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EXECUTIVE SUMMARY 
The main aims of this project were to compile and assess the current state of knowledge of the broad-
scale seabed and water-column ecosystem of Torres Strait, provide a preliminary characterisation of 
the region for use by the National Oceans Office (NOO), and design a sampling strategy for the 
Ecosystem Mapping Task of the Cooperative Research Centre for the Torres Strait. The project 
successfully collated and assessed relevant seabed & water-column data-sets, examined relationships 
between the biological and physical data, developed a bio-physical stratification of the seabed for the 
Torres Strait region, and completed a sampling design for the mapping project in time for the first field 
survey in January 2003. The major beneficiaries of the information include the National Oceans Office 
(NOO) and the Torres Strait people, and the Australian Fisheries Management Authority (AFMA) and 
the Torres Strait fishing industries. Funding was provided by the NOO and CSIRO.  

Significant information on the physical environment was available from existing data. The Project 
collated 17 major datasets of physical and biological data for the region. Available relevant 
information included: physical environment (bathymetry, sediment grain-size and composition, water 
attributes & chemistry, ocean colour); basic seabed habitats; seagrass and algae; and some trawl 
samples. After checking quality and redundancy among sources, 32 physical variables were identified 
and mapped as potentially useful for modelling & stratification. A 0.01 degree resolution (~1.1 km) 
grid was established for analyses and sampling design, and the physical variables were re-sampled to 
this grid and mapped (interpolated where required), to provide a consistent set of full-coverage 
covariates at ~45,000 grid cells for the Project. The biological data was sourced from multiple legacy 
projects, each with different objectives, and was reconciled to useable common-denominator formats. 

The broad-scale physical factors important in structuring patterns in the biological data were 
identified. Seabed current stress was the most important variable, and others included: chlorophyll, 
turbidity, oxygen, salinity, nutrients, sediment grain size, and depth. These bio-physical relationships 
were used to predict and map the categorical biological data to the whole Torres Strait region, with an 
estimate of the uncertainty. The Torres Strait region was characterised by weighting each physical 
covariate by its biological importance, then grouping the 0.01° grid cells into strata that had similar 
physical attributes. The stratification was mapped and represents an interim surrogate characterisation 
of Torres Strait. Sites for future sampling by the CRC-TS Mapping Task were selected from the bio-
physical strata to provide representative coverage of the Torres Strait environment.  

The Project described the current state of knowledge of the physical marine environment and the 
seabed habitats and biota, identified the major knowledge gaps and the key information needs for 
regional marine planning and ecosystem-based management. These are summarized here. 

Torres Strait is a shallow area of continental shelf with complex topography comprising numerous 
reefs and islands; the eastern area includes deeper water but is more complex; the northwestern area is 
very shallow limiting navigation. For navigation reasons, the bathymetry of the main shipping 
channels is well known, but much of the region has not been surveyed and is poorly known. 
Consistent coverage of bathymetric data over Torres Strait, at resolution sufficient for navigation 
purposes, is required for reliable circulation modelling and bio-physical mapping.  

Tides and currents dominate the physical oceanography of Torres Strait, with strong tidal currents in 
channels between reefs. Quantitative knowledge of tides and currents is largely from the output of 
models, as there are few tidal and current monitoring stations. The tides and currents in most of Torres 
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Strait have not been measured, leading to model uncertainty and lack of knowledge of the broader 
circulation, dispersion and connectivity. Additional tidal and current monitoring stations are needed at 
key locations and periods across Torres Strait to provide data to validate circulation models. 

Limited knowledge of basic hydrographic conditions indicates that: water temperature peaks broadly 
over the summer and during winter, shallow areas are cooler; salinities fall during the monsoon 
season, when a low salinity feature occurs along the PNG coastline, and increase again during the dry 
season; strong tidal mixing generally prevents vertical stratification and oxygen levels are relatively 
high in the well-mixed water; nutrients may increase during the monsoon and decrease during the 
trade wind season, consistent with riverine inputs; and limited time-series data indicate inter-annual 
variability in the monsoonal and trade-wind influences. The coverage of basic hydrographic data is 
extremely sparse, both spatially and temporally, and there is a critical need for additional moorings to 
be deployed at key locations, to provide knowledge of interannual variability and environmental 
change and to develop any understanding of productivity processes in Torres Strait.  

