A statistical analysis of temporal trends in detection rates of birds in the Rangelands, using Atlas of Australian Birds data, 1999 - 2006

By Ross Cunningham¹, Andrew Silcocks², James O'Connor² and Michael Weston²

March 2007

¹ Statwise Pty Ltd ² Birds Australia

Birds Australia

Birds Australia (Royal Australasian Ornithologists Union) was founded in 1901 and works to conserve native birds and biological diversity in Australasia and Antarctica, through the study and management of birds and their habitats, and the education and involvement of the community.

Birds Australia produces a range of publications, including *Emu*, a quarterly scientific journal; *Wingspan*, a quarterly magazine for all members; *Conservation Statements*; *Birds Australia Monographs*; the *Birds Australia Report* series; and the *Handbook of Australian*, *New Zealand and Antarctic Birds*. It also maintains a comprehensive ornithological library and several scientific databases covering bird distribution and biology.

Membership of Birds Australia is open to anyone interested in birds and their habitats, and concerned about the future of our avifauna. For further information about membership, subscriptions and database access, contact

Birds Australia Suite 2-05 60 Leicester Street Carlton Vic 3053

Tel: (Australia): (03) 9347 0757 Fax: (03) 9347 9323 (Overseas): +61 3 9347 0757 Fax: +61 3 9347 9323

E-mail: mail@birdsaustralia.com.au

Recommended citation:

Ross Cunningham, Andrew Silcocks, James O'Connor and Michael Weston. 2007. A statistical analysis of temporal trends in detection rates of birds in the Rangelands, using Atlas of Australian Birds data, 1999 – 2006. Report to DEWR. Birds Australia, Melbourne.

Report prepared for the Department of Environment and Water Resources (DEWR) by Birds Australia, Melbourne.

This report was prepared by Birds Australia under contract to the Department of Environment and Water Resources. The project was funded by the Australian Government's Natural Heritage Trust.

Acknowledgments

The data used as the basis of this report would not exist without the tireless efforts of thousands of Atlas volunteers, all registered with the Threatened Bird Network (funded by the Australian Government's Natural Heritage Trust). We thank them all. This report and the methods employed were reviewed by Birds Australia's Atlas Advisory Committee, a subcommittee of the Research and Conservation Committee.

Disclaimers

This publication may be of assistance to you and every effort has been undertaken to ensure that the information presented within is accurate. Birds Australia does not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence that may arise from you relying on any information in this publication.

The views and opinions expressed in this publication are those of the authors and do not necessarily reflect the views and opinions of the Australian Government.

This report is prepared without prejudice to any negotiated or litigated outcome of any native title determination applications covering land or waters within the report's area. It is acknowledged that any future outcomes of native title determination applications may necessitate amendment of this report; and the implementation of this plan may require further notifications under the procedures in Division 3 Part 2 of the *Native Title Act* 1993 (Cwlth).

It is acknowledged that such negotiated outcomes may necessitate amendments of this report.

Published by Birds Australia, Suite 2-05, 60 Leicester St, Carlton, Victoria 3053, Australia.

Table of contents

Table of contents	3
Executive summary	4
Introduction	5
Methods	
Birds Australia's ongoing Atlas of Australian Birds	6
Atlas survey methods: 2-ha search	6
Atlas data: error sources and data vetting	
Reporting rate	7
Selection of data for analysis	7
Selection of species for analysis	9
Statistical analysis	
Analysis 1: All IBRA regions	
Analysis 2: IBRAs where taxon was present	12
Analysis 3: Regional (IBRA) variation in trends	
Analysis 4: Principal components analysis	
Presentation of results	13
Interpretation	
Determining and classifying change	
Consensus assessment	
Regional variation in temporal patterns	
Inference	
Results	
Overall temporal changes	
Statistical results	
Consensus approach – temporal trends	
Consensus approach – peaks and troughs	
Principal components analysis	
Guilds	
Summary	
Regional variation in temporal trends	
Occurrence of regional variation	
Regional variation and temporal change	
Correspondence between overall and regional temporal trends	
Discussion	
Overall patterns	
Options for presentation in ACRIS	
Towards improved monitoring and the next ACRIS report	
References	
Appendix 1: Species results	
Appendix 2: Detailed results of principal component analysis	90

Executive summary

- This report provides results which may be incorporated into the second Australian Collaborative Rangelands Information System (ACRIS) report on tracking change in the Rangelands.
- We used Atlas of Australian Birds data from repeatedly visited sites, 1998-2007, to examine temporal and regional change in 60 species of Rangeland birds. We had sufficient data to compare trends for up to ten IBRA regions.
- We fitted smoothing splines to the grouped data, and generated statistics to examine temporal and regional variation. We also conducted a Principal Components Analysis on the derived temporal parameters in an attempt to classify species according to trend profiles.
- Smoothed curves of relative abundance over time showed high inter-year and high intra-year variability, which seems common to most long-term bird data.
- We used rigorous criteria to determine change, and for 49 species we confidently assigned a change status during for the period examined. Of these, 22.4% decreased, 36.7% remained stable and 40.8% increased.
- Many species show a marked peak during the relatively wet 2000-2001 period, and some showed troughs during the peak of the drought of 2002-2004.
- Neither assignment of guilds nor Principal Component Analysis provided any insights into species-specific differences in temporal trend.
- 75% of species showed regional variation in trend, and it was common for the trend in at least one IBRA to be substantially different from overall trends. IBRAspecific trends are presented and at times conflict with overall trends.
- We make recommendations about what aspects of the results may best be incorporated into the ACRIS report.

Introduction

Birds are promising environmental indicators. Features which underpin their utility as indicators include:

- they live in almost every type of environment in Australia and in almost every niche within those environments;
- they tend to be at the top of the food chain;
- they have varied diets;
- they are easy to see and observe;
- they are very well-catalogued, and their taxonomy is reasonably well-known;
- the distributions and general biology of most birds are already relatively well documented (compared with other taxa), providing a good baseline against which change can be monitored; and,
- birds are also loved by the public, which ensures a ready pool of skilled volunteers willing to go into the field to monitor them.

In Australia the status of birds is used in environmental reports such as the State of the Environment, published every five years by the Department of Environment and Water Resources. The State of Australia's Birds reports also described change in birds, and are partly funded by the Australian Government's Natural Heritage Trust (e.g. Olsen and Weston 2004; Olsen et al. 2003). Much of the information used in these reports is gathered by the Birds Australia Atlas of Australian Birds, one of the largest wildlife databases in the world, in terms of both number of records and breadth of geographical scope. The Atlas is now in its thirtieth year, and this fact, combined with its continent-wide coverage, make it an ideal vehicle for examining changes in bird populations over time.

The first Australian Collaborative Rangelands Information System (ACRIS) report was on a pilot study in five IBRA regions from 1992-2002. A second ACRIS report is under preparation and this report provides information which may be included in the new ACRIS report.

Drawing on data collected as part of Birds Australia's ongoing Atlas of Australian Birds project, The Department of Environment and Water Resources sought this report. The specific aim of this report is to statistically analyse temporal trends in rangelands birds between 1999 and 2006, based on changes in the detection rates of 50 common and widespread rangeland species.

Methods

Birds Australia's ongoing Atlas of Australian Birds

In 1974 the decision was made by the Birds Australia (RAOU) to go ahead with a national Bird Atlas Scheme, and in 1976 the first grants were received from the Australian Government's Australian Biological Resources Study (ABRS) and the Australian National Parks and Wildlife Service (ANPWS). This first atlas was published in 1984 as The Atlas of Australian Birds (Blakers et al. 1984). In 1998, the second atlas commenced, and it was funded by the Australian Government's Natural Heritage Trust (Barrett et al. 2003). Since 2002, Birds Australia has funded the atlas, using a variety of funding sources.

For the second atlas, the two hectare (2-ha) search was heavily promoted as the most useful search method, and observers were encouraged to visit the outback and contact designated local regional organisers for details on where to go atlassing. A major effort was also put into remote atlassing with the assistance of committed individuals, wildlife agencies, Aboriginal Land Councils, universities, regional bird groups, station owners and tourism operators. In particular, *Desert Discovery*, a non-profit organization that coordinates expeditions and promotes scientific research in remote and difficult terrain, played a major role in organizing expeditions to a number of remote regions between 1999 and 2001. Organisers aimed for at least 20 surveys per 1° grid, visiting as many different types of habitat as possible. With the exception of Arnhem Land where a helicopter was used, all expeditions were vehicle-based.

The Atlas now contains six million bird records from 400,000 surveys, making it a major resource for those wishing to understand change in birds.

Detailed methods are presented in Barrett et al. (2003) and information on the volunteers that contributed is presented in Weston et al. (2006).

Atlas survey methods: 2-ha search

The 2-ha Search for 20 minutes was the method atlassers were encouraged to use, and while the recommended shape of the search area was 100 m × 200 m, the area could be any shape. Only birds within the two hectares were recorded, including birds seen flying over the area. People were asked to survey their selected areas once each season for at least one year, ideally during the middle month of each season: January (summer), April (autumn), July (winter) and October (spring). However, once-off surveys where observers had no intention of returning to the site were still considered valuable and encouraged. Observers were encouraged to complete a Record Form for all 2-ha Searches, even if no bird species were recorded. Observers were instructed to choose 2-ha Search areas that were representative of one type of habitat or land management. For example, selecting 2-ha Search areas that were half grassland and half forest, or part

grazed and part ungrazed, was discouraged. While surveys are undoubtedly biased towards the better bird watching areas, observers were encouraged to survey all types of habitat, regardless of the birds present.

In this report, the place where a 2-ha Search for 20 minutes occurred is termed a 'site'.

Atlas data: error sources and data vetting

Variation in observer capability presents one problem in the integrity of data gathered by multitudes of volunteers. These differences were minimized by keeping the survey methods simple and making sure the tasks were not too onerous. Some sources of error include bird identification errors, form recording errors, and positional information errors. Multiple-stage vetting procedures were in place to minimise all of these error sources, and a great deal of ongoing effort is made to ensure that a very low proportion of errors enter the database and remain undetected.

Reporting rate

In this report, the 'reporting rate' is the frequency with which a given species or group of species was recorded. It is calculated as:

The number of surveys in which the taxon/taxa were recorded

The total number of surveys conducted

The reporting rate is often expressed as a percentage.

Selection of data for analysis

We defined the Rangelands according to Figure 1.

For this study, Atlas data from 1,111 sites in 29 IBRA³ regions in the Rangelands from June 1998 to January 2007, a total of 10,011 observations, were made available for analysis.

Table 1: The number of Atlas surveys in the Rangelands during each year.

Year	Number of Atlas
	surveys in the
	Rangelands
1998	422
1999	2,138
2000	2,336
2001	1,374
2002	969

³ Interim Biogeographical Regionalisation of Australia.

-

Year	Number of Atlas
	surveys in the
	Rangelands
2003	736
2004	724
2005	737
2006	557
20074	18
Total	10,011

Rangeland IBRAs with fewer than five sites were excluded as were sites with no repeat surveys. Further data exclusion criteria were:

- Surveys from before September 1998 and after August 2006;
- Sites where no birds from the species list (Table 3) were seen; and,
- Sites with repeat observations only from the same year. That is, sites having surveys in at least two different years were included.

After data selection, 8,655 observations from 623 sites in 28 IBRAs remained in the data subset which was analysed. These data are summarised in Table 2.

Table 2: The number of sites in each of the Rangeland IBRAs. The number of observations (surveys) is provided for those IBRAs where at least one species was observed on at least 40 of the 96 months (i.e., for those IBRAs included in the restricted data set).

IBRA region ⁵	Number of sites	Number of observations
BBN	19	922
BRT	14	
CAR	9	
CHC	8	
CK	5	
CP	7	
CYP	8	265
DL	33	242
DRP	25	168
EIU	4	
FIN	17	191
FLB	37	1,249
GAS	21	
GAW	26	237

⁴ This number is low primarily because this report was written early in 2007 and there is often a delay in the submission of survey forms.

⁵ IBRA abbreviations are presented. The full names of IBRAs where enough data were available for analysis is provided in the caption to Figure 1.

8

IBRA region ⁵	Number of sites	Number of observations
GSD	51	
GUP	4	
MAC	32	813
MDD	125	2,678
MGD	21	
ML	32	
MUR	8	
NK	13	
OVP	16	
PIL	6	
RIV	65	630
SSD	6	
TAN	3	
VB	8	

Selection of species for analysis

We required species that were relatively frequently recorded for analysis of trends, and we had *a priori* determined that would analyse about 50 species. Thus, we needed to select the most appropriate taxa for analysis.

It was decided to select 60 species, a few more than originally intended, in case a few species fell out during analysis. A threshold level of 2% mean reporting rate in the study area was set for inclusion of species in the analysis. Of 462 species recorded in the Rangelands from 2-ha surveys, 138 (29.9%) exceeded the threshold reporting rate (Table 3).

Several other selection criteria were used:

- Selected species were reported in a minimum of 16 IBRA regions;
- Typical rangeland/arid country species were selected;
- Most waterbirds were excluded as it was felt that they weren't typical Rangeland species and would only use the area if conditions were favourable. Two exceptions were the Grey Teal and Pacific Black Duck, which were retained as they occur routinely in the Rangelands; and,
- Species which observers had difficulty in identifying were mostly left out of the analysis. This included the Ravens and Crows, though Torresian Crow was selected as it is readily identifiable.

Table 3: Species selected for analysis of trends in the Rangelands.

