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Appendix A

Macquarie Harbour, Tasmania:
Environmental risk assessment of toxic effect

John Twining and Ron Cameron

Environment and Safety Divisions
ANSTO, PMB 1, Menai 2234

1 Introduction

As part of the larger program, this report compares the measured copper contamination of
Macquarie Harbour with literature values of significant biological impact under marine or
estuarine conditions. Due to constraints on available resources, this study should be regarded
as preliminary in nature. Many of the data were not critically assessed according to quality
criteria prior to acceptance for the risk assessment. The water quality data by their nature can
only give ‘snapshots’ of copper concentrations at the moments of sampling. The biological
assessment endpoints selected are also somewhat arbitrary, although they do encompass both
lethal and sub-lethal parameters. However, this report will provide a good approximation of
the degree of improvement in harbour water quality required to attain acceptable low levels
of biological impact.

The aim of this risk assessment was to determine the degree of overlap between the
distribution of measured concentrations of copper in water samples from Macquarie Harbour
and the distribution of concentrations of copper reported in the literature to have significant
effects on biota in marine or estuarine environments. By comparing these distributions, the
probabilities of exceeding critical values of copper in the environment relevant to selected
endpoints, such as proportional lethality to a prescribed range of species across trophic levels,
can be determined within set confidence limits. We can then assess the generic risk that
copper, in waters of specific harbour habitats, presents to biota likely to inhabit those regions.

The water quality distributions can also be used for comparisons with site specific
ecotoxicological data determined for algae, crustaceans and fish, discussed elsewhere in this
report (see section 4.6). As these values will be based on actual Macquarie Harbour waters,
they will give a better indication of any synergistic or antagonistic influences on copper
toxicity when compared with the predicted effects from the literature.

2 Experimental

Data used in the analyses are available from the authors.

2.1 Macquarie Harbour water monitoring data

Monitoring data for various stations within Macquarie Harbour were provided by Dr Lois
Koehnken (DELM). The data comprised a comprehensive but incomplete (for a variety of
reasons) set over the period from May 1993-August 1995 at approximately 3 month
intervals. The incompleteness is mainly due to poor weather or low water levels at the time of
sampling. Quality assurance checks on the electronic transfer of the information indicated
that the data arrived safely.
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Missing data were ignored. Stations 35 and above were sampled on only one or a few
occasions, so these stations were excluded for general consistency between dates.

The data were arranged by analysis type, ie anodic stripping voltammetry-labile copper
(ASV), total dissolved copper (hereafter referred to as dissolved) (ug/L) and particulate
copper (mg/L. or ppm). The ASV labile and dissolved copper values were determined after
filtration (0.45 um), whilst the particulate copper was determined from that retained on the
filter. The mid-water samples were taken at the point at which 20%o salinity was measured in
the profile. This represented the middle of the salt wedge boundary between the deeper, more
dense, seawater and the shallower, less dense, river water.

Mid-water data were selected for modelling. This selection coincided with the choice of this
salinity for the ecotoxicological studies carried out within the nroject. The use of this water
quality was based on the assumption that the marine species to be tested could tolerate these
salinity conditions and also that copper input from the fresh waters would be both more
concentrated and more soluble, and hence bioavailable, under these conditions than in the
deeper, saltier waters, It was thus inferred that these conditions would give the most
conservative assessment of copper toxicity in the Harbour.

Within this category, ASV-labile and dissolved copper were selected for distribution
analyses. Dissolved copper represents the upper extreme of measurable copper likely to be
toxic. On the other hand, ASV-labile would more closely represent the bioavailable fraction,
but by its nature this measure will still tend to overestimate toxicity (see following
discussion) and as such is still an ecologically conservative estimate.

Total copper, the sum of dissolved and particulate copper, was also derived to compare with
the ANZECC (1992) guideline values.

2.2 Biological data

Literature values were taken from this report and the pre-1980 review by Hodson et al
(1979). Only criteria specific data were selected, that is, marine or estuarine, LC values for
lethal endpoints and lowest or no observable effect concentrations (LOEC, NOEC) or EC
values for sub-lethal effects. Algal toxicity data from experimental studies carried out in full
nutrient media, containing compounds that absorb or complex copper, reduce copper toxicity
and thus underestimate its effect (Stauber pers comm). These data were therefore excluded.
Given the resource constraints on the study, no other quality criteria, such as listed in Emans
et al (1993), were applied to reject literature data. Identical data from both review sources
were included once only.

