6. Summary and Discussion

Textural and compositional data generated for the EMR permits a quantitative comparison of the sedimentology for Australia's East Margin. The data build on the predominantly qualitative studies that currently exist for the region. The following provides a comprehensive description of the sedimentology and geomorphology of the EMR, including information from previous studies (Section 3) and new results (Sections 4 & 5). The implications of seabed sediment distribution for marine habitat mapping are also discussed.

6.1. SUMMARY OF THE SEDIMENTOLOGY AND GEOMORPHOLOGY OF THE EMR AS DESCRIBED FROM EXISTING LITERATURE

The shelf in the EMR is subject to relatively high wave and current energy and has had a low sediment supply since sea level reached its present position some 6,000 years ago. This has had a profound effect on the geomorphology of the sea floor and on the texture and composition of sediments found on the shelf. The shelf is shaped by the topography that was drowned as sea level rose. A wedge of sediment of varying width and thickness has accumulated during the late Cainozoic and characterises the shape of the outer shelf and upper slope (Davies, 1979; Roy and Thom, 1991).

The inner shelf is shaped by the submarine extension of coastal headlands and rock outcrop and rock debris are common on the sea floor. Quartz sand ridges abut this outcrop in many places and some are modified relict shorelines. Ripples and dunes in the sand and scours around rock outcrops are common on the shelf and are evidence for mobile sediment on the sea floor. This is particularly so north of Fraser Island where the quartz sands that are moving north by longshore drift form the Breaksea Spit that extends across the shelf to the shelf edge (Boyd et al., 2008).

The mid-shelf is characterised by the deposition of fine sediments that have been able to accumulate below fair weather base, inboard from the effects of the EAC. The only significant accumulations of mud in the sand occur where the shelf is wider south of Sugarloaf Point at three locations: offshore of Newcastle, north of Sydney and Wollongong (Matthai and Birch, 2000a). North of Sugarloaf Point there is evidence that the EAC has affected sediments at all depths except in the larger embayments (Jones and Kudrass, 1982; Rule et al., 2007).

The outer shelf is generally a flat plain that is dominated by carbonate sediments, much of it relict (Marshall and Davies, 1978). Winnowing by the EAC has led to the accumulation of shelly and ferruginous gravels on the outer shelf in many places. Off Queensland significant carbonate banks have formed on the outer shelf with rhodolith gravels and carbonate hardgrounds on the sea floor.

The slope in the EMR is characterised by being relatively steep and having a relatively low rate of sediment accumulation. On the slope there are the competing processes of erosion and deposition to modify the topography inherited from plate tectonics. Canyons and scars from gravity slumping are a major feature of the NSW-Queensland slope in the EMR. They occur 50 to 100 km apart, generally off major drainage systems on land. The canyons are smaller on the Queensland section of the slope. The erosion of canyons has exposed a variety of rock types (Heggie et al., 1992; Packham et al., 2006). The

canyons are also important as conduits for nutrient-rich water to reach the shelf. Nowhere are canyon heads incised into the shelf break but in 13 cases they have incised to the 150-300 m isobath. In general, the upper slope down to 1,500 m is a smooth surface of unconsolidated sediments. These sediments are the seaward face of the sediment wedge that underlies the shelf edge. Slide scars and evidence of creep are present in the toe of this sediment wedge below 1,000 m. Most of the large canyons form from tributaries coalescing on the mid-slope where large slope failures have occurred.

From north of Brisbane to Breaksea Spit on the northern tip of Fraser Island small canyons and gullies have incised the upper slope to water depths of 150 m. Above this depth the upper slope is very steep due to outcrop of limestone platforms (Marshall et al., 1998). This is the only area where significant amounts of sediment are reaching the heads of canyons. Quartz and carbonate sand from the inner shelf is found in canyons down this slope (Boyd et al., 2008). Elsewhere the canyons are considered inactive and would have a floor draped in hemipelagic mud.

A prominent geomorphic feature of the lower slope is the major scarps, up to 2,000 m high and extending for 10s of kilometers along the base of slope where it has an abrupt contact with the abyssal plain/deep ocean floor. These scarps represent fault surfaces that were formed during breakup of the continental crust along this margin 70 to 60 million years ago. Rock and rubble are exposed on these scarps. The base of the continental slope is at 5,000 m in the south and 4,600 m in the north off Fraser Island.

At all water depths throughout the EMR the sea floor sediments are well oxygenated. This reflects the relatively low productivity in the surface waters, and hence the oxygen minimum zone in the water column between 1,000 and 2,000 m is poorly developed and benthic communities are not affected where it impinges on the slope. Both rock and sediment form the substrate on the slope. Most rock outcrops are in water depths >1,500 m on the sides of canyons, igneous pinnacles and domes and on fault scarps. The only rocks on the upper slope are cemented hardgrounds off northern NSW, volcanic ridges off Wollongong and Port Macquarie, a seamount off Sydney and a limestone platform off Fraser Island. In general, the sediment is muddy sands and sandy muds, composed of about half carbonate and half terrigenous particles (Troedson and Davies, 2001). Scours around rock outcrops indicate that the EAC can winnow the sediment down to 1,000 m water depth. The sediment becomes more mud rich below this depth. The carbonate fraction is dominated by the calcite remains of foraminifers (sand size) and coccoliths (mud size). Minor amounts of pteropods, echinoids and sponge spicules (both silica and calcite) are also present. The terrigenous fraction is fine quartz and clay minerals. The two exceptions to this distribution of sediment texture and composition are sands on the upper slope off Queensland, where bottom sediment has been transported over the shelf edge, and off northern NSW where phosphate, glauconite and ferruginous gravels and slabs occur on the sea floor.

The abyssal sea floor of the Tasman Sea receives very little sediment today because: plankton productivity is low in the surface waters; its depth of 4,800-5,100 m leads to dissolution of carbonate particles, and little sediment is supplied from land because all except one canyon system are inactive. In the north of the basin the sea floor is shallower because there has been more sedimentation in the past, from turbidity currents generated by a greater supply of sediments to the slope. The abyssal plain extends approximately 200-250 km out from the base of slope. It was formed by deposits from turbidity currents filling the underlying volcanic topography on the oceanic crust. East of the abyssal plain are abyssal hills where the volcanic topography is draped by pelagic sediments. There are no

fans or large debris aprons at the base of slope. This is unusual and probably due to bottom currents redistributing the sediments. Scours in the sediments, sediment drift deposits and moats are all evidence of strong bottom current activity along both the east and west margins of the basin and around seamounts (Jenkins, 1984). Sediments on the abyssal sea floor are slowly accumulating brown clays or calcareous muds overlying turbidite deposits. Manganese nodules occur in the abyssal hills region.

Seamounts are a major feature of the EMR. They vary in size from 2 to 50 km wide at their base and range in height from 10s of meters to ~5,000 m. They occur all over the Tasman abyssal sea floor, on the plateaus and ridges and in the Norfolk Island region. Some were formed during sea floor spreading, others were formed by the plate moving over hot-spots in the mantle. The youngest discovered to date are on Lord Howe Rise and Norfolk Island (~2 Ma). Two major seamount chains run north-south with the younger seamounts (~7 Ma) in the south and seamounts of Oligocene age (~30 Ma) in the north (McDougall and Duncan, 1988). Many reach the surface to form island and carbonate reefs, others have subsided below sea level and are capped with limestone, and have a flat summit within 500 m of the sea surface. The seamounts are composed of basalt which is coated with manganese crust where it has been exposed on the sea floor for a long time. They shed carbonate and volcanic debris to the sea floor below by gravity slumping.

The Dampier Ridge and Lord Howe Rise are plateaus mostly 1,000 to 2,000 m below sea level that are blanketed in pelagic ooze consisting of foraminifers and coccoliths. They have steep sides, along some margins the scarps have over 1,000 m of relief. Slumping, gullying and small canyons occur on all slopes. Volcanic activity has formed some of the scarps on both plateaus. There is also evidence of relatively recent volcanic activity forming small seamounts on the LHR itself. Moats around seamounts on LHR suggest the presence of relatively strong bottom currents.

The Marion and Queensland Plateaus dominate the northern part of the EMR. They have a similar origin due to subsidence of continental crust attached to Australia to form marginal plateaus, followed by a period of carbonate platform construction in the Miocene (Davies and McKenzie, 1993). Reef growth on these platforms has led to carbonate platforms/atolls at the sea surface being major geomorphic features today. These atolls have very steep upper slopes where limestone is exposed. Scalloped morphology on their margins indicates mass slumping of material into the adjacent deeper water (Francis et al., in press). The platforms/atolls shed shallow water carbonate sediments to the surrounding sea floor. Many smaller platforms and pinnacles are drowned features. Limestone outcrops on the sea floor occur on both plateaus. Elsewhere, pelagic carbonate is the dominant sediment with the terrigenous mud content greater in the troughs between the plateaus and the shelf. There is strong evidence of bottom currents eroding the sediment and modifying the sea floor on the plateaus (Exon et al., 2005). Both plateaus have steep sides with small canyons and gullies leading into the adjacent basins and troughs.

East of the marginal plateaus is an area with complex geomorphology that is poorly surveyed. There is evidence for extensive volcanism in the Cato Basin area and around Mellish Reef (Exon et al., 2006a). Narrow ridges and basins characterise the area. Turbidites have formed a smooth floor in the basins whereas the ridges are rugged. Erosion and sediment movement on the ridges is confirmed by sand waves and scours. Slumping and small canyons occur on the slopes and channels have been eroded in the sediment in the troughs. Pelagic carbonate sediments drape the highs and have been redeposited into the lows. In the northeast of the EMR the presence of diatoms in the sediment from

the Coral Sea Basin suggests higher surface water productivity due to the Southern Equatorial Current. In the narrow northwest section of the EMR there is a greater supply of terrigenous sediment than in other areas, as it is sourced from the rivers flowing into the Gulf of Papua.

The area around Norfolk Island in the EMR is divided in two by the N-S Norfolk Ridge. To the west the Fairway Basin floor is quite rugged compared to the smooth flat floor of the New Caledonia Basin. They are separated by a steep-sided rugged ridge with scarps of up to 1,000 m. Norfolk Ridge itself has a relatively flat top <2,000 m deep with three large areas in less than 500 m of water. Wanganella Bank at the boundary of the EMR in the south is less than 100 m water depth. East of Norfolk Ridge is a complex topography of basins, ridges and plateaus with numerous seamounts and submarine escarpments. At least four large seamounts come to within 1,000 m of the sea surface (DiCaprio et al., in press). Rock outcrop is abundant in this region. Sediments in the area are pelagic carbonates with a minor contribution from radiolarians, diatoms and volcanic ash. There is some evidence of bottom currents affecting the sediments on the tops of seamounts and ridges.

6.2. SUMMARY OF SEDIMENTOLOGY AS DERIVED FROM SEDIMENT DATA FOR THE EMR

New consistent quantitative data for the EMR have revealed regional scale patterns in sediment distribution not apparent in previous studies, and forms a framework within which local scale patterns can be understood in a regional context. New data reveals some of the seabed complexity. At a regional scale our data show that the seabed sediments generally become finer with increasing water depth. Variation in sediment texture and composition generally decreases with increasing water depth, with sediments on the rise and abyssal plain/deep ocean floor being relatively homogeneous compared to those on the shelf and adjacent slope.

The shelf is predominantly composed of sand and the abyssal plain/deep ocean floor composed of mud. This trend is reported in reports by Geoscience Australia for other areas of the Australian margin (Potter et al, in press). Areas of gravel are localised and occur mainly on the inner, mid and outer shelf/slope, and are generally absent from the abyssal plain/deep ocean floor. Calcium carbonate concentrations are highest on the shelf and upper slope, and lowest on the lower slope rise and abyssal plain/deep ocean floor. Calcium carbonate content increases adjacent to the Great Barrier Reef Marine Park where calcium production is high.

At a regional scale our results agree with previous sedimentological work on the shelf, slope and abyssal plain/deep ocean floor. Our data indicate distinct variations in the sediment characteristics for the shelf, slope and abyssal plain/deep ocean floor. Our data also provides an analysis of the sediment texture of the rise within the EMR.

Our data indicate distinct variations in sediment characteristics along the inner and outer shelf, and mid to upper slope, due to high current and wave energy. These sediment characteristics were reported at local scales by (Gordon and Hoffman, 1986; Short and Trenaman, 1992; Roy et al., 1994a; Middleton et al., 1997). New data have allowed us to more accurately map the extent, and recognise the regional significance of these sedimentary characteristics.

High resolution data for the seabed in the EEZ indicate that geomorphic features are characterised by a combination of several environments with zones of transition between the features. For some geomorphic features, the new data allow us to more accurately predict and distinguish between the range of environments present and, where data are adequate, estimate the relative proportions of these. Distinct sedimentary environments occurred in some geomorphic features and these include: abyssal plain/deep ocean floor, basin, shallow and deep water terrace, slope, plateau, and trench/trough.

6.2.1. Shelf

Seabed sediments of the shelf are sand dominated, with a large carbonate component with >50% of samples containing between 50 and 100%. Bulk carbonate content increases with sand content and sand content decreases with water depth. Our data indicate that localised deposits of mud occur in the vicinity of Newcastle. This pattern corresponds to the high mud content found off the Hunter River as observed by Matthai and Birch (2000a). Our data also detected additional comparable areas of gravel (~40-80%) present locally offshore of Stradbroke Island, within Hervey Bay, north of Brisbane and offshore of Wollongong. Our results are consistent with Marshall and Davies (1978) description of the carbonate dominated outer shelf sediments. Associations between our sediment data and previous facies models for some areas of the inner shelf are difficult to resolve due to local areas of sparse data. Our data show that the regional trend for the shelf appears to be dominated by carbonate sand with localized accumulations of gravel and mud as seen by Marshall and Davies (1978).

6.2.2. Slope

At a regional scale, sediments of the inner slope mostly comprise sand, while seabed sediments of the outer slope are dominated by mud. Further, mud content increases with water depth on the abyssal plain/deep ocean floor and rise. Sediment data for this province are relatively scarce, however the available data provide significantly higher coverage for this area than was previously available. Carbonate content increases with sand content with localised concentrations of bulk carbonate ranging between 40 and 100% offshore outside Hervey Bay, Stradbroke Island and to the south of Wollongong. Gravel content is generally low, however localised aggregations occur in large quantities offshore Hervey Bay, Mackay and to the south of Cairns. Smaller localised concentrations of gravel occur offshore Coffs Harbour, Byron Bay and to the north of Brisbane. Mud content on the upper slope is low, however localised clusters occur offshore Wollongong, Newcastle, Port Macquarie and north of Coffs Harbour.

Our results reveal that at a regional scale the greatest variety of sediments occur in areas containing several geomorphic features and between bioregions (i.e., features adjacent to seamounts with higher gravel amounts although there were low sample numbers taken from seamounts). This is particularly evident where features with a distinct sedimentology are interspersed with other features with a distinct sedimentology (i.e., gravel dominated pinnacles located within the homogenous, sand dominated shelf).

Addition of data in geomorphic features occurring on the shelf and inner slope have resulted in the first quantitative analysis of the sedimentology of features occurring at these water depths in the EMR, including trenches, plateaus and terraces. Sediment data show that some features in this zone are characterised by a distinct sedimentology that differentiates each feature from one another. These features include: plateaus, terraces, trench/troughs, shelf and slope.

Our data provide further evidence for extensive carbonate deposits on the outer shelf with localized deposits of rhodolith gravels on the sea floor (Marshall and Davies, 1978). The outer slope contains a higher proportion of mud (20-90%) than found on the adjacent shelf.

6.2.3. Abyssal Plain/Deep Ocean Floor

Sediment samples procured for this task from the abyssal plain/deep ocean floor have significantly increased the sample coverage and understanding of the sediment properties. The abyssal plain/deep ocean floor is a relatively homogenous sedimentary environment dominated by calcareous mud containing foraminifers and coccoliths with small inclusions of sand and gravel. Our data concurs with the findings of Jenkins (1984) who described the sedimentology of the abyssal plain/deep ocean floor as brown clays or calcareous muds. The bulk carbonate content of sediments in deep water areas of the EMR provides further evidence that content range between 5 and 55% (Eade & van der Linden, 1970).

