	
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.1	6.3	6.0	6.2	6.1	6.2	6.0	6.2	6.0	6.1	6.0	6.1	6.0	6.1
EC (μS cm-1)	27	26	27	26	26	26	26	25	26	26	26	26	27	26
DO (%)	113.1	94.6	115.6	90.8	109.1	92.8	110	93.5	106.3	90.1	107.4	93	104.9	90.7
Temp (°C)	25.5	24.4	25.1	24.8	24.8	23.7	23.8	25.1	23.6	24.1	23.2	25.5	22.9	24.9

1389G Alg_Reftox_02

Treatment (µg L-1)	0		5		10		20		40		80		160	
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.0	6.2	6.0	6.2	6.0	6.2	6.0	6.1	6.0	6.1	5.9	6.0	6.0	6.0
EC (μS cm-1)	26	25	27	26	26	25	26	26	26	26	27	27	26	27
DO (%)	104.8	94.5	105.5	91.4	105.6	92.1	98.7	93	106.0	95.2	105.1	91.1	103.8	93.3
Temp (°C)	25.4	25.4	25.6	25.7	25.3	25.8	20.7	25.7	24.7	25.8	25.2	24.7	24.8	25.8

1404G Alg_Reftox_03

Treatment (µg L-1)	0	5			10		20		40		80		160	
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.1	6.2	6.1	6.2	6.1	6.2	6.1	6.2	6.1	6.2	6.1	6.1	6.1	6.2
EC (μS cm-1)	29	26	26	26	26	26	26	26	26	26	26	26	26	27
DO (%)	95.2	88.8	101.1	91.4	100.7	91.9	97.3	92.3	100.5	90.3	99.8	90.3	93.9	92.2
Temp (°C)	27	24.9	25	26.1	25	25.3	24.1	26.5	24.1	26.2	23.8	25.2	23.7	25.8

1415G Alg_	Reftox_04
-------------------	-----------

Treatment (µg L-1)	0 5			10		20		40		80		160		
Parameter	0h	72h												
pН	5.8	6.0	5.8	6.0	5.8	6.0	5.9	6.1	5.9	5.9	5.9	5.9	5.9	5.8
EC (μS cm-1)	24	24	24	24	24	24	24	25	24	24	24	25	24	25
DO (%)	111.7	91.7	114.3	91.8	112.5	92.6	110.7	92.3	102.9	88.4	114.6	88.2	111.8	83.1
Temp (°C)	26.6	25.5	26.6	25.5	26.4	25.4	26.2	23.8	25.8	24.8	25.5	25.4	25.1	25.1

1431G Alg_Reftox_05

Treatment (µg L-1)	0		5		10		20		40		80		160	
Parameter	0h	72h												
рН	6.0	6.1	6.0	6.1	5.9	6.1	6.0	6.1	6.0	6.1	6.1	6.0	6.0	6.0
EC (μS cm-1)	28	27	28	28	28	27	28	26	27	26	27	27	27	28
DO (%)	104.9	92.2	106.9	92.4	108.8	95.9	102.9	94.4	103.3	95.3	102.3	92.4	101.1	94.9
Temp (°C)	26.9	23	24.6	24.8	24.3	26.1	23.8	25.5	23.8	25.4	22.4	25.7	22	26.2

1455G Alg_Reftox_06

Treatment (µg L-1)	0		0 – No H	IEPES	20		40		80		160	
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.0	6.3	5.9	6.4	6.0	6.2	5.9	6.1	5.9	6.1	5.9	6.1
EC (μS cm ₋₁)	26	27	23	23	26	26	26	26	26	27	26	27
DO (%)	106.6	93.2	113.9	93.7	107.2	92.5	116.2	93.5	116.9	92.5	109.9	93.2
Temp (°C)	25.2	24.8	26.2	25.4	25	25.8	26.5	25.4	26.3	25.1	25.6	25.7

1466G Alg_reftox_07

Treatment (μg L ⁻¹)	0		0 – No F	IEPES	20		40		80		160	
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.0	6.1	6.1	6.6	5.9	6.0	6.0	6.0	5.9	6.0	6.0	6.0
EC (μS cm ₋₁)	26	25	23	22	26	26	26	26	26	26	26	26
DO (%)	114.6	95.1	119.5	95.8	115.9	94.2	115.9	93.6	113.3	93.4	106.1	23.3
Temp (°C)	25.7	26.2	26	26	26.2	26	26.2	26.1	26.1	25.8	25.7	26.1

1468G Alg_reftox_08

Treatment (µg L ⁻¹)	0		0 – No H	HEPES	20		40		80		160	
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.2	6.6	6.2	6.3	6.1	6.2	6.1	6.2	6.1	6.1	6.1	6.1
EC (μS cm-1)	24	23	27	26	27	27	27	27	27	27	27	27
DO (%)	105	95.5	106.7	95.7	105.8	95.3	103.4	93.4	104.7	94.4	104.9	94
Temp (°C)	26.3	24.9	26.3	25.5	26.7	25.7	26.7	25.7	26.1	26	26.3	26.2

1479G Alg_reftox_09

Treatment (µg L-1)	0		20		40		80		160	
Parameter	0h	72h	0h	72h	0h	72h	0h	72h	0h	72h
рН	6.1	6.2	6.1	6.1	6.1	6.0	6.1	6.0	6.1	6.0
EC (μS cm-1)	27	26	27	26	27	27	27	27	27	27
DO (%)	100.4	93.5	106.4	95.2	107.6	92.9	94.8	91.9	103.1	91.6
Temp (°C)	25.7	25.1	27.6	25.5	27.7	25.3	27.7	25.5	26.9	25.6

I able J1 Metal and major ion analyses of Quality Control (QC) waters for nutrient reduction trials.																
Analyte	Al	Cd	Со	Cr	Cu	Fe	Mn	Ni	Pb	Se	U	Zn	Ca	Mg	Na	SO ₄
Units	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	μg L-1	mg L-1	mg L-1	mg L-1
PQL	0.1	0.02	0.01	0.1	0.01	1	0.01	0.01	0.01	0.2	0.001	0.1	0.1	0.1	0.1	0.5
1366G SSW	50	< 0.02	0.01	<0.1	0.8	<mark>350</mark>	10	0.04	0.2	<0.2	0.2	0.8	0.5	0.6	1.3	<mark>3</mark>
1373G SSW	10	< 0.02	0.02	< 0.1	0.7	77	11	0.06	0.04	< 0.2	0.06	0.7	0.4	0.6	2.4	96
1376G SSW	20	< 0.02	0.02	< 0.1	0.4	120	10	0.05	0.2	< 0.2	0.05	0.8	0.5	0.7	2.4	110
1378G SSW	20	< 0.02	0.02	< 0.1	0.4	120	9	0.06	0.08	< 0.2	0.06	0.7	0.4	0.6	2.6	110
1380G SSW	16	< 0.02	0.02	<0.1	0.59	130	9.5	0.05	0.08	< 0.2	0.051	0.7	0.4	0.6	2.7	110
1366G Blank	< 0.1	< 0.02	< 0.01	<0.1	0.02	<1	< 0.01	0.03	< 0.01	< 0.2	< 0.001	< 0.1	<0.1	< 0.1	<0.1	< 0.5
1373G Blank	< 0.1	< 0.02	< 0.01	<0.1	0.09	<1	< 0.01	< 0.01	< 0.01	< 0.2	< 0.001	< 0.1	<0.1	< 0.1	<0.1	0.5
1376G Blank	0.2	< 0.02	< 0.01	<0.1	0.05	<1	< 0.01	< 0.01	0.01	< 0.2	< 0.001	<0.2	<0.1	< 0.1	<0.1	< 0.5
1378G Blank	1	< 0.02	< 0.01	<0.1	0.02	<1	< 0.01	< 0.01	< 0.01	< 0.2	0.009	0.2	<0.1	< 0.1	<0.1	< 0.5
1380G Blank	0.1	< 0.02	< 0.01	<0.1	0.03	<1	< 0.01	< 0.01	< 0.01	< 0.2	< 0.001	< 0.1	<0.1	< 0.1	<0.1	< 0.5
1366G Pro Blank	0.1	< 0.02	< 0.01	<0.1	0.03	<1	< 0.01	0.05	0.01	< 0.2	0.005	< 0.1	<0.1	< 0.1	<0.1	< 0.5
1373G Pro Blank	0.1	< 0.02	< 0.01	<0.1	0.04	<1	< 0.01	0.01	< 0.01	< 0.2	0.02	< 0.1	<0.1	< 0.1	<0.1	0.5
1376G Pro Blank	0.2	< 0.02	< 0.01	< 0.1	0.05	<1	< 0.01	< 0.01	0.01	< 0.2	0.02	< 0.2	< 0.1	< 0.1	0.1	< 0.5
1378G Pro Blank	1	< 0.02	< 0.01	<0.1	0.02	<1	< 0.01	< 0.01	< 0.01	< 0.2	0.009	< 0.1	<0.1	< 0.1	< 0.1	< 0.5
1380G Pro Blank	<mark>1.6</mark>	< 0.02	< 0.01	< 0.1	0.03	<1	<mark>2.7</mark>	< 0.01	0.02	< 0.2	0.020	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5

Appendix J Chemical analyses

*Highlighted numbers are higher than would be expected in normal synthetic soft water

Test code	Proportion of current	Measured nutrient concentrations Nitrate as N (mg L ⁻ Phosphate as P (n L ⁻¹) 0.070 <0.005 0.30 <0.005 0.25 <0.005 0.53 <0.005 0.70 0.006 1.3 0.016 0.11 <0.005 0.22 <0.005 0.17 <0.005 0.17 <0.005 0.20 <0.005 0.21 <0.005 0.22 <0.005 0.17 <0.005 0.20 <0.005 0.21 <0.005 0.22 <0.005 0.18 <0.005 0.23 <0.005 0.24 <0.005 0.25 <0.005 0.26 <0.005 0.27 <0.005 0.12 <0.005 0.12 <0.005 0.20 <0.005 0.21 <0.005 0.21 <0.005	centrations
	nutrients	Nitrate as N (mg L ⁻ 1)	Phosphate as P (mg L ⁻¹)
1366G	1/32	0.070	< 0.005
	1/16	0.30	< 0.005
	1/8	0.25	< 0.005
	1/4	0.53	< 0.005
	1/2	0.70	0.006
	1	1.3	0.016
1373G	1/16	0.11	< 0.005
	1/12	0.17	< 0.005
	1/8	0.20	< 0.005
	1/6	0.22	< 0.005
	1/4	0.47	0.005
1376G	1/64	0.18	< 0.005
	1/32	0.16	< 0.005
	1/24	0.23	< 0.005
	1/16	0.22	< 0.005
	1/12	0.27	< 0.005
	1/8	0.32	< 0.005
1378G	1/16	0.16	< 0.005
	1/12	0.12	< 0.005
	1/10	0.098	< 0.005
	1/8	0.20	< 0.005
	1/6	0.31	< 0.005
1380G	1/12	0.12	< 0.005
	1/10	0.21	< 0.005
	1/8	0.21	< 0.005
	1/6	0.14	< 0.005
	1/5	0.34	< 0.005

 Table J2 Measured nitrate and phosphate concentrations in QC waters in nutrient reduction trials.

