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Glossary 

Term Description 

Anisotropy A term used to describe the directional dependence of given properties; for example, the 

hydraulic properties of an aquifer (as opposed to isotropy, which denotes identical 

properties in all directions) 

Aquifer Rock or sediment in a formation, group of formations or part of a formation, which is 

saturated and sufficiently permeable to transmit quantities of water to wells and springs 

Aquitard A saturated geological unit that is less permeable than an aquifer and incapable of 

transmitting useful quantities of water. Aquitards often form a confining layer over aquifers 

Coal measure Geological strata of the Carboniferous or Permian periods usually containing sequences of 

coal seams 

Coal seam Individual layers containing mostly coal. Coal seams store both water and gas. Coal seams 

generally contain groundwater that is saltier than that in aquifers that are used for drinking 

water or agriculture 

Coal seam gas A form of natural gas (generally 95 to 97% pure methane, CH4) typically extracted from 

permeable coal seams at depths of 300 to 1000 m. Also called coal seam methane (CSM) or 

coalbed methane (CBM) 

Confined aquifer An aquifer that is isolated from the atmosphere by an impermeable layer. Pressure in 

confined aquifers is generally greater than atmospheric pressure 

Covariance Covariance is a measure of how much two given variables vary together, as a function of 

either space or time 

Darcy flow Liquid flow that conforms to Darcy’s law 

Darcy’s law A constitutive equation that describes the flow of a fluid through a porous medium such as 

rock or soil 

Depressurisation The lowering of static groundwater levels through the partial extraction of available 

groundwater, usually by means of pumping from one or several groundwater bores or gas 

wells 

Dewatering The lowering of static groundwater levels through complete extraction of all readily 

available groundwater, usually by means of pumping from one or several groundwater 

bores or gas wells 

Dirichlet boundary 

condition 

Also known as a first type boundary condition, involves specification of the value that the 

solution of a differential equation needs to produce along the boundary of a model domain. 

Applicable to both numerical and analytical models 

Gaussian (probability 

distribution) 

A continuous function that approximates the exact binomial distribution and which 

represents the statistical distribution of many random variables. This can be described using 

only two parameters: mean (i.e. central tendency) and variance (i.e. spread). Typically 

visualised as a symmetrical bell-shaped graph 

Groundwater Water occurring naturally below ground level (whether in an aquifer or other low-

permeability material), or water occurring at a place below ground that has been pumped, 

https://en.wikipedia.org/wiki/Covariance
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Term Description 

diverted or released to that place for storage. This does not include water held in 

underground tanks, pipes or other works 

Groundwater (single phase) 

flow model 

A numerical solution to a partial differential equation used to describe the flow of water in 

the subsurface. Groundwater flow models involve the flow simulation of a single fluid phase 

(i.e. water). Common parameters used in groundwater flow models are hydraulic 

conductivity, specific yield and specific storage 

Hydraulic conductivity   A coefficient of proportionality describing the rate at which a fluid can move through a 

permeable medium 

Hydraulic gradient The difference in hydraulic head between different locations within or between 

hydrostratigraphic units, as indicated by water levels observed in wells constructed in those 

units 

Hydraulic head The potential energy contained within groundwater as a result of elevation and pressure. It 

is indicated by the level to which water will rise within a bore constructed at a particular 

location and depth. For an unconfined aquifer, it will be largely subject to the elevation of 

the water table at that location. For a confined aquifer, it is a reflection of the pressure that 

the groundwater is subject to and will typically manifest in a bore as a water level above the 

top of the confined aquifer, and in some cases above ground level 

Hydraulic pressure The total pressure that water exerts on the materials comprising the aquifer. Also known as 

pore pressure 

Hydrostratigraphic unit A formation, part of a formation, or group of formations of significant lateral extent that 

compose a unit of reasonably distinct (similar) hydrogeologic parameters and responses 

Interburden  Material of any nature that lies between two or more bedded ore zones or coal seams 

Intrinsic permeability The permeability of a given medium independent of the type of fluid present 

Isotropy The condition in which the hydraulic properties of a hydrostratigraphic unit are equal in all 

directions 

Kriging  A geostatistical method of spatial interpolation (i.e. prediction) using the weighted mean 

value of surrounding data points. The data are a set of observations with some spatial 

correlation present 

Monte Carlo sampling  The sampling of uncertain data for use in Monte Carlo risk analysis or simulation 

Monte Carlo simulation The use of Monte Carlo analysis techniques to estimate the most probable outcomes from 

a model with uncertain input data 

Numerical realisation A numerically generated sample (usually of model parameters) drawn from a probability 

distribution, used to run a model simulation 

Permeability The measure of the ability of a rock, soil or sediment to yield or transmit a fluid. The 

magnitude of permeability depends largely on the porosity and the interconnectivity of 

pores and spaces in the ground 

Porosity The proportion of the volume of rock consisting of pores, usually expressed as a percentage 

of the total rock or soil mass 

Probability density function A function that describes the relative likelihood for a random variable to take on a given 

value 

http://www.glossary.oilfield.slb.com/en/Terms/m/model.aspx
https://en.wikipedia.org/wiki/Function_(mathematics)
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Term Description 

Regional-scale groundwater 

models 

Models that encompass an entire groundwater system, geological basin or other significant 

area of interest that extends well beyond the measurable influence of individual bores or 

borefields 

Reservoir (hydrocarbon) Porous or fractured rock formations that contain significant reserves of hydrocarbons. 

Naturally-occurring hydrocarbons such as crude oil or natural gas are typically trapped in 

source or host rocks by overlying low permeability formations 

Robustness (of model 

predictions) 

Insensitivity of model predictions to data outliers or other small departures from 

assumptions required by a predictive model, including the types of parametric distributions 

assumed  

Saturated flow Flow through a porous medium (such as soil or rock) in which the void space within the 

porous medium is entirely occupied by water (as opposed to water and gas) 

Single phase flow The flow of a single phase, e.g. liquid or gas 

Spatial correlation   Spatial dependency (or correlation) between samples 

Spatial interpolation   The procedure of estimating the value of properties at unsampled sites within the area 

covered by existing observations 

Stratigraphy  An arrangement of sedimentary, metamorphic and/or igneous rocks 

Transmissivity  The rate at which a fluid is transmitted through a unit width of a hydrostratigraphic unit 

under a hydraulic gradient 

Unconfined aquifer An aquifer in which there are no confining beds between the zone of saturation and land 

surface 

Unconventional gas Natural gas found in a very low permeability rock, such as coal seam gas, shale gas, and 

tight gas. Unconventional gas such as coal seam gas is trapped in coal beds by adsorption of 

the gas molecules to the internal surfaces of coal. It cannot migrate to a trap and form a 

conventional gas deposit. This distinguishes it from conventional gas resources, which occur 

as discrete accumulations in traps formed by folds and other structures in sedimentary 

layers 

Upscaling  Upscaling is the process of transforming the detailed description of hydraulic parameters in 

a grid constructed at measurement scale to a coarser grid with less detailed description. It 

replaces a heterogeneous domain with a homogeneous one in such a way that both 

domains produce the same response under some upscaled boundary conditions 

Variogram  (also semi-

variogram) 

A function describing the spatial dependency (similarity) between observations of a 

variable. The shape of the variogram is typically a function of the distance and direction 

separating observations at two locations; at short distances the semi-variance is small, and 

typically increases with increasing separation distance. The semi-variance is defined as the 

variance of the difference between two variables at two locations. At zero separation 

distance the semi-variance is called nugget (-effect). The sill is the maximum semi-variance 

or the plateau of the semi variogram; the correlation length or spatial range is the distance 

over which variables are spatially correlated 

Well Borehole in which a casing (e.g. steel piping) has been placed to restrict connection to 

specific ground horizons/depths 
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Symbols 

Symbol Brief description and unit of measurement  

A Range (variogram model parameter) 

c Sill (variogram model parameter) 

δ Delta Moment-Independent Measure global sensitivity metric 

γ Semi-variance 

h Variogram lag distance  

k Permeability [mD or m2] 

kV Vertical permeability [mD or m2] 

K Hydraulic conductivity [m.day-1] 

KH  Horizontal hydraulic conductivity [m.day-1] 

KV
 Vertical hydraulic conductivity [m.day-1] 

n Nugget (variogram model parameter) 

Q Volumetric fluid flux [m3.day-1] 

S Storativity [dimensionless] 

SS Specific storage [m-1] 

SY Specific yield [dimensionless] 

S1 First order Sobol’ global sensitivity metric 

z Sample depth [m] 
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Executive summary 

The project “Research to improve treatment of faults and aquitards in Australian regional 

groundwater models to improve assessment of impacts of coal seam gas (CSG) extraction” focuses 

on method development to underpin the risk assessments associated with deep groundwater 

extraction and depressurisation from energy resource development.  The project aims to develop 

methodologies and techniques that will improve the predictive capability of regional groundwater 

models used in this context, specifically with respect to the representation of faults and aquitards.  

The project has three components: 1) an examination of aquitards, 2) an examination of faults, 

and 3) an examination of the upscaling of aquitard and fault properties such that they can be 

adequately represented in regional groundwater flow models.  

The present report addresses certain aspects of components 1 and 3, that is, to improve 

understanding of the vertical hydraulic conductivity of aquitards by better conceptualisation, 

parameterisation and representation of aquitards in regional groundwater models.  Specifically 

this involves the inclusion of upscaled aquitard hydrogeologic parameter values in a numerical 

model of groundwater flow in the Gunnedah basin and overlying parts of the Surat basin in the 

New England region of New South Wales, Australia. The model considers the most up-to-date 

hydrogeological conceptualisation of the study area, including the Jurassic to Late Permian upper 

aquitard sequence (comprising amongst others the Purlawaugh and Napperby formations) and the 

lower Mid to Late Permian aquitard sequence (with the Porcupine Formation at its base overlain 

by the Watermark Formation). Each of these aquitards isolates a coal seam gas target formation 

from overlying water bearing formations: the Maules Creek coal layers are isolated by the lower 

aquitard sequence while isolation of the shallower Hoskissons Coal layers is provided by the upper 

aquitard sequence. The key overlying water-bearing formations are the Pilliga Sandstone confined 

aquifer and the Namoi Alluvium unconfined aquifer.  

Although there are a number of geological and parameter uncertainties early in the resource 

development cycle that could significantly affect the impact of CSG development on adjacent 

aquifers separated by aquitards, this project chose to only examine a particular subset of these. 

Choosing to accept a single geological static model realization and the available petrophysical logs 

and core data from an existing number of well penetrations, this project examined how three 

different upscaling and parameterization approaches would affect four different groundwater 

impact predictions.  With the available budget and time resources, the project could only examine 

a limited number of approaches and the results should be considered an example of how 

parameterisation uncertainty is propagated in predictive outcome uncertainty. The magnitude and 

associated uncertainties of four key predictions generated by the model (i.e., groundwater impact 

metrics) were assessed using three parameterisation approaches that were applied sequentially to 

the same groundwater flow model. Specifically, the four predictions of interest were: the 

magnitude, timing and spatial extent of maximum drawdown in the Pilliga Sandstone aquifer and 

the maximum vertical flux across the base of the same aquifer. 

The first parameterisation approach used existing model parameters values (i.e., horizontal and 

vertical hydraulic conductivity [KH, KV] and specific storage coefficient [SS]) derived from prior 
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modelling studies, with spatially homogeneous parameter values for every model layer. In the 

second approach vertical hydraulic conductivity data for the two aquitard sequences were 

generated by combining core-scale KV values with wireline log data. Those KV values were 

subsequently upscaled to the regional scale commensurate with the cellular grid size of the model 

using analytical and numerical upscaling methods, and incorporated in the flow model. Every 

hydrostratigraphic unit was assigned a spatially homogeneous average KV value. The third 

parameterisation approach featured an alternative, more detailed conceptual model of the 

aquitards’ hydraulic conductivity whereby KV values were spatially distributed according to an 

observed spatial correlation model derived from data generated using the second approach. This 

approach generated heterogeneous KV domains, while honouring the data at all the observation 

wells where upscaled KV values had been determined. The upscaled aquitard KV values were used 

to update the prior parameter distributions used in the first parameterisation approach to 

generate updated model prediction (posterior) distributions using either homogeneous or 

heterogeneous KV values.  

Global sensitivity methods based on Monte Carlo sampling were adopted to generate and 

evaluate 300 parameter sets (once for the first and once for the second parameterisation 

approach). The resulting sets of 300 model predictions were used to identify those 

hydrogeological parameters to which the four groundwater impact metrics were most sensitive 

and to quantify the uncertainty of predictions that arises from parameter uncertainty. Parameter 

sensitivity rankings were based on the Delta Moment-Independent Measure and the first order 

Sobol’ metric. Prediction uncertainties were quantified prior to and following the inclusion of 

updated aquitard KV data. This allowed testing of the impact of improved aquitard characterisation 

on prediction uncertainty. The stochastic approach adhered to in this project to quantify 

prediction uncertainty is consistent with the Bayesian paradigm, in which prior beliefs (i.e., 

estimates of parameters and conceptualisation) are iteratively updated when new data and 

information becomes available. 

Results from both sensitivity analyses are summarised for each of the four groundwater impact 

metrics as follows (based on sets of 300 model runs for each parameterisation approach): 

 The magnitude of maximum drawdown in the Pilliga Sandstone aquifer was found to be 

most sensitive to the horizontal hydraulic conductivity (KH) of the Namoi Alluvium aquifer 

(both parameterisation approaches); 

 The timing of maximum drawdown using the first parameterisation was found to be 

insensitive to all parameters. For the second parameterisation, the timing of maximum 

drawdown was found to be most sensitive to KV of the upper aquitard sequence and to the 

KH of the Namoi Alluvium; 

 The spatial extent of drawdown propagation was found to be most sensitive to KH of the 

Namoi Alluvium aquifer (both parameterisations); 

 The maximum vertical flux across the base of the Pilliga Sandstone aquifer using the first 

parameterisation approach was found to be most sensitive to KV of the upper aquitard 

sequence. This was also found true for the second approach. 

Two of the four impact metrics were found to be sensitive to the KV of the upper aquitard 

sequence; this is one of the two aquitard sequences that was part of the site characterisation. On 
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the basis of the subsequent prediction uncertainty analysis, the uncertainty about the four 

groundwater impact metrics was quantified in terms of cumulative distribution functions and their 

statistical attributes (i.e. percentiles). For both aquitard sequences, the revised prior distributions 

of upscaled KV were found to be two orders of magnitude larger (i.e., from log10 KV -6.7 to -3.2 m/d 

for the upper aquitard sequence and from log10 KV -7.5 to -3.1 m/d for the lower aquitard 

sequence) than the expert opinion-based distributions assumed for the sensitivity analysis with 

the initial parameter distributions (i.e., from log10 KV -6.0 to -4.0 m/d for both aquitard sequences).  

Furthermore, in the first (initial) parameterisation approach the parameters were described using 

log-uniform prior distributions due to a paucity of data. Conversely, in the second (revised) 

parameterisation approach, parameters were characterised using unimodal log-triangular 

distributions. This represented a change from “uninformative” prior distributions, in which all 

values with a specified range were considered equally likely, to prior distributions in which a 

particular value (e.g., mode) was considered most likely. 

Redefining the first parameter distribution was based on a combination of field and lab-based 

data. The spatial density of data was relatively higher in the area anticipated to feature greatest 

impact upon the four specified groundwater impact metrics. The aquitard characterisation 

presented here highlighted that initial prior estimates of KV parameter ranges, as based on expert 

opinion and international literature, may often be too narrow (i.e., too small).  This underscored 

the need, more broadly, to improve the characterisation of hydrogeologic parameters in order to 

reduce predictive uncertainty to levels that both the modelling community and water resource 

regulators are comfortable with. Building robust groundwater models is an iterative process in 

which uncertainties associated with parameters and model structure can be identified and 

quantified through sensitivity and uncertainty analyses, and reduced progressively through data 

collection.  

Despite the wider ranges of aquitard KV values used in the second parameterisation approach, 

comparisons between prediction uncertainty analyses based on the first (initial) data set and 

second (revised) parameterisations revealed that the groundwater impact metrics assessed here 

were only minimally affected by improving the characterisation of aquitard vertical hydraulic 

conductivity. Specifically, the analysis yielded the following results, based on 300 realisations per 

analysis (values are given for the initial parameterisation first, then for the revised 

parameterisation):  

 Magnitude of maximum drawdown: the median value increased from 0.8 m to 1.2 m, the 

95th percentile increased from 7.2 m to 7.9 m; 

 Timing of maximum drawdown: the median value increased from 154 years to 155 years, 

while the 95th percentiles were identical (i.e., both 160 years); 

 Spatial extent of drawdown propagation: the median value remained unchanged at zero 

model cells, and the 95th percentile increased from 4 490 cells to 5 350 cells. 

 Maximum vertical flux: the median value decreased from 737 m3/d to 636 m3/d, and the 

95th percentile decreased from 1 310 m3/d to 1 260 m3/d. 

As demonstrated in the report, the impact of improving the hydraulic conductivity characterisation 

on the groundwater impact metrics was most evident when the conceptualisation of the 

groundwater model was updated such that the information contained within the updated data set 
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was maximally exploited. This required honouring the spatial structure captured by the KV data by 

first describing mathematically the spatial heterogeneity in KV, according to an observed spatial 

correlation structure (or semi-variogram). This was then followed by the generation of multiple 

equally probable heterogeneous KV parameter fields for groundwater modelling, thereby 

honouring the data at all the observation wells where upscaled KV values had been determined. In 

doing so, the KV domains were constrained or conditioned by observations at multiple cells and 

were considered to be a more realistic representation of spatial heterogeneity.  

Based on this third parameterisation approach, a final uncertainty analysis was undertaken to 

identify the extent to which an updated model parameterisation could constrain calculated fluxes 

through aquitards induced by CSG extraction stresses, and the extent to which predictive 

uncertainty of the impacts was impacted. For this purpose, a set of 50 spatially heterogeneous KV 

fields was generated as input to flow modelling. A sample size of 50 random fields was shown to 

be sufficient to obtain statistically robust estimates most of the groundwater impact metrics. 

Furthermore, the spatial dimension of the flow domain was shown to be sufficiently large in 

comparison with the correlation scales of the relevant hydrogeological properties of the 

formations of interest. The latter is a prerequisite to make meaningful inferences about statistical 

moments of the distribution of relevant variables. The effects of the second (revised) 

parameterisation using 300 model runs on the four groundwater impact metrics were compared 

with the effects based on the third (heterogeneous) parameterisation approach using 50 models 

runs (results for the second approach are given first, followed by results based on the third 

approach): 

 Magnitude of maximum drawdown: the median value increased from 1.2 m to 3.4 m, 

while the 95th percentile decreased from 7.9 m to 6.1 m; 

 Timing of maximum drawdown: the median value decreased from 155 years to 35 years, 

and the 95th percentile decreased from 160 years to 81 years; 

 Spatial extent of drawdown propagation: the median value increased from zero cells to 63 

cells, while the 95th percentile decreased from 5 350 cells to 551 cells; 

 Maximum vertical flux: the median value increased from 636 m3/d to 751 m3/d, and the 

95th percentile decreased from 1 260 m3/d to 1 074 m3/d. 

These results were significant as they demonstrated two key points: first of all, median predictions 

of the magnitude and spatial extent of maximum drawdown increased slightly when the first 

parameterisation was replaced by the second. The median maximum drawdown prediction 

increased further (i.e., from 1.2 m to 3.4 m) when the third (heterogeneous) parameterisation was 

used, while the median timing of maximum drawdown prediction decreased from 155 years to 35 

years. The latter was due to the skewed distribution of predictions generated using the second 

parameterisation, which was attributed to approximately 30% of the model runs not achieving 

maximum drawdown (i.e., the time to maximum was > 160 years). Unlike models generated for 

the two homogeneous parameterisation approaches, all model r uns for the third (heterogeneous) 

parameterisation achieved maximum drawdown within the total model run time, yielding the 

smaller median prediction value of 35 years.  

Overall, results showed that for the model conditions and data sets used here, the median 

prediction values were not affected considerably (i.e., are fairly robust) by improved model 
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parameterisations informed by measurements (i.e., first and second parameterisations), unless a 

more detailed parameterisation is used (i.e., the third heterogeneous parameterisation).  

Results further showed that calculated extreme drawdowns (i.e., 95th percentiles of magnitude 

and spatial extent of drawdown) are much smaller for the third (heterogeneous) parameterisation. 

The latter is consistent with maps of the spatial distribution of calculated drawdowns, illustrating 

that the heterogeneous parameterisation is much better constrained resulting in a much smaller 

range of extreme drawdowns. The extreme values (e.g., 95th percentiles), however, are materially 

affected (i.e., smaller) by using the heterogeneous KV model. The better constrained KV model is a 

result from using the conditioned Sequential Gaussian Simulation, which honours the observed KV 

data. It is unlikely that the smaller number of model runs, 50 for the heterogeneous models versus 

300 for the homogeneous models, is the main reason for the smaller range of drawdowns. The 

latter conclusion is based on robustness tests with the heterogeneous models, and on a 

demonstration that the scale of the model is sufficiently large compared to the scale of the 

heterogeneity in aquitard KV.  

The 95th percentiles for all other impact metrics show the same trend as for the drawdown: using 

the heterogeneous model decreases the timing of maximum drawdown, and decreases the impact 

due to the smaller spatial extent and smaller maximum flux. As mentioned above, this difference is 

unlikely due to the use of a smaller number of models runs (50 compared to 300). Instead, it is the 

result of using constrained heterogeneous parameter fields that generated models in which 

extreme KV values would have less significance on groundwater flow given their small spatial 

footprint compared to homogeneous models where an extreme KV would have a much larger 

impact on flow. 

In a final step, a bootstrapping resampling method was implemented as a means to determine 

how robust the statistical moments (50th, 75th, and 90th percentile) of groundwater impact metrics 

were. The analysis highlighted how the size of upscaled aquitard KV samples affected the 

robustness of the summary statistics. 
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1 Introduction 

1.1 Terms of reference 

The Department of the Environment and Energy, through its Office of Water Science, requires 

hydrology research to better include faults and aquitards in Australian regional groundwater 

models to improve assessment of impacts of CSG extraction and coal mining. 

This research addresses research priorities that the IESC has identified: “to increase the scientific 

evidence that underpins decisions about coal seam gas and large coal mining development, 

enabling decisions to be based on the most rigorous science available.” 

The research theme is expected to: 

1. assist better decision-making, regulation, natural resource management and industry 
practice 

2. build knowledge about the highest risks to freshwater resources, land and ecosystems 
3. help provide data and knowledge that can support the Bioregional Assessments in priority 

areas. 

The current focus is on identifying and assessing the risks associated with deep groundwater 

extraction and depressurisation. Recent research, discussion with the IESC and consultation with 

industry stakeholders identified the need for a project to specifically address the following three 

issues: 

1. Component 1 (Aquitards): Improving understanding of vertical hydraulic conductivity in 

aquitards to examine the risk of depressurisation at a range of scales (this report). 

 

2. Component 2 (Faults): Understanding the influence of faults on groundwater flow in 

Australian sedimentary basins, and the risk of faults propagating depressurisation to linked 

aquifers and surface environments (discussed elsewhere). 

 

3. Component 3 (Modelling): Better conceptualisation, representation and parameterisation 

of aquitards and faults in regional groundwater models to reduce uncertainty in regional 

groundwater flow and pressure simulation (aquitards are discussed in this report). 

The current report discusses component 1 and 3 of the Terms of Reference, that is, to improve 

understanding of the vertical hydraulic conductivity of aquitards by better conceptualisation, 

parameterisation and representation of aquitards in regional groundwater models.  This report 

builds on findings documented in three previous reports that were all part of this project: 

1. An overview of approaches to simulating the hydrological influence of aquitards and faults 

in regional groundwater models, and a summary of the literature relating to regional scale 

groundwater modelling approaches (Turnadge et al., 2018a). The overview provides a 

framework that can be used to guide research into appropriate methodologies and 

procedures for aquitard and fault zone representation in regional groundwater models. 

The report highlights the highly simplified representation of local scale processes such as 
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dual phase flow and geomechanical deformation and regional scale considerations in the 

majority of groundwater models used in ten Australian CSG impact studies. Simplifications 

involved adopting spatially uniform values of hydraulic conductivity and storativity for 

aquitards, thus neglecting the spatial heterogeneity. 

2. Based on a workflow to combine existing geophysical wireline logs available from coal 

seam gas exploration wells with laboratory measurements of porosity and permeability, 

continuous porosity and permeability profiles had been generated for four key aquitards 

(Purlawaugh Formation, Napperby Formation, Watermark Formation and Porcupine 

Formation) within the Gunnedah and Surat basins of New South Wales and generated 97 

profiles of continuous permeability (or vertical hydraulic conductivity, Kv), with depths 

below surface of aquitards tops ranging from about 250 m to 1300 m. These high-

resolution Kv profiles were upscaled into equivalent Kv values representative for large units 

commensurate with the typical size (i.e. vertical interval) of the numerical grid of the 

regional scale groundwater flow model (Turnadge et al., 2018b). 