Common nameScientific nameEmuDromaius novaehollandiaePeaceful DoveGeopelia striataDiamond DoveGeopelia cuneataCommon BronzewingPhaps chalcopteraCrested PigeonOcyphaps lophotesMasked LapwingVanellus milesPacific Black DuckAnas superciliosaGrey TealAnas gracilisWedge-tailed EagleAquila audaxWhistling KiteHaliastur sphenurusBlack KiteMilvus migransBrown FalconFalco berigoraNankeen KestrelFalco cenchroidesLittle CorellaCacatua sanguineaGalahCacatua roseicapillaCockatielNymphicus hollandicusRed-winged ParrotAprosmictus erythropterus
Peaceful Dove Diamond Dove Geopelia cuneata Common Bronzewing Phaps chalcoptera Crested Pigeon Masked Lapwing Pacific Black Duck Grey Teal Wedge-tailed Eagle Whistling Kite Black Kite Brown Falcon Nankeen Kestrel Little Corella Cacatua roseicapilla Cockatiel Phaps chalcoptera Coepula cuneata Phaps chalcoptera Ocyphaps lophotes Vanellus miles Anas superciliosa Anas gracilis Haliastur sphenurus Milvus migrans Falco berigora Cacatua sanguinea Cacatua roseicapilla Nymphicus hollandicus
Diamond Dove Common Bronzewing Phaps chalcoptera Crested Pigeon Masked Lapwing Pacific Black Duck Grey Teal Wedge-tailed Eagle Whistling Kite Black Kite Brown Falcon Nankeen Kestrel Little Corella Cockatiel Crested Pigeon Ocyphaps lophotes Vanellus miles Anas superciliosa Anas gracilis Anas gracilis Wedge-tailed Eagle Aquila audax Milvus migrans Falco berigora Cacatua sanguinea Cacatua roseicapilla Nymphicus hollandicus
Common BronzewingPhaps chalcopteraCrested PigeonOcyphaps lophotesMasked LapwingVanellus milesPacific Black DuckAnas superciliosaGrey TealAnas gracilisWedge-tailed EagleAquila audaxWhistling KiteHaliastur sphenurusBlack KiteMilvus migransBrown FalconFalco berigoraNankeen KestrelFalco cenchroidesLittle CorellaCacatua sanguineaGalahCacatua roseicapillaCockatielNymphicus hollandicus
Crested Pigeon Masked Lapwing Pacific Black Duck Grey Teal Wedge-tailed Eagle Whistling Kite Black Kite Brown Falcon Nankeen Kestrel Little Corella Cacatua roseicapilla Cockatiel Cacatua songliandes Ocyphaps lophotes Vanellus miles Anas superciliosa Anas gracilis Aquila audax Haliastur sphenurus Milvus migrans Falco berigora Falco cenchroides Cacatua sanguinea Cacatua roseicapilla Nymphicus hollandicus
Masked LapwingVanellus milesPacific Black DuckAnas superciliosaGrey TealAnas gracilisWedge-tailed EagleAquila audaxWhistling KiteHaliastur sphenurusBlack KiteMilvus migransBrown FalconFalco berigoraNankeen KestrelFalco cenchroidesLittle CorellaCacatua sanguineaGalahCacatua roseicapillaCockatielNymphicus hollandicus
Pacific Black Duck Grey Teal Anas gracilis Wedge-tailed Eagle Aquila audax Whistling Kite Haliastur sphenurus Black Kite Milvus migrans Brown Falcon Falco berigora Nankeen Kestrel Little Corella Cacatua sanguinea Galah Cockatiel Nymphicus hollandicus
Grey Teal Wedge-tailed Eagle Whistling Kite Black Kite Brown Falcon Nankeen Kestrel Little Corella Galah Cockatiel Anas gracilis Aquila audax Haliastur sphenurus Haliastur sphenurus Falco berigora Falco berigora Cacatua sanguinea Cacatua roseicapilla Nymphicus hollandicus
Wedge-tailed EagleAquila audaxWhistling KiteHaliastur sphenurusBlack KiteMilvus migransBrown FalconFalco berigoraNankeen KestrelFalco cenchroidesLittle CorellaCacatua sanguineaGalahCacatua roseicapillaCockatielNymphicus hollandicus
Whistling Kite Black Kite Brown Falcon Nankeen Kestrel Little Corella Galah Cockatiel Haliastur sphenurus Milvus migrans Falco berigora Falco cenchroides Cacatua sanguinea Cacatua roseicapilla Nymphicus hollandicus
Black Kite Brown Falcon Falco berigora Nankeen Kestrel Little Corella Galah Cockatiel Milvus migrans Falco berigora Falco cenchroides Cacatua sanguinea Cacatua roseicapilla Nymphicus hollandicus
Brown Falcon Nankeen Kestrel Little Corella Galah Cockatiel Cockatiel Falco berigora Falco cenchroides Cacatua sanguinea Cacatua roseicapilla Nymphicus hollandicus
Nankeen KestrelFalco cenchroidesLittle CorellaCacatua sanguineaGalahCacatua roseicapillaCockatielNymphicus hollandicus
Little CorellaCacatua sanguineaGalahCacatua roseicapillaCockatielNymphicus hollandicus
Galah Cacatua roseicapilla Cockatiel Nymphicus hollandicus
Cockatiel Nymphicus hollandicus
Red-winged Parrot Annosmictus erythronterus
Australian Ringneck Barnardius zonarius
Budgerigar Melopsittacus undulatus
Red-backed Kingfisher Todiramphus pyrrhopygia
Sacred Kingfisher Todiramphus sanctus
Rainbow Bee-eater Merops ornatus
Horsfield's Bronze-Cuckoo Chrysococcyx basalis
Welcome Swallow Hirundo neoxena
Tree Martin Hirundo nigricans
Fairy Martin Hirundo ariel
Willie Wagtail Rhipidura leucophrys
Jacky Winter Microeca fascinans
Red-capped Robin Petroica goodenovii
Rufous Whistler Pachycephala rufiventris
Grey Shrike-thrush Colluricincla harmonica
Magpie-Lark Grallina cyanoleuca
Crested Bellbird Oreoica gutturalis
Black-faced Cuckoo-Shrike Coracina novaehollandiae
White-winged Triller Lalage sueurii
Grey-crowned Babbler Pomatostomus temporalis
Weebill Smicrornis brevirostris
Inland Thornbill Acanthiza apicalis
Chestnut-rumped Thornbill
Yellow-rumped Thornbill
Rufous Songlark Cinclorhamphus mathewsi
White-winged Fairy-wren Malurus leucopterus

Common nama	Scientific name
Common name	
Variegated Fairy-wren	Malurus lamberti
Masked Woodswallow	Artamus personatus
Black-faced Woodswallow	Artamus cinereus
Mistletoebird	Dicaeum hirundinaceum
Brown Honeyeater	Lichmera indistincta
Singing Honeyeater	Lichenostomus virescens
White-plumed Honeyeater	Lichenostomus penicillatus
Yellow-throated Miner	Manorina flavigula
Spiny-cheeked Honeyeater	Acanthagenys rufogularis
Little Friarbird	Philemon citreogularis
Richard's Pipit	Anthus novaeseelandiae
Singing Bushlark	Mirafra javanica
Zebra Finch	Taeniopygia guttata
Torresian Crow	Corvus orru
Pied Butcherbird	Cracticus nigrogularis
Grey Butcherbird	Cracticus torquatus
Australian Magpie	Gymnorhina tibicen
Restless Flycatcher	Myiagra inquieta
Striated Pardalote	Pardalotus striatus

Statistical analysis

Data for each species were first grouped by Year and Month and observed reporting rates were calculated. To these proportions a smoothing spline of order 5 (5 d.f.) was fitted and plotted (see Figure 2). The method used was a weighted least squares for overdispersed proportions data (the dispersion parameter is estimated rather than set to 1, as would be the case for Binomial data). This modelling framework is widely known as a Generalised Additive Model (GAM).

Unsurprisingly, these proportions data showed extensive variation according to intra-year and inter-year variability and other factors, and they did not generally provide useful information on longer-term temporal trends. As the interest here was in long-term trends, no attempt was made to fit a seasonal component. As well as this initial analysis other methods of smoothing were explored and, as they gave similar results to the above, are not presented here.

Possible serial dependence arising from the fact that data are repeated measures data was ignored. Attempts to fit a random site effect to account for intra-site dependence usually fail due to the extreme imbalance in the data arising from the haphazard nature of data collection. In any case we assume the grouping of data and likely detection errors will obscure this feature.

Several analyses are presented graphically as follows:

Analysis 1: All IBRA regions

The pattern in the reporting rate over time was plotted, using data from all 29 Rangeland IBRAs regardless of whether the taxon was recorded within that IBRA or not. These were plotted together with a 'smooth fit', obtained by fitting a smoothing spline of order 5 (d.f. = 5) by weighted least squares, within a framework known as generalised linear models (GLM) for proportional data with the dispersion parameter estimated.

This analysis is presented in the top left panel of the results shown in Appendix 1.

Analysis 2: IBRAs where taxon was present

For the second analysis, only data from IBRAs where the taxon had been recorded were included for analysis. The reporting rate was plotted over time, along with a fitted smooth trend of order 5 and a smooth trend of order 1 (a linear trend).

The straight-line fit should be viewed with extreme caution; trends are usually not linear, as can be seen for most taxa. From the fitted lines we calculated the predicted values at July 1999 and July 2006 based on the high order smooth fit and also on the linear fit. From these we derived the percentage change, which represents the predicted change over seven years, from July 1999 to July 2006. The p-value for linear trend is a test of whether the slope of the line is different from zero (i.e. a flat line).

The above analysis is presented in the top right panel of the results shown in Appendix 1. The lower right panel presents: 1) the predicted reporting rates for July 1999 and July 2006 and the associated percentage change based on the 5 d.f. smoothed curve and 2) the percentage change based on the linear fit, together with the observed significance level (p-value) for the linear trend (see Figure 2).

Analysis 3: Regional (IBRA) variation in trends

Trends in the occurrence of birds over time show regional variations (Barrett *et al.* 2003). The Rangelands is a huge area, sampling used in this study was from a relatively small number of widely spread IBRAs, and therefore regional variation was probable. Thus we wished to examine any regional variation in temporal trends.

We selected IBRAs with at least 100 surveys and excluded data from IBRAs where the species had not been observed in at least 40 of the possible 96 months. A maximum of ten IBRAs remained for analysis (see Table 2). This analysis is intended to be indicative of a full between-IBRA comparison of trends.

For these data we assessed heterogeneity of temporal trends across IBRA regions. This was done by fitting a smoothing spline of order 3 to data for each included IBRA and constructed a test statistic for 'parallelism' of these trends. The p-value for this test is given in the lower right panel (see Figure 2). A low p-value (p<0.05) indicates some heterogeneity in trend i.e. the trends vary between IBRA regions. High p-values indicate a degree of parallelism in trends across IBRAs.

We graphed the trends for IBRAs for which we had enough data.

This analysis is presented in the bottom left right panel of the results shown in Appendix 1. The lower right panel provides: 1) a colour-key for the IBRA displayed in the lower left panel graph and 2) results of the test for heterogeneity of slopes between IBRA regions and predicted values and % change figures.

Analysis 4: Principal components analysis

Principal Components Analysis (PCA) is a statistical method which may provide insight into structure within multivariate data and so may assist in identifying patterns in data. Since patterns can be hard to find in data of high dimension, PCA is a powerful tool for expressing the data in such a way as to highlight their similarities and differences among species.

In the present case, we wished to examine the similarities and differences in species-specific temporal trends in our data using PCA. We conducted a PCA which derived two principal components of the parameters associated with the six dimensional curve fitted to the temporal data for each species analysed. These components seem to relate to year to year patterns (excluding the first and last years). Species scores were plotted; birds close together on the plot show similar patterns in terms of the first two principal components.

Presentation of results

Figure 2 provides a key to the presentation of results in Appendix 1, and which have been explained in greater detail in the text above.

Interpretation

Determining and classifying change

Our results describe a complex set of relationships, which involve principally temporal components. A key question is how we should differentiate change over time from circumstances where no change has occurred. Our approach is to define what we consider constitutes 'change'.

We have defined change as meeting all of the following circumstances:

- The linear trend is significantly different from zero (based on the p-value), and the percentage change (linear) is of a magnitude greater than 30% (the linear trend must be interpreted with a high degree of caution);
- The percentage change figure (which is based on the spline) is of a magnitude greater than 30%;
- The percentage change (linear) is in the same direction as the percentage change derived from the spline; and,

• Examination of the graphs (top panels) reveals a consistent pattern (see 'Consensus assessment' below).

Where trends did not meet our criteria for change, they were defined as "stable", which in fact means there was not sufficient enough evidence to confidently assign a trend. We have done this so that the designation of change is as conservative as possible.

Consensus assessment

Three investigators (James O'Connor, Andrew Silcocks and Michael Weston), met to assess and categorise each species-specific graph, with a view to obtaining a consensus characterisation of the temporal patterns. To achieve this, the group examined the reporting rate and spline derived from IBRAs where species were recorded (the upper right panel in Appendix 1). We made the following assessments:

- We categorised trends as increasing, decreasing or remaining stable;
- We identified obvious, clear-cut troughs and peaks in the spline, and characterised
 these as slight or large, according to their magnitude (and accounting for the scale
 on the graphs). The apex year of peaks and troughs was recorded for each species.

This proved particularly informative, particularly as statistical summaries did not indicate the temporal occurrence of peaks and troughs.

Regional variation in temporal patterns

Change over time also varies regionally (see, for example, Barrett et al. 2003). Thus consideration of localised change is then best performed at the IBRA level. Under these circumstances, the trend in particular region/s can be dissimilar or even opposite, thus some regional trends may appear to contradict the overall results. Several factors may explain this:

- Only up to 10 of the 29 Rangeland IBRAs are included in this analysis;
- Estimates of overall trends are intrinsically weighted proportional to survey effort (number of surveys); and,
- Trends derived here are highly smoothed.

We also wished to categorise regional change. One of us (JOC) examined the graphs showing regional variation and classified the number of IBRA regions that were going against the general trend (those with very flat or slight slopes were disregarded). We then calculated the proportion of IBRA regions analysed and calculated the percentage of IBRA trend that went against the overall trend.

Inference

This study was only able to examine trends over a seven year period. We were constrained to this period because of available data. It is not possible to infer longer-term trends from an examination of a seven-year period, especially given the highly variable climate of the Rangelands, and the fact that the ecologies of many species will be responsive to irregular and unpredictable drought and rains, fire and many other factors. Nevertheless, the results of this study flag changes in the relative occurrence of bird species that provide information on the current trends in bird populations in the Rangelands. Placing these in the context of longer-term climatic or other variation will require more years of data collection.

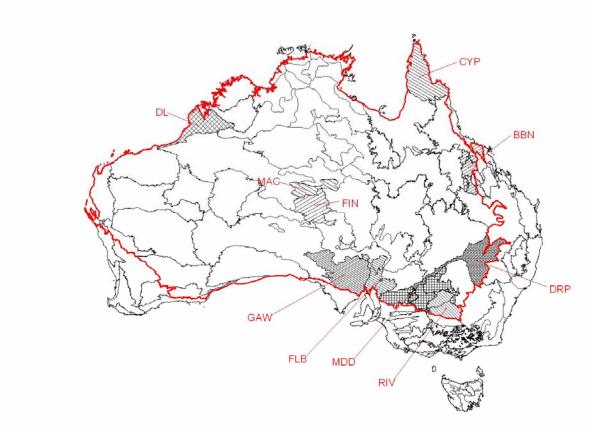


Figure 1: Map of Australia showing IBRA regions. The Rangelands are demarcated by the red line and IBRAs that were used in this analysis are shaded and labelled. CYP = Cape York Peninsula, BBN = Brigalow Belt North, DRP = Darling Riverine Plain, RIV = Riverina, MDD = Murray-Darling Depression, FLB = Flinders Lofty Block, GAW = Gawler, FIN = Finke, MAC = MacDonnell Ranges, DL = Dampierland.

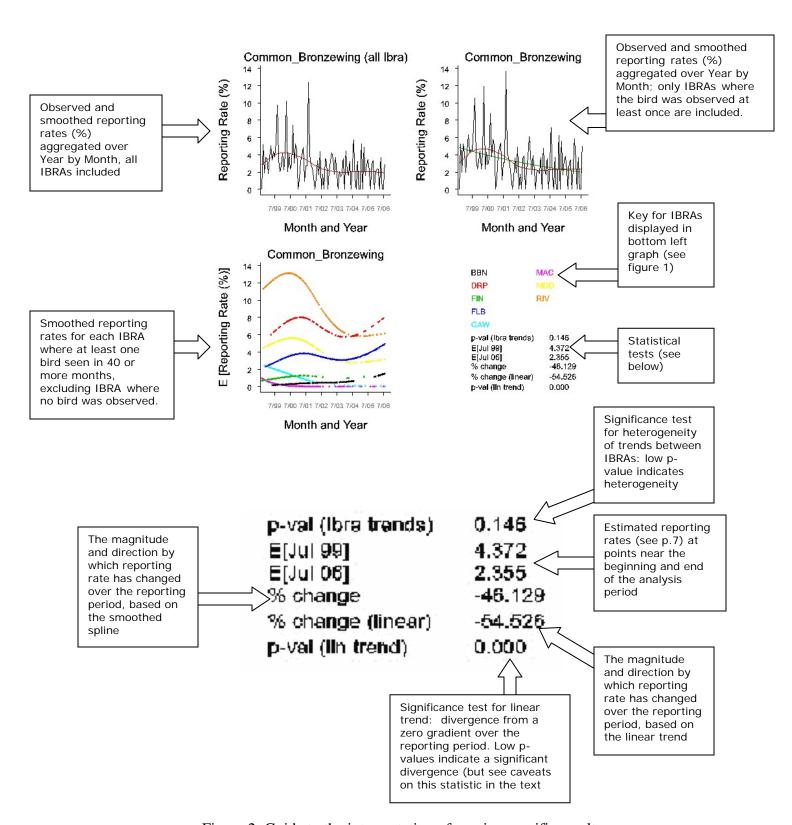


Figure 2: Guide to the interpretation of species-specific results

Results

Sixty common Rangelands bird species were analysed. Detailed results are presented for each species in Appendix 1. These are summarised in tabular form in Table 3.