6.3. IMPLICATIONS FOR MARINE HABITAT MAPPING

Conservation of benthic marine habitats requires information on the geomorphology, sedimentology and oceanography of an area. The use of sediment properties as physical surrogates for benthic biological data that can be measured with ease, (Bax, 2001), may provide a greater understanding of marine ecosystems (Post, 2006). Relationships are recognised to exist between the texture and composition of seabed sediments and biota (Day & Roff, 2000; Roff et al., 2003; Roff & Taylor, 2000). For this reason, sediment properties as measured in this study are an important input into statistical models used to approximate the nature and extent of seabed marine habitats (see the seascapes of Day and Roff, 2000 and Whiteway et al., 2007). The accuracy of the seascapes in representing seabed habitats is directly related to the quality and resolution of underlying sediment data. Major sources of spatial error in sediment data used to characterise habitats are the result of low data density and inadequate interpolation methodologies. Addition of new data helps reduce these sources of error and allows recognition of relationships between physical datasets that are useful in developing more effective interpolation techniques.

Benthic biota have been shown to have measurable relationships with the gravel and mud content of seabed sediments (Post, 2006; Bax and Williams, 2001). Our data show that where the sedimentology is relatively diverse, such as on the inner shelf and on the slope, the sediment properties including gravel and mud content varies greatly over relatively small distances. A higher sample density is required in these environments to more accurately map the spatial distribution properties (and by association benthic biota), however the complexity of the seabed is beginning to be resolved. Our data have improved sample coverage in these areas, however additional coverage will further increase the reliability with which this can be mapped. In areas where seabed environments are relatively uniform,

such as over most of the abyssal plain/deep ocean floor, sediment properties are more constant over larger distances, and the physical characteristics can be accurately mapped from fewer samples.

Our synthesis of sedimentology and geomorphology has;-

a) provided a more improved understanding of the range of seabed sedimentary environments present in the EMR,

b) allowed comparison between sedimentary environments occurring in different areas culminating in the identification of rare or unique areas of seabed that may be of particular interest for conservation; and

c) described relationships between physical datasets providing full coverage of the EMR, such as bathymetry and geomorphology, and sediment distribution; and

d) provided the first most up-to-date synthesis of all data and studies for the EMR. These can be used to help predict the sedimentary environments that occur in areas where sediment data points are relatively scarce. New data on the abyssal plain/deep ocean floor, plateaus and terraces have allowed characterisation at a higher confidence.

6.4. LIMITATIONS

Although we have added significant detail to the regional sedimentology of the east margin, including better defined local and regional trends, the data are still relatively sparse in deep water areas, which limits the degree to which we can fully describe the sedimentology. It is important to recognise some of the limitations of the data.

Data in the EMR is clustered on the shelf, with a paucity of data for the outer slope and abyssal plain/deep ocean floor. This means that sediments present in areas with most data are likely to be over-represented in statistics at a regional scale. Uneven distribution of data also makes it difficult to statistically quantify relationships that are observed visually in data, and means that existing relationships may not be detected and utilised when interpolating data to rasters for input into seascapes. While this may cause some inaccuracy or bias at a regional scale, the structure of our analysis with observations and statistics generated for individual bioregions, provinces and features means that sedimentology at these scales is not significantly affected. Because data density is greatest on the shelf we place more confidence in the sediment patterns. However, complexity elsewhere may not have been detected due to relatively low sample density.

In this study we have used the inverse distance weighted method, with a fixed interpolation parameter, which has been used by Geoscience Australia to interpolate all of its point data across Australia's marine jurisdiction. This provides for a comparable and consistent dataset. The maximum distance that any data were extrapolated was 45 km. This method is adequate, where large ranges in data density occur, to produce maps that allow identification of trends in sediment distribution occurring at a regional scale, but may not necessarily represent sediment distribution at finer scales.

The key question in modelling studies is "*How much simplification is acceptable?*" A linear inverse distance weighted method (with a fixed interpolation parameter) does not necessarily represent all trends in sediment distribution. However, no interpolation method is able to pick up such trends if sample density is inadequate. Trends in sediment distribution in the EMR are known to occur on scales from centimeters to hundreds of kilometers. Without knowing at what scale variations in

sediment characteristics are significant in mapping distribution of species, it is difficult to comment on how much uncertainty in interpolated data affects results generated for seabed habitat mapping.

Sample density for the EMR is 15:1,000 km² on the shelf, >1:1,000 km² on the slope, >1:1,000 km² on the rise and >1:1,000 km² on the abyssal plain/deep ocean floor. This provides the minimum distances over which variations in the sediment properties can be detected. Interpolation images must be used with caution when drawing comparison between seabed composition in different areas of the EMR as they do not necessarily represent: 1) the relative proportions of environments present in an area; or 2) the way sedimentary environments are interspersed spatially, as resolution of the interpolation is more a reflection of sample density than diverse sedimentology.

6.5. RECOMMENDATIONS

To improve interpolated data sets and confidence in representing the true characteristics of the seafloor, it is important to improve sample densities in areas of the seabed that contain significant variations in sediment characteristics over relatively small distances. As collecting sediment samples from the seabed is highly time consuming and costly, information about distribution of seabed complexity and the relationship to geomorphology can be used to target areas where data coverage is likely to be inadequate. New data generated for the NWMR and the SWMR (Potter, in press) allows recognition of relationships between relatively diverse seabed sedimentology and geomorphic features such as seamounts and surrounding plateaus and basins. In the EMR, sample densities in these features remain relatively low. New data for the EMR also indicates that although sediments are more homogenous in deep water areas (e.g., abyssal plain/deep ocean floor), greater variation may be captured in these areas than is captured in the current data. Data generated for this study have significantly improved sample densities for these areas and this work should be continued, particularly for the abyssal plain/deep ocean floor, slope and rise.

Data collection, advances in interpolation methods, and improved understanding of relationships between geomorphic features and sediment type, will improve the accuracy of future sedimentology work conducted at a Regional Marine Planning area scale. An improved understanding of geomorphic features such as the abyssal plain/deep ocean floor is required to more accurately map sediment distribution. Where sample coverage is sparse, the inclusion of secondary datasets in the interpolation process will allow the prediction of sediment type. Secondary datasets such as energy level, tidal regime, sediment transport pathways, and previous sediment models will improve the accuracy of future seabed sediment mapping. Our study has shown that future sampling in the EMR should focus on areas with poor sample coverage such as the abyssal plain/deep ocean floor, pinnacles, deep/hole/valleys, reefs, bank/shoals, knoll/abyssal hill/hill/peaks, ridge, outer shelf, lower slope and rise.

Geoscience Australia has a program to asses the accuracy and precision of interpolation techniques, and is investigating the usefulness of secondary datasets during interpolation.

6.6. SUMMARY

The EMR is characterised by a variable geomorphology and sedimentology. Sediment texture and composition displays a zoning with depth and bioregion, and sand and gravel dominate the shelf

area whilst mud dominates the lower slope and abyssal plain/deep ocean floor. Calcium carbonate concentrations throughout the region are generally highest along the shelf to the shelf edge and are associated with reefs. Significant geomorphic features of the EMR with sedimentological information include; shelf (unassigned), slope (unassigned), AP/DOF (unassigned), basins, deep water trench/troughs, shallow and deep water terraces and plateaus.

Geoscience data plays a vital role in the management of Australia's ocean resources because we may never have a full inventory of all biota found on the seabed. Geomorphology and sedimentological data can be mapped relatively easily and this can be used as a surrogate between the distribution and abundance of benthic biota and seabed habitats. The relationship(s) between geomorphology and sediment/substrate type and biota is a key priority for future marine research.

7. References

- Albani, A.D., Tayton, J.W., Rickwood, P.C., Gordon, A.D. and Hoffman, J.G., 1988. Cainozoic morphology of the inner continental shelf near Sydney. *Journal and Proceedings of the Royal Society of NSW* **121**, 11-28.
- Albani, A.D. and Rickwood, P.C., 2000. Marine aggregates near Sydney. In: McNally, G.H. and Franklin, B.J. (Eds.), Sandstone City – Sydney's dimension stone and other sandstone geomaterials. Geological Society of Australia, EEHSG Monograph 5, 260-266.
- Alcock, M.B., Stagg, H.M.J., Colwell, J.B. Borissova, I., Symonds, P.A. and Bernardel, G., 2006. *Seismic Transects of Australia's Frontier Continental Margins*. Geoscience Australia Record **2006/04**, 131p.
- Andrews, J.E., Packham, G. et al., 1975. Initial Reports of the Deep Sea Drilling Project, Volume 30. Washington (U.S. Govt. Printing Office).
- Anselmetti, F.S., Isern, A.R., Blum, P. and Betzler, C., (Eds.), 2006. Constraining Miocene sea level change from carbonate platform evolution, Marion Plateau, northeast Australia, Leg 194. *Proceedings of the Ocean Drilling Program, Scientific Results,* Volume 194. College Station, TX (Ocean Drilling Program).
- Ashley, G.M, Boothroyd, J.C., Bridge, J.S., Clifton, H.E., Dalrymple, R.W., Elliot, T., Fleming, B.W., Harms, J.C., Harris, P. T., Hunter, R.E., Kreisa, R.D., Lancaster, N., Middleton, G.V., Paola, C., Rubin, D.M., Smith, J.D., Southard, J.B., Terwindt, J.H.I & Twitchell, D.C., 1990.
 Classification of large-scale subaqueous bedforms: a new look at an old problem. *Journal of Sedimentary Petroleum* 60, 160-172
- Auzende, J.M., Van de Beuque, S., Dickens, G., Francois, C., Lafoy, Y., Voutay, O. and Exon, N., 2000.
 Deep sea diapirs and bottom simulating reflector in Fairway Basin (SW Pacific). *Marine Geophysical Researches* 21(6), 579-587.
- Baker, C., Potter, A. and Tran, M., 2008. Sedimentology and Geomorphology of the North West Region: A Spatial Analysis. Geoscience Australia Record 2008/07. Geoscience Australia, Canberra, 220p.
- Baker, E.K., Harris, P.T., Hubble, T.C.T., Jenkins, C.J., Keene, J.B., Manning, P.B., Packham, G.H., Pritchard, T.R., Schneider, P.M. and Tate, P.M., 1988a. *Geophysical and geological results of the*

HMAS 'Cook' Seamap cruise 1-86: north Tasman Sea and Polynesia. University of Sydney Ocean Sciences Institute Report 30, 33p.

- Baker, E.K., Harris, P.T. and Packham, G.H., 1988b. Physical properties of sediment sub-samples from cores collected in the Tasman Sea and Polynesia during the 'Seamap' program, 1985-87. University of Sydney Ocean Sciences Institute Report 31, 23p.
- Bax, N.J. and Williams, A., 2001. Seabed habitat on the southeast Australian continental shelf context, vulnerability and monitoring. Marine and Freshwater Research, 52: 491-512.
- Beaufort, L. and shipboard scientists, 2005. *MD148 PECTEN IMAGES XII Cruise Report*. Past Equatorial Climate: tracking El Nino. Institut Polaire Francais. 58p.
- Beiersdorf, H., 1989. Provenance and accumulation rates of Pliocene and Quaternary sediments from the western Coral Sea. *Geologische Rundschau* **78**, 987-998.
- Bernardel, G., Carson, L., Meffre, S, Symonds, P. and Mauffret, A., 2002. Geological and morphological framework of the Norfolk Ridge and Three Kings Ridge region. Geoscience Australia Record 2002/08. Geoscience Australia, Canberra.
- Betzler, C., Brachert, T.C. and Kroon, D.,1995. Role of climate in partial drowning of the Queensland Plateau carbonate platform (northeastern Australia). *Marine Geology* **123**, 11-32.
- Birch, G.F. and Davey, S., 1995. Accumulation of metallic contaminants in surficial sediments on a high energy continental shelf (Sydney, Australia). *The Science of the Total Environment* **170**, 81-93.
- Blakeway, D., 1991. Sedimentary sources and processes in outer shelf, slope and submarine canyon environments, Northern Ribbon Reefs, Great Barrier Reef, Australia. Bachelor of Science (Honours) Thesis, James Cook University, Townsville, Australia, unpublished.
- B.M.R. 1972-1977. *Marine Geophysical Survey of the Australian Continental Margin 1971-1972*. Deep seismic "Sparker" sections. Bureau of Mineral Resources, Geology and Geophysics, Canberra.

Boland, F.M. and Church, J.A., 1981. The East Australian Current 1978. Deep-Sea Research 28, 937–957.

- Boland, F.M. and Hamon, B.V., 1970. The East Australian Current, 1965-1968. Deep-Sea Research 17, 777-794.
- Bolton, B.R., Exon, N.F. and Ostwald J., 1990. Thick ferromanganese deposits from the Dampier Ridge and the Lord Howe Rise off eastern Australia. *BMR Journal of Australian Geology and Geophysics* 11(4), 421-427.
- Boyd, R., Ruming, K. and Roberts, J.J., 2004a. Geomorphology and surficial sediments on the southeast Australian continental margin. *Australian Journal of Earth Sciences* **51**, 743-764.

- Boyd, R., Ruming, K., Davies, S., Payenberg, T. and Lang, S., 2004b. Fraser Island and Hervey Bay a classic modern sedimentary environment. In: Boult, P.J., Johns, D.R. and Lang, S.C. (Eds.), *Eastern Australasian Basins Symposium II*, Petroleum Exploration Society of Australia, Special Publication, 511-521.
- Boyd, R., Ruming, K., Goodwin, I., Sandstrom, M. and Schroder-Adams, M., (2008). Highstand transport of coastal sand to the deep ocean: a case study from Fraser Island, southeast Australia. *Geology* **36**, 15-18.
- Brachert, T.C. and Dullo, W.-C., 2000. Shallow burial diagenesis of skeletal carbonates: selective loss of aragonite shell material (Miocene to Recent, Queensland Plateau and Queensland Trough, NE Australia) – implications for shallow cool-water carbonates. *Sedimentary Geology* **136**, 169-187.
- Browne, I., 1994. Seismic stratigraphy and relict coastal sediments off the east coast of Australia. *Marine Geology* **122**, 81-107.
- Brunskill, G.J., Woolfe, K.J. and Zagorskis, I., 1995. Distribution of riverine sediment chemistry on the shelf, slope, and rise of the Gulf of Papua. *Geo-Marine Letters* **15**, 160-165.
- Bryan, S.E., Constantine, A.E., Stephens, C.J., Ewart, A., Schon, R.W. and Parianos, J., 1997. Early Cretaceous volcano-sedimentary successions along the eastern Australian continental margin: implications for the break-up of eastern Gondwana. *Earth and Planetary Science Letters* **153**, 85-102.
- Burns, R.E., Andrews, J.E., et al., 1973. *Initial Reports of the Deep Sea Drilling Project*, Volume 21. Washington (U.S. Govt. Printing Office).
- Burrage, D.M., Steinberg, C.R., Skirving, W.J. and Kleypas, J.A., 1996. Mesoscale circulation features of the Great Barrier Reef region inferred from NOAA satellite imagery. *Remote Sensing of Environment* 56, 21-41.
- Church, J.A., 1987. East Australian Current adjacent to the Great Barrier Reef. *Australian Journal of Marine and Freshwater Research* **38**, 671-683.
- Church, J.A. and Craig, P.D., 1998. Australia's shelf seas: diversity and complexity. In: Robinson, A.R. and Brink, K.H. (Eds.), *The Sea, Volume 11: The global ocean regional studies and synthesis*. Chapter 11.
- Cochran, J.K. and Osmond, J.K., 1976. Sedimentation patterns and accumulation rates in the Tasman Basin. *Deep-Sea Research* 23, 193-210.

