4. Summary of Findings

This study was carried out as part of the National Dioxins Program for DEH. The results of this study provide a measure of the levels of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) in pooled human breast milk collected throughout Australia in 2002/03. The study relied on the collection of milk from well-defined groups of mothers living in clearly defined areas of Australia. The emphasis of the study was to distinguish between various geographical regions, rural, urban and industrial areas. It was not expected to be able to distinguish between populations that inhabit different parts of a city since such effects may be related to social differences in food consumption.

Note that the selection of cohorts was based on population distribution in Australia, and the inclusion of multiple samples from the key urban centres should allow assessment of overall variation of levels within a given region. Results from individual participant samples were not obtained. Breast milk samples were collected from primipara mothers recruited from a variety of sources. In order to allow direct comparison with previous WHO studies, volunteer mothers were selected using the following criteria:

- A primipara (first-time) mother with a baby aged two to eight weeks (mothers of IVF babies were included)
- Exclusively breastfeeding
- Willing to provide a minimum of 100 ml (preferably 150 ml) of expressed milk. This volume was to be collected over the six week period (two-eight weeks post-partum)
- Healthy pregnancy, mother and child
- A resident of the area for the past five years.

In total, 173 samples were collected from 12 regions of Australia during the period March 2002 and September 2003. Of these, 16 were excluded because they were later found to have violated the inclusion/exclusion criteria. The sampling regions were Brisbane, Sydney (2 pools), Melbourne (4 pools), Adelaide (2 pools), Perth, Hobart, rural inland NSW (Dubbo), rural inland Queensland (Dalby), rural Victoria (Bendigo, Ballarat, Lakes Entrance), Newcastle, Wollongong and Darwin. The remaining 157 samples were analysed as pooled samples and there were 17 pooled samples in total.

In addition to these samples a further 24 "historical" samples that were collected in 1993 were obtained from the Key Centre for Applied and Nutritional Toxicology, Royal Melbourne Institute of Technology, Melbourne, Australia. They were analysed as three pools of eight samples.

In total, analysis was carried out on 20 pools of breast milk, 17 pools obtained in 2002/03 from the current study and three pools obtained in 1993 and supplied to EnTox by Key Centre for Applied and Nutritional Toxicology, Royal Melbourne Institute of Technology, Melbourne, Australia.

All pooled samples were sent to the Australian Government Analytical Laboratories, Sydney, Australia and two duplicate samples were sent to the State Laboratory of NRW, Münster, Germany. Both are laboratories accredited for analytical dioxin analysis.

Dioxin-like chemicals were detected in all pooled samples. For samples collected during 2002/03, the mean and median levels, expressed as TEQ, were 9.0 and 8.9 pg TEQ g^{-1} lipid, respectively. Lipid content was measured in all pooled samples and gave an average lipid concentration of 3.7±0.5%. No systematic differences were observed in the levels of dioxin-like chemicals in breast milk samples collected from different regions of Australia during 2002/03. A higher level of dioxin-like chemicals was detected in the Brisbane pool (15.2 pg TEQ g^{-1} lipid) and this may have been due to the lower (2.8%) lipid content found in this sample.

For samples collected in 1993, the mean and median levels, expressed as TEQ were 16 pg TEQ g⁻¹ lipid and 16.4 pg TEQ g⁻¹ lipid, respectively. Lipid content was measured in all pooled samples and gave an average lipid concentration of 3.9±0.7%.

A comparison of the samples collected from Melbourne women in 1993 with those collected for the present study shows clearly that the levels of these chemicals have decreased over the ten year time period. It should, however, be noted that comparison of the two sample populations is complicated because details of maternal parity and infant age at date of collection was not made available for the older samples. Despite these limitations, a clear decrease in the levels of these compounds over time was observed. The concentration decreased by almost a factor of two from 1993 to 2002/03, from 16±1.4 to 9.1±1.3 pg g⁻¹ lipid. Consistently, PCDD/PCDFs as well as PCBs decreased in this period. This reflects the worldwide trend over recent decades of declining levels of dioxin-like compounds in the environment and humans. This was seen in the third round WHO exposure studies, where on average the decline between the second round in 1993 and the third round in 2003 was about 40% (Malisch and van Leeuwen 2003).

In summary, the levels of dioxin-like chemicals in the breast milk of Australian women are both similar across all regions of Australia and low by international standards. Consistent with worldwide trends, the levels of dioxin-like compounds have decreased over a ten-year period from 1993 to 2003 by approximately 60%. It should be noted that it is the advice of the WHO and the National Health and Medical Research Council (NHMRC) in Australia that breast milk is the best food for babies. Breast milk may contain low levels of dioxins because of its fat content, but all babies are exposed to dioxins even if they are not breastfed. Alternative foods for babies, such as infant formula, may also contain dioxins because they may also contain fat. Several studies around the world in areas where dioxin levels are known to be high have still shown that breastfed babies are healthier than those fed infant formula.

5. References

Bates MN, Thomson B & Garrett N (2001), 'Investigations of organochlorine contaminants in the milk of New Zealand women', A report from the Institute of Environmental Science and Research to the Ministry of Health, Wellington, New Zealand.

Beck H, Eckart K, Mathar W & Wittkowski R (1989) 'Dependence of PCDD and PCDF levels in human milk on various parameters in the Federal Republic of Germany', *Chemosphere*, vol. 18, pp. 1063-1066.

Buckland SJ, Bates MN, Garrett N, Ellis H & Kvan Maanen, T (2001), 'Concentrations of selected organochlorines in the serum of the non-occupationally exposed New Zealand population.' in Ministry for the Environment, Wellington. www.mfe.govt.nz/publications/hazardous/serum-study-may01.pdf

Deml E, Mangelsdorf I & Greim, H (1996), 'Chlorinated dibenzodioxins and dibenzofurans (PCDD/F) in blood and human milk of non occupationally exposed persons living in the vicinity of a municipal waste incinerator', *Chemosphere*, vol. 33(10), pp. 1941-1950.

Fürst P, Fürst C & Wilmers K (1992), 'PCDDs and PCDFs in human milk - statistical evaluation of a 6-years survey', *Chemosphere*, vol. 25, pp. 1029-1038.

Fürst P, Beck H and Theelen, RMC (1992a), 'Assessment of human intake of PCDDs and PCDFs from different environmental sources', *Toxic Substances Journal vol. 12*, pp. 133-150.

Fürst P, Krüger C, Meemken H & Groebel WCN (1989), 'PCDD and PCDF levels in human milk - dependence on period of lactation', *Chemosphere*, vol. 18, pp. 439-444.

Gaus, C, Papke, O, Dennison, N, Haynes, D, Shaw, G, Connell, D & Müller, J (2001), 'Evidence for the presence of a widespread PCDD source in coastal sediments and soils from Queensland, Australia', *Chemosphere*, vol.43, pp. 549-558.

Greizerstein, HB, Stinson, C, Mendola, P, Buck, GM, Kostyniak PJ, & Vena JE (1999), 'Comparison of PCB congeners and pesticide levels between serum and milk from lactating women', *Environmental Research Section A, vol 80, pp. 280-286*.

Harden F, Müller J, Toms L, Gaus C, Moore M, Päpke O, Ryan J, Hobson P, Symons R, Horsley K, Sim M, Van den Berg M & Fürst P (2004), *Dioxins in the Australian Population: Levels in Blood*, National Dioxins Program Technical Report No. 9, Department of the Environment and Heritage, Canberra.

Langhorst ML & Shadoff LA (1980), 'Determination of parts-per-trillion concentratrations of tetra-, hexa-, hepta-, and octachlorodibenzo-p-dioxins in human milk samples', *Analytical Chemistry*, vol. 52, pp. 2037-2044.

Liem DAK, Fürst, P & Rappe, C (2000), 'Exposure of populations to dioxins and related compounds', *Food Additives and Contaminants, vol. 17, pp. 241-259.*

Malisch R & van Leeuwen FXR (2003), 'Results of the WHO-coordinated exposure study on the levels of PCBs, PCDDs and PCDFs in human milk', *Organohalogen Compounds*, vol. 64, pp. 140-143.

Päpke O (1998), 'PCDD/PCDF: human background data for Germany, a 10-year experience', *Environmental Health Perspectives*, vol. 106 Suppl. 2, pp. 723-731.

Schecter A, Päpke O, Ball M & Ryan JJ (1991), 'Partitioning of dioxins and dibenzofurans: whole blood, blood plasma and adipose tissue', *Chemosphere*, vol. 23 (11-12), pp. 1913-1919.

Schecter A, Kassis I & Päpke O (1998), 'Partitioning of dioxins, dibenzofurans, and coplanar PCBs in blood, milk, adipose tissue, placenta and cord blood from five American women', *Chemosphere*, vol. 37(9-12), pp. 1817-1823.

U.S. EPA NCEA. (2000). 'Exposure and human health reassessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds - Part 3: Integrated summary and risk characterization for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds.' External Review Draft, June 2000. www.epa.gov/ncea.

Van den Berg M., Birnbaum L., Bosveld A.T.C., Brunstroem B., Cook P., Feeley M., Giesy J.P., Hanberg A., Hasegawa R., Kennedy S.W., Kubiak T., Larsen J.C., Van Leeuwen R.F.X., Liem D.A.K., Nolt C., Peterson R.E., Peollinger L., Safe S., Schrenk D., Tillitt D., Tysklind M., Younes M., Waern F., Zacharewski T.et al. (1998), 'Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife', *Environmental Health Perspectives, vol. 106(12), pp. 775-792*.

Van den Berg M, Peterson RE & Schrenk D (2000), 'Human risk assessment and TEFs', Food Additives and Contaminants, vol. 17 (4), pp. 347-358.

6. Appendices

Appendix A Ethics approval letter

Dear Dr Mueller

Concerning:Ethical clearance for project:- Dioxinlike Compounds in Human Milk - 25/11/02 - AMENDMENT

Clearance No: H/308/NRCET/00

The Medical Research Ethics Committee has approved your project.

Please note that:-

- The Clearance number should be quoted on the protocol coversheet when applying to a granting agency and in any correspondence relating to ethical clearance;
- (ii) Clearance will normally be for the duration of the project unless otherwise stated in the institutional clearance:
- (iii) Adverse reaction to treatment by subjects, injury or any other incident affecting the welfare and/or health of subjects attributable to the research should be promptly reported to the Head of Department and the Behavioural and Social Sciences Ethical Review Committee.
- (iv) Amendments to any part of the approved protocol, documents or questionnaires attached to this clearance are to be submitted to the Behavioural and Social Sciences Ethical Review Committee for approval.

H/306/NRCET/00

- Advisors on 'Integrity in Research'
 - As part of the University's commitment to the institutional statement, Code of conduct for the Ethical Practice of Research (1990), and the NHSMFIC's National Statement on Ethical Conduct in Research Involving Humans (1995), designated positions have been appointed as advisers on integrity in research. The Chaliperson of each ethics committee acts in an advisory capacity to provide confidential advice on such matters as misconduct in research, the rights and duries of postgraduate supervisors, and procedures for dealing with allegations on research misconduct within the University. The contact number for the Chairperson of each ethics committee can be obtained from the Ethics Officer.
- (vi) The Committee reserves the right to visit the research sits and materials at any time during the project.
- (vii) It is the Committees expectation whenever possible, this work should result in publication and the Committee would require details to be submitted for our records.

Staff and students are also encouraged to contact either the Ethics Officer (3365-3924), or Chairperson on other issues concerning the conduct of experimentation/research (e.g. involvement of children, informed consent) prior to commencement of the project and throughout the course of the study.

Yours sincerely

Michael Tse Ethios Officer

Exis.

Next of Strives, Hartonal Pleanenth Centre for Environmental Toxonlogy.

