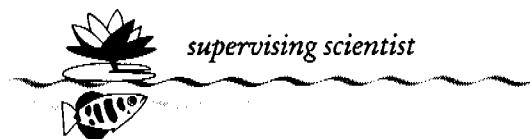


Acid mine drainage

in Australia


Its extent and potential

future liability

John Harries

A joint initiative of the Office
of the Supervising Scientist
and the Australian Centre for
Minesite Rehabilitation Research

supervising scientist

This report should be cited as follows:

Harries John 1997. *Acid mine drainage in Australia: Its extent and potential future liability*. Supervising Scientist Report 125, Supervising Scientist, Canberra.

This report is the culmination of a one year study by Dr John Harries, Project Leader, Environment Division, Australian Nuclear Science and Technology Organisation (ANSTO), and recipient of a Supervising Scientist Fellowship. The study was a joint initiative of the Office of the Supervising Scientist (*oss*) and the Australian Centre for Minesite Rehabilitation Research (ACMRR) and received the support of the Minerals Council of Australia. Funding for the project was provided by *oss*.

The Supervising Scientist is part of Environment Australia, the environmental program of the Commonwealth Department of Environment, Sport and Territories.

© Commonwealth of Australia 1997

Supervising Scientist
PO Box E305, Kingston ACT 2604 Australia

ISSN 1325-1554

ISBN 0 642 24325 5

This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Supervising Scientist. Requests and inquiries concerning reproduction and rights should be addressed to the Research Project Officer, *eriss*, Locked Bag 2, Jabiru NT 0886.

Views expressed by authors do not necessarily reflect the views and policies of the Supervising Scientist, the Commonwealth Government, or any collaborating organisation.

Printed in Darwin by NTUniprint.

Contents

Executive summary	vii
Acknowledgments	x
1 Introduction	1
1.1 OSS/ACMRR study of acid mine drainage in Australia	2
2 Background	2
2.1 Pyrite oxidation	2
2.2 Prediction of acid generation potential	3
2.3 Management strategies for potentially acid generating mine wastes	4
2.4 Acid mine drainage in Australia	6
2.5 Acid mine drainage in Canada	12
2.6 Acid mine drainage in the United States	18
3 Survey of acid drainage at mine sites in Australia	19
3.1 Visits and meetings	19
3.2 Questionnaire	19
3.3 Site characteristics from questionnaire responses	22
3.4 Waste characterisation	24
3.5 Overall AMD/ARD potential	26
3.6 Total amounts of mine waste	27
3.7 Management strategies for sulphidic wastes	28
3.8 Climate: Rainfall, evaporation and storms	31
4 Estimate of liability for current mines	39
4.1 Types of liabilities relevant to AMD/ARD	39
4.2 Costs of managing potentially acid generating wastes at operating sites	40
4.3 Operational costs of managing potentially acid generating mine wastes	42
4.4 Limits on unexpected rehabilitation costs	44

5 Liability of historic mine sites	45
5.1 Historic mines in Australia that released acid drainage	45
5.2 Potential costs of rehabilitating historic mines	51
6 Discussion and recommendations	51
6.1 Technologies used for managing sulphidic wastes	51
6.2 Underground workings, adits and pit walls	54
6.3 Mine planning	55
6.4 Waste characterisation	55
6.5 Technology transfer and awareness	56
6.6 Climatic factors and ground water	57
6.7 Comparison with MEND estimates of liability for Canada	63
6.8 Comparison with other mining and environmental costs	63
7 Conclusions	65
References	65
Appendix A Chemical methods for predicting the acid mine drainage/acid rock drainage potential of mine wastes in Australia	71
Appendix B Letter from David Buckingham, Executive Director, Minerals Council of Australia (23 May 1996)	85
Appendix C People consulted and organisations visited during OSS/ACMRR study	86
Appendix D Questionnaire form distributed to mine sites	88
Appendix E List of the mine sites included in the survey	91
Figures	
Figure 2.1 Operating and historic mine sites	8
Figure 2.2 Geological regions in Australia	9
Figure 2.3 Mine sites with pyrite/pyrrhotite present and absent	10
Figure 2.4 Mine sites with pyrite/pyrrhotite present and with and without carbonate gangue	11
Figure 2.5 Sulphide levels at mine sites and presence or absence of carbonate	13
Figure 3.1 Median annual rainfall in Australia	33
Figure 3.2 Average annual pan evaporation in Australia	34
Figure 3.3 Distribution of rainfall and pan evaporation at all mine sites in the survey	35