The data were arranged by broad taxonomic group, ie algae, crustaceans, molluscs, and a few
other smaller invertebrate groups, fish, and combinations of marine invertebrates and all
marine taxa. The data within each category were separated into lethal (LD50 and LC50) and
sub-lethal (EC50, LOEC and NOEC) criteria. In some categories not every criterion was
available.

2.3 Statistical analysis

Preliminary observation showed that the water concentrations and subsets of the biological
effect data were biased towards higher copper concentrations. In some cases this was
extreme. Because of this, the data were assumed to be log-normally distributed and geometric
means and standard deviations were derived. This form of distribution is typical for data of
this nature (eg Kooijman 1987). Probability distribution functions were generated using these
statistics within the STATISTICA software package (Statsoft Inc 1994). The goodness of fit
of each derived log-normal distribution was determined using the Kolmogorov-Smirnov one
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sample test or the Chi-Squared test (Steel & Torrie 1981) at a significance level of 5%. The
extreme high values mentioned earlier did not allow an adequate fit to the log-normal model.
Thus, these values, which can be considered as outliers, were excluded in order to achieve
statistically significant goodness of fit for the biota distributions. This action will make the
assessed risk more conservative as the species most tolerant of copper pollution have been
excluded in favour of more sensitive taxa.

Assuming that 5% of the representative population could be affected (ie a protection level of
95%), the critical hazardous copper concentrations (HC5%) for each of the subsets of biota
distributions were derived (Wagner & Lokke 1991). The 95% and 50% confidence intervals
around these estimates were also determined as per Aldenberg & Slob (1993). These values
were then imposed on the distributions generated for the water sample copper concentrations
(ASV and dissolved) to determine the prevailing probability of exceeding the critical water
concentrations and also the degree by which water concentrations would need to be reduced
in order to achieve the nominated degree of protection.

3 Results and discussion

3.1 Copper water concentrations

The selected water concentrations were observed for any seasonal and other temporal trends
in their maximum, minimum and average values at stations for each sampling period (figs
A3.1 a, b and c). Despite the occurrence of occasional high values, that may reflect sediment
disturbance or increased pollutant inflow from the King River due to storm activity, there were
no persistent patterns over the period of monitoring. These observations imply that copper
concentrations, in this specific compartment of the areas affected by pollution from Mt Lyell,
are currently relatively constant. On this basis, all further comparisons in this report used data
combined from all sampling times.

3.2 Comparison with water quality guidelines

Figure A3.2 shows the degree of overlap between measured Macquarie Harbour copper
concentrations and the ANZECC (1992) guideline values of total copper (dissolved plus
particulate) for the protection of marine ecosystem health. None of the measured total copper
concentrations were less than the guideline value of 5 ppb (0.7 on the log10 scale) which is
commonly taken as the default regulatory limit. Even dissolved copper (the typical measure
of environmental copper concentrations in water) and ASV-labile copper (a value more
closely approximating bioavailable concentrations) were in excess of the guideline value
most of the time. More than 95% of the measured dissolved copper values and 75% of the
ASV-labile values were greater than the guideline at all times.

Total copper is not 2 good measure of environmental hazard as most of the measured metal is
not biologically available and as such will not directly contribute to toxic effect. Indirect
contribution is possible depending upon the degree to which the particle associated copper
can be mobilised into a bioavailable form. Exceptions to this generalisation include toxicity
from particulate copper to members of the ecological community that are filter feeders,
detritivors that ingest particles containing copper, and plants that use the copper bearing
particulates as a nutrient substrate. These exposure pathways can be especially significant if
the affected taxa include keystone species.
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Figure A3.1 Maximum (), average (O) and minimum (A) copper concentrations in mid-salinity
Macquarie Harbour waters at each sampling period as measured by: a) anodic stripping
voltammetry-labile copper; b) total dissolved copper (0.45 um) (both in pg/l); and
c) total copper (dissolved plus filterable) (mg/L.)
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Figure A3.2 Box plots of measured copper concentrations at mid-salinity depths of selected Macquarie
Harbour sampling stations (see text) and sub-sets of raw ecotoxicity data (lethal and sub-lethal) from
the literature in relation to the ANZECC guideline copper concentration for marine ecosystem health

(dotted line). The boxes extend from the 25th—75th percentiles with the median as a mid-line. The
capped bars indicate the 10th and 90th percentiles and symbols indicate data outside these values.