Institutional Approval Form For Experiments On Rumans Including Behavioural Research

Chief Investigator: Dr Jachert Huster

Expensive Comproveds to Human Mile - 35/15/02 - AMENCAMENT Project Title:

ture

(in Florie Horison

Suburial Assessorth Caretre for Environmental Toxinologic Department/shi

HUDBINGSTON Granting Agency/Degree: Invitorment Australia

Herch 2007 - Harch 2003 **Duration**:

Name of responsible Committee: Hedical Research Bibles Committee This project complex with the provisions centained in the Asistand Statement of Childs' (Sentuct or Research Sharking Humans and complex with the regulator

sech Ethica Committee

su 4-bac done

Appendix B List of sites

Region	Site name	Agreed to participate	Approval	Recruited participants	Number of participants recruited
Sydney	Westmead Hospital	Yes	Yes (18/2/03)	No	0
2) 4	Hills Parenting Centre - Castle Hill	Yes	UQ - Gatekeeper Letter	Yes	8
	King George Hospital	Yes	Not submitted	No	0
	South East Sydney Area Health Service	Yes	Not submitted	No	0
	Ramsgate	Yes	UQ - Gatekeeper Letter	No	0
	Tresillian Family Care Centres	Yes	Yes (21/4/03)	Yes	20 (10 used for analysis)
	Sydney	Yes	UQ	Yes	2
	Royal North Shore Hospital	Yes	Not submitted	No	0
Melbourne	Banyule	Yes	UQ - Gatekeeper Letter	Yes	3
	Bayside	No	N/A	No	0
	Casey	No	N/A	No	0
	Darebin	No	N/A	No	0
	Glen Eira	Yes	UQ - Gatekeeper Letter	Yes	5
	Latrobe City Maternal and Child Health	No	N/A	No	0
	Monash Maternal and Child Health	Yes	UQ - Gatekeeper Letter	Yes	2
	Royal Women's Hospital Melbourne	Yes	Yes (16/1/03)	Yes	15
	Stonnington Maternal and Child Health	Yes	UQ - Gatekeeper Letter	Yes	1*
	ISIS Primary Care Brimbank	Yes	UQ - Gatekeeper Letter	Yes	10
	Whitehorse	Yes	UQ - Gatekeeper Letter	Yes	4
Brisbane	Inala Community Health Centre	Yes	UQ - Gatekeeper Letter	Yes	10
	Mater Hospital	Yes	Yes (18/12/02)	No	0
	Mater Hospital Redlands	Yes	Mater Hospital approval	Yes	1*
	Mater Private Clinic	Yes	UQ - Gatekeeper Letter	Yes	
Perth	Uni of WA	Yes	Yes (19/6/02)	Yes	11
	Woodside Hospital	Yes	Not submitted	Yes	0
Adelaide	Women's and Children's Hospital	Yes	Yes (18/12/02)	Yes	21
Tasmania	Kingston Community Health Centre	Yes	Not submitted	No	0
	Launceston General Hospital	Yes	Not submitted	No	0
	Launceston Family + Child Health Clinic	Yes	UQ - Gatekeeper Letter	Yes	10
Canberra	ACT Health	Yes	Yes (9/12/02)	No	0
Darwin	Private lactation consultant	Yes	UQ	Yes	4
Wollongong	University of Wollongong	Yes	Yes (6/2/02)	Yes	12
Newcastle	Hunter Health Service	Yes	Yes (30/8/02)	Yes	9
Gladstone	Maternity Unit	Yes	UQ - Gatekeeper Letter	Yes	3*
Coastal QLD	Innisfail Hospital	Yes	UQ	Yes	2*
	Proserpine Hospital	Yes	UQ	No	0
Coastal NSW	Northern Rivers Area Health - Ballina Community Health Centre	Yes	Yes (26/3/03)	Yes	1*
Coastal Vic	Glenelg Shire Community Health Centre	Yes	UQ	No	0

	Lakes Entrance Community	Yes	UQ - Gatekeeper	Yes	2
	Health		Letter		
	Bass Coast Shire - Maternal and	Yes	UQ - Gatekeeper	No	0
	Child Health Centre		Letter		
	Wonthaggi	Yes	UQ - Gatekeeper	No	0
			Letter		
Inland QLD	Dalby Hospital (QLD Health)	Yes	UQ - Gatekeeper	Yes	8
			Letter		
	Roma Hospital	Yes	UQ	No	0
	St. George Hospital	Yes	UQ	No	0
	Mt Isa Health Services	Yes	Not submitted	No	0
	Townsville Health Service	Yes	Not submitted	No	0
Inland NSW	Dubbo (Macquarie and Far-west	Yes	Yes (1/11/02)	Yes	10
	Area Health Service)				
Inland Vic	Ararat	No	N/A	No	0
	Highton	Yes	Not submitted	No	0
	Maroondah	No	N/A	No	0
	Maribrynong	No	N/A	No	0
	Port Phillip	No	N/A	No	0
	Hamilton	No	N/A		
	Wodonga Maternal and Child	Yes	UQ	No	0
	Health				
	Wangaratta Maternity Unit	Yes	UQ	No	0
	Manningham	No	N/A	No	0
	Bendigo	Yes	UQ	Yes	1
	Portland	Yes	UQ	Yes	3*
_	Ballarat	N/A	N/A	Newspaper ad	1

^{*}not included in final analysis.

Appendix C Participant Information and Consent Form

PARTICIPANT INFORMATION AND CONSENT FORM

Evaluation Of The Levels Of Dioxin-Like

Compounds In Breast-Milk In Australia

THE UNIVERSITY OF QUEENSLAND

General Information

We would like to invite you to take part in a research project to be conducted by Dr Jochen Müller and Dr Fiona Harden as part of a national study on dioxin-like chemicals in the environment. The purpose of this study is to find out the typical levels of dioxin-like chemicals in human breast-milk in Australia.

Breast-milk provides perfectly optimized nutrition to infants and there are no equivalent alternatives to breastfeeding. Dioxin-like compounds include some of the most toxic chemicals and they are very long-lived in the environment. Also, since they are far more fat soluble than water soluble they accumulate in fatty tissue. Persistent chemicals such as dioxin-like chemicals enter the human food chain and can be found in breast-milk, infant formulas as well as many other food items including meat and dairy products at low concentrations.

It should be noted that despite the occurrence of elevated levels of dioxins in samples from highly industrialized countries in Europe and North America, The World Health Organization recommends that breastfeeding should continue to be encouraged as the benefits to the overall health and development of infants far outweigh any negative effects of chemical exposure.

The dioxin concentrations in breast-milk are a good indication of the levels of dioxins in our body. By analyzing breast-milk we aim to obtain the first information of the levels of these chemicals in Australian mothers as well as exposure of infants via this route. The results from this study will allow us to assess the exposure of mothers and children in Australia and to compare the levels in Australia with international levels. The results of this study also should help us to identify sources of these compounds in specific areas and therefore allow us to undertake effective steps to reduce exposure of the population.

Approximately 250 breast-feeding mothers around Australia will be taking part in this study.

If you take part

If you agree to take part in this study we will require you to collect 100-150 millitres of breast-milk collected between week 2 and 8 after the birth of your baby. We will supply you with a container to store the sample and will arrange for it to be returned to us. You do not have to collect the sample in a single sitting and so you may collect several small samples to obtain the 100-150 mls. We would suggest that you feed your baby first and then express a small amount of milk into the collection bottle. This can then be placed in the freezer until you are ready to collect another sample. Simply collect subsequent samples in the same jar and refreeze. The sample may be collected by either hand expressing or by using an electric or manual pump. If you require assistance, instructions will be given to you about the sampling. Please feel free to contact Fiona Harden on the number given below. If you collect the sample at home, please ensure that you have understood and followed the instructions on the pump. We request that you store the sample in the freezer until we have arranged for it to be picked up.

The study will also involve the completion of a questionnaire (31 either short answer or multiple choice questions) that will remain strictly confidential. These questions are mainly concerned with your diet and lifestyle. The study will not include any use of medication.

Possible risks

Many mothers routinely perform extraction of breast-milk, and we believe the risk to do so, is minimal. However, please ensure that the sampling equipment (pump) has been sterilized before use according to the procedures outlined with the equipment. Only take the sample if you have excess milk. Please cease collection of milk if you experience any difficulty expressing milk

or feel that either you or your child are being compromised by your participation in the study. If you experience any pain or notice any hot or flushed areas around your breast, please consult your usual medical practitioner or clinic sister immediately.

How do you and your child benefit from this study?

The study will mix individual milk samples from participating women in a given area to obtain a pooled sample. These pooled samples will be analysed for levels of dioxin-like compounds and other pesticides. You will be able to obtain the study results for the pooled samples once the study is completed and the results are interpreted. However, since no individual samples will be analysed there will be no immediate benefits to you and your child from this study since the levels of dioxins in breast-milk are the result of a life time accumulation in the mother. The benefits will be long term by identifying current exposure of the population in specific areas of Australia and provide the means to identify and work towards reducing the sources. In countries where similar studies have been carried out, significant reductions (up to 70%) have been achieved in dioxin levels.

Do you need to take part in this study?

You do not need to take part in the study unless you want to do so. However, since we will pool the milk samples (mix milk samples from many women who live in a given area) you cannot discontinue your participation once we have received your sample and it has been added to the pool. However, if you do wish to withdraw your consent we are able to destroy your questionnaire and any milk not pooled. You have the option on the consent form to agree to part of the sample you donate being stored for future research on pollutants. This future research WILL NOT include genetic research. If you do not sign this second consent your remaining sample will be destroyed. You are able to withdraw your consent from this future research and request that your sample be destroyed.

Will the information you give be confidential?

Coded information collected during the study will be stored in a computer. You will not be personally identified in the study. Only the participating organization or your doctor and study staff will know that the information is related to you. The results of the study may be published in the scientific literature but your identity will not be revealed.

All personal information from the consent form will be kept secure and separate from other material including your completed Questionnaire

Please do not write your name on the Questionnaires.

Contacts

This study has been cleared by the Medical Research Ethics Committee at the University of Queensland and will be conducted in accordance with the National Health and Medical Research Council's guidelines. You are free to discuss your participation in this study and any queries you may have with the Project Coordinator: Dr Fiona Harden (Telephone No: 07-3274 9016) or the Secretary at the NRCET: 07-32749003). If you would like to speak to an officer of the University not involved in the study, you may contact the Ethics Officer on 3365 3924.

PARTICIPANTS CONSENT FORM

Dioxins and dioxin-like compounds in breast-milk THE UNIVERSITY OF QUEENSLAND

Investigator: Dr Jochen Müller

I, the undersigned hereby agree to participate in the above research project.

I have been given clear information, both verbal and written, about this study and understand what has been stated.

I have been informed of any risks to my health or well-being.

I have been given the opportunity to have a member of my family or a friend present while the study was explained to me.

I have been assured that no personal identifiers regarding my questionnaire will be divulged and that the results of any tests will not be published so as to reveal my identity.

I am aware that this study has been approved by one of the Human Ethics Committees of the University of Queensland.

I am aware that I may request further information about the project as it proceeds.

I am aware that I may withdraw my consent at any time but that any milk sample that has been pooled with other samples is unable to be destroyed.

Signea:		Date:
•	of the sample I donated for the I can be stored and used for future	Dioxins and dioxin-like compounds in the research on pollutants.
Signed:		Date:
- - !! N	fication: (please print)	
Address:		
Telephone:		

Appendix D Questionnaire for participants

Questionnaire for Participants

Please complete the following questionnaire providing as much detail as possible.

The information provided by your answers will be kept strictly confidential. The questionnaire will be stored in a de-identified state that is it will be coded and your name will be detached from the answers. Only the researchers will have access to your code.

Please print all answers.

Where boxes are provided for alternative answers, please tick those that apply.
Name:
Residential Address:
••••••
•••••
Telephone Contact:

1.	What is your country of birth?
2.	What is your date of birth?
3.	Where have you lived (town or closest town and state e.g. Newcastle, NSW) for:
	a. The last 5 years
	b. The previous 5-10 years
	c. The previous 10-20 years
	d. The previous 20+ years
4.	What date did you start sample collection? (DD/MM/YY)
5.	When date did you finish sample collection? (DD/MM/YY)
6.	What is your height (cm)?:
7.	What was your weight before you became pregnant? (kg)
8.	What was your weight just prior to delivery of your baby? (kg)
9.	What is your baby's date of birth?
10.	What is your baby's sex? Female Male
11.	What was your baby's birth weight (grams)?
12.	Are you a smoker? Yes No
13.	If yes, how many per day?
14.	How long have you smoked for?
15.	Have you ever smoked? Yes No
16.	If yes when (approximately) did you have your last cigarette?
17.	Which diet best describes your dietary habits?
	a. Mixed Diet
	b. Vegetarian but with dairy products and Eggs
	c. Strictly Vegetarian

provid	ic details.	
On av	erage, how often do you eat	fish or other seafood?
a.	Never	
b.	Less than once a week	
c.	Once a week	
d.	Twice a week	
e.	More than twice a week	
If eate	en, describe the seafood most	often consumed
On av	erage how often do you cons	sume milk and milk products, including ch
a.	Never	sume milk and milk products, including ch
a. b.	Never Less than once a week	sume milk and milk products, including ch
a. b. c.	Never Less than once a week Once a week	sume milk and milk products, including ch
a. b.	Never Less than once a week Once a week Twice a week	sume milk and milk products, including che
a. b. c.	Never Less than once a week Once a week Twice a week	sume milk and milk products, including che
a.b.c.d.e.	Never Less than once a week Once a week Twice a week	
a.b.c.d.e.	Never Less than once a week Once a week Twice a week More than twice a week	
a. b. c. d. e. On av	Never Less than once a week Once a week Twice a week More than twice a week erage, how often do you con Never	
a. b. c. d. e. On av	Never Less than once a week Once a week Twice a week More than twice a week erage, how often do you con Never	
a. b. c. d. e. On av a. b.	Never Less than once a week Once a week Twice a week More than twice a week erage, how often do you con Never Less than once a week	sume milk and milk products, including che

23.	Have you ever worked in any of the following areas?	
	 Pesticide Industry including insecticides, herbicides, fungicides and biocides 	
	b. Forestry Industry	
	c. Manufacturing of Electrical Transformers	
24.	If yes, what was your job?	
25.	How long did you work in this industry for?	
26.	Were you an office worker? Yes No	
27.	Have you ever had contact with any of the following chemicals?	
	 a. Pesticides: including insecticides, herbicides, fungicides and biocides 	
	b. Wood treatment chemicals	
28.	If so how often	
	a. Yearly	
	b. Monthly	
	c. Weekly	
	d. Daily	

THANK YOU FOR TAKING THE TIME TO COMPLETE THIS QUESTIONNAIRE.

Appendix E Advertisement and website

Call for breast milk study volunteers

Pregnant women and new mothers who are breastfeeding are invited to take part in a national breast milk study being conducted throughout Australia by the University of Queensland.