Analyte	AI	Cd	Со	Cr	Cu	Fe	Mn	Ni	Pb	Se	U	Zn	SO4	Са	Na	Mg
Units	μg L-1	μg L-1	μg L-1	μg L ⁻¹	µg L ⁻¹	µg L ⁻¹	μg L-1	μg L-1	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹				
PQL	0.1	0.02	0.01	0.1	0.01	1	0.01	0.01	0.01	0.2	0.001	0.1	0.5	0.1	0.1	0.1
1383G Blk	0.3	<0.02	<0.01	<0.1	0.02	<1	<0.01	<0.01	<0.01	<0.2	<0.001	<0.1	<0.5	<0.1	<0.1	<0.1
1389G Blk	0.3	<0.02	<0.01	<0.1	0.03	<1	<0.01	<0.01	<0.01	<0.2	0.006	1.6	<0.5	<0.1	<0.1	<0.1
1404G Blk	0.1	<0.02	<0.01	<0.1	0.02	<1	<0.01	<0.01	<0.01	<0.2	<0.001	<0.1	<0.5	<0.1	<0.1	<0.1
1451G Blk	0.4	<0.02	<0.01	<0.1	<0.01	<1	<0.01	<0.01	<0.01	<0.2	<0.001	<0.1	<0.5	<0.1	<0.1	<0.1
1431G Blk	0.2	<0.02	<0.01	<0.1	0.07	<1	<0.01	<0.01	<0.01	<0.2	<0.001	<0.1	<1	<0.1	<0.1	<0.1
1455G Blk	0.5	<0.02	<0.01	<0.1	0.08	<1	<0.01	<0.01	<0.01	<0.2	<0.001	<0.1	<0.5	<0.1	<0.1	<0.1
1466G Blk	0.2	<0.02	<0.01	<0.1	0.06	<1	<0.01	<0.01	<0.01	<0.2	<0.001	<0.1	<0.5	<0.1	<0.1	<0.1
1468G Blk	0.3	<0.02	<0.01	<0.1	0.06	<1	<0.01	<0.01	0.01	<0.2	<0.001	<0.1	<0.5	<0.1	<0.1	<0.1
1479G Blk	<0.1	<0.02	<0.01	<0.1	<0.01	<1	<0.01	<0.01	0.01	<0.2	<0.001	<0.1	<0.5	<0.1	<0.1	<0.1
1383G Pro Blk	0.3	<0.02	<0.01	<0.1	0.02	<1	<0.01	<0.01	<0.01	<0.2	<0.001	<0.1	<0.5	<0.1	<0.1	<0.1
1389G Pro Blk	0.4	<0.02	<0.01	<0.1	0.03	<1	0.01	<0.01	<0.01	<0.2	0.009	3.1	<0.5	<0.1	<0.1	<0.1
1404G Pro Blk	0.9	<0.02	<0.01	<0.1	0.03	<1	<0.01	<0.01	0.02	<0.2	0.001	<0.1	<0.5	<0.1	<0.1	<0.1
1415G Pro Blk	9	<0.02	<0.01	<0.1	<0.01	<1	<0.01	<0.01	<0.01	<0.2	0.008	<0.1	<0.5	<0.1	<0.1	<0.1
1431G Pro Blk	0.2	<0.02	<0.01	<0.1	0.08	<1	<0.01	<0.01	<0.01	<0.2	<0.001	0.3	<1	<0.1	<0.1	<0.1
1455G Pro Blk	1	<0.02	<0.01	<0.1	0.07	<1	<0.01	0.01	<0.01	<0.2	<0.001	0.4	<0.5	<0.1	<0.1	<0.1
1466G Pro Blk	0.7	<0.02	0.01	<0.1	0.07	<1	<0.01	0.01	0.03	<0.2	0.2	0.2	<0.5	<0.1	<0.1	<0.1
1468G Pro Blk	0.9	<0.02	<0.01	<0.1	0.08	<1	<0.01	<0.01	0.04	<0.2	0.03	<0.1	<0.5	<0.1	<0.1	<0.1
1479G Pro Blk	2	<0.02	<0.01	<0.1	0.07	2	0.1	0.3	0.05	<0.2	0.003	0.4	<0.5	<0.1	<0.1	<0.1
1383G A	19	<0.01	0.02	<0.1	0.35	130	8.9	0.05	0.08	<0.2	0.04	0.9	110	0.4	3.6	0.6

Table J3 Metal and major ion analyses of QC waters for reference toxicity tests

Analyte	AI	Cd	Co	Cr	Cu	Fe	Mn	Ni	Pb	Se	U	Zn	SO4	Ca	Na	Mg
Units	µg L ⁻¹	μg L ⁻¹	µg L ⁻¹	μg L ⁻¹	μg L ⁻¹	μg L ⁻¹	µg L ⁻¹	μg L ⁻¹	μg L ⁻¹	µg L ⁻¹	μg L ⁻¹	μg L ⁻¹	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹
PQL	0.1	0.02	0.01	0.1	0.01	1	0.01	0.01	0.01	0.2	0.001	0.1	0.5	0.1	0.1	0.1
1389G A	18	<0.01	0.02	<0.1	0.35	150	11	0.04	0.09	<0.2	0.052	<mark>4.2</mark>	93	0.4	6.8	0.5
1404G A	22	<0.02	0.02	<0.1	0.44	160	10	0.05	0.09	<0.2	0.072	0.7	100	0.4	3.5	0.6
1415G A	19	<.0.02	0.02	<0.1	0.6	120	10	0.04	0.08	<0.2	0.06	0.7	100	0.5	1.1	0.6
1431G A	10	<0.02	<0.01	<0.1	0.4	89	9	0.04	0.09	<0.2	0.03	0.8	84	0.4	3.6	0.5
1455G A	10	<0.02	<0.01	0.1	0.5	78	9	0.1	0.08	<0.2	0.02	0.8	110	0.5	3.6	0.6
1466G A	8	<0.02	<0.01	<0.1	0.5	50	9	0.1	0.2	<0.2	0.8	1	110	0.4	3.7	0.6
1468G A	12	<0.02	<0.01	<0.1	0.6	74	9	0.02	0.1	<0.2	0.07	2	3	0.5	2.5	0.6
1479G A	12	<0.02	<0.01	<0.1	0.7	68	9	0.2	0.1	<0.2	0.05	1	110	0.5	0.6	3.4

*Highlighted numbers are higher than would be expected in normal synthetic soft water

Test & treatment	Nominal U concentration	Measured U concentration
code	(µg L ⁻¹)	(μg L ⁻¹)
1383G BLK	-	<0.001
1383G A	Bgd*	0.044
1383G B	5	3.8
1383G C	10	7.3
1383G D	20	16
1383G E	40	28
1383G F	80	56
1383G G	160	130
1389G BLK	-	0.006
1389G A	Bgd	0.052
1389G B	5	3.9
1389G C	10	7.4
1389G D	20	17
1389G E	40	31
1389G F	80	64
1389G G	160	130
1404G BLK	-	<0.001
1404G A	Bgd	0.072
1404G B	5	3.8
1404G C	10	7
1404G D	20	14
1404G E	40	27
1404G F	80	56
1404G G	160	110
1415G BLK	-	<0.001
1415G A	Bgd	0.06
1415G B	5	4.3
1415G C	10	8.6
1415G D	20	17
1415G E	40	34
1415G F	80	66
1415G G	160	140
1431G BLK	-	<0.001
1431G A	Bgd	0.03
1431G B	5	4.2
1431G C	10	8.4
1431G D	20	18
1431G E	40	35
1431G F	80	70
1431G G	160	140

 Table J4 Measured uranium concentrations in reference toxicity tests.

Test & treatment	Nominal U concentration	Measured U concentration
code	(µg L⁻¹)	(µg L ⁻¹)
1455G BLK	-	<0.001
1455G A	Bgd	0.02
1455G B	Bgd – no HEPES	0.02
1455G C	20	15
1455G D	40	31
1455G E	80	62
1455G F	160	130
1466G BLK	-	<0.001
1466G A	Bgd	0.8
1466G B	Bgd – no HEPES	0.03
1466G C	20	15
1466G D	40	26
1466G E	80	54
1466G F	160	110
1468G BLK	-	<0.001
1468G A	Bgd	0.07
1468G B	Bgd – no HEPES	0.1
1468G C	20	14
1468G D	40	25
1468G E	80	48
1468G F	160	97
1479G BLK	-	<0.001
1479G A	0	0.05
1479G B	20	16
1479G C	40	30
1479G D	80	63
1479G E	160	140

*Bgd - indicates background uranium concentration in diluent waters

Test code and treatment	Measured nu	trient concentrations
	Nitrate as N (mg L-1)	Phosphate as P (mg L ⁻¹)
1383G BLK	<0.005	<0.005
1383G A	0.5	<0.005
1389G BLK	0.015	<0.005
1389G A	0.44	<0.005
1404G BLK	0.054	<0.005
1404G A	0.69	<0.005
1415G BLK	nmª	nm ^a
1415G A	nm ^a	nm ^a
1431G BLK	nmª	nm ^a
1431G A	nmª	nm ^a
1455G BLK	<0.005	<0.005
1455G A	0.77	0.008
1466G BLK	<0.005	<0.005
1466G A	0.32	0.006
1468G BLK	<0.005	<0.005
1468G A	0.4	0.005
1479G BLK	nm	nm
1479G A	nm	nm

 Table J5 Measured nitrate and phosphate concentrations in quality check waters in reference toxicity tests.

