# Food Consumption Trends in China April 2012

Prepared by Zhangyue Zhou, Weiming Tian, Jimin Wang, Hongbo Liu and Lijuan Cao

Report submitted to the Australian Government Department of Agriculture, Fisheries and Forestry

About the Authors

James Cook University:

Prof Zhangyue Zhou, Director, AusAsia Business Studies Program, specialising in China's food production, consumption and trade.

Dr Hongbo Liu, Lecturer in Economics at the School of Business, specialising in China's food consumption, especially animal product consumption.

China Agricultural University:

Prof Weiming Tian, Director, Institute of Agricultural Economics, specialising in China's food production, consumption and trade, and agricultural policy.

Chinese Academy of Agricultural Sciences:

Prof Jimin Wang, Deputy Director-General, Institute of Agricultural Economics and Rural Development, specialising in the demand and supply of animal products, and agricultural policy.

Nanjing Agricultural University:

Dr Lijuan Cao, Lecturer in Economics at the College of Economics and Management, specialising in food production and consumption, China's food security analysis.

| Contents                                                         |                  |
|------------------------------------------------------------------|------------------|
| List of Tables                                                   | iii              |
| List of Figures                                                  | iv               |
| List of Maps                                                     | V                |
| List of Boxes                                                    | vi               |
| Executive Summary                                                | viii             |
| Food Consumption Trends in China                                 | 1                |
| 1. Introduction                                                  | 1                |
| 2. Developments in Food Consumption in China (2000-2010)         | 3                |
| Food grains                                                      | 5                |
| Pork                                                             | 14               |
| Beef                                                             | 16               |
| Mutton                                                           | 20               |
| Poultry meat                                                     | 20               |
| Poultry eggs                                                     | 24               |
| Dairy products                                                   | 25               |
| Aquatic products                                                 |                  |
| Cooking oil                                                      |                  |
| Alcoholic drinks                                                 |                  |
| Vegetables and fruits                                            | 35               |
| Rural-urban consumption differences:                             |                  |
| Consumption differences between the rich and poor:               |                  |
| Regional consumption differences:                                |                  |
| 3. Identification and Analysis of Key Drivers                    |                  |
| Rising income                                                    |                  |
| Rapid urbanisation                                               | 40               |
| Changing lifestyle                                               | 40               |
| Changes in tastes and preferences                                |                  |
| Better organisation of food production and marketing             |                  |
| Changes in population structure                                  |                  |
| 4. Outlook for China's Food Consumption and Import Demand by 202 | 2042             |
| 4.1 Methodological Considerations                                | 43               |
| Deriving per capita utilisation                                  | 43               |
| Calculating income elasticities                                  | 45               |
| Comparing existing forecasts                                     | 45               |
| 4.2 China's Food Import Needs by 2020 Error! Bookm               | ark not defined. |
| Wheat                                                            |                  |

| Rice                                                                          |
|-------------------------------------------------------------------------------|
| Maize52                                                                       |
| Barley53                                                                      |
| Soybean53                                                                     |
| Rapeseed54                                                                    |
| Sugarcane                                                                     |
| Vegetables                                                                    |
| Fruits                                                                        |
| Pork                                                                          |
| Beef61                                                                        |
| Mutton and goat meats61                                                       |
| Poultry62                                                                     |
| Poultry eggs62                                                                |
| Dairy products                                                                |
| Aquatic products                                                              |
| 4.3 Competing Agricultural Products                                           |
| 4.4 Further Discussion                                                        |
| 4.5 Prospects of Food Trade between Australia and China67                     |
| 5. Conclusions and Implications                                               |
| References                                                                    |
| Appendix74                                                                    |
| Appendix A. Income Elasticity Estimates74                                     |
| Appendix B. Food Balance Sheets                                               |
| Appendix C. Projections on China's Food Production and Consumption by 2020102 |
| Appendix D. Sown Area, Yield, Crop Output and Output of Animal Products121    |

## **List of Tables**

| Table 2.1  | Per Capita Food Consumption in China (1978-2010, yuan, kg)3         |
|------------|---------------------------------------------------------------------|
| Table 2.2  | Per Capita Annual Consumption Expenditure in China (1978-2010)5     |
| Table 2.3  | Per Capita Grain Consumption in China (2000-10, yuan, kg)5          |
| Table 2.4  | Per Capita Food Expenditure in China by Income Group                |
|            | (2002-10, yuan)9                                                    |
| Table 2.5  | Per Capita Consumption of Animal Products in China (2000-10, kg)15  |
| Table 2.6  | Per Capita Consumption of Dairy Products in China (2000-10, kg)25   |
| Table 2.7  | Per Capita Consumption of Aquatic Products in China (2000-10, kg)29 |
| Table 2.8  | Per Capita Consumption of Cooking Oil in China (2000-10, kg)32      |
| Table 2.9  | Per Capita Consumption of Alcoholic Drinks in China (2000-10, kg)33 |
| Table 2.10 | Per Capita Consumption of Vegetables, Fruits and Melons in China    |
|            | (2000-10, kg)                                                       |
| Table 3.1  | Food-Away-From-Home (FAFH) Expenditure in Urban China by            |
|            | Income Group (2000-09, yuan, %)41                                   |
| Table 4.1  | Income Elasticity of Main Food Items in China (1978 to 2010)45      |
| Table 4.2  | Summary of China's Food Production, Consumption and Net             |
|            | Imports in 2010 and Forecasts in 2020                               |
| Table 4.3  | Import and Export of Oilseeds and Edible Oil in China               |
|            | (1996-2010, Tonnes)                                                 |
| Table 4.4  | Import and Export of Protein Feed in China (1996-2010, tonnes)62    |
|            |                                                                     |

# List of Figures

| Figure 2.1  | Per Capita Direct Consumption of Food Grains by Income     |    |
|-------------|------------------------------------------------------------|----|
|             | Group in China, 2000-10                                    | 11 |
| Figure 2.2  | Per Capita Consumption of Rice and Wheat Flour by Income   |    |
|             | Group in Urban China, 2000-10                              | 13 |
| Figure 2.3  | Per Capita Consumption of Pork by Income Group in China    |    |
|             | , 2000-10                                                  | 15 |
| Figure 2.4  | Per Capita Consumption of Beef and Mutton by Income Group  |    |
|             | in China, 2000-10                                          | 18 |
| Figure 2.5  | Per Capita Consumption of Beef and Mutton by Income Group  |    |
|             | in Urban China, 2000-10                                    | 18 |
| Figure 2.6  | Per Capita Consumption of Poultry Meat by Income Group     |    |
|             | in China, 2000-10                                          | 25 |
| Figure 2.7  | Per Capita Consumption of Poultry Eggs by Income Group     |    |
|             | in China, 2000-10                                          | 27 |
| Figure 2.8  | Per Capita Consumption of Dairy Products by Income Group   |    |
|             | in China, 2000-10                                          | 27 |
| Figure 2.9  | Per Capita Consumption of Dairy Products by Income Group   |    |
|             | in Urban China, 2000-10                                    | 32 |
| Figure 2.10 | Per Capita Consumption of Aquatic Products by Income Group |    |
|             | in China, 2002-10                                          | 32 |
| Figure 2.11 | Per Capita Consumption of Alcohol Drinks by Income Group   |    |
|             | in Urban China, 2000-10                                    | 35 |
| Figure 2.12 | Per Capita Consumption of Vegetables by Income Group in    |    |
|             | China, 2000-10                                             | 36 |
| Figure 2.13 | Per Capita Consumption of Fruits by Income Group in China, |    |
|             | 2000-10                                                    | 37 |

# List of Maps

| Map 2.1 | Per Capita Consumption of Wheat, Rice and Maize in Rural      |    |
|---------|---------------------------------------------------------------|----|
|         | China by Region (kg, 2009)                                    | 12 |
| Map 2.2 | Per Capita Consumption of Pork in China by Region             |    |
|         | (kg in rural, yuan in urban, 2009)                            | 17 |
| Map 2.3 | Per Capita Consumption of Beef in China by Region             |    |
|         | (kg in rural, yuan in urban, 2009)                            | 19 |
| Map 2.4 | Per Capita Consumption of Mutton in China by Region           |    |
|         | (kg in rural, yuan in urban, 2009)                            | 21 |
| Map 2.5 | Per Capita Consumption of Poultry in China by Region          |    |
|         | (kg in rural, yuan in urban, 2009)                            | 22 |
| Map 2.6 | Per Capita Consumption of Poultry Eggs in China by Region     |    |
|         | (kg in rural, yuan in urban, 2009)                            | 23 |
| Map 2.7 | Per Capita Consumption of Milk in China by Region             |    |
|         | (kg in rural, yuan in urban, 2009)                            | 29 |
| Map 2.8 | Per Capita Consumption of Aquatic Products in China by Region |    |
|         | (kg in rural, yuan in urban, 2009)                            | 30 |

# List of Boxes

| Box 1 | Grain Definition Used in China          | 4  |
|-------|-----------------------------------------|----|
| Box 2 | Food Consumption Data for China         | .8 |
| Box 3 | Forecasting Methods Used in This Study4 | 7  |

### **Executive Summary**

China has experienced remarkable economic growth in the past three decades. This has resulted in sustained increase in consumer income, which in turn has led to important changes in food consumption. Notable changes include higher demand for food, demand for a more diverse range of food, demand for higher quality food, and the growth of away-from-home food consumption. Constrained by limited and degrading agricultural resources, China's ability to meet the changing and increasing demand from domestic production has been a concern for many. It has been generally held that China's domestic supply will not be able to meet the rising demand for food in the future. Not surprisingly, its future demand for food imports has interested many traders and government officials around the globe.

This report examines the recent trends in China's food consumption, with a focus on the period of 2000-2010. Insights into such trends should be most valuable in understanding this potentially enormous food consumption market. Such insights will help both China and food exporting countries like Australia to better understand how food consumption may evolve in the coming years and how they can work collaboratively to meet the rising needs for food in China.

Data collected by China's State Statistical Bureau (SSB) from household surveys are used to examine China's food consumption trends. It must be noted that the SSB data does not include away-from-home consumption, which is a major phenomenon in China today. Without away-from-home consumption, the SSB data underestimates food consumption for China. Keeping this limitation in mind, important food consumption trends include:

- During 2000-2010, total expenditure on foods continued to increase but the proportion of food expenditure out of total living expenditure continued to decline.
- The per capita consumption of staple foods, chiefly rice and wheat, continued to decline. There is likely to be further declines in the per capita consumption of such staple foods.
- While per capita direct consumption of grains has declined, the indirect consumption of grains has increased, chiefly, maize.
- The consumption of higher-value foods, especially foods of animal origin, is increasing. The foods with higher rates of growth include milk and dairy products, aquatic products, poultry meats, and fruits.
- Due to income differences, rural consumption is significantly behind urban consumption. Animal product consumption in rural China is about 30 years behind urban areas.
- The consumption level of some food items by the highest income rural group was even below that of the lowest income urban group in 2010.
- There is a significant gap in the level of consumption between the rich and the poor in both rural and urban areas. For some foods of higher value, the gap is several times larger.
- Food consumption patterns and levels differ between regions mainly due to differences in local income levels, food availability, and ethnic background. Consumption convergence is taking place, but slowly.

- Demand for safe foods of high quality is increasing. Foods of dubious quality have to a small extent negatively affected consumer demand for those foods.
- Chinese consumers, particularly the wealthy, are demanding foods of superior quality. Some of them consume mainly imported foods due to concerns over safety of foods produced in China.

Major factors identified as driving these trends are: rising real income, rapid urbanisation, changes in lifestyle, availability of new cooking methods, changes in consumer tastes and preferences, better organisation of food production and marketing, and changes in population structure. Among them, growth in income and urbanisation are key drivers. All these factors will continue to drive consumption higher, with the impact of urbanisation becoming even stronger.