- Colwell, J. B. and Roy, P. S., 1983. *Description of subsurface sediments from the east Australian continental shelf ("Sonne" cruise SO-15)*. Bureau of Mineral Resources, Geology and Geophysics Record **1983/21**, Canberra, 65pp.
- Colwell, J.B. and Coffin, M.F., 1987. *Rig Seismic Research Cruise* 13: *Structure and stratigraphy of the northeast Gippsland Basin and southern New South Wales margin initial report.* BMR Report **283**, 76p.
- Colwell, J.B., Coffin, M.F. and Spencer, R.A., 1993. Structure of the southern New South Wales continental margin, southeastern Australia. *BMR Journal of Australian Geology and Geophysics* **13**, 333-343.
- Colwell, J.B., Foucher, J-P. and shipboard scientific party, 2006. *MD153 Programme Ausfair Cruise Report*. Institut Polaire Francais, 144p.
- Conolly, J.R., 1968. Submarine canyons of the continental margin, East Bass Strait (Australia). *Marine Geology* **6**, 449-461.
- Conolly, J.R., 1969. Western Tasman Sea Floor. *New Zealand Journal of Geology and Geophysics* **12**, 310-343.
- Cotillon, P., Rousselle, B., Courtinat, B. and Crumiere, J-P., 1994. Evolution of sediment fluxes from the middle Miocene to present at ODP Site 817 (Townsville Basin, northeastern Australia) as a record of regional paleogeographic events. *Marine Geology* **121**, 265-291.
- Cowell, P. and Nielson, P., 1984. *Predictions of sand movement on the south Sydney inner-continental shelf, south east Australia*. Ocean Sciences Institute Report 9, University of Sydney.
- Crawford, A.J., Meffre, S. and Symonds, P.A., 2004. 120 to 0 Ma tectonic evolution of the southwest Pacific and analogous geological evolution of the 600 to 220 Ma Tasman Fold Belt System. In: Hillis, R.R. and Muller, R.D. (Eds.), *Evolution and Dynamics of the Australian Plate*. Geological Society of Australia Special Publication 22 and Geological Society of America Special Paper **372**, 377-397.
- Creswell, G.R., Ellyett, C., Legeckis, R. and Pearce, A.F., 1983. Nearshore features of the East Australian Current system. *Australian Journal of Marine and Freshwater Research* **34**, 105-114.
- David, T.W.E., 1932. Explanatory notes to accompany a new geological map of the Commonwealth of Australia, based on the maps already published by the geological surveys of the various states. Australasian Medical Publishing. 177p.
- Davies, P.J., 1975. Shallow seismic structure of the continental shelf, southeast Australia. *Journal Geological Society of Australia* 22, 345-359.

- Davies, P.J., 1979. Marine geology of the continental shelf off southeastern Australia. *BMR Bulletin* **195**, 51pp.
- Davies, P.J., 1988. Evolution of the Great Barrier Reef reductionist dream or expansionist nightmare. In: Choat, J.H. *et al.*, (Eds.), *Proceedings* of the 6th International Coral Reef Symposium, Townsville, Australia, vol. 1, 9-17.
- Davies, P.J., Symonds, P.A., Feary, D.A., Pigram, C.J., 1988. Facies models in exploration the carbonate platforms of north-east Australia. *APEA Journal* **28(1)**, 123-143.
- Davies, P.J., Symonds, P.A., Feary, D.A., Pigram, C.J., 1989. The evolution of the carbonate platforms of northeast Australia. In: Crevello, P.D., Wilson, J.L., Sarg, J.F. and Read, J.F. (Eds.), *Controls on Carbonate Platform and Basin Development*. Society of Economic Paleontologists and Mineralogists, Tulsa, U.S.A., Special Publication 44, pp. 233-258.
- Davies, P.J., McKenzie, J.A., et al., 1991a. Proceedings ODP, Initial Reports, 133. College Station, TX (Ocean Drilling Program).
- Davies, P.J., Symonds, P.A., Feary, D.A. and Pigram, C.J., 1991b. The evolution of the carbonate platforms of northeast Australia. In: Williams, M.A.J., Kershaw, A.P. and De Deckker, P. (Eds.), *The Cainozoic in Australia: a reappraisal of the evidence,* Geological Society of Australia Special Publication 18, pp. 44-78.
- Davies, P.J. and McKenzie, J.A., 1993. Controls on Pliocene-Pleistocene evolution of the northeastern Australian continental margin. *Proceedings of the Ocean Drilling Program, Scientific Results* **133**, 755-762.
- Davies, P.J. and Peerdeman, F.M., 1998. The origin of the Great Barrier Reef the impact of Leg 133 drilling. In: Camoin, G.F. and Davies, P.J. (Eds.), *Reefs and Carbonate Platforms in the Pacific and Indian Oceans*. Blackwell Science, Oxford, U.K. Intl Assoc of Sedimentologists, Special Publication 25, pp. 23-38.
- Day, J.C. and Roff, J.C., 2000. Planning for Representative Marine Protected Areas: A Framework for Canada's Oceans. World Wildlife Fund, Toronto.
- de Garidel-Thoron, T., Beaufort, L., Bassinot, F. and Henry P., 2004. Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode. *Proceedings of the National Academy of Science* **101(25)**, 9187-9192.

- DEH (Department of Environment and Heritage), 2005. *Marine Bioregional Planning*. Media release by the Department of Environment and Heritage. Internet document from http://www.environment.gov.au/, accessed 05/08/07.
- DiCaprio, L.J., Muller, D., Gurnis, M. and Goncharov A., *in press*. The structure and history of the Norfolk Basin, SW Pacific. *Geochemistry Geophysics Geosystems*.
- Dickens, G., Exon, N., Holdway, D., Lafoy, Y., Auzende, J-M., Dunbar, G. and Summons, R., 2001. Quaternary sediment cores from the southern Fairway Basin on the northern Lord Howe Rise (Tasman Sea). AGSO Record 2001/031. Australian Geological Survey Organisation, Canberra.

Division of National Mapping, 1976. National Bathymetric Map Series 1:250,000.

- Done, T.J., 1982. Patterns in the distribution of coral communities across the central Great Barrier Reef. *Coral Reefs* **1**, 95-107.
- Dunbar, G.B., 2000. *Late Quaternary Evolution of the Northeast Australian Continental Margin*. Doctor of Philosophy Thesis, James Cook University, Townsville, Australia, unpublished.
- Dunbar, G.B., Dickens, G.R. and Carter, R.M., 2000. Sediment flux across the Great Barrier Reef Shelf to the Queensland Trough over the last 300 ky. *Sedimentary Geology* **133**, 49-92.
- Dunbar, G.B. and Dickens, G.R., 2003a. Late Quaternary shedding of shallow-marine carbonate along a tropical mixed siliciclastic-carbonate shelf: Great Barrier Reef, Australia. *Sedimentology* **50**, 1061-1077.
- Dunbar, G.B. and Dickens, G.R., 2003b. Massive siliciclastic discharge to slopes of the Great Barrier Reef Platform during sea-level transgression: constraint from sediment cores between 15°S and 16°S latitude and possible explanations. *Sedimentary Geology* **162**, 141-158.
- Eade, J.V., 1988. The Norfolk Ridge system and its margins. In: Nairn, A., Stehli, F. and Uyeda, S. (Eds.), *The Pacific Ocean, basins and margins*. Vol. **7B**, ch. 7, 303-324.
- Eade, J. and van der Linden, W.J.M., 1970. Sediments and stratigraphy of deep-sea cores from the Tasman Basin. *New Zealand Journal of Geology and Geophysics* **13**, 228-268.
- Earl, K., Holm, O. and Powell, T.G., 2002. Outline of geologic studies in the Great Barrier Reef and adjacent regions: Industry, Commonwealth Government and International. Geoscience Australia Record 2002/22. Geoscience Australia, Canberra.
- Ehrenberg, S.N., McArthur, J.M. and Thirlwall, M.F., 2006. Growth, demise, and dolomitization of Miocene carbonate platforms on the Marion Plateau, offshore NE Australia. *Journal of Sedimentary Research* **76**, 91-116.

- Ennyu, A., Arthur, M.A. and Pagani, M., 2002. Fine-fraction carbonate stable isotopes as indicators of seasonal shallow mixed-layer paleohydrography. *Marine Micropaleontology* **46**, 317-342.
- Etheridge, M.A., Symonds, P.A. and Lister, G.S., 1989. Application of the detachment model to reconstruction of conjugate passive margins. In: Tankard, A.J. and Balkwill, H.R. (Eds), *Extensional tectonics and stratigraphy of the North Atlantic margins*. AAPG Memoir **46**, 23-40.
- Ewart, A., Schon, R.W. and Chappell, B.W., 1992. The Cretaceous volcanic-plutonic province of the central Queensland (Australia) coast – a rift related 'calc-alkaline' province. *Transactions of the Royal Society of Edinburgh: Earth Sciences* 83, 327-345.
- Exon, N.F., Moreton, D. and Hicks, G., 1980. Manganese nodules from the Tasman Sea off Sydney. *BMR Journal of Australian Geology and Geophysics* **5(1)**, 67-68.
- Exon, N.F., Brinkhuis, H., Rober, C., Kennett, J.P., Hill, P.J. and Macphail, M.K., 2004a. Tectono-sedimentary history of uppermost Cretaceous through Oligocene sequences from the Tasmanian region, a temperate Antarctic margin. In: Exon, N.F., Kennett, J.P. and Malone, M.J. (Eds.), *The Cenozoic Southern Ocean: Tectonics, Sedimentation and Climate Change between Australia and Antarctica*. American Geophysical Union Geophysical Monograph Series **151**, 319-344.
- Exon, N.F., Dickens, G.R., Auzende, J-M., Lafoy, Y., Symonds, P.A. and Van De Beuque, S., 1998. Gas hydrates and free gas on the Lord Howe Rise, Tasman Sea. *Petroleum Exploration Society of Australia Journal* **26**, 148-58.
- Exon, N., Quilty, P.J., Lafoy, Y., Crawford, A. and Auzende, J.M., 2004b Miocene volcanic seamounts on northern Lord Howe Rise: lithology, age and origin. *Australian Journal of Earth Sciences* 51(2), 291-300.
- Exon, N., Hill, P., Lafoy, Y., Fellows, M., Perry, K., Mitts, P., Howe, R., Chaproniere, G., Dickens, G., Ussler, W. and Paull, C., 2004c. *Geology of the Fairway and New Caledonia Basins in the Tasman Sea: sediment, pore water, diapirs and bottom simulating reflectors (Franklin Cruise FR9/01 and Geoscience Australia Survey 232)*. Geoscience Australia Record 2004/26, 112p.
- Exon, N., Hill, P., Lafoy, Y., Burch, G., Post, A., Heine, C., Quilty, P., Howe, R. and Taylor, L., 2005.
 The geology of the Kenn Plateau off northeast Australia: results of Southern Surveyor Cruise SS5/2004 (Geoscience Australia Cruise 270). Geoscience Australia Record 2005/04, 172p.
- Exon, N., Bernardel, G., Brown, J., Cortese, A., Finlay, C., Hoffmann, K., Howe, R. and Quilty, P., 2006a. *The geology of the Mellish Rise region off northeast Australia: a key piece in a tectonic puzzle,*

Southern Surveyor cruise SS02/2005, Geoscience Australia survey 274. Geoscience Australia Record **2006/08**, 204p.

- Exon, N., Hill, P., Lafoy, Y., Heine, C. and Bernardel, G., 2006b. Kenn Plateau off northeast Australia: a continental fragment in the southwest Pacific jigsaw. *Australian Journal of Earth Sciences* **53**, 541-564.
- Exon, N. F., Lafoy, Y., Hill, P.J., Dickens, G.R. and Pecher, I., 2007. Geology and petroleum potential of the Fairway Basin in the Tasman Sea. *Australian Journal of Earth Sciences* **54**, 629-645.
- Ferland, M.A., 1991. Shelf sand bodies in southeastern Australia. PhD thesis, University of Sydney, unpublished.
- Ferland, M.A., Roy, P.S. and Murray-Wallace, C.V., 1995. Glacial lowstand deposits on the outer continental shelf of southeastern Australia. *Quaternary Research* **44**, 294-299.
- Ferland, M.A. and Roy, P.S., 1997. Southeastern Australia: sea-level dependent, cool-water carbonate margin. In: James, N.P. and Clarke, J.D.A. (Eds.), *Cool Water Carbonates*, SEPM Special Publication 56, 37-52.
- Field, M.E. and Roy, P.S., 1984. Offshore transport and sand body formation: evidence from a steep high energy shoreface, southeastern Australia. *Journal of Sedimentary Petrology* **54**, 1292-1302.
- Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentary rock nomenclature. *Journal of Geology* **62 (4)**, 344-359.
- Francis, J.M., Dunbar, G.B., Dickens, G.R., Sutherland, I.A. and Droxler, A.W., 2007. Siliciclastic sediment across the north Queensland margin (Australia): a Holocene perspective on reciprocal versus coeval deposition in tropical mixed siliciclastic-carbonate systems. *Journal of Sedimentary Research* 77, 572-586.
- Francis, J.M., Daniell, J., Droxler, A.W., Dickens, G.R., Bentley, S.J., Peterson, L.C., Opdyke, B.N. and Beaufort, L., in press. Deepwater geomorphology and sediment pathways of the mixed siliciclastic/carbonate system, Gulf of Papua. *Journal of Geophysical Research – Earth Surface*.
- Gaina, C., Roest, W.R., Muller, R.D. and Symonds, P., 1998a. The Opening of the Tasman Sea: a gravity anomaly animation. *Earth Interactions* **2**, 1-23.
- Gaina, C., Muller, D.R., Royer, J-Y., Stock, J., Hardebeck, J. and Symonds, P., 1998b. The tectonic history of the Tasman Sea: a puzzle with 13 pieces. *Journal of Geophysical Research* **103(B6)**, 12413-12433.

- Gaina, C., Muller, D.R., Royer, J.-Y. and Symonds, P., 1999. Evolution of the Louisiade Triple Junction. *Journal of Geophysical Research* **104(B6)**, 12927-12939.
- Game, P.M., 1970. Petrology of Lord Howe Island, Part 1: the younger volcanics. *Bulletin of the British Museum (Natural History) Mineralogy* **2**, 223-284.
- Gardner, J.V., 1970. Submarine geology of the Western Coral Sea. *Geological Society of America Bulletin* **81**, 2599-2614.
- Gibbs, M.T., Marchesiello, P. and Middleton, J.H., 2000. Observations and simulations of a transient shelfbreak front over the narrow shelf at Sydney, southeastern Australia. *Continental Shelf Research* **20**, 763-784.
- Glasby, G.P., Stoffers, P., Grapes, R.H., Pluger, W.L., McKnight, D.G. and Main, W. deL., 1986. Manganese nodule occurrence in the Tasman Sea. New Zealand Journal of Marine and Freshwater Research 20, 489-494.
- Glenn, K.C., Post, A., Keene, J., Boyd, R., Fountain, L., Potter, A., Osuchowski, M., Dando, N. and Shipboard Party, 2007. Geoscience Australia Marine Survey Post-Cruise Report – NSW Continental Slope Survey. Geoscience Australia Record 2007/. Geoscience Australia, Canberra.
- Godfrey, J.S., Cresswell, G.R., Boyd, R., Golding, T.J. and Pearce, A.F., 1980. The separation of the East Australian Current. *Journal of Physical Oceanography* **10**, 430-440.
- Gordon, A.D., Lord, D.B. and Nolan, M.W., 1979. *Byron Bay–Hastings Point erosion study*. NSW Department of Public Works Record **PWD78026**.
- Gordon, A.D. and Hoffman, J.G., 1986. Sediment features and processes of the Sydney continental shelf. In: Frankel, E., Keene, J.B. and Waltho, A.E. (Eds.), *Recent Sediments in Eastern Australia: Marine through Terrestrial*, Geological Society of Australia, NSW Division, pp 29-51.
- Gordon, A.D. and Hoffman, J.G., 1989. *Seabed Information*, 1:25,000 Sheets: Bate Bay, Sydney Heads, Broken Bay, Gosford. Public Works Department New South Wales Coast and Rivers Branch.
- Harris, P.T., Baker, E.K. and Cole, A.R., 1991. *Physical sedimentology of the Australian continental shelf: with emphasis on late Quaternary deposits in major shipping channels, port approaches and choke points.* University of Sydney Ocean Sciences Institute Report **51**, 505p.
- Harris, P.T., Davies, P.J. and Marshall, J.F., 1990. Late Quaternary sedimentation on the Great Barrier Reef continental shelf and slope east of Townsville, Australia. *Marine Geology* **94**, 55-77.