^a Samples lost due to power outage and defrosting of samples

Appendix K Analytical reports

Figure K1 Test raw data and analysis report for test 1366G

CETIS Analytical Report					Rep Tes	oort Date: st Code:	05 Jan-16 14:13 (p 1 of 2) 1366G 02-9019-0640
Algal Growth Inhibition Test							eriss ecotoxicology lab
Analysis ID: 02-3818-3741 Analyzed: 19 Nov-13 16:51	Endpoint: Analysis:	Growth rate (db Linear Interpola	/d) tion (ICPIN)		CE Off	TIS Version: icial Results	: CETISv1.8.7 :: Yes
Batch ID: 20-5562-4063 Start Date: 19 Nov-13 16:41 Ending Date: 19 Nov-13 16:41 Duration: n/a	Test Type: Protocol: Species: Source:	Algal growth inh Alga eriss tropic Chlorella sp. eriss ecotoxicol	nibition cal freshwate ogy lab	er	Ana Dilu Brin Age	alyst: uent: Syr ne: Not ə:	nthetic Soft Water Applicable
Sample ID: 05-8494-4791 Sample Date: 19 Nov-13 16:41 Receipt Date: 19 Nov-13 16:41 Sample Age: n/a	Code: Material: Source: Station:	22DD8C97 Uranyl Sulphate Reference Toxic In House	e cant (U)		Clie Pro	ent: Inte iject: Spe	ernal Lab ecial Studies
Linear Interpolation Options							
X Transform Y Transform	Seed	Resamples	Exp 95%	CL Meth	od	12 - 1894	
Log(X+1) Linear	1255153	200	Yes	Two-	Point Inter	polation	
Residual Analysis							
Attribute Method		Test Stat	Critical	P-Value	Decision	n(α:5%)	
Extreme Value Grubbs Extrem	me Value Test	1.947	2.652	0.7364	No Outli	ers Detected	
Point Estimates							
Level µg/L 95% LCL 95	5% UCL						
IC5 0.7717 0.6931 0.	8255						
IC10 0.5695 0.4316 0.	6654						
IC15 0.3903 0.2091 0.	5187						
IC20 0.2316 0.01979 0.	3843						
IC25 0.09103 n/a n/	a						
IC40 >0.5 n/a n/	a						
IC50 >0.5 n/a n/	a						
Growth rate (db/d) Summary			Cal	culated Va	riate		
Conc-µg/L Code Co	ount Mean	Min	Max	Std Err	Std Dev	CV%	%Effect
0.03 3	0.616	7 0.54	0.74	0.06227	0.1079	17.49%	0.00%
0.06 3	0.946	7 0.86	1.09	0.07219	0.125	13.21%	-53.51%
0.13 3	1.39	1.28	1.49	0.06083	0.1054	7.58%	-125.41%
0.25 3	1.663	1.62	1.71	0.02603	0.04509	2.71%	-169.73%
0.5 3	1.653	1.63	1.69	0.01856	0.03214	1.94%	-168.11%
1 SS 3	1.727	1.65	1.78	0.0393	0.06807	3.94%	-180.00%
Growth rate (db/d) Detail							
Conc-µg/L Code R	ep 1 Rep 2	Rep 3					
0.03 0.	74 0.57	0.54					
0.06 0.	89 1.09	0.86					
0.13 1.	28 1.4	1.49					
0.25 1.	62 1.71	1.66					
0.5 1.	63 1.69	1.64					
4 00 4	1.00	1.01					

CETIS™ v1.9.0.9

Analyst:_____ QA:_____

Figure K1 continued

CETIS Ana	alytical Report			Report Date: Test Code:	05 Jan-16 14:13 (p 2 of 2) 1366G 02-9019-0640
Algal Growth	Inhibition Test				eriss ecotoxicology lab
Analysis ID: Analyzed:	02-3818-3741 19 Nov-13 16:51	Endpoint: Analysis:	Growth rate (db/d) Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.8.7 Yes
1.8 1.6 1.6 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4		•			
0.2					

000-428-181-4

CETIS™ v1.9.0.9

Analyst:_____ QA:____

Figure K2 Test raw data and analysis report for test 1373G

CETIS	S Ana	lytical Repo	ort					Re Te	port Date st Code:	:		05 Jan-16 1378	6 14:14 (p 1 of 2) G 09-5186-3415		
Algal C	Growth	Inhibition Test										eriss ec	otoxicology lab		
Analys	is ID:	16-6491-8457	En	dpoint:	Growth rate (db	o/d))	CE	TIS Versi	on:	CETI	Sv1.8.7			
Allalyz	eu.	02 Dec-13 11.0		arysis.)	01	ICIAI RES	uits.	Tes				
Batch	ID:	08-7726-6263	Tes	t Type:	Algal growth inf	hibition	An	alyst:	o		C () A ()				
Start D	Date:	02 Dec-13 11:57	Dec-13 11:51 Protocol: Alga eliss tropical ilestiwater							Diruent: Synthetic Solt Water					
Ending	g Date:	02 Dec-13 11:5	Dec-13 11:51 Species: Chiorella sp.						ne:	Not Applicable					
Duratio							Ay	e.							
Sampl	Sample ID: 14-2901-8366 Co			de:	552D16FE			Cli	ent:	Intern	al Lab				
Sample Date: 10 Jan-14 11:51 M			Ma	terial:	nutrient reduction	on		Pro	oject:	Proto	col Dev	velopmen	t		
Receipt Date: 10 Jan-14 11:51 S			So	urce:	NONE										
Sampl	Sample Age: n/a														
Linear	Interpo	plation Options													
X Tran	sform	Y Transform	n See	ed	Resamples	Exp 95%	CL Meth	hod							
Log(X+	·1)	Linear	144	9832	200	Yes	Two	-Point Inte	rpolation						
Residu	ual Ana	lysis													
Attribu	ite	Method			Test Stat	Critical	P-Value	Decisio	n(α:5%)						
Extrem	e Value	e Grubbs E	dreme Valu	ie Test	1.76	2.548	0.9856	No Outli	ers Detec	ted					
Point B	Estimat	es													
Level	%	95% LCL	95% UCL	. TU	95% LCL	95% UCL									
IC5	>0.25	5 n/a	n/a	<400	n/a	n/a									
IC10	>0.25	5 n/a	n/a	<400	n/a	n/a									
IC15	>0.25	ō n/a	n/a	<400	n/a	n/a									
IC20	>0.25	o n/a	n/a	<400	n/a	n/a									
1C25	>0.25	o n/a	n/a n/a	<400	n/a	n/a n/a									
1040	>0.2	5 n/a	n/a	<400	n/a	n/a									
Crout	-0.2	dh(d) Cummonu	11/4	~400	11/d		aulated Ma	viata							
Cono	n rate (ub/u) Summary Codo	Count	Moon	Min	May	Std Err	Std Dou	· · · · · · · · · · · · · · · · · · ·		% Effo	ot			
0.06	/0	SS	3	1 3/17	1 286	1 415	0.03733	0.06467	4 80%		0 00%				
0.00		00	3	1.547	1.200	1.415	0.03733	0.00407	4.00 /	,	-11 34	.%			
0.13			3	1.69	1.645	1.737	0.02653	0.04595	2 72%	ĺ	-25 45	1%			
0.17			3	1.786	1.747	1.809	0.0197	0.03412	1.91%	,	-32.59	1%			
0.25			3	1.897	1.846	1.933	0.02602	0.04507	2.38%	5	-40.84	%			
Growt	h rate (db/d) Detail									and the second s				
Conc-	%	Code	Rep 1	Rep 2	2 Rep 3										
0.06		SS	1.415	1.286	1.341										
0.08			1.446	1.473	1.58										
0.13			1.688	1.737	1.645										
0.17			1 747	1 802	1 809										

0.25

1.846

1.933

1.912

CETIS™ v1.9.0.9

Analyst:_____ QA:_____

Figure K2 continued

CETIS Ana	lytical Report			Report Date: Test Code:	05 Jan-16 14:14 (p 2 of 2) 1378G 09-5186-3415
Algal Growth	Inhibition Test				eriss ecotoxicology lab
Analysis ID: Analyzed:	16-6491-8457 02 Dec-13 11:53	Endpoint: Analysis:	Growth rate (db/d) Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.8.7 Yes
Graphics					
with rate (db/d)	•	•			
9 0.5 - - -		. í	ta ca a l		