Food balance sheets of the Food and Agricultural Organization (FAO) are used as a starting point to look into China's likely future demand and possible import needs. We then evaluate existing projections of China's food demand and supply provided by several other institutions, namely, the Organisation for Economic Cooperation and Development (OECD), the United States Department of Agriculture (USDA), and the Food and Agricultural Policy Research Institute (FAPRI). Based on these evaluations and coupled with our own research experience, this report makes predictions about the likely direction and size of China's future food trade.

It is our view that China's needs for food imports will increase in years to come. However, this demand for imports is not uniform across all commodities. Some food items may even have a small surplus for net exports. We expect that:

- By 2020, China is expected to be largely self-sufficient in wheat and rice, though a small amount of net wheat import is possible.
- Maize imports will increase but by how much is uncertain depending on China's choice of options in increasing its meat supply.
- Soybean imports may slightly increase above current imports. The imports of other oil-bearing grains such as rapeseed may vary depending on the amount of oil imported such as rapeseed oil and palm oil.
- China has limited capacity to boost its sugar production and sugar imports will continue.
- China will continue to be a net barley importer but no major growth is expected over current quantities.
- Imports of high quality beef and mutton/lamb are expected to increase to meet the demands of high-end hospitality industries, foreigners (expatriates and tourists), and wealthy local consumers. The quantity will be small.
- Pork imports are likely to rise but this is unlikely to have major impacts on China's pork market given that China's domestic output is so high, being about 50 per cent of the world's total production.
- It is also likely that China will increase poultry meat imports. However, China is expected to be self-sufficient in its egg supply.
- China will need to import dairy products, chiefly, milk powder and whey.
- In value terms, China will have a surplus in the trade of aquatic products. In volume terms, China will import more aquatic products than it exports. This is

due to the exports of aquatic products of higher value but imports of large quantity of low value products, chiefly for feed use.

• In the foreseeable future, China will have sufficient protein feeds, particularly if China continues to import large amounts of soybeans. China will have to import energy feeds such as maize if it chooses to produce more animal products domestically.

The sheer size of China's population, and the huge gap in consumption between the poor and the rich, and between rural and urban consumers, indicate that the potential for the Chinese food market to expand is significant, should the income level of the poor move towards the rich and that of the rural move towards the urban. China's inability to meet all the increased demand from domestic production renders exciting opportunities to food exporting countries such as Australia.

Australia is well placed to meet some of China's future food needs and will benefit, directly and indirectly, from China's rising demand for foods. Directly, it is expected that Australia will have opportunities to export more foods to China, particularly foods of premium quality. Indirectly, China's increased imports from the world market will create opportunities for Australia to increase its food exports to other markets.

## Food Consumption Trends in China

## **1. Introduction**

China is the world's largest food producer as well as the largest food consumer in volume terms. In addition to its domestic production, in order to meet growing demand, China has been importing more food, a trend which is likely to continue into the future. Growing imports of food to China have attracted the attention of the commercial world and governments alike in China and elsewhere around the globe. Insights into trends in China's food consumption are important in helping to understand future opportunities. Such insights will help both China and food exporting countries to better understand how food consumption may develop in the coming years and how they can work collaboratively to meet the rising needs for food in China. This report examines the recent trends in food consumption by Chinese consumers and undertakes some analysis of how these trends may develop into the future.

A number of studies have shown that the increase in consumer income in fastgrowing developing countries, such as China, India and Malaysia, tends to induce important changes in the amount and composition of food consumption (Garnaut and Ma 1992, Cranfield *et al.* 1998, Coyle *et al.* 1998, Regmi *et al.* 2001, Jones *et al.* 2003, Ishida *et al.* 2003, Liu *et al.* 2009, and Gandhi and Zhou 2010).

Because of the significant implications of changes in China's food consumption, researchers from both within and outside China have paid increasing attention to examining this issue from various perspectives (see, for example, Halbrendt *et al.* 994, Fan *et al.* 1995, Brown 1995, Wu and Li 1995, Huang and Rozelle 1998, Wan 1998, Wu 1999, Guo *et al.* 2000, Gould 2002, Ma *et al.* 2004, and Liu *et al.* 2009). These studies have not been uniform in their findings<sup>1</sup>.

Despite such challenges, earlier studies have nonetheless made important contributions to understanding food consumption patterns in China including parameters such as income and price elasticities of demand for various food items. Useful observations include:

- demand is price-inelastic for most of the commonly consumed food items (that is, changes in the price of foods will not result in as large a change in food consumption);
- (2) there is a tendency to shift away from coarse grains to fine grains and in some regions, from rice to wheat consumption or vice versa as income increases;
- (3) Chinese consumers will consume more meats as their income increases; and
- (4) away-from-home food consumption is increasing as a result of changes in lifestyle and income.

It is noted, however, that the findings of earlier studies may be somewhat "outdated". In recent years, food consumption has experienced some rapid changes, driven chiefly

<sup>&</sup>lt;sup>1</sup> This report does not cover in any detail the possible reasons behind these differences. Fan and Agcaoili-Sombilla (1997) and Zhou *et al.* (2008) provide some details about the causes for discrepancies in projecting China's future food and feed demand.

by increased consumer income. As such, researchers have argued that parameters derived using "old" data is less adequate for understanding China's *current* food consumption and new estimates using more recent data is essential (He and Tian 2000, Zhou *et al.* 2003).

Several other recent developments have also had significant impacts on food consumption in China and point to the need to examine China's food consumption using the latest data and information. These developments include:

- (1) **Quality and safety of foods.** Quality and food safety concerns can affect the demand of domestically produced foods and lead to the substitution of domestically produced food by imported foods.
- (2) **Changes in supply chains.** More advanced supply chains will make foods available in locations and at times that would have otherwise not been possible, particularly perishable foods. This also affects the quantity of food consumed.
- (3) **Rural migration and urbanisation**. Each year a large number of rural people move into the urban system, which results in changes in where foods are consumed. Composition of food consumption and manners of consumption (e.g., methods of cooking) will also change.
- (4) **The ageing population.** China's population is ageing and the absolute number of aged citizens is increasing rapidly. The demand for food, in terms of quantity, quality and variety, by older people is different from people of other age groups.
- (5) **The tastes of younger consumers.** Younger generations, with increased levels of education and more exposure to foreign cultures, tend to be more prepared to try foreign foods and the food consumption styles of other cultures.
- (6) **Increasing demand for foods of premium quality.** Increased disposable income coupled with small family size leads to increased demand for foods of premium quality. Foreigners in China (tourists and expatriates) also demand higher quality food.

This report examines food consumption in China using the latest available data and information. Its main objective is to assess China's current food consumption and the outlook for the near future. Specific objectives include:

- (1) To examine the overall developments in food consumption in China since 2000.
- (2) To evaluate changes in food consumption between urban and rural areas, between the rich and poor, and between consumers of different regions, and identify key drivers behind such changes.
- (3) To analyse the consumption trends of major food items consumed in China.
- (4) To provide an outlook for China's food consumption, production and trade to 2020, with a particular focus on food items that are of greater interest to Australia.

When reading this report, it is imperative to keep in mind that the SSB food consumption data from household surveys, on which this report is primarily based, does not include away-from-home consumption. This means the SSB data underestimates food consumption in China, particularly for foods of animal origin.

#### 2. Developments in Food Consumption in China (2000-2010)

Changes in food consumption in China since the 1980s have been significant, both in terms of the amount of food consumed and in the composition of foods consumed (Table 2.1). Overall, there has been a marked decline in per capita direct consumption of food grains and vegetables, while the consumption of aquatic products (seafood) and animal products such as meat, eggs and dairy products has increased steadily.

| Year | Per capita<br>income | Food grains | Vegetables | Cooking oil | Meats | Poultry | Poultry Eggs | Aquatic<br>products | Sugar | Alcoholic<br>drinks | Milk and dairy<br>products |
|------|----------------------|-------------|------------|-------------|-------|---------|--------------|---------------------|-------|---------------------|----------------------------|
| 1978 | 134                  | 248         | 142        | 1.96        | 5.76  | 0.25    | 0.80         | 0.84                | 0.73  | 1.22                | n.a.                       |
| 1980 | 191                  | 257         | 127        | 2.49        | 7.75  | 0.66    | 1.20         | 1.10                | 1.06  | 1.89                | n.a.                       |
| 1985 | 398                  | 257         | 131        | 4.04        | 10.97 | 1.03    | 2.05         | 1.64                | 1.46  | 4.37                | n.a.                       |
| 1990 | 686                  | 262         | 135        | 5.17        | 11.34 | 1.26    | 2.41         | 2.13                | 1.50  | 6.14                | n.a.                       |
| 1995 | 1578                 | 259         | 105        | 5.80        | 11.29 | 1.83    | 3.22         | 3.36                | 1.28  | 6.53                | 0.64                       |
| 2000 | 2253                 | 250         | 107        | 5.45        | 14.41 | 2.81    | 4.77         | 3.92                | 1.28  | 7.02                | 1.06                       |
| 2001 | 2366                 | 239         | 109        | 5.51        | 14.50 | 2.87    | 4.72         | 4.12                | 1.43  | 7.10                | 1.20                       |
| 2002 | 2476                 | 237         | 111        | 5.77        | 14.87 | 2.91    | 4.66         | 4.36                | 1.64  | 7.49                | 1.19                       |
| 2003 | 2622                 | 222         | 107        | 5.31        | 15.04 | 3.20    | 4.81         | 4.65                | 1.24  | 7.67                | 1.71                       |
| 2004 | 2936                 | 218         | 107        | 4.31        | 14.76 | 3.13    | 4.59         | 4.49                | 1.11  | 7.84                | 1.98                       |
| 2005 | 3255                 | 209         | 102        | 4.90        | 17.09 | 3.67    | 4.71         | 4.94                | 1.13  | 9.59                | 2.86                       |
| 2006 | 3587                 | 206         | 101        | 5.84        | 17.03 | 3.51    | 5.00         | 5.01                | 1.09  | 9.97                | 3.15                       |
| 2007 | 4140                 | 199         | 99         | 5.96        | 14.88 | 3.86    | 4.72         | 5.36                | 1.07  | 10.18               | 3.52                       |
| 2008 | 4761                 | 199         | 100        | 6.25        | 13.94 | 4.36    | 5.43         | 5.25                | 1.11  | 9.67                | 3.43                       |
| 2009 | 5153                 | 189         | 98         | 6.25        | 15.33 | 4.25    | 5.32         | 5.27                | 1.07  | 10.08               | 3.60                       |
| 2010 | 5919                 | 181         | 93         | 6.31        | 15.80 | 4.17    | 5.12         | 5.15                | 1.03  | 9.74                | 3.55                       |

Table 2.1 Per Capita Food Consumption in China (1978-2010, yuan, kg) a) Rural

#### b) Urban

| Year | Per capita<br>income | Food grains | Vegetables | Cooking oil | Meats | Poultry | Poultry Eggs | Aquatic<br>products | Sugar | Alcoholic<br>drinks | Milk and dairy<br>products |
|------|----------------------|-------------|------------|-------------|-------|---------|--------------|---------------------|-------|---------------------|----------------------------|
| 1982 | 535                  | 145         | 159        | 5.78        | 18.67 | 2.26    | 5.88         | 7.67                | 2.80  | 4.48                | n.a.                       |
| 1985 | 739                  | 135         | 144        | 5.76        | 19.32 | 3.24    | 6.84         | 7.08                | 2.52  | 7.80                | n.a.                       |
| 1990 | 1510                 | 131         | 139        | 6.40        | 21.74 | 3.42    | 7.25         | 7.69                | 2.14  | 9.25                | 4.6                        |
| 1995 | 4283                 | 97          | 116        | 7.11        | 19.68 | 3.97    | 9.74         | 9.20                | 1.68  | 9.93                | 4.6                        |
| 2000 | 6280                 | 82          | 115        | 8.16        | 20.06 | 5.44    | 11.21        | 11.74               | 1.70  | 10.01               | 11.55                      |
| 2001 | 6860                 | 80          | 116        | 8.08        | 19.12 | 5.30    | 10.41        | 10.33               | 1.67  | 9.68                | 13.76                      |
| 2002 | 7703                 | 78          | 117        | 8.52        | 23.28 | 9.24    | 10.56        | 13.20               | n.a.  | 9.12                | 18.12                      |
| 2003 | 8472                 | 80          | 118        | 9.20        | 23.74 | 9.20    | 11.19        | 13.35               | n.a.  | 9.39                | 21.71                      |
| 2004 | 9422                 | 78          | 122        | 9.29        | 22.85 | 6.37    | 10.35        | 12.48               | n.a.  | 8.94                | 22.19                      |
| 2005 | 10493                | 77          | 119        | 9.25        | 23.86 | 8.97    | 10.40        | 12.55               | n.a.  | 8.85                | 21.67                      |
| 2006 | 11760                | 76          | 118        | 9.38        | 23.78 | 8.34    | 10.41        | 12.95               | n.a.  | 9.12                | 22.54                      |
| 2007 | 13786                | 78          | 118        | 9.63        | 22.14 | 9.66    | 10.33        | 14.20               | n.a.  | 9.14                | 22.17                      |
| 2008 | 15781                | n.a.        | 123        | 10.27       | 22.70 | 8.00    | 10.74        | 14.00               | n.a.  | n.a.                | 19.30                      |
| 2009 | 17175                | 81          | 120        | 9.67        | 24.20 | 10.47   | 10.57        | 14.30               | n.a.  | n.a.                | 19.27                      |
| 2010 | 19109                | 82          | 116        | 8.84        | 24.51 | 10.21   | 10.00        | n.a.                | n.a.  | 7.02                | 18.10                      |

Meats include pork, beef and mutton/lamb.

