

**The role of ants
in minesite restoration
in the Kakadu region
of Australia's Northern
Territory, with
particular reference
to their use
as bioindicators**

**Alan N Andersen,
Scott Morrison, Lee Belbin,
Nanjappa Ashwath
& Kym Brennan**

Alan N Andersen – CRC for Tropical Savannas, Division of Wildlife and Ecology, CSIRO Minesite Rehabilitation Research Program, PMB 44, Winnellie NT 0822, Australia

Scott Morrison – Division of Wildlife and Ecology, CSIRO Tropical Ecosystems Research Centre, PMB 44, Winnellie NT 0822, Australia

Lee Belbin – Division of Wildlife and Ecology, CSIRO, PO Box 84, Lyneham ACT 2602, Australia

Nanjappa Ashwath – Primary Industries Research Centre, School of Biological and Environmental Sciences, University of Central Queensland, Rockhampton, Queensland 4702, Australia

Kym Brennan – Environmental Research Institute of the Supervising Scientist, Locked Bag 2, Jabiru NT 0886 Australia

This report should be cited as follows:

Andersen, Alan N, Morrison, Scott, Belbin, Lee, Ashwath, Nanjappa & Brennan, Kym 1998. *The role of ants in minesite restoration in the Kakadu region of Australia's Northern Territory, with particular reference to their use as bioindicators*. Supervising Scientist Report 130, Supervising Scientist, Canberra.

The Supervising Scientist is part of Environment Australia, the environmental program of the Commonwealth Department of Environment, Sport and Territories.

© Commonwealth of Australia 1998

Supervising Scientist
GPO Box 787, Canberra ACT 2601 Australia

ISSN 1325-1554

ISBN 0 642 24333 6

This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Supervising Scientist. Requests and inquiries concerning reproduction and rights should be addressed to the Research Project Officer, *eriss*, Locked Bag 2, Jabiru NT 0886.

Views expressed by authors do not necessarily reflect the views and policies of the Supervising Scientist, the Commonwealth Government, or any collaborating organisation.

Printed in Darwin by NTUniprint.

Executive summary

The goal of land rehabilitation following mining in environmentally sensitive areas is often ecosystem restoration, rather than simply revegetation. This is the case at Ranger uranium mine (RUM) in the Alligator Rivers Region of Australia's Northern Territory. Effective methods of monitoring ecological restoration are therefore required. Ants have frequently been used as indicators of restoration success following mining in northern Australia, but the extent to which ants actually provide a reliable indication of ecological change has been poorly documented. This study aimed, primarily, to investigate the degree to which ants provide an indication of the general status of ecosystems and, secondarily, to examine the direct role of ants in ecosystem restoration. The desired outcome was the development of procedures for using ants to assess restoration success following mining in the Ranger uranium mine region.

A total of 39 sites were selected to represent the full range of sclerophyll habitats and disturbance histories in the region. They comprised 22 natural (ie relatively undisturbed by human activity) sites, ten disturbed (representing a wide range of human disturbances) sites, and seven sites at various stages of rehabilitation on Ranger's main waste rock dump. All vascular plant species occurring at each site were surveyed during March 1994.

Ants were sampled on three occasions at each site using pitfall traps, recording a total of 162 species from 32 genera. Site species richness was highly correlated with plant species richness ($r = 0.695$ for all plant species; $r = 0.663$ for woody species only). Five measures of ant community composition were analysed, covering the species, genus and functional group levels. Bray-Curtis association matrices based on ant community composition were highly correlated (r ranging from 0.492 to 0.665) with association matrices based on plant species composition.

Data were obtained on the ordinal composition of invertebrate assemblages in the soil, on the ground and on ground vegetation, and on species composition of beetles, grasshoppers and termites. Correlation analyses were performed on site association matrices based on these data and site association matrices based on five measures of ant community composition. There was only a marginal correlation between ant community composition and soil invertebrate assemblages (r ranging from 0.194 to 0.282; only 10 sites sampled), but a good correlation with ground-foraging invertebrates (0.238–0.341; all 39 sites), and an even higher correlation with invertebrates on ground vegetation (0.471–0.675; 31 sites). Ant community composition was correlated with the species composition of all insect groups studied (beetles: 0.398–0.533, 31 sites; grasshoppers: 0.412–0.454, 27 sites; termites: 0.168–0.280, 39 sites).