Volunteers are needed to complete the study. To participate you must be:

- A first-time mother with a baby aged two to eight weeks (IVF babies are fine)
- Exclusively breastfeeding
- Willing to provide 100-150mls of expressed milk
- · Healthy, and
- A resident of your area for the past five years.

If you would like more information please call 1800 550030 or visit http://www.uq.edu.au/nrcet/BreastMilkStudy.html.

If you are having your First Baby, are Healthy, intend to Breastfeed and are willing to participate in a national research project, then

WE NEED YOU!

Vital.

your baby with all of his typical long-term health of all certain chemicals in Australia. Australians.

Your Breast Milk is Dr Jochen Muller and Dr Fiona Would you like to be Harden, in conjunction with The involved? University of Queensland, is Breast milk is perfect for conducting a national research. To participate you must your baby. It provides project which will identify be: levels of certain or her nutritional needs, chemicals in breast milk. The And for now, it also results of the research will provides you with the enable us to compare levels in chance to participate in an Australia with other countries, important study which but most importantly, it will may help improve the help us reduce our exposure to

It's Easy

You can collect your sample over a six week period by expressing a small amount of breast milk after feeding your baby. This can be frozen and stored. Once you have expressed 100 - 150mLs of milk, we will arrange for it to be collected.

- · A first time Mum.
- Exclusively breastfeeding.
- · Willing to provide 100 -150ml of expressed milk.
- Healthy (IVF babies are fine)
- · Living in your area for the past 5 years.

150mis of your breast milk could help make a world of difference!!!

If you would like to participate, or would like more information, please telephone the Projector Coordinator, Dr Fiona Harden on 1800 550030 24Hours. / 7 Days a Week or e-mail f.harden@uq.edu.au

http://www.uq.edu.au/nrcet/BreastMilkStudy.html

16/12/2003

Appendix F Analytical Methodology

The MID Windows for PCDD/PCDF.

MID	Accurate Mass	*Ion Id	Ion	Analyta
	Accurate Mass	*10H IQ	Type	Analyte
Window			Турс	(I= internal standard)
1	303.9016	M	R	TCDF
	305.8987	M+2	T	TCDF
	315.9419	M	R	TCDF (I)
	317.9389	M+2	T	TCDF (I)
	319.8965	M	R	TCDD
	321.8936	M+2	T	TCDD
	331.9368	M	R	TCDD (I)
	333.9338	M+2	T	TCDD (I)
2	339.8597	M+2	T	PeCDF
	341.8567	M+4	R	PeCDF
	351.9000	M+2	T	PeCDF (I)
	353.8970	M+4	R	PeCDF (I)
	355.8546	M+2	T	PeCDD
	357.8516	M+4	R	PeCDD
	367.8949	M+2	T	PeCDD (I)
	369.8919	M+4	R	PeCDD (I)
3	373.8208	M+2	Т	HxCDF
	375.8178	M+4	R	HxCDF
	383.8639	M	R	HxCDF (I)
	385.8610	M+2	T	HxCDF (I)
	389.8156	M+2	T	HxCDD
	391.8127	M+4	R	HxCDD
	401.8559	M+2	T	HxCDD (I)
	403.8529	M+4	R	HxCDD (I)
4	407.7818	M+2	Т	HpCDF
	409.7788	M+4	R	HpCDF
	417.8250	M	R	HpCDF (I)
	419.8220	M+2	T	HpCDF (I)
	423.7767	M+2	T	HpCDD
	425.7737	M+4	R	HpCDD
	435.8169	M+2	T	HpCDD (I)
	437.8140	M+4	R	HpCDD (I)
5	441.7428	M+2	T	OCDF
	443.7399	M+4	R	OCDF
	457.7377	M+2	T	OCDD
	459.7348	M+4	R	OCDD
	469.7780	M+2	T	OCDD (I)
	471.7750	M+4	R	OCDD (I)
*m m . 1	1/1.//50	171	11.01	00DD (1)

*T=Target Ion=Quantitation Ion; R=Ratio Ion=Qualifier Ion. TCDD - tetrachlorodibenzo-p-dioxin

PeCDD - pentachlorodibenzo-*p*-dioxin HxCDD - hexachlorodibenzo-*p*-dioxin HpCDD - heptachlorodibenzo-*p*-dioxin OCDD - octachlorodibenzo-*p*-dioxin

TCDF - tetrachlorodibenzofuran

PeCDF - pentachlorodibenzofuran HxCDF - hexachlorodibenzofuran

HpCDF - heptachlorodibenzofuran

OCDF - octachlorodibenzofuran

Theoretical Ion Abundance Ratios and QC Limits.

No. of Cl Atoms	m/z's forming the	Theoretical Ratio	QC li	mits ²
	ratio ¹		Lower	Upper
4^3	M/(M+2)	0.77	0.65	0.89
5	(M+4)/(M+2)	0.65	0.56	0.76
6	(M+4)/(M+2)	0.81	0.70	0.95
6^3	M/(M+2)	0.51	0.43	0.59
7	(M+4)/(M+2)	0.95	0.83	1.14
7^5	M/(M+2)	0.44	0.37	0.51
8	(M+2)/(M+4)	0.89	0.76	1.02

¹ The ratio is defined as the Qualifier ion area (R) divided by the Quantitation ion area (T).

The MID windows for non-ortho and mono-ortho PCBs

MID	Accurate Mass	*Ion Id	Analyte
Window			(I= internal standard)
1	289.9224	M	TeCB
	291.9194	M+2	TeCB
	293.9165	M+4	TeCB
	301.9626	M	TeCB (I)
	303.9597	M+2	TeCB (I)
	323.8834	M	PeCB
	325.8804	M+2	PeCB
	327.8775	M+4	PeCB
	337.9207	M+2	PeCB (I)
	339.9178	M+4	PeCB (I)
2	359.8415	M+2	HxCB
	361.8365	M+4	HxCB
	363.8356	M+6	HxCB
	371.8817	M+2	HxCB (I)
	373.8788	M+4	HxCB (I)
	393.8025	M+2	НрСВ
	395.7995	M+4	НрСВ
	397.7966	M+6	НрСВ
	405.8428	M+2	HpCB (I)
	407.8398	M+4	HpCB (I)

TeCB - tetrachlorobiphenyl

PeCB - pentachlorobiphenyl HxCB - hexachlorobiphenyl

HpCB - heptachlorobiphenyl

Theoretical Ion Abundance Ratios and QC Limits

No. of Chlorine	m/z's forming the	Theoretical	QC lii	nits ²
Atoms	ratio ¹	Ratio	Lower	Upper
4	M/(M+2)	0.77	0.65	0.89
5	(M+4)/(M+2)	0.66	0.56	0.76
6	(M+4)/(M+2)	0.82	0.70	0.94
7	(M+4)/(M+2)	0.98	0.83	1.13

¹ The ratio is defined as the Qualifier ion area (R) divided by the Quantitation ion area (T).

² QC limits represent ±15% windows around the theoretical ion abundance ratios.

³ Does not apply to ³⁷Cl₄-2,3,7,8-TCDD (clean-up standard).

⁴ Used for ¹³C₁₂-HxCDF only.

⁵ Used for ¹³C₁₂-HpCDF only.

 $^{^{2}}$ QC limits represent $\pm 15\%$ windows around the theoretical ion abundance ratios.

Appendix G Results of WHO study

3rd WHO-COORDINATED EXPOSURE STUDY

PCDDS, PCDFS AND DIOXIN-LIKE PCBs IN HUMAN MILK SAMPLES FROM AUSTRALIA

Jochen F Millint', Fious Burden', Michael B. Moore', Yold Berry - Ramer Mattuch'

Named Exercit Centre for Environmental Tirecology, University of Queensland, 39 Kentels Rd., Corpers Plano, Q014108, Australia

Department of Chemicary, University of Wollongong, NSW 2522, Australia Sinte Laboratory for Chemical and Veterinary Analysis of Finod, Busicing 5, D 79114 Freshung, Germany

Introduction

Descin-like compounds are abiquinously distributed and humans throughout die world are exposed to these compounds primarily through food. Districtive compounds are lipophilic and persistent, thus accusualate in luman adipose tusue. Since it has been demonstrated that PCDDs occur in breast mills', under from all over the world have demonstrated that human mile is consummated with directo-like compounds. As a compequence, the WHO organized two international studies on dioxin-like compounds in bream milk in 1987/88 and 1992/93 respectively. In sugarnary, these studies demonstrated that levels of diction in breast milk are relatively high an industrialised countries when compared to non-industrial countries? that PCDD/Fs were higher in homon until from mothers with their first child⁶ and that the levels decrease over a given factation period⁶. Furthermore since PCDD/F concentration to blood and human milk of the respective samples are very similar when concentrations are expressed on a lipid basis, hence human mills, provides a good monitoring tool of exposure for a given population in a given area. To date no data love been published in PCDD/Fs and dioxin-like PCBs in human milk samples from Assiralra. The from alms of this study were to produce the first set of data on fevels of distin-like compounds in broast oath from ortion and industrial Australia, states the exposure of infants and to gata- initial information on the levels of exposure of Aintralia's population to dioxin-like chemicals.

Methods

Samplung

The study was carried out as part of the WHO study or immus milk samples following the respective protocols, using the WHO Questionnane and carrying and the analysis in the laboratory than has been relevied by WHO at reference obsorbing to carry out the analysis of disconslike chemicals and lipid content in the immus milk samples in the third round of exposure study. In brief ten sintable collusteering motives in a principality, child and moders being apparently braider following a "locand" preprincy, donors must not have resided outside the situation inter than 6 months in the last 5 years) were identified in the orion area of south-case Queensland and an industrial term in New South Wales in 2001. About 100 mL of milk was collected by each of the participating women in the period between week 2 and 5 of the location. Samples were collected entire using a pamp or by dressity expressing the null and shapped forces to the inflorationy at NRCITI/QHSS, flavord, and information 150 pd. from much sample were pooled according to the sampling region. The refresser probability analysis were transparted on sec to Fresburg, Quantory.

ORGANOHALOGEN COMPOUNDS Vol. 56 (2002)

121

3rd WHO-COORDINATED EXPOSURE STUDY

dealfore

According to the study design, all namples were analysed for 17 PCDDs and PCDEs. 12 discontible PCBs (non-trabe IDPAC 17, 81, 126 and 169, mono-order JUPAC 165, 114, 118, 123, 156, 157, 167 and 189) and 6 morker PCBs (de-order IUPAC 26, 57, 101, 135, 153, and 180).

Expansion, clean up and GC/MS Jentimination followed the same procedure as applied dising the formit round of WHO interiological quality control studies, therefore followed the whole complex has extraction of lat and contaminants of interest with exhaust / tolorine (70/30, gives crude the after evaporation), solving as bared methyl ethat (gives pain for after evaporation), gid promozion curominography on the Berds S-X2 for removal of tax, edica column impregnance with sufface and for removal of remaining oxidizable substances, florred violation for separation PCDDF from PCBs, different charcost columns for further clean up of PCDDF frazions and for separation of PCBs into these fractions of opening in the distribution of the PCBs. The componish of interest are determined by HRGC/HRMS (resolumn 10,000) on four separate runs (for PCDDFs, non-ortho PCBs, number ortho PCBs, and for the PCBs.)

Generally for all samples to be analyzed for the third round of expensive study, a rigid quality counted programme ancludes blank samples, spaked vegetable oil samples on different levels, and five different kitals of quality control samples (two butter samples and two egg enterples of different levels, and five different kitals of quality control samples are malysed in a way which can be described as "overlapping unidencing method": A great deal of the samples was analysed as displacate analyses, with the diplicate analyses being performed in sequences, with samples from other construes and different quality control samples. This guarantees that the results of all samples from different construes have the famous reliability, eyes of the collection period of the samples strenches over a period of two years. As the tamples from Ambrida mere tent to the laboratory early 2002, this rigid quality control programme could not be finished including duphrate analysis of the samples using the "overlapping sandwich method". Therefore, the results are being considered preliminary.

Results and Discussion

PCDD/Fs and droxin-like PCBs were desectable in both pooled samples. In both pooled samples concentrations of individual 2,3,7,8 oblivine substituted PCDD/F congeners ranged from below the limit of selection for selected higher chlorinated subsenzionains to between 60 and 70 pg g 1 had for OCDD. The concentrations of PCDD/Fs and dioxin-like PCBs expressed on a TE basis using the WHO-TEFs³ were between 8 and 9 pg g 1 lipid and almost identical in the two sample pools despite the prographical and industrialization differences of the locations where the participants invold) (Table 1). Discoun-like PCBs contributed about 50-40 % of the total TE value which is returned two-differences and the favorable in samples has samples for second study undertaken in New Zealand¹. Although it should be noted that the questionnesses have not yet been analysed and thus an ape difference is not considered in this component, the similarities of concentration between the 2-samples, were straing even for the individual congeners with a mean normalized difference (15nA - B5s/LA + B1/24)) for all detectable PCDD/F congeners with a mean normalized difference (15nA - B5s/LA + B1/24)) for all detectable PCDD/F congeners of about 15 % and for PCBs of 25 %. Like for many homes samples from absendere in the world, when the WHO-TEFs are used 1,2,3,1,8 PcCDD is the sample most relocated congeners contribution 20 in the TE values.