Conc-%

000-428-181-4

CETIS™ v1.9.0.9

Analyst:_____ QA:_____

Figure K3 Test raw data and analysis report for test 1376G

CETIS	Anal	ytical Repo	ort							Repo Test	ort Date: Code:		03 Mar-16 11 1376G	:04 (p 1 of 2) 05-5704-7796	
Algal G	rowth l	nhibition Test											eriss ecoto	xicology lab	
Analysi Analyze	s ID: ed:	19-6078-4249 03 Mar-16 11:0	En 13 An	dpoint: alysis:	Growth Linear Ir	rate (db nterpola	/d) ition (ICPIN)	i.		CETI Offic	S Versio ial Resu	on: ults:	CETISv1.9.0 Yes		
Batch II Start Da Ending Duratio	D: (ate: (Date: ⁻ n: ⁻	06-4853-9872 09 Dec-13 11:51 12 Dec-13 11:51 72h	Te I Pr I Sp So	st Type: otocol: ecies: urce:	Algal gro Alga eris Chlorella eriss eco	owth inf ss tropic a sp. otoxicol	nibition cal freshwat ogy lab	er		Analyst: Ceiw Diluent: Synti Brine: Not A Age:			ven Pease thetic Soft Water Applicable		
Sample ID: 11-9927-2975 C Sample Date: 10 Jan-14 11:51 N Receipt Date: 10 Jan-14 11:51 S Sample Age: n/a S			Co Ma So Sta	ode: aterial: ource: ation:	1376G nutrient NONE	reductio	on			Clien Proje	nt: li act: F	ntern Proto	al Lab col Development		
Linear I	Interpol	ation Options													
X Transform Y Transform				ed	Resamp	oles	Exp 95%	CL Met	hod Point	Intern	olation				
	stimato	Linear	10	07022	200		163	1 44 0	For	interp	oration				
	%	95% I CI	95% UC	ти	950	% I CI	95% UCI								
IC5	>0.125	5 n/a	n/a	<800	n/a	/0 202	n/a								
IC10	>0.125	5 n/a	n/a	<800	n/a		n/a								
IC15	>0.125	5 n/a	n/a	<800	n/a		n/a								
IC20	>0.125	5 n/a	n/a	<800	n/a		n/a								
IC25	>0.125	5 n/a	n/a	<800	n/a		n/a								
IC40	>0.125	5 n/a	n/a	<800	n/a		n/a								
IC50	>0.125	5 n/a	n/a	<800	n/a		n/a								
Growth	rate (d	b/d) Summary		3			Cal	culated V	ariate						
Conc-%	,	Code	Count	Mean	Mir	ı	Max	Std Err	Std	Dev	CV%		%Effect		
0.02		SS	3	0.714	3 0.6	894	0.7348	0.0133	0.02	2303	3.22%		0.00%		
0.03			3	0.767	7 0.7	311	0.7884	0.01836	0.03	318	4.14%		-7.47%		
0.04			3	0.782	6 0.7	144	0.828	0.03471	0.06	5012	7.68%		-9.56%		
0.06			3	0.903	7 0.8	59	0.9345	0.02286	0.0	396	4.38%		-26.51%		
0.08 0.125			3	1.116	1.0	63 99	1.148	0.02669	0.04	4623 3453	4.14%		-56.28% -101.01%		
Growth	rate (d	h/d) Detail		31.1.65											
Conc-%))	Code	Rep 1	Rep 2	2 Re	D 3									
0.02	-	SS	0 6894	0 718	8 07	348									
0.02		00	0 7311	0 783	7 07	884									
0.04			0 7144	0.805	. 0.1 4 0.8	28									
0.06			0.9177	0.859	. 0.0	345									
0.08			1.063	1 148	1.1	38									
0.125			1.399	1 467	1.1	42									

CETIS™ v1.9.0.9

Analyst:_____ QA:____

Figure K3 continued

CETIS Analytical Report				Report Date: Test Code:	03 Mar-16 11:04 (p 2 of 2) 1376G I 05-5704-7796
Algal Growth	Inhibition Test			1000 00001	eriss ecotoxicology lab
Analysis ID: Analyzed:	19-6078-4249 03 Mar-16 11:03	Endpoint: Analysis:	Growth rate (db/d) Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.9.0 Yes
Graphics					
^{1.6}					
1.4			·		
(p/ 4 10 -	/	•			
th rate (
• 8.0 Crowt					
0.4					
0.2					

007-240-543-9

0.04 0.06 0.08 Conc-%

0.0 E 0.02 0.10 0.12 0.14

CETIS™ v1.9.0.9

Analyst:_____ QA:_____

Figure K4 Test raw data and analysis report for test 1378G

CETIS	S Ana	lytical Repo	ort							Repo Test (rt Date: Code:		1	03 Mi 1	ar-16 1 378G	0:47 (09-51	p 1 of 2 186-341	?) 5
Algal G	Growth	Inhibition Test												eris	s ecot	oxicol	logy lab	•
Analys Analyz	is ID: ed:	16-6491-8457 02 Dec-13 11:5	End 53 Ana	point: lysis:	Growth Linear	n rate (db Interpola	/d) tion (ICPIN))		CETIS	S Versio al Resu	on: Ilts:	CETIS Yes	Sv1.8	.7			_
Batch	ID:	08-7726-6263	Test	Type:	Algal g	growth inh	nibition			Analy	rst:							_
Start D	ate:	02 Dec-13 11:51	Prof	ocol:	Alga e	riss tropic	al freshwat	er		Dilue	nt: S	Synth	etic Sc	oft Wa	ater			
Ending	Date:	02 Dec-13 11:51	Spe	cies:	Chlore	lla sp.				Brine	: N	lot A	pplicat	ole				
Duratio	on:	n/a	Sou	rce:	eriss e	cotoxicol	ogy lab			Age:								
Sample	e ID:	14-2901-8366	Cod	e:	552D1	6FE				Client	t: li	ntern	al Lab					_
Sample	e Date:	10 Jan-14 11:51	Mat	erial:	nutrien	nt reductio	on			Proje	ct: F	roto	col Dev	velop	ment			
Receip	t Date:	10 Jan-14 11:51	Sou	rce:	NONE													
Sample	e Age:	n/a	Stat	ion:														
Linear	Interpo	olation Options																
X Tran	sform	Y Transform	n See	d	Resan	nples	Exp 95%	CL Meth	nod									
Log(X+	1)	Linear	1449	9832	200		Yes	Two-	-Point	Interpo	lation							
Residu	ial Anal	lysis																
Attribu	te	Method			Т	est Stat	Critical	P-Value	Dec	ision(d	a:5%)							
Extrem	e Value	Grubbs Ex	treme Valu	e Test	1.	.76	2.548	0.9856	No (Outliers	s Detect	ed						_
Point E	Estimat	es																_
Level	%	95% LCL	95% UCL	τυ	9	5% LCL	95% UCL											
IC5	>0.25	5 n/a	n/a	<400	n	/a	n/a											
IC10	>0.25	5 n/a	n/a	<400	n	/a	n/a											
IC15	>0.25	ō n/a	n/a	<400	n	/a	n/a											
IC20	>0.25	5 n/a	n/a	<400	n	/a	n/a											
IC25	>0.25	5 n/a	n/a	<400	n,	/a	n/a											
IC40	>0.25	5 n/a	n/a	<400	n	/a	n/a											
IC50	>0.25	5 n/a	n/a	<400	n	/a	n/a											_
Growth	n rate (e	db/d) Summary					Cal	culated Va	riate									
Conc-9	6	Code	Count	Mean	i M	lin	Max	Std Err	Std	Dev	CV%	3	%Effe	ct				
0.06		SS	3	1.347	1.	.286	1.415	0.03733	0.06	467	4.80%		0.00%	с.,				
0.08			3	1.5	1.	.446	1.58	0.04076	0.07	06	4.71%		-11.34	%				
0.13			3	1.69	1.	.645	1.737	0.02653	0.04	595	2.72%		-25.45	%				
0.17			3	1.786	1.	.747	1.809	0.0197	0.03	412	1.91%		-32.59	%				
0.25			3	1.897	1.	.846	1.933	0.02602	0.04	507	2.38%		-40.84	%				_
Growth	n rate (d	db/d) Detail																
Conc-9	6	Code	Rep 1	Rep 2	2 R	ep 3												
0.06		SS	1.415	1.286	1.	.341												
0.08			1.446	1.473	1.	.58												
0.13			1.688	1.737	1.	.645												
0.17			1.747	1.802	. 1.	.809												
0.25			1.846	1.933	1.	.912												

000-428-181-4

CETIS™ v1.9.0.9

Analyst:_____ QA:____

Figure K4 continued

CETIS Analytical Report				Report Date:	03 Mar-16 10:47 (p 2 of 2			
				Test Code:	1378G 09-5186-3415			
Algal Growth	Inhibition Test			eriss ecotoxicolo				
Analysis ID:	16-6491-8457	Endpoint:	Growth rate (db/d)	CETIS Version:	CETISv1.8.7			
Analyzed:	02 Dec-13 11:53	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes			
Graphics								
²⁰ [
-								
-								
e ¹⁵	_							
db /d								
ate (
-u 10								
Grov								
-								
0.5								
-								
-								
0.0	<u> </u>	0.16	0.21 0.26					
0.000	Col	nc-%	under and an					

000-428-181-4

CETIS™ v1.9.0.9

Analyst:_____ QA:____

Figure K5 Test raw data and analysis report for test 1380G

CETIS	S Ana	alytical Repo	ort						Repo	ort Date:		03 Mar-16 1	10:59 (p 1 of 1)
			ing and here						Test	Code:		1380G	19-6194-3511
Algal C	Growth	Inhibition Test										eriss ecot	oxicology lab
Analys	is ID:	04-0352-0314	Ene	dpoint:	Growth rate (db	o/d)			CET	IS Version	n:	CETISv1.9.0	
Analyzed: 03 Mar-16 10:59			i9 Ana	alysis:	Linear Interpola	ation (ICPIN	4)		Offic	ial Result	s:	Yes	
Batch	ID:	18-0624-0162	Tes	st Type:	Algal growth inl	hibition			Anal	yst: Ce	eiwer	n Pease	
Start D	Date:	20 Jan-14	Pro	tocol:	Alga eriss tropi	cal freshwa	ater		Dilue	ent: Sy	nthe	tic Soft Water	
Ending	g Date:	23 Jan-14 11:51	Sp	ecies:	Chlorella sp.				Brin	e: No	ot Ap	plicable	
Duratio	on:	84h	So	urce:	eriss ecotoxico	logy lab			Age:	6			
Sampl	e ID:	16-4479-4161	Co	de:	1380G				Clier	nt: Int	terna	l Lab	
Sampl	e Date:	10 Jan-14 11:51	Ma	terial:	nutrient reducti	on			Proj	ect: Pro	otoc	ol Development	
Receip	ot Date:	10 Jan-14 11:51	So	urce:	NONE								
Sampl	e Age:	9d 12h	Sta	tion:									
Linear	Interp	olation Options											
X Tran	sform	Y Transform	n See	bd	Resamples	Exp 95%	6 CL N	lethod					
Log(X+	·1)	Linear	419	9441	200	Yes	Ţ	wo-Point	Interp	olation			
Point I	Estimat	tes											
Level	%	95% LCL	95% UCL	. TU	95% LCL	95% UCL	-						
IC5	>0.2	n/a	n/a	<500	n/a	n/a							
IC10	>0.2	n/a	n/a	<500	n/a	n/a							
IC15	>0.2	n/a	n/a	<500	n/a	n/a							
1020	>0.2	n/a	n/a	<500	n/a	n/a							
1025	>0.2	n/a	n/a	<500	n/a	n/a							
IC40	>0.2	n/a	n/a n/a	<500	n/a	n/a n/a							
Growt	h rate (db/d) Summary				Ca	alculated	Variate					
Conc-	%	Code	Count	Mean	Min	Max	Std F	rr Std	Dev	CV%	0	6Effect	
0.08		SS	3	1.082	0.9378	1.177	0.0734	42 0.12	272	11.75%	C).00%	
0.1			3	1.346	1.274	1.41	0.0394	45 0.06	3833	5.08%	-	24.31%	
0.125			3	1.573	1.453	1.671	0.0638	39 0.1 ⁻	107	7.04%	-	45.29%	
0.17			3	1.647	1.561	1.734	0.05	0.08	366	5.26%	-	52.15%	
0.2			3	1.687	1.584	1.742	0.0513	36 0.08	3895	5.27%	-	55.82%	
Growt	h rate (db/d) Detail											
Conc-9	%	Code	Rep 1	Rep 2	2 Rep 3								
0.08		SS	0.9378	1.133	1.177								
0.1			1.274	1.41	1.353								
0.125			1.453	1.671	1.594								
0.17			1.645	1.734	1.561								
0.2			1.584	1.742	1.734								
Graphi	ics												
	1.8 -												
		5444			•								
	1.6												
	1.4												