Source: SSBa, various issues.

According to Table 2.1, the direct consumption of grains per person has dropped from 257 kg in 1985 to 189 kg in 2009 (a decrease of 36 per cent) for rural areas (un-milled grains) and from 135 kg to 81 kg (a decrease of 67 per cent) in urban areas (milled grains) (see Box 1 for further details about grain statistics in China). The consumption of meat (including pork, beef and mutton) and poultry has increased from 12 kg in total in 1985 to 19.6 kg in 2009 (an increase of 63 per cent) in urban areas. While the percentage increase was larger for rural consumers, the actual increase in volume terms was significantly larger for urban consumers (12.2 kg for urban compared to 7.6 kg for rural). The consumption of aquatic products, eggs, milk and dairy products has more than doubled in both rural and urban areas.

#### Box 1. Grain Definition Used in China

Grain in China includes cereals (rice, wheat, corn, sorghum, millet and other miscellaneous grains), tuber crops (sweet potatoes and potatoes only, not including taro and cassava), as well as pulses (including mainly soybeans, red bean, and mung bean). The output of tuber crops (sweet potatoes and potatoes) was converted on a 4:1 ratio, i.e., four kilograms of fresh tubers were equivalent to one kilogram of grain, up to 1963. Since 1964, the ratio has been 5:1. The output of beans refers to dry beans without pods. The term "grain" generally includes all these "grains" when used in the context of China's grain statistics.

Despite the fact that grain also includes tubers and pulses, cereals account for a much larger proportion of all grains produced. Separate statistics for cereals were not collected until 1991. Among cereals, rice, wheat and maize are the three major crops. The proportion of maize used for direct human consumption is very small. However, a large proportion rice and wheat are used for direct human consumption, with rice being consumed mainly in southern China and wheat in northern China. Security of supply for these two cereals is of uttermost importance in China and therefore food security in China often refers to "grain security". Not surprisingly, China pays much attention to ensuring a high-level of self-sufficiency in these two crops.

As noted above, tubers were initially converted to a grains equivalent on a 4:1 ratio and then on a 5:1 ratio. This reflects the fact that in the 1950s and 1960s, tubers were regarded of being inferior to rice and wheat as staple foods. Today, rice and wheat are no longer the major sources of nutrition. Higher income has enabled consumers to buy many other foods of high nutrition. As a result, consumers have started to regard tubers, especially, sweet potatoes, as healthy food. The value of tubers relative to rice and wheat has improved. Because of such changes, there have been discussions as to whether the ratio should be changed, say, to 1:1 to reflect the increasing value of tubers. It is yet to be seen if any changes to the ratio are made; or, if tubers, together with pulses, are treated separately and no longer included in grain statistics.

When China's State Statistical Bureau publishes grain consumption data, the amount of raw grain is reported for rural residents but for urban residents, the quantity reported is milled grain. This makes the consumption levels between rural and urban areas not directly comparable; however, rural consumption of grain can be converted to milled grain. Generally 1kg of wheat is equivalent to 0.75-0.85 kg of flour; similarly, 1 kg of paddy rice to 0.65-0.70 kg of rice.

Between 2000 and 2010, nominal expenditure on food more than doubled in both rural and urban areas (Table 2.2). In the meantime, the share of food expenditure out of total consumption continued to decline, from 49 per cent in 2000 to 41 per cent in 2010 in rural areas; for urban areas, the corresponding shares were 39 per cent and 36 per cent, respectively. Interestingly, given that expenditure on food was increasing while the consumption of food grains was declining in the last decade, higher levels of income must have been spent on foods other than food grains.

| Table 2.2 Per Capita | Annual Consumption | n Expenditure in | China (1978-2010) |
|----------------------|--------------------|------------------|-------------------|
| rubie == i ei eupieu | minual consumption | n Enponatear e m |                   |

| a) Rural         |     |     |     |             |                 |           |      |      |          |          |
|------------------|-----|-----|-----|-------------|-----------------|-----------|------|------|----------|----------|
|                  |     |     | Va  |             | Share (%)       |           |      |      |          |          |
| Itom             | 978 | 985 | 066 | <b>9</b> 95 | 000             | 005       | 010  | 978  | 000      | 010      |
| Food total       | 79  | 183 | 344 | 768         | <u>N</u><br>821 | N<br>1162 | 1801 | 67.7 | <b>N</b> | <b>N</b> |
| Non-food total   | 37  | 134 | 241 | 542         | 850             | 1393      | 2581 | 32.3 | 50.8     | 59.0     |
| Total cons. exp. | 116 | 317 | 585 | 1310        | 1670            | 2555      | 4382 | 100  | 100      | 100      |

#### b) Urban

|                  |     |      | Share (%) |      |      |      |       |      |      |      |
|------------------|-----|------|-----------|------|------|------|-------|------|------|------|
|                  | 78  | 85   | 06        | 95   | 00   | 05   | 10    | 78   | 00   | 10   |
| ltem             | 19  | 19   | 19        | 19   | 20   | 20   | 20    | 19   | 20   | 20   |
| Food total       | 311 | 673  | 694       | 1766 | 1958 | 2914 | 4805  | 57.5 | 39.2 | 35.7 |
| Non-food total   | 230 | 590  | 586       | 1772 | 3040 | 5028 | 8667  | 42.5 | 60.8 | 64.3 |
| Total cons. exp. | 541 | 1263 | 1280      | 3538 | 4998 | 7943 | 13471 | 100  | 100  | 100  |

Source: SSBa, various issues.

In the rest of this section, food consumption developments in China during 2000-2010 are discussed in greater detail, focussing on the differences in the level and composition of food consumption between China's urban and rural residents, between high and low income households, and between consumers in different regions.

#### **Food grains**

According to Table 2.3, for rural areas the consumption of each of the food grains listed in Table 2.3 is declining.

| Table 2.3 Per Capita Grain Consum | nption in China | i (2000-10, | yuan, kg) |
|-----------------------------------|-----------------|-------------|-----------|
|-----------------------------------|-----------------|-------------|-----------|

| a)   | Rural                   |               |       |       |       |                                    |                      |
|------|-------------------------|---------------|-------|-------|-------|------------------------------------|----------------------|
| Year | Per<br>capita<br>income | Paddy<br>Rice | Wheat | Maize | Tuber | Beans and<br>Processed<br>Products | Of Which:<br>Soybean |
| 2000 | 2253                    | n.a.          | n.a.  | n.a.  | n.a.  | n.a.                               | n.a.                 |
| 2001 | 2366                    | 123           | 77    | 18.67 | 8.44  | 5.65                               | 2.46                 |
| 2002 | 2476                    | 123           | 76    | 17.79 | 8.43  | 5.76                               | 2.20                 |
| 2003 | 2622                    | 119           | 73    | 16.40 | 3.30  | 3.30                               | 2.10                 |
| 2004 | 2936                    | 117           | 72    | 15.60 | 3.20  | 3.00                               | 1.90                 |
| 2005 | 3255                    | 113           | 68    | 14.20 | 3.00  | 3.30                               | 1.90                 |
| 2006 | 3587                    | 112           | 66    | 14.60 | 2.80  | 3.50                               | 2.10                 |
| 2007 | 4140                    | 109           | 64    | 13.40 | 2.90  | 3.00                               | 1.70                 |
| 2008 | 4761                    | 111           | 63    | 13.30 | 2.70  | 3.00                               | 1.80                 |
| 2009 | 5153                    | 106           | 60    | 12.00 | 2.50  | 3.20                               | 1.70                 |
| 2010 | 5919                    | 102           | 58    | n.a.  | n.a.  | n.a.                               | 1 61                 |

#### b) Urban

| Year | Per capita<br>income | Rice | Wheat<br>Flour | Other<br>Grains | Processed<br>Grains | Starch and<br>Tubers |
|------|----------------------|------|----------------|-----------------|---------------------|----------------------|
| 2000 | 6280                 | 46   | 16.52          | 2.85            | 16.32               | 13.43                |
| 2001 | 6860                 | 44   | 15.05          | 2.93            | 16.60               | 13.09                |
| 2002 | 7703                 | 44   | 12.12          | 2.88            | 19.68               | 9.00                 |
| 2003 | 8472                 | 44   | 12.95          | 3.00            | 19.80               | 10.14                |
| 2004 | 9422                 | 42   | 12.08          | 3.04            | 20.32               | 9.60                 |

| Year | Per capita<br>income | Rice | Wheat<br>Flour | Other<br>Grains | Processed<br>Grains | Starch and<br>Tubers |
|------|----------------------|------|----------------|-----------------|---------------------|----------------------|
| 2005 | 10493                | 42   | 12.25          | 3.08            | 19.83               | 12.37                |
| 2006 | 11760                | 41   | 11.87          | 3.21            | 20.08               | 11.25                |
| 2007 | 13786                | 42   | 11.97          | n.a.            | n.a.                | n.a.                 |
| 2008 | 15781                | 45   | 13.43          | n.a.            | n.a.                | n.a.                 |
| 2009 | 17175                | 43   | 12.47          | n.a.            | n.a.                | n.a.                 |
| 2010 | 19110                | 40   | 11.37          | n.a.            | n.a.                | n.a.                 |

Sources: Per capita income data is from SSBa (2011). Per capita rural consumption data is from SSBb, various issues. Per capita urban consumption data is from SSBc, various issues.

This includes the two staple food grains – rice and wheat. In urban areas the consumption of rice and wheat flour seems to have stabilised with relatively small changes in consumption of all the food grains listed. The column of "other grains" includes coarse cereals (such as maize, millet and sorghum) but shows a relatively small amount. Despite showing an upward trend, the increase in consumption of such coarse cereals seems to be negligible.

The continuing declining consumption of rice and flour in rural areas is understandable. However, the flat consumption of flour by urban consumers does not seem to lend support to claims by earlier studies that consumers, even in developing countries, may consume more wheat-based products (Bouis 1991, Huang and David 1993). It may be argued that the data here refers to the quantity purchased only and does not include away-from-home consumption (Box 2). Earlier studies also often claim that consumers will demand more processed cereal foods when their income increases (Ito *et al.* 1989, Huang and Bouis 2001). Available data (2000-2006; such data became unavailable from 2007 onwards) lends some support to this claim. Further efforts are warranted to look into the demand for processed cereal foods.