Results and Discussion

122

PCDDFs and discondite PCRs were detectable in both pooled samples. In both pooled waitplesconcentrations of individual 2.5.7.8 citizene substituted PCDD/F congenies stated from before the

ORGANOBALOGEN COMPOUNDS Vol. 56 (2002)

3rd WHO-COORDINATED EXPOSURE STUDY

Table 1. Concentrations of PCDD/Fs and down like PCBs in monan milk samples from Acutralia

CCDD/Fs (in pg g ' tipid)	WHO-TEF	Urbau Qld	Industrial NSW
2.3,7,8/TetraCDD	1	1.00	0.92
1,2_1,7,8-PentaCDD	i i	238	1.85
1.2.3.4.7.8-HeARCOD	0.1	1.82	1.42
1.2,5,6,7,8-HexaCDD	0.1	8.13	7.74
1.3, 1.7,8,9-HeuCDO	10.1	2.75	3.59
1.2.4.6.7.8-HeptiCDD	0.01	14.3	13.8
OctoCDD	0.0001	66.6	62.7
1.1.7.8-TetraCDP	0.1	0.33	0.39
1.2.3.7.8-PentsCDF	0.05	0.14	0.19
2_4,4,7,8-PentaCDF	0.5	1.84	2 30
1.2.3.4.7.8-HexaCDF	0.1	11.109	0.90
1,2,3,6,7,8-HexaCDF	0.1	0.92	0.85
1.2.3.7.8.9-HexaCDF	0.1	0.07	0.04
2.3.4.6.7.8-HexaCDF	0.)	0.34	0.34
1.3.3,4.6,7.8-HeptaCDF	0.01	1.43	0.69
1.2.3.4.7.8.9-HeptaCDF	0.01	<0.09	<0.04
OctaCDP	0.0001	<0.90	0.38
PCBs (in pg g ¹ lipid)			
Non-outhor PCD's			
5.3'.4.4' - testaCB (PCBst77)	0.0001	3.06	2,61
3,4,4°,5 - 0:013CB (PCB#81)	45,0003	1.52	157
3.5'A.4'.5 - penuCB (PCB#126)	0.1	11.5	16.1
3, P.4,4'.5, S - lexaCB (PCD#160)	10.01	0.8	H H.
Mono-ortho PCBo			10 00
2. 4.3°,4.4° - pentaCB (PCB#105)	0.0001	596	915
2.5.4,4,5 - penta (PCB#)14+	0.0005	202	222
1, VA,4',5 - pemaCB (PCB#[18)	0,000.1	2590	3700
2'3:4,4,5 - pentaCB (PCR#123)	0.0001	col.	-04
2.3.3'.4.4'.5 - heraCB (PCB#156)	0.0005	1370	1650
LJ,3,4,4'3' - bexsCB (PCB#157)	0.0005	306	347
23" A.4 5.5" - hocoCB (PCB#167)	0.00001	367	575
2.5,3',4,4'.5,5' - heptaCB (PCB#189)	0.0001	85	135
PEQs - WHO		8,5	87

Input of describes for scienced higher chlorounted dibenzuliusus to between 60 and 70 pg g⁻¹ hpad for OCDD. The concentrations of PCDD/Fs and drown-like PCRs expressed on a TE basis using this WHO TEP's early between 8 and 9 pg g⁻¹ from an aliment identical in the two sample pools despite the gaspaphical and intertrizibilium differences of the incurrons where the pasts spants loverift (Table 1) Determ-like PCBs contributed about 50-40 % of the total TE value which is relatively less compared with European samples but standard to a review goody analystation in New Zeafund. Although it should

ORGANOHALOGEN COMPOUNDS Vol. 56 (2002)

3rd WHO-COORDINATED EXPOSURE STUDY

be outed that the questionisties have not yet been analysed and thus, at upe difference in not considered in this comparison, the similarities of concentrations between the 2 samples were striking even for the undividual congeners with a mean normalized difference (19th - BM/L) + BM/L) for all detectable PCDD4 congeners of about 15 % and for PCB- of 28 %. Like for many human samples from elsewhere to the world, when the WHO-TEFs are used 1,2,17,8 PcCDD is the single most relevant congeners contributing 20 - 30 % to the total contribution of the TE values.

Another interesting finding of this study is that, while the concentrations of all PCDF and lower chlorinated PCDD congeness were relatively low in the Australian samples compared with samples from elsewhere, the fevels of HyCDDs, HpCDDs and OCDD were high or at least comparable in the Australian samples with samples from elsewhere. To date little is known about the levels of diotin-like chemicals in food in Australia. However elevated levels of higher extorinated PCDDs, in environmental samples have been the subject of a series of investigations but to date the source remains unknown. The results from this study suggest that despute their low biographicity the elevated levels observed in the environment translate in a slightly insustal congener profile in humans and thus even at low level exposure a source can be associated with a specific profile.

Acknowledgment

The authors would like to thank 36 new mothers who collected nulls saroples for this study and participated in the Questionnaire. Thank-you also to Martin van den Berg and Rolld van Leeuwen who mittated our effort provided key support with ethical usues. The study received financial support from a GU/NRCET Research Grant. NRCET is co-funded by Queeraland Health.

References

- J. Langhorst, M.; Shadoff, C. N. Anat. Chem. 1980, 52, 2037-2044
- Liem, D. A. K.; Flirst, P., Rappe, C. Food Additives mid Contaminants 2000, 17, 241-259.
- 3 Fürst, P. Krüger, C.: Meemken, H.; Groebel, W.C.N. Chemosphere 1989, 18, 430-444.
- 4 Fürst, P.; Fürst, C., Number, W. K. C. Chemosphere 1992, 25, 1029-1038
- Päpke, O. Humanproben, In: Handbuch Drovine: Oehme, M., Ed., Spektrum Akademischer Verlag-Heidelberg, 1998: pp. 333.
- Van den Berg, M., Birnbuim, L., Bosveid, A.T.C.; Brunstroem, B.; Cook, P.; Feeley, M.; Gress, J.P.; Hamberg, A.; Hasegawa, R.; Kennedy, S.W., Kubiak, T., Larsen, J.C.; Van Leeuwen, R.F.X.; Liem, D.A.K., Nolt, C.; Pelerson, R.E.; Poellinger, U.; Safe, S.; Schrenk, D., Tillitt, D., Tyaklind, M., Younes, M., Wagen, F.; Zacharewski, T. Environmental Health Perspective 1998, 106, 775-792.
- 7 World Health Organisation Levels of PCRs, PCDDs and PCDFs in human mith Environmental Health in Europe No.3, Billsoven, 1996
- 8 Bates, M., Thomson, B.; Garrett, N. "Investigation of organochlorine contaminants in the null, of New Zealand women," Ministry of Health, New Zealand, 2001

Appendix H AGAL Results

AGAL DIOXIN ANALYSIS UNIT - CERTIFICATE OF ANALYSIS

Client NRCET Job No. NRCE01/030928

39 Kessels Rd., Coopers Plains

Queensland 4108 Sampled by Client

Date Sampled various

Contact Dr. Fiona Harden Date Received 28-Aug-2003

Sample/s analysed as received.

Method AUTL 01

Details The method is for determination of tetra- through octa-chlorinated dibenzo-

p- dioxins (PCDDs) & dibenzofurans (PCDFs), plus "dioxin-like" PCBs in breast milk samples by high resolution gas chromatography/high resolution mass spectrometry (HRGC/ HRMS). This method provides data on all toxic 2,3,7,8-PCDD (seven) and PCDF (ten) isomers as well as the "dioxin-like" PCBs (twelve). PCDD and PCDF totals for each homologue group (tetra to octa) are also reported. All results are corrected for labelled surrogate recoveries. Breast milk samples are spiked with isotopically labelled surrogate standards and extracted into organic solvent. Clean up is effected by partitioning with sulphuric acid then distilled water. Further purification is performed using automated column chromatography on acid and base modified silica gels, neutral alumina and carbon dispersed on celite.

Immediately prior to injection, internal standards are added to each extract, and an aliquot of the extract is injected into the GC. The analytes are separated by the GC and detected by a high-resolution (>10,000) mass spectrometer.

spectrometer.

Authorisation Debbie Burniston,

Lead Scientist

Dioxin Analysis Unit

Sample Details

N03/030645 Melb Hist A Breast Milk pooled sample N03/030646 Melb Hist B Breast Milk pooled sample N03/030647 Melb Hist C Breast Milk pooled sample Project Details Project Name National Dioxin Program Project Number Not specified Analytes TCDD Tetrachlorodibenzo-p-dioxin TCDF Tetrachlorodibenzofuran PeCDD Pentachlorodibenzo-p-dioxin PeCDF Pentachlorodibenzofuran HxCDD Hexachlorodibenzo-p-dioxin HxCDF Hexachlorodibenzofuran HpCDD Heptachlorodibenzo-p-dioxin HpCDF Heptachlorodibenzofuran OCDD Octachlorodibenzo-p-dioxin OCDF Octachlorodibenzofuran PCB 77 3,3',4,4'-Tetrachlorobiphenyl PCB 126 3,3',4,4',5-Pentachlorobiphenyl PCB 81 3,4,4'-5-Tetrachlorobiphenyl PCB 157 2,3,3',4,4',5-Hexachlorobiphenyl PCB 105 2,3,3',4,4'-Fentachlorobiphenyl
N03/030647 Melb Hist C Breast Milk pooled sample Project Details Project Name National Dioxin Program Project Number Not specified Analytes TCDD Tetrachlorodibenzo-p-dioxin TCDF Tetrachlorodibenzofuran PeCDD Pentachlorodibenzo-p-dioxin PeCDF Pentachlorodibenzofuran HxCDD Hexachlorodibenzo-p-dioxin HxCDF Hexachlorodibenzofuran HpCDD Heptachlorodibenzo-p-dioxin HpCDF Heptachlorodibenzofuran OCDD Octachlorodibenzo-p-dioxin OCDF Octachlorodibenzofuran PCB 77 3,3',4,4'-Tetrachlorobiphenyl PCB 126 3,3',4,4',5-Pentachlorobiphenyl PCB 81 3,4,4',5-Tetrachlorobiphenyl PCB 156 2,3,3',4,4',5-Hexachlorobiphenyl
Project Details Project Name National Dioxin Program Project Number Not specified Analytes TCDD Tetrachlorodibenzo-p-dioxin TCDF Tetrachlorodibenzofuran PeCDD Pentachlorodibenzo-p-dioxin PeCDF Pentachlorodibenzofuran HxCDD Hexachlorodibenzo-p-dioxin HxCDF Hexachlorodibenzofuran HpCDD Heptachlorodibenzo-p-dioxin HpCDF Heptachlorodibenzofuran OCDD Octachlorodibenzo-p-dioxin OCDF Octachlorodibenzofuran PCB 77 3,3',4,4'-Tetrachlorobiphenyl PCB 156 2,3,3',4,4',5-Hexachlorobiphenyl PCB 81 3,4,4',5-Tetrachlorobiphenyl PCB 156 2,3,3',4,4',5-Hexachlorobiphenyl
Project Name National Dioxin Program Project Number Not specified Analytes TCDD Tetrachlorodibenzo-p-dioxin TCDF Tetrachlorodibenzofuran PeCDD Pentachlorodibenzo-p-dioxin PeCDF Pentachlorodibenzofuran HxCDD Hexachlorodibenzo-p-dioxin HxCDF Hexachlorodibenzofuran HpCDD Heptachlorodibenzo-p-dioxin HpCDF Heptachlorodibenzofuran OCDD Octachlorodibenzo-p-dioxin OCDF Octachlorodibenzofuran PCB 77 3,3',4,4'-Tetrachlorobiphenyl PCB 126 3,3',4,4',5-Pentachlorobiphenyl PCB 81 3,4,4',5-Tetrachlorobiphenyl PCB 156 2,3,3',4,4',5-Hexachlorobiphenyl
Project Number Analytes TCDD Tetrachlorodibenzo-p-dioxin PeCDD Pentachlorodibenzo-p-dioxin PeCDD Pentachlorodibenzo-p-dioxin PeCDD Hexachlorodibenzo-p-dioxin HxCDD Hexachlorodibenzo-p-dioxin HpCDD Heptachlorodibenzo-p-dioxin HpCDF Heptachlorodibenzo-p-dioxin HpCDF Heptachlorodibenzofuran OCDD Octachlorodibenzo-p-dioxin OCDF OCtachlorodibenzofuran PCB 77 3,3',4,4'-Tetrachlorobiphenyl PCB 81 3,4,4',5-Tetrachlorobiphenyl PCB 156 2,3,3',4,4',5-Hexachlorobiphenyl
Analytes TCDD Tetrachlorodibenzo-p-dioxin TCDF Tetrachlorodibenzofuran PeCDD Pentachlorodibenzo-p-dioxin PeCDF Pentachlorodibenzofuran HxCDD Hexachlorodibenzo-p-dioxin HxCDF Hexachlorodibenzofuran HpCDD Heptachlorodibenzo-p-dioxin HpCDF Heptachlorodibenzofuran OCDD Octachlorodibenzo-p-dioxin OCDF Octachlorodibenzofuran PCB 77 3,3',4,4'-Tetrachlorobiphenyl PCB 126 3,3',4,4',5-Pentachlorobiphenyl PCB 81 3,4,4',5-Tetrachlorobiphenyl PCB 156 2,3,3',4,4',5-Hexachlorobiphenyl
TCDD Tetrachlorodibenzo-p-dioxin TCDF Tetrachlorodibenzofuran PeCDD Pentachlorodibenzo-p-dioxin PeCDF Pentachlorodibenzofuran HxCDD Hexachlorodibenzo-p-dioxin HxCDF Hexachlorodibenzofuran HpCDD Heptachlorodibenzo-p-dioxin HpCDF Heptachlorodibenzofuran OCDD Octachlorodibenzo-p-dioxin OCDF Octachlorodibenzofuran PCB 77 3,3',4,4'-Tetrachlorobiphenyl PCB 126 3,3',4,4',5-Pentachlorobiphenyl PCB 81 3,4,4',5-Tetrachlorobiphenyl PCB 156 2,3,3',4,4',5-Hexachlorobiphenyl
PeCDD Pentachlorodibenzo-p-dioxin PeCDF Pentachlorodibenzofuran HxCDD Hexachlorodibenzo-p-dioxin HxCDF Hexachlorodibenzofuran HpCDD Heptachlorodibenzo-p-dioxin HpCDF Heptachlorodibenzofuran OCDD Octachlorodibenzo-p-dioxin OCDF Octachlorodibenzofuran PCB 77 3,3',4,4'-Tetrachlorobiphenyl PCB 126 3,3',4,4',5-Pentachlorobiphenyl PCB 81 3,4,4',5-Tetrachlorobiphenyl PCB 156 2,3,3',4,4',5-Hexachlorobiphenyl
HxCDD Hexachlorodibenzo-p-dioxin HxCDF Hexachlorodibenzofuran HpCDD Heptachlorodibenzo-p-dioxin HpCDF Heptachlorodibenzofuran OCDD Octachlorodibenzo-p-dioxin OCDF Octachlorodibenzofuran PCB 77 3,3',4,4'-Tetrachlorobiphenyl PCB 126 3,3',4,4',5-Pentachlorobiphenyl PCB 81 3,4,4',5-Tetrachlorobiphenyl PCB 156 2,3,3',4,4',5-Hexachlorobiphenyl
HpCDDHeptachlorodibenzo-p-dioxinHpCDFHeptachlorodibenzofuranOCDDOctachlorodibenzo-p-dioxinOCDFOctachlorodibenzofuranPCB 773,3',4,4'-TetrachlorobiphenylPCB 1263,3',4,4',5-PentachlorobiphenylPCB 813,4,4',5-TetrachlorobiphenylPCB 1562,3,3',4,4',5-Hexachlorobiphenyl
OCDD Octachlorodibenzo-p-dioxin OCDF Octachlorodibenzofuran PCB 77 3,3',4,4'-Tetrachlorobiphenyl PCB 126 3,3',4,4',5-Pentachlorobiphenyl PCB 81 3,4,4',5-Tetrachlorobiphenyl PCB 156 2,3,3',4,4',5-Hexachlorobiphenyl
PCB 77 3,3',4,4'-Tetrachlorobiphenyl PCB 126 3,3',4,4',5-Pentachlorobiphenyl PCB 81 3,4,4',5-Tetrachlorobiphenyl PCB 156 2,3,3',4,4',5-Hexachlorobiphenyl
PCB 81 3,4,4',5-Tetrachlorobiphenyl PCB 156 2,3,3',4,4',5-Hexachlorobiphenyl
PCB 105 2.3.3'.4.4'-Pentachlorobiphenyl PCB 157 2.3.3'.4.4'.5'-Hexachlorobiphenyl
, , , , , , , , , , , , , , , , , , ,
PCB 114 2,3,4,4',5-Pentachlorobiphenyl PCB 167 2,3',4,4',5,5'-Hexachlorobiphenyl
PCB 118 2,3',4,4',5-Pentachlorobiphenyl PCB 169 3,3',4,4',5,5'-Hexachlorobiphenyl
PCB 123 2',3,4,4',5-Pentachlorobiphenyl PCB 189 2,3,3',4,4',5,5'-Heptachlorobiphenyl
Units & Abbreviations
pg/g lipid picogram per gram lipid
< level less than limit of detection (LOD)