- Harris, P.T., Heap, A., Passlow, V., Hughes, M., Daniell, J., Hemer, M. and Anderson, O., 2005b. Tidally incised valleys on tropical carbonate shelves: an example from the northern Great Barrier Reef, Australia. *Marine Geology* 220, 181-204.
- Harris, P., Heap, A., Passlow, V., Sbaffi, L., Fellows, M., Porter-Smith, R., Buchanan, C. and Daniell, J.,
 2005a. *Geomorphic Features of the Continental Margin of Australia*. Geoscience Australia Record
 2003/30, 142p.
- Harris, P.T., Jenkins, C. J., Packham, G.H., Baker, E.K., Pritchard, T.R., Schneider, P.M. and Manning,
 P.B., 1987. *Geophysical and geological results of the HMAS 'Cook' Seamap Cruise 12-87: Tasman Sea* and Polynesia. University of Sydney Ocean Sciences Institute Report 26, 30p.
- Harris, P.T., Pattiaratchi, C.B., Keene, J.B., Dalrymple, R.W., Gardner, J.V., Baker, E.K, Cole, A.R., Mitchell, D., Gibbs, P. and Schroeder, W.W., 1996b. Late Quaternary deltaic and carbonate sedimentation in the Gulf of Papua foreland basin: Response to sea level change. *Journal of Sedimentary Research* 66(4), 801-819.
- Harris, P.T., Tsuji, Y., Marshall, J.F., Davies, P.J., Honda, N. and Matsuda, H., 1996. Sand and rhodolith-gravel entrainment on the mid- to outer-shelf under a western boundary current:
 Fraser Island continental shelf, eastern Australia. *Marine Geology* 129, 313-330.
- Hayes, D.E. and Ringis, J., 1973. Seafloor spreading in the Tasman Sea. Nature 243, 454-458.
- Hayes, D.E. et al., 1972-1977. *Preliminary report of volumes 22-26, USNS Eltanin cruises 28-50, March 1967 January 1972.* Lamont-Doherty Geological Observatory of Columbia University, N.Y.
- Heap, A. and Harris, P., in press. Geomorphology of the Australian margin and adjacent sea floor. Australian Journal of Earth Sciences.
- Heck, P.R., Anselmetti, F.S., and Isern, A.R., 2004. Data report: late Pleistocene and Holocene sedimentation on the Marion Plateau: data from precruise ODP Leg 194 site survey gravity cores. In: Anselmetti, F.S., Isern, A.R., Blum, P., and Betzler, C. (Eds.), *Proc. ODP Science Results*, 194: College Station, TX (Ocean Drilling Program), 1–13.
- Heck, P.R., Frank, M., Anselmetti, F.S., and Kubik, P.W., 2007. Origin and age of submarine ferromanganese hardgrounds from the Marion Plateau, offshore northeast Australia. In: Anselmetti, F.S., Isern, A.R., Blum, P., and Betzler, C. (Eds.), *Proc. ODP Science Results*, 194: College Station, TX (Ocean Drilling Program), 1–22.

- Heggie, D. and shipboard scientist, 1992. Preliminary results of AGSO RV Rig Seismic Survey 112: Offshore Sydney Basin continental shelf and slope geochemistry, sedimentology and geology. AGSO Record 1993/5, 121p.
- Heggie, D., Lane, J., and Herczeg, A., 1993. Geochemistry of sediments from the north east Australian continental margin, including the Great Barrier Reef slope, Queensland Plateau and trough and the Osprey Embayment. AGSO Record 1993/33. Australian Geological Survey Organisation, Canberra.
- Herzer, R.H., Chaproniere, G.C.H., Edwards, A.R., Hollis, C.J., Pelletier, B., Raine, J.I., Scott, G.H., Stagpoole, V., Strong, C.P., Wilson, G.J. and Zhu, H., 1997. Seismic stratigraphy and structural history of the Reinga Basin and its margins, southern Norfolk Ridge system. *New Zealand Journal* of *Geology and Geophysics* 40, 425-451.
- Hill, P.J., 1991. Maryborough and Capricorn Basins new geophysical data. In: Draper, J. (Ed.), *Queensland 1991 – Exploration and Development*, 13th PESA(Qld.)-ODCAA-SPE Petroleum Symposium, Brisbane, 70-82.
- Hill, P.J., 1992. Capricorn and northern Tasman Basins: structure and depositional systems. *Exploration Geophysics* **23(1/2)**, 153-162.
- Hill, P.J., 1994. *Geology and geophysics of the offshore Maryborough, Capricorn and northern Tasman Basins: results of AGSO Survey 91.* AGSO Record **1994/1**, 71p.
- Hill, P.J. and Cranfield, L.C., 1992. Offshore Maryborough Basin, southeast Queensland: extent, structure and petroleum potential from new geophysical survey data. *AAPG Bulletin* **76(7)**, 1107-1108.
- Hill, P.J., Rollet, N., Rowland, D., Calver, C.R. and Bathgate, J., 2000. AUSTREA-1 cruise report: Lord Howe Island, south-east Australian margin and central Great Australian Bight. AGSO Record 2000/6, 138pp.
- Hill, P.J. and Exon, N.F., 2004. Tectonics and basin development of the offshore Tasmanian area incorporating results from deep ocean drilling. In: Exon, N.F., Kennett, J.P. and Malone, M.J. (Eds.), *The Cenozoic Southern Ocean: Tectonics, Sedimentation and Climate Change between Australia and Antarctica*. Geophysical Monograph 151, 19-42.
- Howard, J., 1993. A study of special variations and temporal cycles in Late Quaternary sediments from the continental slope east of Sydney, NSW. Honours thesis, University of Sydney, Australia, unpublished.

- Hubble, T.C.T. and Jenkins, C.J., 1984a. Sediment cores from the NSW continental slope of Port Stephens, Port Macquarie and Coffs Harbour. Ocean Sciences Institute Report, 6, 40p.
- Hubble, T.C.T. and Jenkins, C.J., 1984b. *Sediment samples and cores from the southern New South Wales upper continental slope*. University of Sydney Ocean Sciences Institute Report, **8**. 34p.
- Hubble, T.C.T., Robson, A.D., Jenkins, C.J., Garces, J. and Packham, G.H., 1987. Geophysical and geological results of the Cook 17-86 (Seamap 4) cruise: Sydney to Cook Strait. University of Sydney Ocean Sciences Institute Report 24, 60p.
- Hubble, T.C.T., Packham, G.H., Hendry, D.A.F. and McDougall, I., 1992. Granitic and monzonitic rocks dredged from the southeast Australian continental margin. *Australian Journal of Earth Sciences* **39**, 619-630.
- Huyer, A., Smith, R.L., Stabeno, P.J., Church, J.A. and White, N.J., 1988. Currents off south-eastern Australia: results from the Australian Coastal Experiment. *Australian Journal of Marine and Freshwater Research* **39**, 245-288.
- Isern, A.R., Pigram, C.J., Muller, D. and Anselmetti, F., 1998. Sea-level magnitudes and variations recorded by continental margin sequences on the Marion Plateau, northeast Australia. AGSO Record 1998/005. Australian Geological Survey Organisation, Canberra.
- Isern, A.R., Anselmetti, F.S. and Blum, P., 2001. ODP Leg 194; sea level magnitudes recorded by continental margin sequences on the Marion Plateau, Northeast Australia. *JOIDES Journal* 27(2), 7-11.
- Isern, A.R., Anselmetti, F.S. and Blum, P. and Shipboard Scientific Party, 2002. Proceedings Ocean Drilling Program, Initial Reports 194 (Constraining Miocene sea level change from carbonate platform evolution, Marion Plateau, northeast Australia). College Station, TX (Ocean Drilling Program).
- Isern, A.R., Anselmetti, F.S. and Blum, P., 2004. A Neogene carbonate platform, slope, and shelf edifice shaped by sea level and ocean currents, Marion Plateau (northeast Australia). In: Eberli, G.P., Masaferro, J.L. and Sarg, J.F.R. (Eds.), *Seismic imaging of carbonate reservoirs and systems*, AAPG Memoir **81**, 291-307.
- Jenkins, C.J., 1984. *Erosion and deposition at abyssal depths in the Tasman Sea. A seismic stratigraphic study of the bottom-current patterns.* University of Sydney Ocean Sciences Institute Report, **4**, 53p.

Jenkins, C.J., 1991. Research Cruise Summary, RV Franklin, FR5/91. CSIRO National Facility, Hobart.

Jenkins, C.J., 1992a. Abyssal sediment drifts, erosion and history of bottom water flow in the Tasman Sea southwest of New Zealand. *Australian Journal of Earth Sciences* **39**, 195-210.

- Jenkins, C.J., 1992b. GLORIA imagery and geological structure of the NSW continental margin (offshore Sydney Basin). In: Diessel, C.F.K. (Ed.), *Advances in the study of the Sydney Basin*. Proceedings of the 26th symposium, University of Newcastle, NSW, 9-14.
- Jenkins, C.J., Keene, J.B., Pritchard, T.R. and Schneider, P.M., 1986. *Seafloor photography in the Tasman Sea: results of the 1985 Sydney University/HMAS Cook program*. University of Sydney Ocean Sciences Institute Report, **18**, 62p.
- Jenkins, C.J. and Keene, J.B., 1992. Submarine slope failures of the southwest Australian continental slope: a thinly sedimented margin. *Deep-Sea Research* **39**, 121-136.

Johnson, D.P., 2004. The Geology of Australia. Cambridge University Press.

- Jones, H.A., Davies, P.J. and Marshall, J.M., 1975. Origin of the shelf-break off southeast Australia. *Journal of the Geological Society of Australia* **22**, 71-78.
- Jones, H.A. and Kudrass, H.R., 1982. Sonne cruise (SO-15 1980) off the east coast of Australia bathymetry and sea floor morphology. *Geologisches Jahrbuch*. Reihe D56, 55-68.
- Jones, H.A., Lean, J. and Schlüter, H.-U., 1982. Seismic reflection profiling off the east coast of Australia, Newcastle to Cape Hawke. *Geologisches Jahrbuch*. Reihe D56, 69-75.
- Jones, J.G. and McDougall, I., 1973. Geological history of Norfolk and Phillip Islands, southwest Pacific Ocean. *Journal of the Geological Society of Australia* **20**, 239-254.
- Jongsma, D. and Mutter, J.C., 1978. Nonaxial breaking of a rift valley: evidence from the Lord Howe Rise and the southeastern Australian margin. *Earth and Planetary Science Letters* **39**, 226-234.
- Kawagata, S., 2001. Tasman Front shifts and associated paleoceanographic changes during the last 250,000 years: foraminiferal evidence from the Lord Howe Rise. *Marine Micropaleontology* **41**, 167-191.
- Kawahata, H., 2002. Shifts in oceanic and atmospheric boundaries in the Tasman Sea (southwest Pacific) during the Late Pleistocene: evidence from organic carbon and lithogenic fluxes. *Palaeogeography Palaeoclimatology Palaeoecology* **184**, 225-249.
- Kawahata, H., Ohkushi, K. and Hatakeyama, Y., 1999. Comparative late Pleistocene paleoceanographic changes in the mid latitude boreal and austral western Pacific. *Journal Oceanography* 55, 747-761.
- Keen, T.R., Ko, D.S., Slingerland, R.L. and Riedlinger, S., 2006. Potential transport pathways of terrigenous material in the Gulf of Papua. *Geophysical Research Letters*, **33**, **L04608**, 4p.

- Kennedy, D. M., Woodroffe, C. D., Jones, B. G., Dickson, M. E. and Phipps, C. V. G., 2002. Carbonate sedimentation on tropical shelves around Lord Howe Island and Balls Pyramid, southwest Pacific. *Marine Geology* 188, 333-349.
- Kennedy, D.M. and Woodroffe, C.D., 2004. Carbonate sediments of Elizabeth and Middleton Reefs close to the southern limits of reef growth in the southwest Pacific. *Australian Journal of Earth Sciences* **51**, 847-857.
- Kennett, J.P., Houtz, R.E., et al., 1974. Initial Reports of the Deep Sea Drilling Project, Volume 29. Washington (U.S. Govt. Printing Office).
- Kennett, J.P., von der Borch, C.C., *et al.*, 1986. *Initial Reports of the Deep Sea Drilling Project*, Volume **90**. Washington (U.S. Govt. Printing Office).
- Kennett, J.P. and von der Borch, C.C., 1986. Southwest Pacific Cenozoic paleoceanography. In: *Initial Reports of the Deep Sea Drilling Project*, Volume 90, 1493-1517. Washington (U.S. Govt. Printing Office).
- Kress, A.G. and Veeh, H.H., 1980. Geochemistry and radiometric ages of phosphatic nodules from the continental margin of northern New South Wales, Australia. *Marine Geology* **36**, 143-157.
- Kroenke, L.W., Jouannic, C. and Woodward, P., 1983. *Bathymetry of the Southwest Pacific*. CCOP/SOPAC Map, 2 Sheets, scale 1:6,442,192.
- Kroh, F., Morse, M.P. and Hashimoto, T., 2007. New data on Capel and Faust Basins. October, 2007, *Preview*, Geoscience Australia, 22-24.
- Lane, J. and Heggie, D., 1993. Physical properties and bulk chemical composition of continental shelf and slope sediments of Australia. AGSO Record 1993/7, 86pp. Australian Geological Survey Organisation, Canberra.
- Launay, J., Dupont, J., Lapoville, A., Ravenne, C. and De Broin, C.E., 1976. Seismic traverses across the northern Lord Howe Rise and comparison with the southern part (southwest Pacific). *Intl. Symp. on Geodynamics in South-West Pacific*, Noumea, New Caledonia, 91-104.
- Lawford, Geoff., 2000. Data Standards and validation in AGSO: Geographic information officer's handbook. Australian Geological Survey Organisation, Information Management Branch, Canberra, Australia, 150p.
- Lea, D.W., Martin, P. A., Pak, D.K. and Spero, H.J., 2002. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos ridge core. *Quaternary Science Reveiws* **21**, 283-293.