3. Developed and implemented a novel approach using the environmental tracer helium 

(4He) to derive the formation-scale hydraulic conductivity of key aquitards in the 

Gunnedah and Surat basins of New South Wales. By modelling the formation-scale 

transport, production and partitioning of helium in the aquitard sequence, a very slow 

formation-scale vertical fluid velocity on the order of 0.002–0.02 mm/year (about 10-13 – 

10-12 m/s) was derived (Smith et al., 2018). 

1.2 Rationale 

Historically, hydrogeology has focused on the characterisation of aquifers for water supplies. In 

comparison, the study of aquitards and their hydraulic properties has been relatively limited 

(Mazurek et al., 2011; Yu et al., 2013). The recent development of unconventional energy 

extraction industries (e.g., coal seam gas, shale gas and tight gas) has provided a new impetus for 

the study of aquitards. In the specific case of coal seam gas extraction, aquitards can restrict the 

vertical propagation of depressurisation from an extraction target unit (i.e. a coal seam) to a 

developed aquifer. Coal seam gas extraction development proposals typically involve predictive 

modelling of potential impacts on a groundwater flow system (e.g., OGIA, 2016). The 

representation of aquitards and their hydraulic properties in such models is typically limited 

(Turnadge et al., 2018a). The values assigned to aquitard hydraulic properties are often derived 

from prior modelling studies or textbooks, rather than from field or laboratory observations of 

specific aquitard units. The spatial variability of aquitard properties is also often omitted in favour 

of uniform values, typically due to the paucity of aquitard property data. 

Based on a comparison of ten regional groundwater models, Turnadge et al. (2018a) reported that 

the OGIA model (OGIA, 2016) is the most advanced in many aspects. It is a typical example of a 

model having gone through several iterations with increased scientific underpinning, credibility, 

and accuracy. In the current study the starting point was to consider the least developed models, 

which represent the majority of cases, and then develop a generic workflow that in a stepwise 

manner increases the scientific underpinning, credibility, and accuracy. Once field data from 

depressurisation or other state variables becomes available, it can and should be used to further 
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constrain the models. Until then, the current approach provides a cost-effective, practical, 

repeatable and transparent approach to materially improve the existing models. 

The uncertainty around aquitard hydrogeological properties and groundwater flow modelling 

based on such properties is typically large. Two broad categories of uncertainty exist in 

groundwater flow and transport modelling: aleatory and epistemic uncertainty (Helton et al., 

2008; Ross et al., 2009; Swiler et al., 2009). Epistemic uncertainty refers to a lack of knowledge 

about the appropriate value to use for a quantity; this uncertainty can be reduced through 

increased understanding or collecting more data. Aleatory uncertainty is characterised by inherent 

randomness of a system that cannot be reduced by further data collection. 

Epistemic uncertainty has two components, i.e. parametric and structural (model) uncertainty 

(Srinivasan et al., 2007). Parametric uncertainty, for example, reflects our partial knowledge about 

the appropriate value to use for the spatially averaged hydraulic conductivity K in groundwater 

flow analysis; the spatially-averaged K has, by definition, a single value but this single “effective” 

value can never be known with certainty. Neuman and Di Federico (1998) defined effective 

parameters as those parameters that are used in ensemble‐averaged Darcy equations (e.g., 

effective hydraulic conductivity relating the ensemble average flux to the ensemble mean 

gradient). More importantly, as discussed by Turnadge et al. (2018a), the use of such effective K 

values may be justified to some extent by the regional scale of model applications and where 

there are insufficient data to support representations of spatial variability. Unfortunately, the 

rigorous basis for deriving and using effective K values such as using an appropriate averaging 

method or using Darcy’s Law‐based approaches is currently missing in many regional scale 

groundwater flow applications (Turnadge et al., 2018).  

Parameter uncertainties are strictly epistemic because the uncertainty in the estimation decreases 

and may asymptotically vanish with increasing quantity and quality of the available observational 

data (direct measurements of parameters or measurements of state variables like heads from 

which parameters can be derived) (Der Kiureghian and Ditlevsen, 2007). Model (structural, 

conceptual) uncertainty in groundwater modelling shows itself on a multiplicity of scales, from 

pore scale to regional scale. In groundwater modelling different conceptual models are typically 

based on different geological interpretations (Højberg and Refsgaard, 2005; Rojas et al., 2010). 

Several studies have recognized that geological structural uncertainty often is the most important 

source of uncertainty (Bredehoeft, 2005; Højberg and Refsgaard, 2005; Refsgaard et al., 2012). The 

most commonly used approach to assess uncertainty of model predictions due to conceptual 

geological uncertainty is to run multiple geological models in a scenario modelling or multimodel 

approach (Neuman and Wierenga, 2003; Rojas et al., 2010; Troldborg et al., 2007). Højberg and 

Refsgaard (2005) analysed the importance of parameter uncertainty relative to conceptual 

geological uncertainty by constructing three alternative groundwater models on the basis of three 

different geological interpretations for their study area in Denmark. Inverse model calibrations 

against groundwater heads and streamflows revealed a similar performance by the three models. 

A Monte Carlo based parameter uncertainty analysis showed that the model parameter 

uncertainty was the dominating source of uncertainty for prediction of groundwater heads 

throughout the model area. However, the results illustrated that the conceptual model 

uncertainty became relatively more important for predictions of groundwater recharge and even 

more important for prediction of chemical concentrations in abstraction wells. Højberg and 
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Refsgaard (2005) concluded that conceptual geological uncertainty will be more dominating than 

parameter uncertainty, the more the model predictions are extrapolations from the basis of model 

calibration (e.g. uncalibrated chemical velocities and concentrations). Because the relative 

importance of conceptual geological uncertainty will be region specific and will be depending on 

which system component needs interrogating to answer a specific management question (e.g., 

drawdown in a shallow bore or degree of depressurisation in a deep coal seam gas reservoir), it is 

recommended to explore in a step-wise manner its likely contribution to the overall uncertainty. A 

qualitative assessment commensurate with the generic methodology discussed in Section 1.4 

would be a possible first step, followed by a more quantitative analysis where justified. 

The uncertainty associated with geologic formations can be summarised into large-scale 

stratigraphic heterogeneity and smaller-scale heterogeneity within stratigraphic layers (facies 

distribution). Both types of geologic uncertainty will result in parametric uncertainty about flow 

and transport parameters. One approach to address geologic uncertainty is to adopt stratigraphic 

modelling and generate multiple geologic models. Stratigraphic forward modelling (SFM) was used 

by Ravenstein et al. (2015) to generate and characterise a static reservoir model using limited well 

data to assess geological storage of CO2 in the Surat Basin, Queensland. SFM involves numerical 

simulation of the depositional processes to predict reservoir properties at appropriate scales (i.e., 

where the course and fine grained sediments are likely to be deposited), away from wells and 

below seismic resolution. This information can be used to get an independent view, based on 

sedimentary processes rather than stratigraphic correlation, on the risk of lateral continuity of 

reservoir or sealing geobodies. Ravenstein et al. (2015) developed a basin-scale model of 

formation thickness, sediment type and sediment heterogeneity with a 10 km grid spacing. Within 

this basin-scale model, a nested tenement-scale simulation was run with a 1 km grid spacing. 

Finally, a 3D permeability volume was calculated from the porosity model using a porosity-

permeability transform derived from an observed porosity/permeability relationship. Their 

regional-scale application still uses a relatively coarse spatial discretisation of 10 km, with the 

higher resolution model limited to relatively small areas (tenement scale) due to computational 

limitations. 

A high-resolution (200 m horizontal cell size and 614 layers) tenement scale (17.7×19.5 km) 

geologic facies model was developed by Moore et al. (2015) in a comparison between a dual-

phase reservoir simulator and a single-phase groundwater model. Both models were used to 

examine depressurization and water desaturation processes in the vicinity of an extractive 

wellfield. While the focus of the Moore et al. (2015) study was mainly on testing upscaling 

methods for a highly layered coal – interburden system, the current study focuses on aquitard 

heterogeneity and uses existing water production curves as boundary condition.  

A widely used alternative to explicit representation of geologic heterogeneity followed by coupling 

with a porosity-hydraulic conductivity relationship is to directly work with the heterogeneity in 

hydraulic conductivity K. Indeed, uncertainty about hydraulic properties (i.e., parametric 

uncertainty about hydraulic conductivity K) is often represented through multiple realisations of a 

3D hydraulic conductivity model. Such realisations of aquitard properties represent realistic and 

statistically meaningful reconstructions of subsurface heterogeneity (Kolterman and Gorelick, 

1996); they account for uncertainties about hydrostratigraphy, facies variability, etc., all of which 

affect hydraulic property variability. Realisations can be constrained by hard data including field 

measurements of hydraulic properties (i.e. K). For low-permeable aquitards formed in low-energy 
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depositional environments, the geologic heterogeneity is typically smaller compared to more 

permeable formations such as aquifers formed under high-energy environments. Relationships 

between the depositional environment and patterns of heterogeneity of clastic sedimentary rocks 

have been reported by Weber (1982). Deep marine shales, for instance, may be continuous for a 

hundred km (Richardson et al., 1978). Depositional flow regime features cause spatial variations in 

the average permeability (Kolterman and Gorelick, 1996). It is expected that for low-energy 

environments the hydraulic conductivity heterogeneity will be relatively small with a spatial 

structure dominated by large-scale heterogeneity (with typical hydraulic conductivity images 

which appear continuous). In relatively homogeneous formations with limited facies 

heterogeneities, fractures or large-scale conduits such as geological faults, the scale-dependency 

of K will also be limited. Examples of formations that are practically scale-invariant in K include 

marine clays (Yu et al., 2013), argillites (Distinguin and Lavanchy, 2007), and several types of 

sandstones (Schulze-Makuch et al., 1999). Furthermore, Moore et al. (2015) reported a two orders 

of magnitude range in KV for the lower Sprinbok aquitard (sandstone/siltstone/shale) compared to 

three orders of magnitude for the Walloon Coal Measure interburden KH and up to five orders of 

magnitude for the Walloon Coal Measure coal layers KH. For environments with large lateral 

continuity, layer-cake geometries are appropriate, while for more heterogeneous environments a 

labyrinth geometry is more appropriate (Kolterman and Gorelick, 1996).  

1.3 Description 

In the present study we sought to improve the representation of two aquitard sequences in an 

existing groundwater flow model that had previously been used to provide predictions of coal 

seam gas production impacts in the Gunnedah and Surat basins in NSW. The values assigned to 

these aquitard sequences had been derived from prior modelling studies and textbooks (CDM 

Smith, 2016). Turnadge et al. (2018a) noted that based on ten impact assessment studies involving 

coal seam gas production in Australian coal basins, groundwater flow models used to estimate 

potential impacts are often highly simplified. Specifically for aquitards, simplification typically 

involves neglecting the spatial heterogeneity of hydraulic conductivity and storativity by adopting 

spatially uniform values, often based on literature values, inverse modelling or limited field 

investigations. The existing groundwater flow model used in this project therefore represents a 

typical situation of many groundwater models currently in use by industry. The case study 

developed here is aimed at: 

1. demonstrating how a materially better parameterisation of aquitard KV can be achieved by 

using mainly existing data augmented with targeted additional measurements, 

2. developing a workflow that can be readily implemented by industry on a sufficiently large 

spatial scale (i.e., regional scale) without putting an undue burden on computational 

resources,  

3. applying methodologies that have been validated in similar geological settings and that are 

fit-for-purpose, and 

4. developing a workflow that uses existing simulation software that is either free domain or 

can be obtained at a reasonable cost. 

In selecting a fit-for-purpose methodology, care must be taken that the level of complexity is 

commensurate with the complexity of the system and the objective of the study (Neuman and 
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Wierenga, 2003); the general principle “as simple as possible, but not simpler” should be followed 

(Hill, 2006; Simmons and Hunt, 2012). Furthermore, increasing model complexity is only justified if 

the data base improves in quantity and quality. In other words, if the data base is limited and/or of 

poor quality, there seems little justification for selecting an elaborate model with numerous 

parameters. In this case, a simpler model with fewer parameters is then preferred, which still 

reflects adequately the underlying hydrogeologic structure of the system and the corresponding 

flow behaviour (Neuman and Wierenga, 2003). Unfortunately, for most modelling applications 

involving scenario analyses using simple models (not limited to this study), the validation data to 

test “whether the simpler model still reflects adequately the underlying hydrogeologic structure of 

the system and the corresponding flow behaviour” simply will never be available. What is key then 

is for the modeller to demonstrate that the modelling approach is fit for purpose; e.g., by 

demonstrating the impacts are conservative (i.e., they do not underestimate the impact) and 

statistically robust (Zuidema, 1994). The former can be shown by a comparison with a more 

complicated model (e.g., a model that has more processes, heterogeneous parameters rather than 

homogeneous, finer spatial discretisation, etc.). Finally, conservatism is not a static concept: 

conservative assumptions – imposed because of lack of data – can be replaced by more realistic 

ones when more data become available. 

When relatively simple models are embedded in a stochastic framework, they may be offering a 

way to deal with complex heterogeneous systems (Hunt and Zheng, 1999). In a discussion on the 

practical use of simplicity in developing groundwater models, Hill (2006) argues that features or 

processes that often can most advantageously be represented as deterministic include the 

thicknesses and extents of hydrogeologic units, while features that often can most advantageously 

be represented as stochastic include heterogeneity in hydraulic conductivity, storage, or recharge.  

1.4 Methodology 

The methodology presented here aimed to (i) quantify the uncertainty in four key predictions that 

arises from uncertainty in aquitard K parameterisation; (ii) to identify the parameters contributing 

most to the predictive uncertainty; and (iii) to evaluate how to include measurements of aquitard 

hydraulic parameters in the uncertainty quantification. 

Prior to the quantitative uncertainty analysis, a qualitative uncertainty analysis was undertaken to 

list key sources of uncertainty and discuss which source of uncertainty is relevance for being 

incorporated in the subsequent quantitative uncertainty analysis. 

1.4.1 Qualitative uncertainty analysis 

The qualitative uncertainty analysis is the first step out a series of steps that are part of the 

sensitivity and uncertainty analysis workflow adopted in this study (Figure 1-1). Following an initial 

qualitative analysis of uncertainty factors, existing hydrogeological data was compiled and prior 

parameter distributions derived followed by model stress testing. The latter was done to ascertain 

the groundwater flow model would run satisfactorily (i.e., test the robustness of numerical model 

convergence) for the imposed parameter range, which would typically include parameters that are 

considerably different from the calibration set. The next step then involved running a global 

sensitivity analysis with a large number of uncertain factors or parameters (a total of 30 
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hydrogeologic parameters for ten hydrostratigraphic units was considered here). Only the most 

sensitive parameters were then included in a stochastic quantitative uncertainty analysis, 

considering four groundwater impact metrics. After the first iteration of the sensitivity and 

uncertainty analysis, an improved characterisation was undertaken for one of the most sensitive 

and uncertain model parameters. Based on an updated prior parameter distribution, a second 

iteration of the uncertainty analysis was undertaken which produced the final statistics for the 

four groundwater impact metrics.   

 

 

Figure 1-1 Sensitivity and uncertainty analysis flowchart adopted in this study.  

 

The qualitative uncertainty analysis considered a broad range of factors (both conceptual and 

parametric) that could contribute to the uncertainty of predictions produced by numerical models 

of CSG extraction impacts. Potential sources of uncertainty include, but are not limited to (a more 

detailed discussion follows from Section 1.4.1.1 to Section 1.4.1.6): 

• Aquifer hydraulic conductivity (K) and storativity (S), 

• Aquitard hydraulic conductivity and storativity (S), 

• Changes in rates of non-CSG groundwater extraction, recharge (e.g., due to climate and 

land use change over time, particularly over decadal timescales), 

• Variations in the geometry (i.e., extent and/or thickness) of geological units, 

• The translation between geological and hydrostratigraphic units; for example, the 

aggregation of units in a simple model, or the separation of units in a complex model; 

• Changes in hydraulic properties of coal layers over time due to geomechanical 

deformation resulting from CSG extraction; 

• The accuracy of predictions of CSG water extraction rates, which have historically been 

fraught with difficulty (Moore et al., 2015). 

Some high-level generic insights in complex coupled systems such as coal seam-aquitard-aquifer 

systems may be obtained by considering simplified models. For example, Cook et al. (2016) show 

that the flux 𝑞(𝑡) through the bottom of an aquifer due to depressurisation of a deeper gas-
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bearing formation, separated by an aquitard from the aquifer, can be approximated analytically as 

(eq. 14 in Cook et al., 2016): 

 𝑞(𝑡) = 2Δ𝐻√
𝐾𝑆

𝜋𝑡
exp (

−𝐿2𝑆

4𝐾𝑡
) (1) 

where Δ𝐻 [L] is the change in groundwater head in the gas-bearing formation due to coal seam 

gas depressurisation, 𝐾 [𝐿 𝑇⁄ ] is the vertical hydraulic conductivity of the aquitard, 𝑆 [– ] is the 

storage of the aquitard, 𝐿 [𝐿] is the thickness of the aquitard and 𝑡 [𝑇] is the time since coal seam 

gas depressurisation commenced. 

From equation (1) it is clear that the flux is proportional to the change in groundwater head in the 

gas-bearing formation, i.e. a doubling of Δ𝐻 will result in a doubling of the flux through the 

bottom of the aquifer. As equation (1) also shows, the effect of the aquitard properties on the flux 

(conductivity, storage and thickness) is non-linear, and therefore detailed analyses are required to 

evaluate for a specific geology and specific flow conditions and for specific management 

questions, how sensitive such a coupled system is to the aquitard properties.  

In the subsequent sections the different sources of uncertainty are briefly discussed. Several of the 

uncertainty factors will not be taken into consideration in the current study; therefore, the current 

study does not present a comprehensive uncertainty analysis. A fully comprehensive assessment 

of model predictive uncertainty would simultaneously assess the sensitivity of predictions to a 

range of model parameters, boundary conditions and initial conditions. Such analysis is carried out 

as part of the Bioregional Assessments Programme in this region (Janardhanan et al., 2018).  

1.4.1.1 Uncertainty due to aquifer hydraulic conductivity and storativity 

As the groundwater impact metrics are calculated for the key aquifer of this study, the parameters 

that determine propagation of drawdown in this aquifer will need to be considered. Therefore, all 

key aquifers and their hydrogeologic parameters K and S were included in the initial sensitivity 

analysis (see discussion in Section 3.2). 

1.4.1.2 Uncertainty due to aquitard hydraulic conductivity and storativity 

As shown through Equation (1), the hydraulic properties of an aquitard constitute important 

parameters in determining the water flux q. The non-linear nature of the analytic solution 

warrants exploring its effect through global sensitivity analysis techniques based on stochastic 

analysis of a regional groundwater model. All aquitards considered in this study had not been the 

subject of detailed investigations, making their hydrogeologic parameters highly uncertain (see 

discussion in Section 4.1). The uncertainties associated with aquitard hydraulic properties were 

represented through multiple realisations of a 3-D hydraulic conductivity model. Realisations were 

constrained by hard data including field measurements of hydraulic properties (i.e. K).  

1.4.1.3 Uncertainty due to groundwater Recharge 

Groundwater recharge is expected to affect the groundwater balance of aquifers. The calibrated 

groundwater that was used in this study was not suitable to have recharge as part of a sensitivity 

and uncertainty analysis because of the way the recharge was calibrated. The standard calibration 
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approach is to match the simulated hydraulic head in a groundwater model to the observed water 

table elevation by iteratively updating the hydrogeological properties. For the Namoi Alluvium, 

CDM Smith (2016) used an alternative approach which does not require the hydrogeological 

properties of the model to be changed; recharge outside the Namoi Alluvium was based on 

average rates of regional rainfall and outcrop/subcrop geology (CDM Smith 2016). The approach 

for the Namoi Alluvium involved optimising the recharge fluxes at the water table until a good 

match between observed and calculated heads was obtained. The approach also combined rainfall 

and flood recharge, irrigation returns, groundwater pumping and evapotranspiration into a single 

estimate of net flux, and therefore these processes are not individually represented in the 

modelling. Note that this approach was only applied within the Namoi Alluvium. For these 

reasons, groundwater recharge was not included in the uncertainty analysis.  

1.4.1.4 Geologic uncertainty 

For the purposes of the present study, it was assumed that the conceptualisation and 

parameterisation of the Gunnedah and Surat basins groundwater flow system was adequate, with 

the exception of the parameterisation of aquitard hydraulic properties. The geological model was 

constructed using Leapfrog Hydro (v. 1.7)1 and was based on a combination of geological datasets, 

including drilling logs, stratigraphic surfaces, outcrop geology, and ground surface. The twenty-

nine stratigraphic units present within the assessment area were represented by 13 model layers 

(CDM Smith, 2016). Because the focus of this study was on aquitards, conceptual geological 

uncertainty was deemed less critical compared to parametric uncertainty. There are several 

reasons that support this approach for aquitards: (1) aquitards are geologically more 

homogeneous than aquifers or coal layers, especially when formed under low-energy depositional 

environments, (2) the larger-scale heterogeneity can be captured by means of sufficient hydraulic 

conductivity measurements, and (3) low-permeable aquitards are naturally less sensitive to 

geological or hydraulic heterogeneity (provided the hydraulic conductivity is low enough). As 

mentioned above, the relative importance of conceptual geological uncertainty is site-specific and 

depending on the specific management question being addressed. It is therefore recommended to 

explore its likely contribution to the overall uncertainty first in a qualitative manner, before 

undertaking a quantitative study. Indeed, any uncertainty analysis should try to be as 

comprehensive as possible, but this does not mean that all possible parameters, boundary 

conditions, etc. need to be included in a quantitative analysis. 

1.4.1.5 Uncertainty due to dynamic behaviour of coal layer hydraulic properties 

Permeability in coal is controlled by the magnitude of net stress in the hydrocarbon reservoir. This 

can vary across the field, in different coal seams, and also change over time with production. 

Production influences permeability in two opposing ways. First, a decrease in permeability may 

occur due to cleat compaction. Secondly, an increase in permeability may happen due to coal 

matrix shrinkage as gas desorbs. If the matrix shrinkage is large enough, then this could counteract 

                                                           

 

1 http://www.leapfroghydro.com/hydro/   
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any decrease in permeability from the loss of pore pressure and cleat closure (Moore, 2012). The 

dynamic behaviour of coal layer permeability is not normally accounted for in reservoir models. If 

deemed important, its uncertainty would need to be part of the calculation of the water 

production rates.  

1.4.1.6 Uncertainty due to water production rates 

Potentially one of the largest sources of uncertainty to estimate impacts of coal seam gas 

depressurisation in shallow aquifers are the water production rates. Detailed reservoir simulation 

by coal seam gas proponents produces such drawdown estimates as part of their assessment of 

the water production rates required to sufficiently depressurise for methane to desorb. Most 

proponents recognize that there is considerable uncertainty in the water production rates (and 

hence drawdowns), not only due to uncertainty in the geological characterisation of the coal 

formations but also due to uncertainty in the planned production schedule, and typically provide 

an ensemble of water production rates based on stochastic analysis (CDM Smith, 2016). 

The water production rates from reservoir simulation modelling are often used in regional 

groundwater models as either a direct boundary condition (prescribed flux) or as a constraint on 

the water production rate if depressurisation is implemented as a specified drawdown boundary 

condition. The work of Herckenrath et al. (2015) and Moore and Doherty (2015) point out some of 

the major issues related to simulating coal seam gas extraction in regional scale groundwater 

models, such as the single phase versus dual phase flow and the upscaling of the hydraulic 

properties of the gas bearing formations. They show that many of the simplifying assumptions in 

regional groundwater flow modelling, such as uniform properties and single phase flow, lead to 

overestimates of drawdown in the gas bearing formations. 

Available water production rates for the current case study area demonstrate a relatively small 

uncertainty, based on the available model simulations for the deepest of two coal formations 

(CDM Smith, 2016). Indeed, the water production volumes for the Low Case (P90 exceedance 

probability), Base Case (P50 exceedance probability) and High Case (P10 exceedance probability) 

realisations are 72.3 GL, 83.8 GL and 98.3 GL, respectively. The difference between the Low and 

High Cases is 26 GL (31% variation of the Base Case). The High Case is 14.5 GL higher than the Base 

Case, or 17%. The Base Case was used in the current study. There were no stochastic variations 

available of the estimates of water production from the shallower coal formations. Although not 

generally recommended, this study did not include water production as an uncertain factor due to 

lack of data for the shallowest coal layers and due to a relatively small uncertainty for the deepest 

coal layers. As data becomes available, the initially calculated water production rates can be 

updated and the uncertainty analysis repeated if observed data shows a much larger variability 

than the initial estimate.  

1.4.2 Quantitative uncertainty analysis 

Global sensitivity analysis methods were used to characterise the uncertainty of four predictions 

(i.e., groundwater impact metrics) of interest. The initial prior statistical distributions of 30 model 

parameters were defined using log-uniform distributions (Figure 1-2). The use of uniform 

distributions (or log-uniform distributions if values span several orders of magnitude) is 
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recommended when very little is known about the true parameter distribution due to a lack of 

data (i.e., when one is unable to decide which values within a given range are more likely than 

others) (Mallants et al., 2003).  

 

Figure 1-2. Flowchart of the workflow employed in this study to assess the effects of improved aquitard 

characterisation (red triangular distributions) on parameter sensitivity (not shown) and prediction uncertainty (one 

hypothetical flow metric shown). 