Overall temporal changes

Statistical results

We consider the most useful single statistic is the percentage change derived from the spline curve for those IBRAs where a species was recorded. Percentage change estimated from the spline varied -89.3 - 552.9% (49.1± 147.5% [mean standard±deviation]). Overall, 31 species (51.7%) had a negative percentage change; the remainder had positive percentage changes.

The spline also permitted us to generate an estimate of the reporting rate at the beginning of the period (July 1999) and at the end of the period (July 2006). On change in the average of these estimates was 2.061% (see Table 4).

Table 4: Summary of the estimated report rates (as percentages) in July 1999 and July 2006.

Statistic	Estimated reporting	Estimated reporting
	rate in July 1999	rate in July 2006
Minimum	1.344	0.652
Maximum	31.779	29.627
Mean	8.189	8.358
Standard	6.662	6.802
Deviation		

Here, we have decided not to present the linear regression results because trends are usually more complex than can be described by a straight line (see Methods).

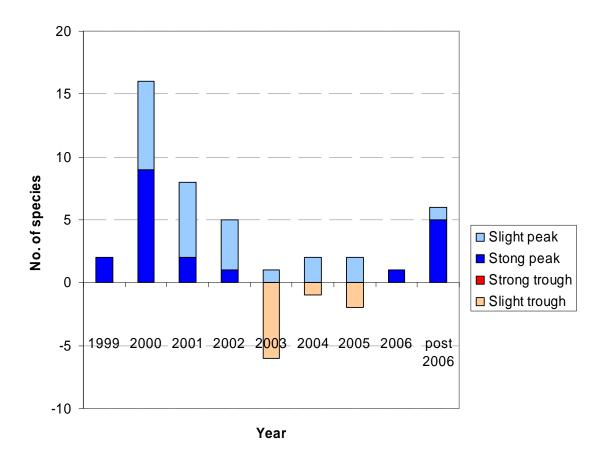
Consensus approach – temporal trends

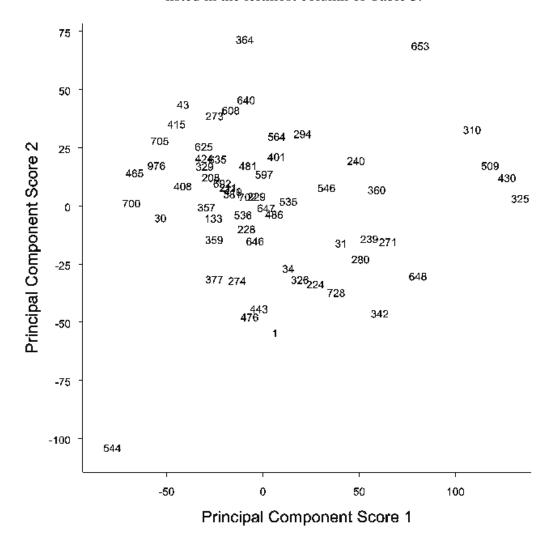
The consensus approach allowed us to classify the temporal trends in species occurrence. Table 3 presents the results of this approach, which was featured by high levels of concordance among the experts involved.

Consensus approach – peaks and troughs

The consensus approach proved very useful, and allowed us to identify clear-cut peaks and troughs in the fitted splines. Fifty-two peaks and troughs were identified from 43 species. These are summarised in Figure 3. High concordance was achieved among the experts identifying and categorising peaks and troughs.

Figure 3: The temporal distribution in the number of peaks and troughs in relative abundance among 60 bird species in the Rangelands.




Figure 3 clearly shows that many species showed peaks in occurrence in 2000 and 2001, followed by a less distinct period of troughs in 2003-2005. This broadly corresponds of high rainfall (1998-2001), and the beginning of drought (2001 onwards).

This approach also allowed us to examine similarities in patterns among groups of species. In particular, raptors (birds of prey) showed a distinct double-humped pattern, with a small peak in occurrence around 2001 and the build up to what is presumably a peak (but possibly a plateau) post 2006.

Principal components analysis

The PCA derived components that seem to relate to year to year patterns (excluding the first and last years). Figure 4 shows an ordination derived from the PCA conducted on the temporal trends in bird species. The closer together species occur on the ordination, the more similar they are in terms of their temporal trend.

Figure 4: Ordination derived from the Principal Component Analysis conducted on the temporal trends in bird species. Numbers correspond to RAOU numbers for species as listed in the leftmost column of Table 3.

The ordination revealed that for most species, there was little separation in terms of similarity or difference of temporal trend. However, it did identify a number of species which were dissimilar to most others. These were Willie Wagtail (364), Zebra Finch (653), Budgerigar (310), Rufous Songlark (509), White-winged Triller (430), Red-backed Kingfisher (325) and Masked Woodswallow (544). Most of these species reveal little difference from general trends in their individual graphs (see Appendix 3). The monthly figures for Masked Woodswallow are characterised by long periods of complete absence

punctuated by discrete short-lived 'events' in which the reporting rate skyrockets, which is consistent with the known sporadic and highly unpredictable movements of this species (Higgins *et al.* 2006).

The primary result to be derived from Figure 4 is that there appears to be an overall pattern of similarity in temporal trend between species, and that differences tend to be along a gradient rather than in distinct clusters.

Guilds

We assigned guild classifications to all species analysed. These are provided in Table 3 and summarised in Table 5. Species could not be classified into single guilds, rather they met the criteria for multiple guilds; species occurred in 2-5 guilds (3.2 ± 0.8 guilds). Thus guilds were confounded one with the other, and were not considered a useful method of attempting to characterise temporal patterns in the occurrence of the birds analysed. Certainly the outliers in the PCA were not exclusively associated with particular guilds.

Table 5: The guilds associated with the 60 Rangeland bird species analysed.

Guild	Temperate	Tropical	Grassland	Ground	Non	Wetland
	woodland	woodland		feeder	Ground	species
					feeders	
Number of	44	44	32	44	29	3
species						
Percentage	73.3	73.3	53.3	73.3	48.3	5.0
of species						

Summary

Of the 60 species analysed, the consensus determination for change agreed with the statistical determination of change in 81.7% of cases (49 species). Table 6 indicates the results from the statistical classification of change, the consensus approach and the correspondence between the two methods. The last row of Table 6 indicates species which we have classified as 'decreasing', 'stable' or 'increasing' during the period we examined.

Table 6: Classification of temporal changes in Rangeland birds. The number (and percentage) of species classified as 'decreasing', 'stable' and 'increasing', 1999-2006, using statistical results, a consensus approach, and the combination of both (where assigned classifications corresponded between the statistical and consensus approaches).

Approach	Decreaser	Stable	Increaser
Statistical	14 (23.3)	25 (41.7)	21 (35.0)
Consensus	16 (26.7)	22 (36.7)	22 (36.7)
Correspondence	11 (22.4)	18 (36.7)	20 (40.8)

Table 3: Summary of species-specific results. Yellow indicates suggestion of significant decline, light blue indicates suggestion of significant increase, and blank cells indicate circumstances where the analysis did not converge, and non-sensible results were obtained. Red figures indicate the circumstance where the linear trend results were associated with a percentage change figure that was less than 30% in magnitude. Key: A, Temperate woodland; B, Tropical woodland; C, Grassland; D, Ground feeder; E, Non Ground feeders; F, Wetland species; G, Number of guilds in which a species is classified.

Sp. No.	Common name	p-val (Ibra trends)	E (Jul99)	E (Jul06)	% change	% change (lin)	p-val (lin trend)	Strong Peak	Slight peak	Slight trough	Change (Statistics)	Change (Consensus)	Final Classification	Correspondence	A	В	С	D	Е	F	G
705	Australian Magpie	0.625	13.270	20.796	56.716	44.236	0.001				Increaser	Increaser	Increaser	Corresponds	1	1	1	1	0	0	4
294	Australian Ringneck	0.000	15.201	8.795	-42.138	-56.785	0.000		2000		Decreaser	Decreaser	Decreaser	Corresponds	1	0	0	1	1	0	3
229	Black Kite	0.003	4.507	14.245	216.050	46.057	0.048	post 2006		2004	Increaser	Increaser	Increaser	Corresponds	0	1	1	1	0	0	3
424	Black-faced Cuckoo-Shrike	0.000	10.919	9.338	-14.482	-31.996	0.005		2000	2005	Stable	Decreaser	Stable	No correspondence	1	1	0	0	1	0	3
546	Black-faced Woodswallow	0.000	5.316	5.635	6.012	-15.717	0.415			2003	Stable	Stable	Stable	Corresponds	1	1	1	0	1	0	4
239	Brown Falcon	0.606	2.055	6.045	194.181	74.715	0.009	post 2006		2003	Increaser	Increaser	Increaser	Corresponds	1	1	1	1	0	0	4
597	Brown Honeyeater	0.000	17.650	9.123	-48.310	-60.229	0.000				Decreaser	Decreaser	Decreaser	Corresponds	1	1	0	0	1	0	3
310	Budgerigar	0.015	4.723	5.175	9.550	-33.787	0.078	2000			Stable	Stable	Stable	Corresponds	0	1	1	1	0	0	3
481	Chestnut- rumped Thornbill	0.000	12.122	9.457	-21.989	-21.167	0.132		2001		Stable	Stable	Stable	Corresponds	0	0	0	1	1	0	2
274	Cockatiel	0.075	1.735	1.582	-8.827	-10.258	0.658		2000		Stable	Stable	Stable	Corresponds	0	0	1	1	1	0	3
34	Common Bronzewing	0.146	4.372	2.355	-46.129	-54.526	0.000		2000		Decreaser	Stable	Stable	No correspondence	1	1	0	1	0	0	3
419	Crested Bellbird	0.000	13.973	6.790	-51.410	-54.559	0.000	2000			Decreaser	Decreaser	Decreaser	Corresponds	1	1	0	1	1	0	4
43	Crested Pigeon	0.000	14.375	28.132	95.695	63.699	0.000				Increaser	Increaser	Increaser	Corresponds	0	0	1	1	0	0	2
31	Diamond Dove													Corresponds	0	1	1	1	0	0	3
1	Emu	0.001	1.946	0.652	-66.487	-59.378	0.001		2001		Decreaser	Stable	Stable	No correspondence	1	1	1	1	0	0	4
360	Fairy Martin	0.000	1.847	10.279	456.434	129.370	0.000	post 2006	2001		Increaser	Increaser	Increaser	Corresponds	1	1	1	0	1	0	4
273	Galah	0.473	9.355	16.007	71.093	97.120	0.000				Increaser	Increaser	Increaser	Corresponds	1	1	1	1	0	0	4

Sp. No.	Common name	p-val (Ibra trends)	E (Jul99)	E (Jul06)	% change	% change	p-val (lin trend)	Strong Peak	Slight peak	Slight trough	Change (Statistics)	Change (Consensus)	Final Classification	Correspondence	A	В	С	D	Е	F	G
702	Grey Butcherbird	0.027	17.518	3.959	-77.402	-81.229	0.000	2000	peux	uougn	Decreaser	Decreaser	Decreaser	Corresponds	1	1	0	1	0	0	3
408	Grey Shrike- thrush	0.503	23.196	4.241	-81.717	-79.013	0.000	2000			Decreaser	Decreaser	Decreaser	Corresponds	1	1	0	1	1	0	4
211	Grey Teal	0.046	4.036	7.724	91.383	141.919	0.000				Increaser	Increaser	Increaser	Corresponds	0	0	0	1	0	1	2
443	Grey-crowned Babbler	0.001	9.575	1.769	-81.520	-86.117	0.000				Decreaser	Decreaser	Decreaser	Corresponds	1	1	0	1	1	0	4
342	Horsfield's Bronze-Cuckoo Inland	0.090	1.452	0.873	-39.876	-55.639	0.001		2000		Decreaser	Stable	Stable	No correspondence	1	1	0	1	1	0	4
476	Thornbill	0.000	3.032	0.903	-70.220	8.861	0.719		2002		Stable	Stable	Stable	Corresponds	1	0	0	0	1	0	2
377	Jacky Winter	0.393	14.912	3.344	-77.579	-77.724	0.000	1999			Decreaser	Decreaser	Decreaser	Corresponds	1	1	0	1	0	0	3
271	Little Corella	0.172	2.141	7.935	270.550	182.573	0.000				Increaser	Increaser	Increaser	Corresponds	0	1	1	1	0	0	3
646	Little Friarbird	0.001	3.806	2.039	-46.420	83.112	0.035				Stable	Stable	Stable	Corresponds	1	1	0	0	1	0	3
415	Magpie-Lark	0.000	14.305	16.819	17.578	-8.259	0.538	1 .	2001	2005	Stable	Stable	Stable	Corresponds	1	1	1	1	0	0	4
133	Masked Lapwing Masked	0.003	2.960	16.025	441.418	283.019	0.000	post 2006	2002		Increaser	Increaser	Increaser	Corresponds	0	0	1	1	0	1	3
544	Woodswallow	0.152	3.410	2.095	-38.556	-29.998	0.142	2000	2003		Stable	Stable	Stable	Corresponds	1	1	1	1	1	0	5
564	Mistletoebird	0.001	5.280	7.065	33.812	11.164	0.517	2001			Stable	Stable	Stable	Corresponds	1	1	0	0	1	0	3
240	Nankeen Kestrel Pacific Black	0.850	2.431	15.870	552.930	282.072	0.000	post 2006	2001		Increaser	Increaser	Increaser	Corresponds	0	0	1	1	0	0	2
208	Duck	0.001	4.543	7.784	71.325	84.027	0.000		2002		Increaser	Increaser	Increaser	Corresponds	0	0	1	1	0	1	3
30	Peaceful Dove	0.000	5.933	13.985	135.717	118.631	0.000				Increaser	Increaser	Increaser	Corresponds	1	1	0	1	0	0	3
700	Pied Butcherbird	0.014	6.375	8.777	37.691	97.420	0.000	2003			Increaser	Stable	Stable	No correspondence	1	1	1	1	0	0	4
329	Rainbow Bee- eater	0.001	8.964	8.934	-0.339	-6.671	0.663				Stable	Stable	Stable	Corresponds	1	1	1	0	1	0	4
325	Red-backed Kingfisher	0.002	2.309	1.957	-15.224	-58.249	0.001			2003	Stable	Decreaser	Stable	No correspondence	0	1	0	1	0	0	2
	Red-capped							2000		2003				•							_
381	Robin Red-winged	0.000	8.610	6.905	-19.805	-3.811	0.792	2000			Stable	Stable	Stable	Corresponds	1	0	0	1	0	0	2
280	Parrot	0.604	14.835	1.594	-89.255	-85.566	0.000		2004		Decreaser	Decreaser	Decreaser	Corresponds	0	1	0	1	1	0	3
728	Restless Flycatcher	0.261	7.174	2.281	-68.209	-79.213	0.000	2000			Decreaser	Decreaser	Decreaser	Corresponds	1	1	0	1	1	0	4
647	Richard's Pipit	0.005	1.815	6.518	259.144	254.074	0.000		2002		Increaser	Increaser	Increaser	Corresponds	0	0	1	1	0	0	2
509	Rufous Songlark Rufous	0.000	1.893	1.846	-2.457	-27.543	0.214	2001			Stable	Stable	Stable	Corresponds	1	1	1	1	0	0	4
401	Whistler	0.000	5.607	6.135	9.419	24.806	0.175	2000			Stable	Stable	Stable	Corresponds	1	1	0	0	1	0	3