- Liu, K., Pigram, C.J., Paterson, L. and Kendall, C.G., 1998. Computer simulation of a Cainozoic carbonate platform, Marion Plateau, north-east Australia. Spec. Publs int. Ass. Sediment 25, 145-161.
- Luick, J.L., Mason, L., Hardy, T. and Furnas, M.J., 2007. Circulation in the Great Barrier Reef lagoon using numerical tracers and *in situ* data. *Continental Shelf Research* **27**, 757-778.
- Marchesiello, P. and Middleton, J.H., 2000. Modelling the East Australian Current in the Western Tasman Sea. *Journal of Physical Oceanography* **30**, 2956-2971.
- Marshall, J.F., 1977. Marine geology of the Capricorn Channel area. BMR Bulletin 163. 81pp.
- Marshall, J.F., 1978. Morphology and shallow structure of the continental shelf of southern Queensland and northern New South Wales. BMR Record **1978/100**, 25p.
- Marshall, J.F., 1979. The development of the continental shelf of northern New South Wales. *BMR Journal of Australian Geology and Geophysics* **4**, 281-288.
- Marshall, J. F., 1980. Continental shelf sediments: southern Queensland and northern New South Wales. BMR Bulletin 207, 39pp.
- Marshall, J.F., 1983. Geochemistry of iron-rich sediments on the outer continental shelf off northern New South Wales. *Marine Geology* **51**, 163-175.
- Marshall, J.F., 1984. Geochemistry of iron-rich sediments on the outer continental shelf off northern New South Wales – Reply. *Marine Geology* **59**, 321-322.
- Marshall, J.F. and Cook, P.J., 1980. Petrology of iron- and phosphorous-rich nodules from the E. Australian continental shelf. *Journal of the Geological Society of London* **137**, 765-771.
- Marshall, J.F. and Davies, P.J., 1978. Skeletal carbonate variation on the continental shelf of eastern Australia. *BMR Journal* **3**, 85-92.
- Marshall, J.F., Tsuji, Y., Matsuda, H., Davies, P.J., Iryu, Y., Honda, N., and Satoh, Y., 1998. Quaternary and Tertiary subtropical carbonate platform development on the continental margin of southern, Queensland, Australia. In: Camoin, G.F. and Davies, P.J. (Eds.), *Reefs and Carbonate Platforms in the Pacific and Indian Oceans*. Blackwell Science, Oxford, U.K. Intl Assoc of Sedimentologists, Special Publication 25, 163-195.
- Martinez, I. J., 1994a. Late Pleistocene palaeoceanography of the Tasman Sea: implications for the dynamics of the warm pool in the western Pacific. *Palaeogeography Palaeoclimatology Palaeoecology* **112**, 19-62.

- Martinez, I. J., 1994b. Late Pleistocene carbonate dissolution patterns in the Tasman Sea. In: van der Lingen, G. J., Swanson, K. and Muir R. J. (Eds.), *Evolution of the Tasman Sea Basin*. Balkema, Rotterdam, 215-228.
- Matthai, C. and Birch, G.F., 2000a. Effect of coastal cities on surficial sediments mantling and adjacent high-energy continental margin central New South Wales, Australia. *Marine and Freshwater Research* **51**, 565-576.
- Matthai, C. and Birch, G.F., 2000b. Dispersion of dredge spoil dumped on a high energy continental margin (southeastern Australia). *Journal Marine Environmental Engineering* **6**, 1-32.
- Matthai, C., Birch, G.F., Jenkins, A. and Heijnis, H., 2000. Physical resuspension and vertical mixing of sediments on a high energy continental margin (Sydney, Australia). *Journal of Environmental Radioactivity* **52**, 67-89.
- Maung, T. U., Alder, D., Shaw, R. and Hawley, S., 1997. *Offshore Sydney Basin*. Bureau of Resource Sciences, Petroleum Prospectivity Bulletin **1997/1**. Canberra.
- McDougall, I. and Duncan, R.A., 1988. Age progressive volcanism in the Tasmantid Seamounts. *Earth and Planetary Science Letters* **89**, 207-220.
- McDougall, I., Embleton, B.J.J. and Stone, D.B., 1981. Origin and evolution of the Lord Howe Island, Southwest Pacific. *Journal of the Geological Society of Australia* **28**, 155-176.
- McDougall, I., Maboko, M.A.H., Symonds, P.A., Mc Culloch, M.T., Williams, I.S. and Kudrass, H.R., 1994. Dampier Ridge, Tasman Sea as a stranded continental fragment. *Australian Journal of Earth Sciences* **41**, 395-406.
- McDougall, I. and van der Lingen, G.J., 1974. Age of the rhyolites on the Lord Howe Rise and the evolution of the southwest Pacific Ocean. *Earth and Planetary Science Letters* **21**, 117-126.
- McKenzie, J.A., Davies, P.J., Palmer-Julson, A. et al., 1993. *Proceedings of the Ocean Drilling Program, Scientific Results*, Volume **133**. College Station, Texas, 902p.
- McKenzie, J.A. and Davies, P.J., 1993. Cenozoic evolution of carbonate platforms on the northeastern Australian margin: synthesis of Leg 133 drilling results. In: McKenzie, J.A., Davies, P.J., Palmer-Julson, A. et al., 1993. *Proceedings of the Ocean Drilling Program, Scientific Results*, Volume 133. College Station, Texas, 763-770.
- McNeill, D.F., 2005. Accumulation rates from well-dated late Neogene carbonate platforms and margins. *Sedimentary Geology* **175**, 73-87.

- Middleton, J.H., Cox, D. and Tate, P., 1997. The oceanography of the Sydney region. *Marine Pollution Bulletin* **33**, 124-131.
- Mortimer, N., Herzer, R.H., Gans, P.B., Parkinson, D.L. and Seward, D., 1998. Basement geology from Three Kings Ridge to West Norfolk Ridge, southwest Pacific Ocean: evidence from petrology, geochemistry and isotopic dating of dredge samples. *Marine Geology* **148**, 135-162.
- Mulhearn, P.J., 1983. Deep currents of the northern Tasman Sea basin. Deep-Sea Research 30, 1119-1126.
- Muller, D.R., Gaina, C. and Clark, S., 2000. Seafloor spreading around Australia. In: Veevers, J.J. (Ed.), Billion-year Earth history of Australia and neighbours in Gondwanaland. Pp.18-28. GEMOC Press, Sydney.
- Murray-Wallace, C.V., Ferland, M.A. and Roy, P.S., 2005. Further amino acid racemisation evidence for glacial age, multiple lowstand deposition on the New South Wales outer continental shelf, southeastern Australia. *Marine Geology* **214**, 235-250.
- Mutter, J.C., 1977. The Queensland Plateau. Bureau of Mineral Resources Bulletin 179, 55p.
- Mutter, J.C. and Karner, G.D., 1980. The continental margin off northeast Australia. In: Henderson,R.A. and Stephenson, P.J., (Eds.), *The Geology and Geophysics of Northeastern Australia*, Geological Society of Australia, Queensland, 47-69.
- National Bathymetric Map Series, 1976, 1:250,000, Canberra.
- Nees, S., 1997. Late Quaternary palaeoceanography of the Tasman Sea: the benthic foraminiferal view. *Palaeogeography Palaeoclimatology Palaeoecology*, 131, 365-389.
- Nelson, C.S., Hendy, C.H. and Cuthbertson, A.M., 1994. Oxygen isotope evidence for climatic contrasts between Tasman Sea and Southwest Pacific Ocean during the late Quaternary. In: van der Lingen, G.J., Swanson, K.M. and Muir, R.J. (Eds.), *Evolution of the Tasman Sea Basin*, 181-196.
- Norvick, M.S., Smith, M.A. and Power, M.R., 2001. The plate tectonic evolution of eastern Australasia guided by the stratigraphy of the Gippsland Basin. In: Hill, K.C. and Benecker, T. (Eds.), *Eastern Australasian Basins Symposium*. Melbourne, PESA Special Publication, vol. **1**, 15-23.
- O'Brien, G.W., Harris, J.R., Milnes, A.R. and Veeh, H.H., 1981. Bacterial origin of East Australian continental margin phosphorites. *Nature* **294**, 442-444.
- O'Brien, G. W. and Heggie, D. T., 1990. Organic carbon cycling and Quaternary phosphorite formation -East Australian continental margin (28 degrees-32 degrees S). Project 9131.03 sample locations and solid phase geochemical results. Bureau of Mineral Resources, Geology and Geophysics Record **1990/45**, Canberra. 109pp.

- O'Brien, P.E., Powell, T.G., and Wells, A.T., 1994. Petroleum Potential of the Clarence-Moreton Basin. In: Wells, A.T., and O'Brien, P.E. (Editors). *Geology and petroleum potential of the Clarence-Moreton Basin, New South Walees and Queensland*. Bureau of Mineral Resources, Australia, Bulletin **241**, 277-290.
- O'Brien, G.W. and Veeh, H.H., 1980. Holocene phosphorite on the East Australian continental margin. *Nature* **288**, 690-692.
- O'Halloran, G.J. and Johnstone, E,M., 2001. Late Cretaceous Rift Volcanics of the Gippsland Basin, SE Australia – new insights from 3D seismic , In: Hill, K.C. and Benecker, T. (Eds.), *Eastern Australasian Basins Symposium*. Melbourne, PESA Special Publication, vol. **1**, 353-361.
- Orme, G.R., 1977. The Coral Sea Plateau a major reef province. In: Jones, O.A. and Endean, R., (Eds.), *Biology and Geology of Coral Reefs*, Vol. 4. Academic Press, NY. p. 267-306.
- Packham, G.H., 1983. Morphology and acoustic properties of the N.S.W. slope with special references to the Coffs Harbour-Point Plommer and Montague Island-Green Cape area. University of Sydney Ocean Sciences Institute Report 1. 48p.
- Packham, G.H., Philip, G.M. and Hubble, T.C.T., 2006. Late Silurian or Early Devonian corals from the continental slope off southern New South Wales. *Alcheringa* **30(1)**, 33-42.
- Page, M.C., Dickens, G.R. and Dunbar, G.B., 2003. Tropical view of Quaternary sequence stratigraphy: siliciclastic accumulation on slopes east of the Great Barrier Reef since the Last Glacial Maximum. *Geology* **31(11)**, 1013-1016.
- Page, M.C. and Dickens, G.R., 2005. Sediment fluxes to Marion Plateau (southern Great Barrier Reef province) over the last 130 ky: New constraints on 'transgressive-shedding' off northeastern Australia. *Marine Geology* 219, 27-45.
- Payenberg, T.H.D., Boyd, R., Beaudoin, J., Ruming, K., Davies, S., Roberts, J.J. and Lang, S.C., 2006.
 The filling of an incised valley by shelf dunes an example from Hervey Bay, east coast of Australia. In: Dalrymple, R. and Leckie, D. (Eds.), *Incised Valley Systems*, SEPM Special Publication 85, Tulsa, 87-98.
- Pelejero, C., Calvo, E., McCulloch, M., Marshall, J.F., Gagan, M., Lough, J. and Opdyke, B.N., 2005. Preindustrial to modern interdecadal variability in coral reef pH. *Science* **309**, 2204-2207.
- Petkovic, P. and Buchanan, C., 2002. *Australian Bathymetry and Topography Grid digital dataset*. GeoCat No. 38713. Geoscience Australia, Canberra, Australia.

- Phipps, C.V.G., 1966. Evidence of Pleistocene warping of the New South Wales continental shelf. *Geol. Survey Canada Paper* **66-15**, 280-293.
- Phipps, C.V.G., 1967. The character and evolution of the Australian continental shelf. *APEA Journal* **7(2)**, 44-49.
- Pickard, G.L., Donguy, J.R., Henin, C. and Rougerie, R., 1977. *A review of the physical oceanography of the Great Barrier Reef and western Coral Sea*. Australian Institute of Marine Science, Monograph Series, 2, 134p.
- Pigram, C.J., 1993. *Carbonate Platform Growth, Demise and Sea Level Record: Marion Plateau, Northeast Australia.* PhD thesis, Australian National University, 316pp.
- Post, A.L., 2006. Physical surrogates for benthic organisms in the southern Gulf of Carpentaria, Australia: Testing and application to the Northern Planning area. Geoscience Australia Record 2006/09: 46.
- Potter, A. & Southby, C., et al, in press. Sedimentology and Geomorphology of the South West Planning Region of Australia, A spatial analysis. Geoscience Australia, Record **2006**. Geoscience Australia, Canberra.
- Quilty, P.G., 1993. Tasmantid and Lord Howe Seamounts: biostratigraphy and palaeoceanographic significance. *Alcheringa* **17**, 27-53.
- Quilty, P.G., Shafik, S., Jenkins, C.J. and Keene, J.B., 1997. An Early Cainozoic (Paleocene) foraminiferal fauna with *Fabiania* from offshore eastern Australia. *Alcheringa* **21**, 299-315.
- Quilty, P.G. and Packham, G.H., 2006. Late Paleocene foraminiferal faunas with Chapmanina and Reticulophragmium from offshore southeastern Australia: a Tethyan influence. *Alcheringa* **30**, 315-341.
- Richardson L., Mathews, E. and Heap, A., 2005. Geomorphology and sedimentology of the South Western Planning Area of Australia. Geoscience Australia, Record **2005/17**. 123p.
- Ringis, J., 1972. *The Structure and History of the Tasman Sea and Southwest Australian Margin*. PhD thesis, University of NSW, 338pp.
- Roberts, J.J. and Boyd, R., 2004. Late Quaternary core stratigraphy of the northern New South Wales continental shelf. *Australian Journal of Earth Sciences* **51**, 141-156.
- Roeser, H. and Shipboard Party, 1985. *Geophysical, geological and geochemical studies on the Lord Howe Rise. Final Report on the R/V Sonne Cruise, SO-36.* Bundesanstalt fur Geowissenschaften und Rohstoffe Cruise Report, 193p.

- Roff, J.C., Taylor, M.E. and Laughran, J., 2003. Geophysical approaches to the classificatopn, delineation and monitoring or marine habitats and their communities. Aquatic Conservation: Marine and Freshwater Ecosystems, 13: 77-90.
- Roy, P.S., 1998. Cainozoic geology of the New South Wales coast and shelf. In: Scheibner, E. and Basden, H. (Eds.), *Geology of New South Wales: Synthesis, Vol. 2 Geological Evolution*, Geological Survey of NSW Memoir 13(2), 361-385.
- Roy, P.S. and Thom, B.G., 1981. Late Quaternary marine deposition in New South Wales and southern Queensland – an evolutionary model. *Journal of the Geological Society of Australia* 28, 471-189.
- Roy, P.S. and Hudson, J., 1987. The marine placer minerals project seismic results from the continental shelf, southern NSW: Narooma-Montague Island-Bermagui area. Geological Survey of New South Wales Report **1987/094**, 65p.
- Roy, P.S. and Thom, B.G., 1991. Cainozoic shelf sedimentation model for the Tasman Sea margin of southeastern Australia. In: Williams M.A.J., Kershaw, A.P. and De Deckker, P. (Eds.), *The Cainozoic in Australia: a reappraisal of the evidence*, pp. 119-136. Geological Society of Australia Special Publication 18.
- Roy, P.S., Cowell, P.J., Ferland, M.A. and Thom, B.G., 1994a. Wave-dominated coasts. In: Carter, R.W.G. and Woodroffe, C.D. (Eds.), *Coastal Evolution*, Cambridge University Press, pp. 121-186.
- Roy, P.S., Zhuang, W-Y., Birch, G.F. and Cowell, P.J.M., 1994b. *Quaternary geology and placer mineral potential of the Forster-Tuncurry shelf, southeastern Australia*. Department of Mineral Resources, NSW Geological Survey Report, 164p.
- Rule, M., Jordan, A. and McIlgorm, A., 2007. *The marine environment of northern New South Wales, a review of current knowledge and existing datasets*. Northern Rivers Catchment Management Authority, 335p.
- Scott, D.L., 1993. Architecture of the Queensland Trough: implications for the structure and tectonics of the Northeastern Australian margin. *AGSO Journal of Geology and Geophysics* **14**, 21-34.
- Sdrolias, M., Muller, R.D. and Gaina, C., 2001. Plate tectonic evolution of eastern Australian marginal ocean basins. In: Hill, K.C. and Benecker, T. (Eds.), *Eastern Australasian Basins Symposium*. Melbourne, PESA Special Publication, vol. 1, 227-237.
- Sdrolias, M., Muller, R.D. and Gaina, C., 2003. Tectonic evolution of the southwest Pacific using constraints from backarc basins. In: Hillis, R.R. and Muller, R.D. (Eds.), *Evolution and Dynamics*

of the Australian Plate. Geological Society of Australia Special Publication 22 and Geological Society of America Special Paper **372**, 343-359.