3.3 Biological data

It is generically assumed that the concentrations for each of the biological endpoints used in
the data sorting will decrease in the order LC50>LD50>EC50=zLOEC>NOEC. Chronic NOECs
were found to be 10-30 times lower than acute median lethal values on average by Hendricks
(1995) when studying organic toxicants. This general pattern could be observed in the raw
data of our current study, particularly where results for a single species or within closely
related taxa were examined. However, this was not always found to be the case as some of the
observed sub-lethal criteria were less sensitive than others and there were wide ranging degrees
of tolerance between species. That is, some very tolerant organisms showed no or low
observed response to very high concentrations of copper (high NOEC/LOEC) whilst some
extremely sensitive organisms died at low concentrations or exposures (low LC50, LD30).

In fig A3.2 the measured copper concentrations in Macquarie Harbour waters are compared
with sub-sets from the literature data indicating the biological effect of copper. Both lethal
and sub-lethal parameters are represented. The plots of All lethal and All sub-lethal data
include information in addition to that given for the sub-sets at the top of the page.

The available literature data cover several trophic levels. The information density varies
between these levels but the discrepancies are minor. Also, the biological effects within any
category occur over orders of magnitude differences in copper concentrations. From these
observations it is apparent that the data have provided a representative spread of effect levels
for both sensitive and insensitive species across most trophic levels and, as such, they
provide a reasonable basis for ecosystem scale assessment.
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The boxplots representing all lethal and sub-lethal data show a substantial overlap (fig A3.2).
However, sub-lethal effects may be seen to generically occur at copper concentrations an
order of magnitude lower than those observed for lethal effects.

The probability distribution functions of combined taxa lethality data (LC50 and LD50
values) and sub-lethality data (EC50, LOEC and NOEC values) are shown in figs A3.3a and
b respectively. The most sensitive comprehensive subset, algal EC50 data, could not be
adequately fitted by a log-normal model.

From the raw data, the copper concentrations likely to be hazardous to 5 and 10% of the biota
at the given endpoint are given in table A3.1. Also given are the parameters derived from the
fitted distributions. These are the HC5% and the lower limits of the 50% and 95%
uncertainty, or confidence, ranges about the critical value.

Probability
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-1 T I l | n | |
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Log,, sub-lethal copper concentrations (ppb)

Figure A3.3 Probability distribution functions of copper toxicity data for a) lethal and b) sub-lethal
end-points taken from the literature. Extreme (high) values were excluded to allow statistically
adequate fit of the distributions. The intercepts indicate the copper concentrations below which

only 5% of species are predicted to show a response.
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Table A3.1 Critical values of copper concentrations (ppb) that have lethal and sub-lethal effects on
biota. Outliers were high values which were removed from the data sets to allow for statistically
adequate model fitting.

Raw data Fitted distribution

Taxonomic group Criteria 5% 10% HCsq, 50% conf. value  95% conf. value
All lethal 30 60

Al (- outliers) lethal 17 40 211 208 9.4

All sub-lethal 4.9 5

All (- outliers) sub-lethal 37 5 2.1 2.1 0.9
algae sub-lethal 18 15

invertebrates lethal 17 40 23 21 5.1

fish lethal 100 200 93.8 84.9 18.1

3.4 Comparison of the water and biota distributions

Predominantly the literature data refer to soluble or dissolved copper concentrations, particular-
ly when dealing with determination of lethal endpoints. Hence total copper concentrations
(dissolved + particulate) provide a poor basis for comparison. Field data in particular refer
mainly to dissolved copper concentrations. Experimental data are generally concerned with
ionic copper species and therefore more closely correspond to the ASV-labile values.

Thus, for comparison of likely toxic effect, dissolved copper will give the upper limit to
possibly toxic copper concentrations in Macquarie Harbour. However, Macquarie Harbour
waters are known to have a very high complexation capacity, predominantly from the levels
of organics input from the surrounding freshwater catchments. From this, it is reasonable to
refer to the ASV-labile copper distribution for a more realistic appraisal of ecological risk.
This assessment will still be conservative as the copper measured as ASV-labile will include
species such as carbonates that are non-toxic (Hunt 1987) and copper that is moderately
bound to some organic ligands within the water column (Batley pers comm). These
components of the measured copper are not considered to be biologically available. The
cumulative probability distributions of ASV-labile and dissolved copper in Macquarie
Harbour mid-salinity water samples are shown in figs 3.4a and b respectively.