Sp		Common name	p-val (Ibra trends)	E (Jul99)	E (Jul06)	% change	% change (lin)	p-val (lin trend)	Strong Peak	Slight	Slight trough	Change (Statistics)	Change (Consensus)	Final Classification	Correspondence	A	В	C	D	E	F	G
20		Sacred	0.015		1.000		0.750	0.740		2004		Q. 11		G. 11	No			0		_	0	_
32		Kingfisher Singing	0.016	2.139	1.082	-49.408	9.759	0.740		2004		Stable	Decreaser	Stable	correspondence	1	1	0	1	0	0	3
64	18 E	Bushlark	0.000	3.475	20.660	494.507	1339.812	0.000	2006			Increaser	Increaser	Increaser	Corresponds	0	0	1	1	0	0	2
60		Singing Honeyeater	0.000	13.525	22.220	64.285	47.699	0.016				Increaser	Increaser	Increaser	Corresponds	1	1	0	0	1	0	3
00	76 1	Honeyeater	0.000	13.323	22.220	04.203	47.099	0.010				mereaser	mereaser	mereaser	Corresponds	1	1	U	U	1	U	3
64		Spiny-cheeked Honeyeater	0.052	27.590	11.233	-59.286	-64.470	0.000		2000		Decreaser	Decreaser	Decreaser	Corresponds	1	1	0	0	1	0	3
04		Striated	0.032	27.390	11.233	-39.200	-04.470	0.000		2000		Decreaser	Decreaser	Decreaser	No	1	1	U	U	1	U	3
97	76 P	Pardalote	0.001	11.535	6.673	-42.148	-21.359	0.089	2000			Stable	Increaser	Stable	correspondence	1	1	0	0	1	0	3
69)2 T	Torresian Crow	0.201	9.267	7.740	-16.479	0.256	0.989	2002			Stable	Stable	Stable	Corresponds	0	1	1	1	0	0	3
35	59 T	Tree Martin	0.000	3.659	4.360	19.149	70.401	0.004				Stable	Increaser	Stable	No correspondence	1	1	1	0	1	0	4
		Variegated													No							
53		Fairy-wren Wedge-tailed	0.000	7.500	4.224	-43.679	-24.873	0.061	1			Stable	Decreaser	Stable	correspondence	1	0	1	1	0	0	3
22		Eagle	0.016	1.344	5.090	278.726	144.217	0.000		post 2006		Increaser	Increaser	Increaser	Corresponds	1	1	1	1	0	0	4
46	55 V	Weebill	0.008	31.779	6.971	-78.064	-73.026	0.000	1999			Decreaser	Decreaser	Decreaser	Corresponds	1	1	0	0	1	0	3
35		Welcome Swallow	0.000	4.116	6.448	56.659	91,393	0.001				Increaser	Increaser	Increaser	Corresponds	1	1	1	0	1	0	4
																1			-	1		-
22	28 V	Whistling Kite	0.000	6.489	6.222	-4.120	-5.990	0.755				Stable	Stable	Stable	Corresponds	1	1	1	1	0	0	4
		White-plumed	0.000	11.055	22.410	05.514	55.050	0.000													0	2
62		Honeyeater White-winged	0.000	11.856	23.418	97.514	66.962	0.002				Increaser	Increaser	Increaser	Corresponds	1	1	0	0	1	0	3
53	85 F	Fairy-wren	0.009	3.012	5.788	92.143	161.676	0.000				Increaser	Increaser	Increaser	Corresponds	0	0	1	1	0	0	2
43		White-winged Triller	0.000	2.822	5.115	81.272	8.031	0.732		2000, 2005	2003	Stable	Stable	Stable	Corresponds	1	1	0	1	1	0	4
36		Willie Wagtail	0.010	19.497	29.627	51.952	33.472	0.003			2003	Increaser	Increaser	Increaser	Corresponds	1	1	1	1	1	0	5
50	Y	Yellow-rumped	0.010	19.497	29.021	31.932		0.005			2003	mereaser	mereaser	mereaser	No	1	1	1	1	1	U	3
48		Thornbill Yellow-	0.010	4.896	2.486	-49.219	18.059	0.404				Stable	Decreaser	Stable	correspondence	1	0	1	1	0	0	3
63		throated Miner	0.000	8.665	6.661	-23.121	-6.672	0.693		2001		Stable	Stable	Stable	Corresponds	1	0	0	0	1	0	2
65	53 Z	Zebra Finch	0.000	8.706	13.674	57.054	18.522	0.379		2005	2003	Stable	Stable	Stable	Corresponds	1	0	1	1	0	0	3
	35 tl	throated Miner									2003					1	0	0		1 0		

Regional variation in temporal trends

Occurrence of regional variation

Of the 60 species analysed, 11 species were classified as showing significant decline across the seven year period (in terms of the criteria specified in the Methods section "Determining and Classifying Change"); 29 species were classified as showing a stable trend; and 20 species were classified as showing a significant increase.

Overall, 45 species (75%) showed significant heterogeneity in trends (p-value <0.05) across the IBRAs in which they were recorded (48 species had p<0.10). Fifteen species (25%) returned non-significant p-values for heterogeneity of trend across IBRAs, meaning the trends for these species can be considered consistent across the IBRA regions analysed.

Of the 15 species showing consistent trends across IBRAs, five (33.3%) showed significant decline across the seven year period; these species were Spiny-cheeked Honeyeater, Restless Flycatcher, Jacky Winter, Grey Shrike-thrush and Red-winged Parrot. Five species showed no significant change (Cockatiel, Horsefield's Bronze-cuckoo, Common Bronzewing, Masked Woodswallow and Torresian Crow), and five species showed significant increases (Little Corella, Galah, Brown Falcon, Australian Magpie and Nankeen Kestrel).

Regional variation and temporal change

For all species, we were able to analyse temporal trends for 8.03 ± 1.6 IBRAs per species (3-10 IBRAs); 7.6 ± 1.8 IBRAs for those species where the p value indicated parallelism in regional trends and 8.2 ± 1.5 IBRAs for those species where the p value indicated heterogeneity in regional trends.

Correspondence between overall and regional temporal trends

Overall, within species, 0-60% (0-6) of analysed IBRA regions displayed a trend which went against the overall trend; $31.4 \pm 13.5\%$ (0-60%) of IBRAs went against the overall trend for those species where the p value indicated heterogeneity in regional trends and $12.1 \pm 9.1\%$ (0-25%) of IBRAs went against the trend for those species where the p value indicated parallelism in regional trends.

Of the 60 species, 91.7% had at least one IBRA region which was classified as going against the overall trend, emphasising the high degree of regional variation in temporal trends among birds.

Examples of species where some regional trends went against overall trends include the Nankeen Kestrel and Pied Butcherbird, eight or nine of the IBRA regions show a

downward trend, but the overall estimated reporting rate graph and percentage change figures show an increase. Several factors may explain this:

- Only up to 10 of the 29 original IBRAs are included here;
- Estimates of overall trends are intrinsically weighted proportional to survey effort (number of surveys); and,
- Trends here are highly smoothed.

Discussion

This discussion in not intended to be an exhaustive discussion of all results, but aims to pull out issues of particular importance to the second ACRIS report.

Overall patterns

Smoothed curves show high inter-year and high intra-year variability, which seems common to most long-term bird data. For these reasons, inferences relating to long-term trends based on simple linear effects may not be meaningful. That is, to be able to say anything useful about long-term trends, survey data should be as long-term as possible, in the order of ten years or more.

We detected substantial amounts of change among the bird species analysed (63.3% were not stable). Some increased, some decreased and some remained stable over the period examined. The causes of apparent changes, and indeed whether the trends will persist, are unknown. Many species show a marked peak during the relatively wet 2000-2001 period, and some showed troughs during the peak of the drought of 2002-2004. This is perhaps the most consistent pattern in the results, suggesting that prevailing conditions influence the relative abundance of birds, such that they are more common in wetter periods and less common during droughts.

Options for presentation in ACRIS

The key aim of this report was to provide material on change in birds which can be incorporated into the second ACRIS report. We suggest that mapping change would be difficult, and would oversimplify clearly complex patterns. Rather, we think that the presentation of the following would be more powerful and robust:

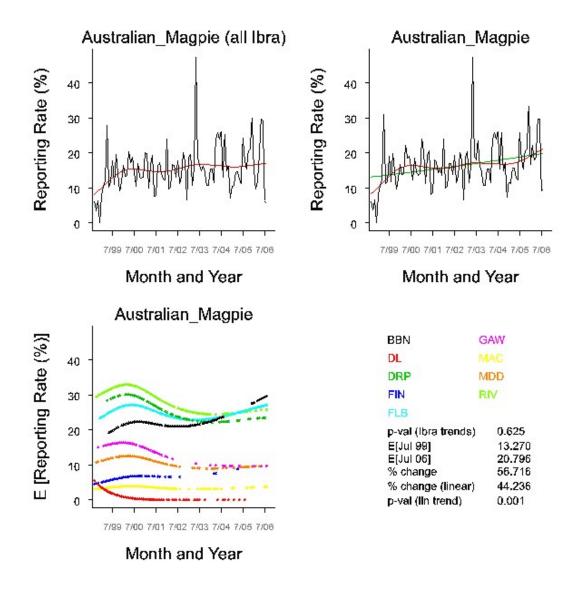
- Presentation of selected graphs (encapsulating a decliner (e.g. Grey-crowned Babbler), a stable species (e.g. Magpie-lark), and an increaser (e.g. Crested Pigeon);
- Presentation of a species showing a clear peak during the wet 2000-2001 period (e.g. Budgerigar); and,
- Presentation of the graph (Figure 3) showing the temporal occurrence of peaks and troughs. Ideally, information on rainfall would be provided on the same graph.

Towards improved monitoring and the next ACRIS report

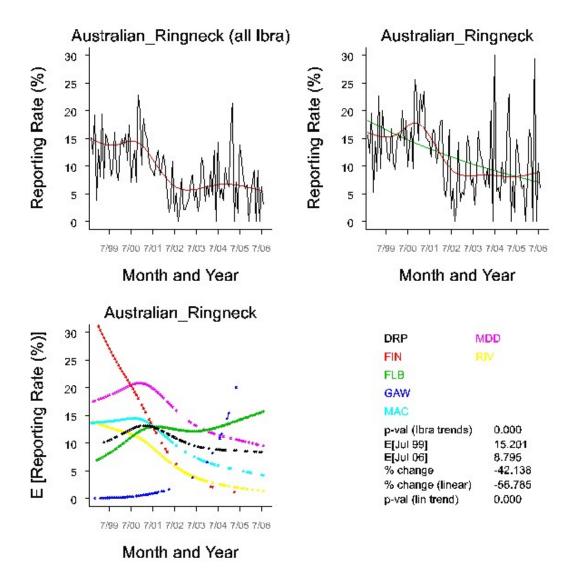
This report has demonstrated that temporal changes can be determined for birds in the rangelands using data collected as part of the Atlas of Australian Birds.

Longitudinal trends suffered from the heterogeneity of survey effort. Scant data at the end of the period could result in extreme behaviour of the smoothed curves. This is due to high leverage of a few observations. Thus it would be advisable to encourage survey

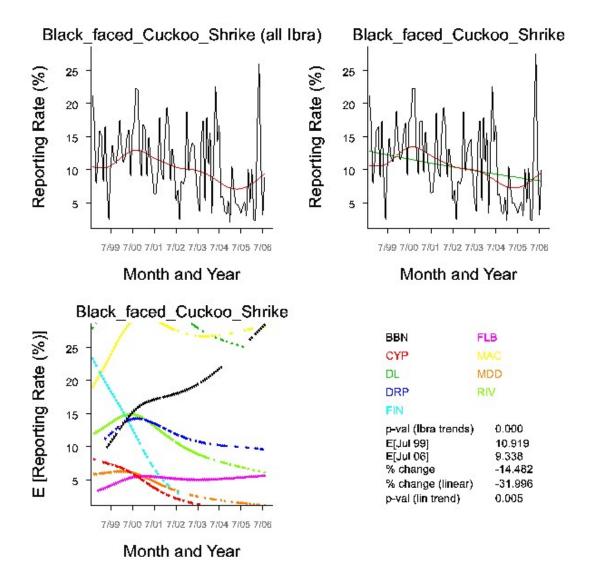
activity at multiple sites (say 20-30, spatially spread) at regular intervals throughout the year. It is generally more important to maintain multiple sites than frequent temporal surveys. Survey frequency may be twice a year; in autumn and, in particular, spring. Birds Australia is encouraging repeat-sampling of a number of sites, but this is difficult particularly in the Rangelands where observers are sparse. Another option worthy of investigation is the establishment of "communal" sites, which are defined and promoted to any observers passing through the area. This might result in an increased number of visits to fixed sites.

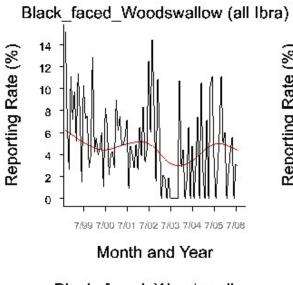

It is hoped that monitoring will be able to continue and therefore inform future ACRIS reports.

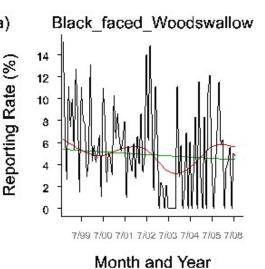
References


- Barrett G, Silcocks A, Barry S, Cunningham R, Poulter R. 2003. The New Atlas of Australian Birds. Birds Australia: Melbourne.
- Blakers M, Davies SJJF, and Reilly PN. 1984. The Atlas of Australian Birds. Melbourne University Press, Melbourne.
- Higgins PJ, Peter JM, and Cowling SJ. 2007. Handbook of Australian New Zealand and Antarctic Birds Volume 7 Boatbill to Starlings. Oxford University Press, Melbourne.
- Olsen P and Weston M 2004, State of Australia's birds 2004: Water, wetlands and birds. Birds Australia, Melbourne.
- Olsen P, Weston MA, Cunningham R, and Silcocks A 2003, State of Australia's birds 2003. Birds Australia, Melbourne.
- Weston MA, Tzaros CL, Silcocks A and Ingwersen D. 2006. A survey of contributors to an Australian bird atlassing project: demography, skills and motivation. Australian Journal on Volunteering 11: 51-58.