 

In order to provide a more rigorous basis for the representation of these aquitard sequences, 

laboratory porosity-permeability measurements were undertaken and relationships between 
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these two parameters were established for key hydrogeological formations. Borehole wireline log 

data were then used to generate continuous porosity profiles, which were subsequently 

transformed into permeability profiles based on the derived porosity-permeability relationships. 

High-resolution permeability profiles were upscaled to aquitard formation scale prior to inclusion 

in the groundwater flow model (Turnadge et al., 2018a).  

The ranges of these distributions were specified arbitrarily using CDM Smith (2016) model 

parameter values ± one order of magnitude. These ranges are consistent with the variability 

ascribed to aquitard hydraulic properties by modelling studies prior to that of CDM Smith (2016). 

The combinations of parameter values sampled from these distributions represented groundwater 

flow models that were assumed to be equally likely (i.e., with likelihood functions equal to unity). 

Furthermore, the models generated from these prior distributions were not constrained by 

observations of system states, such as hydraulic heads or groundwater discharge fluxes; e.g., as 

often undertaken in a traditional calibration-based approach.  

Following an initial estimation of prediction uncertainties based on initial model parameter values 

(Figure 1-2), the prior parameter distributions for two aquitard sequences were updated on the 

basis of upscaled aquitard vertical hydraulic conductivity values using a combination of core 

measurements and geophysical wireline logging data from around 100 deep exploration wells 

(Turnadge et al., 2018b). A second global sensitivity analysis was then performed using these 

updated prior parameter distributions (Figure 1-2). The uncertainties of the four predictions of 

interest were again estimated and subsequently compared to initial results. 

An important source of uncertainty about predicted impacts originates from imperfect conceptual 

models (Gupta et al., 2012; Rojas et al., 2010). To address conceptual model uncertainty we 

include, as part of the broader uncertainty analysis, a more complex conceptual model that differs 

in its representation of hydraulic conductivity heterogeneity within aquitard formations.  

It is of further importance to note that the stochastic approach adhered to in this project is 

consistent with the Bayesian paradigm, in which prior beliefs and estimates of parameters and 

conceptualisation are iteratively updated when new data and information becomes available. In 

this study no effort is invested in constraining parameters by observations of state variables, a 

process referred to variously as calibration, history matching or inverse modelling (Carrera et al., 

2005). The calibration process assumes that a parameter set that minimises the mismatch 

between observed and simulated heads will result in more accurate predictions. White et al. 

(2014) demonstrated that, in many instances, this assumption is not valid and that calibration can 

even lead to bias in predictions. Another example where a well-calibrated model provided 

inaccurate predictions was reported by Moore and Doherty (2006). They demonstrated that 

transport predictions made by a model that calibrated perfectly to ground water elevation data 

can be 100% wrong as a consequence of the simplifications required to achieve a unique 

calibration. Furthermore, the stochastic uncertainty quantification undertaken in this study 

involves a future scenario of how a groundwater system may evolve under a given stress (i.e., 

depressurisation). As the stress will only eventuate in the future, there are currently no head or 

flux data available for model calibration. It should also be noted that in unconstrained Bayesian 

approaches, such as presented here, the ensemble of models generated will typically include a 

model featuring parameters that would otherwise be estimated through calibration to 
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observations. Therefore, the range of prediction uncertainty explored through such Bayesian 

approaches can be considered comparatively more robust. 

Furthermore, calibration-based approaches also assume that the information content of available 

observations is suitable and relevant to the parameters estimated through model inversion. In the 

context of propagation of depressurisation due to CSG extraction, the theoretical analysis of Cook 

et al. (2016) indicated that the current set of predevelopment groundwater level and flux 

observations in the Gunnedah and Surat basins are highly unlikely to yield information on the 

salient hydrogeological parameters as they are mostly controlled by external driving forces such as 

pumping, groundwater surface water interactions and recharge (Giambastani et al., 2009). 

1.5 Workflow 

CDM Smith (2016) developed a transient model of the Gunnedah-Surat basins groundwater flow 

system as part of Environmental Impact Assessment requirements for the Santos Narrabri Gas 

Project, to be located near Narrabri, NSW. The model was developed using the MODFLOW-

SURFACT simulator (HydroGeoLogic, 1996), which is a proprietary version of the widely used 

MODFLOW groundwater flow simulator (Harbaugh, 2005). This deterministic model featured 

spatially uniform values for each hydrostratigraphic unit represented. Two aquitard sequences 

were represented in the model, both of which occur between the primary CSG target unit (the 

Maules Creek Formation coal seams) and the key confined aquifer in the region (the Pilliga 

Sandstone aquifer).  

For the purposes of the present study, four simulation metrics were defined for the assessment of 

prediction uncertainty, based on groundwater flow predictions relating specifically to the Pilliga 

Sandstone aquifer:  

(1) the maximum hydraulic head reduction in the Pilliga Sandstone aquifer with respect to pre-

production conditions (i.e., drawdown);  

(2) the total time elapsed after the cessation of CSG extraction at which maximum drawdown 

conditions occur in the Pilliga Sandstone aquifer;  

(3) the number of model cells in the Pilliga Sandstone aquifer with drawdown greater than or 

equal to two metres; and, 

(4) the maximum vertical flux across the low hydraulic conductivity formations that separate 

the Pilliga Sandstone aquifer from underlying CSG target formations. 

With respect to prediction (3), a nominal drawdown value of two metres was selected, which is 

consistent with trigger-level thresholds specified by the NSW Aquifer Interference Policy (NSW DPI 

OW, 2012). In many cases, when drawdowns induced by groundwater extraction exceed two 

metres, “make-good” provisions are enacted. The sensitivities of these four predictions to 30 

model parameters were tested. These parameters included the horizontal and vertical hydraulic 

conductivities (KH, KV) and specific storage coefficients (Ss) of the ten hydrostratigraphic units 

represented in the model (Table 2-1). For each parameter, the value specified by CDM Smith (2016) 

was assumed to be the mean of a log-uniform distribution with upper and lower bounds specified 

as the mean value ± one order of magnitude. Parameter values were sampled 300 times from 

these prior distributions and used as model inputs. The resulting set of 300 model outputs were 
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used to characterise the initial uncertainty (i.e., unconstrained by data) in the four metrics of 

interest. Statistical tests were undertaken to confirm that this sample size was sufficiently large to 

capture the full range of parameter variability (see Figure 3-2 and Figure 5-2). As mentioned 

before, it should be noted that the approach presented differs from calibration-based approaches. 

The approach involved quantification of the uncertainty of each of the four predictions was 

assessed by sampling from all possible parameter combinations, each of which were considered 

equally likely.  

As described by Turnadge et al. (2018b), the laboratory testing of aquitard core samples, in 

conjunction with the processing of wireline log-derived porosity profiles from exploration drilling, 

were used to generate revised prior KV distributions for the two aquitard sequences represented 

in the CDM Smith (2016) groundwater flow model. These revised prior distributions were used as 

a basis for a second set of 300 model runs that provided revised estimates of the uncertainty of 

the four predictions of interest (Section 5). As will be shown later (Section 4), at least the KV of the 

first aquitard sequence was identified in the sensitivity analysis to be a key parameter to which 

three out of four groundwater impact metrics were sensitive. 

In a subsequent step of the uncertainty analysis, upscaled values were used to estimate the spatial 

structure of aquitard KV for both aquitard sequence. This was achieved by estimating semi-

variogram models which were subsequently used to generate 50 stochastic random fields. An 

upper limit of 50 realisations was selected due to time limitations, as each model run typically 

required between 20 and 60 minutes to complete. All realisations were considered to be equally-

likely spatial distributions of heterogeneous aquitard KV values. Predictions generated using this 

alternative conceptualisation were compared to those generated using the spatially uniform 

parameterisation used in steps 1 and 2. 

The adopted workflow involves high-resolution computational Monte Carlo simulations that 

produce a large number (i.e., 300 for the spatially uniform model and 50 for the heterogeneous 

model) of equally likely results. These non-unique results are summarized in terms of statistically 

averaged quantities and sample probability distributions. A further advantage of the 50 stochastic 

random fields is that their results honour measured values of aquitard properties (KV), i.e. they are 

said to be conditioned on observed data. An important improvement of conditioned over 

unconditioned simulations is that one obtains (among others) conditional mean flow variables that 

constitute optimum unbiased predictors of these unknown random quantities (Neuman and 

Wierenga, 2003).  

In a final step, the robustness of the summary statistics (the percentiles) of the predictions are 

evaluated in a simplified data worth analysis using a bootstrap resampling methodology. The 

bootstrap resampling approach is a non-parametric method of calculating prediction confidence 

intervals and parameter uncertainty. If the uncertainty is high, the summary statistic is prone to 

change due to omission or inclusion of only a few data points. The summary statistic can then not 

be considered robust and the data density is insufficient to characterise the parameter distribution 

according to an acceptable degree of uncertainty.  
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2 CDM Smith (2016) Gunnedah and Surat basins 
groundwater flow model 

2.1 Geographic context 

The Gunnedah geological basin is located approximately 230 km north west of Sydney and 

encompasses an area of approximately 15 000 km2. The Gunnedah Basin underlies much of the 

Liverpool Plains area which includes the municipalities of Dubbo, Narrabri and Gunnedah. The 

study area is located west of the line connecting the towns of Narrabri and Gunnedah (Figure 2-1).  

 

Figure 2-1 Spatial extent of Gunnedah geological basin (NSW) and numerical grid of groundwater flow model. The 

highlighted row (A-A’) and column (B-B’) was used to display the hydrostratigraphic cross-section. 

 

A

A’

B

B’
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2.2 Geology 

The Permian-age Gunnedah geological basin represents the central portion of the Sydney-

Gunnedah-Bowen Basin. A narrow foreland basin, it is located between the Thomson Orogen in 

the west and the New England Fold Belt in the east. The Gunnedah Basin is overlain by the 

Jurassic-Cretaceous age Surat Basin (a sub-unit of the larger Great Artesian Basin). Collectively, 

these two geological basins contain a layered sequence of marine, non-marine and volcanolithic 

sedimentary rocks up to 1 200 m thick (Table 2-1). Coarse-grained units include conglomerates 

(e.g., Napperby and Porcupine Formations) and sandstones (e.g., Mooga, Pilliga and Clare 

Sandstones). Fine-grained units include claystones (e.g., Benelabri and Leard Formations) and 

shales (e.g., Porcupine and Watermark Formations). In parts of the Gunnedah Basin area, 

sedimentary rocks are intruded by igneous units such as the Garrawilla, Liverpool Range and 

Warrumbungle Volcanics. The Gunnedah Basin also includes significant coal-bearing units such as 

the Maules Creek Formation and the Hoskissons Coal. 

2.3 Hydrostratigraphy 

The following description of the hydrostratigraphy of the Gunnedah and -Surat basins follows that 

proposed by CDM Smith (2016; Table 2-2). Basement units include the Werrie Basalt and Boggabri 

Volcanics and the Goonbri and Leard formations. For the purposes of groundwater flow 

simulation, these units are assumed to be mostly impermeable to flow and do not interact with 

overlying units. The Maules Creek Formation overlies basement units and contains coal beds 

which were the primary target for coal seam gas development, with the estimated water 

production shown in Figure 2-4. The model cross‐sections in Figure 2-2 and Figure 2-3 are located 

along the highlighted row of the model grid (Figure 1-2). 

The hydraulic conductivity of the coal beds (e.g., KH = 0.1 m/d) was assumed to be two orders of 

magnitude higher than the remainder of the Maules Creek Formation (e.g., KH = 0.001 m/d) and 

thereby consistent with that of an aquifer. The Maules Creek Formation is overlain by a thick 

sequence of middle to late Permian sedimentary rocks which collectively represent an aquitard 

unit. This is overlain by the Hoskissons Coal, which was the secondary target for coal seam gas 

development with a much smaller estimated water production (Figure 2-4). As with the Maules 

Creek coal beds, the hydraulic conductivity of the Hoskissons Coal unit (e.g., KH = 0.1 m/d) was 

assumed to be consistent with that of an aquifer. The Hoskissons Coal is overlain by a second thick 

sequence of late Permian to Jurassic sedimentary rocks which collectively represent an aquitard 

unit. This is overlain by a key confined aquifer, the Pilliga Sandstone, which is the main Great 

Artesian Basin aquifer in the Namoi subregion. Its outcrop in the central part of the Namoi 

subregion corresponds to the boundary of the Great Artesian Basin (CSIRO, 2012). 

The Pilliga Sandstone aquifer is overlain by a number of Cretaceous age sedimentary rocks 

including the Mooga Sandstone and the Orallo and Bungil formations. The Liverpool Range 

Volcanics are also included in this hydrostratigraphic unit, which is considered to be an aquitard. 

At ground surface, the Namoi Alluvium and Gunnedah-Oxley Basin Formations are present in 

various parts of the study area. The predominant water supply development has occurred within 

the Namoi Alluvium, with smaller developments in the Gunnedah-Oxley Basin. 
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Figure 2-2 Approximately east-west cross-section (transect A-A’ in Figure 2-1) with hydrostratigraphic units of the 

groundwater model for the case study area, Gunnedah and Surat basins (NSW). 

 

 

Figure 2-3 Approximately north-south cross-section (transect B-B’ in Figure 2-1) with hydrostratigraphic units of the 

groundwater model for the case study area, Gunnedah and Surat basins (NSW). 
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Table 2-1. Stratigraphy of the Gunnedah Basin (CDM Smith, 2016; Geoscience Australia, 2016). 

Group Stratigraphic unit Lithology 

N/A Narrabri Formation Clay, silt, sand  

Gunnedah Formation  Gravel, sand, clay  

Liverpool Range Volcanics Liverpool Range Volcanics Basalt, dolerite, conglomerate, sandstone, shale, gravel, siltstone  

Rolling Downs Wallumbilla Formation Mudstone, siltstone, sandstone, limestone 

Blythesdale Bungil Formation Sandstone, siltstone, mudstone, coal 

Mooga Sandstone Sandstone, siltstone, shale, mudstone, coal 

Orallo Formation Sandstone, siltstone, mudstone, coal 

Injune Creek Pilliga Sandstone Sandstone, conglomerate, mudstone, siltstone, coal 

 Purlawaugh Formation Sandstone, siltstone, mudstone, coal  

Garrawilla Volcanics Dolerite, basalt, trachyte, tuff, breccia 

Deriah Formation  Sandstone, mudstone 

Napperby Formation  Sandstone, siltstone, conglomerate, shale 

Digby Formation  Conglomerate, sandstone 

Black Jack Trinkey Formation  Claystone, siltstone, sandstone, tuff, claystone, coal 

Wallala Formation  Conglomerate, sandstone, siltstone, claystone, coal  

Clare Sandstone Sandstone, conglomerate, coal, claystone 

Benelabri Formation  Claystone, siltstone, sandstone, coal 

Hoskissons Coal  Coal, sandstone, siltstone, claystone, tuff 

Brigalow Formation  Sandstone, siltstone 

Arkarula Formation  Sandstone, siltstone 

Pamboola Formation  Sandstone, siltstone, claystone, conglomerate, coal 

Millie Watermark Formation  Siltstone, claystone, sandstone 

Porcupine Formation  Conglomerate, sandstone, siltstone 

Bellata 

 

Maules Creek Formation Claystone, sandstone, coal, siltstone, conglomerate 

Goonbri Formation Siltstone, coal, claystone, sandstone 

Leard Formation Sandstone, conglomerate, coal 

N/A Werrie Basalt Basalt, tuff, coal 

Boggabri Volcanics Rhyolite, dacite, tuff, shale, trachyte, andesite 
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Figure 2-4 Water production for Maules Creek Formation and Hoskissons Coal seam target formations as predicted 

by the CDM Smith (2016) groundwater flow model. 

In summary, CDM Smith (2016) conceptualised the Gunnedah-Surat basins groundwater flow 

system as being composed of one unconfined aquifer, one confined aquifer, six distinct aquitards 

(including two coal interburden units), and two coal measures (Table 2-2). When representing 

these hydrostratigraphic units in a numerical groundwater flow model, CDM Smith (2016) used a 

single model layer to represent the unconfined Namoi Alluvium aquifer (i.e., layer 1). Each of the 

Pilliga Sandstone aquifer, Wallumbilla Formation aquitard, and Bungil Formation–Orallo Formation 

aquitard were distributed across six model layers (i.e., layers 1-6). The Pilliga Sandstone aquifer 

was confined in some parts of the model (i.e., was overlain by the Wallumbilla Formation or 

Bungil–Mooga–Orallo Formation aquitards). In other parts of the model it was unconfined (i.e., 

was overlain by the Namoi Alluvium, or was outcropping). Six model layers were used to represent 

the upper aquitard sequence (i.e., Purlawaugh Formation to Benelabri Formation; layers 7-12). 

Seven model layers were used to represent the lower aquitard sequence (i.e., Brigalow Formation 

to Porcupine Formation; layers 13-19). Both coal measures (Hoskissons Coal and Maules Creek 

Formation coal member) were each represented using a single model layer (i.e., layers 13 and 22). 

Maules Creek Formation interburden members, which overlie and underlie the Maules Creek 

Formation coal members, were represented using five model layers (i.e., layers 20-24). 

Consequently, it should be noted that many model layers contain multiple hydrostratigraphic 

units; for example, model layer 13 contains a discrete area of Hoskissons Coal within the lower 

aquitard sequence. Similarly, model layer 22 contains a discrete area of the Maules Creek 

Formation coal member within the Maules Creek Formation interburden member.  
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Table 2-2. Hydrostratigraphy of the Gunnedah-Surat basins as represented in the CDM Smith (2016) groundwater 

flow model.  

Geological 

unit 

Geological  

model layer 

Hydrostrati- 

graphic  unit 

Groundwater  

model parameter ID 

Groundwater  

model layer(s) 

Namoi Formation 
1 aquifer 01 1 

Gunnedah Formation 

Liverpool Range Volcanics 
2 aquitard 02 1–6 

Wallumbilla Formation 

Bungil Formation 

3 aquitard 03 1–6 Mooga Sandstone 

Orallo Formation 

Pilliga Sandstone 4 aquifer 04 1–6 

Purlawaugh Formation 5 

aquitard 05 7–12 

Garrawilla Volcanics 6 

Deriah Formation  
7 

Napperby Formation  

Digby Formation  8 

Trinkey Formation  

9 

Wallala Formation  

Breeza Coal Member 

Clare Sandstone 

Howes Hill Coal Member 

Benelabri Formation  

Hoskissons Coal  10 coal 06 13 

Brigalow Formation  

11 

aquitard 07 13–19 

Arkarula Formation  

Melvilles Coal Member 

Pamboola Formation  

Watermark Formation  
12 

Porcupine Formation  

Maules Creek Formation (upper) 

13 

interburden 08 20, 21 

Maules Creek Formation (coal) coal 09 22 

Maules Creek Formation (lower) interburden 10 22–24 

 

In summary, the main aquitards of interest were the upper aquitard sequence (i.e., groundwater 

model layers 7-12) and the lower aquitard sequence (i.e., groundwater model layers 13-19). These 

aquitards were the focus of improved characterisation as well as the estimation of the effects of 

improved representation of vertical hydraulic conductivity. 
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2.4 Inflows and outflows 

The majority of boundary condition fluxes applied to the model occurred on the top model 

boundary. These were specified separately for the Namoi Alluvium and for the remainder of the 

top model layer and are described as follows.  

Within the Namoi Alluvium, the Namoi River was represented using Cauchy boundary conditions 

(i.e., RIV package), which were parameterised using river stage, base and conductance 

parameters. Within the remainder of the Namoi Alluvium, Neumann boundary conditions (i.e., 

RCH package) were applied in order to represent net recharge; i.e., gross recharge minus 

evapotranspiration (ET) minus extraction. For cells in which extraction and/or ET exceeded gross 

recharge, negative net fluxes of zero to -0.5 mm/d were specified. Elsewhere, positive net fluxes of 

zero to +0.5 mm/d were specified (CDM Smith, 2016; Figure 6-13).  

For cells located outside the extent of the Namoi Alluvium in the top model layer, Neumann and 

Cauchy boundary conditions were specified simultaneously. Spatially variable gross recharge rates 

ranging from 0.5 mm/y to 16 mm/y were applied using Neumann boundary conditions (i.e., RCH 

package). Evapotranspiration fluxes were represented using Cauchy boundary conditions (i.e., the 

EVT package). This package calculates ET fluxes as a linear function of depth below ground surface 

(i.e., model top). Calculated ET rates varied from a maximum of 600 mm/y for a watertable at 

ground surface to zero for a watertable ≥ 5 m depth (CDM Smith, 2016; Figure 6-14).  

Other model inflows and outflows occurred via lateral connections to other groundwater flow 

systems. This included connections between the Pilliga Sandstone aquifer and the Great Artesian 

Basin, as well as connections between the Namoi Alluvium aquifer represented in the model and 

the Lower Namoi Alluvium. All lateral inflows and outflows were represented using Dirichlet 

boundary conditions. 

2.5 Representation of coal seam gas extraction 

The extraction of fluid (i.e., water and methane gas) for both the primary coal target (Maules 

Creek Formation), and the secondary coal target (Hoskissons Coal) was represented in the model 

using Neumann boundary conditions (i.e., WEL Package). Time-varying extraction rates were 

assigned to relevant model cells in accordance with typical production dynamics (for details, see 

Figure 2-4 and CDM Smith, 2016). The water extraction rates used here represent the CDM Smith 

‘base case’, which did not include groundwater extraction for mine dewatering. In practice, CSG 

water extraction rates are typically higher upon the commencement of production (in order to 

extract sufficient water to lower the pressure in coal seams, thereby allowing gas desorption and 

flow of gas to the well) and are reduced more or less exponentially over time (e.g., Moore 2005). It 

should be noted that past studies have highlighted that the prediction of extraction rates and 

durations required for CSG extraction is often fraught with difficulty (KCB, 2012; Moore et al., 

2015), and that this can represent one of the most significant uncertainties in estimating the 

cumulative impacts of CSG production on adjacent aquifers. For reasons discussed in Section 1.4.1, 

this uncertainty is not the focus of this study. 
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2.6 Numerical solution scheme 

The proprietary finite-difference code MODFLOW-SURFACT (HydroGeoLogic, 1996) was used to 

solve the groundwater flow equation. While this version of MODFLOW includes a number of 

additions and alterations (including adaptive time stepping for transient models and improved 

treatment of dewatered model cells), none of these features were used in the development of the 

CDM Smith (2016) model. Instead, the sole reason for the use of MODFLOW-SURFACT rather than 

public domain versions was the use of an alternative preconditioned conjugate gradient numerical 

solver (PCG4). Preliminary testing of the model found that numerical convergence could not be 

achieved when using either the PCG2 (Hill, 2003) or NWT (Niswonger et al., 2011) standard 

solvers. 

2.7 Model modifications 

Prior to undertaking sensitivity analyses, a number of modifications were made to the CDM Smith 

(2016) groundwater flow model. First of all, numerical model convergence criteria were adjusted. 

These modifications are described as follows. The hydraulic head closure criterion for the 

preconjugate gradient solver was increased in size from 0.001 m to 0.1 m, in order to minimise 

model run times. The number of outer solver iterations was also reduced from 2 000 to 100, also 

to reduce model run times. Model mass balance errors were checked to ensure that relaxation of 

the convergence criterion did not affect the accuracy of the numerical solution (in terms of the 

total groundwater balance). Mass balance errors for steady state and transient solutions were < 5 

% and < 0.1 %, respectively. 

The input files for the constant head, recharge and evapotranspiration packages were rewritten to 

reduce their size and thereby reduce model run times. The writing of hydraulic head outputs was 

deactivated, also in order to reduce model run times. 

Finally, the temporal extent of the model was modified by including a single final stress period of 

160 years in length, which was subdivided into 160 time steps. This period represented the 

response of the groundwater flow system upon the cessation of groundwater extraction for CSG 

production. The length of the stress period was consistent with similar simulations undertaken by 

the Bioregional Assessments Programme. Groundwater impact calculations for the Pilliga 

Sandstone aquifer for periods in excess of 100 – 150 years are considered uncertain due to likely 

changes in climatic boundary conditions that have not been accounted for here.    
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3 Initial prediction sensitivity and uncertainty 
analyses 

3.1 Model predictions 

The model simulated groundwater flow in ten hydrostratigraphic units of the Gunnedah-Surat 

basins. The sensitivities of four modelled predictions to three flow parameters per unit (i.e., 30 

parameters in total) were examined. All predictions related to potential hydraulic impacts to the 

Pilliga Sandstone aquifer and were compared to steady-state model outputs, which represented 

pre-development conditions. Specifically, the four predictions were:  

(1) the maximum hydraulic head change (i.e. drawdown) across all model cells;  

(2) the time elapsed when maximum drawdown conditions occurred;  

(3) the spatial extent of drawdown greater than or equal to two metres (at any given 

time); and,  

(4) the maximum vertical flux across the base of the Pilliga Sandstone aquifer (at any active 

model cell). 