Figure 3.4 Distribution of rainfall and pan evaporation at mine sites managing significant amounts of potentially acid generating wastes	36
Figure 3.5 Distribution of rainfall and pan evaporation at historic mine sites with significant acid drainage	37
Figure 3.6 Seasonal rainfall zones—tropical, subtropical and temperate	38
Figure 3.7 Design rainfall isopleths for 3 days duration and a 50 year recurrence interval	38
Figure 6.1 Zones proposed by Mallett and Mark for classification of mine site voids	60
Figure 6.2 Australian seasonal rainfall zones	61
Figure 6.3 Zones proposed for classification of potential impact of mine wastes with acid generation potential.	62

Tables

Table 2.1 Cox and Singer deposit models and estimated sulphide content	14
Table 2.2 Estimated total cost for managing existing acid-producing mine waste in Canada	16
Table 2.3 Cost of AMD technologies derived by GEOCON	18
Table 3.1 Types of mines included in the survey of mine sites, and the number of sites in each category	20
Table 3.2 Types of mines not included in survey	21
Table 3.3 Number of different types of mine providing responses to survey	22
Table 3.4 Surface water treatment	22
Table 3.5 Quality of pre-mining ground water	23
Table 3.6 Opencuts	23
Table 3.7 Water-filled voids	24
Table 3.8 Underground workings/adits	24
Table 3.9 Acid base accounting	25
Table 3.10 Total number of samples used for ABA tests at different sites	26
Table 3.11 Minimum samples required for geochemical prediction program	26
Table 3.12 Number of sites with different potential for acid generating wastes	27
Table 3.13 Aggregate mass, volume and areas of mine wastes at sites where there is significant potential for acid generating wastes	28
Table 3.14 Management strategies for managing wastes at sites considered to have significant amounts of wastes with acid generating potential	29

Table 3.15 Management strategies for managing wastes at sites considered to have minor amounts of wastes with acid generating potential	30
Table 3.16 Number of mine sites in different climates	33
Table 4.1 Estimated cost of covers for managing acid drainage at operational mines in Australia	42
Table 4.2 Estimated annual operating costs for managing potentially acid generating wastes at Australian mine sites	44
Table 5.1 Costs of rehabilitating historic sites in Australia	51

Executive summary

The oxidation of sulphidic mine wastes and the consequent release of acid mine drainage and acid rock drainage, is one of the main strategic environmental issues facing the mining industry. The production of broken waste rock and tailings by mining operations can expose large amounts of pyrite and other sulphides to the effects of water and oxygen. Sulphides in the walls of opencuts and underground workings are also exposed by the mining process. Despite general agreement on the significance of acid mine drainage at Australian mine sites in terms of its impact on the environment, its extent has not been quantified, and the additional costs of managing acid mine drainage have not been estimated.

In order to better understand the impact of acid drainage in Australia and to provide a basis for assessing long-term management options and strategic research needs, the Office of the Supervising Scientist (OSS) and the Australian Centre for Minesite Rehabilitation Research (ACMRR) initiated a study to prepare a status report on acid mine drainage in Australia covering both operational and historic sites. The study was supported by the Minerals Council of Australia.

Information was collected from mine site staff, government department officials and others in Australia who have expertise in the characterisation and management of sulphidic mine wastes. Questionnaires were sent to 317 mine sites considered to be sites where the excavated material could be acid generating. The questionnaires sought information about surface water management, ground water, open cuts, underground workings, water qualities, acid base accounting and the types and amounts of potentially acid generating wastes. Information was also collected on historic mine sites where acid drainage was known to be a problem.

Results from the survey suggest that about 54 sites in Australia are managing significant amounts of potentially acid generating wastes, where significant amounts means more than 10% of the wastes is potentially acid generating or there is more than 10 million tonnes (Mt) of potentially acid generating wastes. About 62 additional sites are managing some potentially acid generating wastes but less than 10% of the total wastes and less than 10 Mt.

The most common approach to managing sulphidic wastes is to install a low-permeability cover over the wastes and/or encapsulating the wastes within non-sulphidic materials. In some cases the low permeable covers are constructed by compacting other mine wastes. The average cost of covering potentially acid generating at currently operating mine sites is estimated to be about \$40 000 ha⁻¹.

For the Australian industry as a whole, the additional cost of managing potentially acid generating wastes at operating mine sites is estimated to be about \$60 million per year. This includes the costs of cover installation, selective placement of wastes, additional waste characterisation and water treatment as appropriate. Over 15 years, the total cost of managing potentially acid generating mine wastes from current mines is \$900 million (1997 dollars) for the whole industry.

Costs of managing acid generating wastes are much greater if sulphide oxidation and release of pollutants is discovered after mine closure. The costs of remediating historic mine sites releasing acid mine drainage are \$100 000 or more per hectare, and these costs would also apply to mine sites where acid drainage is discovered late in mine life or after mine closure. The costs of treating contaminated water-filled voids or seepages from adits would be additional.