A litter decomposition experiment was conducted during the 1993/94 Wet season, measuring biomass loss of leaves of *Eucalyptus tetrodonta* and *Acacia auriculiformis*. Eucalyptus leaves decomposed far more rapidly than those of Acacia, but rates of decomposition did not vary markedly across sites. Soil microbial biomass and respiration, on the other hand, did vary markedly across sites, and were correlated with ant species richness. This correlation was particularly high ($r = 0.638$) at disturbed and waste rock sites.

Studies were conducted on the potential influence of ants, through their interactions with seeds, on ecological restoration following disturbance. Elsewhere in Australia, it is common for sites severely disturbed by human activity to be colonised by high densities of harvester ants, resulting in unusually high rates of seed predation. This could have a serious impact on revegetation following disturbance. However, this is unlikely to be a problem in the Ranger

uranium mine region, as disturbance does not appear to lead to increases in either harvester ant populations, or rates of seed harvesting (which, during 1992 and 1993 respectively, averaged 27% and 32% at natural sites, 26% and 28% at disturbed sites, and 6% and 14% at waste rock sites). Disturbance, on the other hand, has a major impact on seed dispersal by ants, primarily through its influence on the distribution and abundance of ant species. On waste rock sites, for example, no seeds were transported further than 50 cm (compared with up to 13 m at other sites). The influence of this on seedling establishment is unknown.

Two major conclusions can be drawn from this study. First, ant communities in the Ranger uranium mine region provide a very good general indication of the state of ecosystems in which they occur. Second, the indicator performance of ants at the functional group level is in most cases comparable, and sometimes superior, to that at the species level. Given that ants need only be identified to genus to be assigned to functional groups, the use of functional groups instead of species is a legitimate, cost-effective measure for rapid assessment.

It is therefore recommended that ants be included in biological monitoring of restoration programs in the region. Ideally, ant communities should be analysed at both species and functional group levels, but the use of functional groups alone would be adequate. A specific sampling protocol is recommended.

Contents

Executive summary	iii
Preface	ix
Acknowledgments	ix
1 Introduction	1
1.1 Background	1
1.2 Ants as bioindicators	1
1.3 Responses of ants to stress and disturbance	2
1.4 Rapid assessment techniques	2
1.5 Scope of study and structure of report	3
PART A ANT-HABITAT ASSOCIATIONS	
2 Study sites	7
2.1 Introduction	7
2.2 Vegetation classification	7
2.2.1 Methods	7
2.2.2 Results	7
3 Ant-habitat associations	11
3.1 Methods	11
3.1.1 Sampling	11
3.1.2 Analysis	11
3.2 Results	12
PART B ANTS AS BIOINDICATORS	
4 Invertebrate assemblages	19
4.1 Methods	19
4.1.1 Sampling	19
4.1.2 Analysis	19
4.2 Results	20
4.2.1 The assemblages	20
4.2.2 Ants as indicators	20

5 Other insect species	28
5.1 Methods	28
5.1.1 Sampling	28
5.1.2 Analysis	28
5.2 Results	29
5.2.1 The species	29
5.2.2 Ants as indicators	30
6 Soil microbial activity	33
6.1 Methods	33
6.1.1 Litter decomposition	33
6.1.2 Microbial biomass and respiration	33
6.2 Results	33
6.2.1 Litter decomposition	33
6.2.2 Microbial biomass and respiration	34
PART C INFLUENCE OF ANTS ON MINESITE RESTORATION	
7 Seed-harvesting by ants	41
7.1 Introduction	41
7.2 Methods	41
7.3 Results	42
8 Seed dispersal by ants	45
8.1 Introduction	45
8.2 Methods	45
8.3 Results	46
9 Conclusion	53
9.1 Ants as bioindicators	53
9.2 Rapid assessment using functional groups	54
9.3 Influence of ants on minesite restoration	54
9.4 Recommendations	56
10 References	58

Appendices

Appendix 1 Ant species-abundance data	65
Appendix 2 Ant genus-abundance data	71
Appendix 3 Ant genus-species data	73
Appendix 4 Ant functional group-abundance data	75
Appendix 5 Ant functional group-species data	76
Appendix 6 Ants recorded in sweep samples	77
Appendix 7 Beetles collected in sweep samples	80
Appendix 8 Grasshoppers collected at study sites	84
Appendix 9 Termites recorded at paper baits	86
Appendix 10 Maps of seed removal during myrmecochory trials	88
Appendix 11 Ants observed feeding on arils <i>in situ</i>	98