As the model used to generate predictions was of numerical type, the spatial extent of the model 

was discretised using a number of cells. For this reason, prediction (3) was calculated discretely 

rather than by integrating a single continuous area. This prediction was calculated as the total 

number of cells with drawdown in excess of two metres, hereafter referred to as the number of 

drawdown cells (‘NDD’). It should be noted that the model featured cells of various sizes (i.e., 1 

km2
, 5 km2

 and 25 km2); therefore areas affected could not be calculated directly from the number 

of cells affected. 

3.2 Model parameters 

The model parameters to which prediction sensitivity was tested were the horizontal (KH) and 

vertical (KV) hydraulic conductivity and specific storage (SS) of each of the ten hydrostratigraphic 

units, resulting in a total of 30 parameters. As the CDM Smith (2016) model was of deterministic 

type, it used single values for each parameter, which were specified based upon reviews of 

existing literature and models (and referred-to as “order-of-magnitude estimates”, CDM Smith, 

2016). In comparison, the sensitivity analysis performed for the present study required the 

definition of prior distributions for each of the model parameters tested. These were specified 

using log-uniform distributions with arbitrary ranges defined by the CDM Smith (2016) parameter 

value (for each of KH, KV and SS) ± one order of magnitude. 

3.3 Model stress testing 

Prior to undertaking global sensitivity analyses, the CDM Smith (2016) model was subjected to a 

number of “stress tests” in order to test the robustness of numerical model convergence. Based 
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upon the prior distributions specified for model parameters, 11 parameter combinations were 

devised (Table 3-1). These combinations primarily explored minimum and maximum possible 

values, either for all parameters (i.e., n=2, 3) or for groups of parameters (i.e., n=4-9). The effects 

of increasing and decreasing hydraulic diffusivity (i.e., KH/SS) were also examined (i.e., n=10, 11).  

 

Table 3-1. Results of parameter stress testing of the CDM Smith (2016) Gunnedah-Surat basins groundwater flow 

model. Parameter ranges (for each of KH, KV and SS) were specified as the CDM Smith (2016) parameter value ± two 

orders of magnitude. 

n Parameter set Converged? 

1 Base parameter set yes 

2 All parameters at minimum no 

3 All parameters at maximum no 

4 KH parameters at minimum no 

5 KH parameters at maximum no 

6 KV parameters at minimum no 

7 KV parameters at maximum yes 

8 SS parameters at minimum yes 

9 SS parameters at maximum yes 

10 KH and KV parameters at maximum, SS parameters at minimum (i.e. high diffusivity) no 

11 KH and KV parameters at minimum, SS parameters at maximum (i.e. low diffusivity) yes 

 

Seven of the 13 parameter combinations tested did not achieve convergence. These included: 

when all parameters were set to their minimum or maximum values; when all KH parameters were 

set to their minimum or maximum values; when all KV parameters were set to their minimum 

value; and when all hydraulic diffusivity values were set to their maximum value. Based on these 

results, it was decided to reduce the initial parameter range from four to two orders of magnitude. 

For the latter conditions the model did converge. 

3.4 Prediction sensitivity and uncertainty analysis - Methods 

A global sensitivity analysis of the transient CDM Smith (2016) coal seam gas production impact 

model was undertaken using two global approaches: (1) the delta moment-independent measure 

(DMIM; Borgonovo, 2007; Plischke et al., 2013), and; (2) a variance-based measure (Sobol’, 2001). 

Global sensitivity analyses, which provide a comprehensive assessment of the sensitivity of 

modelled outputs to model parameter variation, is currently under-utilised (Saltelli et al., 2008; 

Pianosi et al., 2016). Instead, local, one-at-a-time (OAT) sensitivity analyses are employed in the 

vast majority (i.e., 96 %) of all published model sensitivity analyses (Ferretti et al., 2016). Model 

outputs generated through global sensitivity analyses were also used as bases for prediction 

uncertainty quantification. In order to explain the advantages of global approaches over local 

sensitivity analysis, local OAT sensitivity analyses are first described. 
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3.4.1 One-at-a-time sensitivity analysis 

Local sensitivity analysis is typically performed using a one-at-a-time procedure. Here, a base set 

of parameter values is assumed, which is often derived from deterministic model calibration. For a 

given modelled prediction, each model parameter value is adjusted by an infinitesimal amount 

(typically ±1 %) while all other parameters retain “base” values; e.g., for a forward finite difference 

(Saltelli et al., 2000): 

 𝑂𝐴𝑇(𝑋𝑖) =
𝑌|𝑋𝑖=𝑥∗1.01−𝑌|𝑋𝑖=𝑥

𝑋𝑖=𝑥∗1.01−𝑋𝑖=𝑥
 (2) 

where 𝑋𝑖 = parameter 𝑖 from a set of parameters 𝑋𝑖=1…𝑁 , 𝑥 = the “base” value of parameter 𝑖, 

and 𝑌|𝑋 = the value of prediction 𝑌 when using parameter set 𝑋. Although trivial to apply, the 

inability to vary parameter values simultaneously in this approach typically results in gross 

undersampling of the range of possible models and, therefore, predictions. For example, OAT 

sensitivity analysis of a twelve parameter model will explore less than one-thousandth of the total 

number of possible parameter combinations (Saltelli and Annoni, 2010). Furthermore, OAT 

approaches assume that relationships between a prediction and model parameters are 

independent. For models featuring considerable correlation between parameters (such as many 

groundwater flow models), this assumption may be invalidated. Consequently, for such models, 

estimates of prediction uncertainty based on OAT sensitivity analyses are not robust. The ability to 

explore the effects of parameter correlation on prediction uncertainty was a key motivation 

behind the development of global sensitivity metrics. 

3.4.2 Delta Moment-Independent Measure 

The first global method used is known as the Delta Moment-Independent Measure (DMIM; 

Borgonovo et al., 2007; Plischke et al., 2013). The DMIM approach is based upon computing the 

differences in mass density between probability density functions (PDFs) of prediction values 

computed (A) when all parameter values are varied simultaneously and (B) when one parameter 

of interest is fixed at a constant value. An example of this approach is provided in Figure 3-1. The 

PDF of (A) is represented by a solid red line while the PDF of (B) is represented by a dashed blue 

line. The difference between these two PDFs is represented by the solid black shading. 

Mathematically, this difference in mass density [𝑠𝑖(𝑥)] is expressed as (Plischke et al., 2013): 

  𝑠𝑖(𝑥) = ∫ |𝑓𝑌(𝑦) − 𝑓𝑌|𝑋𝑖=𝑥(𝑦)| d𝑦
𝑦

 (3) 

where 𝑓𝑌(𝑦) represents the PDF of predictions 𝑦 and |∙| represents the L1 norm; i.e., the sum of 

absolute values. Essentially, this equation is used to compute the integral with respect to 𝑦 of the 

absolute difference between the PDF of (A), expressed as 𝑓𝑌(𝑦) , and the PDF of (B), expressed as 

𝑓𝑌|𝑋𝑖=𝑥(𝑦). The DMIM sensitivity of a given model prediction to a parameter of interest [𝛿𝑖] , is 

then calculated as one half of the expected value of 𝑠𝑖(𝑥); i.e.: (Plischke et al., 2013) 

 𝛿𝑖 = 𝛿(𝑌, 𝑋𝑖) =
1

2
𝐸[𝑠𝑖(𝑥)] =

1

2
𝐸 [∫ |𝑓𝑌(𝑦)  𝑓𝑌|𝑋=𝑥(𝑦)| d𝑦

𝑦
] (4) 

where 𝐸 is the expected value. A large 𝛿𝑖 value indicates that the prediction of interest is highly 

sensitive to parameter 𝑋𝑖. In practice, the integrals in equations (3) and (4) are evaluated 

numerically using a kernel density estimator.  
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Figure 3-1. Graphical representation of the Delta Moment Independent Measure (DMIM; Plischke et al., 2013) of 

global sensitivity (Borgonovo, 2007). The exponential distribution (red solid line) represents the probability density 

function (PDF) of modelled predictions when all model parameters are varied simultaneously. The skewed Gaussian 

distribution (dashed blue line) represents the PDF of modelled predictions when all model parameters are varied 

except a given parameter of interest. The difference in mass density between these two PDFs (solid black shading) 

is used as the basis for the calculation of the DMIM sensitivity metric. 

3.4.3 Sobol’ variance-based metric 

The second global method used was a relatively simple approach to global sensitivity analysis 

derived by Sobol’ (2001). This approach quantifies the uncertainty of a given prediction by the 

variance of the range of values. As such, it is implicitly assumed that the statistical distributions of 

predicted values can be characterised by their first two moments (i.e., mean and variance) alone. 

The primary advantage of this approach lies in its simplicity, whereby prediction uncertainty is 

characterised using scalar values while avoiding the need for numerical integration or quadrature. 

The Sobol’ approach assumes that both prior and posterior distributions can be characterised by 

their first two moments and that their uncertainty can be quantified by the second moment (i.e., 

variance) of these distributions. The first-order sensitivity of model predictions to model 

parameters is quantified as the ratio (i.e., S1) between two values (Saltelli et al., 2008): 

 𝑆1(𝑖) =
𝑉[𝐸(𝑌|𝑋𝑖)]

𝑉(𝑌)
 (5) 

The numerator 𝑉[𝐸(𝑌|𝑋𝑖)] represents the variance of the expected values of prediction 𝑌 when 

parameter value 𝑋𝑖 is held constant (Saltelli et al., 2008). The denominator 𝑉(𝑌) represents the 

sum of (A) the variance of all expected values of prediction 𝑌 when 𝑋𝑖 is held constant and (B) the 

expected value of the variance of prediction 𝑌 when 𝑋𝑖 is held constant; i.e. (Saltelli et al., 2008): 

 𝑉(𝑌) = 𝑉[𝐸(𝑌|𝑋𝑖)] + 𝐸[𝑉(𝑌|𝑋𝑖)] (6) 

Consequently, the Sobol’ sensitivity metric represents the variance of model outputs when a 

parameter is fixed at a given value, normalised by the total model output variance. In practice, the 

sensitivity metric can be calculated for all model parameters; i.e., from 𝑋𝑖=1 to 𝑋𝑖=𝑁. 
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3.4.4 Implementation of methods 

DMIM and Sobol’ global sensitivity analyses were implemented using the Python language library 

SALib (Herman and Usher, 2016). The Monte Carlo sampling employed by these algorithms 

provided the basis for prediction uncertainty analyses, which were visualised as scatterplots (see 

Appendix). A sample size of 300 model runs provided the basis for both algorithms. Uniform prior 

distributions with a range of two orders of magnitude were specified for all parameters tested. 

Mean values were specified according to the parameter values described by CDM Smith (2016). 

Parameter sampling was undertaken using a Latin Hypercube approach, implemented using the 

SALib library. Customised Python scripts were used to generate MODFLOW model input files, to 

undertake parallel model runs, and to post-process model outputs, including the calculation of 

sensitivity metrics (quantitative sensitivity analysis) and the generation of scatter plots of 

prediction versus parameter values for each of the four groundwater impact metrics (qualitative 

sensitivity analysis) (see Pianosi et al. (2016) for a review of helpful visualisation tools for global 

sensitivity analysis). 

3.4.5 Real-time parameter re-sampling 

As indicated by model stress testing results (Section 3.3), the numerical convergence of the CDM 

Smith (2016) model was not unconditionally robust, given the specified parameter prior 

distributions. Therefore it was not known prior to undertaking global sensitivity analyses whether 

parameter sets generated by the SALib library would be convergent. For this reason, parameter 

resampling was incorporated into the GSA algorithm. After the completion of each model run, a 

model convergence check as performed. If the model was found to have not converged then a 

new parameter set was generated and the model was rerun. This procedure was repeated until a 

convergent parameter set was achieved, which was then recorded. Inspection of the final set of 

300 convergent parameter sets confirmed that comprehensive sampling of the ranges specified 

for each parameter was achieved (Table 3-2). 

Mean values for a uniform or log-uniform distribution function are calculated as mean = 

(minimum + maximum)/2. Based on a log-uniform distribution, the mean log10 KV (with KV in 

m/day) for both the upper and lower aquitard is calculated to be log10 KV = -5.0. This value will be 

compared with updated values following the improved aquitard characterisation (Section 4).  
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Table 3-2. Specified and sampled minimum and maximum parameter values used in preliminary global sensitivity 

analysis of the preliminary CDM Smith (2016) groundwater flow model. All parameters were log10 transformed and 

random sampling of parameters was undertaken from log-uniform distributions. KH and KV in m/day, SS in m-1. 

n Hydrostratigraphic unit Parameter 
Specified  

minimum 
Sampled  

minimum 
Specified 

maximum 
Sampled  

maximum 

1 Namoi Alluvium aquifer KH01 -0.300  0.338 1.700  1.613 

2 Wallumbilla Formation aquitard KH02 -5.000 -4.993 -3.000 -3.002 

3 Blythesdale Group aquitard KH03 -4.000 -3.994 -2.000 -2.002 

4 Pilliga Sandstone aquifer KH04 -2.000 -1.941 0.000 -0.016 

5 Upper aquitard sequence KH05 -4.000 -3.994 -2.000 -2.006 

6 Hoskissons Coal KH06 -2.000 -1.993 0.000 -0.006 

7 Lower aquitard sequence KH07 -4.000 -3.990 -2.000 -2.002 

8 Maules Creek Formation interburden KH08 -4.000 -3.984 -2.000 -2.002 

9 Maules Creek Formation coal KH09 -2.000 -1.996 0.000 -0.000 

10 Maules Creek Formation interburden KH10 -4.000 -3.993 -2.000 -2.005 

11 Namoi Alluvium aquifer KV01 -1.300 -1.295 0.700  0.697 

12 Wallumbilla Formation aquitard KV02 -6.000 -6.295 -4.000 -4.305 

13 Blythesdale Group aquitard KV03 -6.000 -5.990 -4.000 -4.010 

14 Pilliga Sandstone aquifer KV04 -3.000 -2.996 -1.000 -1.000 

15 Upper aquitard sequence KV05 -6.000 -5.968 -4.000 -4.007 

16 Hoskissons Coal KV06 -3.000 -2.981 -1.000 -1.001 

17 Lower aquitard sequence KV07 -6.000 -5.989 -4.000 -4.004 

18 Maules Creek Formation interburden KV08 -6.000 -5.993 -4.000 -4.012 

19 Maules Creek Formation coal KV09 -3.000 -2.993 -1.000 -1.000 

20 Maules Creek Formation interburden KV10 -6.000 -5.999 -4.000 -4.001 

21 Namoi Alluvium aquifer SS01 -6.000 -5.999 -4.000 -4.003 

22 Wallumbilla Formation aquitard SS02 -6.000 -5.999 -4.000 -4.001 

23 Blythesdale Group aquitard SS03 -6.000 -5.995 -4.000 -4.005 

24 Pilliga Sandstone aquifer Ss04 -6.000 -6.000 -4.000 -4.005 

25 Upper aquitard sequence SS05 -6.000 -5.978 -4.000 -4.006 

26 Hoskissons Coal SS06 -6.000 -5.992 -4.000 -4.019 

27 Lower aquitard sequence SS07 -6.000 -5.991 -4.000 -4.001 

28 Maules Creek Formation interburden SS08 -6.000 -5.977 -4.000 -4.001 

29 Maules Creek Formation coal SS09 -6.000 -5.991 -4.000 -4.010 

30 Maules Creek Formation interburden SS10 -6.000 -5.994 -4.000 -4.050 

3.4.6 Statistical convergence testing 

A sample size of 300 model runs was initially selected for pragmatic reasons; i.e., to limit both the 

total model processing time and computer storage required. Each model run required 

approximately 30 minutes to complete and produced approximately two gigabytes of output files. 
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Furthermore, because of the proprietary status of the finite-difference code MODFLOW-SURFACT 

(HydroGeoLogic, 1996), distributed or parallel computing was not an option, although this would 

have reduced the overall runtime and thus would have allowed for a larger number of model runs. 

Such practical implications need careful consideration when selecting the modelling software, 

especially for stochastic simulations. Whatever the initial number of model runs selected, it is 

important to test if the sensitivity metrics have converged for a given number of Monte Carlo runs 

(Nossent et al., 2011). 

Following the completion of 300 convergent model runs, the statistical robustness of results based 

on this sample size was then tested by recalculating the relative ranking of each parameter, based 

on the DMIM δ and Sobol’ S1 quantitative sensitivity metrics. These two metrics were recalculated 

using sample sizes of 200, 220, 240, 260, 280 and 300 model runs. The relative rankings of the four 

modelled predictions are compared with respect to increasing sample size in Figure 3-2.  

 
Figure 3-2. Relative rankings of ten parameters used by the CDM Smith (2016) Gunnedah-Surat basins groundwater 

flow model (most sensitive = red, second most sensitive = blue, third most sensitive = green; less sensitive 

parameters are shown in grey) to which predictions relating to the Pilliga Sandstone aquifer were most sensitive: 

(a) maximum drawdown (MXD); (b) time elapsed at which maximum drawdown occurred (tMXD); (c) number of 

model cells at which drawdown exceeded two metres; and (d) maximum change in vertical flux (MXQ). Parameter 

rankings were based on two global sensitivity analysis metrics: (a) the Delta Moment-Independent Measure (δ; 

Plischke et al., 2013) and (b) the first order Sobol’ metric (S1; Sobol’, 2001). Sample sizes used as the basis for metric 

computation ranged from 200 to 300 model runs. Parameters identified are discussed in Section 3.5. 

For each prediction, at least one model parameter was consistently ranked first based on sample 

sizes greater than or equal to 260 model runs. Note that the relative rankings are only significant if 

at least one of the two metrics occupies systematically the top rank for each and every sample 

size. For example, for the maximum drawdown (MXD), there is only one parameter for which the 

Sobol’ S1 metric is consistently ranked first. For the extent of maximum drawdown (NDD), there 

are two parameters consistently ranked first and second, indicating only these two parameters are 

significantly affect the groundwater impact metric (here NDD). As will be shown later, these 

diagrams of relative rankings are best supplemented with diagrams displaying the magnitude of 
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the sensitivity metrics for all predictions tested (i.e., the larger the metric, the more sensitive is the 

model prediction to this parameter). 

The statistical robustness of results based on a sample size of 300 model runs was also tested by 

recalculating the uncertainty (i.e., statistical spread) of model predictions. The uncertainties of the 

four modelled predictions are compared with respect to increasing sample size (from 200 to 300, 

Figure 3-3. The uncertainties of all predictions was estimated consistently based on sample sizes 

greater than or equal to 260 model runs for prediction MXD, 200 model runs for prediction tMXD, 

and 280 model runs for predictions NDD and MXQ. Notably, the statistical distributions of three of 

the four predictions were highly skewed. For the right-skewed magnitude of maximum drawdown 

prediction (MXD), this was due to a large number of predictions less than one metre in magnitude. 

For the left-skewed timing of maximum drawdown (tMXD), this was due to the specification of a 

model temporal extent (i.e., a 160 year-long period of response after the cessation of CSG 

extraction) that was insufficient to capture peak drawdown conditions for a subset of the model 

runs. Given that a set of 300 model runs took approximately one week to complete, it was not 

feasible to repeat the sampling process using an extended model duration within the duration of 

the present study. For the right-skewed prediction of the spatial extent of drawdown (NDD), the 

skewed distribution was due to a large number of zero-value predictions (i.e. no grid cells with 

maximum drawdown exceeding 2 m).  

 

Figure 3-3. Statistical distributions of four predictions relating to the Pilliga Sandstone aquifer and simulated using 

the CDM Smith (2016) Gunnedah-Surat basins groundwater flow model: (a) maximum drawdown (MXD); (b) time 

elapsed at which maximum drawdown occurred; (c) number of model cells at which drawdown exceeded two 

metres (NDD) ; and (d) maximum change in vertical flux (MXQ). The size of samples described by each of these 

statistical distributions ranged from 200 to 300 model runs. 

3.5 Prediction sensitivity analysis - Results and Discussion 

A full set of qualitative results and quantitative results (i.e., DMIM δ and Sobol’ S1 metric values, 

and associated relative rankings) of preliminary prediction sensitivity analyses are presented in the 

next sections. Key results, in terms of parameters to which predictions were found to be most 

sensitive, are summarised as follows. 

3.5.1 Prediction metric 1: Magnitude of maximum drawdown 

The prediction of maximum drawdown was found to be most sensitive to the horizontal K of the 

Namoi Alluvium aquifer (KH01), which was consistently ranked as the most influential parameter 



 

Sensitivity and uncertainty analysis of a regional-scale groundwater flow model featuring coal seam gas extraction  |  31 

by the Sobol’ S1 metric across all sample sizes (Figure 3-4). This parameter (KH01) featured the 

largest δ and S1 values (0.096 and 0.118, respectively) across all parameters (Figure 3-5). Using the 

DMIM δ metric, the horizontal K of the Namoi Alluvium was ranked first in all but one sample size 

(i.e., a DMIM δ analysis of a subset containing 280 samples, Figure 3-4a). The high sensitivity of 

this prediction to the horizontal K of the Namoi Alluvium is explained as follows. Significant 

volumes of water were removed from the model via negative net recharge conditions imposed 

within the Namoi Alluvium. This water was sourced predominantly from underlying 

hydrostratigraphic units; specifically, the Pilliga Sandstone aquifer. Changes to the horizontal K of 

the Namoi Alluvium directly affected the hydraulic gradient between the Namoi Alluvium and the 

Pilliga Sandstone. Hydraulic head values (and therefore drawdown values) were directly affected 

by variations in the horizontal K of the Namoi Alluvium.  

As discussed in Section 3.4.6, the uncertainty of the magnitude of maximum drawdown did not 

vary significantly for sample sizes ≥ 280 (Figure 3-3a). Predicted values of MXD ranged from 0.0 m 

to 5.5 m. The 10th percentile value ranged from 0.1 m to 0.2 m; the median value ranged from 0.8 

m to 0.9 m; and the 90th percentile value ranged from 2.4 m to 2.5 m. 

 

Figure 3-4. Relative rankings of ten parameters used by the CDM Smith (2016) Gunnedah-Surat basins groundwater 

flow model (most sensitive = red, second most sensitive = blue, third most sensitive = green; less sensitive 

parameters are shown in grey) to which the prediction of the magnitude of maximum drawdown in the Pilliga 

Sandstone aquifer was most sensitive. Parameter rankings were based on two global sensitivity analysis metrics: (a) 

the Delta Moment-Independent Measure (δ; Plischke et al., 2013) and (b) the first order Sobol’ metric (S1; Sobol’, 

2001). Sample sizes used as the basis for metric computation ranged from 200 to 300 model runs. 
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Figure 3-5 Global sensitivity analysis metrics of all 30 model parameters in relation to maximum drawdown. (a) 

Delta Moment-Independent Measure (δ; Plischke et al., 2013) and (b) first order Sobol’ metric (S1; Sobol’, 2001). 

Sample size for metric computation was 300 model runs. 

Maximum drawdown was also found to be weakly sensitive to the vertical K of the upper aquitard 

sequence (KV05; Figure 3-4). The ranking of the latter parameter converged with increasing sample 

size. Note, however, that inspection of the magnitude of sensitivity metrics (Figure 3-5) shows that 

KV05 sits in the noise and is only weakly significantly more sensitive than other parameters 

(δ=0.092, S1=0.048). Indeed, DMIM δ values ranged from 0.016 to 0.069 for the remainder of the 

parameters examined. 

3.5.2 Prediction metric 2: Timing of maximum drawdown  

The prediction of time of maximum drawdown was found to be equally insensitive to most 

parameters tested (Figure 3-6a, b); i.e., DMIM δ values ranged within a narrow band between 

0.041 and 0.078 (Figure 3-7a), while the Sobol’ S1 metric also varied within a relatively narrow 

range (Figure 3-7b). As a result, for the model conditions tested here, there is no single model 

parameter to which the timing of maximum drawdown is more sensitive than any other 

parameter. 

As demonstrated in Section 3.4.6, the uncertainty about timing of maximum drawdown did not 

vary significantly with increasing sample size (Figure 3-3b). Predicted values ranged from 19 to 261 

years across all 300 model runs. For sample sizes of 200 to 300, the 10th percentile value ranged 

from 117 years to 134 years and the median value ranged from 253 years to 255 years. The 90th 

percentile value was consistently 261 years, regardless of the sample size. When interpreting 

these results, and as stated previously, for a subset of model runs the model temporal extent 

specified was insufficient to capture peak drawdown conditions. Due to large model run times it 

was not feasible to repeat the sampling process using an extended model duration within the 

duration of the present study. 
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Figure 3-6. Relative rankings of ten parameters used by the CDM Smith (2016) Gunnedah-Surat basins groundwater 

flow model (most sensitive = red, second most sensitive = blue, third most sensitive = green; less sensitive 

parameters are shown in grey) to which the prediction of the timing of maximum drawdown in the Pilliga 

Sandstone aquifer was most sensitive. Parameter rankings were based on two global sensitivity analysis metrics: (a) 

the Delta Moment-Independent Measure (δ; Plischke et al., 2013) and (b) the first order Sobol’ metric (S1; Sobol’, 

2001). Sample sizes used as the basis for metric computation ranged from 200 to 300 model runs. 

 

 

Figure 3-7 Global sensitivity analysis metrics of all 30 model parameters in relation to time to maximum drawdown. 

(a) Delta Moment-Independent Measure (δ; Plischke et al., 2013) and (b) first order Sobol’ metric (S1; Sobol’, 2001). 