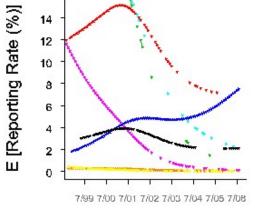
Appendix 1: Species results


Australian Magpie

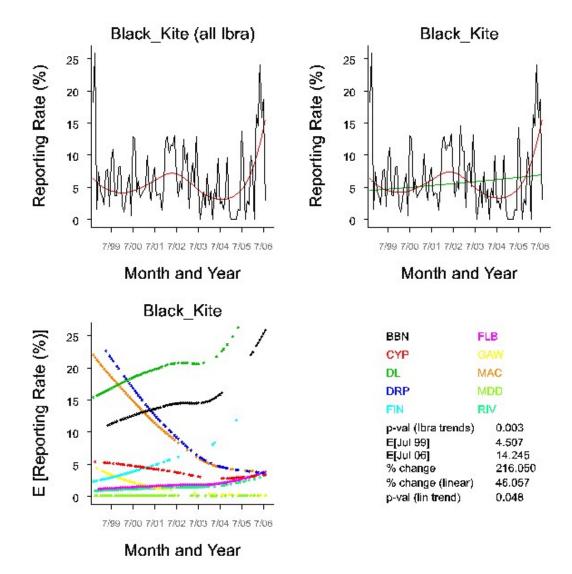

Australian Ringneck

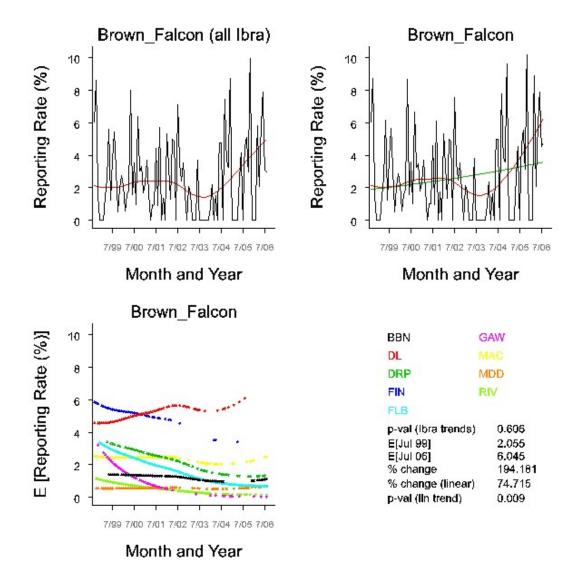


Black-faced Cuckoo-shrike

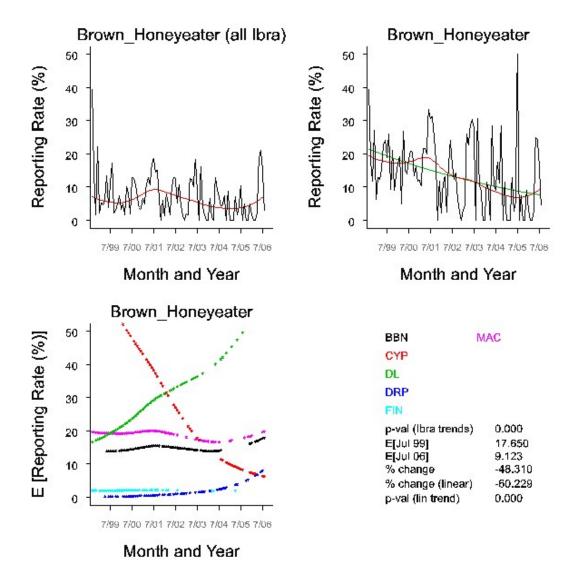


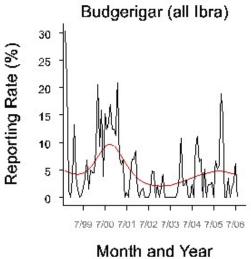
Black-faced Woodswallow

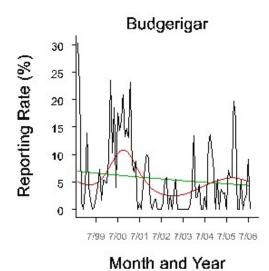

Black_faced_Woodswallow


Month and Year

BBN MAG DL RIV FIN FLB GAW p-val (lbra trends) 0.000 E[Jul 99] 5.316 E[Jul 06] 5.635 6.012 % change % change (linear) -15.717 p-val (lin trend) 0.415

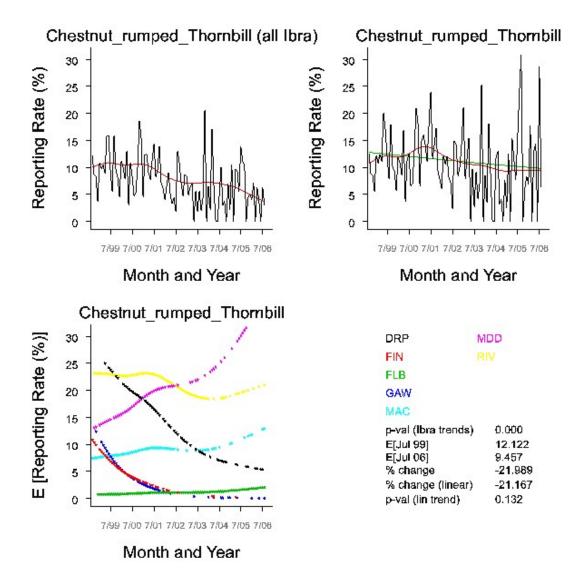

Black Kite


Brown Falcon

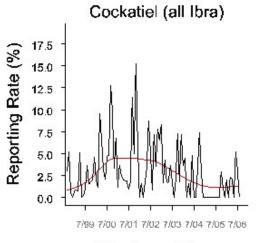


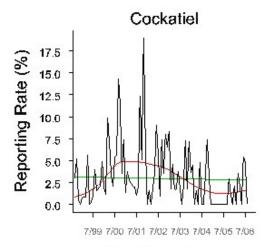
Brown Honeyeater

Budgerigar

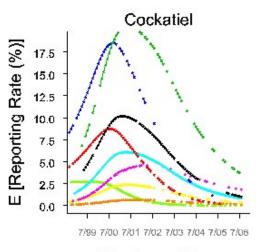


Month and Year

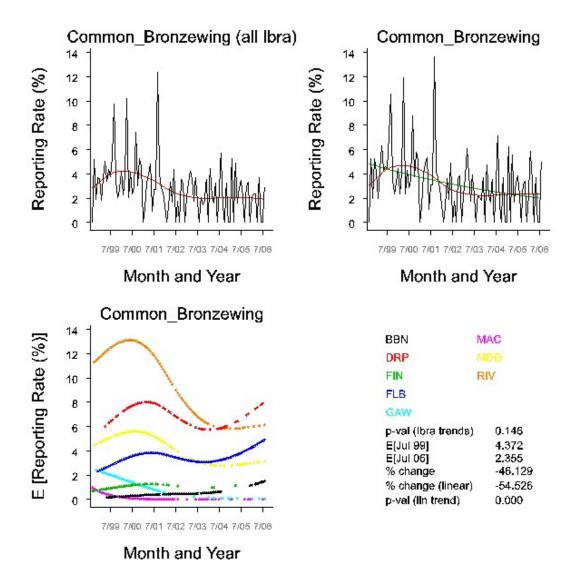

Budgerigar 30 E [Reporting Rate (%)] 25 20 15 10 5 7/99 7/00 7/01 7/02 7/03 7/04 7/05 7/06

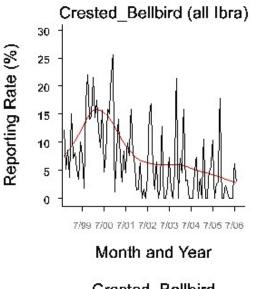

BBN	GAW
DL	
DRP	MDD
FIN	
FLB	
p-val (lbra trends)	0.015
E[Jul 99]	4.723
E[Jul 06]	5.175
% change	9.550
% change (linear)	-33.787
p-val (lin trend)	0.078

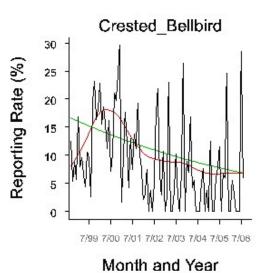
Chestnut-rumped Thornbill


Cockatiel

Month and Year


Month and Year


BBN	GAW
DL	
DRP	MDD
FIN	RIV
FLB	
p-val (lbra trends)	0.075
E[Jul 99]	1.735
E[Jul 06]	1.582
% change	-8.827
% change (linear)	-10.258
p-val (lin trend)	0.658


Month and Year

Common Bronzewing

Crested Bellbird

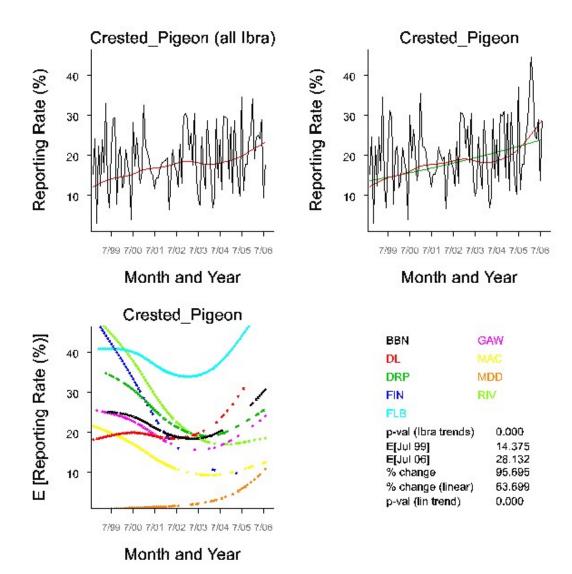
Crested_Bellbird

30

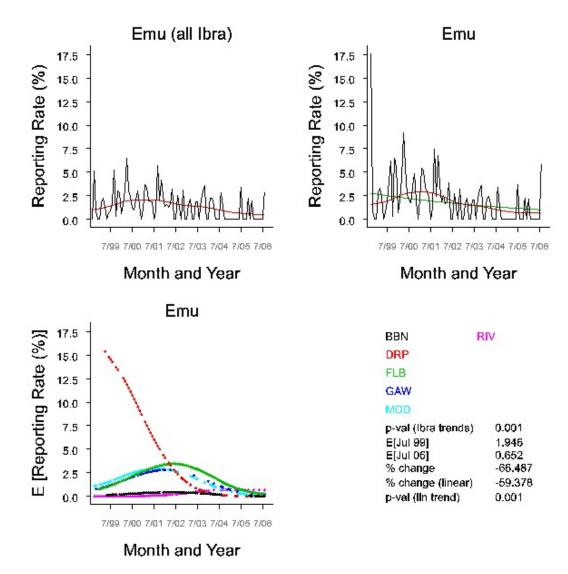
25

20

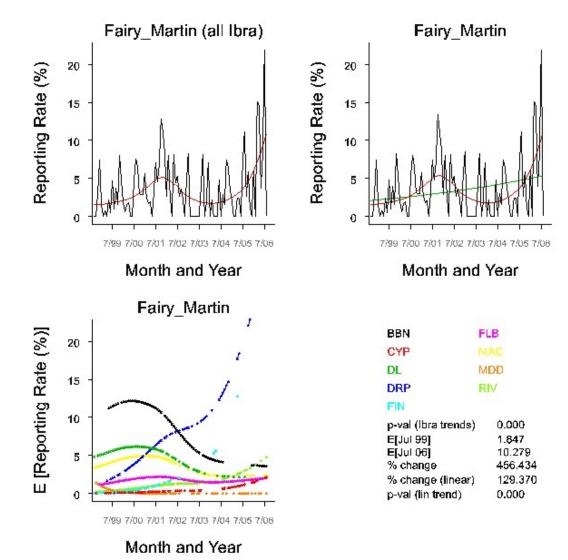
15

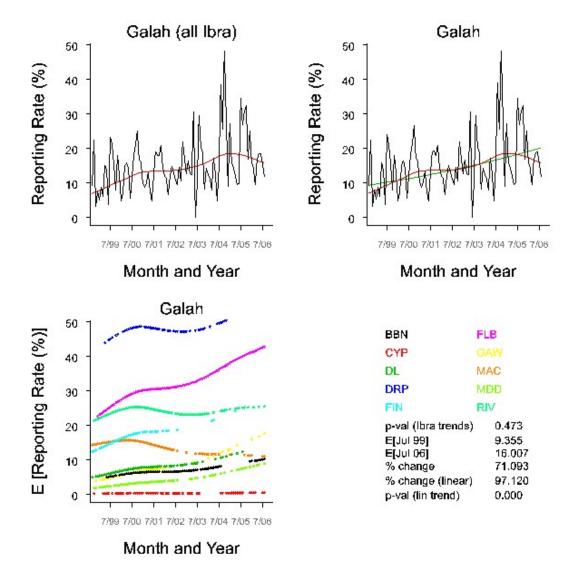

10

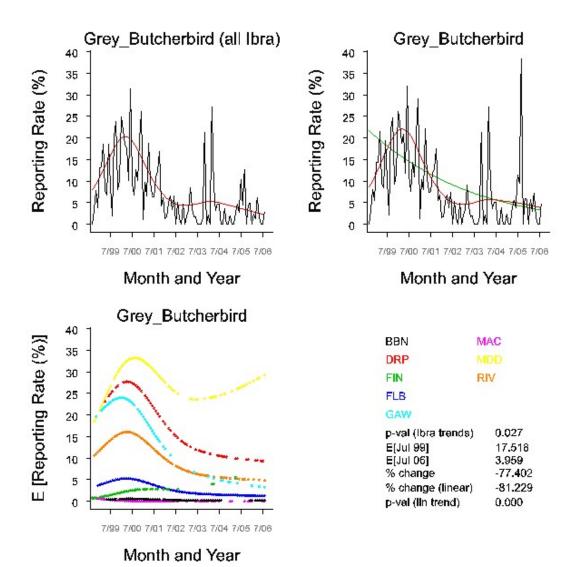
7/99 7/00 7/01 7/02 7/03 7/04 7/05 7/06

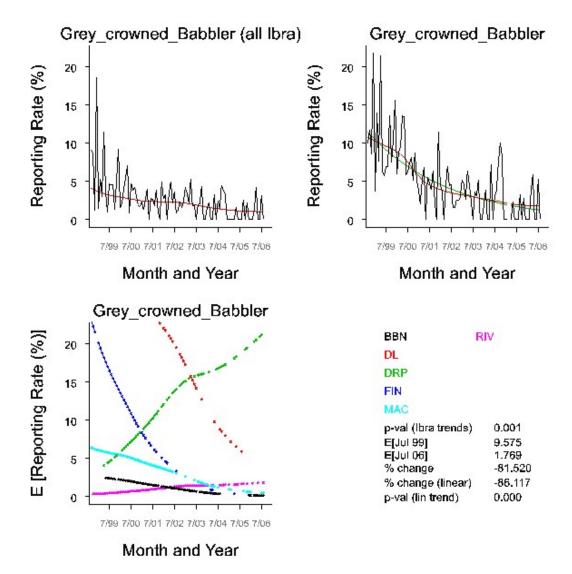

DRP MDD FIN FLB GAW MAC p-val (lbra trends) 0.000 E[Jul 99] 13.973 6.790 -51.410 E[Jul 06] % change % change (linear) -54.559 0.000 p-val (lin trend)