007-240-543-9

CETIS™ v1.9.0.9

Analyst:_____ QA:____

	190	1. 1. 1997 (Test	Code.	10000 10 1012 0
Algal G	Frowth I	nhibition Test								eriss ecotoxicology
Analysis ID: 15-3530-3030 Analyzed: 17 Feb-14 15:29		En Ə An	dpoint: alysis:	Growth rate (db/d) Linear Interpolation (ICPIN)			CET	CETIS Version: CETISv1.8.7 Official Results: Yes		
Batch I	D:	17-7845-7038	Те	st Type:	Algal growth in	nhibition		Anal	yst:	
Start D	ate:	03 Feb-14	Pr	otocol:	Alga eriss trop	oical freshwa	iter	Dilu	ent: Syn	thetic Soft Water
Ending	Date:	06 Feb-14	Sp	ecies:	Chlorella sp.			Brin	e: Not	Applicable
Duratio	on:	72h	So	urce:	eriss ecotoxic	ology lab		Age:		
Sample	D:	09-5088-1456	Co	de:	1383G			Clier	nt: Inte	rnal Lab
Sample	e Date:	07 Feb-14 15:54	1 Ma	terial:	Uranyl Sulpha	te		Proj	ect: Ref	erence Toxicity Program
Receiv	e Date:	07 Feb-14 15:54	l So	urce:	Reference To:	kicant (U)				
Sample	e Age:	NA	Sta	ation:	In House					
Linear	Interpo	lation Options								
X Trans	sform	Y Transform	Se	ed	Resamples	Exp 95%	6CL Met	nod		
Log(X+	1)	Linear	89	0311	200	Yes	Two	-Point Interp	olation	
Residu	al Analy	/sis								
Attribut	te	Method			Test Stat	t Critical	P-Value	Decision	(α:5%)	
Extrem	e Value	Grubbs Ext	treme Val	ue	2.031	2.734	0.7044	No Outlier	rs Detected	
Point E	stimate	s								
Level	µg/L	95% LCL	95% UC	L						
IC5	10.82	N/A	25.71							
IC10	18.02	N/A	25.23							
IC15	21.76	11.67	30.47							
IC20	26.24	15.42	32.02							
IC25	29.17	23.14	32.44							
1040	30.2	31.03	38.82							
0.00	33.00	33.14	43.03					• •		
Growth	n rate (d	b/d) Summary	-			Ca	iculated va	riate		
C-µg/L	C	ontrol Type	Count	1 ean	Win 4.cc	Max	Std Err	Std Dev	CV%	%Effect
0.044	5	ynthetic Soft vv	ა ვ	1.84	1.66	1.93	0.09	0.1009	8.47% 5.29%	0.0%
7.3			3	1.757	1 74	1.88	0.04055	0.03232	3.89%	1.81%
16			3	1.713	1.65	1.8	0.04484	0.07767	4.53%	6.88%
28			3	1.44	1.4	1.46	0.02	0.03464	2.41%	21.74%
56			3	0.416	7 0.29	0.58	0.0857	0.1484	35.62%	77.36%
130			3	0.083	33 -0.01	0.2	0.06173	0.1069	128.3%	95.47%
Growth	n rate (d	b/d) Detail								
C-µg/L	C	ontrol Type	Rep 1	Rep 2	Rep 3					
0.044	S	ynthetic Soft Wa	1.93	1.93	1.66					
3.8			1.86	1.68	1.73					
7.3			1.74	1.88	1.8					
16			1.8	1.69	1.65					
			1.46	1.46	1.4					
28			0.50	0.20	0.20					
28 56			0.50	0.50	0.29					

CETIS™ v1.8.7.4

Analyst:_____ QA:_____

Figure K6 continued
CETIS Ana	lytical Report			Report Date: Test Code:	12 May-15 16:13 (p 2 of 2) 1383G 18-7642-3974
Algal Growth	Inhibition Test				eriss ecotoxicology lab
Analysis ID: Analyzed:	15-3530-3030 17 Feb-14 15:29	Endpoint: Analysis:	Growth rate (db/d) Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.8.7 Yes
Graphics					
1.8 1.6 (p) 1.4 1.2					
Growth rate					
0.6					
0.0	20 40 60		0 120 140		

000-428-181-4

CETIS™ v1.8.7.4

Analyst:_____ QA:_____

Figure K7 Test raw data and analysis report for test 1389G

JEIIS	Anal	ytical Repo	ort					Rep Test	ort Date: Code:	1389G 18-6484-9
Algal G	TIS Analytical Rep al Growth Inhibition Tes alysis ID: 11-6683-2756 alyzed: 02 Apr-14 15 tch ID: 09-3900-0997 art Date: 18 Feb-14 ding Date: 21 Feb-14 ration: 72h mple ID: 02-8526-7362 mple Date: 27 Feb-14 08 ceive Date: 27 Feb-14 08 ceive Date: 27 Feb-14 08 mple Age: NA near Interpolation Options ransform Y Transfor g(X+1) Linear sidual Analysis ribute Method reme Value Grubbs									eriss ecotoxicology
Analysi Analyze	s ID: ed:	11-6683-2758 02 Apr-14 15:13	E 3 A	ndpoint: nalysis:	Growth rate (dl Linear Interpola	o/d) ation (ICPII	N)	CET Offic	1S Version: cial Results	CETISv1.8.7 : Yes
Batch I Start Da Ending	D: ate: Date:	09-3900-0997 18 Feb-14 21 Feb-14	T P S	est Type: rotocol: pecies:	Algal growth in Alga eriss tropi Chlorella sp.	hibition cal freshwa	ater	Anal Dilu Brin	l yst: ent: Syn e: Not	thetic Soft Water Applicable
Duratio	n:	72h	S	ource:	eriss ecotoxico	logy lab		Age		
Sample Sample Receive Sample	ID: Date: Date: Age:	02-8526-7362 27 Feb-14 08:58 27 Feb-14 08:58 NA	C 3 M 3 S S	ode: laterial: ource: tation:	1100D5A2 Uranyl Sulphat Reference Tox In House	e icant (U)		Clier Proj	nt: Inte ect: Refe	rnal Lab erence Toxicity Program
Linear I	nterpol	ation Options								
X Trans	form	Y Transform	s	eed	Resamples	Exp 959	% CL Meth	od		
Log(X+	1)	Linear	8	41137	200	Yes	Two-	Point Interp	olation	
Residu	al Analy	/sis			The second for	0.000				
Attribut	е	Method			Test Stat	Critical	P-Value	Decision	(α:5%)	
Extreme	e Value	Grubbs Ex	treme Va	alue	2.316	2.734	0.2794	No Outlie	rs Detected	
Point E	stimate	S								
Level	μg/L	95% LCL	95% UG	CL						
IC5	13.53	1.847	22.37							
IC10	19.11	15.82	21.99							
IC15	22.15	18.04	25.69							
IC20	25.65	20.44	31.09							
IC25	29.67	22.31	34.28							
IC40	36.48	31.77	39.84							
IC50	41.13	36.64	44.88							
Growth	rate (d	b/d) Summary				C	alculated Var	iate		
C-µg/L	C	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect
0.052	S	nthetic Soft W	3	1.873	1.84	1.92	0.02404	0.04163	2.22%	0.0%
3.9			3	1.807	1.77	1.84	0.02028	0.03512	1.94%	3.56%
7.4			3	1.853	1.83	1.89	0.01856	0.03214	1.73%	1.07%
17			3	1.76	1.7	1.8	0.03055	0.05291	3.01%	6.05%
31			3	1.377	1.26	1.45	0.05897	0.1021	7.42%	26.51%
64			3	0.243	3 0.16	0.37	0.06438	0.1115	45.82%	87.01%
130			3	0.056	67 0.04	0.07	0.008819	0.01528	26.96%	96.98%
Growth	rate (d	b/d) Detail	And and a second second	States and States						
C-µg/L	C	ontrol Type	Rep 1	Rep 2	Rep 3					
0.052	Sy	ynthetic Soft Wa	1.84	1.92	1.86					
3.9			1.81	1.77	1.84					
7.4			1.84	1.83	1.89					
17			1.78	1.8	1.7					
31			1.45	1.42	1.26					
64			0.37	0.16	0.2					
100			0.06	0.07	0.04					