Sample size for metric computation was 300 model runs. 

 

3.5.3 Prediction metric 3: Spatial extent of drawdown propagation 

The prediction of the spatial extent of drawdown greater than or equal to two metres was found 

to be most sensitive to the horizontal K of the Namoi Alluvium aquifer (KH01), which was 
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consistently ranked as the most influential parameter with increasing sample size (Figure 3-8a, b). 

For interpretation of this result with regards to the structure of the groundwater flow model, see 

Section 3.5.1. Sobol’ analyses also indicated consistent sensitivity to the horizontal K of the Maules 

Creek Formation interburden (KH08) (Figure 3-9b). 

The KH01 parameter had significantly larger δ and S1 values (0.125 and 0.101, respectively) across 

all parameters (Figure 3-9a, b). The values of both sensitivity metrics for this model parameter 

were significantly larger than all other model parameters. DMIM δ values ranged from 0.062 to 

0.089 for the remainder of the parameters examined (Figure 3-9a).  

As shown previously in Section 3.6.4, the uncertainty of this prediction did not vary significantly 

with increasing sample size (Figure 3-3). Predicted values ranged from zero to 102 cells displaying 

drawdowns ≥ 2 m. The 10th percentile and median values were consistently zero (i.e., no model 

cells featured drawdown ≥ 2 m) and the 90th percentile value was consistently 60 cells with 

drawdown ≥ 2 m. 

 

Figure 3-8. Relative rankings of ten parameters used by the CDM Smith (2016) Gunnedah-Surat basins groundwater 

flow model (most sensitive = red, second most sensitive = blue, third most sensitive = green; less sensitive 

parameters are shown in grey) to which the prediction of drawdown spatial extent in the Pilliga Sandstone aquifer 

was most sensitive. Parameter rankings were based on two global sensitivity analysis metrics: (a) the Delta 

Moment-Independent Measure (δ; Plischke et al., 2013) and (b) the first order Sobol’ metric (S1; Sobol’, 2001). 

Sample sizes used as the basis for metric computation ranged from 200 to 300 model runs. 
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Figure 3-9 Global sensitivity analysis metrics of all 30 model parameters in relation to spatial extent of maximum 

drawdown. (a) Delta Moment-Independent Measure (δ; Plischke et al., 2013) and (b) first order Sobol’ metric (S1; 

Sobol’, 2001). Sample size for metric computation was 300 model runs. 

3.5.4 Prediction metric 4: Maximum vertical flux 

The prediction of maximum flux was found to be most sensitive to the vertical K of the upper 

aquitard sequence (i.e., KV05) for both sensitivity metrics (Figure 3-10a, b). The values of both 

sensitivity metrics for this parameter were significantly larger than all other parameters (δ=0.206, 

S1=0.193) (Figure 3-11a, b). DMIM δ values for the remainder of the parameters examined ranged 

within a narrow band from 0.028 to 0.087; Sobol’ S1 values ranged with a narrow band from 0.05 

to 0.1.    

The uncertainty of this prediction did not vary significantly with increasing sample size (Section 

3.4.6, Figure 3-3). Predicted values ranged from 17 to 38 m3/d across all 300 model runs. For 

sample sizes of 200 to 300, the 10th percentile value was consistently 23 m3/d; the median value 

ranged from 26.7 to 27.0 m3/d; and the 90th percentile value ranged from 33 to 34 m3/d. 
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Figure 3-10. Relative rankings of ten parameters used by the CDM Smith (2016) Gunnedah Basin groundwater flow 

model (most sensitive = red, second most sensitive = blue, third most sensitive = green; less sensitive parameters 

are shown in grey) to which the prediction of maximum change in vertical flux in the Pilliga Sandstone aquifer was 

most sensitive. Parameter rankings were based on two global sensitivity analysis metrics: (a) the Delta Moment-

Independent Measure (δ; Plischke et al., 2013) and (b) the first order Sobol’ metric (S1; Sobol’, 2001). Sample sizes 

used as the basis for metric computation ranged from 200 to 300 model runs. 

  

Figure 3-11 Global sensitivity analysis metrics of all 30 model parameters in relation to maximum vertical flux. (a) 

Delta Moment-Independent Measure (δ; Plischke et al., 2013) and (b) first order Sobol’ metric (S1; Sobol’, 2001). 

Sample size for metric computation was 300 model runs. 

 

3.5.5 Summary of prediction metric sensitivities 

With the exception of one prediction metric (i.e., the time of maximum drawdown), each of the 

other three prediction types were found to be most sensitive to one of three parameters: the 

horizontal K of the Namoi Alluvium aquifer (KH01), the horizontal K of the Maules Creek Formation 
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interburden (KH08), and the vertical K of the upper aquitard sequence (KV05). The influence of the 

KH01 parameter is interpreted as follows: this parameter affects the movement of water removed 

from the top layer of the model as negative net recharge. When KH01 is relatively small, the 

hydraulic gradient between the Namoi Alluvium aquifer and the indirectly underlying Pilliga 

Sandstone aquifer (i.e., the nearest additional water source) is higher. This results in relatively 

lower hydraulic heads in the Pilliga Sandstone aquifer, which are observed as drawdown. 

Conversely, when KH01 is relatively large, the hydraulic gradient between the two aquifers is 

lower; consequently, hydraulic heads in the Pilliga Sandstone aquifer are not significantly affected. 

The influence of the vertical K of the upper aquitard sequence KV05 is interpreted as the 

parameter controlling the upward propagation of hydraulic stresses to the Pilliga Sandstone 

aquifer. 

Based on these findings, further characterisation of the three parameters (KH01, KV05, KH08) is 

warranted, assuming that the uncertainty associated with each of these parameters is either 

poorly characterised or known to be large. The question of parameter uncertainty was first 

addressed in Section 3.4. The initial parameter uncertainty was defined by assuming log-uniform 

distributions with arbitrary ranges defined by the CDM Smith (2016) parameter value (for each of 

KH, KV and SS) ± two orders of magnitude. Very few data were available to define a more credible 

parameter distribution; hence, the initial uncertainty was indeed poorly defined and therefore 

improved characterisation of the three parameters (KH01, KV05, KH08) was justified. Given the 

specific focus of the present study on aquitard properties and their representation, the improved 

characterisation of aquitard (e.g., KV05) hydraulic conductivity was pursued in this study, rather 

than aquifer (e.g., KH01) or coal seam (e.g., KH08) hydraulic conductivity.  

3.6 Prediction uncertainty analysis - Results and Discussion 

The uncertainty of predictions generated using the CDM Smith (2016) Gunnedah-Surat basins 

model is described using summary statistics as follows. Differences between maximum and 

minimum values do not provide robust estimates of prediction uncertainty, as these are highly 

sensitive to the presence of outlying values. Instead, prediction uncertainty is quantified here 

using three statistical measures: (1) standard deviation, which is commonly used in linearised 

prediction uncertainty analyses (though typically implemented as variance); (2) the interquartile 

range (i.e., the difference between the 25th and 75th percentiles), which is most robust to outliers; 

and (3) the 90 % confidence interval (i.e., the difference between the 5th and 95th percentiles).  

3.6.1 Prediction 1: Magnitude of maximum drawdown 

Using a sample size of 300 model runs, predictions of the magnitude of maximum drawdown at 

any active Pilliga Sandstone aquifer cell in the model domain ranged from < 1.0 m to 29.7 m, with 

a median value of 0.7 m (Figure 3-12). The strongly right-skewed frequency histogram indicated 

that many model runs predicted near-zero maximum drawdown values. The standard deviation of 

predicted values was 3.0 m. The interquartile range of predicted values was 3.0 m, ranging from 

0.1 m to 3.1 m. The 90 % confidence interval was 0.6 m, ranging from 1.8 m to 2.3 m. It should be 

noted that the numerical convergence criterion with regards to hydraulic head (i.e., 0.1 m) should 

be considered as an acceptance threshold for this prediction. The magnitude of maximum 

drawdown was calculated as ≤ 0.1 m in 65 of the 300 model runs. 
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Figure 3-12. (a) Cumulative density function and (b) frequency histogram of initial modelled predictions of the 

magnitude of maximum drawdown, based on a sample size of 300 model runs. 

3.6.2 Prediction 2: Timing of maximum drawdown 

Using a sample size of 300 model runs, predictions of the timing of maximum drawdown ranged 

from 1 years to 160 years, with a median value of 154 years (Figure 3-13). The standard deviation 

of predicted values was 42 years. The interquartile range of predicted values was 46 years, ranging 

from 114 years to 160 years. The 90 % confidence interval was 8 years, ranging from 127 years to 

135 years. It should be noted that the maximum simulation time specified for the model (i.e., 160 

years after the cessation of CSG extraction) significantly affected this prediction type. Nearly one 

third of all model runs (i.e., 95 runs) resulted in a predicted timing of maximum drawdown value 

of 160 years. These results indicated that the maximum simulation time of these models was 

possibly not sufficiently large to capture the maximum drawdown responses. Due to large model 

run times it was not feasible to repeat the sampling process using an extended model duration 

within the duration of the present study. This factor is also the cause of the non-asymptotic 

behaviour of the cumulative density function for this prediction (Figure 3-13a) and the left-skewed 

frequency histogram (Figure 3-13b). As mentioned earlier, the 160-year long simulation period 

was chosen to be consistent with the approach taken for the Bioregional Assessments Programme.  
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Figure 3-13. (a) Cumulative density function and (b) frequency histogram of initial modelled predictions of the 

timing of maximum drawdown, based on a sample size of 300 model runs. 

3.6.3 Prediction 3: Spatial extent of drawdown propagation 

Using a sample size of 300 model runs, predictions of the spatial extent of drawdown propagation 

in the Pilliga Sandstone aquifer (i.e., model cells with drawdown ≥ 2 m) ranged from zero to 10 418 

cells, with a median value of zero cells (Figure 3-14a). The strongly right-skewed frequency 

histogram indicated that a large number of model runs featured zero cells with drawdown ≥ 2 m 

(Figure 3-14b).  

 

Figure 3-14. (a) Cumulative density function and (b) frequency histogram of initial modelled predictions of the 

spatial extent of drawdown ≥ 2 m, based on a sample size of 300 model runs. 

Note that the cumulative density function presented is a truncated distribution, in which 

approximately 70 % of the model runs featured ‘zero impact’ (i.e., for which the maximum 

reported drawdown for Pilliga Sandstone aquifer cells was less than 2 m). The standard deviation 

of predicted values was 1 829 cells. The interquartile range of predicted values was 1 496 cells, 
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ranging from zero to 1 496 cells. The 90 % confidence interval was 347 cells, ranging from 822 cells 

to 1 169 cells.  

Spatial maps with isolines of drawdowns are shown in Figure 3-15 for the 5th, 50th, 90th, 95th, and 

99th percentiles. Maps were constructed by calculating at each model cell the cumulative 

distribution of drawdowns, based on 300 calculated values of drawdown for each model cell. The 

drawdowns after 155 years following cessation of gas extraction are used here; this time 

corresponds to the median time to maximum drawdown across all 300 model runs. Isolines shown 

are for 1 and 2 m drawdown (Figure 3-15); as expected, larger areas of drawdown are observed 

for the higher percentiles, while the 5th and 50th percentiles have zero cells with drawdowns > 1 m.  

 

 

Figure 3-15. Percentiles of spatial distributions of 1 and 2 m drawdown (solid black lines), observed at the median 

time of maximum drawdown (i.e., 155 years after the cessation of coal seam gas extraction); purple = Pilliga 

Sandstone aquifer cells; blue = upper aquitard sequence cells. Drawdowns < 1 m are not shown. Percentiles shown 

are (a) 5th, (b) 50th, (c) 90th, (d) 95th and (e) 99th. Distributions are based on a set of 300 model runs using the ‘initial’ 

model. 
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3.6.4 Prediction 4: Maximum vertical flux 

Using a sample size of 300 model runs, predictions of the maximum vertical flux in any active 

Pilliga Sandstone aquifer cell in the model domain ranged from 294 m3/d to 1418 m3/d, with a 

median value of 737 m3/d (Figure 3-16). Approximately 25% of all model runs featured a maximum 

vertical flux of around 550 m3/d. The standard deviation of predicted values was 241 m3/d. The 

interquartile range of predicted values ranged over 363 m3/d, from 548 m3/d to 911 m3/d. The 90 

% confidence interval was 46 m3/d, ranging from 757 m3/d to 803 m3/d. 

  

Figure 3-16. (a) Cumulative density function and (b) frequency histogram of initial modelled predictions of changes 

in vertical groundwater fluxes, based on a sample size of 300 model runs. 
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4 Improved characterisation of aquitard vertical 
hydraulic conductivity 

4.1 Core testing 

CDM Smith (2016) reported there is generally a lack of published information describing the range 

and spatial distribution of hydrogeological properties of the deep consolidated strata within the 

Gunnedah and Surat basins. Only limited data were available for strata within the vicinity of the 

Project area, which relate predominantly to coal seam geology. Drill stem tests had been 

undertaken almost exclusively on the coal seams. For the Napperby and Purlawaugh aquitard 

formations, limited falling head data was available from the Narrabri Coal Mine groundwater 

model. No KV estimates were available for Watermark and Porcupine aquitard formations (CDM 

Smith, 2016). This paucity of hydraulic conductivity data illustrates that there is very little 

opportunity to couple existing hydrogeologic parameters to geological, geophysical or seismic 

data. Because of this paucity of data, Turnadge et al. (2018b) decided to collect core samples of 

the key aquitard sequences and correlate the measured permeability with the available 

geophysical borehole data. 

Tri-axial core testing was used to estimate porosity-permeability relationships for the two aquitard 

sequences underlying the Pilliga Sandstone aquifer (Turnadge et al., 2018b); i.e., (a) the Triassic-

Jurassic age Purlawaugh to Napperby formation sequence and (b) the Permian age Watermark to 

Porcupine formation sequence. Parametric analytical models were then derived to describe the 

porosity-permeability relationship for four aquitard units located within the two aquitard 

sequences (i.e., upper sequence: Purlawaugh and Napperby formations; lower sequence: 

Watermark and Porcupine formations). Downhole porosity logs were then obtained for 97 

exploration wells located across the Gunnedah Basin. The derived porosity-permeability models 

were applied to these logs to estimate vertical distributions of permeability (and therefore vertical 

hydraulic conductivity, or KV) at various locations across the Gunnedah Basin. Upscaling 

approaches were subsequently applied to upscale these core scale aquitard KV values for inclusion 

in the regional-scale numerical groundwater flow model. 

4.2 Parameter upscaling 

The upscaling of parameter values from small support scales (e.g., centimetres, for core samples) 

to large support scales (e.g., kilometres, for regional-scale flow processes) can be undertaken 

using (1) analytical, (2) numerical or (3) geostatistical methods (Sanchez‐Vila et al., 1995, 2006; 

Wen and Gomez‐Hernandez, 1996; Renard and de Marsily, 1997; Li et al., 2011; Moore et al., 

2013; Turnadge et al., 2018a). In the present study, the former two approaches were used to 

upscale core-scale aquitard vertical hydraulic conductivity values to values suitable for inclusion in 

a regional-scale groundwater flow model. The primary analytical approach to upscaling involved 

the use of harmonic mean values; however, for comparison purposes, upscaled values were also 

derived using arithmetic and geometric mean values. The numerical upscaling approach involved 
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the use of a one-dimensional steady-state confined groundwater flow model which was solved 

using a finite difference scheme.  

The inherent assumption when upscaling parameters from the core-scale to numerical grid cells is 

that whatever upscaling approach is used does not introduce unacceptable errors and thus 

uncertainties in the large-scale KV when extrapolating such parameter beyond the measurement 

support. Several studies have demonstrated that in low-permeable media, K values are fairly 

insensitive to the scale of measurement, even beyond the typical core or borehole scale (up to a 

certain degree). E.g., Yu et al. (2013) demonstrated for plastic Boom Clay of marine origin that KV 

was nearly identical across a range of scales from cm to a macro-permeameter with a flow cross-

sectional area of about 190 m2. In other words, the representative elementary volume (REV) for KV 

is orders of magnitude larger than the core scale. Using numerical experiments, McKenna and 

Rautman (1996) demonstrated that upscaling errors were around 5% for mildly heterogeneous K 

fields (σ log K = 0.5) when specific upscaling methods were used (i.e., geometric mean, numerical-

inverse method, and renormalization scaling techniques). While there are definitely stratigraphic 

and other differences between the literature studies and the current study area, the presence of 

fine-grained units such as claystones (e.g., Benelabri and Leard Formations) and shales (e.g., 

Porcupine and Watermark Formations) indicate that a similarly large REV may exist. 

An alternative approach to upscaling properties from the pore to the core scale was discussed by 

Arena et al. (2016). These authors used upscaling techniques based on micro-CT imaging data at 

scales ranging from micro-scale to core-scale combined with independent core-plug 

measurements of permeability and wireline log data. Main impediments to developing a mature 

whole core to log scale workflow were associated with the ability to robustly identify rock types 

and upscale data from the plug scale to the whole core scale and the need for improved direct 

calibration of the log response to the whole core scale properties.  

4.2.1 Analytical upscaling methods 

Analytical approaches to upscaling parameter values involve calculation of the arithmetic, 

geometric, harmonic, power or volume‐weighted mean of a given sample of values (Li et al., 

2011). For one‐dimensional flow in heterogeneous porous media, the equivalent hydraulic 

conductivity can be calculated using the harmonic mean (Freeze and Cherry, 1979). For two‐

dimensional heterogeneous media, it has been shown that under certain conditions the geometric 

mean is an appropriate means of parameter upscaling (Gomez‐Hernandez and Wen, 1998; 

Sanchez‐Vila et al., 1995).  

In the present study harmonic averaging was used to upscale 64 and 78 vertical profiles of KV to 

scalar values for the upper and lower aquitard sequences, respectively. Numerous vertical profiles 

were omitted from further analysis (from the initial sample set of 97 profiles) on the basis of 

unsuitable location and/or geology. For the upper aquitard sequence, only the wells that featured 

the presence of either the Purlawaugh or Napperby formations were retained (64 out of 97). 

Similarly, 78 of the 97 wells featured the presence of either the Watermark or Porcupine 

formations for the lower aquitard sequence. The resulting log10 KV values (m/d) are summarised in 

Table 4-1. 
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Table 4-1. Statistical summary of log10 aquitard vertical hydraulic conductivity (log10 KV) values upscaled from core-

scale observations using harmonic averaging. 

Statistic Upper aquitard sequence Lower aquitard sequence 

count 64 78 

minimum -7.0 -7.5 

5th percentile -6.6 -7.0 

median -5.4 -4.6 

mean -5.3 -4.9 

95th percentile -4.0 -3.3 

maximum -3.2 -3.1 

standard deviation 0.8 1.1 

 

 

Figure 4-1.  Original and revised statistical distributions of vertical permeability values (left y-axis) and vertical 

hydraulic conductivity values (right y-axis) for (a) upper and (b) lower aquitard sequences represented in the CDM 

Smith (2016) model of groundwater flow in the Gunnedah-Surat basins. Original values and ranges were described 

by CDM Smith (2016). Revised values and ranges are based on aquitard core porosity-permeability analyses and 

upscaled using harmonic averaging, described herein. Whiskers indicate the 90 % confidence interval and fliers 

indicate outlying data values. 

 

From Figure 4-1 it may be observed that, for both aquitard sequences, the revised prior 

distributions of KV are two orders of magnitude larger than the distributions assumed for the 

performance of the initial sensitivity analyses. Note that the original log-uniform prior distribution 

was replaced by a uniform log-triangular distribution, which featured finite minimum and 

maximum values (unlike, for example, a Gaussian distribution). This represented a change from an 

“uninformed” prior distribution (in which all values were considered equally likely) to a 

distribution featuring a single, most-likely value (e.g., mode). 

4.2.2 Numerical upscaling methods 

Numerical flux‐based approaches aim to preserve the hydraulic mass balance (and therefore 

groundwater flow rates) when upscaling parameter values from one scale to another larger scale. 
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Li et al. (2011) summarised flux‐based upscaling methods involving the Laplace equation for 

groundwater flow. The upscaled hydraulic conductivity in any given direction can be calculated 

using Darcy’s Law as the ratio of the flow rate to the cross‐sectional thickness divided by the 

hydraulic gradient. Numerical methods have been widely used to upscale hydraulic conductivities 

in petroleum engineering and hydrogeology (e.g., Warren and Price, 1961; Journel et al., 1986; 

Desbarats, 1987; Deutsch, 1989).  

Numerical methods were used to upscale 54 and 69 vertical profiles of KV obtained from core-log 

analyses for the upper and lower aquitard sequences, respectively. Numerous vertical profiles of 

the initial set used for analytical upscaling were omitted from further analysis (from the initial 

sample set of 64 for the upper aquitard, 54 were retained; from the initial 78 for the lower 

aquitard 69 were retained here). The reason for excluding additional wells was lack of hydraulic 

conductivity data for interburden layers connecting the two aquitards within a single sequence. 

The vertical resolution of each vertical profile was first upscaled from non-uniform centimetre-

scale intervals to uniform one metre intervals by use of arithmetic mean values. These values were 

then incorporated into a steady-state 1-D numerical groundwater flow model. Each value was 

assigned to a unique cell of one metre thickness. Dirichlet (i.e., fixed head) boundary conditions 

were applied to the top and bottom cells of the model in order to apply a unit vertical hydraulic 

gradient (i.e., equal to the vertical extent of the model) across the model. The dimensions of 

model cells in the x-y plane were each specified as 1×1 m2; therefore the cross-sectional area 

perpendicular to outflow from the model was equal to unity. The equivalent vertical hydraulic 

conductivity was thereby calculated as being equal to the volumetric outflux from the model. The 

numerical approach was implemented using the MODFLOW-2005 code (Harbaugh, 2005) with pre- 

and post-processing of model files performed using the FloPy Python language library (Bakker et 

al., 2016). 

Table 4-2. Statistical summary of log10 transformed aquitard vertical hydraulic conductivity (log10 KV) values 

upscaled from core-scale observations using numerical averaging. KV  in m/day. 

Statistic Upper aquitard sequence Lower aquitard sequence 

count 54 69 

minimum -6.7 -7.5 

5th percentile -6.6 -7.0 

median -5.3 -4.4 

mean -5.2 -4.7 

95th percentile -3.5 -3.3 

maximum -3.2 -3.1 

standard deviation 0.9 1.2 

 

It should be noted that the range (i.e., width) of the revised statistical distribution of aquitard KV 

(i.e., four orders of magnitude) was two orders of magnitude larger than the distribution initially 

assumed. This difference was also observed for aquitard KV values upscaled using harmonic 

averaging. (Figure 4-2).  
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Figure 4-2.  Original and revised statistical distributions of vertical hydraulic conductivity values for (a) upper and (b) 

lower aquitard sequences represented in the CDM Smith (2016) model of groundwater flow in the Gunnedah-Surat 

basins. Original values and ranges were described by CDM Smith (2016). Revised values and ranges are based on 

aquitard core porosity-permeability analyses and upscaled using numerical averaging, described herein. Whiskers 

indicate the 90 % confidence interval and fliers indicate outlying data values. 

4.2.3 Comparisons between methods  

Histograms of KV values computed using the analytical and numerical upscaling approaches, for 

both upper and lower aquitard sequences, are presented in Figure 4-3. Good agreement is 

observed between the two approaches. This was confirmed through the calculation of Walsh’s t-

test for correlation between two independent samples. Specifically, this test is used to test 

whether the null hypothesis, in this case, that both distributions are identical, can be rejected. The 

test returned p values of 0.532 and 0.559 for the upper and lower aquitard sequences 

respectively. These large p values (i.e., >> 0.01) indicated that the null hypothesis (i.e., that both 

distributions are identical) could not be rejected.  

Upper aquitard sequence values were right-skewed, with mean log10 KV values of approximately -

5.2 m/d and -5.3 m/d for the harmonic and numerical upscaling approaches, respectively. 

Conversely, lower aquitard sequence values were left-skewed, with mean log10 KV values of 

approximately -4.9 m/d and -4.7 m/d for the harmonic and numerical upscaling approaches, 

respectively. For the numerical upscaling approach applied to the lower aquitard sequence, the 

minimum and maximum log10 KV was -7 and -3.1, respectively (Table 4-2). Smith et al. (2018) 

previously estimated KV from rates of vertical fluid flow across the lower aquitard sequence 

through quartz-helium analyses. Smith et al. (2018) estimated rates of fluid flow of 0.02 to 0.002 

mm/year, equivalent to KV values of 0.0018 – 0.018 mm/year or log10 KV between -8.3 and -7.3. 

This demonstrates that the range of (numerically) upscaled KV values for the lower aquitard 

brackets KV values independently estimated based on vertical fluid flow in the same aquitard unit. 

Because the helium in quartz technique is more of an in situ approach (helium concentrations are 

fairly insensitive to sampling), it does not have the issues typically experienced when permeability 

is determined on core samples that have been disrupted during sampling (Schulze-Makuch et al., 

1999).  
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Figure 4-3. Histograms of aquitard vertical hydraulic conductivity values upscaled using (a) harmonic mean 

averaging and (b) numerical model averaging for the upper aquitard sequence (upper row) and lower aquitard 

sequence (lower row).   
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5 Prediction sensitivity and uncertainty analyses 
using revised models 

Following the improved characterisation of aquitard vertical hydraulic conductivities, a second 

global sensitivity and uncertainty analysis was undertaken using updated prior parameter 

distributions. The uncertainties of the four predictions of interest were again estimated and 

subsequently compared to the initial results. 