- Sdrolias, M., Muller, R.D., Mauffret, A. and Bernardel, G., 2004. Enigmatic formation of the Norfolk Basin, SW Pacific, a plume influence on back-arc extension. *Geochemistry Geophysics Geosystems* **5**
- Shaw, R.D., 1979. On the evolution of the Tasman Sea and adjacent continental margins. PhD thesis, University of Sydney, Australia, unpublished.
- Shirley, J., 1964. An investigation of the sediments on the continental shelf of New South Wales, Australia. *Journal of the Geological Society of Australia* **11**, 331-341.
- Short, A.D. and Wright, D., 1981. Beach systems of the Sydney region. Australian Geographer 15, 8-15.
- Short, A.D. and Trenaman, N.L., 1992. Wave climate of the Sydney region, an energetic and highly variable ocean wave regime. *Australian Journal of Marine and Freshwater Research* **43**, 765-791.
- Skene, D.L., 1988. The Quaternary geology and evolution of the coast and inner continental shelf at Wooli, northern New South Wales. MSc thesis, University of Sydney, unpublished.
- Slater, R.A. and Goodwin, R.H., 1973. Tasman Sea guyots. Marine Geology 14, 81-99.
- Smith, W. H. F. and Sandwell, D. T., 1997. Global seafloor topography from satellite altimetry and ship depth soundings, *Science* **277**, 1957-1962.
- Stagg, H.M.J., Borissova, I., Alcock, M. and Moore, A.M.G., 1999a. Tectonic provinces of the Lord Howe Rise. *AGSO Research Newsletter*, November 1999 **31**, 31-32.
- Stagg, H.M.J., Willcox, J., Symonds, P., O'Brian, G., Colwell, J., Hill, P., Lee, C-S., Moore, A. and Struckmeyer, H., 1999b. Architecture and evolution of the Australian continental margin. *AGSO Journal* **17(5/6)**, 17-33.
- Stagg, H.M.J., Alcock, M.B., Borissova, I., and Moore, A.M.G., 2002. *Geological framework of the southern Lord Howe Rise and adjacent areas*. Geoscience Australia Record **2002/25**. 104pp.
- Standard, J.C., 1961. Submarine geology of the Tasman Sea. *Geological Society of America Bulletin* 72, 1777-1788.
- Stephenson, A.E. & Burch, G.J., 2004. Preliminary evaluation of the petroleum potential of Australia's central eastern margin. BMR Record **2004/006**.
- Struckmeyer, H.I.M., Symonds, P.A., Fellows, M.E. and Scott, D.L., 1994. Structure and stratigraphic evolution of the Townsville Basin, Townsville Trough, offshore northeastern Australia. BMR Record 1994/50. 71pp.

- Struckmeyer, H.I.M. and Symonds, P.A., 1997. Tectonostratigraphic evolution of the Townsville Basin, Townsville Trough, offshore northeastern Australia. *Australian Journal of Earth Sciences* 44(6), 799-817.
- Sutherland, L., 1998. Origin of north Queensland Cenozoic volcanism: relationship to long lava flow basaltic fields, Australia. *Journal of Geophysical Research* **103**, B11, 27,347-27,358.
- Symonds, P.A., Davies, P.J. and Parisi, A., 1983. Structure and stratigraphy of the central Great Barrier Reef. *BMR Journal of Australian Geology and Geophysics* **8**, 277-291.
- Symonds, P.A. *et al.*, 1992. *Northeast Australia : Torres Shelf Pandora Trough*. Continental Margins Program. Map Folio 4. Bureau of Mineral Resources.
- Taylor, L.W.H., 1977. *The western Coral Sea: sedimentation and tectonics*. PhD thesis, University of Sydney, Sydney, unpublished.
- Taylor, L.W.H. and Falvey, D.A., 1977. Queensland Plateau and Coral Sea Basin: stratigraphy, structure and tectonics. *APEA Journal* **17**, 13-29.
- Terrill, A., 1975. *Submarine geology of the northern Lord Howe Rise Mellish Rise area*. M.Sc. University of Sydney, unpublished.
- Tomczak, M. and Godfrey, J. S., 1994. Regional Oceanography: an introduction. Pergamon. 422p.
- Troedson, A.L., 1997. Late Quaternary sedimentation on the East Australian continental slope: responses to palaeoenvironmental change. PhD thesis, University of Sydney, 305p.
- Troedson, A.L. and Davies, P.J., 2001. Contrasting facies patterns in subtropical and temperature continental slope sediments: inferences from east Australian late Quaternary records. *Marine Geology* **172**, 265-285.
- Tsuji, Y., Marshall, J.F., Honda, N., Davies, P.J. and Matsuda, H., 1997. Facies relationships of subtropical and warm temperate carbonate environments: southern Queensland continental shelf, Australia: a joint program between the Marine Geoscience and Petroleum Geology Program, AGSO, and the Technology Research Center, Japan National Oil Corporation. AGSO Final Report, 2 volumes.
- Van de Beuque, S., Stagg, H.M.J., Sayers, J., Willcox, J.B. and Symonds, P.A., 2003. *Geological framework of the Northern Lord Howe Rise and adjacent areas*. Geoscience Australia Record **2003/01**, 64p.
- Vogt, P.R. and Conolly, J.R., 1971. Tasmantid Guyots, the age of the Tasman Basin, and motion between the Australian plate and the mantle. *Geological Society of America Bulletin* **82**, 2577-2584.
- von der Borch, C.C., 1970. Phosphatic concretions and nodules from the upper continental slope, northern New South Wales. *Journal Geological Society of Australia* **16**, 755-759.

- von Stackelberg, U. (Ed.), 1982a. Heavy-mineral exploration of the east Australian shelf, Sonne cruise SO-15, 1980. *Geologisches Jahrbuch*, Reihe **D56**, 215p.
- von Stackelberg, U. and Jones, H.A., 1982b. Outline of Sonne cruise SO-15 on the east Australian shelf between Newcastle and Fraser Island. *Geologisches Jahrbuch*, Reihe **D56**, 5-23.
- Walker, B., 1992. *Evolution of the Cato Trough Kenn Plateau region, offshore Queensland*. Honours thesis, University of Sydney, Australia, unpublished.
- Walsh, J.P. and Nittrouer, C.A., 2003. Contrasting styles of off-shelf sediment accumulation in New Guinea. *Marine Geology* **196**, 105-125.
- Watts, K.F., Varga, L.L. and Feary, D.A., 1993. Origins, timing, and implications of Miocene to Pleistocene turbidites, debris flows, and slump deposits of the Queensland Trough, northeastern Australia (Site 823). In: McKenzie, J.A., Davies, P.J., Palmer-Julson, A. et al., 1993. Proceedings of the Ocean Drilling Program, Scientific Results, Volume 133. College Station, Texas, 379-406.
- Webster, M.A. and Petkovic, P., 2005. *Australian Bathymetry and Topography digital dataset*. Geoscience Australia Record **2005/12**. Geoscience Australia, Canberra.
- Weissel, J.K. and Hayes, D.E., 1977. Evolution of the Tasman Sea reappraised. *Earth and Planetary Science Letters* **36**, 77-84.
- Weissel, J.K. and Watts, A.B., 1979. Tectonic evolution of the Coral Sea basin. *Journal of Geophysical Research* 84, 4572.
- Wellman, P. and McDougall, I., 1974. Cainozoic igneous activity in eastern Australia. *Tectonophysics* 23, 49-65.
- Wellman, P., Struckmeyer, H.I.M., Symonds, P.A., Fellows, M.E., Scott, D.L. and Draper, J.J., 1997. Coral Sea Region. In: Bain, J.H.C. and Draper, J.J. (Eds.), North Queensland Geology. AGSO Bulletin 240, 409-418.
- Whiteway, T., A. Heap, et al. (2007). "Seascapes of the Australian margin and adjacent sea floor : methodology and results. Geoscience Australia Record 2007/011. Geoscience Australia, Canberra.
- Willcox, J.B., 1981. Petroleum prospectivity of Australian marginal plateaus. In: Halbouty, M.T. (Ed.), Energy Resources of the Pacific Region, AAPG Studies in Geology, 12, 245-271.
- Willcox, J.B., Symonds, P.A., Hinz, K. and Bennett, D., 1980. Lord Howe Rise, Tasman Sea preliminary geophysical results and petroleum prospects. *BMR Journal* **5**, 225-236.

- Willcox, J.B., Symonds, P.A., Bennett, D. and Hinz, K., 1981. Lord Howe Rise area, offshore Australia: preliminary results of a co-operative Federal Republic of Germany/Australia geophysical survey. Bureau of Mineral Resources Australia Report, 228. 56p.
- Willcox, J.B. and Sayers, J., 2001. Gower Basin, Lord Howe Rise. In: Hill, K.C. and Benecker, T. (Eds.) *Eastern Australasian Basins Symposium*. Melbourne, PESA Special Publication, vol. 1, 189-200.
- Willcox, J.B. and Sayers, J., 2002. *Geological framework of the central Lord Howe Rise (Gower Basin) region.*Geoscience Australia Record 2002/11. Geoscience Australia, Canberra.
- Winterer, E.L., 1970. Submarine valley systems around the Coral Sea Basin (Australia). *Marine Geology* **8**, 229-244.
- Wolanski, E., Pickard, G.L. and Jupp, D.L.B., 1984. River plumes, coral reefs and mixing in the Gulf of Papua and the Northern Great Barrier Reef. *Estuarine, Coastal and Shelf Science* **18**, 291-314.
- Wolanski, E., Norro, A. and King, B., 1995. Water circulation in the Gulf of Papua. *Continental Shelf Research* **15**, 185-212.
- Woodroffe, C.D., Dickson, M.E., Brooke, B.P. and Kennedy, D.M., 2005. Episodes of reef growth at Lord Howe Island, the southernmost reef in the southwest Pacific. *Global and Planetary Change* **49**, 222-237.
- Zhu, H. and Symonds, P.A., 1994. Seismic interpretation, gravity modeling and petroleum potential of the southern Lord Howe Rise region. New Zealand Petroleum Conference Proceedings, 223-230.

8. Appendices

8.1. APPENDIX A: PROJECT STAFF

Name	Substantive Role	
Dr Andrew Heap	Project Manager/Geomorphologist/Sedimentologist	
Dr Jock Keene	Project Scientist/Geomorphologist/Sedimentologist	
Anna Potter	Project Scientist/Sedimentologist	
Christina Baker	Project Scientist/Sedimentologist (DEWHA funded)	
Maggie Tran	Project Scientist/Sedimentologist (DEWHA funded)	
Stuart McEwen	Laboratory Manager	
Christian Thun	Senior Laboratory Officer	
Tony Watson	Senior Laboratory Officer	
Alex Mclachlan	Senior Laboratory Officer	
Keith Henderson	Laboratory Officer	
Billie Poignand	Laboratory Officer	
Kylia Wall	Laboratory Officer (DEWHA funded)	

8.2. APPENDIX B: MAPPING PARAMETERS

8.2.1. Gravel, Sand, Mud and Carbonate Maps

- data imported to ArcGIS in csv format
- interpolate to raster using:
 - i) inverse distance weighted interpolator
 - ii) cell size of 0.01 decimal degrees (dd) about 1 kilometre
 - iii) optimal parameters: search radius of 12 points and power parameter of 1 (Ruddick, 2006).
 - iv) maximum extrapolation distance of 0.45 dd about 45 kilometres
 - raster image clipped to Australian Economic Exclusive Zone limit and the National Mapping 1:250,000 coastline from the National GIS.
 - additional clip areas were added where interpolator extrapolation produced
 - artefacts that were not consistent with the surrounding data points.

8.2.2. Sedbed Sediment Type – Folk Classification

- rasters for fractions were created as in #.2.1 but with a cell size of 0.05dd.
- rasters were exported as 0.05 dd grids of points
- samples were allocated to one of 15 Folk sediment type classifications based on gravel/sand/mud percentages using pearl script.
- classified data was imported into ArcGIS in .csv format
- point data was converted to raster with folk class number as the cell value

8.2.3. Sediment Texture – Red/Green/Blue Image

- rasters for fractions (#.2.1) were imported into ENVI
- grids were loaded into the bands of a RGB image (Gravel red, Sand green, Mud blue)
- image was saved as a geotiff and imported to ArcGIS

8.3. APPENDIX C: EXPLANATION OF TABLE FIELDS

8.3.1. Chapter 3 Tables

Location	Water Depth (m)	Data	Reference
32º 01'S; 165º 27'E	3196	DSDP Leg 21	Burns et al., 1973
New Caledonia Basin		Site 206	
36º 58'S; 165º 26'E	1389	DSDP Leg 21	Burns et al., 1973
Southern LHR		Site 207	
26º 07'S; 161º 13'E	1545	DSDP Leg 21	Burns et al., 1973
Northern LHR		Site 208	
15º 56'S; 152º 11'E	1428	DSDP Leg 21	Burns et al., 1973
Queensland Plateau		Site 209	Davies et al., 1991
13º 46'S; 152º 54'E	4643	DSDP Leg 21	Burns et al., 1973
Coral Sea Basin		Site 210	
43º 55'S; 154º 17'E	4729	DSDP Leg 29	Kennett et al., 1974
Central Tasman Sea		Site 283	
13º 55'S; 153º 16'E	4632	DSDP Leg 30	Andrews et al., 1975
Coral Sea Basin		Site 287	
21º 11'S; 161º 20'E	1111	DSDP Leg 90	Kennett et al., 1986
Chesterfield Plateau		Site 587	
26º 07'S; 161º 14'E	1533	DSDP Leg 90	Kennett et al., 1986
LHR Faust Basin		Site 588	
30º 43'S; 163º 38'E	1391	DSDP Leg 90	Kennett et al., 1986
Lord Howe Rise		Site 589	
31º 10'S; 163º 21'E	1299	DSDP Leg 90	Kennett et al., 1986
S Lord Howe Rise		Site 590	
31º 35'S; 164º 27'E	2131	DSDP Leg 90	Kennett et al., 1986
S Lord Howe Rise		Site 591	
36º 28'S; 165º 27'E	1088	DSDP Leg 90	Kennett et al., 1986
S Lord Howe Rise		Site 592	
16º 31'S; 148º 09'E	937	ODP Leg 133	Davies et al., 1991a ;
3.5nm E of Holmes		Site 811	McKenzie et al., 1993 ;
Reef, W Queensland			Davies et al., 1993
Plateau			Betzler et al., 1995
			Brachert and Dullo, 2000
17º 49'S; 149º 36'E	462	ODP Leg 133	Davies et al., 1991a ;
Tregrosse Reef		Site 812	McKenzie et al., 1993 ;
Queensland Plateau			Davies et al., 1993
slope			Betzler et al., 1995
			McNeill, 2005
			Brachert and Dullo, 2000
-------------------------	------	-------------	--------------------------
17º 50'S; 149º 30'E	539	ODP Leg 133	Davies et al., 1991a ;
Tregrosse Reef		Site 813	McKenzie et al., 1993 ;
Queensland Plateau			Davies et al., 1993
slope			Betzler et al., 1995
1			McNeill, 2005
			Brachert and Dullo, 2000
17º 50'S; 149º 31'E	520	ODP Leg 133	Davies et al., 1991a ;
Tregrosse Reef		Site 814	McKenzie et al., 1993 ;
Queensland Plateau			Davies et al., 1993
slope			Betzler et al., 1995
1			McNeill, 2005
			Brachert and Dullo, 2000
19º 09'S; 150º 00'E	466	ODP Leg 133	Davies et al., 1991a ;
Marion Plateau		Site 815	McKenzie et al., 1993 ;
19º 12'S; 150º 01'E	438	ODP Leg 133	Davies et al., 1991a ;
Marion Plateau		Site 816	McKenzie et al., 1993 ;
18º 09'S; 149º 46'E	1016	ODP Leg 133	Davies et al., 1991a ;
Queensland		Site 817	McKenzie et al., 1993 ;
~ Plateau/Townsville			Davies et al., 1993
Trough slope			Cotillon et al., 1994a
			McNeill, 2005
18º 04'S; 150º 03'E	749	ODP Leg 133	Davies et al., 1991a ;
Queensland		Site 818	McKenzie et al., 1993 ;
Plateau/Townsville			Davies et al., 1993
Trough slope			McNeill, 2005
16º 37'S; 146º 19'E	565	ODP Leg 133	Davies et al., 1991a ;
Great Barrier Reef		Sites 819	McKenzie et al., 1993 ;
			Davies et al., 1993
			Davies and Peerdeman,
			1998
16º 38'S; 146º 18'E	279	ODP Leg 133	Davies et al., 1991a ;
Great Barrier Reef		Site 820	McKenzie et al., 1993 ;
16º 39'S; 146º 17'E	213	ODP Leg 133	Davies et al., 1991a ;
Great Barrier Reef		Site 821	McKenzie et al., 1993 ;
16º 25'S; 149º 13'E	955	ODP Leg 133	Davies et al., 1991a ;
Great Barrier Reef		Site 822	McKenzie et al., 1993 ;
16º 37'S; 149º 36'E	1638	ODP Leg 133	Davies et al., 1991 ;
Queensland Trough		Site 823	McKenzie et al., 1993 ;
16º 27'S; 147º 46'E	1001	ODP Leg 133	Davies et al., 1991a ;
W of Holmes Reef, W		Sites 824	McKenzie et al., 1993 ;
Queensland Plateau			Davies et al., 1993
			Betzler et al., 1995