CETIS™ v1.8.7.4

CETIS Ana	alytical Report			Report Date:	12 May-15 16:14 (p 2 of 2)
formed of the second of reaction	a second and a second			Test Code:	1389G 18-6484-9575
Algal Growth	Inhibition Test				eriss ecotoxicology lab
Analysis ID:	11-6683-2758	Endpoint:	Growth rate (db/d)	CETIS Version:	CETISv1.8.7
Analyzed:	02 Apr-14 15:13	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes
Graphics					
2.0 L					
1.8	~				
1.6	$\overline{\}$				
Q ^{1,4}	•				
9 1.2 2 1.2	\backslash				
91 1.0 F	\backslash				
0.8 L					
0.6	/				
0.4					
0.2		·			
0.0 E					
0	20 40 60 C-1	90 10 Ja <i>l</i>	0 120 140		
	0	-9/-			

Figure K7 continued

000-428-181-4

CETIS™ v1.8.7.4

Figure K8 Test raw data and analysis report for test 1404G

CETIS	ETIS Analytical Report		ort						Repo Test	ort Date: Code:		12 May-15 16:15 (p 1 1404G 09-8747
Algal G	rowth I	nhibition Test										eriss ecotoxicolog
Analysi	s ID:	12-3760-1597	End	point:	Growth rate (db	/d)			CETI	S Versio	on:	CETISv1.8.7
Analyze	d:	10 Jun-14 11:24	4 Ana	ysis:	Linear Interpola	tion (ICPIN)		Offic	ial Resu	ılts:	Yes
Batch II	D:	10-5277-5855	Test	Type:	Algal growth inf	nibition			Analy	yst: 1	Tom I	Mooney
Start Da	ate:	13 May-14	Prot	ocol:	Alga eriss tropic	cal freshwat	er		Dilue	ent: S	Synth	etic Soft Water
Ending	Date:	16 May-14	Spe	cies:	Chlorella sp.				Brine	۹: ۱	Not A	pplicable
Duratio	n:	72h	Sou	rce:	eriss ecotoxicol	ogy lab			Age:			
Sample	ID:	18-3172-2648	Cod	e:	1404G				Clien	nt: l	ntern	al Lab
Sample	Date:	21 May-14 13:3	8 Mate	erial:	Uranyl Sulphate	9			Proje	ect: F	Refer	ence Toxicity Program
Receive	Date:	21 May-14 13:3	8 Sou	rce:	Reference Toxi	cant (U)						
Sample	Age:	NA	Stat	ion:	In House							
Linear I	nterpol	lation Options										
X Trans	form	Y Transform	See	t	Resamples	Exp 95%	CL	Meth	od			
Log(X+1	I)	Linear	1403	811	200	Yes		Two-	Point Interpo	olation		
Residua	al Analy	/sis										
Attribut	е	Method			Test Stat	Critical	P-Va	alue	Decision(α:5%)		
Extreme	e Value	Grubbs Ex	treme Value	•	2.451	2.734	0.16	96	No Outlier	s Detect	ed	
Point E	stimate	s										
Level	µg/L	95% LCL	95% UCL									
IC5	11.78	9.812	14.57									
IC10	17.6	15.97	19.56									
IC15	23.86	20.51	30.23									
IC20	27.88	26.95	29.14									
IC25	29.44	28.46	30.64									
IC40	34.63	33.43	35.93									
IC50	38.58	37.13	40.29									
Growth	rate (d	b/d) Summary				Ca	lculate	ed Var	iate			-
C-µg/L	C	ontrol Type	Count	Mean	Min	Max	Std	Err	Std Dev	CV%		%Effect
0.072	S	ynthetic Soft W	3	1.857	1.85	1.86	0.00	333	0.005768	0.31%		0.0%
3.8			3	1.83	1.81	1.85	0.01	155	0.02	1.09%		1.44%
7			3	1.837	1.82	1.86	0.01	202	0.02081	1.13%		1.08%
14			3	1.74	1.73	1.76	0.01		0.01732	1.0%		6.28%
27			3	1.54	1.51	1.58	0.02	082	0.03605	2.34%		17.06%
56			3	0.283	3 0.23	0.35	0.03	528	0.0611	21.57%	6	84.74%
110			3	0.04	0	0.06	0.02		0.03464	86.6%		97.85%
Growth	rate (d	b/d) Detail										
C-µg/L	C	ontrol Type	Rep 1	Rep 2	Rep 3							
0.072	S	ynthetic Soft Wa	1.85	1.86	1.86							
3.8			1.85	1.81	1.83							
7			1.86	1.82	1.83							
14			1.73	1.73	1.76							
27			1.58	1.53	1.51							
			0.35	0.23	0.27							
56												
56 110			0.06	0.06	0							

CETIS™ v1.8.7.4

Figure K8 continued

CETIS Ana	lytical Report			Report Date: Test Code:	12 May-15 16:15 (p 2 of 2) 1404G L 09-8747-0228
Algal Growth	Inhibition Test			1031 0000.	eriss ecotoxicology lab
Analysis ID: Analyzed:	12-3760-1597 10 Jun-14 11:24	Endpoint: Analysis:	Growth rate (db/d) Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.8.7 Yes
Graphics					
2.0 1.8 1.6 2 1.4	•••				
Growth rate (d)					
0.6			~		
0.0 È 0	20 40	<u>, I, , , I,</u> 60 80 юл і .	100 120		

000-428-181-4

CETIS™ v1.8.7.4

Figure K9 Test raw data and analysis report for test 1415G

CETIS	Ana	lytical Repo	ort								F T	Report Da Fest Code	te: :	12 May-1 1415	5 16:21 (p 1 of 2) G 20-5213-3272
Algal G	rowth I	nhibition Test												eriss ec	otoxicology lab
Analysi	s ID:	01-6080-8538		Endp	oint:	Gro	wth rate (db	/d)			c	CETIS Ver	sion:	CETISv1.8.7	
Analyze	ed:	22 Aug-14 16:4	0	Anal	ysis:	Line	ar Interpola	tion (ICPIN)		c	Official Re	sults:	Yes	
Batch I	D:	15-4240-7443		Test	Type:	Alga	al growth inh	nibition			£	Analyst:	Ceiw	en Pease	
Start Da	ate:	05 Aug-14		Prote	ocol:	Alga	a eriss tropic	al freshwat	ter		Ľ	Diluent:	Synt	hetic Soft Water	
Ending	Date:	08 Aug-14		Spec	ies:	Chlo	orella sp.				E	Brine:	Not /	Applicable	
Duratio	n:	72h		Sour	ce:	eris	s ecotoxicol	ogy lab			F	Age:			
Sample	ID:	00-4198-1989		Code):	280	9825				c	Client:	Inter	nal Lab	
Sample	Date:	08 Aug-14 14:2	5	Mate	rial:	Ura	nyl Sulphate	yl Sulphate					Refe	rence Toxicity Pr	ogram
Receive	e Date:	08 Aug-14 14:2	5	Sour	ce:	Ref	erence Toxio	cant (U)							
Sample	Age:	NA		Stati	on:	In H	louse								
Linear I	nterpo	lation Options													
X Trans	form	Y Transform		Seed		Res	amples	Exp 95%	CL	Meth	od				
Log(X+	1)	Linear		1235	553	200		Yes		Two-	Point In	terpolatior	ו		
Residu	al Analy	ysis													
Attribut	e	Method					Test Stat	Critical	P-V	alue	Decis	ion(α:5%))		
Extreme	e Value	Grubbs Ex	treme '	Value	8		2.457	2.734	0.16	554	Νο Οι	utliers Dete	ected		
Point E	stimate	es													
Level	μg/L	95% LCL	95%	UCL											
IC5	20.13	16.61	20.84												
IC10	23.8	20.46	25.48												
1015	28.11	24.23	31.09												
1020	35.9	33.76	37 94												
IC40	43.45	40.51	47.14												
IC50	49.33	45.58	55.34												
Growth	rate (d	lb/d) Summary						Ca	lculat	ed Var	riate				
C-µg/L	С	ontrol Type	Coun	ıt	Mean		Min	Max	Std	Err	Std D	ev CV%	6	%Effect	
0.06	S	ynthetic Soft W	3		1.738		1.694	1.806	0.03	3451	0.059	78 3.44	%	0.0%	
4.3			3		1.71		1.664	1.743	0.02	2354	0.040	77 2.38	\$%	1.62%	
8.6			3		1.712		1.677	1.741	0.01	1856	0.032	16 1.88	3%	1.5%	
17			3		1.868		1.709	1.982	0.08	319	0.1419	9 7.6%	6	-7.45%	
34			3		1.392	-	1.365	1.418	0.0	1528	0.0264	4/ 1.9% 4 22.5	% 20/	19.89%	
140			с 2		-0.000	5 174	-0.02913	0.5947	0.00	268	0.046	4 20.0 41 -631	3 00%	100.0%	
Crevit		le (d) Detell	5		-0.000	// 4	-0.02313	0.03203	0.02	200	0.040	-051	5.070	100.070	
Growin Cura/I	rate (u	ontrol Type	Pop 4	r.	Pop 2		Pop 2								
0.06	S	vnthetic Soft Wa	1 714		1 694		1 806								
4.3	υ.	,	1 664		1 723		1 743								
8.6			1.677		1.718		1.741								
17			1.982		1.709		1.911								
34			1.418		1.395		1.365								
66			0.594	7	0.375	4	0.4505								
140			0.052	83	-0.025	59	-0.02913								

000-428-181-5

CETIS™ v1.8.7.4

Figure K9 continued

CETIS Ana	lytical Report			Report Date:	12 May-15 16:21 (p 2 of 2)
Algal Growth	Inhibition Test			Test Code:	eriss ecotoxicology lab
Analysis ID: Analyzed:	01-6080-8538 22 Aug-14 16:40	Endpoint: Analysis:	Growth rate (db/d) Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.8.7 Yes
Graphics					
18 16 16 14 14 10 14 0 0 0 0 0 0 0 0 0 0 0 0 0	20 40 60 C14	90 10	0 220 140		