5.1 Prediction sensitivity and uncertainty analysis - Methods 

As described in Chapter 4, the characterisation of vertical hydraulic conductivity of the upper and 

lower aquitard sequences of the Gunnedah-Surat basins was revised. As mentioned earlier, in the 

study area the Gunnedah Basin is overlain by the Jurassic-Cretaceous Surat Basin. The Surat Basin 

strata present in the vicinity of the study area include the Blythesdale Group, (Keelindi Beds), 

Pilliga Sandstone, Purlawaugh Formation and basal Garrawilla Volcanics. Core scale observations 

previously reported by Turnadge et al. (2018a) were upscaled using analytical and numerical 

methods and the prior distributions of aquitard KV parameters were adjusted accordingly. The 

variability of both prior distributions, one for each aquitard sequence, was increased from two 

orders of magnitude (chosen arbitrarily) to four orders of magnitude (informed by observed data). 

The revised distributions were both characterised using triangular distributions (Figure 5-1). The 

distribution used to characterise the upper aquitard sequence was bounded at log10 KV = -7.0 and 

log10 KV = -3.0 with a peak value of ~20 located at log10 KV = -5.8. Note that distribution parameters 

were nearly identical for both harmonic and numerical upscaling approaches. Similarly, the 

distribution used to characterise the lower aquitard sequence was bounded at log10 KV = -7.0 and 

log10 KV = -3.0 but featured a peak value of ~20 located at log10 KV = -4.2, with similar parameter 

values observed for both harmonic and numerical upscaling approaches. Given the insensitivity of 

the four modelled predictions to specific storage parameters (as demonstrated in Section 3), the 

ten SS parameters were omitted from the global sensitivity analysis of the revised CDM Smith 

(2016) model. This omission also served to considerably reduce the total model run time required 

for global sensitivity analysis. 
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Figure 5-1. Histograms (grey) and fitted triangular distributions (red) of aquitard vertical hydraulic conductivity 

values upscaled using (a) harmonic mean averaging and (b) numerical model averaging for the upper aquitard 

sequence (upper row) and lower aquitard sequence (lower row). 

 

5.1.1 Statistical convergence testing 

Following the completion of 300 convergent model runs, the statistical robustness of results based 

on this sample size were again tested by recalculating the relative ranking of each parameter 

based on the DMIM δ and Sobol’ S1 quantitative sensitivity metrics. The metrics were recalculated 

using sample sizes of 200, 220, 240, 260, 280 and 300 model runs. The relative rankings of the four 

modelled predictions are compared with respect to increasing sample size in Figure 5-2. 

The statistical robustness of results based on a sample size of 300 model runs were also again 

tested by recalculating the uncertainty (i.e., statistical spread) of model predictions. The 

uncertainties of the four modelled predictions are compared with respect to increasing sample 

size in Figure 5-3. The uncertainties of all predictions was estimated consistently based on sample 

sizes greater than or equal to 200 model runs. As observed in the initial sensitivity analysis (Section 

3.4.6), the statistical distributions of three of the four predictions were highly skewed. For the 

magnitude of maximum drawdown prediction (MXD), this was due to a large number of 

predictions less than one metre in magnitude. For the timing of maximum drawdown (tMXD), this 

was due to a total simulation time that was too short to capture peak drawdown conditions. For 

the prediction of the spatial extent of drawdown (NDD), this was due to a large number of model 

runs that did not feature drawdown ≥ 2m. 
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Figure 5-2.  Relative rankings of ten parameters used by the revised Gunnedah-Surat basins groundwater flow 

model (red, blue, green; others shown in grey) to which predictions relating to the Pilliga Sandstone aquifer were 

most sensitive: (a) maximum drawdown (MXD); (b) time elapsed at which maximum drawdown occurred (tMXD); 

(c) number of model cells at which drawdown exceeded two metres (NDD); and (d) maximum change in vertical flux 

(MXQ). Parameter rankings were based on two global sensitivity analysis metrics: (a) the Delta Moment-

Independent Measure (Plischke et al., 2013) and (b) the first order Sobol’ metric (Sobol’, 2001). Parameters 

identified are discussed in Section 5.2. 

 

Figure 5-3. Statistical distributions of four predictions relating to the Pilliga Sandstone aquifer and simulated using 

the revised Gunnedah Basin groundwater flow model: (a) maximum drawdown (MXD); (b) time elapsed at which 

maximum drawdown occurred (tMXD); (c) number of model cells at which drawdown exceeded two metres (NDD); 

and (d) maximum vertical flux (MXQ).  

5.2 Prediction sensitivity analysis – Results and Discussion 

A full set of qualitative results (i.e., scatterplots) and quantitative results (i.e., DMIM δ and Sobol’ 

S1 metric values and associated relative rankings) of global prediction sensitivity analyses using the 

revised CDM Smith (2016) model are presented in the accompanying Appendix. Key results, in 

terms of parameters to which predictions were found to be most sensitive, are summarised as 

follows. 
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5.2.1 Prediction metric 1: Maximum drawdown  

The prediction of maximum drawdown was again found to be most sensitive to the horizontal K of 

the Namoi Alluvium aquifer (KH01), which was consistently ranked as the most influential 

parameter with increasing sample size (Figure 5-4). The KH01 parameter prediction was also 

showing significantly larger values for the δ and S1 parameter (δ=0.268 and S1=0.504) compared to 

all other model parameters (Figure 5-5). For interpretation of this result with regards to the 

structure of the groundwater flow model, see Section 3.5.1. Maximum drawdown was again found 

to be sensitive to the vertical K of the upper aquitard sequence, KV05 (Figure 5-4), with 

magnitudes δ=0.152, S1=0.119) (Figure 5-5). This prediction was also found to be sensitive to the 

horizontal K of the Blythesdale Group aquifer (KH03). 

 

Figure 5-4. Relative rankings of ten parameters used by the revised Gunnedah-Surat basins groundwater flow 

model (most sensitive = red, second most sensitive = blue, third most sensitive = green; less sensitive parameters 

are shown in grey) to which the prediction of the magnitude of maximum drawdown in the Pilliga Sandstone 

aquifer was most sensitive. Parameter rankings were based on two global sensitivity analysis metrics: (a) the Delta 

Moment-Independent Measure (δ; Plischke et al., 2013) and (b) the first order Sobol’ metric (S1; Sobol’, 2001). 

Sample sizes used as the basis for metric computation ranged from 200 to 300 model runs. 

The uncertainty associated with this prediction did not vary significantly with increasing sample 

size (Figure 5-3). Predicted values ranged from 0.0 m to 4.2 m. The 10th percentile value ranged 

from 0.1 m to 0.1 m; the median value was consistently 1.1 m; and the 90th percentile value 

ranged from 2.5 m to 2.6 m. 
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Figure 5-5 Global sensitivity analysis metrics of 20 model parameters in relation to maximum drawdown. (a) Delta 

Moment-Independent Measure (δ; Plischke et al., 2013) and (b) first order Sobol’ metric (S1; Sobol’, 2001). Sample 

size for metric computation was 300 model runs. 

5.2.2 Prediction metric 2: Time of maximum drawdown  

The prediction of time of maximum drawdown was found to be most sensitive to the vertical K of 

the upper aquitard sequence, KV05 (Figure 5-6a). Sobol’ analyses also indicated that that 

prediction was sensitive to the horizontal K of the Namoi Alluvium aquifer KH01 (Figure 5-6b). 

These two model parameters have sensitivity metrics that are significantly larger than that of all 

the other parameters, i.e. δ=0.199 and S1=0.240 for KV05 and δ=0.121 and S1=0.090 for KH01 

(Figure 5-7). 

 

Figure 5-6. Relative rankings of ten parameters used by the revised Gunnedah-Surat basins groundwater flow 

model (most sensitive = red, second most sensitive = blue, third most sensitive = green; less sensitive parameters 

are shown in grey) to which the prediction of the timing of maximum drawdown in the Pilliga Sandstone aquifer 

was most sensitive. Parameter rankings were based on two global sensitivity analysis metrics: (a) the Delta 

Moment-Independent Measure (δ; Plischke et al., 2013) and (b) the first order Sobol’ metric (S1; Sobol’, 2001).  
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The uncertainty of this prediction did not vary significantly with increasing sample size (Figure 5-3). 

Predicted values ranged from 19 years to 261 years. The 10th percentile value ranged from 99 

years to 114 years; the median value was consistently 255 years; and the 90th percentile value was 

consistently 261 years. When interpreting these results, and as stated previously, for a subset of 

model runs the model temporal extent specified was insufficient to capture peak drawdown 

conditions. Due to large model run times it was not feasible to repeat the sampling process using 

an extended model duration within the duration of the present study. 

 

 

Figure 5-7 Global sensitivity analysis metrics of 20 model parameters in relation to time to maximum drawdown. (a) 

Delta Moment-Independent Measure (δ; Plischke et al., 2013) and (b) first order Sobol’ metric (S1; Sobol’, 2001). 

Sample size for metric computation is 300 model runs. 

 

5.2.3 Prediction metric 3: Spatial extent of drawdown propagation 

The prediction of drawdown propagation extent was found to be most sensitive to the horizontal 

K of the Namoi Alluvium aquifer, KH01, which was consistently ranked as the most influential 

parameter with increasing sample size (Figure 5-8). For interpretation of this result with regards to 

the structure of the groundwater flow model, see Section 3.5.1. This prediction was also found to 

be sensitive to the horizontal K of the Blythesdale Group aquitard KH03 (Figure 5-8b). Figure 5-9 

confirms that model parameter KH01 is the only significant model parameter with δ=0.287 and 

S1=0.644; although Figure 5-8 suggests that parameter KH03 is also a sensitive parameter, this is 

not confirmed when considering the magnitude of the sensitivity metrics (δ=0.100, S1=0.049). 

The uncertainty of this metric did not vary significantly with increasing sample size (Figure 5-3). 

Predicted values ranged from zero to 100 cells. The 10th percentile and median values were 

consistently zeros cells and the 90th percentile value was consistently 64 cells. 
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Figure 5-8. Relative rankings of ten parameters used by the revised Gunnedah-Surat basins groundwater flow 

model (most sensitive = red, second most sensitive = blue, third most sensitive = green; less sensitive parameters 

are shown in grey) to which the prediction of drawdown spatial extent in the Pilliga Sandstone aquifer was most 

sensitive. Parameter rankings were based on two global sensitivity analysis metrics: (a) the Delta Moment-

Independent Measure (δ; Plischke et al., 2013) and (b) the first order Sobol’ metric (S1; Sobol’, 2001). 

 

 

 

Figure 5-9 Global sensitivity analysis metrics of 20 model parameters in relation to spatial extent of maximum 

drawdown. (a) Delta Moment-Independent Measure (δ; Plischke et al., 2013) and (b) first order Sobol’ metric (S1; 

Sobol’, 2001). Sample size for metric computation is 300 model runs. 
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5.2.4 Prediction metric 4: Maximum vertical flux 

The prediction of maximum flux was found to be most sensitive to the vertical K of the upper 

aquitard sequence KV05 (Figure 5-10). Other model parameters such as the vertical K of the Pilliga 

Sandstone aquifer, KV04, and the horizontal K of the Namoi Alluvium aquifer KH01 are not 

significant (Figure 5-10). Indeed, only KV05 shows sensitivity metrics significantly larger than all the 

other parameters, i.e. δ=0.414 and S1=0.651 (Figure 5-11). For parameters KV04 and KH01, the 

sensitivity metrics are not significant (i.e. δ=0.112 and S1=0.033 for KV04 and δ=0.108 and S1=0.066 

for KH01). 

 

Figure 5-10. Relative rankings of ten parameters used by the revised Gunnedah-Surat basins groundwater flow 

model (most sensitive = red, second most sensitive = blue, third most sensitive = green; less sensitive parameters 

are shown in grey) to which the prediction of the maximum change in vertical flux in the Pilliga Sandstone aquifer 

was most sensitive. Parameter rankings were based on two global sensitivity analysis metrics: (a) the Delta 

Moment-Independent Measure (δ; Plischke et al., 2013) and (b) the first order Sobol’ metric (S1; Sobol’, 2001).  

 

The uncertainty of this prediction did not vary significantly with increasing sample size (Figure 5-3). 

Predicted values ranged from 18 m3/d to 38 m3/d. The 10th percentile value was consistently 23 

m3/d; the median value ranged from 25 m3/d to 26 m3/d; and the 90th percentile value ranged 

from 33 m3/d to 34 m3/d. 
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Figure 5-11 Global sensitivity analysis metrics of 20 model parameters in relation to maximum vertical flux. (a) Delta 

Moment-Independent Measure (δ; Plischke et al., 2013) and (b) first order Sobol’ metric (S1; Sobol’, 2001). Sample 

size for metric computation is 300 model runs. 

 

5.3 Prediction uncertainty analysis – Results and Discussion 

As discussed in Section 3.6, the uncertainty of predictions generated using the CDM Smith (2016) 

Gunnedah-Surat basins model is described using summary statistics as follows. Differences 

between maximum and minimum values do not provide robust estimates of prediction 

uncertainty, as these are highly sensitive to the presence of outlying values. Instead, prediction 

uncertainty is quantified here using three statistics: (1) standard deviation, which is commonly 

used as a measure of spread in linearised prediction uncertainty analyses (though typically 

implemented as variance); (2) the interquartile range (i.e., the difference between the 25th and 

75th percentiles), which is most robust to outliers; and 3) the 90 % confidence interval (i.e., the 

difference between the 5th and 95th percentiles). 

The calculated prediction uncertainties were compared between the first (initially uninformed) 

and second (data-driven) parameterisation. The approach did not constrain parameters by 

observations of state variables such as hydraulic heads. Rather, the stochastic approach followed 

the Bayesian paradigm, in which prior beliefs and estimates of parameters and conceptualisation 

are iteratively updated when new data and information becomes available. Note that head 

observations for the considered depressurisation scenario are currently not available; an attempt 

to reduce uncertainty by constraining model simulations to heads beyond the initially calibrated 

model is not an option. In other words, the approach adopted avoids possible introduction of bias 

in the predictions due to calibration. 
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5.3.1 Prediction 1: Magnitude of maximum drawdown 

Predictions of the magnitude of maximum drawdown ranged from < 1.0 m to 17.8 m, with a 

median value of 1.2 m (Figure 5-12). This reflected an increase in the median predicted value by 

0.5 m. Both the standard deviation and 90 % confidence interval of predicted values remained 

unchanged. The interquartile range of predicted values reduced by 0.9 m to 3.9 m. As mentioned 

previously (Section 3.5.1), it should be noted that the numerical convergence criterion with 

regards to hydraulic head (i.e., 0.01 m) should be considered as an acceptance threshold for this 

metric. The magnitude of maximum drawdown was calculated as ≤ 0.1 m in 68 of the 300 model 

runs. 

 

Figure 5-12. (a) Cumulative density function and (b) frequency histogram of initial (black) and revised (red) 

predictions of the magnitude of maximum drawdown, based on a sample size of 300 model runs. 

5.3.2 Prediction 2: Timing of maximum drawdown 

Predictions of the timing of maximum drawdown ranged from < 1 years to 160 years, with a 

median value of 155 years (Figure 5-13). This reflected an increase in the median predicted value 

by a single year. Both the standard deviation and 90 % confidence interval of predicted values 

remained unchanged. The interquartile range of predicted values increased by 2 years to 48 years. 

As described previously (Section 3.5.2), it should be noted that the maximum simulation time 

specified for the model (i.e., 160 years after the cessation of CSG extraction) significantly affected 

this prediction type. Over one third of all model runs (i.e., 107 runs) resulted in a time of maximum 

drawdown of 160 years. Such results indicate that the total simulation time of these models was 

not sufficiently large to capture the peaks of drawdown responses. Due to large model run times it 

was not feasible to repeat the sampling process using an extended model duration within the 

duration of the present study. This factor is also the cause of the non-asymptotic behaviour of the 

cumulative density function for this prediction (Figure 5-13a). 
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Figure 5-13. (a) Cumulative density function and (b) frequency histogram of initial (black) and revised (red) 

predictions of the timing of maximum drawdown, based on a sample size of 300 model runs. 

 

5.3.3 Prediction 3: Spatial extent of drawdown propagation 

Predictions of the spatial extent of drawdown propagation ranged from zero cells to 9 990 cells, 

with a median value of zero cells (Figure 5-14). This reflected no change in the median predicted 

value. The standard deviation of predicted values increased by 275 cells to 2 104 cells. The 

interquartile range of predicted values increased by 1 376 cells to 2 872 cells. The 90 % confidence 

interval increased by 52 cells to 400 cells. Note that the cumulative density function presented 

here for the ‘revised’ case (red) is a truncated distribution, in which approximately 60 % of the 

model runs featured ‘zero impact’ (i.e., for which the maximum reported drawdown for Pilliga 

Sandstone aquifer cells was less than 2 m). 

Spatial maps with isolines of drawdowns are shown in Figure 5-15 for the 5th, 50th, 90th, 95th, and 

99th percentiles, based on 300 calculated values of drawdown for each model cell. The time at 

which the drawdown was reported corresponds to the median time to maximum drawdown 

across all 300 model runs. Isolines shown are for 1 and 2 m drawdown only (Figure 3-15), where 

drawdown values are taken at 155 years following cessation of gas extraction. For the 5th and 50th 

percentile there are no areas with a drawdown equal to or larger than 1 m. In other words, the 

expected (50th percentile) value shows that not a single area has a drawdown equal to or in excess 

of 1 m. Compared to the initial drawdowns (Figure 3-15), somewhat larger areas of drawdown 

larger than 1 and 2 m are observed for the 90th and 95th percentiles, while the 99th percentiles are 

similar. At the 95th percentile, the overall maximum drawdown across all 300 model runs is 7.9 m. 
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Figure 5-14. (a) Cumulative density function and (b) frequency histogram of initial (black) and revised (red) 

predictions of the spatial extent of drawdown in excess of 2 m, based on a sample size of 300 model runs. 
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Figure 5-15. Percentiles of spatial distributions of 1 and 2 m drawdown (solid black lines), observed at the median 

time of maximum drawdown (i.e., 155 years after the cessation of coal seam gas extraction); purple = Pilliga 

Sandstone aquifer cells; blue = upper aquitard sequence cells. Drawdowns < 1 m are not shown. Percentiles shown 

are (a) 5th, (b) 50th, (c) 90th, (d) 95th and (e) 99th. Distributions are based on a set of 300 model runs using the 

‘revised’ model. 

5.3.4 Prediction 4: Maximum vertical flux 

Predictions of the maximum vertical flux ranged from 306 m3/d to 1432 m3/d, with a median value 

of 636 m3/d (Figure 5-16). This reflected a reduction in the median predicted value by 101 m3/d. 

The standard deviation of predicted values increased by 1 m3/d to 242 m3/d. The 90 % confidence 

interval increased by 0.2 m3/d to 46 m3/d. The interquartile range of predicted values reduced by 

76 m3/d to 288 m3/d.  
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Figure 5-16. (a) Cumulative density function and (b) frequency histogram of initial (black) and revised (red) 

predictions of changes in vertical groundwater fluxes, based on a sample size of 300 model runs. 

 

These results indicate that uncertainties associated with three of the four prediction metrics (i.e., 

maximum drawdown, maximum extent of drawdown ≥ 2 m, and maximum vertical flux) were 

slightly reduced after the improved characterisation aquitard vertical hydraulic conductivity. 

Characterisation was undertaken by upscaling porosity–permeability relationships identified from 

core samples through combination with wireline log data. The median prediction of maximum 

drawdown in the Pilliga Sandstone aquifer increased by 0.4 m. Similarly, the number of model cells 

affected by drawdown ≥ 2 m increased by a single cell. Conversely, the median prediction of 

maximum vertical flux between the Pilliga Sandstone aquifer and underlying units reduced by 101 

m3/d. The median prediction of the time at which maximum drawdown will occur did not reduce 

significantly. This may be attributed to the total temporal extent represented by the model (i.e., 

186 years) which, in many cases, was not sufficiently large to capture the time of peak induced 

drawdown. Due to large model run times it was not feasible to repeat the sampling process using 

an extended model duration within the duration of the present study. 

Table 5-1. Median values of four prediction metrics based on sets of 300 model runs for each of the ‘initial’ and 

‘revised’ models. 

Prediction ‘Initial’ model  ‘Revised’ model Difference 

Maximum drawdown (MXD) 0.7 m 1.2 m +0.5 m 

Timing of maximum drawdown (tMXD) 154 y 155 y +1 y 

Spatial extent of drawdown ≥ 2 m (NDD)  0 cells 0 cells   0 cells 

Maximum vertical flux (MXQ) 737 m3/d 636 m3/d -101 m3/d 

 

The 95th percentile values for each prediction before and after the inclusion of aquitard KV data 

(i.e., the ‘initial’ and ‘revised’ models, respectively) are summarised in Table 5-2. The increase in 

maximum drawdown by 0.7 m and number of cells exhibiting a drawdown > 2 m is consistent with 

the larger range in KV values used to run the 300 models (two orders of magnitude for the initial 
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data set to four orders of magnitude for the updated set). The maximum flux, on the other hand, 

decreases by 47 m3/d. This indicates that the larger range in KV values resulted in a more extreme 

(i.e. larger) KV values that generated a larger drawdown area (e.g. the area with > 2 m drawdown 

increased by 861 cells) and a larger maximum drawdown. Because of this, the maximum flux 

decreases slightly as water is now flowing across a larger area towards the aquitard, or in other 

words, the total flux through the aquitard increases which slightly decreases the maximum flux at 

one particular cell. 

 

Table 5-2. 95th percentiles of four prediction metrics based on sets of 300 model runs for each of the ‘initial’ and 

‘revised’ models. 

Prediction ‘Initial’ model  ‘Revised’ model Difference 

Maximum drawdown (MXD) 7.2 m 7.9 m +0.7 m 

Timing of maximum drawdown (tMXD) 160 y 160 y 0 y 

Spatial extent of drawdown ≥ 2 m (NDD) 4 490 cells 5 350 cells  +861 cells 

Maximum vertical flux (MXQ) 1 310 m3/d 1 260 m3/d -47 m3/d 
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6 Analyses of the spatial variability of aquitard 
hydraulic properties 

The original CDM Smith (2016) Gunnedah-Surat basins model parameterised aquitard vertical 

hydraulic conductivities using spatially uniform (i.e., homogeneous) values. The characterisation of 

aquitard KV described in Section 4 resulted in upscaled estimates at numerous locations 

distributed across the Gunnedah-Surat basins. Such observations allow for the characterisation of 

the spatial variability of aquitard KV using geostatistical methods. This was undertaken in the 

present study as a basis for the stochastic generation of spatially distributed aquitard KV 

parameter sets. These were then used as the basis for a non-comprehensive assessment of the 

effects of the heterogeneity of aquitard KV on modelled hydraulic predictions. For this approach, 

the spatial variability of KV was incorporated explicitly when quantifying uncertainty associated 

with predictions.  

6.1 Spatial distributions of aquitard vertical hydraulic conductivity 

Spatial distributions of upscaled numerical and harmonic (as well as arithmetic and geometric) 

mean values for the upper aquitard sequence are shown in Figure 6-1. The data set contains 54 

data points for the numerical and 64 data points for the harmonic mean. Journel and Hujbregts 

(1978) advise practitioners that a minimum of 30 to 50 paired comparisons (or number of lag 

differences, see further) should suffice to construct a semi-variogram (see further in Section 6.2). 

In our case the number of data pairs for the harmonic mean K with 64 data points (n) equals n×(n-

1)/2= 64×63/2=2016. The condition of minimum paired comparisons is thus more than satisfied, 

and the semi-variogram can be relatively accurately described. Of notice is the higher density of 

data points across the focus study area (arrow in Figure 6-1 and Figure 6-2), which will result in a 

relatively accurate description of the spatial structure or spatial dependency in KV. Note that the 

spatial dependency is only calculated in two dimensions (i.e., in the horizontal direction), as any 

vertical variability in KV is represented by a single upscaled value. Outside of the study area, very 

few data points exist which will result in a much less accurate description of spatial heterogeneity. 

This is acceptable, as the major impacts will be centred on the study area, and much less so on the 

broader model domain (see Section 5.3.3 for details). In case the regional impact exceeds the area 

that is most accurately characterised, additional characterisation across the broader domain can 

potentially be considered. Upscaled KV values are very similar for the two averaging methods.  

Spatial distributions of upscaled numerical and harmonic (as well as arithmetic and geometric) 

mean values for the lower aquitard sequence are shown in Figure 6-2. For the lower aquitard the 

number of data points are 69 for the numerical and 78 for the harmonic mean. The same 

observations are made as for the lower aquitard: higher data density across the study area, with 

good consistency in upscaled KV for the two averaging methods. 

Note that the reason for different number of wells between upper and lower aquitard sequences 

was discussed in Section 4.2.2. For the analytical upscaling, wells needed to include at least one of 

the contributing aquitards. An additional requirement for the numerical upscaling was that the 



64   |  Sensitivity and uncertainty analysis of a regional-scale groundwater flow model featuring coal seam gas extraction 

contributing aquitards needed to have hydraulic conductivity data for interburden layers that 

would connect the two aquitards within a single sequence. 