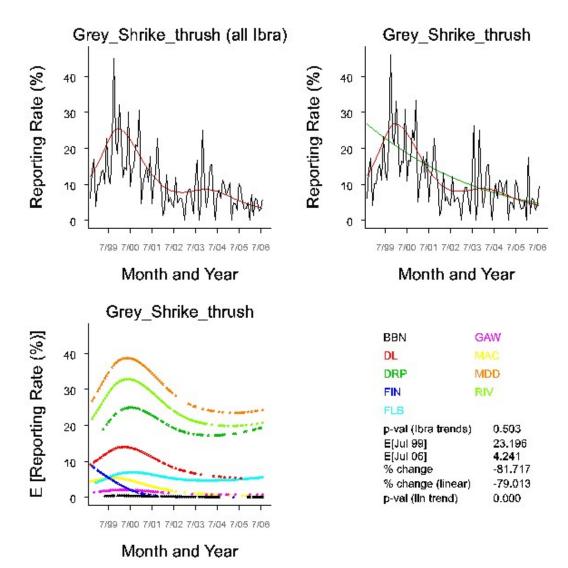
Month and Year

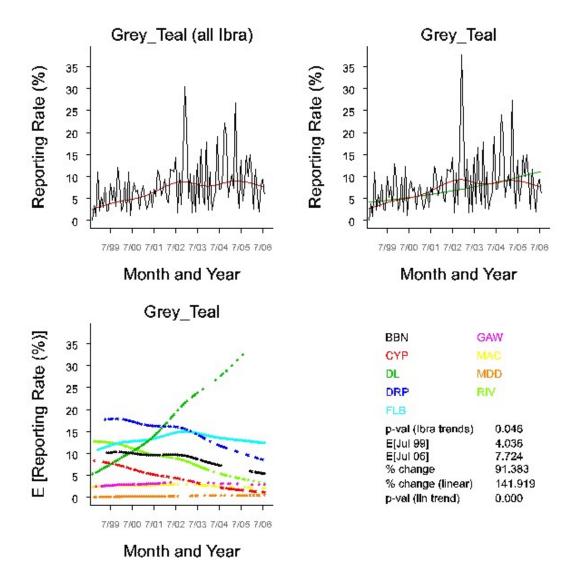

Crested Pigeon

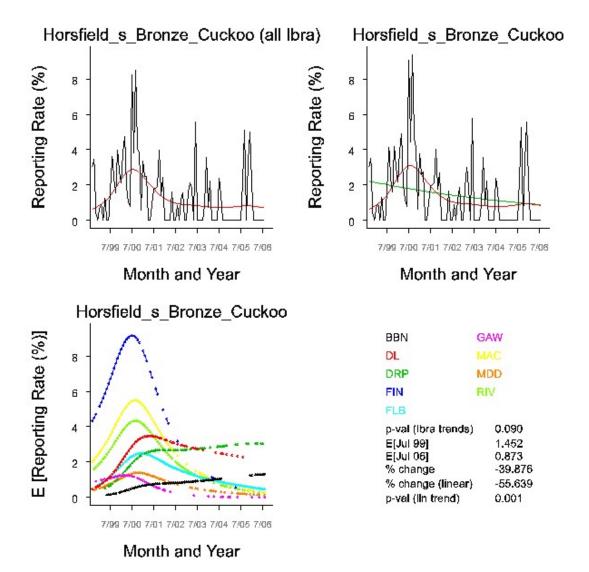

Emu

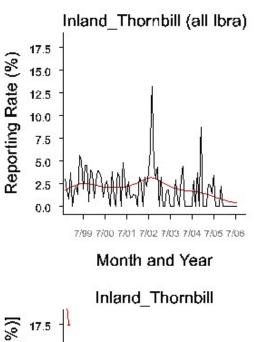

Fairy Martin

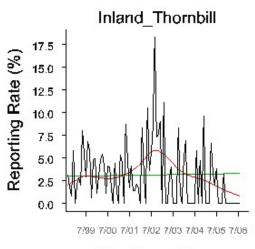

Galah


Grey Butcherbird

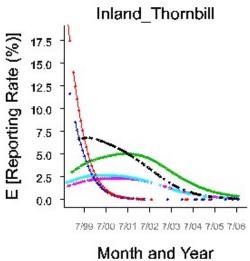

Grey-crowned Babbler


Grey Shrike-thrush

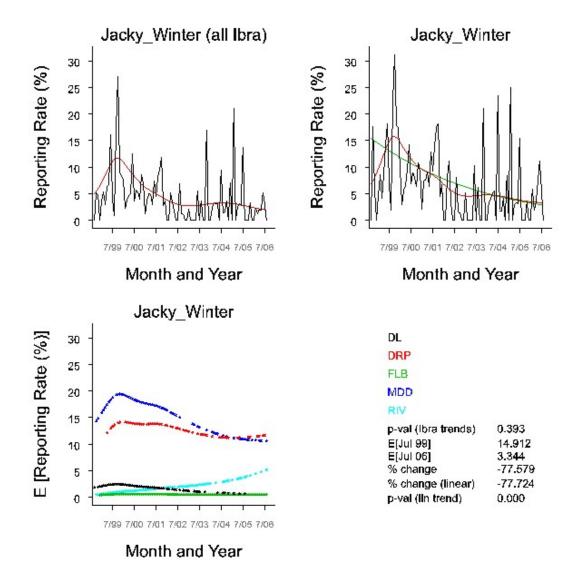

Grey Teal



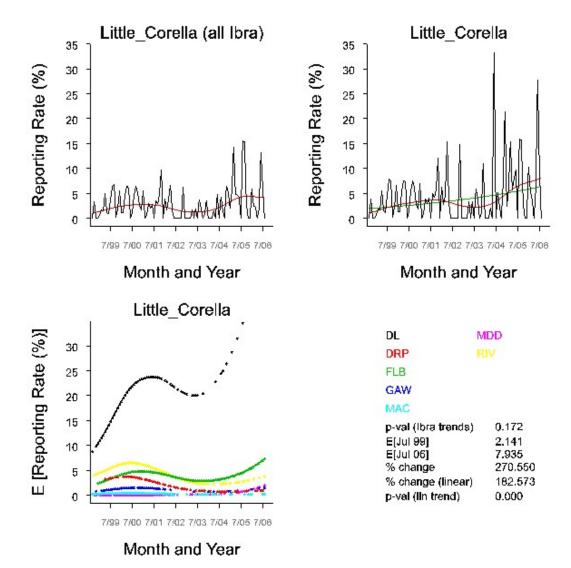
Horsfield's Bronze-cuckoo



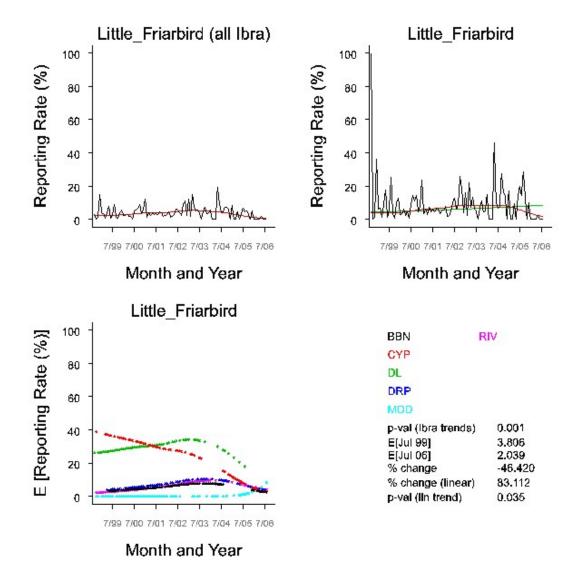
Inland Thornbill

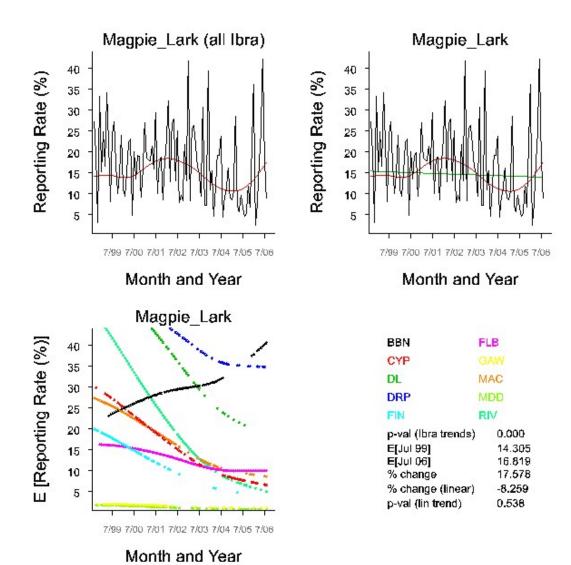


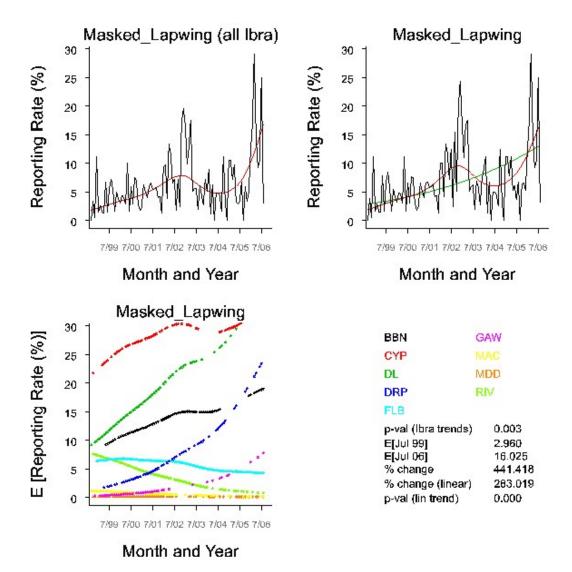
Month and Year

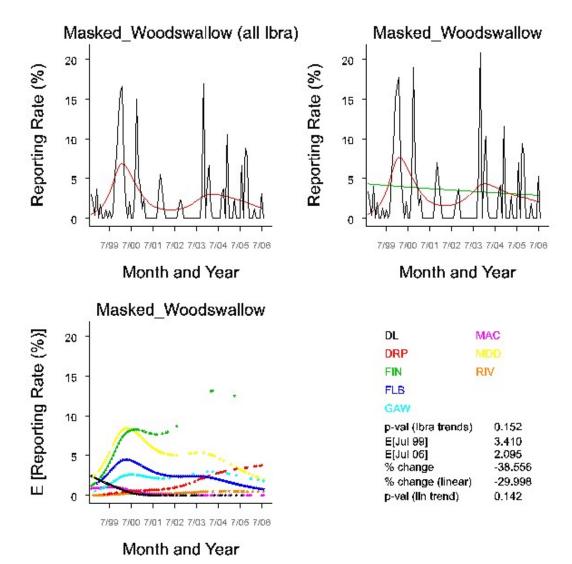


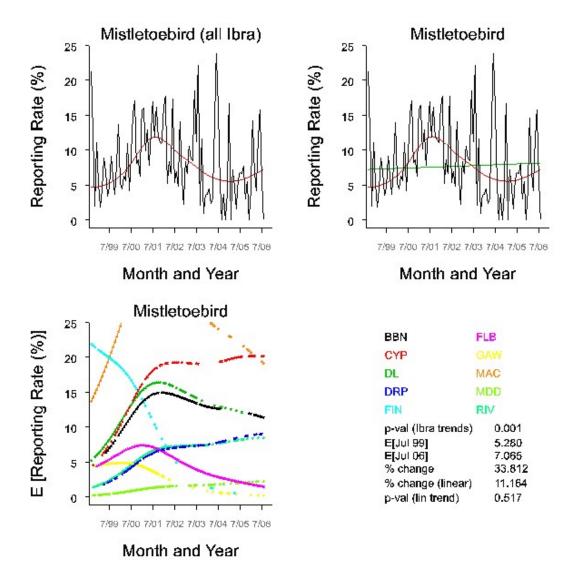
DRP	MDD
FIN	
FLB	
GAW	
MAC	
p-val (lbra trends)	0.000
E[Jul 99]	3.032
E[Jul 06]	0.903
% change	-70.220
% change (linear)	8.861
p-val (lin trend)	0.719

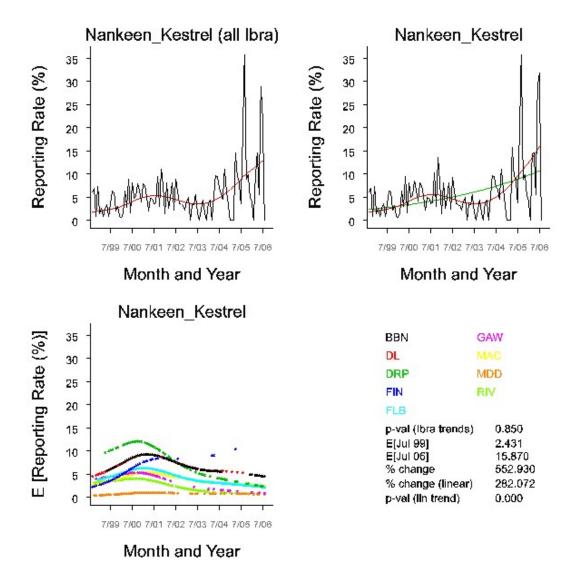

Jacky Winter

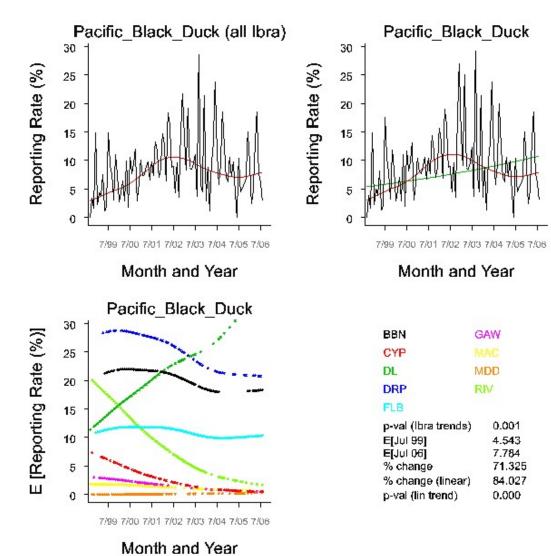

Little Corella


Little Friarbird


Magpie Lark


Masked Lapwing


Masked Woodswallow


Mistletoebird

Nankeen Kestrel

Pacific Black Duck

Peaceful Dove

5

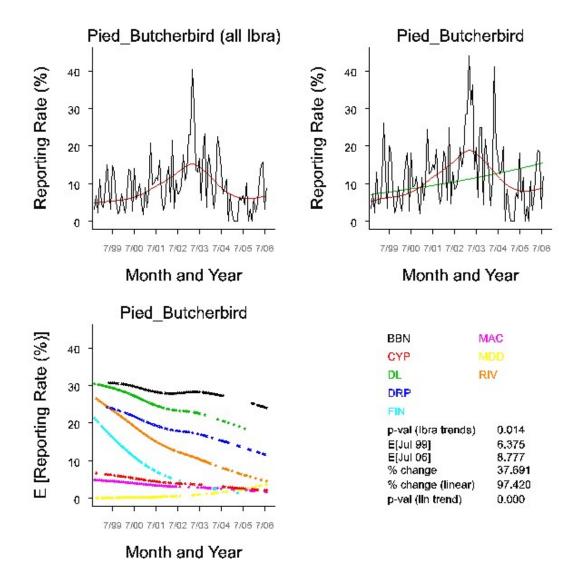
0

7/99 7/00 7/01 7/02 7/03 7/04 7/05 7/06

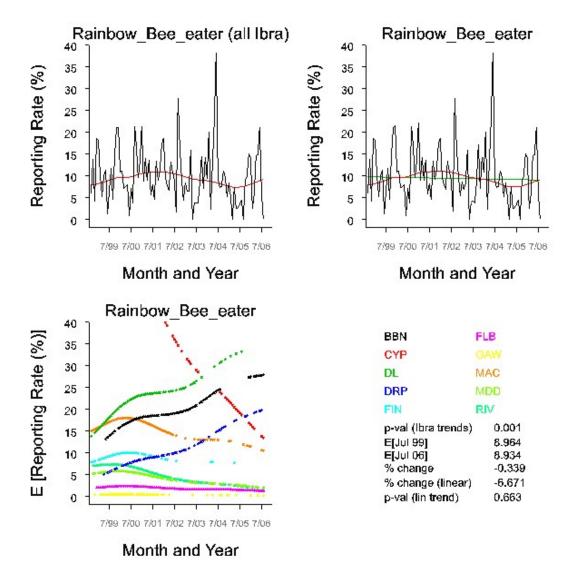
Month and Year

CYP DL MDD DRP RIV p-val (lbra trends) 0.000 E[Jul 99] 5.933 E[Jul 06] % change 13.985 135.7**1**7 118.631 % change (linear) 0.000 p-val (lin trend)