			Brachert and Dullo, 2000
16º 31'S; 148º 09'E	939	ODP Leg 133	Davies et al., 1991a ;
3.5nm E of Holmes		Site 825	McKenzie et al., 1993 ;
Reef, W Queensland			
Plateau			
19º 14'S; 150º 01'E	425	ODP Leg 133	Davies et al., 1991a ;
Marion Plateau		Site 826	McKenzie et al., 1993 ;
20º 34'S; 152º 24'E	374	ODP Leg 194	Isern et al., 2002 ;
Marion Plateau		Site 1192	Anselmetti et al., 2006
			Isern et al., 2001
			Ehrenberg et al., 2006
20º 14'S; 151º 48'E	348	ODP Leg 194	Isern et al., 2002 ;
Marion Plateau		Site 1193	Anselmetti et al., 2006
20º 15'S; 151º 59'E	374	ODP Leg 194	Isern et al., 2002 ;
Marion Plateau		Site 1194	Anselmetti et al., 2006
20º 24'S; 152º 40'E	419	ODP Leg 194	Isern et al., 2002 ;
Marion Plateau		Site 1195	Anselmetti et al., 2006
21º 00'S; 152º 52'E	304	ODP Leg 194	Isern et al., 2002 ;
Marion Plateau		Site 1196	Anselmetti et al., 2006
21º 05'S; 153º 04'E	348	ODP Leg 194	Isern et al., 2002 ;
		Site 1197	Anselmetti et al., 2006
20º 58'S; 152º 44'E	320	ODP Leg 194	Isern et al., 2002 ;
Marion Plateau		Site 1198	Anselmetti et al., 2006
20° 59'S; 152° 55'E	316	ODP Leg 194	Isern et al., 2002 ;
Marion Plateau		Site 1199	Anselmetti et al., 2006

Table 3.2. Cores and other samples on the continental shelf off NSW and southern Queensland: general location and reference.

Location	Water Depth (m)	Data	Reference
Off Fraser Island		Sedimentology,	Marshall et al., 1998
Surface samples		$^{14}\mathrm{C}$	
Off Fraser Island		Sedimentology	Boyd et al., 2004b, Boyd
Surface samples			et al., 2008
Off southern		Sedimentology	Davies, 1979
Queensland and			
NSW			
Surface sediments			
Off central NSW		Sedimentology,	Freland and Roy, 1997
Cores		¹⁴ C, amino acid	Ferland et al., 1995
		racemisation	Murray-Wallace et al.,
			2005

Off central NSW Cores	Sedimentology, trace metals	Matthai and Birch, 2000
Off central NSW	Sedimentology	Boyd et al., 2004a
Surface sediments		
Off Sydney	Sedimentology,	Birch and Davey, 1995
Surface samples	heavy metals	
Off Newcastle	Sedimentology,	Matthai and Birch, 2000
Surface samples	trace metals	
Off Sydney	Sedimentology	Albani and Rickwood,
Surface sediments		2000
Off northern NSW	Sedimentology	Boyd et al., 2004a
Surface sediments		
Off northern NSW	Sedimentology	Roberts and Boyd, 2004
Cores		
Off NSW	Sedimentology	Shirley, 1964
Surface samples		

Table 3.3. Bottom photography of the continental shelf off NSW and southern
Queensland.

Location	Water Depth (m)	Data	Reference
33º 52'S; 151º 22'E	~ 75	Muddy bottom,	Conolly, 1969
Off Sydney		pit, mounds,	
		tracks, trails	
34º 10'S; 151º 08'E	~ 45	Sand with	Conolly, 1969
Off Sydney		ripples	
34º 13'S; 151º 14'E	~ 120	Muddy bottom,	Conolly, 1969
Off Sydney		tracks, trails,	
		epifauna	
Off Fraser Island	Outer shelf	Rhodoliths and	Marshall et al., 1998;
		corals	Davies and Peerdeman,
			1998.
Off Evans Head and	40-68	Calcareous	Jones and Kudras, 1982
Cape Byron		gravel, sand,	
		rock, sea urchins,	
		sponges	

Queeno	iuna: iocutioi				
Queensland: location, data collected and reference.					
Table 3.4. Sea floor photography of continental slope off NSW and southern					

Location	Water Depth (m)	Data	Reference
34º 04'S; 151º 37'E	~280	Muddy bottom,	Conolly, 1969
Off Sydney		pits, mounds,	

		tracks, trails	
Off Sydney			Glenn et al., 2007
28°S to 32°S	100-3955 m	Iron-rich	O'Brien and Heggie,
Evans Head to		glauconite	1990.
Yamba		foraminifer sands.	
Cores and dredges		Phosphate and	
		iron hardgrounds	

Table 3.5. Cores and surface samples analysed from the east Australian continental
slope.

Location	Water Depth	Data	Reference
	(m)		
26º 30'S; 153º 53'E	842	58% carbonate,	Troedson and Davies,
Off Noosa		70% mud, ¹⁴ C, ¹⁸ O.	2001
26º 35'S; 153º 51'E	1022	53% carbonate,	Troedson and Davies,
Off Noosa		82% mud, ¹⁴ C, ¹⁸ O	2001
33º 57'S; 151º 55'E	1467	46% carbonate,	Troedson and Davies,
Off Sydney		55% mud, ¹⁴ C, ¹⁸ O	2001
33º 59'S; 152º 00'E	2007	47% carbonate,	Troedson and Davies,
Off Sydney		82% mud, ¹⁴ C, ¹⁸ O	2001
Upper continental		11 cores,	Glenn et al., 2007
slope, central NSW		carbonate, mud,	
		¹⁴ C	
33º 55.5'S; 151º 51.5'E	977	Grain size,	Howard, 1993
Off Sydney		carbonate,	
		magsus.	
34º 00.5'S; 152º 04.0'E	2445	Grain size,	Howard, 1993
Off Sydney		carbonate, mag	
		sus.	
34º 06.5'S; 152º 08.5'E	3017	Grain size,	Howard, 1993
Off Sydney		carbonate, mag	
		sus.	
Upper continental	200-1600	8 cores described	Hubble and Jenkins,
slope between 31° to			1984.
33º S.			
Upper continental	392-1200	5 cores described	Hubble and Jenkins,
slope between 36 ^o and			1984.
37º 15'S.			
31º 34'S; 153º 33'E	3768	46% carbonate,	Eade and van der
Off Smoky Cape		silty mud	Linden, 1970
Off Breaksea Spit	50 - 3500	Sedimentology,	Boyd et al., 2008
Surface samples		luminescence	

Off northern NSW One core	125	Biogenic muddy gravel (sponge spicules, bryozoa)	Roberts and Boyd, 2004
Off Fraser Island Surface samples	105 – 250	Foraminifer, Marshall et al., 199 molluscs, bryozoans, coralline algae	
Off Evans Head, NSW Two cores	1000-2000	48,56% carbonate, 59,84% mud	Lane and Heggie, 1993.
Off central NSW Four cores	167-238	90,70,64,59% carbonate, 10-20% mud, <10% biogenic gravel, C14.	Ferland and Roy, 1997. Heggie et al., 1993.
28ºS to 32ºS Evans Head to Yamba Cores and dredges	100-3955 m	Iron-rich glauconite foraminifer sands. Phosphate and iron hardgrounds	O'Brien and Heggie, 1990.

Table 3.6. Dredge Samples from the east Australian continental slope: Location andReference

Location	Water	Data	Reference
	Depth		
	(m)		
29º 23'S; 153º 50'E	385	Phosphate concretions	Von der
			Borch, 1970.
			Kress and
			Veeh, 1980.
30º 41'S; 153º 18'E	210	Nodules ferruginised and	Von der
		phosphatised with bones and	Borch, 1970.
		teeth.	Kress and
			Veeh, 1980.
	265	As above	Von der
30° 40'S; 153° 20'E			Borch, 1970.
30º01'S; 153º18'E	290	As above	Von der Borch,
			1970.
34º 22'S; 151º 58'E	4219	Metasediments,	Heggie et al.,
		metavolcanics, ?Palaeozoic	1992
34º 14'S; 152º 08'E	3967	Mudstone, sandstone, mid to	Heggie et al.,
		late Campanian	1992
34º 16'S; 152º 09'E	4612	Sandstone, Triassic.	Heggie et al.,
		Mudstone, ?late Mesozoic	1992

34º 09'S; 152º 15'E	4818	Basaltic andesite.	Heggie et al.,
		Mudstone, ?late Mesozoic.	1992
34º 09'S; 152º 14'E	4290	Volcanic sandstone, mudstone,	Heggie et al.,
		late Cretaceous. Mn/Fe nodules	1992
		and crusts	
33º 59'S; 152º 16'E	3533	Sandstone, mudstone,	Heggie et al.,
		glauconitic calcareniter, early	1992
		Paleocene - Eocene	
33º 49'S; 152º 04'E	1606	Mudstone, lithic sandstone, ?late	Heggie et al.,
		Mesozoic. Living corals,	1992
		sponges, annelids, echinoderms,	
		brachiopods, bivalves,	
		gastropods	
33º 45'S; 152º 06'E	1745	Mudstone, early Eocene.	Heggie et al.,
		Glauconitic	1992
		calcarenite, ?Paleocene	
33º 32'S; 152º 25'E	3082	Sandstone, siltstone, mid to late	Heggie et al.,
		Campanian	1992
33º 12'S; 152º 46'E	3470	Vesicular basalt, hyaloclastite.	Heggie et al.,
		Sandstone	1992
33º 34'S; 152º 21'E	2876	Volcanic breccia of basalt	Heggie et al.,
		and ?rhyolite. Lithic sandstone,	1992
		mudstone mid to late	
		Campanian	
34º 02'S; 151º 39'E	420	Ferruginised/phosphatised	Jenkins, 1991.
,		basaltic breccia	<i>,</i>
33º 59.1'S; 152º 16.5'E	3533-	Glauconitic calcarenite, early	Quilty et al.,
112/DR008	3306	Paleocene.	1997
37º 12'S; 150º 45'E	3750	Granodiorite, Middle Devonian	Hubble et al.,
0, 120, 100 10 2	0.00		1992
37º14'S; 150º 42' E	4000	Granodiorite, Middle Devonian	Hubble et al.,
0, 110, 100 12 2	1000		1992
36º 06'S; 150º 39'E	2610-	Limestone, latest Silurian-Early	Packham et al.,
	2155	Devonian. Fe/Mn coated shale	2006
	2100	and siltstone	_000
36º 10'S; 150º 34'E	1700	Leuco-quartz monzodiorite,	Hubble et al.,
	1,00	Early Cretaceous, 101 Ma	1992
36º 32'S; 150º 48'E	4500	Serpentinite, mudstone	Hubble et al.,
00 02 0, 100 TO L	1000		1992
36º 38'S; 150º 48'E	4500	Serpentinite, mudstone	Hubble et al.,
50° 50 5, 150° 40 E	+300		1992
270 07/S. 1500 46/E	4000	Lithic conditions	
37º 07'S; 150º 46'E	4000-	Lithic sandstone	Packham et al.,
	4500		2006

37º 13'S; 150º 44'E	4000- 4500	Meta-basalt	Hubble et al., 1992
37º 17'S; 150º 46'E	4000- 4500	Meta-basalt, marble	Hubble et al., 1992
36º 17'S; 150º 35' E	1750	Schist, slate, limestone.	Quilty and
		Fe/Mn coated scoriaceous basalt	Packham, 2006
		lava blocks in late Paleocene	
		limestone	
35º 57.5'S; 151º 39.2'E	~ 200	Green foraminiferal sand	Conolly, 1969
34º 00.2'S; 151º 44.2'E	~ 500	Green sand	Conolly, 1969
34º 3.2'S; 151º 51.5'E	~ 1200	Calcareous green mud	Conolly, 1969
34º 08'S; 152º 00'E	~ 1700	Calcareous green mud	Conolly, 1969
34º 09'S; 151º 55'E	~ 2000	Calcareous green mud	Conolly, 1969
34º 13'S; 151º 38'E	~ 700	Calcareous green mud	Conolly, 1969
Off Fraser Island	270-600	Shallow water limestone,	Marshall et al.,
		dolomitic limestone (Oligocene-	1998
		middle Miocene). Stable	
		isotopes.	

Table 3.7. Sea floor photography of the Tasman Basin: Location and Reference

Location	Water Depth (m)	Data	Reference
34º 35.7'S; 152º 02.5'E	4820	Pebbles and	Jenkins et al., 1986
Abyssal plain at foot		blocks in	
of continental slope E		bioturbated mud.	
of Nowra		Current indicators	
30° 45.5'S; 153° 46.8'E	4515-4585	Strong current	Jenkins et al. 1986
Abyssal plain at foot		indicators in	
of continental slope E		bioturbated mud	
of Coffs Harbour			
30º 40.6'S; 154º 21.4'E	4365-4432	Crest of linear	Jenkins et al., 1986
E of Coffs Harbour		sediment drift.	
		Current indicators	
30° 43.8'S; 154° 29.2'E	4640	E flank of	Jenkins et al., 1986
E of Coffs Harbour		sediment drift	
33º 22'S; 156º 45'E	4800-4811	Between Taupo	Baker et al., 1988a
		Smt and Dampier	
		Ridge	

31º 41'S; 155º 51'E	4705-4750		Baker et al., 1988a
Abyssal hills			
32º 20'S; 154º 20'E	4730-4735		Baker et al., 1988a
Abyssal plain			
35º 33.3'S; 155º 40.4'E	4408-4418	Mn nodules and	Glasby et al., 1986
		bioturbated	
		sediment	

Table 3.8. Cores and dredge samples from the Tasman Basin: Location and	
Reference	

Location	Water Depth (m)	Data	Reference
36º 15'S; 155º 35'E	4300	Mn nodules,	Exon et al., 1980
		greenish grey	
		calcareous mud	
35º 48.6'S; 156º 31.8'E	4714-4548	Mn nodules	Glasby et al., 1986
34º 50'S; 155º 28'E	~ 4500	Red clay	Conolly, 1969
36º 41'S; 158º 29'E	~ 4500	Red clay	Conolly, 1969
31º 37'S; 154º 14'E	4565	40% carbonate,	Eade and van der
		sandy mud	Linden, 1970
31º 31'S; 155º 01'E	4654	43% carbonate,	Eade and van der
		silty mud	Linden, 1970
31º 29'S; 155º 45'E	4838	55% carbonate,	Eade and van der
		clay	Linden, 1970
31º 29'S; 156º 13'E	4689	55% carbonate,	Eade and van der
		silty mud	Linden, 1970
31º 31'S; 156º 54'E	4283	42% carbonate,	Eade and van der
		silty mud	Linden, 1970
Numerous cores in	4082-4830	Carbonate	Martinez, 1994b
Tasman Basin		dissolution	

Table 3.9. Size of erosion scours at base of Tasmantid Seamounts in the EMR
deduced from Eltanin seismic records (from Jenkins, 1984)

deduced from Ending Scisinic records (from Jenkins, 1901)				
Seamount Location	Seamount	Seamount	Moat width	Moat depth (m)
	height (m)	width at base	(Km)	
		(Km)		
33º 36'S; 153º 54'E	664	10.8	12-23 east and	30-48
Unnamed seamount			west side	
28º 12'S; 155º 48'E	4270	43	>29 east side	332
Britannia Seamount				

25º 48'S; 154º 30'E	3567	43	6 west side	18
Recorder Seamount				

Table 3.10. Sea floor photography of Tasmantid seamounts: location, data collected and reference.