 

 

Figure 6-1. Spatial distributions of upscaled (a) harmonic and (b) numerical mean values for the upper aquitards 

(Jurassic age). Grey shaded area is extent of aquitard. Arrow indicates focus study area with largest data density. 

 

 

Figure 6-2. Spatial distributions of upscaled (a) harmonic and (b) numerical mean values for the lower aquitards 

(Permian age). Grey shaded area is extent of aquitard. Arrow indicates focus study area with largest data density. 
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6.2 Variogram analyses 

The spatial variability of a given property can be characterised by the variance between a set of 

spatially distributed observations, which is expressed as a function of the distance (i.e., lag) 

between observation locations. The variance between observations increases with distance until 

reaching a maximum value (i.e., sill) at a given maximum distance (i.e., range). In some cases, a 

non-zero variance will apply at a separation distance of zero; this can be quantified using a nugget 

parameter. Increases in spatial variability with respect to increasing distance are expressed using a 

semi-variogram. Closed-form parametric models (e.g., spherical, exponential, Gaussian) can be 

fitted to semi-variogram data and subsequently used to interpolate values away from observation 

locations. Such models can also be used as the basis for the stochastic generation of property 

fields. The approaches to the characterisation of spatial variability described here are commonly 

known as two-point geostatistics (Journel and Huijbregts, 1978).  

Differences between upscaled aquitard KV values and their corresponding locations of origin (X, Y 

in the horizontal plane) were compared using a two-point geostatistical approach, described as 

follows. First, squared differences between each pair of values were calculated. All pairs featuring 

zero difference in either value or location were then excluded. The remaining datasets (all of 

which contained at least 2 900 paired differences) are shown as small grey closed circles in Figure 

6-3a (upper aquitard sequence) and Figure 6-3b (lower aquitard sequence). Distances between 

pairs ranged from zero to 250 km. Differences between paired values (i.e., semi-variances) ranged 

from zero (m/d)2 to 15 (m/d)2. In all cases, small differences between values (i.e., semi-variance 

values ≤ 10 [m/d]2) are present for separation distances up to 60 km.  

The two data sets (one for each aquitard sequence) were each divided into an arbitrary number of 

bins, each of which contained 100 sample pairs. Experimental or empirical semi-variograms, 𝛾(ℎ), 

(EVs; closed red circles and red lines) were then derived through the calculation of (arithmetic) 

mean differences in value and location for each data bin (Cressie, 1985; Kitanidis, 1997):  

 𝛾(ℎ) =
1

2 𝑛(ℎ)
∑ [𝑧(𝑥𝑖 + ℎ) − 𝑧(𝑥𝑖)]2𝑛(ℎ)

𝑖=1  (7) 

where z is a data value at a particular location, h is the lag-distance between ordered data, and 

n(h) is the number of paired data at a distance of h. The semi-variance is half the variance of the 

increments z(xi+h)-z(xi). For a data set with m observations, there are m(m-1)/2 unique pairs of 

data with a lag-distance h.  

Both EVs appear to approach asymptotic conditions at separation distances of between 100 km 

and 200 km, with the exception of the final EV data bin for the upper aquitard sequence (harmonic 

mean approach). Also shown in Figure 6-3 are correlograms (blue filled circles and lines), which 

represent the reduction in autocorrelation between binned data values with increasing lag 

distance. Autocorrelation values (A) were calculated as: 

 𝐴(ℎ) = 1 − 𝛾(ℎ)/𝜎𝛾(ℎ)
2

  (8) 

Autocorrelation measures similarity of a property or parameter between sites and is often 

modelled as an exponential decay with distance.  
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Figure 6-3. Experimental variograms (red, based on semi-variance values) and correlograms (blue, based on 

autocorrelation values) for the (a) upper aquitard sequence and (b) lower aquitard sequence, using vertical 

hydraulic conductivity values that were upscaled using numerical model averaging.   

Two parametric models were used to characterise the EVs: a spherical model and an exponential 

model, both of which were parameterised using range, sill and nugget values. The range is the lag 

distance at which the semi-variogram reaches the sill value; the autocorrelation is essentially zero 

beyond the range. The sill is the semi-variance value at which the variogram levels off. The nugget 

value represents variability at distances smaller than the typical sample spacing, including 

measurement error. The spherical model is given as (Cressie, 1985; Kitanidis, 1997): 

 
𝛾(ℎ) = 𝑐 [

3ℎ

2𝑎
−

1

2
(

ℎ

𝑎
)

3

] + 𝑛   ,   ℎ < 𝑎

𝛾(ℎ) = 𝑐 + 𝑛                              ,   ℎ ≥ 𝑎
  (9) 

while the exponential model is given as (Cressie, 1985; Kitanidis, 1997): 

 𝛾(ℎ) = 𝑐[1 − 𝑒−ℎ 𝑎⁄ ] + 𝑛 (10) 

where γ is semi-variance, h is lag distance, c is sill, a is range, and n is the nugget. The spherical 

model reaches the specified sill value, c, at the specified range, a. Conversely, the exponential 

model approaches the sill asymptotically, where a represents the “practical range”; i.e., the 

distance at which the semi-variance reaches 95 % of the sill value (Figure 6-4). 

The spherical and exponential models were, in part, selected as they are suitable for use in 

subsequent Sequential Gaussian Simulation of spatial parameter distributions. The models were 

fitted to EVs through the use of the Python language least squares algorithm curvefit. Parameters 

of the fitted models and associated coefficient of determination (R2) values are summarised in 

Table 6-1.  

Both variogram models fitted the experimental variogram equally well up to a lag distance of 

approximately 100 km (Figure 6-5). For larger distances, the spherical model reached a constant 

value (i.e., the sill) and remained close to the experimental variogram. In comparison, exponential 

model values continued to increase beyond this lag distance and approached the sill 

asymptotically. These differences between the two variogram models explained the consistently 
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larger sill and range values for the exponential model. In addition, the nugget values of both 

variogram models are very similar since both models fitted the exponential variogram equally well 

at short (i.e., <100 km) lag distances. 

 

 

Figure 6-4 Theoretical variogram models (spherical, exponential, Gaussian) with indication of the practical range 

(Bohling, 2005). 

 

 

Figure 6-5. Geostatistical analysis of (a) upper aquitard sequence and (b) lower aquitard sequence KV values 

upscaled using a 1-D numerical groundwater flow model. Grey closed circles = data points [z(xi+h)-z(xi)]2, red closed 

circles and lines = experimental variograms, solid green line = spherical variogram model, and dashed blue line = 

exponential variogram model. 
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Close inspection of the experimental variogram in Figure 6-5  for the upper aquitard sequence 

shows signs of short-range variability up to about 30 km lag distance in combination with large-

range variability for lag distance up to 100 km. These double-hump or multiple-hump features 

have previously been discussed by Ababou et al. (1989), Gelhar (1993, 1989) and others, and have 

been related to spatial variability at different scales. Indeed, one can envisage scales of 

heterogeneity (Figure 6-6): i) at the regional scale due to different geological formations (scale ℒ), 

ii) at the scale of an individual geological formation due to variation in facies (scale of the flow 

domain, L), and iii) at the scale of an individual facies due to differences in cementation of pores 

(scale λ) (Weber, 1986). Typically, the regional scale ℒ could be on the order of 50 -100 km, the 

scale of the flow domain L could be on the order 1 – 10 km, and the scale of fluctuation λ on the 

order of 10 – 100 m. As shown in Figure 6-6, a composite semi-variogram can be assumed which 

describes the different spatial scales. The increasingly higher sill values are consistent with the 

higher variability in ln KV that is expected when increasingly larger spatial domains (i.e. greater 

variability in geological strata) are sampled. 

 

 

Figure 6-6 Multiple scales of heterogeneity. (top) Identification of scales: regional scale (ℒ), scale of the flow 

domain (L), and local-scale correlation scale (λ).  (bottom) Hypothetical multi-scale semi-variogram corresponding 

with multiple scales of heterogeneity (modified from Ababou et al. [1989]). 
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The question of how many heterogeneous random fields suffice in a stochastic analysis has been 

addressed by Ababou (1988) and Ababou et al. (1989). These authors used, as an extreme case, a 

single realization and developed some guidance in regards to minimum acceptable size of the 

model domain and maximum grid size, for the model to be statistically meaningful. When a single 

realization approach is used, inference of statistical moments of the distribution of relevant 

variables requires a flow domain that is sufficiently large compared with the correlation scales of 

the pertinent formation properties. In addition, in order to preserve details of the spatial structure 

of the formation properties, the size of the numerical cells must be small compared with the 

characteristic length scale of the heterogeneity of the relevant formation properties. Ababou 

(1988) and Ababou et al. (1989) suggested the following two criteria: i) the domain size should be 

at least 10 to 50 times the correlation length, and ii) at least four nodes or grid cells per correlation 

length.   

Table 6-1. Variogram model parameter (i.e., range, sill and nugget) values and associated coefficient of 

determination (R2) values for power and logarithmic variogram models used to characterise the spatial correlation 

between upscaled KV values for the upper and lower aquitard sequences. *Note that “Practical range” refers to the 

distance at which semi-variance values generated using an exponential variogram model reach 95 % of the sill 

value. 

Aquitard  

sequence 

Model               

type 

Upscaled          

data type 

Range 

 

(km) 

Practical 

range*  

(km) 

Sill 

 

(m/d)2 

Nugget 

 

(m/d)2 

R2 

 

(-) 

Upper spherical harmonic 129 N/A 0.764 0.327 0.964 

  numerical 100 N/A 0.987 0.269 0.964 

 exponential harmonic 298 283 2.570 0.337 0.964 

  numerical 133 126 2.000 0.290 0.960 

Lower spherical harmonic 319 N/A 1.320 0.133 0.947 

  numerical 128 N/A 0.811 0.175 0.985 

 exponential harmonic 43 400 41 300 262 0.136 0.947 

  numerical 255 242 2.420 0.183 0.984 

 

A re-analysis of the experimental variogram for both the upper and lower aquitard sequences was 

undertaken in which data points featuring lag distances in excess of 30 km were excluded. In this 

way the local-scale correlation length was determined which included mainly data from the focus 

study area with the highest data density (see Figure 6-1). Based on the numerically upscaled data, 

the spherical semi-variogram model revealed a correlation length of 20 km for the upper aquitard 

and 30 km for the lower aquitard. With a model domain that is approximately 230×230 km2, the 

first criterion of at least 25 correlation lengths within the modelling domain is not entirely 

satisfied. Nevertheless, with about half the required number of correlation lengths included in the 

flow model, the number of realizations required to derive meaningful statistics is not expected to 

be excessive. Therefore, in the subsequent section, a total of 50 realizations has been generated 

for subsequent flow modelling. As to the second criterion, there should be four nodes every 20 km 

(i.e. correlation length). For the minimum grid size of 1×1 km2 there were 20 nodes per correlation 
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length, thus satisfying the second criterion. The criterion is also satisfied for the largest grid size, 

i.e., 5×5 km2.  

6.3 Stochastic generation of spatially distributed parameter fields 

Geostatistical characterisation of the spatial variability of the upper and lower aquitard sequences, 

as described above, enabled the stochastic generation of spatial distributions of vertical hydraulic 

conductivity. In comparison to the generation of uniform parameter fields, these heterogeneous 

fields provided a means of investigating the effects of spatial parameter variability on the four 

predictions of interest. Heterogeneous parameter fields were generated according to the relevant 

spherical variogram model and were conditioned to the relevant observations of vertical hydraulic 

conductivity. A conditional Sequential Gaussian Simulation algorithm, which used ordinary kriging 

to interpolate between populated cell values, was used to generate multiple and equally probable 

parameter fields or realisations. The conditional simulation approach takes into account the 

spatial variation of actual data at sampled locations, while the variation of estimates at unsampled 

locations is interpolated using kriging. Conditional stochastic simulation reproduces the statistics 

of a given sample set (e.g., the histogram of values and the specified model of spatial correlation, 

such as a semi-variogram model) while, for cases in which the nugget value is zero, honouring data 

values at their sampled locations. In cases where the nugget value is non-zero, values at sampled 

locations will vary according to the degree of inherent variability described by the nugget effect. 

The software utility FIELDGEN (WNC, 2016) was used to undertake spatial field generation. 

Two example aquitard KV spatial distributions are presented in Figure 6-7. Note that only lateral 

spatial heterogeneity is represented for each aquitard sequence: the vertical heterogeneity is 

replaced by the upscaled KV value. It should be noted that individual stochastic realisations may 

differ significantly from one another, even while the underlying statistical correlation structure 

remains the same. Statistics of the equivalent aquitard KV values of the 50 spatial distributions 

generated for the upper and lower aquitard sequences are summarised in Table 6-2. 

 

Table 6-2. Summary statistics of 50 spatial distributions of equivalent log10 aquitard vertical hydraulic conductivity 

(m/d) generated for the upper and lower aquitard sequences using Sequential Gaussian Simulation. 

Aquitard sequence min 10th 25th 50th mean 75th 90th max 

Upper -6.0 -5.5 -5.4 -5.3 -5.3 -5.1 -5.0 -4.7 

Lower -5.6 -5.2 -5.1 -5.0 -5.0 -4.9 -4.8 -4.5 
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Figure 6-7. Heterogeneous spatial distributions of log10 vertical hydraulic conductivity (log10 KV) for the (a) upper 

and (b) lower aquitard sequences generated using Sequential Gaussian Simulation based on spherical variogram 

models and conditioned to values upscaled using numerical model averaging (red = low values; blue = high values; 

white = non-Pilliga Sandstone aquifer cells). 

6.4 Prediction uncertainty analysis using spatially distributed parameter 
fields 

Subsequent sections describe analyses of the effects of incorporating a spatially variable 

parameterisation log10 KV on the uncertainty of predictions. Such a conceptualisation is more 

physically realistic than the spatially uniform conceptualisation assumed previously. However, in 

practice, this approach requires a higher level of data support. Furthermore, predictions of 

interest may or may not be sensitive to spatially variable hydraulic properties; indeed, boundary 

conditions may, in some circumstances, be the primary control on predictions. The uncertainty 

quantification presented here was focused solely on the influence of heterogeneity in aquitard KV 

values on the four prediction metrics discussed previously. 

6.4.1 Prediction metric 1: Magnitude of maximum drawdown 

Predictions of the magnitude of maximum drawdown ranged from 1.3 m to 7.2 m, with a median 

value of 3.4 m. This reflected an increase in the median predicted value by 2.7 m. The standard 

deviation of predicted values reduced by 1.4 m to 1.6 m. The interquartile range of predicted 

values reduced by 0.2 m to 2.8 m. The 90 % confidence interval increased by 0.1 m to 0.7 m.  



72   |  Sensitivity and uncertainty analysis of a regional-scale groundwater flow model featuring coal seam gas extraction 

 

Figure 6-8. (a) Cumulative density function and (b) frequency histogram of initial (black) and revised (red) 

predictions of the magnitude of maximum drawdown, based on sample sizes of 300 model runs (‘Initial’) and 50 

model runs (‘Heterogeneous’). 

6.4.2 Prediction metric 2: Timing of maximum drawdown 

Predictions of the timing of maximum drawdown ranged from 11 to 137 years, with a median 

value of 35 years (Figure 6-9). This reflected a reduction of the median predicted value by 119 

years. The standard deviation of predicted values reduced by 17 to 25 years. The 90 % confidence 

interval increased by 3 to 11 years. The interquartile range of predicted values reduced by 15 

years to 32 years. The 10–90 percentile range reduced by 43 to 54 years.  

 

Figure 6-9. (a) Cumulative density function and (b) frequency histogram of initial (black) and revised (red) 

predictions of the timing of maximum drawdown, based on sample sizes of 300 model runs (‘Initial’) and 50 model 

runs (‘Heterogeneous’). 

These results are unlikely due to the smaller number of model runs (i.e., 50 compared to 300), 

based on the condition that the scale of the model is larger than the correlation scales of the 
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pertinent formation properties (i.e. scale of the small-scale heterogeneity, Section 6.3). As 

illustrated in Figure 6-10, the heterogeneous model results in much better constrained model 

outputs due to Sequential Gaussian Simulation used to generate, and constrain, the 

heterogeneous KV fields. Indeed, the time of maximum drawdown is constrained to a relatively 

narrow band between 11 and 80 years, with only one exception at 137 years. Time of maximum 

drawdown for the homogeneous model is not constrained, with values covering the full modelled 

extent of 160 years, and some that have not yet reached their maximum drawdown.  

  

Figure 6-10 Maximum drawdown as a function of time of maximum drawdown for homogenous (300 runs) and 

heterogeneous (50 runs) model. Pink ellipse indicates decreasing trend between maximum drawdown and time of 

maximum drawdown. Note: clustering of filled red circles at t = 160 y was due to the limited temporal extent 

specified for model runs (see text for further details). 

Of further interest is the decreasing trend in drawdown with increasing time to maximum 

drawdown. This trend extends beyond the data points for the heterogeneous case, and links into 

at least a subset of the homogeneous data points. In other words, the bulk of the data behaves as 

expected, where high KV values would allow for a higher drawdown which is obtained relatively 

sooner due to quicker reaction time of the system. 

6.4.3 Prediction metric 3: Spatial extent of drawdown propagation 

Predictions of the spatial extent of drawdown propagation ranged from zero cells to 726 cells, 

with a median value of 63 cells. This reflected an increase in the median predicted value by 63 

cells. The standard deviation of predicted values reduced by 1 636 cells to 194 cells. The 

interquartile range of predicted values reduced by 1 217 cells to 279 cells. The 90 % confidence 

interval reduced by 257 cells to 90 cells.  
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Figure 6-11. (a) Cumulative density function and (b) frequency histogram of initial (black) and revised (red) 

predictions of the spatial extent of drawdown in excess of 2 m, based on sample sizes of 300 model runs (‘Initial’) 

and 50 model runs (‘Heterogeneous’). 

 

Figure 6-12 shows spatial maps with isolines of drawdowns for the 5th, 50th, 90th, 95th, and 99th 

percentiles, based on 50 calculated values of drawdown for each model cell. Isolines shown are for 

1 and 2 m drawdown (Figure 6-12), where drawdown values are taken at 155 years following 

cessation of gas extraction. For the 5th and 50th percentile there are no areas with a drawdown 

equal to or larger than 1 m. In other words, the expected (50th percentile) value shows that not a 

single area has a drawdown equal to or in excess of 1 m. Compared to the initial model 

drawdowns (Figure 3-15) and revised model drawdowns (Figure 5-15), considerably smaller areas 

of drawdown larger than 1 and 2 m are observed for all percentiles. At the 95th percentile, the 

overall maximum drawdown across all 50 model runs is 6.1 m. 
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Figure 6-12. Percentiles of spatial distributions of 1 and 2 m drawdown (solid black lines), observed at the median 

time of maximum drawdown (i.e., 155 years after the cessation of coal seam gas extraction); purple = Pilliga 

Sandstone aquifer cells; blue = upper aquitard sequence cells. Drawdowns < 1 m are not shown. Percentiles shown 

are (a) 5th, (b) 50th, (c) 90th, (d) 95th and (e) 99th. Distributions are based on a set of 50 model runs that featured 

spatially variable parameterisation of aquitard vertical hydraulic conductivity values (i.e., the ‘heterogeneous’ 

model).  

6.4.4 Prediction metric 4: Maximum vertical flux 

Predictions of the maximum change in vertical flux ranged from 548 m3/d to 1124 m3/d, with a 

median value of 751 m3/d. This reflected an increase in the median predicted value by 14 m3/d. 

The standard deviation of predicted values reduced by 50 m3/d to 191 m3/d. The interquartile 

range of predicted values reduced by 14 m3/d to 350 m3/d. The 90 % confidence interval increased 

by 43 m3/d to 89 m3/d.   

A comparison of the 50th percentiles (or expected values) of four prediction metrics is available 

from Table 6-3; the expected value of maximum drawdown increases from 0.7 m for the initial 

model to 1.2 m for the revised model and 3.4 m for the heterogeneous model.  
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Table 6-3. 50th percentile (i.e., median) values of four prediction metrics based on sets of 300 model runs for each of 

the ‘initial’ and ‘revised’ models and 50 model runs with the ‘heterogeneous’ models. 

Prediction ‘Initial’ model  ‘Revised’ model ‘Heterogeneous’ model 

Maximum drawdown (MXD) 0.7 m 1.2 m 3.4 m 

Timing of maximum drawdown (tMXD) 154 y 155 y 35 y 

Spatial extent of drawdown ≥ 2 m (NDD) 0 cells 0 cells  63 cells 

Maximum vertical flux (MXQ) 737 m3/d 636 m3/d 751 m3/d 

 

The timing of the maximum drawdown occurs about five times earlier for the heterogeneous 

model compared to the homogeneous initial and revised models. The spatial extent of the 

drawdown > 2 m is 63 cells for the heterogeneous model compared to zero cells for the other two 

models. Finally, the maximum vertical flux is slightly higher for the heterogeneous model 

compared to the homogenous models. The result for the third metric is strongly influenced by the 

very truncated distributions of the initial and revised model, with nearly 60% of the model runs 

producing zero cells with a drawdown > 2 m.  

 

Figure 6-13. (a) Cumulative density function and (b) frequency histogram of initial (black) and revised (red) 

predictions of changes in vertical groundwater fluxes, based on sample sizes of 300 model runs (‘Initial’) and 50 

model runs (‘Heterogeneous’). 

 

A further comparison across the four prediction metrics is available for the 95th percentile (Table 

6-4). Here, the heterogeneous model generates the lowest maximum drawdown (6.1 m versus 7.9 

for the revised model), has a spatial extent of drawdown > 2 m that is one order of magnitude 

smaller than that of the two other models, and a considerably smaller maximum flux. These 

results are consistent with the spatial distribution of drawdown shown in Figure 6-12, illustrating 

that the heterogeneous model seems to be much better constrained resulting in a much smaller 

range of drawdowns. The better constrained KV model results from using the conditioned 

Sequential Gaussian Simulation, which honours the observed KV data.  A second reason for the 

smaller range of drawdowns is the smaller number of model runs, 50 for the heterogeneous 
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model versus 300 for the homogeneous models. Therefore, it is likely that a smaller KV parameter 

space is sampled in case of the heterogeneous model.    

 

Table 6-4. 95th percentiles of four prediction metrics based on sets of 300 model runs for each of the ‘initial’ and 

‘revised’ models and 50 model runs with the ‘heterogeneous’ models. 

Prediction ‘Initial’ model  ‘Revised’ model ‘Heterogeneous’ model 

Maximum drawdown (MXD) 7.2 m 7.9 m 6.1 m 

Timing of maximum drawdown (tMXD) 160 y 160 y 81 y 

Spatial extent of drawdown ≥ 2 m (NDD) 4 490 cells 5 350 cells  551 cells 

Maximum vertical flux (MXQ) 1 310 m3/d 1 260 m3/d 1 074 m3/d 
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6.5 Prediction uncertainty and groundwater management 

Groundwater impact assessments are increasingly being undertaken in a probabilistic framework 

whereby all sources of uncertainty (model parameters, model structure, boundary conditions, and 

calibration data) are taken into account (Vrugt et al., 2013; Guillaume et al., 2016). This has 

resulted in groundwater impact metrics being presented as probability density functions and/or 

cumulative distribution functions, spatial maps displaying isolines of percentile values for specific 

metrics, etc.  

Groundwater management on the other hand typically uses single values (i.e., in a deterministic 

framework) to evaluate what decisions are required to protect groundwater resources. For 

instance, the third groundwater impact metric applied in this study considers the number of cells 

in the Pilliga Sandstone aquifer with drawdown greater than or equal to two meters. This nominal 

drawdown value of two metres was selected as this is consistent with trigger-level thresholds 

specified by the NSW Aquifer Interference Policy (NSW DPI OW, 2012). In many cases, when 

drawdowns induced by groundwater extraction exceed two metres, “make-good” provisions are 

enacted (such as the surrendering of extraction licences).  

The information obtained from a quantitative uncertainty analysis (such as presented here) can be 

used to guide decision making in several ways. Two examples are discussed here: the first of which 

would not require modification of existing “deterministic” trigger or guideline values, whereas the 

second example assumes that the regulatory criteria are also expressed in probabilistic terms.  

The first example is a straightforward interpretation of calculated percentile values for specific 

impact metrics. Consider a 5% lower confidence limit (the magnitude of the impact metric would 

typically be at the lower end of all possible impacts) that is above the regulatory standard of 

concern, then it is likely that the standard will be violated. Indeed, in this case 95% of all calculated 

impacts would exceed the standard: the decision that the standard is violated has a high degree of 

certainty. If, on the other hand, the 95% upper confidence limit (the magnitude of impact is at the 

upper end of all possible impacts) is below the standard, it is likely that the standard will not be 

violated. In this case there is only a very small chance (5%) for the metric to exceed the standard: 

the decision to accept the impact has a very small margin of error. If the 95% upper confidence 

limit exceeds the standard, but the 50th percentile is less than the standard, further study could be 

recommended for those parameters that most control the overall uncertainty. However, if the 50th 

percentile exceeds the standard, further study may still be recommended. Under some 

circumstances one may choose to proceed with regulatory action depending on the cost-

effectiveness of measures for risk reduction. 