000-428-181-5

CETIS™ v1.8.7.4

Figure K10 Test raw data and analysis report for test 1431G

CETIS	S Ana	ytical Repo								eport Date est Code:	ə:	12 May-15 1 1431G	6:22 (p 1 of 2) 02-9764-2702	
Algal G	irowth I	nhibition Test											eriss ecot	oxicology lab
Analysi Analyz	is ID: ed:	20-5085-6867 06 Jan-15 8:50	Enc Ana	lpoint: alysis:	Gro Line	wth rate (db ar Interpola	/d) tion (ICPIN)		c o	ETIS Vers fficial Res	ion: sults:	CETISv1.8.7 Yes	
Batch I Start D Ending Duratic	D: ate: Date: on:	20-5293-4847 09 Dec-14 12 Dec-14 72h	Tes Pro Spe Sou	t Type: tocol: ecies: urce:	Alga Alga Chlo eris	al growth inh a eriss tropic orella sp. s ecotoxicol	nibition cal freshwai ogy lab	ter		A D B A	nalyst: iluent: rine: ge:	Ceiw Synti Not A	ven Pease hetic Soft Water Applicable	
Sample Sample Receiv Sample	e ID: e Date: e Date: e Age:	18-6729-6881 16 Dec-14 13:07 16 Dec-14 13:07 NA	Coo 7 Mal 7 Sou Sta	de: :erial: urce: tion:	6F4 Ura Refe In H	CB071 nyl Sulphate erence Toxio louse	e cant (U)			C P	lient: roject:	Inter Refe	nal Lab rence Toxicity Prog	ram
Linear	Interpo	lation Options												
X Trans	sform	Y Transform	See	d	Res	amples	Exp 95%	CL	Meth	od				
Log(X+	1)	Linear	106	0309	200		Yes		Two-	Point Int	erpolation			
Residu	al Analy	/sis												
Attribu	te	Method				Test Stat	Critical	P-V	alue	Decisi	on(a:5%)			
Extrem	e Value	Grubbs Ext	reme Valu	e		2.657	2.734	0.07	'14	No Out	liers Dete	cted		
Point E	stimate	IS												2
Level	µg/L	95% LCL	95% UCL											
IC5	8.214	3.497	65.34											
IC10	28.1	N/A	47.6											
IC15	36.34	11.21	42.95											
IC20	38.38	27.66	45.83											
IC25	40.53	32.32	48.85											
IC40	47.71	37.37	62.43											
IC50	53.17	41.22	85.67											
Growth	n rate (d	b/d) Summary					Ca	lculat	ed Var	riate				
C-µg/L	С	ontrol Type	Count	Mean		Min	Max	Std	Err	Std De	v CV%		%Effect	
0.03	S	ynthetic Soft W	3	1.781		1.755	1.811	0.01	63	0.0282	3 1.59%	6	0.0%	
4.2			3	1.952		1.9	2.001	0.02	2907	0.0503	5 2.58%	6	-9.58%	
8.4			3	1.77		1.632	1.95	0.09	9428	0.1633	9.23%	6	0.63%	
18			3	1.739		1.661	1.815	0.04	439	0.0768	8 4.429	0	2.4%	
30			2	1.001	c	1.401	1.972	0.10	09	0.2700	10.00	0%0	7.33%	
140			3	-0.110	06	-0.2762	0.06479	0.09	9854	0.4010	-154.	4%	106.2%	
Growth	n rate (d	b/d) Detail	. 94.2					a de ration						
C-un/l	C	ontrol Type	Ren 1	Ren 2		Rep 3								
0.03	S	withetic Soft Wa	1 777	1 755		1 811								
4.2	0		19	2 001		1.956								
8.4			1.95	1 632		1.729								
18			1 74	1 661		1 815								
35			1 972	1 499		1 481								
70			0.2467	0.922		0.207								
140			0.06479	-0 120)3	-0.2762								

000-428-181-4

CETIS™ v1.8.7.4

Figure K10 continued

CETIS Ana	lytical Report			Report Date: Test Code:	12 May-15 16:22 (p 2 of 2) 1431G 02-9764-2702
Algal Growth	Inhibition Test				eriss ecotoxicology lab
Analysis ID: Analyzed:	20-5085-6867 06 Jan-15 8:50	Endpoint: Analysis:	Growth rate (db/d) Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.8.7 Yes
Graphics					
Growthrate (cb/d)	20 40 60		0 120		

000-428-181-4

CETIS™ v1.8.7.4

Figure K11 Test raw data and analysis report for test 1455G

CETIS	6 Ana	lytical Repo	ort							eport Date st Code:	e:	12 N	/lay-15 16:24 (p 1 of 2) 1455G 04-1355-6824
Algal G	irowth I	nhibition Test										eri	ss ecotoxicology lab
Analysi Analyze	is ID: ed:	05-6851-8384 01 May-15 14:1	Enc 7 Ana	lpoint: Ilysis:	Grơ Line	wth rate (db ar Interpola	o/d) ition (ICPIN	l)	CE Of	ETIS Versi ficial Res	ion: sults:	CETISv1 Yes	.8.7
Batch I	D:	18-9563-0164	Tes	t Type:	Alga	al growth inf	nibition		Ar	alyst:	Ceiwe	en Pease	
Start D	ate:	17 Mar-15	Pro	tocol:	Alga	a eriss tropi	cal freshwa	ter	Di	luent:	Synth	etic Soft V	/ater
Ending	Date:	20 Mar-15	Spe	cies:	Chlo	orella sp.			Br	ine:	Not A	pplicable	
Duratio	n:	72h	Sou	irce:	eris	s ecotoxicol	ogy lab		Ag	le:			
Sample	D:	18-6347-5920	Co	de:	145	5G			CI	ient:	Intern	al Lab	
Sample	Date:	24 Mar-15 10:16	6 Mat	erial:	Ura	nyl Sulphate	e		Pr	oject:	Refer	ence Toxic	city Program
Receive	e Date:	24 Mar-15 10:16	6 So i	Irce:	Refe	erence Toxi	cant (U)						
Sample	Age:	NA	Sta	tion:	In H	ouse							
Linear	Interpo	lation Options											
X Trans	sform	Y Transform	See	d	Res	amples	Exp 95%	CL Meth	iod				
Log(X+	1)	Linear	869	780	200		Yes	Two-	Point Inte	rpolation			
Residu	al Anal	ysis											
Attribut	te	Method				Test Stat	Critical	P-Value	Decisio	on(α:5%)			
Extreme	e Value	Grubbs Ext	treme Valu	е		2.853	2.548	0.0070	Outlier	Detected			
Point E	stimate	es											
Level	µg/L	95% LCL	95% UCL	0									
IC5	1.918	0.7135	7.162										
IC10	7.347	1.133	24.78										
IC15	16	6.308	47.79										
IC20	18.93	14.2	47.73										
IC25	22.37	14.97	47.11										
1040	33.01	20.34	45.37										
	57.5	27.00	40.15					1					
Growin	rate (c	id/d) Summary					La		riate				
C-µg/L	C	ontrol Type	Count	Mean		Min	Max	Std Err	Std De	v CV%		%Effect	
0.02	S	ynthetic Soft W	3	2.11		2.093	2.122	0.008827	0.01529	0.72%	6	0.0%	
10			3	1.834		1.761	1.940	0.00648	0.09783	5 5.33%	/0 10/	13.1%	
51			2	1.3/4		1.14	1.030	0.232	0.4016	29.24	+%0	34.00%	
120			3	0.171		0.04/30	0.2434	0.00213	0.1076	02.92	070	91.9%	
			5	0.012		-0.02072	0.00340	0.02195	0.04030	9 403.1	70	55.4570	
Growth	i rate (d	lb/d) Detail		_	17								
C-µg/L	C	ontrol Type	Rep 1	Rep 2	2	Rep 3							
0.02	S	ynthetic Soft Wa	2.116	2.093		2.122							
15			1.761	1.945		1.796							
31			1.838	1.14		1.144							
62			0.2223	0.243	4	0.04736							
130			-0.02872	0.065	48	-0.00075							

000-428-181-5

CETIS™ v1.8.7.4

Figure K11 continued

CETIS Ana	lytical Report			Report Date:	12 May-15 16:24 (p 2 of 2)
				Test Code:	1455G 04-1355-6824
Algal Growth	Inhibition Test				eriss ecotoxicology lab
Analysis ID:	05-6851-8384	Endpoint:	Growth rate (db/d)	CETIS Version:	CETISv1.8.7
Analyzed:	01 May-15 14:17	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes
Graphics					
2.0 2.0 1.5 0.0 0 0 0	20 40 60 C+J				