The declining direct consumption of grains by rural residents provides a strong indication that any reduction in human consumption of grains will take place in rural areas. In 2000, maize and tuber consumption was 19 kg and 8 kg, respectively. By 2009, consumption of these products, especially tubers, dropped sharply. Increased income would be responsible for the substitution away from foods of low nutrition.

In addition to the consumption differences between rural and urban residents, it is useful to examine how the consumption level of food grains and various other food items varies when consumer income changes. Income is considered to be the most important factor affecting per capita food consumption (Cranfield *et al.* 1998; Guo *et al.* 2000; Gould 2002; Zhou *et al.* 2003; Wang and Zhou 2005). Data on the consumption of major food items by income groups are made available by China's SSB based on household surveys. Both rural and urban residents are divided into five income groups. For urban residents, the first quintile (bottom 20 per cent) is further divided into two deciles. Separate statistics for the bottom 5 per cent of the first decile are also given. The last quintile (top 20 per cent) is also divided into two deciles.

Between the bottom and top income groups, huge income differences exist. In rural areas, the available income of the bottom 20 per cent is not even enough to cover the total expenditure each year between 2002 and 2010 (Table 2.4, Panel a; for rural residents, total expenditure includes both total production expenditure and total living expenditure; total food expenditure is part of total living expenditure). For the second quintile, after deducting total expenditure, the leftover is very minimal. On the other hand, food expenditure by the top 20 per cent of rural consumers is double that by the

bottom 20 per cent and both total income and total living expenditure are several times higher than those of the bottom 20 per cent. Savings alone by the top 20 per cent group are higher than the annual income of the bottom 20 per cent. A similar pattern exists for urban residents (see Table 2.4, Panel b). However, the urban bottom 20 per cent fare better than their rural counterparts as they still have some money left over after living expenses are met (for urban residents, production expenditure is irrelevant).

#### Box 2. Food Consumption Data for China

China's State Statistical Bureau (SSB) publishes data on per capita consumption of major foods by both rural and urban residents. Such consumption data is based on household surveys.

Aggregated household survey data is made available through a number of publications by SSB. Preliminary and limited data about household consumption covering the previous year are made available in around June each year in the *China Statistics Highlights*. Then, by about October, further data is made available in the *China Statistical Yearbook*. By the end of each year, more detailed data is published in the two publications: *Yearbook of Rural Household Surveys in China* and *Statistical Yearbook of Price and Urban Income and Expenditure in China*. In these two publications, data on consumption of individual food items at various income levels are made available.

Data available from SSB for urban food consumption (in quantity terms) include only *the quantity of foods purchased* by consumers for consumption at home and do not include *away-from-home consumption*. For rural areas, consumption data (in quantity terms) include both purchased food and food produced and consumed by the household on farm. But, again, *away-from-home consumption* is not included.

Away-from-home consumption, however, is a major phenomenon in China today, especially in urban areas. Non-inclusion of away-from-home consumption by urban dwellers makes the reported quantity purchased a significant underestimate of food consumption for urban consumers. Though away-from-home consumption in rural areas would be significantly lower than that in urban areas, it is also increasing fast. Thus, when reading consumption data published by SSB, it is imperative to keep in mind that they are underestimates of food consumption by the Chinese, with the problem of understatement being more acute for urban consumption.

SSB also publishes food consumption expenditure data for urban areas. It is claimed that the expenditure data includes away-from-home consumption. However, such data is of minimal use for gauging the quantity consumed of a food item due to the complication caused by different prices and quality of the food. Further, such data is unlikely to be accurate because those who have consumed foods paid for by public money are unlikely to report such consumption in the surveys.

The underestimation problem with SSB data could be overcome by undertaking a separate survey to measure away-from-home consumption. This, however, would be a very expensive exercise considering the size of China and SSB is probably the only institution capable of doing it. It is also not realistic to only survey one region in China as consumption in different parts of China varies considerably. A survey in one region would likely only be good for explaining food consumption in that region and could not be considered representative of China.

Separate surveys to collect away-from-home consumption data is also unlikely to happen in the future as it is not realistic to ask respondents to recall and report accurate information about their away-from-home consumption quantity. A dish will have several ingredients and when several dishes are eaten, it is difficult to obtain an accurate calculation of the quantity of each of the ingredients consumed.

Another large-scale survey that collects consumption information is the China Health and Nutrition Survey (CHNS). This is an ongoing international collaborative project between the University of North Carolina and the National Institute of Nutrition and Food Safety at the Chinese Center for Disease Control and Prevention. The survey was designed to examine the effects of health, nutrition, and family planning policies and programs implemented by national and local governments and to see how the social and economic transformation of Chinese society is affecting the health and nutritional status of its population. The first survey was conducted in 1989. It is carried out every two to three years. The survey takes place over a 3-day period using a multistage, random cluster process to draw a sample of about 4,400 households with a total of 26,000 individuals in nine provinces that vary substantially in geography, economic development, public resources, and health indicators. The latest CHNS 2009 data is available for public use. Because the survey collects food consumption data of individuals by age, sex, education, and various other information, useful analyses can be carried out about food

consumption trends. However, due to the fact that the data only cover three days, it is of limited use in inferring the exact consumption levels of individuals over a year.

| _         | (a) Rural |       |       |       |       |       |       |       |       |       |
|-----------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|           | Year      | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010  |
| uintile 1 | TI *      | 1552  | 1573  | 1779  | 2090  | 2245  | 2555  | 3072  | 3152  | 3566  |
|           | TE        | 1725  | 1803  | 2050  | 2647  | 2771  | 3170  | 3839  | 4137  | 4394  |
|           | TI – TE   | -174  | -230  | -271  | -557  | -527  | -616  | -767  | -985  | -828  |
|           | TLE       | 1006  | 1065  | 1248  | 1548  | 1625  | 1851  | 2145  | 2355  | 2535  |
| ğ         | TFE       | 562   | 576   | 694   | 796   | 805   | 932   | 1088  | 1107  | 1237  |
|           | EC (%)    | 55.88 | 54.07 | 55.63 | 51.43 | 49.57 | 50.37 | 50.75 | 47.00 | 48.78 |
|           | TI        | 2288  | 2328  | 2667  | 3024  | 3249  | 3718  | 4264  | 4431  | 5102  |
| 3         | TE        | 2094  | 2149  | 2464  | 3036  | 3173  | 3625  | 4167  | 4396  | 4933  |
| ţÌ        | TI – TE   | 195   | 179   | 204   | -12   | 76    | 93    | 97    | 36    | 169   |
| lin       | TLE       | 1310  | 1378  | 1581  | 1913  | 2039  | 2358  | 2653  | 2871  | 3219  |
| ð         | TFE       | 687   | 714   | 841   | 950   | 980   | 1129  | 1294  | 1317  | 1465  |
|           | EC (%)    | 52.41 | 51.84 | 53.20 | 49.66 | 48.05 | 47.86 | 48.77 | 45.88 | 45.49 |
| _         | TI        | 3025  | 3123  | 3535  | 4023  | 4347  | 5042  | 5765  | 6057  | 6986  |
| с<br>С    | TE        | 2581  | 2668  | 3005  | 3653  | 3942  | 4526  | 5099  | 5392  | 6046  |
| ţi        | TI – TE   | 444   | 455   | 530   | 370   | 405   | 516   | 666   | 665   | 941   |
| ļi        | TLE       | 1645  | 1733  | 1951  | 2328  | 2568  | 2938  | 3286  | 3546  | 3964  |
| ğ         | TFE       | 809   | 841   | 986   | 1121  | 1155  | 1327  | 1527  | 1550  | 1718  |
|           | EC (%)    | 49.18 | 48.52 | 50.53 | 48.15 | 44.97 | 45.15 | 46.46 | 43.70 | 43.34 |
| _         | TI        | 4076  | 4220  | 4785  | 5454  | 6003  | 6798  | 7931  | 8488  | 9702  |
| а<br>Ф    | TE        | 3259  | 3336  | 3807  | 4561  | 5068  | 5637  | 6563  | 7038  | 7761  |
| ţij       | TI – TE   | 816   | 883   | 978   | 892   | 935   | 1161  | 1368  | 1450  | 1941  |
| ir        | TLE       | 2087  | 2189  | 2460  | 2879  | 3230  | 3683  | 4191  | 4592  | 5026  |
| ā         | TFE       | 950   | 999   | 1168  | 1297  | 1368  | 1572  | 1816  | 1862  | 2048  |
|           | EC (%)    | 45.51 | 45.64 | 47.47 | 45.06 | 42.34 | 42.69 | 43.32 | 40.54 | 40.74 |
|           | TI        | 7567  | 7999  | 8890  | 10211 | 11066 | 12927 | 14895 | 16007 | 18327 |
| 6<br>2    | TE        | 5534  | 5764  | 6505  | 7515  | 8369  | 9812  | 11216 | 12091 | 13483 |
| ţ         | TI – TE   | 2034  | 2236  | 2385  | 2696  | 2698  | 3115  | 3680  | 3915  | 4844  |
| uin       | TLE       | 3500  | 3756  | 4129  | 4593  | 5277  | 5994  | 6854  | 7486  | 8190  |
| ā         | TFE       | 1354  | 1429  | 1615  | 1808  | 1966  | 2203  | 2522  | 2602  | 2828  |
|           | EC (%)    | 38.69 | 38.05 | 39.11 | 39.36 | 37.25 | 36.75 | 36.79 | 34.76 | 34.53 |

Table 2.4 Per Capita Food Expenditure in China by Income Group (2002-10, yuan)

#### (b) Urban

|        | Year     | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010  |
|--------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1      | TI       | 3029  | 3280  | 3646  | 4010  | 4555  | 5357  | 6058  | 6708  | 8080  |
| intile | TLE      | 2824  | 3056  | 3399  | 3703  | 4094  | 4835  | 5364  | 5822  | 6416  |
|        | TI – TLE | 205   | 224   | 247   | 307   | 460   | 522   | 694   | 886   | 1664  |
| in     | TFE      | 1293  | 1409  | 1623  | 1701  | 1830  | 2178  | 2514  | 2652  | 2886  |
| G      | EC (%)   | 42.68 | 42.95 | 44.51 | 42.41 | 40.17 | 40.65 | 41.50 | 39.53 | 35.72 |
| 2      | TI       | 3649  | 5377  | 6024  | 6711  | 7554  | 8901  | 10196 | 11244 | 12388 |
| e      | TLE      | 3260  | 4558  | 5096  | 5574  | 6108  | 7124  | 7994  | 8739  | 9649  |
| nti    | TI – TLE | 390   | 819   | 928   | 1136  | 1446  | 1777  | 2202  | 2505  | 2739  |
| iui    | TFE      | 1773  | 1926  | 2202  | 2336  | 2484  | 2943  | 3429  | 3640  | 3946  |
| G      | EC (%)   | 48.58 | 35.82 | 36.55 | 34.82 | 32.89 | 33.06 | 33.63 | 32.38 | 31.85 |
| e      | TI       | 4932  | 7279  | 8167  | 9190  | 10270 | 12042 | 13984 | 15400 | 16693 |
| e      | TLE      | 4206  | 5848  | 6498  | 7308  | 7905  | 9097  | 10345 | 11310 | 12609 |
| nti    | TI – TLE | 726   | 1431  | 1668  | 1882  | 2364  | 2945  | 3640  | 4090  | 4084  |
| Ĩ      | TFE      | 2140  | 2294  | 2581  | 2839  | 3019  | 3538  | 4181  | 4410  | 4774  |
| 0      | EC (%)   | 43.40 | 31.52 | 31.61 | 30.89 | 29.40 | 29.38 | 29.90 | 28.64 | 28.60 |
| 4      | TI       | 6657  | 9763  | 11051 | 12603 | 14049 | 16386 | 19254 | 21018 | 21667 |
| e      | TLE      | 5453  | 7547  | 8346  | 9411  | 10218 | 11570 | 13317 | 14964 | 16140 |
| nti    | TI – TLE | 1204  | 2216  | 2705  | 3193  | 3831  | 4815  | 5937  | 6054  | 5527  |
| Ĩ      | TFE      | 2597  | 2763  | 3131  | 3426  | 3648  | 4230  | 5044  | 5367  | 5710  |
| 0      | EC (%)   | 39.01 | 28.30 | 28.33 | 27.18 | 25.97 | 25.81 | 26.20 | 25.54 | 26.35 |
| 2      | TI       | 15384 | 17480 | 20174 | 22988 | 25518 | 29509 | 34932 | 37606 | 38207 |
| e      | TLE      | 10980 | 12072 | 13796 | 15628 | 17116 | 19318 | 22435 | 24134 | 26381 |
| nti    | TI – TLE | 4404  | 5409  | 6378  | 7360  | 8402  | 10192 | 12497 | 13472 | 11826 |
| ۵      | TFE      | 3636  | 3835  | 4328  | 4759  | 5070  | 5751  | 6981  | 7248  | 7646  |
| 0      | EC (%)   | 23.63 | 21.94 | 21.45 | 20.70 | 19.87 | 19.49 | 19.98 | 19.27 | 20.01 |

\*: TI: Total income; TE: Total expenditure; TLE: total living expenditure; TFE: Total food expenditure; EC: Engel coefficient. Engel coefficient = total food expenditure / total living expenditure. In rural China, total expenditure includes total living expenditure plus expenses for production purpose; while in urban China, there is only living expense and no expenses for production purpose involved. Source: SSBa, various issues.