The second examples goes a step further, as the previous deterministic thresholds do not 

currently allow for a probabilistic interpretation; e.g., there is no statement that “the probability 

of exceeding the threshold shall not be larger than 50%” or “the likelihood of exceeding the 

threshold should not exceed one chance in 100”. It would be sensible to have a set of thresholds 

with an associated acceptable probability of exceedance (or probability of not exceeding a 

threshold) that decreases as the impact increases (Figure 6-14). In this way both the prediction 

uncertainty and management rules are expressed in a probabilistic framework.  
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Figure 6-14 Relationship between impact thresholds and acceptable probability of exceeding a given threshold. 

 

The theoretical example of Figure 6-14 is subsequently applied to the results from the 

groundwater impact metrics discussed in Section 6.4.1. Note that the impact metrics were 

expressed in terms of their cumulative distribution function, e.g. Figure 6-8. First, this plot will be 

converted into complementary cumulative distribution function, or CCDF (see also Turnadge et al. 

2018a). A complementary cumulative distribution function represents the probability of 

exceedance, i.e. Prob (X > x) = 1 - Prob (X ≤ x ). CCDFs are commonly used to display the results of 

risk assessments for two reasons. First, CCDFs answer the question “how likely is an outcome to be 

this large or larger”, which is typically the question of interest in risk assessment. Second, CCDFs 

facilitate displaying small probabilities associated with large consequences. 

 

 

Figure 6-15 Cumulative distribution function (CDF) and complementary cumulative distribution function (CCDF) for 

variable v with a triangular distribution on [1, 10] and a mode at 7 (based on Helton et al. 2004). 
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Once the CCDFs have been calculated for one or several impact metrics, they can be compared 

with threshold boundaries. The latter define a probability-consequence limit line for assessing, or 

limiting, the risk to the public or the environment. Any probability-consequence points above the 

limit line have an unacceptable high risk, whereas points below the limit line have an acceptable 

level of risk. Different limit lines may be considered, including lines of constant risk, lines that 

account for stakeholders being risk averse towards high consequence values (i.e., the acceptable 

risk at high consequence values will be smaller than at low consequence values), or lines defined 

by a single requirement (Cox and Baybutt, 1981). Figure 6-16 illustrates the principle of boundary 

lines, with one continuous line, one boundary line defined by a single requirement (i.e., probability 

of exceeding the consequence value of 30 should be less than one in ten) and one defined by two 

requirements (i.e. probability of exceeding consequence value 20 should be less than 8% and the 

probability of exceeding consequence value 10 should be less than 60%). Because the CCDF does 

not exceed any of the boundary lines, the risk is acceptable. 

 

 
 

Figure 6-16 Boundary line approach to specification of acceptable risk (modified from Helton and Breeding, 1993). 

The principle of boundary line will be applied to the results from the groundwater impact metrics 

discussed in Section 6.4.1. The maximum drawdown will be considered as example. Figure 6-17 

displays four different potential cases of boundary lines associated with either a single 

requirement or with multiple requirements. The single requirement cases all have a threshold of 2 

m drawdown, but different probabilities of exceedance, i.e., 30%, 50% and 80% (Figure 6-17a, b, 

and c). Based on the three calculated CCDFs for maximum drawdown, only the models using the 

initial data set would be accepted for a 30% probability. When a 50% probability is considered, 

models based on initial and revised data set are acceptable; for the 80% probability, all three 

models are acceptable. Multiple requirements are shown in Figure 6-17d: the probability of 

exceeding the threshold of 0.2 m shall not be larger than 50%, not larger than 10% for the 

threshold of 2 m, and not larger than 1% for a threshold of 10 m. In this case all three models are 

not acceptable for the 0.2 and 2 m drawdown; only the heterogeneous K model is acceptable at 

the 10 m threshold. 
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Figure 6-17 Comparison of CCDF for maximum drawdown and single requirement boundary lines for 30% (A), 50% 

(B), and 80% (C) acceptable probability of exceeding 2 m drawdown. Multiple requirement boundary line considers 

50% acceptable probability of exceeding for 0.2 m, 10% for 2 m and 1% for 10 m drawdown (D). 

 

Many other combinations of thresholds and acceptable probabilities of exceedance can be 

developed, for single impact metrics or by combining several impact metrics. For example, the 

acceptable probability of exceedance can be made dependant on the surface area affected by a 

given drawdown. The larger the affected surface area, the more stringent the tolerable probability 

of exceedance. 

Casting groundwater impact metrics in a probabilistic framework will have greatest benefits to 

groundwater management if management rules are also expressed in a probabilistic sense. Future 

research is recommended to explore how to optimally connect water management to probabilistic 

results from groundwater impact studies.  
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7 Data worth analysis 

The sensitivity analysis presented in previous chapters identified which model parameters are 

most important to groundwater impact metrics such as drawdown and time to drawdown 

predictions. Section 7.1 goes one step further and provides an overview of value of information or 

data worth when carrying out groundwater investigations. In section 7.2 bootstrapping is applied 

to estimate the robustness of statistical measures of particular groundwater metrics such as 

predicted maximum drawdown. 

7.1 Literature review 

Data worth analysis (also known as value of information analysis in the oil and gas industries) is 

targeted to the quantification of the impact of new potential measurements on the expected 

reduction of predictive uncertainty based on a given process model. The purpose is to identify 

how adding new (or removing existing data) would decrease (increase) model prediction 

uncertainty. Or in a management context, whether purchasing a new information source would 

result in making better decisions (Trainor-Guitton et al., 2011). Indeed, the high costs associated 

with collecting hydrogeological parameters, setting up a new or extending an existing monitoring 

network indicates the need to develop robust methodologies conducive to the identification of 

optimal strategies for the collection of future data which are potentially valuable for a specific 

environmental goal considered. Goal oriented data sets can assist to improve understanding of 

complex systems and minimise uncertainty while considering budget constraints (Dai et al., 2016). 

In other words, site investigations should only be carried out if the risk reduction it will achieve is 

greater than the cost of carrying it out. 

Especially for large‐scale site characterisations a careful selection has to be made prior to any data 

collection efforts about what the best combination of hard and soft data will be, depending on the 

management questions that needs to be addressed. Value of information or data worth analysis 

studies then become very useful to ensure the limited resources are used to provide data most 

suitable to resolve a particular question (Engelhardt et al., 2013; Freeze et al. 1992; Moore, 2005; 

Wallis et al., 2014). However, the value of information is not absolute; instead, it is always 

dependent on the management or research question of interest. Indeed, there is no intrinsic value 

in collecting data unless it can influence a specific decision goal, or reduce the risk of an 

undeniable event that has a cost associated with it. 

For a data worth analysis to be practical, the acceptable model prediction uncertainty should be 

established (Finsterle, 2015). Developing criteria of success in terms of acceptable prediction 

uncertainty is critical to reduce the risk of undertaking extensive data collection efforts that could 

fail to support a specific scientific or technical question. In other words, a specific decision goal has 

to be formulated; reducing uncertainty on subsurface parameters for the sake of reducing 

uncertainty has little or no value. Once acceptable prediction uncertainty is defined, limits can be 

imposed on the acceptable level of uncertainty in the input parameters. Subsequently, a data 

collection campaign can be designed in such a way that it will result in input parameters with 
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acceptable uncertainties. A non-exhaustive summary of data worth or value of information 

applications in groundwater investigations and management is provided in Table 7-1. 

Table 7-1 Examples of data worth or value of information applications in groundwater investigations and 

management. 

Subject Application Reference 

Data worth and its use for developing site 
investigations strategies 

Reduction of uncertainty in aquitard continuity and 
the reduction of uncertainty in hydraulic-conductivity 

distribution in an aquifer 

Freeze et al. 
(1992) 

Data-worth analysis of potential new monitoring-
well locations to improve models of groundwater/ 
surface-water interactions 

Data-worth analysis of potential new monitoring-well 
locations by using a model. The relative worth of new 

measurements was evaluated based on their ability to 
increase confidence in model predictions of 

groundwater levels and base flows 

Leaf et al. 
(2015) 

Bayesian analysis of groundwater data worth Assessment of the worth of collecting additional data 
on steady- state flow, with log hydraulic conductivity 

data found to be worth more than an equal number of 
corresponding head measurements 

Xue et al. 
(2014) 

Groundwater quality management under 
uncertainty 

To identify optimal pumping and sampling strategies 
to minimise model uncertainty within the context of 

ground-water management 

Wagner (1999) 

Evaluating data worth for groundwater 
management 

For a specified data collection budget, the monitoring 
network design model identifies, prior to data 

collection, the sampling strategy that will minimize 
model uncertainty when designing the containment of 

a plume of groundwater contamination through the 
installation and operation of pumping wells 

Wagner et al. 
(1992) 

Uncertainty and data worth analysis for the 
hydraulic design of funnel-and-gate systems in 
heterogeneous aquifers 

Determine optimal sampling locations for additional 
conductivity measurements to guide design of funnel-

and-gate systems as part of a permeable reactive 
barrier in a contaminated aquifer 

Cirpka et al. 
(2004) 

Estimation, optimization, and value of information 
for groundwater remediation. 

Consideration of groundwater clean-up objectives, 
cost formulations, and sensitivity of costs to 

uncertainty in parameters, measurements, and the 
model itself to seek minimization of expected cost 

under conditions of incomplete information 

Liu et al. (2012) 

Optimisation of monitoring data for increased 
predictive reliability of regional water allocation 
models 

Identify optimal data monitoring networks, where 
“optimal” is defined in terms of increased reliability of 

the particular prediction that underpins a 
management decision 

Moore et al., 
(2011) 

A decision tree model to estimate the value of 
information provided by a groundwater quality 
monitoring network 

Estimation of the value of information provided by a 
groundwater quality monitoring network located in an 

aquifer whose water poses a spatially heterogeneous 
and uncertain health risk 

Khader et al. 
(2013) 

Impacts from re-injection of coal seam gas 
produced water 

Explore the relative data-worth of injection tracer 
tests, pump tests and regional groundwater 

monitoring data in informing the dilution predictions 
made using a well field water quality model. 

Sreekanth and 
Moore (2015) 

Data worth analysis to determine cost effectiveness 
of airborne electromagnetic (AEM) data for 
defining hydraulic properties in a groundwater flow 
model 

How cost-effective are airborne electromagnetic 
(AEM) data for refining the spatial variability of 

hydraulic conductivity and vertical aquifer boundaries 
within a groundwater flow model when compared to 

more traditional techniques 

Magali et al. 
(2016) 
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7.2 Bootstrapping resampling 

7.2.1 Methodology and application 

The data worth analysis in this study is based on a bootstrap resampling methodology. The 

bootstrap resampling approach is a non-parametric way of calculating prediction confidence 

intervals and parameter uncertainty (Lall and Sharma, 1996; Burn, 2003). The resampling approach 

involves creating new samples from the original sample by a bootstrapping process which involves 

randomly selecting data points, with replacement, from the original sample and subsequently 

estimating prediction uncertainty from each of the resampled data sets.  

The principle of bootstrap resampling is illustrated here based on the updated data set and its 300 

parameter combinations generated in the previous section (Section 5). The 300 parameter 

combinations are randomly sampled from an unimodal log-triangular distribution that is based on 

the improved aquitard characterisation using upscaled well-log data combined with hydraulic 

conductivity measurements. The uncertainty around the maximum drawdown will be considered 

as an example. 

The bootstrap procedure follows following scheme: 

1. Take a random sample of 50 parameter combinations with resampling from the 300 

available parameter combinations; 

2. For each parameter combination, used the existing model runs to compute the 50th, 75th 

and 90th percentiles of maximum drawdown; 

3. Repeat steps 1-2 a large number of time (1 000 in this example); 

4. Summarize with histograms the variability in the percentiles of the parameters and model 

predictions (i.e. drawdown). 

This type of analysis shows how robust the summary statistics (the percentiles) of the predictions 

are. The exercise may be repeated for different sample sizes (e.g. 50, 200, 300) which allows to 

compare the range of the percentiles, and if they are affected by the sample size. If the range of 

percentiles is small, the sampling density is considered high enough and the summary statistic is 

considered robust. If the range or uncertainty is high, however, the summary statistic is prone to 

change due to omission or inclusion of a few data points. The summary statistic can then not be 

considered robust and the data density is insufficient to characterise the parameter distribution 

according to an acceptable degree of uncertainty. The bootstrap resampling method does not 

assess the value of the data itself, e.g. how the prediction uncertainty would change as the 

number of core-based KV values in the data set decreases or increases. Addressing such questions 

was beyond the scope of this study. 

7.2.2 Results and discussion 

Figure 7-1 and Figure 7-2 show the results of a 1 000 fold bootstrap resampling with respectively a 

sample size of 50 and 300. The bootstrap with sample size 50 shows that there is considerable 

spread in the percentiles of predicted drawdown, with the median varying between 0.4 and 2 m, 

while the 90th percentile varies between 5.2 m and 8 m. Figure 7-1 shows that by increasing the 



 

Sensitivity and uncertainty analysis of a regional-scale groundwater flow model featuring coal seam gas extraction  |  85 

sample size to 300 the range of predictions decreases considerably, with the range of the median 

between 0.9 and 1.6 m and the range of the 90th percentile now about 2 m (between 5.6 m and 

7.8 m).  The percentiles of the parameters show a similar decrease in spread at the 50th, 75th and 

90th percentiles when the sampling size increases from 50 to 300. The smaller percentiles of the 

predictions are not shown, as they are close to zero and show no variation. It highlights once more 

that the predictive distribution is strongly skewed to the right.  

 

 

Figure 7-1. Illustration of the bootstrapping approach to estimate parameter (a) and model prediction uncertainty 

(b) based on a sample size of 50.   

 

 

Figure 7-2. Illustration of the bootstrapping approach to estimate parameter (a) and model prediction uncertainty 

(b) based on a sample size of 300.   
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In the next step the 90 % confidence interval ranges were derived for each percentile of the 

maximum drawdown prediction based on the results shown in Figure 7-1b and Figure 7-2b. The 

90% confidence intervals were derived for increasing sample size from 50, 100, 200, and 300 

(Table 7-2). Because the distribution of the percentiles was not necessarily normal, the 90% 

confidence intervals were derived from the cumulative distribution function of calculated 

percentiles (i.e. based on the values shown in Figure 7-1b and Figure 7-2b), leaving 5% in each of 

the tails of the distribution. As is clear from Table 7-2, the 90% confidence interval becomes 

smaller and nearly constant as the sample size increases (Figure 7-3). On the basis of 

bootstrapping it is thus demonstrated that having generated 300 data sets followed by 300 model 

runs is sufficient to provide robust estimators of summary statistics of groundwater impact 

metrics (here the maximum drawdown). Further increasing the sample size would have decreased 

the 90% confidence interval marginally compared to the gains obtained by increasing the sample 

size from 50 to 300. 

Table 7-2 90% confidence intervals derived for summary statistics p50, p75, and p90. 

Sample size p50 p75 p90 

50 1.570 3.058 3.123 

100 1.036 2.575 2.042 

200 0.615 1.980 1.577 

300 0.490 1.802 1.400 

 

 

 

Figure 7-3 Effect of sample size on robustness (90 % confidence interval) of estimated percentiles of maximum 

drawdown. 
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In a final step the bootstrapping analysis was repeated for both the homogenous and 

heterogeneous model using a sample size of 50 (to have a consistent sample size across both 

model approaches). As Figure 7-4 shows, the percentiles for the groundwater impact metric 

maximum drawdown are much better defined (i.e. smaller data range) for the heterogeneous than 

for the homogeneous model.  

 

Figure 7-4 Illustration of the bootstrapping approach to estimate model prediction uncertainty (maximum 

drawdown) based on a sample size of 50 for the homogeneous (a) and heterogeneous model (b).   

Whether or not a sample size of 50 heterogeneous KV fields and subsequent 50 model runs was 

sufficient to obtain robust estimations of the four groundwater impact metrics is illustrated in 

Figure 7-5. For all four impact metrics, all statistics (full data range, interquartile range, median) 

reach more or less constant values at a sample size of 50 indicating that a sample size of 50 was 

indeed sufficient.  

 

Figure 7-5 Illustration of the bootstrapping approach to estimate model prediction uncertainty across different 

sample sizes (heterogeneous model). Box plots show full data range, interquartile range (box) and median (red 

line). 

The analysis also illustrates that in order to characterise the higher extremes of the distribution of 

model predictions, more effort needs to be expended in reliably characterising the right tail of the 

parameter distribution, i.e. the high values. Increasing the reliability of the left tail will have 

limited effect on the predictions. Having a right tail that is too wide or too narrow may result in a 

considerable over or under prediction respectively of maximum drawdown. 
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As such the bootstrap procedure outlined and applied above only tested the robustness of the 

summary statistics with regards to the sampling of a known log-triangular distribution. A possible 

next step in the data worth analysis would be to include the definition of the log-triangular 

parameter distribution in the bootstrap procedure (i.e. use actual data to define a distribution and 

its parameters). This can be achieved by taking random samples with replacement from the set of 

hydraulic property measurements; for the current study this would mean the second data set. 

Based on each random sample, a new log-triangular distribution would then be formulated which 

is subsequently sampled to run the groundwater flow model and generate the corresponding 

maximum drawdown. While the analysis presented in Figure 7-1 and Figure 7-2 is based on a post-

processing of the existing 300 model runs, this additional analysis would require additional model 

runs as adequate sampling is no longer guaranteed based on the existing distribution, when the 

log-triangular distribution changes each time a new sample is generated. 
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8 Summary and conclusions 

The present report described an example for the inclusion of upscaled aquitard parameter values 

in a numerical groundwater flow model. The values and associated uncertainties of four selected 

predictions generated by a numerical groundwater flow model were assessed prior to and 

following the incorporation of aquitard vertical hydraulic conductivity data. Sensitivity analyses 

with an initial data set based on 300 model runs illustrated the relative importance of the vertical 

hydraulic conductivity (KV) of the upper aquitard as an influential parameter when calculating four 

groundwater impact metrics.  

KV data for the two example aquitards were measured at the core-scale by laboratory testing, 

correlated with wireline logging data and subsequently upscaled to the regional scale 

commensurate with the scale of a cellular groundwater flow model using analytical and numerical 

methods. Upscaled aquitard property observations were used to update prior parameter 

distributions which, after incorporation in the model, produced updated prediction (posterior) 

distributions. The workflow presented here is one example that is considered to be practicable 

and suitable for certain real-world applications. 

Key findings from using updated aquitard parameterisations for modelling groundwater impact 

metrics are: 

 Improved characterisation of aquitard KV resulted in more credibly defining  (i.e. based on a 

combination of field and lab-based data with a relatively high spatial density) the 

probability distribution for KV, with the prior log-uniform distribution being replaced by an 

unimodal log-triangular distribution;  

 For both aquitards, the updated (posterior) probability distribution for KV was roughly two 

orders of magnitude wider than the prior distributions; mean KV values were nearly 

identical for prior (log10 KV = -5.0 m/d for both upper and lower aquitards) and posterior 

distributions (log10 KV = -5.2 m/d for upper and = -4.7 m/d for lower aquitard, based on 

numerical upscaling). Although improving the characterisation of the aquitards resulted in 

an increase in parameter range (i.e., the uncertainty associated with KV increased), the new 

data set has a solid evidence base and thus its credibility (and the model predictions based 

on it) has significantly improved the aquitard parameterisation compared to the initial 

parameterisation based on literature values and models;  

 Regarding predicted groundwater impact metrics, the median of the maximum modelled 

drawdowns increases slightly (from 0.7 m to 1.2 m) when the first (prior) data set is 

replaced by the second data set (improved aquitard characterisation with KV spatially 

uniform within each model layer). Maximum modelled drawdown further increases (from 

1.2 m to 3.4 m) when the more realistic model with heterogeneous KV is used. Overall, the 

calculations of the median modelled drawdown are fairly robust (in a statistical sense) for 

the three data sets tested. Improved aquitard characterisation does affect the predicted 

median drawdown, however for the model and data sets used here the effects are rather 

minor.  
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 Extreme drawdowns (magnitude and spatial extent of 95th percentile) are similar for the 

first and second data set (7.2 and 7.9 m, respectively), but much smaller with the 

heterogeneous KV model (third data set, 6.1 m). The improved aquitard characterisation 

and use of an improved conceptualisation (heterogeneous versus homogeneous hydraulic 

conductivity distribution) thus has a major effect on such percentiles. The much smaller 

extreme drawdowns are also apparent in the maps of the spatial distribution of 

drawdowns (i.e., the 90th, 95th and 99th percentile of maximum drawdowns), illustrating 

that the heterogeneous KV model is much better constrained resulting in a much smaller 

range of extreme drawdowns. For instance, the spatial extent of drawdowns > 2 m 

decreases from 5 350 for the second data set to 550 for the third data set. The extreme 

values (e.g., 95th percentiles) are materially affected (i.e. smaller) by using the 

heterogeneous KV model. Main reasons for this result are: i) a better constrained KV model 

owing to the use of conditioned Sequential Gaussian Simulation, which honours the 

observed KV data; and ii) the smaller number of model runs, 50, for the heterogeneous 

model versus 300 for the homogeneous models, causing a smaller KV parameter space to 

be sampled. 

 Time to maximum drawdown decreased considerably when the heterogeneous model was 

implemented: the median value decreased from 155 (homogenous model) to 35 year 

(heterogeneous model), and the 95th percentile decreased from 160 (homogenous model) 

to 81 year (heterogeneous model). Unlike the homogeneous models, all of the 

heterogeneous model runs do achieve their maximum drawdown within the total model 

run time, yielding the smaller median value of 35 years. This result is believed to be due to 

the higher degree of connectivity within a heterogeneous model when both high and low 

conductivity zones are present in the model. These conditions are conducive to propagate 

the depressurisation occurring in the coal formation much faster than models that have a 

homogeneous conductivity model. The heterogeneous model thus provides a more 

realistic reaction time of the groundwater systems, and is a more accurate approach for 

obtaining a more robust estimate of likely timing of maximum drawdown. 

 

Casting groundwater impact metrics in a probabilistic framework will be of greatest benefits to 

groundwater management if management rules are also expressed in a probabilistic sense. Future 

research is recommended to explore how to optimally connect water management to probabilistic 

results from groundwater impact studies.  

Bootstrapping analysis demonstrated how robust the summary statistics (i.e., the percentiles) of 

the groundwater impact predictions are. Based on a bootstrap resampling with respectively a 

sample size of 50 and 300, the bootstrap with sample size 50 shows considerable spread in the 

percentiles of predicted drawdown. By increasing the sample size from 50 to 300 the range of 

predictions decreases considerably, demonstrating how robustness of the summary statistics 

improve as sample size increases. 

Main learnings from this study relevant to other characterisation and groundwater modelling 

studies are as follows:  
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 Improved characterisation of aquitard KV resulted in more credibly defining the probability 

distribution for KV, with the rather arbitrarily chosen prior log-uniform distribution being 

replaced by a unimodal log-triangular distribution. The new data set has a solid evidence 

base and thus its credibility (and the model predictions based on it) has significantly 

improved. The model further provides a basis for subsequent investigations that aim to 

reduce model uncertainty once the key factors contributing to uncertainty have been 

identified. This underscores the need to improve more broadly characterisation efforts of 

hydrogeological parameters to progressively reduced predictive uncertainty to a level that 

both the modelling community and regulators are comfortable with. Building reliable 

groundwater models is an iterative process whereby uncertainties in the initial parameters 

and model components are reduced progressively through data collection, sensitivity and 

uncertainty analysis (Gedeon et al., 2013).  

 Extreme drawdowns (magnitude and spatial extent of 95th percentile) are much smaller 

for the heterogeneous model compared to the homogeneous model. This illustrates that 

the heterogeneous model is much better constrained resulting in a much smaller range of 

extreme drawdowns. The better constrained KV model results from using the conditioned 

Sequential Gaussian Simulation, which honours the observed KV data. 

 The heterogeneous model provides a more realistic reaction time of the groundwater 

systems, and is a more accurate approach for obtaining a more robust estimate of likely 

timing of maximum drawdown. 

 The use of improved aquitard conceptualisations and parameterisation does not 

necessarily result in overall reduction in predictive uncertainty. However, incorporation of 

a more data-driven and spatially heterogeneous hydraulic conductivity parameterisation 

always results in a more technically defensible model and provides more credible model 

predictions. 
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9 Appendix 1 

The following appendices contain scatterplots of prediction versus parameter values for each of the four 
groundwater impact metrics. 
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9.1 Initial model: Magnitude of maximum drawdown prediction (MXD)  
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9.2 Revised model: Magnitude of maximum drawdown prediction (MXD) 
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9.3 Initial model: Timing of maximum drawdown prediction (tMXD) 
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9.4 Revised model: Timing of maximum drawdown prediction (tMXD) 
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9.5 Initial model: Number of model cells with drawdown > 2 m prediction 
(NDD) 

(  
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9.6 Revised model: Number of model cells with drawdown > 2 m 
prediction (NDD) 
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9.7 Initial model:  Maximum vertical flux prediction (MXQ) 
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9.8 Revised model:  Maximum vertical flux prediction (MXQ) 
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