Location	Water Depth	Data	Reference
	(m)		
36º 37.8'S; 155º 31.0'E	4840-4880	Eroded scoured	Jenkins et al., 1986
Gascoyne Smt		moat at W foot.	
South of EMR		Gravel and boulder	
		lag.	
30° 50'S; 156° 42'E	4614-4592	Eroded scoured	Baker et al., 1988a
Derwent Hunter		moat	
Seamount			

Table 3.11. Cores and Dredge Samples from the Tasmantid and Lord HoweSeamount chains: Location and Reference

Location	Water Depth	Data	Reference
	(m)		
36° 39'S; 156° 14'E	600-900	Basalt. Petrography	McDougall and Duncan,
Gascoyne Smt		and K-Ar	1988
33º 06'S; 156º 17'E	500-750	Basalt and	McDougall and Duncan,
Taupo Bk		limestone	1988;
		Petrography and K-	Slater & Goodwin, 1973
		Ar	
32° 59'S; 156° 14'E	500-750	Petrography and K-	McDougall and Duncan,
Taupo Bk		Ar	1988
30º 56'S; 156º 14'E	600-1000	Petrography and K-	McDougall and Duncan,
Derwent Hunter G		Ar	1988
30° 47'S; 155° 21'E	1150-1250	Basalt, limestone	McDougall and Duncan,
Derwent Hunter G		and phosphorite.	1988; Slater & Goodwin,
		Petrography and K-	1973
		Ar	
28º 38'S; 155º 27'E	1100-1400	Petrography and K-	McDougall and Duncan,
Britannia G		Ar	1988
27º 29'S; 155º 18'E	1500-1900	Petrography and K-	McDougall and Duncan,
Queensland G		Ar	1988
Barcoo	300-350	Basalt and	Slater & Goodwin, 1973
		limestone	
Gifford	300-350	Limestone and	Slater & Goodwin, 1973
		phosphorite	
Lord Howe	50-350	Limestone	Slater & Goodwin, 1973

Location	Water Depth	Data	Reference
	(m)		
33º 10'S; 159º 27'E	3609	85% carbonate, very	Eade and van der
Lord Howe Rise		sandy mud	Linden, 1970
33º 23'S; 161º 37'E	1448	93% carbonate,	Eade and van der
Lord Howe Rise		sandy mud	Linden, 1970
33º 31'S; 164º 03'E	1834	94% carbonate,	Eade and van der
Lord Howe Rise		sandy mud	Linden, 1970
33º 30'S; 165º 02'E	3045	93% carbonate,	Eade and van der
New Caledonia Basin		sandy mud	Linden, 1970
Numerous core on	1500-3000	Carbonate	Martinez, 1994b
Lord Howe Rise and		dissolution	
New Caledonia Basin			
Lord Howe Rise		¹⁸ O	Nelson et al., 1994
30° 33'S; 161° 26'E	1340	Benthic forams	Nees, 1997
Lord Howe Rise		¹⁸ O	
33º 23'S; 161º 37'E	1448	Benthic forams	Nees, 1997
Lord Howe Rise		¹⁸ O	
25º 16'S; 162º 00'E	1299	¹⁸ O, foram-nanno	Kawahata, 2002,
Lord Howe Rise		ooze, primary	Kawahata et al., 1999
		production, dust	Kawagata, 2001
30° 00'S; 162° 00'E	1158	¹⁸ O, foram-nanno	Kawahata, 2002,
Lord Howe Rise		ooze, primary	Kawahata et al., 1999
		production, dust	Kawagata, 2001
35° 00'S; 162° 31'E	1338	¹⁸ O, foram-nanno	Kawahata, 2002,
Lord Howe Rise		ooze, primary	Kawahata et al., 1999
		production, dust	Kawagata, 2001
35º 30'S; 161º 00'E	3166	¹⁸ O, coccolith ooze,	Kawahata, 2002,
Lord Howe Rise		primary	Kawahata et al., 1999
		production, dust	Kawagata, 2001
27º 46'S; 160º 13'E	2505	Geochemical	Colwell et al., 2006
W LHR Capel Basin		studies	
Core MD06-3036			
27º 47'S; 160º 11'E	2584	Geochemical	Colwell et al., 2006
W LHR Capel Basin		studies	
Core MD06-3037			
27º 47'S; 160º 11'E	2585	Geochemical	Colwell et al., 2006
W LHR Capel Basin		studies	
Core MD06-3038			

Table 3.12. Cores samples from the plateaus and rises in the Tasman Sea: Location and Reference

Location	Water Depth	Data	Reference
	(m)		
28º 34'S; 163º 00'E			Roeser et al., 1985
Central LHR, Vening-			
Meinesz FZ			
28º 38'S; 163º 04'E	1650	Mn crust, breccia,	Colwell et al., 2006
Central LHR, Vening-		conglomerate	
Meinesz FZ			
28º 33'S; 163º 00'E	1600	Mn crust,	Colwell et al., 2006
Central LHR, Vening-		volcaniclastic,	
Meinesz FZ		limestone breccia	
28º 25'S; 162º 47'E	1700-1450	Mn crusts, nodules,	Colwell et al., 2006
Central LHR, Vening-		volcanics, breccia	
Meinesz FZ		and epifauna.	
E flank of southern		Basalt, hyaloclastic	Launay et al., 1976
Lord Howe Rise		breccia	Willcox et al., 1981
Dampier Ridge		Granite, ?andesite,	McDougall et al., 1994
		250-270 Ma	

Table 3.13. Dredge samples from the plateaus and rises in the Tasman Sea:Location and Reference

Table 3.14. Bottom photography from the Lord Howe Rise, Dampier Ridge, Cato
Trough, Kenn Plateau and Mellish Rise: Location and Reference

Location	Water Depth	Data	Reference
	(m)		
23º 15'S; 154º 55'E	3000-3200	BC1	Walker, 1992
22º 37'S; 155º 03'E	3380	BC2	Walker, 1992
22º 34'S; 155º 30'E	3068	BC3	Walker, 1992
32º 59'S; 160º 01'E	1552-1560		Baker et al., 1988a
W flank LHR			
28º 34'S; 162º 52'E	1698-1700		Baker et al,. 1988a
Channel LHR			
29º 59'S; 159º 52'E	1992-200		Baker et al., 1988a
W slope LHR			
30° 52'S; 156° 47'E	4556-4374		Baker et al., 1988a
Base of Dampier			
Ridge			

Table 3.15. Cores samples from the Cato Trough, Kenn Plateaus and Mellish Rise:
Location and Reference

Location	Water Depth (m)	Data	Reference
22º 37.7'S; 155º 03.5'E	3380	Calcareous sandy mud	Walker, 1992

22º 34.3'S; 155º 30.5'E	3068	Calcareous sandy mud	Walker, 1992
19º 43.3'S; 154º 59.3'E	3152	Calcareous sandy mud	Walker, 1992

Table 3.16. Dredge samples from the Cato Trough, Kenn Plateau and Mellish Rise: Location and Reference

Location	Water Depth (m)	Data	Reference
Numerous dredges		Petrography and age	Exon et al.,
from Kenn Plateau			2006

Table 3.17. Cores and other Samples from the Marion Plateau: Location and Reference

Water Depth	Data	Reference
320	Carbonate, Sr sedimentology, ¹⁸ O	Page and Dickens, 2005
	(m)	(m) 320 Carbonate, Sr

Table 3.18. Cores and other Samples from the Queensland Plateau, Townsville andQueensland Troughs: Location and Reference

Location	Water Depth	Data	Reference
	(m)		
Queensland Trough		Carbonate %,	Dunbar and
154 surface samples		mineralogy, Sr	Dickens,
and cores			2003a; Francis
			et al., 2007
Queensland Trough		Carbonate, stratigraphy,	Dunbar et al.,
and Plateau		¹⁴ C	2000
cores			
Queensland Trough		Carbonate,	Dunbar and
cores		sedimentology, ¹⁸ O	Dickens,
			2003b
Queensland Trough		Carbonate,	Page et al.,
cores		sedimentology, ¹⁴ C	2003
Queensland Trough		Carbonate, Sr	Page and
cores		sedimentology, ¹⁸ O	Dickens, 2005
Townsville Trough		Carbonate,	Harris et al.,
		sedimentology, ¹⁴ C	1990
Queensland Plateau		Sediment type	Gardner, 1970
Surface samples			

Table 3.19. Cores and other Samples from the Eastern Plateau and Reefs: Location and Reference

Location	Water Depth(m)	Data	Reference
9º 54'S; 144º 39'E	760	Dark grey calcareous	de Garidel-
Ashmore Trough		mud, ¹⁴ C, ¹³ C, ¹⁸ O	Thoron et al.,
			2004
At shelf edge	100-120	3 cores, ¹⁴ C	Harris et al.,
			1996b.
Ashmore Trough		Core for palaeoclimate	Beaufort et al.,
Cores MD05		studies IMAGES	2005

Table 3.20. Cores and other Samples from the Coral Sea Basin, Louisiade Plateauand Louisiade Trough: Location and Reference

Location	Water Depth (m)	Data	Reference
Coral Sea Basin		Sediment type	Gardner, 1970
Surface samples			

Table 3.21. Cores and other	Samples from	the Norfolk	Island	ridges ar	d basins:
Location and Reference					

Location	Water	Data	Reference
	Depth		
	(m)		
79 dredge locations	various	Rock petrography, K-	Various authors listed in
Norfolk Basin		Ar dating.	DiCaprio et al., 2007.
			Mortimer, 1998.
32º 01'S; 165º 28'E		Paleoclimate,	Marion Dufresne MD106,
New Caledonia		IMAGES	1997
Basin			
Core MD97-2123			
26º 46'S; 163º 38'E		Paleoclimate,	Marion Dufresne MD106,
W Fairway Basin		IMAGES	1997
Core MD97-2124			
30º 26'S; 165º 56'E	2704-	Foram nanno-ooze	Colwell et al., 2006
E Fairway Basin	2456		
seamount dredge			
27º 43'S; 165º 17'E	2900	Volcaniclastic	Colwell et al., 2006
E Fairway Basin		breccia, sandstone,	
seamount dredge		Mn crust	
26º 33'S; 165º 01'E	2889	Geochemical studies	Colwell et al., 2006
E Fairway Basin			
Core MD06-3029			

26º 35'S; 164º 46'E	2928	Geochemical studies	Colwell et al., 2006
E Fairway Basin			
Core MD06-3030			
26º 35'S; 164º 46'E	2930	Geochemical studies	Colwell et al., 2006E
E Fairway Basin			
Core MD06-3032			

8.3.2. Chapter 4 Tables

E.g. Table 4.1

Feature Area in EMR % total* EMR Area	% EEZ Area	% Total EEZ area located in EMR	Water Depth Range** in EMR (m)	
---------------------------------------	---------------	--	--------------------------------------	--

Area in EMR: Area in km² covered by this feature within the EMR.

% **total* EMR Area:** Percent of the total area of the EMR (not including areas with water depths <10 m) which is allocated to this feature.

% **EEZ Area:** Percent of the total area of the EEZ which is allocated to this feature.

% Total EEZ area located in EMR: The proportion of the EEZ area allocated to this feature that lies within the EMR.

Water Depth Range in EMR (m):** Range of water depths occurring in the EMR area (not including areas with water depths <10m) allocated to this feature. To reduce error, depths were determined from the point data underpinning the bathymetry grid rather than the interpolated data. Values are rounded to the nearest 10 m.

E.g. Table 4.2			
PROVINCE/ # Feature	No. sample points	% EMR Area	Average sample density

PROVINCE/ # Feature: Features are nested within Provinces. Shelf, Slope, Rise and Abyssal Plain/Deep Ocean Floor Provinces are capitalised. Statistics for Provinces include the area of all features occurring within them. Feature names are not capitalised. Shelf, slope, rise and AP/DOF features comprise the area of these provinces with no other features identified within them.

No. sample points: The total number of samples used in this study that are located within the area allocated to this province or feature. Some samples included in this figure have only textural or compositional data.

%EMR Area: As in Table 4.1.

Average sample density (samples per km²): The average sample density across all occurrences of the feature in the EMR. This is calculated by dividing the total area of the feature by the number of sample points within it. Results have been rounded to the nearest 100 km².

8.3.3. Chapter 5 Tables

E.g. Table 5.1

Bioregion	No. sample points (no. added for task)	% EMR Area*	Average sample density (km²)
-----------	--	-------------	------------------------------

No. sample points (no. added for task): The number of sample points occurring in the bioregion including both data existing before this task and new assays generated for this task. The number of samples added to this bioregion for this task is given in brackets.

%EMR Area: Percentage of the total area of the NWMR allocated to this bioregion. Percentages are calculated from the NWMR including the area not assigned to any bioregion.

Average sample density (km²): As for Table 4.2.

E.g. Table 5.2

Feature	% of bioregion area covered	% of EMR area this unit lies within this bioregion	% of EEZ area this unit lies within this bioregion
---------	-----------------------------	---	---

% of bioregion area covered: The percentage of the total area of the bioregion that is included in the NWMR that falls within this feature. Calculations do not include areas with water depths <10 m.

% of EMR area this unit lies within this bioregion: The percentage of the total area covered by this feature in the EMR that lies within the area of this bioregion included in the EMR.

% of EEZ area this unit lies within this bioregion: The percentage of the total area covered by this feature in the EEZ that lies within the area of this bioregion included in the EMR.

E.g. Table 5.3

Feature	Depth Range (m)	Mean Depth (m)
---------	--------------------	-------------------

Depth Range (m): Range of water depths occurring in the area of this feature within the bioregion(not including areas with water depths <10 m). To reduce error, depths were determined from the point data underpinning the bathymetry grid rather than the interpolated data. Values are rounded to the nearest 10 m.

Mean Depth (m): The mean water depth occurring in the area of this feature within the bioregion. To reduce error, depths were determined from the point data underpinning the bathymetry grid rather than the interpolated data. Areas with water depths <10 m were removed prior to calculations. Values are rounded to the nearest 10 m.

8.4. APPENDIX D: METADATA

(To be included with GIS files in final report DVD)

8.5. APPENDIX E: DATA GENERATED

See excel workbook "EMR Task 2007 Assays".

8.6. APPENDIX F: LASER GRAINSIZE DISTRIBUTIONS

See PDF file "Appendix F EMR Laser Reports".

8.7. APPENDIX G: WEB ACCESSIBLE DIGITAL MAPS FOR DATA COVERAGE AND SEDIMENT PROPERTIES

(To be included in final report DVD)

Instructions for the DVD

Sedimentology and Geomorphology of the East Marine Region: A Spatial Analysis

This DVD contains the above-titled Report as Record 2008/10.pdf

View this .pdf document using Adobe Acrobat Reader (Click Adobe.txt for information on readers)

Click on: Record 2008/10.pdf to launch the document.

Directories on this DVD:

Appendix D: Metadata File with electronic documents as .txt files

Appendix E: Data Generated (Refer to EMR_Task_2007_Assays.xls)

Appendix F: Laser grainsize distributions (Refer to Appendix_F_EMR_Laser_Reports.pdf)

Appendix G: Web Accessible Digital Maps for Data Coverage and Sediment Properties

Within the directory of GIS Files, sub-directories include: boundaries, georef image files, layer files, polygons, rasters and sample points. All these subdirectories can be viewd using ARC GIS Catelogue and ARC MAP. Sub-directories of figures include three different formats of all figures found in the report: JPEG, GIF and TIFF.