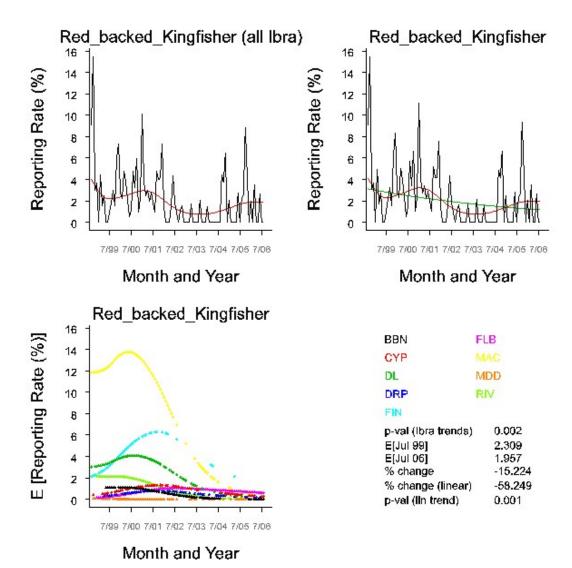
7/99 7/00 7/01 7/02 7/03 7/04 7/05 7/06

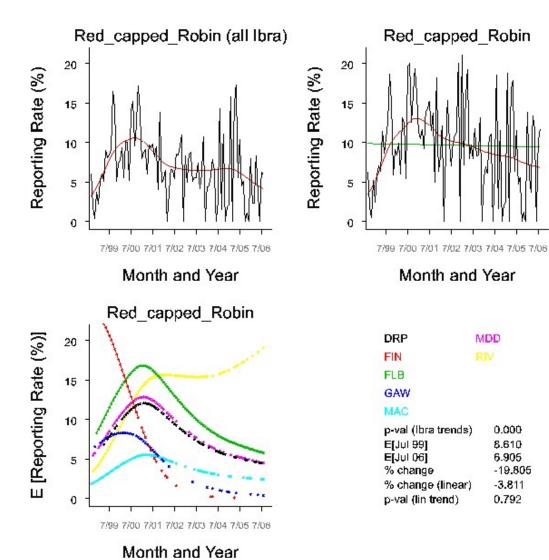

Month and Year

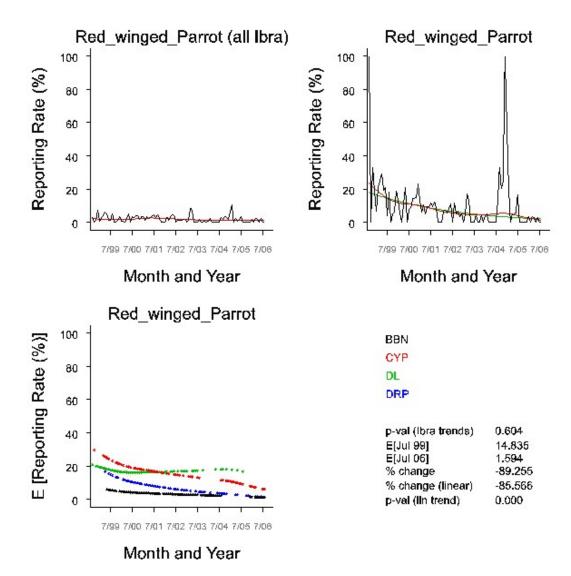
FLB

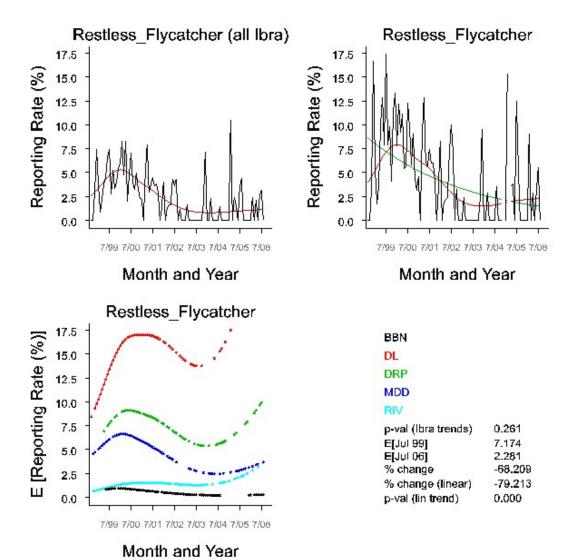

BBN

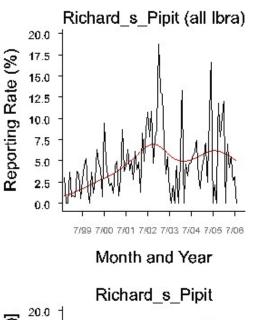
Peaceful_Dove

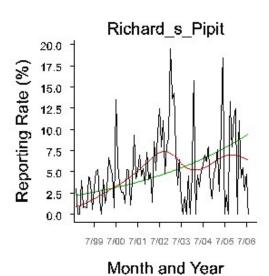

Pied Butcherbird


Rainbow Bee-eater


Red-backed Kingfisher


Red-capped Robin


Red-winged Parrot



Restless Flycatcher

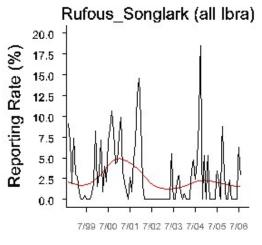
Richard's Pipit

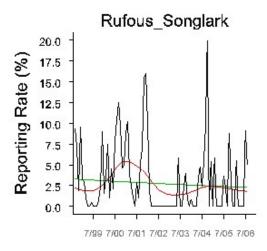
Richard_s_Pipit

20.0
17.5

opta
15.0
15.0
10.0
7.5

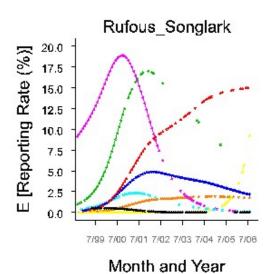
0.0
2.5


0.0

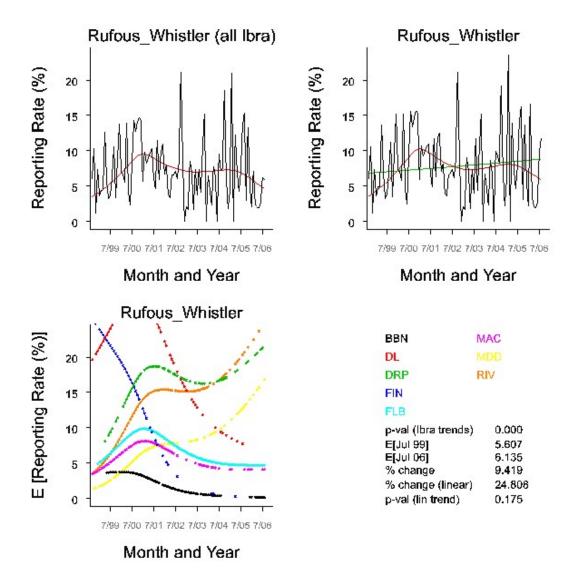

7/99 7/00 7/01 7/02 7/03 7/04 7/05 7/06

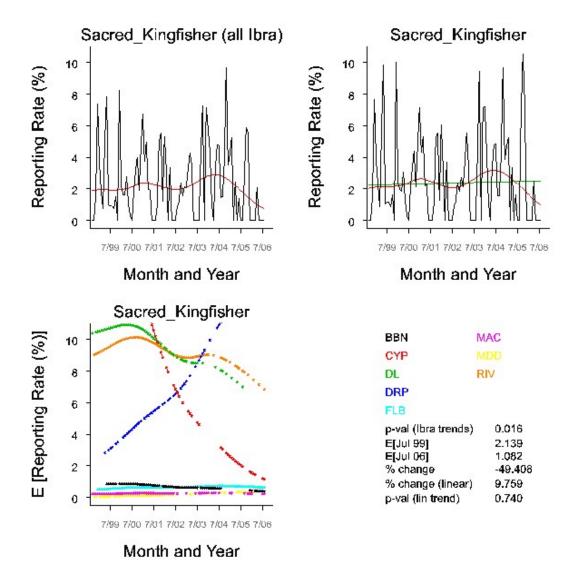
Month and Year

BBN MAC DL FIN RIV FLB GAW p-val (lbra trends) 0.005 E[Jul 99] E[Jul 06] 1.815 6.518 % change 259.144 254.074 % change (linear) 0.000 p-val (lin trend)

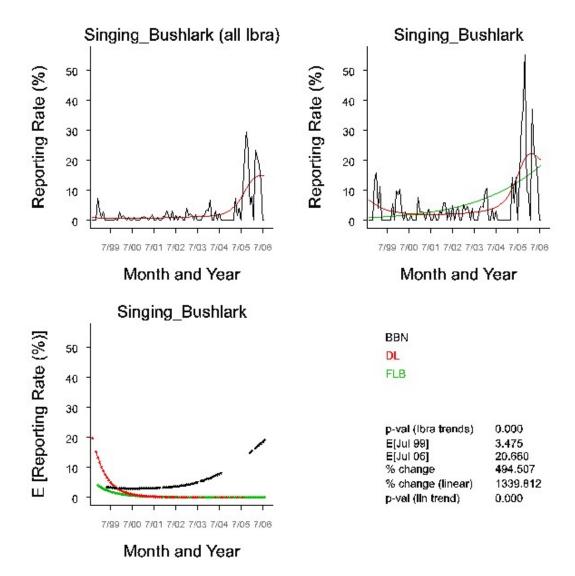

Rufous Songlark

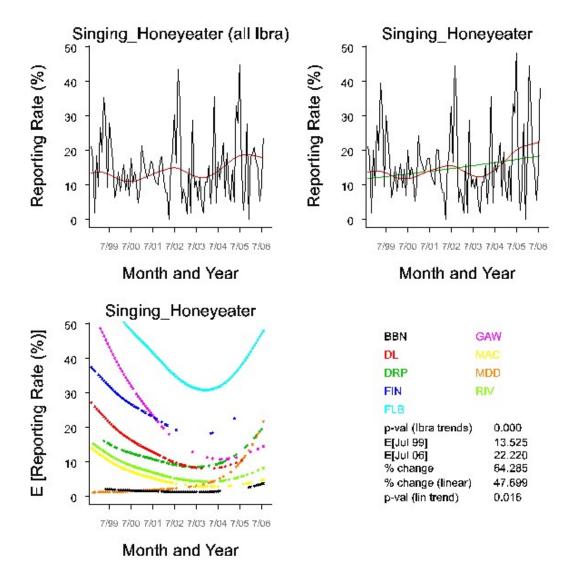
Month and Year

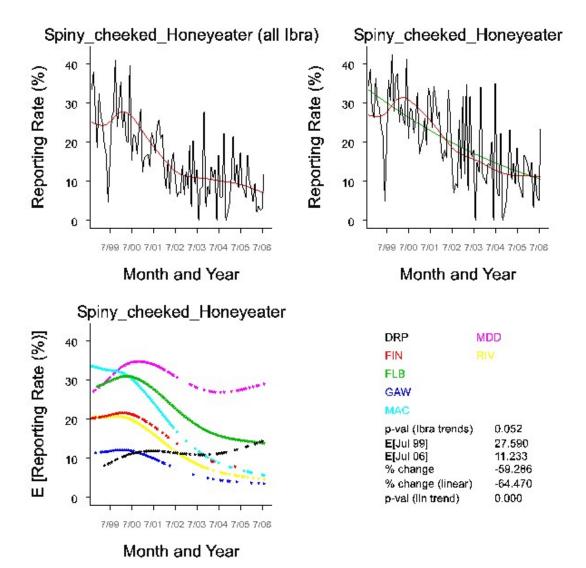

Month and Year

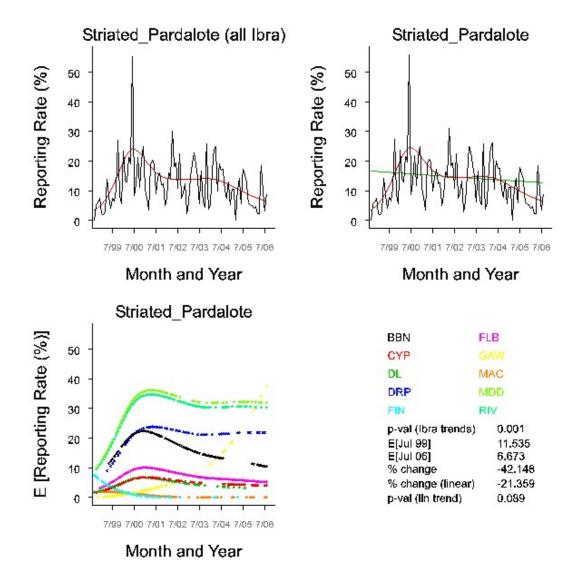

BBN	MAC
DRP	
FIN	RIV
FLB	
GAW	
p-val (lbra trend	s) 0.000
E[Jul 99]	1.893
E[Jul 06]	1.846
% change	-2.457
% change (linea	r) -27.543
p-val (lin trend)	0.214