Using the 5% value in the raw data across all species (less outliers) for comparison with the
distributions derived from the monitored copper concentrations in Macquarie Harbour, it can
be seen that the current probability of exceeding the lethal critical concentration is 0.76 based
on the dissolved copper and 0.19 based on the ASV-labile copper. The lower 50% confidence
interval of the HC5%, based on the distribution with outliers removed, 1s less restrictive. The
likelihood of exceedence in these cases reduces to 3.66 and 0.12 for the two measures of
copper concentration respectively.

The sub-lethal HC5% lower 50% confidence limit, derived excluding outliers, 1s exceeded
with a probability of 0.98 (almost all the time) based on the ASV-labile distribution and of
approximately 1 (ie at all times) using the dissolved copper. The 5% point in the raw data is
exceeded with a probability of 0.90 and 1.00 by the two measured copper distributions
respectively. If Macquarie Harbour 1s assumed to have similar proportions of copper in
biologically available forms to waters tested in the literature then the 0.90 probability
concentration of total dissolved copper in Macquarie Harbour would need to be reduced by a
factor of approximately 30 to achieve adequate protection based solely on this criteria
without application factors.




0.9}

08

0.6

05 +

Probability

04

0.3

0.2

01 ¢+

0 ; . L ; . L : " ; L
T t T t * T T T T

T

0 5 10 15 20 25 30 35 40 45 50 55 60

ASV copper (ppb)
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Figure A3.4b Cumulative probability distribution of total dissolved copper in mid-salinity waters of
Macquarie Harbour. The curve indicates the probability of measuring a concentration less than
any specified value, based on monitoring data.
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The most sensitive 5% of algae are currently exposed to sub-lethal concentrations with a
probability of 0.24 based on the raw data and ASV-labile water concentrations. To protect
95% of the algal species 90% of the time a reduction in ASV-labile copper concentrations by
a factor of approximately 2 is required.

When making assessments of the degree of reduction in copper required to achieve this type
of end-point, the degree of dissolution from sediment must also be taken into account in
addition to reductions in input via the King River.

The lethal parameters for invertebrates and fish are included in table A3.1. The raw data are
also shown in fig 3.2. It can be seen that invertebrates are relatively comparable to the
generic lethal data and, as such, sub-sets of crustacean data may be a reasonable surrogate for
more extensive biological data in other comparisons. The fish data are relatively insensitive
when compared with the endpoints derived for combined toxa lethal data or any sub-lethal
parameters.

3.5 Factors that affect the relative degree of safety implicit in the risk analysis
The following factors provide inherent conservatism (safety) to the risk assessment:

Use of measured values that overestimate the biologically available copper water
concentrations,

The labile copper measured by ASV as well as the dissolved concentrations include some
chemical species that are less, or not, bioavailable. These chemical species are less toxic than
the free ionic form of copper.

Use of mid-salinity water quality data maximised the measured copper concentration in the
marine waters of Macquarie Harbour and, hence, the perceived risk to marine organisms.

Use of all water measurements rather than averages for any period.

There is little likelihood of all sites being simultaneously contaminated to high levels. The
average values at any particular sampling period (fig A3.1) indicate a distribution about a
factor of two lower than the maximum values measured at the same time. This provides an
additional safety factor in the assessment given that motile species will be at an advantage in
that they may avoid or move out of highly contaminated zones to other depths or locations,
and widely distributed species will be able to recolonise affected areas.

The data from the literature studies represent effects to proportions of individuals within
populations rather than to populations as a whole.

Higher concentrations would be required to affect all individuals within the tested
populations.

Probable bias in the literature data towards sensitive species.

Research workers will tend to select species that are most likely to show a significant
response to any test. Sensitive species are also likely to have been chosen for testing or
monitoring on the basis of their relative response in field surveys. In addition, the exclusion
of extremely tolerant species from the biota data to achieve normal distributions has biased
the data towards more sensitive taxa.

The use of laboratory studies to estimate environmental risk.