† as defined by Van den Berg et al., Environ. Health Perspect. 106(12) pp. 775-792 (1998).

International toxic equivalency factor

International toxic equivalents - dioxins & furans

World Health Organization toxic equivalents

World Health Organization toxic equivalency factor

‡ as defined in USEPA publication EPA/625/3-89/016 (1989)

TEQs are calculated by multiplying the quantified level for each individual congener by corresponding

TEF and summing result.

I-TEF‡

I-TEQDF‡

WHO98-TEF†

WHO98-TEQ†

Surrogate Recovery percentage recovery for 13C12 labelled surrogate standard

Laboratory surrogate recovery outside normal acceptance criteria (25 - 125%)

Laboratory Reg. No.	N03/030644	Lipid Content:	Date Extracted	19-Sep-03
		3.8%		
Client Sample Ref.	Tas A		DB5 Analysis	29-Oct-03
Matrix	Breast Milk		DB-Dioxin Analysis	14-Oct-03
Description	pooled sample		PCB Analysis	14-Oct-03

	Level	WHO98-TEF	WHO98-TEQDF	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	0.19	0.1	0.019	72
2,3,7,8-TCDD	0.49	1	0.49	66
1,2,3,7,8-PeCDF	<0.05	0.05	0.0013	65
2,3,4,7,8-PeCDF	1.5	0.5	0.75	67
1,2,3,7,8-PeCDD	1.9	1	1.9	64
1,2,3,4,7,8-HxCDF	0.49	0.1	0.049	100
1,2,3,6,7,8-HxCDF	0.53	0.1	0.053	101
2,3,4,6,7,8-HxCDF	0.2	0.1	0.02	100
1,2,3,7,8,9-HxCDF	<0.05	0.1	0.0025	84
1,2,3,4,7,8-HxCDD	1.3	0.1	0.13	99
1,2,3,6,7,8-HxCDD	6.6	0.1	0.66	93
1,2,3,7,8,9-HxCDD	1.2	0.1	0.12	
1,2,3,4,6,7,8-HpCDF	<0.6	0.01	0.003	82
1,2,3,4,7,8,9-HpCDF	<0.07	0.01	0.00035	61
1,2,3,4,6,7,8-HpCDD	8.9	0.01	0.089	69
OCDF	0.17	0.0001	0.000017	
OCDD	48	0.0001	0.0048	43

	Level	WHO98-TEF	WHO98-TEQP	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	15	0.0001	0.0015	58
PCB 81	3	0.0001	0.0003	59
PCB 126	14	0.1	1.4	77
PCB 169	3.9	0.01	0.039	76
Mono-Ortho PCBs				
PCB 105	770	0.0001	0.077	67
PCB 114	160	0.0005	0.08	70
PCB 118	2360	0.0001	0.24	70
PCB 123	48	0.0001	0.0048	76
PCB 156	670	0.0005	0.34	62
PCB 157	170	0.0005	0.085	58
PCB 167	210	0.00001	0.0021	73
PCB 189	46	0.0001	0.0046	71

Sum of PCDD and PCDF congeners			
	Excluding LOD		
	values	71	pg/g lipid
WHO ₉₈ -TEQ _{DFP}	Lower Bound [excluding LOD values]	6.6	pg/g lipid
	Middle Bound [including half LOD values]	6.6	pg/g lipid
	Upper Bound [including LOD values]	6.6	pg/g lipid

Laboratory Reg. No.	N03/030643	Lipid Content:	Date Extracted	19-Sep-03
		3.5%		
Client Sample Ref.	Rural QLD		DB5 Analysis	29-Oct-03
Matrix	Breast Milk		DB-Dioxin Analysis	14-Oct-03
Description	pooled sample		PCB Analysis	14-Oct-03

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	<0.2	0.1	0.01	66
2,3,7,8-TCDD	0.51	1	0.51	60
1,2,3,7,8-PeCDF	<0.1	0.05	0.0025	53
2,3,4,7,8-PeCDF	0.86	0.5	0.43	59
1,2,3,7,8-PeCDD	1.8	1	1.8	53
1,2,3,4,7,8-HxCDF	0.55	0.1	0.055	94
1,2,3,6,7,8-HxCDF	0.47	0.1	0.047	74
2,3,4,6,7,8-HxCDF	0.24	0.1	0.024	94
1,2,3,7,8,9-HxCDF	<0.09	0.1	0.0045	74
1,2,3,4,7,8-HxCDD	0.86	0.1	0.086	94
1,2,3,6,7,8-HxCDD	4.8	0.1	0.48	65
1,2,3,7,8,9-HxCDD	1.5	0.1	0.15	
1,2,3,4,6,7,8-HpCDF	<1	0.01	0.005	75
1,2,3,4,7,8,9-HpCDF	<0.2	0.01	0.001	59
1,2,3,4,6,7,8-HpCDD	7.8	0.01	0.078	62
OCDF	<0.4	0.0001	0.00002	
OCDD	57	0.0001	0.0057	43

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	21	0.0001	0.0021	58
PCB 81	5.2	0.0001	0.00052	59
PCB 126	14	0.1	1.4	74
PCB 169	3.7	0.01	0.037	73
Mono-Ortho PCBs				
PCB 105	890	0.0001	0.089	72
PCB 114	130	0.0005	0.065	73
PCB 118	2270	0.0001	0.23	73
PCB 123	63	0.0001	0.0063	77
PCB 156	740	0.0005	0.37	65
PCB 157	180	0.0005	0.09	59
PCB 167	320	0.00001	0.0032	70
PCB 189	71	0.0001	0.0071	71

Sum of PCDD and PCDF congeners				
	Excluding LOD values		77	pg/g lipid
WHO ₉₈ -TEQ _{DFP}				
		Lower Bound [excluding LOD values] Middle Bound [including half LOD	6	pg/g lipid
		values]	6	pg/g lipid
		Upper Bound [including LOD values]	6	pg/g lipid

Laboratory Reg. No.	N03/030642	Lipid Content:	Date Extracted	19-Sep-03
		4.2%		
Client Sample Ref.	Darwin		DB5 Analysis	29-Oct-03
Matrix	Breast Milk		DB-Dioxin Analysis	14-Oct-03
Description	pooled sample		PCB Analysis	14-Oct-03

	Level	WHO98-TEF	WHO98-TEQDF	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	<0.9	0.1	0.045	76
2,3,7,8-TCDD	0.98	1	0.98	77
1,2,3,7,8-PeCDF	<0.4	0.05	0.01	75
2,3,4,7,8-PeCDF	1.3	0.5	0.65	73
1,2,3,7,8-PeCDD	2.9	1	2.9	76
1,2,3,4,7,8-HxCDF	2.4	0.1	0.24	97
1,2,3,6,7,8-HxCDF	1.2	0.1	0.12	98
2,3,4,6,7,8-HxCDF	0.44	0.1	0.044	102
1,2,3,7,8,9-HxCDF	<0.5	0.1	0.025	86
1,2,3,4,7,8-HxCDD	2.1	0.1	0.21	106
1,2,3,6,7,8-HxCDD	13	0.1	1.3	98
1,2,3,7,8,9-HxCDD	2.4	0.1	0.24	
1,2,3,4,6,7,8-HpCDF	<1	0.01	0.005	88
1,2,3,4,7,8,9-HpCDF	<0.3	0.01	0.0015	81
1,2,3,4,6,7,8-HpCDD	11	0.01	0.11	94
OCDF	<0.6	0.0001	0.00003	
OCDD	65	0.0001	0.0065	65

	Level	WHO98-TEF	WHO98-TEQP	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	6.5	0.0001	0.00065	69
PCB 81	0.92	0.0001	0.000092	72
PCB 126	11	0.1	1.1	84
PCB 169	7.2	0.01	0.072	80
Mono-Ortho PCBs				
PCB 105	750	0.0001	0.075	70
PCB 114	190	0.0005	0.095	79
PCB 118	2540	0.0001	0.25	75
PCB 123	51	0.0001	0.0051	82
PCB 156	1330	0.0005	0.67	67
PCB 157	320	0.0005	0.16	67
PCB 167	430	0.00001	0.0043	81
PCB 189	87	0.0001	0.0087	63

Sum of PCDD and PCDF congeners			
Excluding LOD values	100	pg/g lipid	
WHO ₃₈ -TEQ _{DFP}			
Lower Bound [excluding LOD values] Middle Bound [including half LOD	9.2	pg/g lipid	
values]	9.3	pg/g lipid	
Upper Bound [including LOD values]	9.4	pg/g lipid	

Laboratory Reg. No.	N03/030641	Lipid Content:		Date Extracted	19-Sep-03
			3.1%		
Client Sample Ref.	Melb C			DB5 Analysis	29-Oct-03
Matrix	Breast Milk			DB-Dioxin Analysis	14-Oct-03
Description	pooled sample			PCB Analysis	14-Oct-03

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	<0.2	0.1	0.01	69
2,3,7,8-TCDD	0.85	1	0.85	64
1,2,3,7,8-PeCDF	<0.1	0.05	0.0025	60
2,3,4,7,8-PeCDF	2.2	0.5	1.1	64
1,2,3,7,8-PeCDD	2.6	1	2.6	63
1,2,3,4,7,8-HxCDF	0.79	0.1	0.079	96
1,2,3,6,7,8-HxCDF	0.87	0.1	0.087	95
2,3,4,6,7,8-HxCDF	0.35	0.1	0.035	93
1,2,3,7,8,9-HxCDF	<0.04	0.1	0.002	79
1,2,3,4,7,8-HxCDD	2.2	0.1	0.22	94
1,2,3,6,7,8-HxCDD	11	0.1	1.1	85
1,2,3,7,8,9-HxCDD	1.8	0.1	0.18	
1,2,3,4,6,7,8-HpCDF	<0.9	0.01	0.0045	78
1,2,3,4,7,8,9-HpCDF	<0.05	0.01	0.00025	63
1,2,3,4,6,7,8-HpCDD	13	0.01	0.13	66
OCDF	<0.2	0.0001	0.00001	
OCDD	64	0.0001	0.0064	44