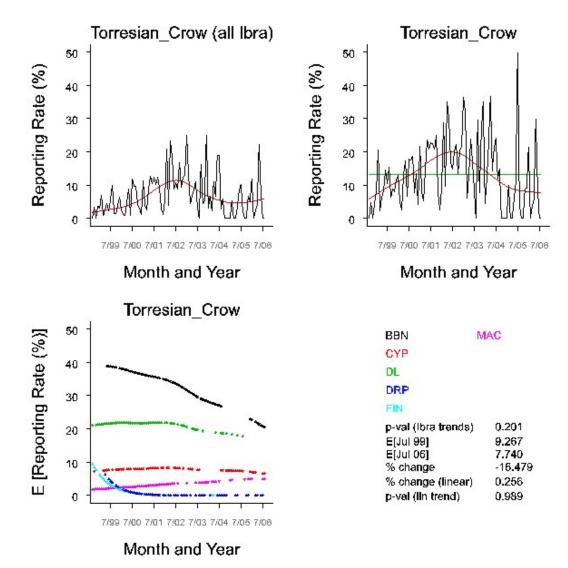
69

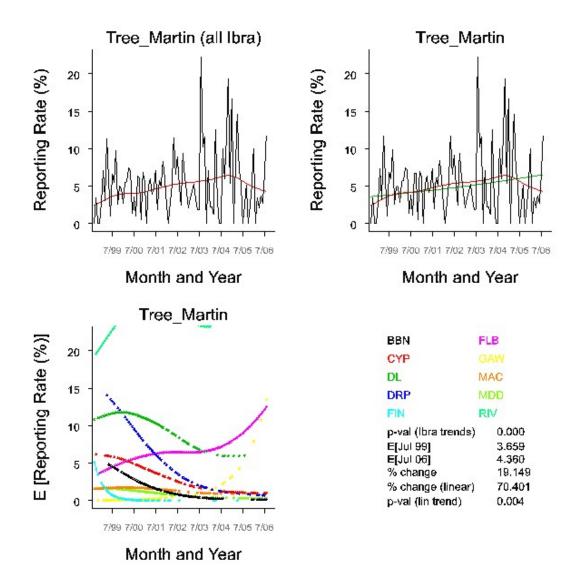

Rufous Whistler

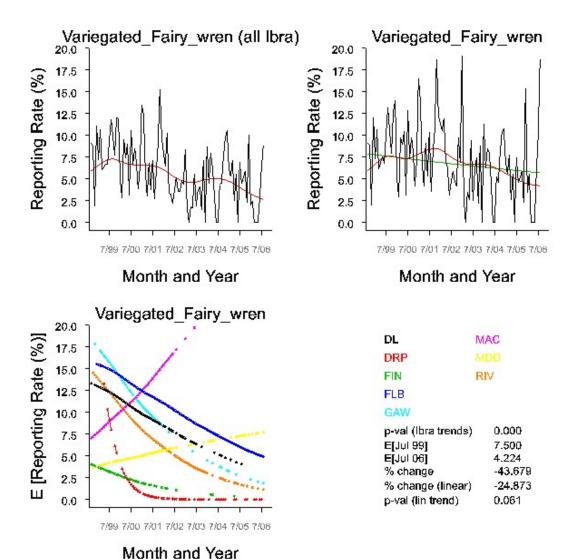

Sacred Kingfisher

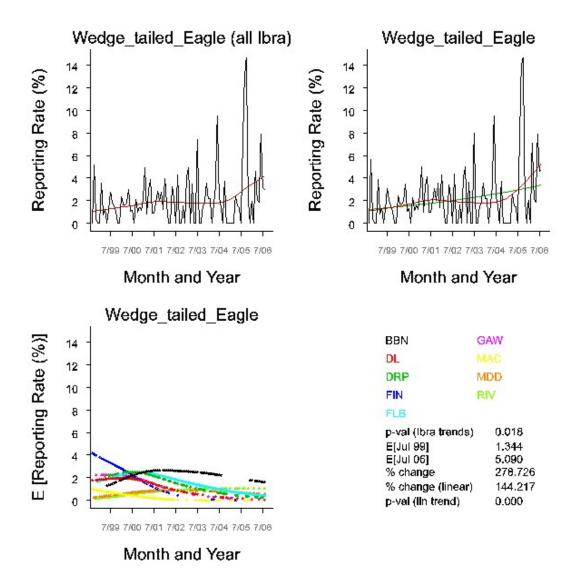

Singing Bushlark

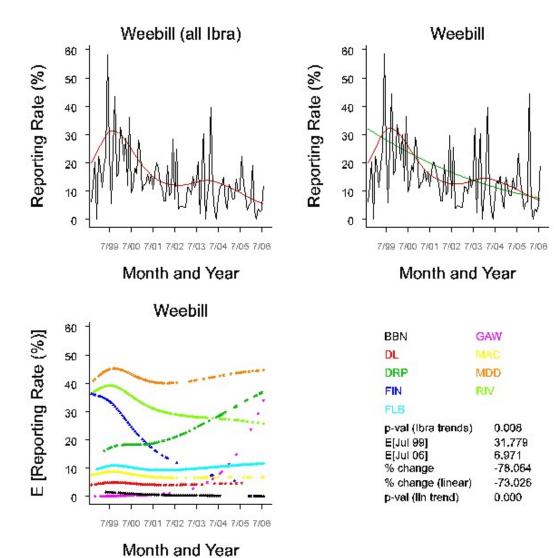

Singing Honeyeater

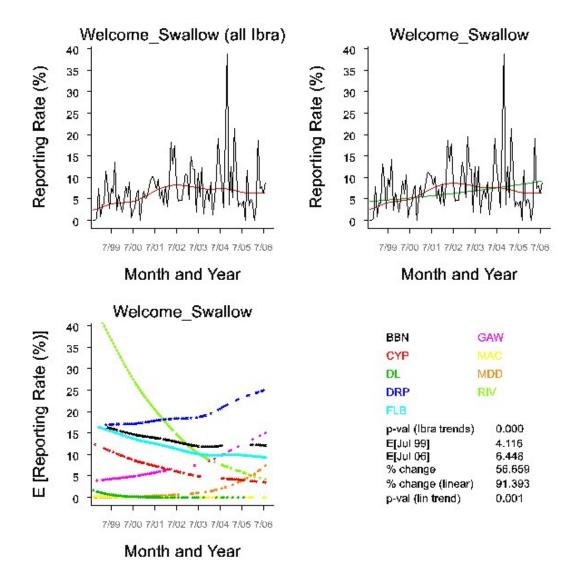

Spiny-cheeked Honeyeater

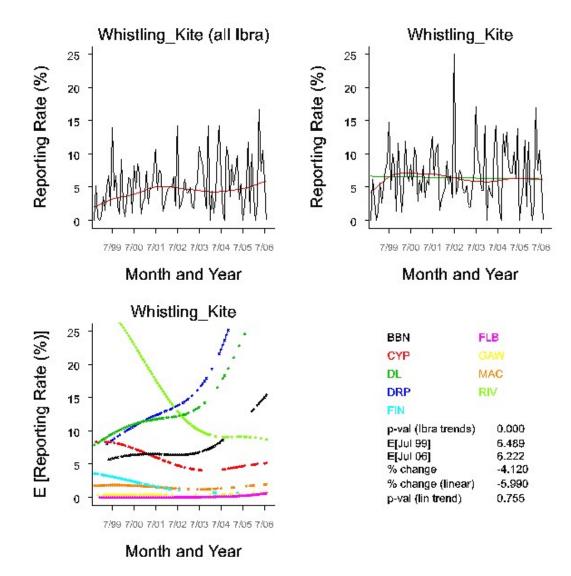

Striated Pardalote

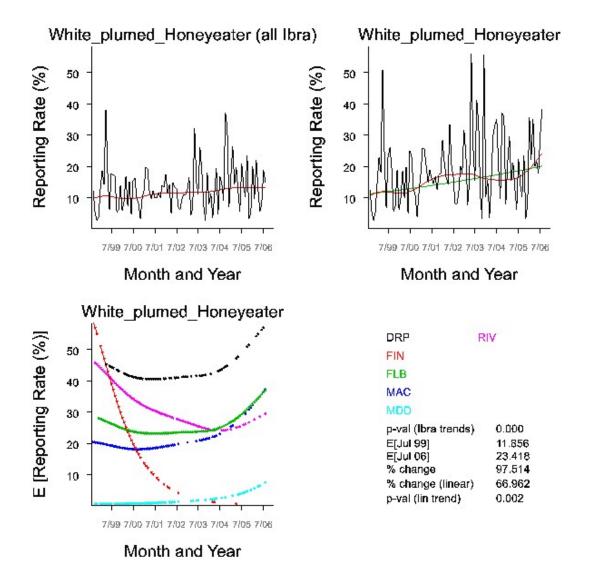

Torresian Crow

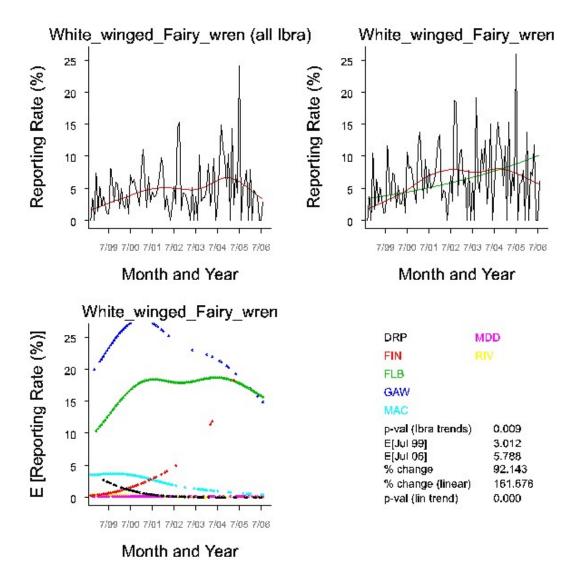

Tree Martin

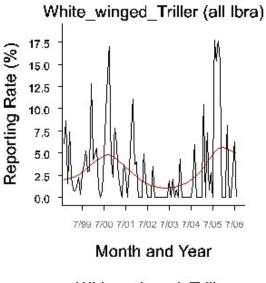

Variegated Fairy-wren

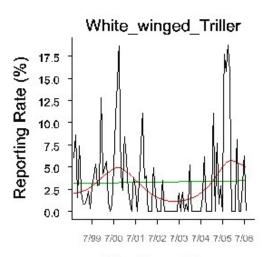

Wedge-tailed Eagle


Weebill

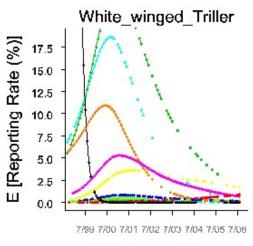

Welcome Swallow


Whistling Kite

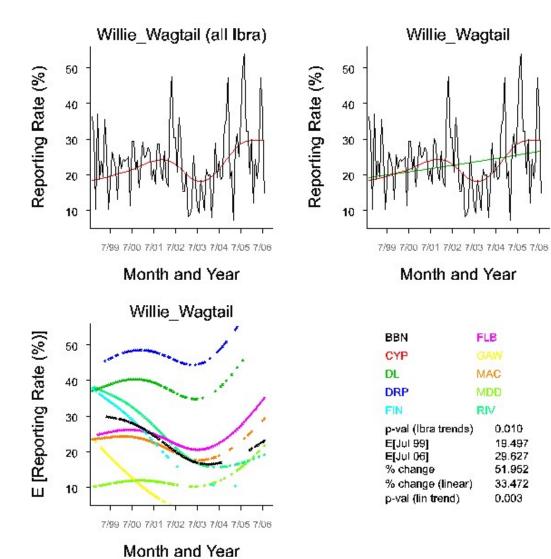

White-plumed Honeyeater

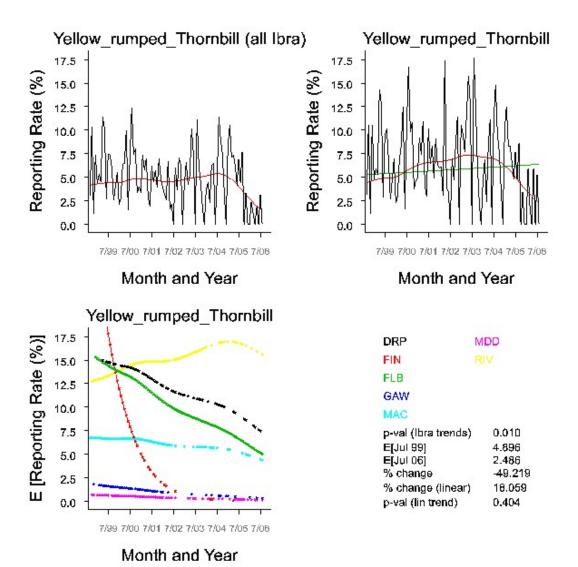


White-winged Fairy-wren

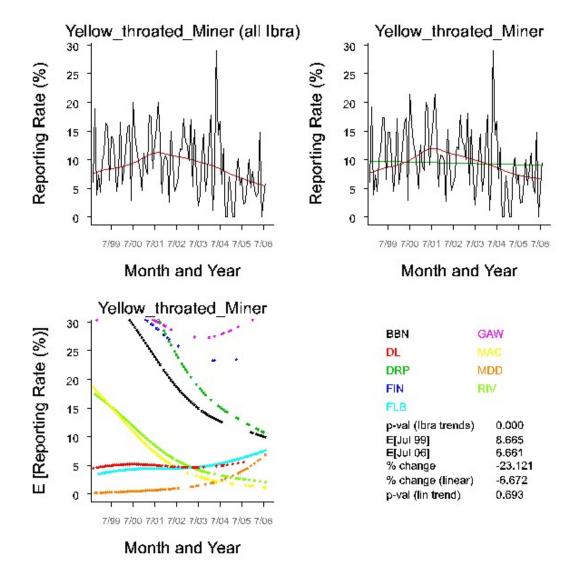


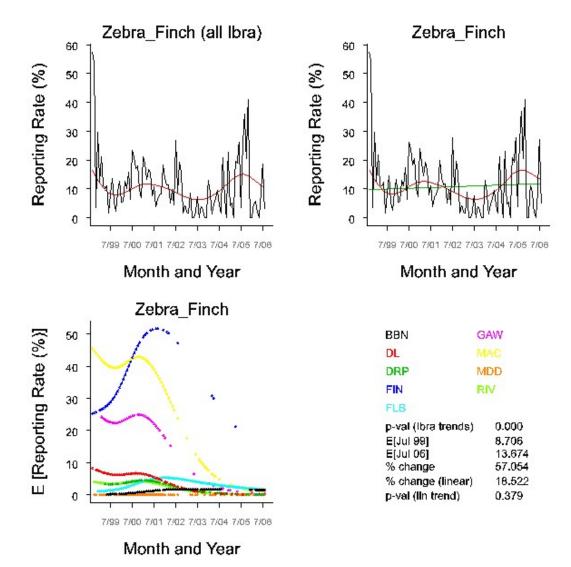
White-winged Triller


Month and Year


BBN	FLB		
CYP			
DL	MAC		
DRP	MDD		
FIN I	RIV		
p-val (lbra trends)	0.000		
E[Jul 99]	2.822		
E[Jul 06]	5.115		
% change	81.272		
% change (linear)	8.031		
p-val (lin trend)	0.732		

Month and Year


Willie Wagtail


Yellow-rumped Thornbill

Yellow-throated Miner

Zebra Finch

Appendix 2: Detailed results of principal component analysis

Latent roots

1	2	3	4	5	6
136049	55571	23315	9164	3796	2131

Percentage variation

1	2	3	4	5	6
59.15	24.16	10.14	3.98	1.65	0.93

Trace

230025

Latent vectors (loadings)

	1	2	3	4	5
coeff[1] coeff[2] coeff[3] coeff[4] coeff[5] coeff[6]	0.00842 -0.35432 0.23063 -0.88339 0.17252 -0.10514	0.27345 0.07954 0.79618 0.24195 0.43796 0.18614	0.07942 -0.78533 0.20128 0.25079 -0.48959 0.18393	0.13613 0.46177 0.41019 -0.19475 -0.72352 -0.19637	-0.22844 0.19343 -0.02192 -0.21900 -0.12278 0.92026
	6				
coeff[1] coeff[2] coeff[3] coeff[4] coeff[5] coeff[6]	0.92094 0.02707 -0.32195 -0.11092 -0.01290 0.18713				

Significance tests for equality of final K roots

K	Chi-square	df
2	4.70	2
3	30.91	5
4	91.06	9
5	182.68	14
6	314.02	20