These estimated Australian costs are significantly less than the C\$2 to C\$5 billion total liability costs for potentially acid generating wastes at mine sites in Canada estimated by the

Canadian Mine Environment Neutral Drainage (MEND) program. The Canadian liability represents the cost of remediating the currently estimated inventory of acid generating wastes in Canada. The amount of potentially acid generating mine wastes in Canada is similar to the amount in Australia, but the estimated costs of remediation for Canadian sites is three to five times greater than for Australian sites.

The management of potentially acid generating wastes is an important environmental issue; major costs may arise late in mine life or after mine closure if proper waste management strategies are not in place from the beginning of mine operations. The risk of these increased costs late in mine life should be of concern to mine owners. Furthermore, the governments will want to ensure that as far as possible the environmental risks and financial liabilities are minimised and are not transferred to government or the community as a result of poor management of the problem during the life of the mine.

The following recommendations cover four main issues: rehabilitation technologies, mine planning, waste characterisation and technical awareness of acid drainage issues.

Rehabilitation technologies

A wide range of technologies is being used in Australia to manage potentially acid generating mine wastes. Most of the technologies are not proven and their long-term effectiveness is uncertain. There is need for a better understanding of what constitutes an adequate level of isolation for potentially acid generating waste in order to ensure that any environmental impact is acceptable in the long term. The effectiveness of the waste management strategies being used to manage this waste needs to be assessed for Australian conditions.

Recommendation 1

It is recommended that a study be undertaken to:

- collect detailed information on the strategies being applied at the Australian mine sites managing potentially acid generating wastes,
- review monitoring information on past remediation works for information on the effectiveness of different strategies,
- assess the methods being used to predict the long-term performance of strategies now being used at Australian mine sites to control the potential sulphidic oxidation in mine wastes,
- develop guidelines to assist mine managers select appropriate and adequate strategies for managing potentially acid generating wastes.

Mine planning

The management of acid mine drainage depends on knowing the potential for sulphidic oxidation and developing and implementing appropriate mine plans to limit any environmental impact.

Recommendation 2

It is recommended that mine managers be required to:

- assess the risk of sulphidic oxidation in mine wastes, pit walls and underground workings and the generation of contaminated water as a standard part of mine planning,

- integrate the management of any identified potentially acid generating wastes into mine operations,
- regularly review waste management plans based on experience and monitoring.

Waste characterisation

There is a lack of uniformity in the types and numbers of tests being applied in Australia to characterise the acid generation potential of mine wastes and the interpretation of results of those tests.

Recommendation 3

It is recommended that mine managers and mine site environmental officers review the mine waste characterisation studies already undertaken to ensure that all rock types at their site have been tested and that enough tests are carried out to give confidence in the appropriateness of the waste management strategy.

Recommendation 4

It is recommended that guidelines for the application of mine waste characterisation tests at Australian mine sites be prepared, including guidance on sampling procedures, how many samples should be tested, appropriate tests for different ore-bodies and interpretation of results.

Technical awareness

There is a need to improve the level of knowledge and technical awareness of acid drainage issues at many mine sites. Networking between mine sites should be improved to encourage technology transfer on the management of sulphidic materials. The transfer of information on management strategies to smaller operations and companies is particularly important.

Recommendation 5

It is recommended that environmental and acid mine drainage workshops and courses be used to facilitate technology transfer and encourage sharing of experience and research information on managing sulphidic wastes between mine sites.

At the national level there is a need for all stakeholders to contribute towards developing long-term strategies for the management of sulphidic wastes. This requires at the national level the exchange of information on experience and on advances in technical knowledge.

Recommendation 6

It is recommended that working groups be established with input from all stakeholders in the mining industry, including miners, mining companies, consultants, researchers, regulators and environmental protection authorities to identify acid mine drainage issues.

Acknowledgments

The success of this project depended on discussions with many people associated with the mining industry and the collection of information from many mine sites. I am very grateful for the staff at mine sites who spent the time to fill in questionnaires and patiently and openly answered my questions when I phoned. I also thank those who welcomed me to their mine sites and for the open and informative discussions as they showed me over the sites. I am very grateful to staff of State government mining and environment departments who provided information on a State-wide basis and participated in wide ranging discussion on acid mine drainage issues.

I am very grateful to the Office of the Supervising Scientist and the Australian Centre for Minesite Rehabilitation Research for organising this timely study, and in particular I am grateful to Mr Stewart Needham, Assistant Secretary, OSS, and Dr Clive Bell, Director, ACMRR, for their valuable help and guidance throughout the study.

I thank the Office of the Supervising Scientist for the award of an OSS Fellowship which provided the support for this study.

The success of the study depended on the cooperation of the mining industry, and I thank the Minerals Council of Australia for providing letters supporting the study and for the feedback from members of the Environment Committee. Amongst others, I particularly thank Mr Ian Satchwell, and Mr Gavin Murray, who provided essential support.

I also thank my colleagues at ANSTO for their feedback and helpful comments during the study.