Given the income differentials, it would be expected that consumers with higher disposable income would proportionally consume less food grain. Data on per capita consumption by income group from SSB largely confirms such expectations for urban residents (see Figure 2.1). Consumers in higher income groups consume proportionally less food grains compared to bottom groups but the difference is relatively small. Over time, the consumption level for all income groups has been declining, which is consistent with the analysis given above.

# Figure 2.1 Per Capita Direct Consumption of Food Grains by Income Group in China, 2000-10



Note: Food grains in rural areas are unprocessed, while processed in urban areas. Sources: rural: based on data from SSBb, various issues; urban: based on data from SSBc, various issues.

For rural residents, the level of direct consumption of grains for all income groups has also been declining (Figure 2.1). However, higher-income rural residents tend to consume more food grains than those with lower income. This goes against intuition. It would have been expected that lower income people would have consumed more food grains due to their lower cost. One explanation could be that lower income people did not have enough income to consume the amount of food grains they need. This explanation, however, is contradicted by the decline over time in their food grain consumption. If the above explanation were to hold, their consumption level of food grains would have increased when their income increased over time. Another possible explanation is that low income rural people are highly concentrated in northwest China and southwest China. Wheat and coarse grains are their staple foods (see Map 2.1). When milled, they produce a higher consumable proportion than does processed paddy rice. Hence, when expressed in un-milled raw grains, the per capita direct consumption by lower-income people is lower. Another possible explanation is that low income groups have fewer members with jobs. Rural labourers with a higher physical workload require higher energy than older and younger ones. This difference in household demographic structure may be partially responsible for different per capita consumption.

Map 2.1 Per Capita Consumption of Wheat, Rice and Maize in Rural China by Region (kg, 2009)



Source: based on data from SSBb, various issues.

Data on the consumption of food grains by income group for urban consumers ceased to be available from 2007. Data available (2000-2006) show that per capita urban direct consumption of grains was marginally declining (Figure 2.1). Increases in consumer income may lead to a further decline in demand. Separate rice and wheat flour consumption data is available for urban areas. In terms of rice, per capita consumption has largely stabilised at a level around 42-44 kg per year for consumers in the second quintile and above (Figure 2.2). Consumption by lower income consumers used to be higher than those on higher incomes, but now has become much lower, as is the case in rural areas. Changing geographic distribution of people in different income groups could be a reason. Lower income people tend to be increasingly concentrated in the northwest and southwest, where wheat consumption is more dominant.

# Figure 2.2 Per Capita Consumption of Rice and Wheat Flour by Income Group in Urban China, 2000-10



Source: Based on data from SSBc, various issues.

Consumption of wheat flour by the poorest residents is higher than that by richer ones. Over time, the consumption level tends to fall for all groups (Figure 2.2). It would have been expected that richer people would consume more wheat-based foods. This is likely due to the fact that preparing flour-based foods takes much longer and richer consumers instead buy processed flour-based foods.

Further reductions in per capita direct consumption of grains could be expected over time. Figure 2.1 suggests that all groups in rural areas will reduce food grain consumption as their income increases. If average current urban rice consumption (Figure 2.2) is used as a reference, there will be further overall reductions in rice consumption. The picture for wheat is less clear; higher income urban consumers may have consumed more retail processed wheat-based foods but no data on away-fromhome consumption is available to support this claim. Our judgement is that urban lower income consumers are likely to consume less wheat in the future and hence, overall, China's per capita direct wheat consumption may decrease to some extent. However, it must be noted that while per capita direct consumption of grains is anticipated to continue to decline, the per capita total consumption (or utilisation) of grains is expected to remain relatively stable or even slightly increase, due to increased indirect consumption of grains that are used to produce animal feed. The per capita utilisation of wheat, rice and maize (combined) as given in Tables B1-B3 Appendix B clearly supports this expectation.

Not only are there distinct differences in the levels of food grain consumption between rural and urban residents and between different income groups, but there are also remarkable variations in the level of consumption between regions. China's SSB collects and publishes data on the quantity of food grain consumption and various other major foods at the provincial level for rural residents. For urban areas, only the expenditure of consumption is published by SSB. The 2009 consumption data for rural areas and the 2001 expenditure data for urban areas (after 2001 disaggregated data were no longer available for urban residents and many consumption items have been merged into one, e.g. pork, beef and mutton are merged to be meat), is used to indicate the variations in consumption levels between different regions.

In terms of food grains, wheat is consumed mostly in China's north, especially in the northwest region such as Xinjiang, Gansu and Qinghai (Map 2.1, a). Little wheat is consumed in China's south and southeast (e.g., Hainan, Guangxi and Guangdong). On the other hand, rice is the dominant staple food in China's south and southeast (Hunan, Jiangxi and Hainan) but little is consumed in China's north and northwest (Qinghai, Shandong and Gansu) (Map 2.1, b). Maize consumption is also concentrated in China's north and northwest (Map 2.1, c). Map 2.1 is based on rural consumption. Disaggregated data for wheat, rice and maize consumption at the provincial level for urban areas are not available (only fine grain – including rice and wheat – and coarse grain data is available). We expect the patterns of consumption for food grains in urban areas would be largely similar to those for rural areas.

#### Pork

In rural areas, the consumption of all animal products increased during the 2000s (Table 2.5). In urban areas, while the consumption of most animal products increased, that of eggs and egg products slightly decreased. During 2000-2010, pork consumption showed an increasing trend but fluctuated over the years, partly due to big variations in pork prices and partly due to the widespread diseases in pigs. The increase in rural areas was marginal, being less than 1 kg. The increase in urban areas was about 3 kg. Nonetheless, pork consumption accounted for a large share of meat consumption in both rural and urban areas.

| aji  | \ui ai |      |        |               |                                       |                            |                               |                     |
|------|--------|------|--------|---------------|---------------------------------------|----------------------------|-------------------------------|---------------------|
| Year | Pork   | Beef | Mutton | Poultry meats | Other meats<br>and processed<br>meats | Egg and<br>egg<br>products | Milk and<br>dairy<br>products | Aquatic<br>products |
| 2000 | 13.28  | 0.52 | 0.61   | 2.81          | n.a.                                  | 4.77                       | 1.06                          | 3.92                |
| 2001 | 13.35  | 0.55 | 0.60   | 2.87          | 0.68                                  | 4.72                       | 1.20                          | 4.12                |
| 2002 | 13.70  | 0.52 | 0.65   | 2.91          | 0.64                                  | 4.66                       | 1.19                          | 4.36                |
| 2003 | 13.80  | 0.50 | 0.80   | 3.20          | 1.43                                  | 4.81                       | 1.71                          | 4.65                |
| 2004 | 13.50  | 0.50 | 0.80   | 3.10          | 1.40                                  | 4.60                       | 2.00                          | 4.50                |
| 2005 | 15.60  | 0.60 | 0.80   | 3.70          | 1.70                                  | 4.70                       | 2.90                          | 4.90                |
| 2006 | 15.50  | 0.70 | 0.90   | 3.50          | 1.80                                  | 5.00                       | 3.20                          | 5.00                |
| 2007 | 13.40  | 0.70 | 0.80   | 3.90          | 1.80                                  | 4.70                       | 3.50                          | 5.40                |
| 2008 | 12.60  | 0.60 | 0.70   | 4.40          | 1.80                                  | 5.40                       | 3.40                          | 5.20                |
| 2009 | 13.96  | 0.56 | 0.81   | 4.25          | 1.95                                  | 5.32                       | 3.60                          | 5.27                |
| 2010 | 14.40  | 0.63 | 0.80   | 4.17          | 2.14                                  | 5.12                       | 3.55                          | 5.15                |

Table 2.5 Per Capita Consumption of Animal Products in China (2000-10, kg)

#### b) Urban

| Year | Pork  | Beef | Mutton | Poultry meats | Other meats<br>and processed<br>meats | Egg and<br>egg<br>products | Milk and<br>dairy<br>products | Aquatic<br>products |
|------|-------|------|--------|---------------|---------------------------------------|----------------------------|-------------------------------|---------------------|
| 2000 | 16.73 | 1.98 | 1.35   | 7.38          | 2.41                                  | 11.89                      | 11.55                         | 11.74               |
| 2001 | 15.95 | 1.92 | 1.25   | 7.31          | 2.51                                  | 11.10                      | 13.76                         | 10.33               |
| 2002 | 20.28 | 1.93 | 1.08   | 9.22          | 3.72                                  | 10.56                      | 18.12                         | 13.20               |
| 2003 | 20.43 | 1.98 | 1.33   | 9.20          | 3.84                                  | 11.19                      | 21.71                         | 13.35               |
| 2004 | 19.52 | 2.42 | 1.50   | 8.42          | 3.86                                  | 10.61                      | 22.19                         | 12.04               |
| 2005 | 20.15 | 2.28 | 1.43   | 8.97          | 3.80                                  | 10.40                      | 21.67                         | 12.55               |
| 2006 | 20.00 | 2.41 | 1.37   | 8.34          | 3.80                                  | 10.41                      | 22.54                         | 12.95               |
| 2007 | 18.21 | 2.59 | 1.34   | n.a.          | n.a.                                  | 10.33                      | 22.17                         | 14.20               |
| 2008 | 19.26 | 2.22 | 1.22   | n.a.          | n.a.                                  | 10.74                      | 19.30                         | 14.00               |
| 2009 | 20.50 | 2.38 | 1.32   | n.a.          | n.a.                                  | 10.57                      | 19.27                         | 14.30               |
| 2010 | 20.73 | 2.53 | 1.25   | n.a.          | n.a.                                  | 10.00                      | 18.10                         | n.a.                |

Sources: Per capita rural consumption data is from SSBb, various issues. Per capita urban consumption data is from SSBc, various issues.

We expected that consumers with higher disposable income would consume more foods of higher value such as meats, dairy products and aquatic products. Figure 2.3 clearly shows that as income increases, the consumption of pork increases.



Figure 2.3 Per Capita Consumption of Pork by Income Group in China, 2000-10

Sources: rural: based on data from SSBb, various issues; urban: based on data from SSBc, various issues.

The top income urban dwellers consumed the highest amount of pork in recent years and it continues to increase. In both rural and urban areas, pork consumption by the top income group is about 50 per cent higher than that by the bottom income group. In the past decade, consumers in the bottom income groups in both rural and urban areas first experienced an increase and then a decline in pork consumption. Changes in their income and in the prices of pork relative to substitutes (e.g., mutton, beef, and poultry) may be responsible for such changes.