Figures

Figure 2.1 Location of study sites	9
Figure 2.2 Classification of study sites based on floristic composition	10
Figure 3.1 Relationships between ant and plant species richness	13
Figure 3.2 Abundances of major ant functional groups	14
Figure 3.3 Classification of sites based on ant species composition	15
Figure 4.1 Ground-foraging invertebrates (other than ants)	24
Figure 4.2 Invertebrates (other than ants) on ground vegetation	27
Figure 5.1 Relationship between numbers of ant and beetle species	31
Figure 5.2 Relationship between numbers of ant and grasshopper species	31
Figure 5.3 Relationship between numbers of ant and termite species	32
Figure 6.1 Biomass loss during litter decomposition experiment	35
Figure 6.2 Relationships between ant species richness and microbial biomass	37
Figure 7.1 Relationships between rates of seed removal and abundance of harvester ants	45
Figure 8.1 Dispersal curve generated by myrmecochory	48
Figure 8.2 Myrmecochorous dispersal curves generated by different ant species	51
Figure 8.3 Myrmecochorous dispersal curves at different sites	52
Figure 9.1 Classification of sites based on ant functional group composition	55

Tables

Table 1.1 Functional groups of Australian ants	3
Table 2.1 Summary descriptions of study sites	8
Table 2.2 Site composition of flexible UPGMA groups based on woody plant species	10
Table 3.1 Site composition of flexible UPGMA groups based on ant species	15
Table 3.2 Correlations between association matrices based on five ant community data sets	16
Table 3.3 Correlations between ant and plant association matrices	16
Table 4.1 Soil invertebrates	21
Table 4.2 Invertebrates (other than ants) in pitfall traps	22
Table 4.3 Invertebrates (other than ants) in sweep samples	25
Table 4.4 Correlations between association matrices based on ant communities and invertebrate assemblages	27
Table 5.1 Termite species recorded at paper baits	30
Table 5.2 Correlations between ant community association matrices and association matrices based on beetle, grasshopper and termite species	32
Table 6.1 Sample sizes in litter decomposition experiment	33
Table 6.2 Summary ANOVA table for litter decomposition experiment	34
Table 6.3 Microbial respiration and biomass	36
Table 7.1 Rates of <i>Eucalyptus tetrodonta</i> seed removal, and abundance of harvester ants in traps	43
Table 7.2 Correlations between seed removal and harvester ant abundance	44
Table 8.1 Removal of <i>Acacia holosericea</i> seeds during myrmecochory trials	47
Table 8.2 Ant species removing seeds, and distances moved	49
Table 9.1 Correlations between invertebrate and plant composition	53
Table 9.2 Ant communities as bioindicators, comparing functional groups with species	54
Table 9.3 Key to site groups based on ant functional group composition	56

Preface

This is the final report as required under the consultancy agreement between the Environmental Research Institute of the Supervising Scientist (*eriss*) and CSIRO Division of Wildlife and Ecology (the consultant, Principal Investigator, Dr Alan N Andersen).

The *aims* of the consultancy were:

1. to assess the extent to which ants provide an indication of the general status of ecosystems (including those undergoing restoration) in which they occur,
2. to examine the influence of ants on ecosystem restoration dynamics, and
3. hence develop procedures for assessing restoration success, in the Ranger uranium mine region of the Top End of the Northern Territory.

Acknowledgments

We are grateful to a number of *eriss* officers, particularly Kym Brennan, for assistance with site selection, fieldwork, and administrative matters. We thank Ranger uranium mine for granting permission to work on their lease. All grasshopper fieldwork was conducted by L Lowe (CSIRO Division of Wildlife & Ecology), who also performed species identifications, with assistance from D Rentz (CSIRO Division of Entomology). Termite species were identified with the assistance of L Miller (CSIRO Division of Entomology), and C Reid (James Cook University) assisted with the identification of beetles. W Muller (CSIRO Biometrics Unit) performed the ANOVA on results from the litter decomposition experiment. Drs Jonathan Majer and Ian Oliver provided valuable comments on the draft report. Finally, we wish to thank W Waggitt and B McKaige for assistance with the layout and production of the report.