Sediments become suspended by the strong spring tide cycles and wind stress, particularly in shallow 
areas and near rivers, causing local areas of high turbidity. Turbidity has been estimated from the 
SeaWiFS satellite data but is confounded in shallow areas like Torres Strait. Very few direct 
measurements have been made and knowledge of their tidal and seasonal patterns is inadequate. 
Measurements of suspended sediments are required at key locations and spanning spring-neap tidal 
and seasonal cycles.  

There is little knowledge of biogeochemical cycles in Torres Strait, or of the role of suspended 
sediments in those processes, and studies de novo are required. 

The phytoplankton in Torres Strait is not known from any direct measurements and estimates based on 
satellite ocean colour are confounded by turbidity and shallow water. Nevertheless, indications are that 
chlorophyll levels are higher during the monsoon season and decrease towards winter. The primary 
productivity processes and plankton community structure in Torres Strait are unknown, and again 
studies de novo are required.  

The seabed sediments of Torres Strait cover the full range from fine terrestrial muds near rivers to 
coarse carbonate sands and gravels among coral reefs further from land. Over that pattern, the strong 
tidal currents scour fine sediments from narrow channels, leaving coarse gravels and rocks, and 
deposit them in calmer areas. The currents also create and move dunes of sand. However, the sediment 
grain size attributes of most of Torres Strait have been sampled only patchily and there are extensive 
gaps in east/southeastern and northwestern Torres Strait. Sediment types typically showed little 
similarity over distances of more than 5 km, perhaps 10 km maximum, providing a criterion (spatial 
autocorrelation) for assessing that the existing coverages were inadequate for significant parts of the 
region. Adequate fine-scale sampling of sediment grain size and composition is required for 
understanding sediment processes and biogeochemical cycles, and as surrogates for biological 
assemblage prediction. Sediment organic content is almost unknown, but would also contribute to 
these knowledge needs. Acoustic data from several vessel tracks was shown to be a useful surrogate 
for seabed substratum and can provide continuous along-track coverage between actual sediment 
samples.  

Prawn trawling is largely confined to a relatively narrow strip in central eastern Torres Strait and 
extremely intense effort was aggregated into an area of about 200 km². The trawl logbook data 
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coverage is quite complete; however, the resolution is coarse compared with actual trawling activities. 
Fine-scale trawl effort data needs to be acquired from Vessel Monitoring Systems installed on Torres 
Strait trawlers to provide effort data at a resolution needed to assess and manage the environmental 
sustainability of trawling.  

The basic seabed habitats of Torres Strait (substratum type, megabenthos gardens, presence of algae 
and seagrass) are relatively well known compared with many other areas of seabed within Australia. 
The region has significant large areas of structured habitat and benthic gardens, as well as extensive 
seagrass beds and algae. From this knowledge, it has been observed that seabed current stress appears 
to be very important in structuring habitat patterns, as are sediment attributes. Moving sediments may 
smother benthic habitat and expose bare substratum for colonisation. Sediment dynamics may also be 
involved in seagrass diebacks in north west Torres Strait, though the causes are unknown.  

The broad habitat characterisation is known for about two-thirds of the region, at a resolution 
comparable with the spatial autocorrelation distance for habitat similarity (ie. ~10 km). Unknown 
areas include extensive areas of north-eastern and western Torres Strait. While, this broad information 
has been useful, it is inadequate to properly characterize biodiversity assemblage, to develop bio-
physical models and for quantitative management applications. For these purposes, species biomass 
data are required but are largely unavailable in Torres Strait. Where more detailed biological 
information is available for some biota, the spatial coverage is very limited. Thus, a broad spectrum of 
seabed species need to be sampled in Torres Strait, accurately identified, quantified and mapped. 
Careful species identification is essential because Torres Strait is a biogeographic boundary due to past 
periodic separation of east & west faunas — an important concern for regional marine planning. 