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	7.1	0.0001	0.00071	54
PCB 81	4.1	0.0001	0.00041	56
PCB 126	14	0.1	1.4	71
PCB 169	7.2	0.01	0.072	78
Mono-Ortho PCBs				
PCB 105	1040	0.0001	0.1	66
PCB 114	250	0.0005	0.13	72
PCB 118	3300	0.0001	0.33	74
PCB 123	66	0.0001	0.0066	79
PCB 156	1170	0.0005	0.59	56
PCB 157	290	0.0005	0.15	51
PCB 167	330	0.00001	0.0033	67
PCB 189	82	0.0001	0.0082	64

Sum of PCDD and PCDF congeners		
Excluding LOD values	100	pg/g lipid
WHO ₉₈ -TEQ _{DFP}		
Lower Bound [excluding LOD values] Middle Bound [including half LOD	9.2	pg/g lipid
values]	9.2	pg/g lipid
Upper Bound [including LOD values]	9.2	pg/g lipid

Laboratory Reg. No.	N03/030640	Lipid Content:	Date Extracted	19-Sep-03
		4.3%		
Client Sample Ref.	Syd A		DB5 Analysis	29-Oct-03
Matrix	Breast Milk		DB-Dioxin Analysis	14-Oct-03
Description	pooled sample		PCB Analysis	14-Oct-03

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	<0.3	0.1	0.015	70
2,3,7,8-TCDD	1.4	1	1.4	65
1,2,3,7,8-PeCDF	0.28	0.05	0.0	60
2,3,4,7,8-PeCDF	3.2	0.5	1.6	60
1,2,3,7,8-PeCDD	2.7	1	2.7	59
1,2,3,4,7,8-HxCDF	1.1	0.1	0.11	88
1,2,3,6,7,8-HxCDF	1.2	0.1	0.12	86
2,3,4,6,7,8-HxCDF	0.41	0.1	0.041	84
1,2,3,7,8,9-HxCDF	<0.05	0.1	0.0025	72
1,2,3,4,7,8-HxCDD	1.8	0.1	0.18	84
1,2,3,6,7,8-HxCDD	9.9	0.1	0.99	76
1,2,3,7,8,9-HxCDD	2.2	0.1	0.22	
1,2,3,4,6,7,8-HpCDF	1.9	0.01	0.019	68
1,2,3,4,7,8,9-HpCDF	<0.09	0.01	0.00045	56
1,2,3,4,6,7,8-HpCDD	11	0.01	0.11	61
OCDF	0.26	0.0001	0.000026	
OCDD	62	0.0001	0.0062	42

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	5	0.0001	0.0005	53
PCB 81	2.4	0.0001	0.00024	53
PCB 126	24	0.1	2.4	71
PCB 169	11	0.01	0.11	72
Mono-Ortho PCBs				
PCB 105	1560	0.0001	0.16	61
PCB 114	320	0.0005	0.16	69
PCB 118	5320	0.0001	0.53	73
PCB 123	85	0.0001	0.0085	78
PCB 156	1740	0.0005	0.87	67
PCB 157	420	0.0005	0.21	67
PCB 167	540	0.00001	0.0054	84
PCB 189	93	0.0001	0.0093	81

Sum of PCDD and PCDF congeners				
	Excluding LOD values		99	pg/g lipid
WHO ₉₈ -TEQ _{DFP}				
		Lower Bound [excluding LOD values] Middle Bound [including half LOD	12	pg/g lipid
		values]	12	pg/g lipid
		Upper Bound [including LOD values]	12	pg/g lipid

Laboratory Reg. No.	N03/035827	Lipid Content:	Date Extracted	31-Oct-03
		4.3%		
Client Sample Ref.	Western Australia		DB5 Analysis	12-Nov-03
Matrix	Breast Milk			
Description	pooled sample		PCB Analysis	12-Nov-03

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	0.33	0.1	0.033	41
2,3,7,8-TCDD	0.57	1	0.57	46
1,2,3,7,8-PeCDF	0.22	0.05	0.011	56
2,3,4,7,8-PeCDF	2.4	0.5	1.2	56
1,2,3,7,8-PeCDD	1.9	1	1.9	60
1,2,3,4,7,8-HxCDF	0.75	0.1	0.075	81
1,2,3,6,7,8-HxCDF	0.87	0.1	0.087	80
2,3,4,6,7,8-HxCDF	0.35	0.1	0.035	78
1,2,3,7,8,9-HxCDF	<0.05	0.1	0.0025	69
1,2,3,4,7,8-HxCDD	1	0.1	0.1	91
1,2,3,6,7,8-HxCDD	7.7	0.1	0.77	80
1,2,3,7,8,9-HxCDD	1.7	0.1	0.17	
1,2,3,4,6,7,8-HpCDF	2	0.01	0.02	73
1,2,3,4,7,8,9-HpCDF	<0.04	0.01	0.0002	65
1,2,3,4,6,7,8-HpCDD	9.6	0.01	0.096	76
OCDF	<0.2	0.0001	0.00001	
OCDD	37	0.0001	0.0037	53

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	2.1	0.0001	0.00021	30
PCB 81	1.3	0.0001	0.00013	24
PCB 126	15	0.1	1.5	75
PCB 169	6.8	0.01	0.068	70
Mono-Ortho PCBs				
PCB 105	600	0.0001	0.06	57
PCB 114	180	0.0005	0.09	62
PCB 118	2370	0.0001	0.24	61
PCB 123	44	0.0001	0.0044	65
PCB 156	1060	0.0005	0.53	59
PCB 157	250	0.0005	0.13	59
PCB 167	300	0.00001	0.003	70
PCB 189	72	0.0001	0.0072	57

Sum of PCDD and PCI	DF congeners			
	Excluding LOD values	67	pg/g lipid	
WHO ₉₈ -TEQ _{DFP}				
	Lower Bound [excluding LOD values] Middle Bound [including half LOD	7.7	pg/g lipid	
	values]	7.7	pg/g lipid	

N03/035826	Lipid Content:		Date Extracted	31-Oct-03
		4.1%		
Rural Victoria			DB5 Analysis	12-Nov-03
Breast Milk				
pooled sample			PCB Analysis	12-Nov-03
	Rural Victoria Breast Milk	Rural Victoria Breast Milk	4.1% Rural Victoria Breast Milk	4.1% Rural Victoria DB5 Analysis Breast Milk

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	<0.2	0.1	0.01	63
2,3,7,8-TCDD	0.86	1	0.86	61
1,2,3,7,8-PeCDF	0.11	0.05	0.0055	65
2,3,4,7,8-PeCDF	2.5	0.5	1.3	67
1,2,3,7,8-PeCDD	2.9	1	2.9	72
1,2,3,4,7,8-HxCDF	0.71	0.1	0.071	89
1,2,3,6,7,8-HxCDF	0.72	0.1	0.072	85
2,3,4,6,7,8-HxCDF	0.37	0.1	0.037	93
1,2,3,7,8,9-HxCDF	0.077	0.1	0.0077	79
1,2,3,4,7,8-HxCDD	2.2	0.1	0.22	100
1,2,3,6,7,8-HxCDD	11	0.1	1.1	87
1,2,3,7,8,9-HxCDD	2.4	0.1	0.24	
1,2,3,4,6,7,8-HpCDF	1.5	0.01	0.015	83
1,2,3,4,7,8,9-HpCDF	<0.07	0.01	0.00035	76
1,2,3,4,6,7,8-HpCDD	13	0.01	0.13	85
OCDF	<0.6	0.0001	0.00003	
OCDD	68	0.0001	0.0068	47

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	1.7	0.0001	0.00017	60
PCB 81	0.77	0.0001	0.000077	55
PCB 126	12	0.1	1.2	88
PCB 169	6.6	0.01	0.066	79
Mono-Ortho PCBs				
PCB 105	380	0.0001	0.038	72
PCB 114	150	0.0005	0.075	75
PCB 118	1540	0.0001	0.15	76
PCB 123	41	0.0001	0.0041	80
PCB 156	700	0.0005	0.35	63
PCB 157	180	0.0005	0.09	59
PCB 167	170	0.00001	0.0017	78
PCB 189	53	0.0001	0.0053	59

Sum of PCDD and PCDF congeners			
Excluding LOD values		110	pg/g lipid
WHO on -TEQ			
Lower Bo	und [excluding LOD values] Bound [including half LOD	8.9	pg/g lipid
Wilde	values]	9	pg/g lipid

Laboratory Reg. No.	N03/035825	Lipid Content:	Date Extracted	31-Oct-03
		4.5%		
Client Sample Ref.	Melbourne-D		DB5 Analysis	12-Nov-03
Matrix	Breast Milk			
Description	pooled sample		PCB Analysis	12-Nov-03

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	0.37	0.1	0.037	61
2,3,7,8-TCDD	0.72	1	0.72	65
1,2,3,7,8-PeCDF	0.21	0.05	0.011	62
2,3,4,7,8-PeCDF	2.3	0.5	1.2	62
1,2,3,7,8-PeCDD	2.1	1	2.1	65
1,2,3,4,7,8-HxCDF	0.65	0.1	0.065	89
1,2,3,6,7,8-HxCDF	0.74	0.1	0.074	89
2,3,4,6,7,8-HxCDF	0.28	0.1	0.028	84
1,2,3,7,8,9-HxCDF	<0.04	0.1	0.002	72
1,2,3,4,7,8-HxCDD	1.6	0.1	0.16	98
1,2,3,6,7,8-HxCDD	8.7	0.1	0.87	89
1,2,3,7,8,9-HxCDD	1.8	0.1	0.18	
1,2,3,4,6,7,8-HpCDF	<0.7	0.01	0.0035	78
1,2,3,4,7,8,9-HpCDF	<0.07	0.01	0.00035	69
1,2,3,4,6,7,8-HpCDD	7.2	0.01	0.072	79
OCDF	0.14	0.0001	0.000014	
OCDD	50	0.0001	0.005	52

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	1.6	0.0001	0.00016	54
PCB 81	1.1	0.0001	0.00011	52
PCB 126	12	0.1	1.2	99
PCB 169	6.7	0.01	0.067	70
Mono-Ortho PCBs				
PCB 105	690	0.0001	0.069	69
PCB 114	190	0.0005	0.095	76
PCB 118	2660	0.0001	0.27	72
PCB 123	44	0.0001	0.0044	79
PCB 156	1110	0.0005	0.56	66
PCB 157	250	0.0005	0.13	64
PCB 167	300	0.00001	0.003	80
PCB 189	79	0.0001	0.0079	60

Sum of PCDD and PCDF congeners					
Excluding LOD values	77	pg/g lipid			
WHO ₉₈ -TEQ _{DFP}					
Lower Bound [excluding LOD values] Middle Bound [including half LOD	7.9	pg/g lipid			
values]	7.9	pg/g lipid			

Laboratory Reg. No.	N03/035824	Lipid Content:	Date Extracted	31-Oct-03
		4.2%		
Client Sample Ref.	Sydney-B		DB5 Analysis	12-Nov-03
Matrix	Breast Milk			
Description	pooled sample		PCB Analysis	12-Nov-03

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	0.39	0.1	0.039	64
2,3,7,8-TCDD	0.77	1	0.77	66
1,2,3,7,8-PeCDF	0.26	0.05	0.013	73
2,3,4,7,8-PeCDF	3.2	0.5	1.6	71
1,2,3,7,8-PeCDD	2.4	1	2.4	74
1,2,3,4,7,8-HxCDF	1	0.1	0.1	91
1,2,3,6,7,8-HxCDF	1.1	0.1	0.11	89
2,3,4,6,7,8-HxCDF	0.42	0.1	0.042	90
1,2,3,7,8,9-HxCDF	<0.03	0.1	0.0015	81
1,2,3,4,7,8-HxCDD	1.4	0.1	0.14	101
1,2,3,6,7,8-HxCDD	8.5	0.1	0.85	94
1,2,3,7,8,9-HxCDD	1.6	0.1	0.16	
1,2,3,4,6,7,8-HpCDF	2	0.01	0.02	86
1,2,3,4,7,8,9-HpCDF	<0.05	0.01	0.00025	78
1,2,3,4,6,7,8-HpCDD	8.5	0.01	0.085	86
OCDF	0.46	0.0001	0.000046	
OCDD	46	0.0001	0.0046	58

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	1.5	0.0001	0.00015	64
PCB 81	1.1	0.0001	0.00011	62
PCB 126	21	0.1	2.1	96
PCB 169	9.1	0.01	0.091	79
Mono-Ortho PCBs				
PCB 105	950	0.0001	0.095	74
PCB 114	290	0.0005	0.15	78
PCB 118	3870	0.0001	0.39	75
PCB 123	84	0.0001	0.0084	79
PCB 156	1580	0.0005	0.79	66
PCB 157	390	0.0005	0.2	65
PCB 167	480	0.00001	0.0048	76
PCB 189	100	0.0001	0.01	60

Sum of PCDD and PCDF congeners		
Excluding LOD values	79	pg/g lipid
WHO ₉₈ -TEQ _{DFP}		
Lower Bound [excluding LOD values] Middle Bound [including half LOD	10	pg/g lipid
values]	10	pg/g lipid