Most controlled laboratory studies constrain the experimental parameters to minimise
variability. Many natural water quality parameters that reduce toxicity (eg complexation




capacity) are thereby excluded from these studies. Hence, this may lead to an overestimate of
toxic effect when the results of laboratory studies are applied to natural systems.

The use of the lower limit of the uncertainty estimate of the critical hazardous concentration
is inherently conservative.

The likelihood of the occurrence of tolerant populations of species within the Harbour
brought abour by over a century of natural selection pressure.

The following factors are of unknown significance or could contribute to an estimate of
greater risk from copper to biota in Macquarie Harbour:

The magnitude of significant water quality parameters

This study has looked solely at copper concentrations in (‘e mid-salinity habitat of
Macquarie Harbour. There has been no specific attempt in this study to address the other
habitat parameters that can influence copper toxicity. These include possible synergistic
effects from other toxic materials (eg zinc) and antagonistic effects such as complexation by
organic ligands or the formation of non-toxic metal species.

The keysione species for ecological sustainability have not been identified.

At present too little is known of the local biological communities, either within Macquarie
Harbour or in similar habitats unaffected by the pollution from Mount Lyell. As such the
keystone or indicator species have yet to be adequately identified for the overall study. The
successful identification and re-occurrence of these species within Macquarie Harbour is
certain to be one of the criteria for success of the overall remediation process.

The impact of copper concentrations in the upper water layer habitat of Macquarie Harbour
has not been addressed.

Very high levels of copper are present in the less dense river water suspended above the
saline wedge within the Harbour. The copper levels are well in excess of the ANZECC
guidelines for freshwaters. The impact on euryhaline, migratory or freshwater species could
be significant at the measured concentrations. Any assessment of this habitat should include
toxicity to water fowl including bioaccumulation pathways.

Bioaccumulation pathways and their associated risk, to other biota or humans, have not been
addressed.

Quality criteria have not been applied to the selection of literature data used for the models.
Exclusion of data will lead to changes in the probability distributions but the significance of
these changes cannot be assessed at present.

Sediment effects

Estimations on the degree of copper concentration reductions required will need to include an
assessment of the likely remobilisation of sediment bound copper as well as reductions in
riverine input. It must also be recognised that some keystone organisms, environmentally
critical to the remediation, may occupy a benthic habitat. As such, these species will be at
risk from current and future sedimentary copper.

4 Conclusions

When compared with the ANZECC (1992) water quality guidelines, copper concentrations in
Macquarie Harbour waters are too high. This preliminary comparison justifies the need for a
more comprehensive risk assessment.
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When alternate, less restrictive, criteria are used to compare concentrations of copper in
Macquarie Harbour water with hterature data on the biological effects of copper in marine
systems, the monitored water concentrations still exceed the critical hazard levels using both
lethal and sub-lethal endpoints. Based on these more realistic evaluations the prevailing total
dissolved copper water concentrations have a probability of 100% of exceeding the sub-lethal
critical limit and of 66% of exceeding the critical limit for lethality.

If Macquarie Harbour 1s assumed to have similar proportions of copper in biologically
available forms to waters tested in the literature, then to achieve water concentrations that
have an adequately low probability (eg 1 0%) of exceeding the critical sub-lethal limit across
all taxa, a reduction in total dissolved copper water concentrations by a factor of at least 30
would be required. However, the results obtained for Macquarie Harbour waters indicate that
the actual toxicity is considerably lower than would be expeced from the copper
concentrations measured. For algae, important as the autochthonous primary producers of the
ecosystem and the most sensitive taxonomic group, the reduction of the ASV-labile copper
concentration in water that is required to protect 95% of species is an approximate factor of
only 2 based on the available literature.,

Tt must be stressed that the risk assessment is reasonably conservative for a variety of reasons
(see 3.5). Predominant amongst these are that a relatively low risk of hazard (5%) was chosen
as the critical assessment level; that sub-lethal endpoints were considered; and that
bioavailable copper was over estimated. Use of toxicity data from bioassays carried out in
Macquarie Harbour waters should enable better prediction of the copper concentrations able
to be tolerated by aquatic organisms in this harbour.

Factors that may contribute to risk but which have not been addressed in this study include
the possible presence of metals such as zinc that act synergistically with copper. It is also
imperative that a biological survey be undertaken to identify, if possible, potential keystone
species in equivalent environments with particular note of any filter feeders or benthic
species that may be affected by the high concentration of copper in the Harbour sediment.
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