There is also very little knowledge of assemblage dynamics or of ecosystem processes in Torres Strait. 
Primary productivity, whether benthic or planktonic, has not been studied in Torres Strait nor have 
secondary productivity and higher trophic relationships, other inter-species inter-actions, or coupling 
between the benthic and pelagic ecosystems. This kind of ecosystem-level knowledge is required in 
order to progress towards ecosystem-based management of multiple uses of the Torres Strait marine 
environment, and needs to be synthesized by dynamic modeling approaches such as Management 
Strategy Evaluation.  

The Torres Strait CRC program will address a number of these data issues at varying levels of detail. 
Field measurements to be made by the “Bio-Physical” and “Seabed Mapping” Tasks will provide 
additional hydrographic data and develop hydrodynamic modelling. Data on seabed and suspended 
sediments will be collected and sediment transport will be modelled; the issue of seagrass dieback will 
also be examined. Bathymetric data will be collected by research vessels. Data on seabed habitats will 
be recorded and a broad range of seabed assemblage species will be sampled, identified, quantified 
and mapped. However, the mapping will not be able to cover the entire region, and the program does 
not currently include studies of biogeochemical cycles or of biological ecosystem processes.  

This Project has provided an essential foundation for several CRC-TS Tasks that will address priority 
issues related to assessment of the effects of trawling, development of trawl sustainability risk 
indicators, seagrass dieback, bioregionalisation for marine planning, and multiple-use management. 
The preliminary characterisation of the Torres Strait region provided by the project will support the 
planning needs of NOO and other management agencies, in the interim before the results of TS-CRC 
Tasks become available. 
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1. INTRODUCTION 
 

1.1. BACKGROUND  
There has been an urgent need to complete preparatory work prior to the start of the Torres Strait CRC 
in July 2003, so that fieldwork for the Task Ecosystem Characterisation may proceed in the required 
timeframe. This project aimed to collate and assess relevant seabed & water-column data, examine 
bio-physical relationships, develop a stratification for the Torres Strait and to design a seabed & water 
column sampling strategy for the TS CRC ecosystem survey task. Other benefits include assessment 
of the current state of knowledge relevant to this task and provision of a preliminary characterisation 
of the region for use by the National Oceans Office (NOO). These fundamental datasets and analyses 
will support present and future research and monitoring needs, conservation planning, and 
management — ultimately contributing to the preservation of the unique values of this region.  

Available relevant information included: physical environment (bathymetry, sediments, water 
attributes & chemistry, ocean colour); seabed habitats; seagrass; and limited trawl samples. The 
approach has been to collate & integrate seabed & water-column data from disparate sources to 
common useable formats, identify any broad-scale physical factors important in structuring patterns in 
the biological data, characterise and stratify the Torres Strait region based on extension of the bio-
physical relationships to the whole region. A cost-effective & optimised sampling strategy needs to be 
designed to representatively sample the identified bio-physical strata. Information gaps need to be 
identified in relation to data type, bio-physical strata, prediction uncertainty – as well as spatial grid 
coverage.  Outputs in the form of digital GIS layers will be provided to the NOO.  

This Project has assessed the state of knowledge of seabed habitats, seagrasses, benthic biodiversity, 
and the water-column in the complex ecosystem of the Torres Strait; provided interim spatial 
characterisation information for management and planning needs until more complete information is 
available (including issues related to anthropogenic impact in seabed ecosystems eg. trawling); and 
design future research surveys to optimally & cost-effectively address gaps in the current knowledge. 
The broad-scale objectives of this Project have been met by specialists from multiple disciplines and 
experienced Torres Strait researchers, based on CSIRO Marine Research’s (CMR) significant Torres 
Strait data holdings and access to other relevant datasets. The approach is relevant to the national 
objectives of NOO as outlined by Australia's Oceans Policy. 

 

1.2. NEED 
This Project was required to provide an essential foundation for TS-CRC Tasks that will address 
issues related to seagrass dieback, assessment of the effects of trawling, development of trawl 
sustainability risk indicators, bioregionalisation for marine planning, and multiple-use management. 
These issues were identified as priorities at several client and stakeholder forums. The NOO and CMR 
identified the outputs of this Project as a pre-requisite for the CRC-TS Task Ecosystem 
Characterisation to proceed from July 2003. Another need to be provided by the Project is an interim 
characterisation of the Torres Strait region to support the planning processes of NOO and other 
management agencies, before the results of TS-CRC Tasks become available. 