Laboratory Reg. No.	N03/035823	Lipid Content:		Date Extracted	31-Oct-03
			3.1%		
Client Sample Ref.	South Australia- B			DB5 Analysis	12-Nov-03
Matrix	Breast Milk				
Description	pooled sample			PCB Analysis	12-Nov-03

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	0.13	0.1	0.013	63
2,3,7,8-TCDD	0.5	1	0.5	68
1,2,3,7,8-PeCDF	<0.1	0.05	0.0025	67
2,3,4,7,8-PeCDF	2	0.5	1	67
1,2,3,7,8-PeCDD	1.7	1	1.7	72
1,2,3,4,7,8-HxCDF	0.57	0.1	0.057	89
1,2,3,6,7,8-HxCDF	0.64	0.1	0.064	87
2,3,4,6,7,8-HxCDF	0.26	0.1	0.026	91
1,2,3,7,8,9-HxCDF	<0.05	0.1	0.0025	77
1,2,3,4,7,8-HxCDD	0.95	0.1	0.095	104
1,2,3,6,7,8-HxCDD	6	0.1	0.6	94
1,2,3,7,8,9-HxCDD	1.1	0.1	0.11	
1,2,3,4,6,7,8-HpCDF	<0.8	0.01	0.004	84
1,2,3,4,7,8,9-HpCDF	<0.05	0.01	0.00025	78
1,2,3,4,6,7,8-HpCDD	8.4	0.01	0.084	88
OCDF	0.15	0.0001	0.000015	
OCDD	49	0.0001	0.0049	45

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	1.9	0.0001	0.00019	69
PCB 81	1	0.0001	0.0001	68
PCB 126	7.8	0.1	0.78	97
PCB 169	6.7	0.01	0.067	74
Mono-Ortho PCBs				
PCB 105	410	0.0001	0.041	66
PCB 114	150	0.0005	0.075	71
PCB 118	1820	0.0001	0.18	68
PCB 123	29	0.0001	0.0029	73
PCB 156	1070	0.0005	0.54	65
PCB 157	240	0.0005	0.12	61
PCB 167	250	0.00001	0.0025	78
PCB 189	83	0.0001	0.0083	62

Sum of PCDD and PCDF congeners			
Excluding LOD values		71	pg/g lipid
WHO ₉₈ -TEQ _{DFP}			
	ver Bound [excluding LOD values] Middle Bound [including half LOD		pg/g lipid
	values]	6.1	pg/g lipid

N03/035822 Laboratory Reg. No. Lipid Content: 31-Oct-03 Date Extracted 3.5% South Australia-A Client Sample Ref. DB5 Analysis 12-Nov-03 Matrix Breast Milk Description PCB Analysis 12-Nov-03 pooled sample

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	0.69	0.1	0.069	47
2,3,7,8-TCDD	0.64	1	0.64	48
1,2,3,7,8-PeCDF	0.41	0.05	0.0	54
2,3,4,7,8-PeCDF	2.6	0.5	1.3	57
1,2,3,7,8-PeCDD	2.3	1	2.3	58
1,2,3,4,7,8-HxCDF	1.4	0.1	0.14	68
1,2,3,6,7,8-HxCDF	1.1	0.1	0.11	70
2,3,4,6,7,8-HxCDF	0.6	0.1	0.06	71
1,2,3,7,8,9-HxCDF	<0.07	0.1	0.0035	62
1,2,3,4,7,8-HxCDD	1.5	0.1	0.15	77
1,2,3,6,7,8-HxCDD	9.9	0.1	0.99	70
1,2,3,7,8,9-HxCDD	1.8	0.1	0.18	
1,2,3,4,6,7,8-HpCDF	1.6	0.01	0.016	68
1,2,3,4,7,8,9-HpCDF	<0.1	0.01	0.0005	59
1,2,3,4,6,7,8-HpCDD	14	0.01	0.14	70
OCDF	<2	0.0001	0.0001	
OCDD	92	0.0001	0.0092	33

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	4.1	0.0001	0.00041	41
PCB 81	2.3	0.0001	0.00023	35
PCB 126	14	0.1	1.4	71
PCB 169	6.2	0.01	0.062	69
Mono-Ortho PCBs				
PCB 105	640	0.0001	0.064	60
PCB 114	160	0.0005	0.08	64
PCB 118	2430	0.0001	0.24	60
PCB 123	51	0.0001	0.0051	64
PCB 156	920	0.0005	0.46	69
PCB 157	210	0.0005	0.11	67
PCB 167	290	0.00001	0.0029	68
PCB 189	68	0.0001	0.0068	47

Sum of PCDD and PCDF congeners		
Excluding LOD values	130	pg/g lipid
WHO ₉₈ -TEQ _{DFP}		
Lower Bound [excluding LOD values] Middle Bound [including half LOD		pg/g lipid
values		pg/g lipid

Laboratory Reg. No.N03/022402Lipid ContentDate Reported13 October 2003

2.8%

Client Sample Ref. Pool 1

Matrix breast milk

Description Brisbane A

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	2	0.1	0.2	66
2,3,7,8-TCDD	1.7	1	1.7	70
1,2,3,7,8-PeCDF	1.2	0.05	0.1	59
2,3,4,7,8-PeCDF	4.1	0.5	2.1	54
1,2,3,7,8-PeCDD	3.6	1	3.6	62
1,2,3,4,7,8-HxCDF	<1	0.1	0.1	87
1,2,3,6,7,8-HxCDF	1.5	0.1	0.15	80
2,3,4,6,7,8-HxCDF	0.73	0.1	0.073	78
1,2,3,7,8,9-HxCDF	<0.3	0.1	0.03	73
1,2,3,4,7,8-HxCDD	1.8	0.1	0.18	95
1,2,3,6,7,8-HxCDD	14	0.1	1.4	76
1,2,3,7,8,9-HxCDD	1.6	0.1	0.16	
1,2,3,4,6,7,8-HpCDF	3.3	0.01	0.033	73
1,2,3,4,7,8,9-HpCDF	<0.2	0.01	0.002	70
1,2,3,4,6,7,8-HpCDD	12	0.01	0.12	76
OCDF	1.8	0.0001	0.00018	
OCDD	78	0.0001	0.0078	66

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	52	0.0001	0.0052	73
PCB 81	5.3	0.0001	0.00053	80
PCB 126	25	0.1	2.5	67
PCB 169	13	0.01	0.13	77
Mono-Ortho PCBs				
PCB 105	1460	0.0001	0.146	69
PCB 114	350	0.0005	0.18	74
PCB 118	6390	0.0001	0.639	61
PCB 123	130	0.0001	0.013	74
PCB 156	2870	0.0005	1.44	74
PCB 157	590	0.0005	0.3	74
PCB 167	820	0.00001	0.0082	85
PCB 189	210	0.0001	0.021	70

Sum of PCDD and PCDF congeners		
Excluding LOD values	140	pa/a lipid

WHO ₉₈ -TEQ _{DFP}		
Lower Bound [excluding LOD values] Middle Bound [including half LOD	15	pg/g lipid
values]	15	pg/g lipid
Upper Bound [including LOD values]	15	pg/g lipid

Laboratory Reg. No.N03/022403Lipid ContentDate Reported13 October 2003

4.3%

Client Sample Ref. Pool 1

Matrix breast milk

Description Hunter

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	<0.3	0.1	0.03	70
2,3,7,8-TCDD	0.82	1	0.82	66
1,2,3,7,8-PeCDF	0.16	0.05	0.008	63
2,3,4,7,8-PeCDF	1.9	0.5	0.95	57
1,2,3,7,8-PeCDD	1.8	1	1.8	57
1,2,3,4,7,8-HxCDF	<0.4	0.1	0.04	90
1,2,3,6,7,8-HxCDF	0.66	0.1	0.066	86
2,3,4,6,7,8-HxCDF	0.37	0.1	0.037	85
1,2,3,7,8,9-HxCDF	<0.6	0.1	0.06	76
1,2,3,4,7,8-HxCDD	1.3	0.1	0.13	97
1,2,3,6,7,8-HxCDD	7.5	0.1	0.75	78
1,2,3,7,8,9-HxCDD	0.72	0.1	0.072	
1,2,3,4,6,7,8-HpCDF	4.6	0.01	0.046	68
1,2,3,4,7,8,9-HpCDF	<0.07	0.01	0.0007	65
1,2,3,4,6,7,8-HpCDD	14	0.01	0.14	69
OCDF	2.1	0.0001	0.00021	
OCDD	77	0.0001	0.0077	56

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	36	0.0001	0.0036	61
PCB 81	3.6	0.0001	0.00036	68
PCB 126	30	0.1	3	76
PCB 169	5	0.01	0.05	80
Mono-Ortho PCBs				
PCB 105	1560	0.0001	0.156	97
PCB 114	240	0.0005	0.12	90
PCB 118	4890	0.0001	0.489	85
PCB 123	100	0.0001	0.01	90
PCB 156	980	0.0005	0.49	65
PCB 157	260	0.0005	0.13	63
PCB 167	420	0.00001	0.0042	79
PCB 189	60	0.0001	0.006	63

Sum of PCDD and PCDF congeners		
Excluding LOD values	120	pg/g lipid
WHO ₉₈ -TEQ _{DFP}		
Lower Bound [excluding LOD values] Middle Bound [including half LOD	9.3	pg/g lipid
values]	9.4	pg/g lipid
Upper Bound [including LOD values]	9.4	pa/a lipid

Laboratory Reg. No.N03/022404Lipid ContentDate Reported13 October 2003

3.7%

Client Sample Ref. Pool 1

Matrix breast milk

Description Wollongong

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	0.65	0.1	0.065	61
2,3,7,8-TCDD	<0.6	1	0.6	59
1,2,3,7,8-PeCDF	1.1	0.05	0.055	56
2,3,4,7,8-PeCDF	2.6	0.5	1.3	52
1,2,3,7,8-PeCDD	1.5	1	1.5	58
1,2,3,4,7,8-HxCDF	<0.5	0.1	0.05	81
1,2,3,6,7,8-HxCDF	1.1	0.1	0.11	73
2,3,4,6,7,8-HxCDF	<0.5	0.1	0.05	67
1,2,3,7,8,9-HxCDF	<0.2	0.1	0.02	61
1,2,3,4,7,8-HxCDD	1.1	0.1	0.11	91
1,2,3,6,7,8-HxCDD	6.5	0.1	0.65	72
1,2,3,7,8,9-HxCDD	<1	0.1	0.1	
1,2,3,4,6,7,8-HpCDF	2.9	0.01	0.029	63
1,2,3,4,7,8,9-HpCDF	<0.2	0.01	0.002	60
1,2,3,4,6,7,8-HpCDD	9.5	0.01	0.095	68
OCDF	1.3	0.0001	0.00013	
OCDD	57	0.0001	0.0057	58

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	34	0.0001	0.0034	62
PCB 81	4.4	0.0001	0.00044	66
PCB 126	12	0.1	1.2	56
PCB 169	5.3	0.01	0.053	71
Mono-Ortho PCBs				
PCB 105	760	0.0001	0.076	57
PCB 114	160	0.0005	0.08	63
PCB 118	2730	0.0001	0.273	52
PCB 123	60	0.0001	0.006	59
PCB 156	850	0.0005	0.43	63
PCB 157	220	0.0005	0.11	59
PCB 167	340	0.00001	0.0034	68
PCB 189	62	0.0001	0.0062	46

Sum of PCDD and PCDF congeners		
Excluding LOD values	99	pg/g lipid
WHO ₉₈ -TEQ _{DFP}		
Lower Bound [excluding LOD values] Middle Bound [including half LOD	6.2	pg/g lipid
values]	6.6	pg/g lipid
Upper Bound [including LOD values]	7	pa/a lipid

Laboratory Reg. No.N03/022405Date Reported13 October 2003

Client Sample Ref. Pool 1 Lipid Content 0.032

Matrixbreast milkDescriptionFWR

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	<0.6	0.1	0.06	64
2,3,7,8-TCDD	0.69	1	0.69	66
1,2,3,7,8-PeCDF	0.7	0.05	0.035	58
2,3,4,7,8-PeCDF	2.2	0.5	1.1	53
1,2,3,7,8-PeCDD	2.4	1	2.4	60
1,2,3,4,7,8-HxCDF	<0.8	0.1	0.08	82
1,2,3,6,7,8-HxCDF	0.92	0.1	0.092	81
2,3,4,6,7,8-HxCDF	0.59	0.1	0.059	74
1,2,3,7,8,9-HxCDF	<0.2	0.1	0.02	70
1,2,3,4,7,8-HxCDD	1.5	0.1	0.15	92
1,2,3,6,7,8-HxCDD	7	0.1	0.7	77
1,2,3,7,8,9-HxCDD	<2	0.1	0.2	
1,2,3,4,6,7,8-HpCDF	1.4	0.01	0.014	68
1,2,3,4,7,8,9-HpCDF	<0.1	0.01	0.001	65
1,2,3,4,6,7,8-HpCDD	13	0.01	0.13	76
OCDF	0.94	0.0001	0.000094	
OCDD	71	0.0001	0.0071	64