Note that urban data only shows the amount purchased for consumption at home and does not include away-from-home consumption. Should away-from-home consumption be included, the urban consumption level would be higher. As such, pork consumption by consumers in each of the rural quintiles could be significantly behind those in corresponding quintiles in urban areas. This implies that there is still sizeable potential for pork consumption to increase in China when rural income further increases.

Pork is consumed widely in China. Major consumers are in the country's south and southwest (Map 2.2), e.g., Yunnan, Sichuan, Guizhou and Guangdong, which are all major pork producing regions. Xinjiang, where Muslim ethnic groups account for a large portion of the population, has the lowest per capita consumption of pork.

#### Beef

Table 2.5 shows that although beef consumption is increasing, the amount is very small in both rural areas (about 0.6 kg per capita per annum) and urban areas (about 2.4 kg per capita per annum). However, a significant amount of beef consumption would have taken place on away-from-home occasions. Many Chinese consumers are reluctant to cook beef dishes at home due to their unfamiliarity with cooking with beef. Consuming beef away from home in restaurants is popular. Hence, the quantity consumed as reported in Table 2.5 based on SSB survey data does not reflect the true level of consumption.

The consumption of beef is much higher for consumers with higher incomes (Figures 2.4-2.5; data with separate beef and mutton consumption is not available for rural China). Similar to pork, the consumption of beef by the top income group is about 50 per cent higher than that by the bottom income group in both rural and urban areas. The consumption of beef remained low and increased very slowly for all income groups as shown in Figures 2.4-2.5. However, as noted earlier, away-from-home consumption is not included in the data. It is more than likely that the actual consumption of beef is much higher than what the data demonstrates.

Map 2.2 Per Capita Consumption of Pork in China by Region (kg in rural, yuan in urban, 2009)



Sources: rural: based on data from SSBb, various issues; urban: based on data from SSBc, various issues.





Sources: rural: based on data from SSBb, various issues; urban: based on data from SSBc, various issues.

# Figure 2.5 Per Capita Consumption of Beef and Mutton by Income Group in Urban China, 2000-10



Source: based on data from SSBc, various issues.

Beef is chiefly consumed in China's north and northwest (i.e., Tibet, Xinjiang, Ningxia and Inner Mongolia). Consumption in China's south is very low (Map 2.3).

Map 2.3 Per Capita Consumption of Beef in China by Region (kg in rural, yuan in urban, 2009)



Sources: rural: based on data from SSBb, various issues; urban: based on data from SSBc, various issues.

#### Mutton

During the past decade, there was little increase in mutton consumption according to the data from SSB (Table 2.5). The amount of consumption was very small, being about 0.8 kg per capita per annum in rural areas in 2010 and 1.3 kg per capita per annum in urban areas. However, as in the case of beef, a significant amount of mutton consumption takes place away from home. The quantity consumed of mutton as reported in Table 2.5 would be much higher if away-from-home consumption could be adequately included.

For consumers with higher incomes, consumption of mutton was much higher (Figures 2.4-2.5). The consumption of mutton by the top income group was about 50 per cent higher than that by the bottom income group in both rural and urban areas. The consumption of lamb in absolute amounts remained very low and increased very slowly. Again, the actual consumption level as shown in Figures 2.4-2.5 would be much higher had away-from-home consumption been included.

As with beef, mutton is chiefly consumed in China's north and northwest (i.e., Tibet, Xinjiang, Ningxia and Inner Mongolia). Consumption in China's south is much lower (Map 2.4).

#### **Poultry meat**

In terms of quantity consumed, poultry meat, chiefly, chicken meat, was the second most popular meat after pork (Table 2.5). Urban consumption was about twice that of rural consumption at the end of the 2000s. Rural consumption of poultry meat registered a steady increase. Urban consumption did not show a consistent upward pattern, perhaps due to more consumption away from home (restaurants like Kentuky Fried Chiken are popular in urban China).

The consumption of poultry meat was also much higher for consumers with higher incomes (Figure 2.6). Figure 2.6 shows that as consumer income increases, per capita consumption of poultry meat increased rapidly in both rural and urban areas. The drop in consumption in 2006 was related to an outbreak of avian influenza. Poultry meat is more preferred by people in the south (Hainan, Guangdong and Guangxi) (Map 2.5).

Map 2.4 Per Capita Consumption of Mutton in China by Region (kg in rural, yuan in urban, 2009)



Sources: rural: based on data from SSBb, various issues; urban: based on data from SSBc, various issues.

Map 2.5 Per Capita Consumption of Poultry in China by Region (kg in rural, yuan in urban, 2009)



Sources: rural: based on data from SSBb, various issues; urban: based on data from SSBc, various issues.
Map 2.6 Per Capita Consumption of Poultry Eggs in China by Region (kg in rural, yuan in urban, 2009)



Sources: rural: based on data from SSBb, various issues; urban: based on data from SSBc, various issues.



Figure 2.6 Per Capita Consumption of Poultry Meat by Income Group in China, 2000-10

Note: Poultry data in urban China refer to chicken only. Sources: rural: based on data from SSBb, various issues; urban: based on data from SSBc, various issues.

#### **Poultry eggs**

The quantity of eggs purchased dropped slightly in urban areas, perhaps due to health concerns (we do not expect a significant amount of away-from-home consumption of egg products, and hence these figures are likely to be close to actual consumption). In rural areas, the increase in per capita consumption has been slow in the past ten years. Rural per capita consumption of poultry eggs was only about half that of urban consumers (Table 2.5).

Figure 2.7 shows that consumers with higher incomes consumed more eggs. Top income residents in rural China consumed twice as many eggs as the bottom income residents. In 2010, per capita consumption by the top income group was 8 kg while the bottom income group consumed only 3.4 kg. In urban areas, consumers with higher incomes also consumed more eggs than consumers with lower incomes; however, the difference (around 30 per cent) was much smaller than that for rural areas. Figure 2.7 also shows there was a small increase in egg consumption by rural residents of all income groups. In urban areas, the consumption has tended to decrease for all income groups. This should be an interesting trend to observe. In Figure 2.7, it is clear that for corresponding quintiles, rural consumption was much lower than urban consumption. For example, egg consumption by the richest 20 per cent of rural residents in 2010 was even below that by the poorest 20 per cent of urban residents. This suggests there is further space for increased egg consumption in rural China should rural incomes increase. Poultry eggs are more preferred by people in China's northeast (e.g., Tianjin, Shandong, Henan and Liaoning) (Map 2.6).



Figure 2.7 Per Capita Consumption of Poultry Eggs by Income Group in China, 2000-10

Sources: rural: based on data from SSBb, various issues; urban: based on data from SSBc, various issues.

#### **Dairy products**

Table 2.5 shows that the consumption of dairy products increased significantly during the past ten years. Further details about the composition of the consumption are given in Table 2.6. In 2010, rural consumption of dairy products was approximately only one quarter of urban consumption. It is noted, however, that the percentage increase in dairy consumption is much greater in rural areas; the consumption of dairy products increase three-fold from 2000-2010 in rural areas. The corresponding increase in urban areas was 67 per cent but with a much larger absolute increase (7 kg compared with less than 4 kg in rural areas).

Fresh milk consumption dropped in both rural and urban areas in the past few years. It is believed that this drop is related to consumers' concerns regarding milk quality and food safety, particularly regarding melamine contamination.

| a)   | Rural |      |                         |
|------|-------|------|-------------------------|
| Year | Total | Milk | Other dairy<br>products |
| 2000 | 1.06  | 0.16 | 0.90                    |
| 2001 | 1.20  | 0.27 | 0.93                    |
| 2002 | 1.19  | 0.33 | 0.86                    |
| 2003 | 1.71  | 0.60 | 1.11                    |
| 2004 | 1.98  | 0.78 | 1.20                    |
| 2005 | 2.86  | 1.22 | 1.64                    |
| 2006 | 3.15  | 1.42 | 1.73                    |
| 2007 | 3.52  | 1.62 | 1.90                    |
| 2008 | 3.43  | 1.38 | 2.05                    |
| 2009 | 3.60  | 1.39 | 2.21                    |
| 2010 | 3.55  | n.a. | n.a.                    |

#### Table 2.6 Per Capita Consumption of Dairy Products in China (2000-10, kg)

| b)   | Urban |       |                |         |
|------|-------|-------|----------------|---------|
| Year | Total | Milk  | Milk<br>powder | Yoghurt |
| 2000 | 11.55 | 9.94  | 0.49           | 1.12    |
| 2001 | 13.76 | 11.90 | 0.50           | 1.36    |
| 2002 | 18.12 | 15.72 | 0.60           | 1.80    |
| 2003 | 21.71 | 18.62 | 0.56           | 2.53    |
| 2004 | 22.19 | 18.83 | 0.51           | 2.85    |
| 2005 | 21.67 | 17.92 | 0.52           | 3.23    |
| 2006 | 22.54 | 18.32 | 0.50           | 3.72    |
| 2007 | 22.17 | 17.75 | 0.45           | 3.97    |
| 2008 | 19.30 | 15.19 | 0.57           | 3.54    |
| 2009 | 19.27 | 14.91 | 0.48           | 3.88    |
| 2010 | 18.10 | 13.98 | 0.45           | 3.67    |

Sources: Per capita rural consumption data is from China Dairy Industry Yearbook, various issues. Per capita urban consumption data is from SSBc, various issues.

Urban areas did not record any increase in the consumption of milk powder, possibly reflecting a perception that milk powder is an "inferior" product and consumers prefer to consume more liquid milk and other "higher quality" dairy products when their income improves (Zhou 2001, Zhou *et al.* 2002) (It is noted that because of the lack of confidence in domestically produced milk powder, foreign milk powder, chiefly for baby use, is being imported into China through mail or travellers and such consumption is not included in the statistics). Yoghurt consumption registered a significant increase in urban areas (by 246 per cent between 2000 and 2010, from 1.12 kg to 3.67 kg).

In rural areas, the consumption of dairy products by the top income residents increased from 2.47 kg in 2002 to 5.7 kg in 2010, which was more than double that of the bottom income residents (0.97 kg in 2002 and 2.4 kg in 2010) (Figure 2.8). In urban areas, consumption of dairy products (chiefly, liquid milk, milk powder and yoghurt) consumed by the top income group consumers increased from 18.3 kg in 2000 to 26 kg in 2010. As in rural China, this was more than double that of the bottom income group (6.2 kg in 2000 and 12 kg in 2010) (Figure 2.8).

#### 40 Per capita consumption of dairy products in China Per capita consumption, kg 20 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10 Rural Urban 2nd Q - 3rd Q 1st O 4th O - 5th Q

## Figure 2.8 Per Capita Consumption of Dairy Products by Income Group in China, 2000-10

Sources: rural: based on data from SSBb, various issues; urban: based on data from SSBc, various issues.

The amount of milk powder purchased by all urban income groups was small, being less than 1 kg in all years during 2000-2010 (Figure 2.9, disaggregated consumption data for different kinds of dairy products for rural income groups is not available). On the other hand, the amount of yoghurt consumption increased rapidly for all income groups.





Source: based on data from SSBc, various issues.

In urban areas, the consumption of fresh milk accounts for a major portion of dairy products consumed. However, in recent years, it declined in all income groups, with the drop being greatest in the higher income groups. During 2000-2010, the consumption of milk initially increased and peaked in 2003 to 2004 for various income groups, and then started to decline. Till 2010, this decline had not stopped. As

noted earlier, this decline may be associated with consumer concerns about the safety of dairy products, which may have led to more consumption of yoghurt than liquid milk, resulting in faster increase in yoghurt consumption during the same time period.

Tibet and Qinghai, where dairy products have traditionally formed a large part of the diet for ethnic minority groups, have the highest level of consumption of dairy products, followed by Beijing and Shanghai, two regions with high per capita income (Map 2.7). Dairy products are not widely consumed in China's south, especially in rural areas.