000-428-181-5

CETIS™ v1.8.7.4

Figure K12 Test raw data and analysis report for test 1466G

CETIS	Analy	ytical Repo	ort							Rep Tes	ort Date: t Code:		05 Jan-16 14:11 (p 1 1466G I 18-7341	of 2) -3790
Algal Gr	owth In	hibition Test											eriss ecotoxicolog	y lab
Analysis Analyze	sID: (d:	05-5467-3369 13 Jul-15 13:08	End Ana	point: lysis:	Growt Linea	th rate (db r Interpola	/d) tion (ICPIN)	l.		CE Offi	FIS Versio cial Resu	n: Its:	CETISv1.8.7 Yes	
Batch ID) : 1	8-0764-0017	Tes	Type:	Algal	growth inh	nibition			Ana	alyst: C	eiwe	en Pease	
Start Da	te: 0	9 Jun-15	Pro	tocol:	Alga e	eriss tropic	cal freshwate	er		Dilu	ient: S	ynth	etic Soft Water	
Ending I	Date: 1	2 Jun-15	Spe	cies:	Chlore	ella sp.				Brii	ne: N	lot A	pplicable	
Duration	n: 7	2h	Sou	rce:	eriss	ecotoxicol	ogy lab			Age):			
Sample	ID: 0	8-8034-3788	Cod	e:	14660	G				Clie	ent: Ir	ntern	al Lab	
Sample	Date: 1	2 Jun-15 15:06	Mat	erial:	Urany	/I Sulphate	9			Pro	ject: R	efer	ence Toxicity Program	
Receipt	Date: 1	2 Jun-15 15:06	Sou	rce:	Refer	ence Toxi	cant (U)							
Sample	Age: n	/a	Stat	ion:	In Hou	use								
Linear Ir	nterpola	ation Options												
X Transf	form	Y Transform	See	d	Resa	mples	Exp 95%	CL	Metho	od				
Log(X+1))	Linear	362	909	200		Yes		Two-F	^o oint Inter	polation			
Residua	I Analy	sis												
Attribute	e	Method			1	Fest Stat	Critical	P-V	alue	Decision	n(α:5%)			
Extreme	Value	Grubbs Ex	treme Valu	e Test	2	2.607	2.548	0.03	62	Outlier D	etected			
Point Es	stimates	5												
Level	µg/L	95% LCL	95% UCL											
IC5	1.136	1.112	1.162											
IC10	1.534	1.478	1.596											
IC15	2.007	1.907	2.117											
IC20	2.569	2.41	2.742											
IC25	3.235	3	3.492											
IC40	6.075	5.453	6.769											
IC50	8.962	7.873	10.19											
Growth	rate (db	o/d) Summary					Cal	culat	ed Vari	iate				
Conc-µg	g/L	Code	Count	Mean	P	Min	Max	Std	Err	Std Dev	CV%		%Effect	
0.8		SS	3	2.17	2	2.166	2.173	0.00	2351	0.004073	3 0.19%		0.00%	
15			3	0.784	7 (0.7136	0.845	0.03	831	0.06635	8.46%		63.85%	
26			3	-0.017	783 -	0.2389	0.1012	0.11	06	0.1916	-1074.7	6%	100.82%	
54			3	-0.044	185 -	0.147	0.006276	0.05	511	0.08851	-197.36	5%	102.07%	
110			3	-0.074	143 -	0.1154	-0.04366	0.02	2131	0.03691	-49.60%	6	103.43%	
Growth	rate (db	o/d) Detail												
Conc-µg	g/L	Code	Rep 1	Rep 2	F	Rep 3								
0.8		SS	2.173	2.166	2	2.172								
15			0.7136	0.795	5 0	0.845								
26			0.1012	0.084	21 -	0.2389								
54			0.00623	-0.147	7 C	0.006276								
110			-0.1154	-0.064	- 127	0.04366								

000-428-181-5

CETIS™ v1.9.0.9

Figure K12 continued

CETIS Ana	alytical Report		Report Date: Test Code:	12 May-15 16:24 (p 2 of 2) 1455G 04-1355-6824			
Algal Growth	Inhibition Test				eriss ecotoxicology lab		
Analysis ID: Analyzed:	05-6851-8384 01 May-15 14:17	Endpoint: Analysis:	Growth rate (db/d) Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.8.7 Yes		
Graphics							
(p) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	20 40 60 Ct	80 10	0 120 140				

000-428-181-5

CETIS™ v1.8.7.4

Figure K13 Test raw data and analysis report for test 1468G

CETIS	lytical Repo	ort								Report D Test Coc	late: le:	05 Jan-16 14:11 (p 1 of 2) 1468G 20-7789-8199			
Algal G	irowth	Inhibition Test											eriss ecotoxicology la	ab.	
Analysis ID: 00-8758-3715 Analyzed: 13 Jul-15 13:10				point: lysis:	: Growth rate (db/d) Linear Interpolation (ICPIN)						CETIS V Official F	ersion: Results:	CETISv1.8.7 Yes		
Batch ID: 07-6817-6216 Start Date: 22 Jun-15 Ending Date: 25 Jun-15 Duration: 72h			Test Prot Spe Sou	Type: cocol: cies: rce:	Algal growth inhibition Alga eriss tropical freshwater Chlorella sp. eriss ecotoxicology lab						Analyst:Ceiwen PeaseDiluent:Synthetic Soft WaterBrine:Not ApplicableAge:				
Sample ID: 15-9956-0398 Sample Date: 25 Jun-15 15:59 Receipt Date: 25 Jun-15 15:59 Sample Age: n/a			Cod Mat Sou Stat	e: erial: rce: ion:	1468G Uranyl Sulphate Reference Toxicant (U) In House						Client: Project:	nal Lab rence Toxicity Program			
Linear I	Interpo	V Transform	. Soo	d	Pos	amples	Evp 95%	CL	Moth	bod					
Log(X+	1)	Linear	1420	0830	200	ampres	Yes	UL.	Two-	Point Ir	terpolati	on			
Residu	al Ana	lvsis					and an an							_	
Attribut	te	Method				Test Stat	Critical	P-V	alue	Decis	sion(a:5º	()			
Extreme	e Value	e Grubbs Ex	dreme Valu	e Test		2.408	2.548	0.10	004	No O	utliers De	etected		_	
Point E	stimat	es													
Level	µg/L	95% LCL	95% UCL												
IC5	1.879	1.204	2.626												
IC10	6.537	3.197	10.69												
IC15	14.17	7 11.35	14.53												
IC20	14.79	9 14.33	15.13												
IC25	15.42	2 15	15.76												
IC40	17.5	17.14	17.79												
IC50	19.03	3 18.68	19.32												
Growth	n rate (db/d) Summary					Ca	lculat	ed Var	riate					
Conc-µ	ıg/L	Code	Count	Mean		Min	Max	Std	Err	Std D	Dev C\	/%	%Effect		
0.1		SS	3	1.915		1.897	1.932	0.01	029	0.017	83 0.9	93%	0.00%		
14			3	1.655		1.618	1.675	0.01	824	0.031	6 1.9	91%	13.58%		
25			3	0.328	5	0.3184	0.3478	0.00	9645	0.016	7 5.0	08%	82.84%		
48			3	-0.001	116	-0.02907	0.01675	0.01	414	0.024	49 -2	106.10%	100.06%		
97			3	-0.172	28	-0.2158	-0.1025	0.03	8544	0.061	39 -3	5.53%	109.02%		
Growth	n rate (db/d) Detail													
Conc-µ	ıg/L	Code	Rep 1	Rep 2	2	Rep 3									
0.1		SS	1.932	1.897		1.915									
14			1.671	1.618		1.675									
25			0.3193	0.318	4	0.3478									
48			0.008826	0.016	75	-0.02907									
97			-0.2158	-0.102	25	-0.2									

000-428-181-5

CETIS™ v1.9.0.9

Figure K13 continued

CETIS Ana	alvtical Report		Report Date:	05 Jan-16 14:11 (p 2 of 2)				
	.,			Test Code:	1468G 20-7789-819			
Algal Growth	Inhibition Test		eriss ecotoxicolog					
Analysis ID:	00-8758-3715	Endpoint:	Growth rate (db/d)	CETIS Version:	CETISv1.8.7			
Analyzed:	13 Jul-15 13:10	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes			
Graphics								
(b/d) 1.5 0.0 0.0 0.0 0.0 0.0	20 40 Cor	то <u>го</u> <u>го</u> <u>го</u> <u>го</u> <u>го</u> <u>го</u> <u>го</u> <u>го</u>						

000-428-181-5

CETIS™ v1.9.0.9

Figure K14 Test raw data and analysis report for test 1479G

CETIS	lytical Repo							Repo Test	ort Date Code:	12	05 Jan-16 14:12 (p 1 of 1 1479G 12-0184-6999				
Algal G	Growth	Inhibition Test											eri	ss ecotox	icology lab
Analysis ID: 16-9035-6070 Analyzed: 23 Sep-15 15:20		Ei 0 Ai	ndpoint: nalysis:	Growth rate (db/d) Linear Interpolation (ICPIN)					CET Offic	IS Versi ial Res	ion: ults:	CETISv1. Yes	9.0		
Batch ID: 12-7824-8524		Т	est Type:	Algal growth inhibition					Anal	vst:	Ceiwe	en Pease			
Start D	ate:	07 Sep-15	Pi	rotocol:	Alga eriss tropical freshwater				Dilu	ent:	Synth	hetic Soft Water			
Ending	Date:	10 Sep-15	S	pecies:	Chlo	lorella sp.				Brin	e:	Not A	Applicable		
Duration: 72h			S	ource:	eriss	ecotoxico	blogy lab			Age:					
Sample	e ID:	21-2063-6292	C	ode:	1479G				Clier	nt:	Intern	al Lab			
Sample	e Date:	25 Jun-15 15:59	м	aterial:	Uran	yl Sulphat	e			Proj	ect:	Refer	ence Toxic	ity Program	n
Receip	t Date:	25 Jun-15 15:59	S	ource:	Refe	rence Tox	icant (U)								
Sample	e Age:	73d 8h	Si	tation:	In Ho	ouse									
Linear	Interpo	lation Options													
X Tran	sform	Y Transform	S	eed	Resa	amples	Exp 95%	CL	Method						
Log(X+	1)	Linear	98	37894	200		Yes		Two-Poir	nt Interp	olation				
Point E	stimat	es													
Level	µg/L	95% LCL	95% UC)L											
IC5	1.304	0.8023	2.098												
IC10	4.054	1.968	7.826												
1015	10.09	3.5/3	22.57												
1020	17.68	12.72	17.0												
1023	21.60	10.5	73 33												
IC50	24.84	22.89	26.9												
Growth	n rate (d	db/d) Summary					Ca	lculate	d Variate)					
Conc-µ	ıg/L	Code	Count	Mean		Min	Max	Std	Err Si	d Dev	CV%		%Effect		
0.05		SS	3	2.054		1.993	2.106	0.03	298 0.	05713	2.78%	ó	0.00%		
16			3	1.69		1.634	1.721	0.02	79 0.	04832	2.86%	ó	17.72%		
30			3	0.738	3	0.6607	0.7979	0.04	059 0.	07031	9.52%	6	64.05%		
63			3	0.072	82	0.04318	0.1025	0.01	714 0.	02968	40.76	%	96.45%		
140			3	0.043	49	0.02028	0.05601	0.01	161 0.	02012	46.26	%	97.88%		
Growth	n rate (d	db/d) Detail													
Conc-µ	ıg/L	Code	Rep 1	Rep 2	2	Rep 3									
0.05		SS	1.993	2.062		2.106									
16			1.634	1.721		1.715									
30			0.7979	0.756	1	0.6607									
63			0.1025	0.043	18	0.07275									
140			0.05601	0.054	16	0.02028									
Graphi	cs														

007-240-543-9

CETIS™ v1.9.0.9