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	76	0.0001	0.0076	63
PCB 81	11	0.0001	0.0011	69
PCB 126	28	0.1	2.8	58
PCB 169	<4	0.01	0.04	72
Mono-Ortho PCBs				
PCB 105	1450	0.0001	0.145	60
PCB 114	220	0.0005	0.11	74
PCB 118	4190	0.0001	0.419	57
PCB 123	90	0.0001	0.009	68
PCB 156	730	0.0005	0.37	66
PCB 157	220	0.0005	0.11	56
PCB 167	310	0.00001	0.0031	72
PCB 189	41	0.0001	0.0041	50

Sum of PCDD and PCDF congeners		
Excluding LOD values	100	pg/g lipid
WHO ₉₈ -TEQ _{DFP}		
Lower Bound [excluding LOD values] Middle Bound [including half LOD	9.4	pg/g lipid
values]	9.6	pg/g lipid
Upper Bound [including LOD values]	9.8	pg/g lipid

Laboratory Reg. No.N03/022406Lipid ContentDate Reported13 October 2003

3.6%

Client Sample Ref. Pool 1

Matrix breast milk

Description Melbourne A

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	<0.2	0.1	0.02	54
2,3,7,8-TCDD	0.65	1	0.65	54
1,2,3,7,8-PeCDF	0.18	0.05	0.009	46
2,3,4,7,8-PeCDF	2.4	0.5	1.2	44
1,2,3,7,8-PeCDD	2.2	1	2.2	46
1,2,3,4,7,8-HxCDF	<0.6	0.1	0.06	79
1,2,3,6,7,8-HxCDF	0.75	0.1	0.075	77
2,3,4,6,7,8-HxCDF	<0.3	0.1	0.03	74
1,2,3,7,8,9-HxCDF	<0.08	0.1	0.008	62
1,2,3,4,7,8-HxCDD	1.5	0.1	0.15	83
1,2,3,6,7,8-HxCDD	8.1	0.1	0.81	71
1,2,3,7,8,9-HxCDD	<0.7	0.1	0.07	
1,2,3,4,6,7,8-HpCDF	0.88	0.01	0.0088	57
1,2,3,4,7,8,9-HpCDF	<0.09	0.01	0.0009	49
1,2,3,4,6,7,8-HpCDD	6.4	0.01	0.064	56
OCDF	<0.4	0.0001	0.00004	
OCDD	46	0.0001	0.0046	43

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	26	0.0001	0.0026	51
PCB 81	1.8	0.0001	0.00018	51
PCB 126	14	0.1	1.4	62
PCB 169	9	0.01	0.09	64
Mono-Ortho PCBs				
PCB 105	910	0.0001	0.091	68
PCB 114	210	0.0005	0.11	74
PCB 118	3540	0.0001	0.354	68
PCB 123	63	0.0001	0.0063	80
PCB 156	1370	0.0005	0.685	52
PCB 157	320	0.0005	0.16	54
PCB 167	400	0.00001	0.004	59
PCB 189	83	0.0001	0.0083	81

Sum of PCDD and PCDF congeners							
Excluding LOD values	69	pg/g lipid					
WHO ₉₈ -TEQ _{DFP}							
Lower Bound [excluding LOD values] Middle Bound [including half LOD	8.1	pg/g lipid					
values]	8.2	pg/g lipid					
Upper Bound [including LOD values]	8.3	pg/g lipid					

Laboratory Reg. No.N03/022407Lipid ContentDate Reported13 October 2003

3.1%

 Client Sample Ref.
 Pool 1

 Matrix
 breast milk

 Description
 Melbourne B

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	<0.8	0.1	0.08	71
2,3,7,8-TCDD	<0.9	1	0.9	68
1,2,3,7,8-PeCDF	0.57	0.05	0.029	63
2,3,4,7,8-PeCDF	3.8	0.5	1.9	60
1,2,3,7,8-PeCDD	3.1	1	3.1	64
1,2,3,4,7,8-HxCDF	1.2	0.1	0.12	91
1,2,3,6,7,8-HxCDF	1.2	0.1	0.12	89
2,3,4,6,7,8-HxCDF	0.62	0.1	0.062	83
1,2,3,7,8,9-HxCDF	<0.2	0.1	0.02	78
1,2,3,4,7,8-HxCDD	1.7	0.1	0.17	95
1,2,3,6,7,8-HxCDD	10	0.1	1	82
1,2,3,7,8,9-HxCDD	1.8	0.1	0.18	
1,2,3,4,6,7,8-HpCDF	1.9	0.01	0.019	76
1,2,3,4,7,8,9-HpCDF	0.39	0.01	0.0039	76
1,2,3,4,6,7,8-HpCDD	14	0.01	0.14	83
OCDF	1.3	0.0001	0.00013	
OCDD	82	0.0001	0.0082	70

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	38	0.0001	0.0038	68
PCB 81	3.6	0.0001	0.00036	74
PCB 126	18	0.1	1.8	64
PCB 169	10	0.01	0.1	77
Mono-Ortho PCBs				
PCB 105	960	0.0001	0.096	62
PCB 114	320	0.0005	0.16	68
PCB 118	4310	0.0001	0.431	60
PCB 123	74	0.0001	0.0074	76
PCB 156	2240	0.0005	1.12	67
PCB 157	490	0.0005	0.25	65
PCB 167	570	0.00001	0.0057	82
PCB 189	160	0.0001	0.016	59

Sum of PCDD and PCDF congeners		
Excluding LOD values	130	pg/g lipid
WHO ₉₈ -TEQ _{DFP} Lower Bound [excluding LOD values]	11	pg/g lipid
Middle Bound [including half LOD values]	11	pg/g lipid
Upper Bound [including LOD values]	12	pg/g lipid

Historic Samples

Laboratory Reg. No.	N03/030645	Lipid Content:	Date Extracted	19-Oct-03
		4.3%		
Client Sample Ref.	Melb Hist A		DB5 Analysis	13-Oct-03
Matrix	Breast Milk		DB-Dioxin Analysis	14-Oct-03
Description	pooled sample		PCB Analysis	14-Oct-03

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	<0.2	0.1	0.01	68
2,3,7,8-TCDD	<0.8	1	0.4	66
1,2,3,7,8-PeCDF	<0.3	0.05	0.0	66
2,3,4,7,8-PeCDF	4.2	0.5	2.1	66
1,2,3,7,8-PeCDD	4.1	1	4.1	64
1,2,3,4,7,8-HxCDF	<0.5	0.1	0.025	91
1,2,3,6,7,8-HxCDF	0.99	0.1	0.099	93
2,3,4,6,7,8-HxCDF	0.2	0.1	0.02	93
1,2,3,7,8,9-HxCDF	<0.2	0.1	0.01	81
1,2,3,4,7,8-HxCDD	2.8	0.1	0.28	101
1,2,3,6,7,8-HxCDD	15	0.1	1.5	84
1,2,3,7,8,9-HxCDD	2.8	0.1	0.28	
1,2,3,4,6,7,8-HpCDF	5.7	0.01	0.057	82
1,2,3,4,7,8,9-HpCDF	<0.2	0.01	0.001	78
1,2,3,4,6,7,8-HpCDD	<20	0.01	0.1	85
OCDF	<0.4	0.0001	0.00002	
OCDD	<85	0.0001	0.0043	62

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	12	0.0001	0.0012	57
PCB 81	1.8	0.0001	0.00018	54
PCB 126	23	0.1	2.3	79
PCB 169	20	0.01	0.2	70
Mono-Ortho PCBs				
PCB 105	2140	0.0001	0.21	57
PCB 114	710	0.0005	0.36	60
PCB 118	10500	0.0001	1.1	61
PCB 123	100	0.0001	0.01	69
PCB 156	5420	0.0005	2.7	54
PCB 157	1040	0.0005	0.52	49
PCB 167	1550	0.00001	0.016	67
PCB 189	500	0.0001	0.05	52

Sum of PCDD and PCDF congeners	Excluding LOD values		36	pg/g lipid
WHO ₉₈ -TEQ _{DFP}				
		Lower Bound		
		[excluding LOD values]	16	pg/g lipid
		Middle Bound		
		[including half LOD		
		values]	16	pg/g lipid
		Upper Bound [including		
		LOD values]	17	pg/g lipid

Laboratory Reg. No.	N03/030646	Lipid Content:	Date Extracted	19-Oct-03
		3.1%		
Client Sample Ref.	Melb Hist B		DB5 Analysis	13-Oct-03
Matrix	Breast Milk		DB-Dioxin Analysis	14-Oct-03
Description	pooled sample		PCB Analysis	14-Oct-03

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate
PCDD/F Congeners	pg/g lipid		contribution	recovery
2,3,7,8-TCDF	<0.4	0.1	0.02	71
2,3,7,8-TCDD	1.2	1	1.2	66
1,2,3,7,8-PeCDF	0.86	0.05	0.043	69
2,3,4,7,8-PeCDF	3.9	0.5	2	66
1,2,3,7,8-PeCDD	4.4	1	4.4	68
1,2,3,4,7,8-HxCDF	1.6	0.1	0.16	92
1,2,3,6,7,8-HxCDF	1.6	0.1	0.16	91
2,3,4,6,7,8-HxCDF	0.22	0.1	0.022	94
1,2,3,7,8,9-HxCDF	<0.1	0.1	0.005	84
1,2,3,4,7,8-HxCDD	4.2	0.1	0.42	100
1,2,3,6,7,8-HxCDD	17	0.1	1.7	89
1,2,3,7,8,9-HxCDD	4	0.1	0.4	
1,2,3,4,6,7,8-HpCDF	15	0.01	0.15	85
1,2,3,4,7,8,9-HpCDF	<0.3	0.01	0.0015	76
1,2,3,4,6,7,8-HpCDD	<30	0.01	0.15	89
OCDF	<0.3	0.0001	0.000015	
OCDD	<70	0.0001	0.0035	66

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	6.6	0.0001	0.00066	56
PCB 81	1.9	0.0001	0.00019	55
PCB 126	18	0.1	1.8	79
PCB 169	9.5	0.01	0.095	73
Mono-Ortho PCBs				
PCB 105	1230	0.0001	0.12	64
PCB 114	340	0.0005	0.17	73
PCB 118	4220	0.0001	0.42	65
PCB 123	77	0.0001	0.0077	74
PCB 156	1710	0.0005	0.86	63
PCB 157	350	0.0005	0.18	65
PCB 167	520	0.00001	0.0052	79
PCB 189	130	0.0001	0.013	62

Sum of PCDD and PCDF congeners					
Excluding LOD values	55	pg/g lipid			
WHO ₉₈ -TEQ _{DFP} Lower Bound [excluding LOD values] Middle Bound [including half LOD values]	14 15	pg/g lipid pg/g lipid			
Upper Bound [including LOD values]	15	pg/g lipid			

Laboratory Reg. No.	N03/030647	Lipid Content: 4.2%	Date Extracted	19-Oct-03
Client Sample Ref.	Melb Hist C		DB5 Analysis	13-Oct-03
Matrix	Breast Milk		DB-Dioxin Analysis	15-Oct-03
Description	pooled sample		PCB Analysis	14-Oct-03

PCDD/F Congeners	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _{DF}	Labelled Surrogate recovery
	pg/g lipid		contribution	
2,3,7,8-TCDF	0.34	0.1	0.034	72
2,3,7,8-TCDD	1.5	1	1.5	68
1,2,3,7,8-PeCDF	1.7	0.05	0.085	68
2,3,4,7,8-PeCDF	4.1	0.5	2.1	69
1,2,3,7,8-PeCDD	4.5	1	4.5	68
1,2,3,4,7,8-HxCDF	2.8	0.1	0.28	91
1,2,3,6,7,8-HxCDF	2	0.1	0.2	88
2,3,4,6,7,8-HxCDF	0.3	0.1	0.03	95
1,2,3,7,8,9-HxCDF	<0.1	0.1	0.005	82
1,2,3,4,7,8-HxCDD	3.7	0.1	0.37	100
1,2,3,6,7,8-HxCDD	18	0.1	1.8	90
1,2,3,7,8,9-HxCDD	6.1	0.1	0.61	
1,2,3,4,6,7,8-HpCDF	30	0.01	0.3	85
1,2,3,4,7,8,9-HpCDF	<0.8	0.01	0.004	80
1,2,3,4,6,7,8-HpCDD	<40	0.01	0.2	89
OCDF	<0.3	0.0001	0.000015	
OCDD	<200	0.0001	0.01	64

	Level	WHO ₉₈ -TEF	WHO ₉₈ -TEQ _P	Labelled Surrogate
PCB Congeners	pg/g lipid		contribution	recovery
Non-Ortho PCBs				
PCB 77	13	0.0001	0.0013	65
PCB 81	2.1	0.0001	0.00021	64
PCB 126	20	0.1	2	81
PCB 169	11	0.01	0.11	68
Mono-Ortho PCBs				
PCB 105	1510	0.0001	0.15	70
PCB 114	280	0.0005	0.14	80
PCB 118	5620	0.0001	0.56	72
PCB 123	120	0.0001	0.012	76
PCB 156	1900	0.0005	0.95	60
PCB 157	440	0.0005	0.22	58
PCB 167	900	0.00001	0.009	71
PCB 189	160	0.0001	0.016	59

Sum of PCDD and PCDF congeners		
Excluding LOD values	75	pg/g lipid
WHO ₉₆ -TEQ _{DFP} Lower Bound [excluding LOD values] Middle Bound [including half LOD values]	16 16	pg/g lipid pg/g lipid
Upper Bound [including LOD values]	17	pg/g lipid