Map 2.7 Per Capita Consumption of Milk in China by Region (kg in rural, yuan in urban, 2009)



Sources: rural: based on data from SSBb, various issues; urban: based on data from SSBc, various issues.

Map 2.8 Per Capita Consumption of Aquatic Products in China by Region (kg in rural, yuan in urban, 2009)



Sources: rural: based on data from SSBb, various issues; urban: based on data from SSBc, various issues.

#### **Aquatic products**

The consumption of aquatic products also increased significantly in the past ten years. The tremendous growth in China's aquacultural output contributed to this consumption increase. Fish was the major aquatic food consumed in both rural and urban areas (Table 2.7). The consumption of shrimp and prawns was relatively low (no separate data is available for rural areas). Fish accounted for an overwhelming proportion of aquatic product consumption, perhaps due to the ease of cooking fish at home. Perhaps there was little change in the amounts of "shrimp and prawns" and "other aquatic products" purchased by urban residents because more of these products were consumed away from home as incomes increased.

Table 2.7 Per Capita Consumption of Aquatic Products in China (2000-10, kg)a)RuralYearTotal aquatic productsFish

| Year    | Total aquatic products | Fish |
|---------|------------------------|------|
| 2000    | 3.92                   | n.a. |
| 2001    | 4.12                   | 3.42 |
| 2002    | 4.36                   | 3.64 |
| 2003    | 4.65                   | 3.89 |
| 2004    | 4.50                   | 3.70 |
| 2005    | 4.90                   | 4.10 |
| 2006    | 5.00                   | 4.10 |
| 2007    | 5.40                   | 4.50 |
| 2008    | 5.20                   | 4.30 |
| 2009    | 5.30                   | 4.30 |
| 2010    | 5.15                   | n.a. |
| a) Urba | an                     |      |

| Year | Total<br>aquatic<br>products | Fish  | Shrimp and prawns | Other aquatic products |
|------|------------------------------|-------|-------------------|------------------------|
| 2000 | 11.74                        | 4.30  | 0.96              | 6.48                   |
| 2001 | 10.33                        | 4.45  | 1.13              | 4.75                   |
| 2002 | 13.20                        | 9.60  | 1.32              | 2.28                   |
| 2003 | 13.35                        | 9.79  | 1.33              | 2.23                   |
| 2004 | 12.04                        | 8.88  | 1.26              | 1.90                   |
| 2005 | 12.55                        | 9.37  | 1.21              | 1.97                   |
| 2006 | 12.95                        | 9.56  | 1.29              | 2.10                   |
| 2007 | 14.20                        | 10.24 | 1.59              | 2.37                   |
| 2008 | 14.00                        | 10.44 | 1.45              | 2.11                   |
| 2009 | 14.30                        | 10.58 | 1.59              | 2.13                   |
| 2010 | n.a.                         | 10.21 | 1.47              | n.a.                   |

Sources: Per capita rural consumption data is from SSBb, various issues. Per capita urban consumption data is from SSBc, various issues.

In 2010, the consumption of aquatic products by the top rural income consumers (11.10 kg) was about five times higher than that of bottom income consumers (2.20 kg) (Figure 2.10). In urban areas, the top income consumers consumed 13.6 kg, about two times higher than that of bottom income consumers (7.45 kg) (Figure 2.10). The increase in consumption within each income group was small. It is likely that Chinese consumers opted to consume aquatic products on away-from-home occasions, especially those with higher incomes. However, when consumer incomes increase, the increase in consumption is significant (Figure 2.10).

There are very distinct patterns in the consumption of aquatic products between regions. Major consumers are in China's coastal south and southeast provinces. Aquatic products are consumed less in China's western provinces, especially in the northwest (Map 2.8).



Figure 2.10 Per Capita Consumption of Aquatic Products by Income Group in China, 2002-10

Note: Aquatic products in urban China refer to fish only. Sources: rural: based on data from SSBb, various issues; urban: based on data from SSBc, various issues.

#### **Cooking oil**

In recent years, China imported large quantities of rapeseed (1.6 mt in 2010), soybeans (55 mt in 2010), and cooking oils (8.3 mt in 2010). Table 2.8 shows, however, that there is no marked increase in cooking oil use at home in both rural and urban areas. It is likely that imported cooking oil has been used in catering industries and food processing industries rather than consumed directly at home. Table 2.8 also shows that the consumption of animal oil is decreasing and is clearly less popular than vegetable oils. In urban areas, the quantity of animal oil consumed is very low and declining. In rural areas, the consumption is slightly higher but decreasing rapidly.

| Table : | 2.8 Per | Capita | Consumpti | on of | Cooking | Oil in | China | (2000-10, | kg) |
|---------|---------|--------|-----------|-------|---------|--------|-------|-----------|-----|
| a)      | Rural   |        |           |       |         |        |       |           |     |

| Year | Total | Vegetable Oil | Animal Oil |
|------|-------|---------------|------------|
| 2000 | 7.06  | 5.45          | 1.61       |
| 2001 | 7.03  | 5.51          | 1.52       |
| 2002 | 7.53  | 5.77          | 1.76       |
| 2003 | 6.30  | 5.30          | 1.00       |
| 2004 | 5.30  | 4.30          | 1.00       |
| 2005 | 6.00  | 4.90          | 1.10       |
| 2006 | 5.80  | 4.70          | 1.10       |
| 2007 | 6.00  | 5.10          | 0.90       |
| 2008 | 6.20  | 5.40          | 0.90       |
| 2009 | 6.25  | 5.42          | 0.83       |
| 2010 | 6.31  | 5.52          | 0.79       |

| b)   | Urban |                  |               |
|------|-------|------------------|---------------|
| Year | Total | Vegetable<br>Oil | Animal<br>Oil |
| 2000 | 8.61  | 8.16             | 0.45          |
| 2001 | 8.47  | 8.08             | 0.39          |
| 2002 | 9.00  | 8.52             | 0.48          |
| 2003 | 9.59  | 9.20             | 0.39          |
| 2004 | 9.70  | 9.40             | 0.30          |
| 2005 | 9.61  | 9.25             | 0.36          |
| 2006 | 9.67  | 9.38             | 0.29          |
| 2007 | 9.63  | 9.63             | n.a.          |
| 2008 | 10.27 | 10.27            | n.a.          |
| 2009 | 9.67  | 9.67             | n.a.          |
| 2010 | 8.84  | 8.84             | n.a.          |

Vegetable oil only in urban China from 2007 to 2010.

Sources: Per capita rural consumption data is from SSBb, various issues. Per capita urban consumption data is from SSBc, various issues.

#### **Alcoholic drinks**

By volume, China has become the world's largest beer market. Beer consumption is generally expected to increase when consumers' income increases. This is clearly the case for rural residents (Table 2.9). However, the data for urban dwellers goes against this understanding. The reason may be that urban residents consumed more beer away from home. China's total beer output has increased rapidly from 22.3 billion litres in 2000 to 44.9 billion litres in 2010 (SSBa 2002, p. 478; SSBa 2011, p. 499). In 2010, its total beer exports were 0.194 billion litres (beer import data is not available). SSB beer consumption data cannot explain the gap between production and consumption, implying that much beer is consumed away from home.

#### Table 2.9 Per Capita Consumption of Alcoholic Drinks in China (2000-10, kg)

| a)   | Rural |                   |      |
|------|-------|-------------------|------|
| Year | Total | Chinese<br>Liquor | Beer |
| 2000 | 7.02  | n.a.              | n.a. |
| 2001 | 7.10  | 3.43              | n.a. |
| 2002 | 7.50  | n.a.              | n.a. |
| 2003 | 7.10  | 3.43              | 4.00 |
| 2004 | 7.80  | 3.10              | 4.30 |
| 2005 | 9.60  | 3.50              | 5.50 |
| 2006 | 10.00 | 3.40              | 6.10 |
| 2007 | 10.20 | 3.30              | 6.30 |
| 2008 | 9.70  | 3.10              | 6.00 |
| 2009 | 10.08 | 3.20              | 6.40 |
| 2010 | 9.74  | n.a.              | n.a. |

|      | Urban |                   |      |      |                              |
|------|-------|-------------------|------|------|------------------------------|
| Year | Total | Chinese<br>Liquor | Beer | Wine | Other<br>Alcoholic<br>Drinks |
| 2000 | 10.01 | 2.66              | 6.51 | 0.18 | 0.66                         |
| 2001 | 9.69  | 2.57              | 6.29 | 0.20 | 0.63                         |
| 2002 | 9.14  | 2.40              | 5.90 | 0.24 | 0.60                         |
| 2003 | 9.39  | 2.40              | 6.12 | 0.29 | 0.58                         |
| 2004 | 8.94  | 2.25              | 5.91 | 0.26 | 0.52                         |

| Year | Total | Chinese<br>Liquor | Beer | Wine | Other<br>Alcoholic<br>Drinks |
|------|-------|-------------------|------|------|------------------------------|
| 2005 | 8.85  | 2.28              | 5.75 | 0.26 | 0.56                         |
| 2006 | 9.12  | 2.29              | 6.01 | 0.25 | 0.56                         |
| 2007 | n.a.  | 2.27              | 6.05 | 0.25 | n.a.                         |
| 2008 | n.a.  | 2.15              | 5.25 | 0.22 | n.a.                         |
| 2009 | n.a.  | 2.31              | 5.43 | 0.25 | n.a.                         |
| 2010 | 7.02  | 2.08              | 4.66 | 0.24 | 0.04                         |

Sources: Per capita rural consumption data is from SSBb, various issues. Per capita urban consumption data is from SSBc, various issues.

The consumption of Chinese liquor (with high alcohol volumes, ranging between 36 per cent to 65 per cent) seems to have been steadily declining in both rural and urban areas, reflecting changes in people's tastes and preferences – moving away from high-to low-volume alcohol drinks. The consumption of wine is comparatively low but on the increase (and would likely be higher if away-from-home consumption is included). If consumers continue to move away from high volume Chinese liquor to other alcoholic beverages, the potential market for wine is substantial (Table 2.9).

In urban China, the purchase of Chinese liquor declined among all income groups (Figure 2.11), suggesting changes in tastes and preferences for lower alcohol drinks. Between income groups, higher income consumers bought more beer and wine for consumption at home. Within the same income group, it is interesting to note that the amount of beer purchased declined for all income groups over time. As noted earlier, given that the supply of beer has been increasing in the past decade, the likely explanation would be that urban Chinese consumed more beer at away-from-home occasions. The only alcoholic drink that experienced an increase within the same income group over time is wine (Figure 2.11). Although the increase in the amount of wine consumed was small, it shows the potential for wine sales in China. Wine is seen as a premium beverage and is increasingly preferred by wealthier consumers.

## Figure 2.11 Per Capita Consumption of Alcohol Drinks by Income Group in Urban China, 2000-10



Source: based on data from SSBc, various issues.

Data on the consumption of alcoholic drinks by income groups is not available for rural areas. Per capita consumption of Chinese liquor could be higher in rural areas as

generally lower income consumers tend to drink higher alcoholic drinks. While the consumption of beer may also be increasing in rural China, the consumption of wine would be very low due to its cost.

#### **Vegetables and fruits**

There have been no dramatic changes in terms of consumption of vegetables, fruits, melons and their processed products. The quantity consumed seems to be quite stable in both rural and urban areas. The difference in the level of vegetable consumption between rural and urban areas is relatively small. However, fresh fruit consumption in urban areas is twice that in rural areas (see Table 2.10).

The consumption of vegetables (not including potatoes and sweet potatoes) increases from low income to high income groups (Figure 2.12). The level of vegetable consumption between rural and urban rich was largely comparable, around 130 kg per person per annum. This level, however, was about 30-40 kg higher than that of the bottom income consumers. This somewhat goes against intuition. It would be expected that because vegetables are relatively low value foods compared to animal products that lower income people would consume more. There are a couple of explanations as to why this might be the case. It may be that some of those poor do not have refrigerators and when they are not close to markets, they may not buy vegetables every day. Further, vegetable production requires water but water is scarce in the North-West region. Thus, vegetables may have to be imported from other regions, increasing the price and reducing affordability for lower income groups (Zhang, L.X, per. comm. 1 December 2011).

| `a)  | Rural      |        |
|------|------------|--------|
| Year | Vegetables | Fruits |
| 2000 | 112        | 18.31  |
| 2001 | 109        | 20.33  |
| 2002 | 111        | 18.77  |
| 2003 | 107        | 17.50  |
| 2004 | 107        | 17.00  |
| 2005 | 102        | 17.10  |
| 2006 | 101        | 19.10  |
| 2007 | 99         | 19.50  |
| 2008 | 100        | 19.40  |
| 2009 | 98         | 20.54  |
| 2010 | 93         | 19.64  |
|      |            |        |

Table 2.10 Per Capita Consumption of Vegetables, Fruits and Melons in China (2000-10, kg)

#### b) Urban

| Year | Vegetables | Fresh<br>Fruits | Fresh<br>Melons | Dried<br>Fruits | Processed<br>Fruits and<br>Melons | Nuts |
|------|------------|-----------------|-----------------|-----------------|-----------------------------------|------|
| 2000 | 117        | 36.90           | 20.57           | 0.57            | 8.35                              | 3.30 |
| 2001 | 118        | 37.26           | 22.63           | 0.54            | 9.02                              | 3.37 |
| 2002 | 117        | 37.80           | 18.72           | 0.72            | 0.48                              | 2.76 |
| 2003 | 118        | 37.99           | 18.58           | 0.78            | 0.44                              | 2.70 |
| 2004 | 122        | 38.81           | 17.64           | 0.72            | 0.42                              | 2.94 |
| 2005 | 119        | 37.50           | 19.19           | 0.71            | 0.42                              | 2.97 |
| 2006 | 118        | 38.01           | 22.16           | 0.75            | 0.44                              | 3.03 |

| Year | Vegetables | Fresh<br>Fruits | Fresh<br>Melons | Dried<br>Fruits | Processed<br>Fruits and<br>Melons | Nuts |
|------|------------|-----------------|-----------------|-----------------|-----------------------------------|------|
| 2007 | 118        | 41.10           | 18.44           | n.a.            | n.a.                              | n.a. |
| 2008 | 123        | 38.19           | 16.29           | n.a.            | n.a.                              | n.a. |
| 2009 | 120        | 38.94           | 17.61           | n.a.            | n.a.                              | n.a. |
| 2010 | 116        | 36.93           | 17.30           | n.a.            | n.a.                              | n.a. |

Sources: Per capita rural consumption data is from SSBb, various issues. Per capita urban consumption data is from SSBc, various issues.

Figure 2.12 Per Capita Consumption of Vegetables by Income Group in China, 2000-10



Sources: rural: based on data from SSBb, various issues; urban: based on data from SSBc, various issues.

During the past decade, the increase in fruit consumption in rural areas was small, but relatively large in urban areas. Higher income groups consumed twice as much fruit as lower income groups in both rural and urban areas (Figure 2.13). However, rural consumption of fruits was much lower compared to their urban counterparts. For example, the amount of fruits consumed by the top rural income group was lower than that by the urban bottom income group. In 2010, the top rural income group consumed just below 20 kg per person while the bottom urban income group purchased 27 kg. On the other hand, the top urban income group consumed over 52 kg of fruits. The large gap between rural-urban fruit consumption points to significant scope for increased rural consumption as rural income increases.



Figure 2.13 Per Capita Consumption of Fruits by Income Group in China, 2000-10

Sources: rural: based on data from SSBb, various issues; urban: based on data from SSBc, various issues.

The examination of food consumption developments in China during 2000-2010, recognising the limitations of the SSB data, reveals the following important findings:

#### **Rural-urban consumption differences:**

- During the past decade, per capita direct consumption of food grains declined, while that of animal products increased in both rural and urban areas.
- Food grain consumption by rural residents was significantly higher than that by urban residents. In terms of the amount of processed grains, the consumption by rural residents in 2010 was roughly comparable to that by urban residents in 1982.
- The consumption of meats (including pork, beef, mutton and poultry) by rural residents is lagging behind that of urban residents by about 30 years. In 2010, per capita consumption by rural residents was almost 20 kg, lower than the corresponding consumption by urban residents in 1982, being just over 21 kg.
- The difference in consumption between rural and urban consumers for pork and poultry meat was relatively small, but was much larger for beef and mutton. Per capita consumption of beef and mutton by rural top income consumers has been below that of the urban bottom group.
- Significant gaps also existed between rural and urban consumers in the consumption of poultry eggs, aquatic products and dairy products. Rural per capita consumption in 2010 was about one half, one third, and one quarter of that by urban residents in 2010, respectively, and was lower than the consumption level of urban residents in 1982; thus also lagging behind that of urban residents by about 30 years.
- When rural residents' income further improves, there is the potential for further reduction in direct human consumption of grains in China. At the same time, there will be huge potential for the increased consumption of animal products.

#### **Consumption differences between the rich and poor:**

- There were significant differences between lower income and higher income consumers for almost all of the food products examined, with the only exception being the consumption of food grains and milk powder in urban areas.
- Generally, higher income residents consumed higher amounts of foods, with two exceptions: food grains and Chinese liquor.
- With higher income, the consumption of pork, beef, mutton and poultry meats was higher than the amount consumed by low income consumers. The difference was 50 per cent or greater.
- Higher income dwellers consumed significantly more dairy products and aquatic products.
- In the past decade, egg consumption by all urban income groups tended to decline as incomes increased.
- Except for the consumption of food grains and Chinese liquor in urban areas, the consumption of all other foods examined in this study will increase when consumer income increases, suggesting huge potential for consumption of various foods in China.

#### **Regional consumption differences:**

- For food grain consumption, all major wheat-consuming provinces are in the country's north. Wheat and other coarse grains are the staple foods for people in northern China.
- Rice is predominantly consumed in southern China and is the staple food for many people in China's south.
- Pork is widely consumed in different parts of the country, with southern provinces consuming comparatively the most. North-west China has a higher per capita consumption of beef and mutton. Poultry meats and eggs are more preferred by people in central and eastern China.
- Aquatic product consumption is typically concentrated in China's coastal south-east provinces, which is the base of most aquacultural production.
- Per capita consumption of dairy products is higher in regions (1) where ethnic minorities are more prevalent and dairy products form a major part of their diet or (2) where consumers have much higher incomes.
- The different levels and patterns of food consumption between regions seem to be largely affected by three factors: local income level; food availability; and ethnic background.
- The convergence in food tastes and preferences between people in different parts of China in the past decade has been slow. Nonetheless, such convergence is expected to accelerate in the years to come due to the following three major reasons.
  - (1) The improved availability of chilled transportation facilities, where some foods (such as aquatic products, beef and mutton, dairy products) will become more widely available across the country. Improved home refrigeration facilities will also enable and encourage people to buy such foods.

- (2) Travelling between different parts of the country has become much easier, enabling regional cuisines to be enjoyed across China.
- (3) A large number of workers, mainly from rural areas, seek employment in other provinces and are exposed to, and influenced by, different foods which could affect the foods that are consumed in their own homes.

#### 3. Identification and Analysis of Key Drivers

Our analysis shows that the level and composition of food consumption in China has experienced some major changes between 2000 and 2010. Per capita direct consumption of grains dropped while the consumption of foods of higher value increased, especially foods of animal origin. Admittedly, the consumption of animal foods in China in absolute terms is still low, particularly when compared with many developed countries. However, the speed of the increase has been impressive.

Important questions to ask include: what has led to such a fast increase in the consumption of animal products and other foods of higher value? Will this trend continue into the near future, and if so what are the key factors that will drive this trend? Identification of such factors is valuable not only for understanding China's demand for such foods in the past and present, but also for analysing future trends and likely changing patterns of food consumption. This part of the report focuses on the identification and analysis of key drivers responsible for food consumption developments as discussed in Section 2.

#### **Rising income**

Fast economic growth and moderate population growth rates have resulted in increased consumer income. As income increased, the amount of income spent on food increased although the actual proportion of income spent on food declined as shown in Tables 2.2 and 2.4. Lower value food grains were substituted with foods of higher value, such as foods of animal origin. This led to a steady increase in the consumption of animal products (as we have shown in the previous section). A number of recent studies confirm that rising income is the major driving force leading to increased consumption of animal products (see, for example, Huang and Rozelle 1998, Ma *et al.* 2004, Fuller *et al.* 2000, Zhou *et al.* 2003).

How will the income factor affect future consumption of animal products? This is largely determined by the income growth rate and the income elasticity of demand for animal products. All things being equal, the greater the income elasticity, the greater the demand for animal products when income rises. So far, there is little agreement about the likely size of income elasticities of demand for various animal products for China, although there is no shortage of such estimates (for a summary of some of these estimates, see Table A1 in Appendix A). Nonetheless, it is generally claimed that: (1) income elasticities of demand for most foods are declining over time as incomes rise; (2) the income elasticities for animal products are relatively large compared to those of staple foods; and (3) rural income elasticities are greater than urban income elasticities. Income elasticities derived by different studies for a variety of foods collated in Table A1 support the above assertions. However, income elasticities that take into consideration consumption changes in the 2000s are limited. As for income growth, it is widely held that China's economy will continue to grow at a high speed (around 8-9 per cent), and thus consumer income is expected to continue to increase.

Analysis in Section 2 shows that not only will the demand for foods of animal origin by Chinese consumers increase when their incomes increase, their demand for various foods of plant origin such as fruits will also increase. But this is not the case for staple food grains (i.e., wheat and rice). Hence, our analysis indicates that there exists the potential for increased food demand in China if the bottom income groups can increase their income toward the higher income groups, and if rural incomes increase toward urban income levels.

#### **Rapid urbanisation**

Urbanisation generally brings about a higher income to new residents. These residents are also readily exposed to urban lifestyles, including consumption behaviours. This tends to influence and change their dietary behaviours. According to Huang and Rozelle (1998, p. 18), urbanisation affects not only the consumption level of different foods, but also the composition of what food is consumed. When a rural resident moves to a city, the consumption of food grains and vegetables tends to decrease but that of other foods including animal products tends to increase. For example, depending on whether the city is small, medium or large, the consumption of animal products by new urban residents in China will increase in the range of 4.2 to 7.2 kg, and that of aquatic products, 1.5 to 1.7 kg.

China's urbanisation level was very low at the end of the 1970s, being less than 20 per cent. Economic reforms have led to accelerated industrialisation and urbanisation. By 2003, the urbanisation level had doubled that of 1980, reaching 40 per cent. In 2010, it reached almost 50 per cent; that is, about half of China's population now lives in urban areas. China's accelerated urbanisation must have contributed to the increase in the consumption of animal products and other foods of higher value. Urbanisation has been promoted in recent years by both China's central and local governments and its level is expected to continue to increase. Hence, urbanisation is likely to continue to stimulate changes in the level and composition of food consumption, and its impact is likely to become even stronger.

#### **Changing lifestyle**

Increases in income and urbanisation promote changes in lifestyle. More and more Chinese have started to take holidays and consume foods that require less or no time to prepare. The increase in the number of Chinese people taking inter-city, interprovince, and international holidays has been increasing rapidly in recent years. For lifestyle, convenience and time saving, more and more people dine out and buy processed or semi-processed foods. Many are also keen to try out Western-style fast foods, e.g. Kentucky Fried Chicken and McDonald's.

The number of consumers dining out (away-from-home consumption) deserves special attention. The number of people that dine out is very large and still increasing. SSB household survey data does not include away-from-home consumption (quantity) and this is an important reason why per capita consumption data is underestimated. Based on the SSB data, the ratio of away-from-home food expenditure out of total food expenditure becomes higher when consumer income increases. The ratio is much higher for high-income consumers than for low-income consumers. For example, in 1995, urban consumers spent a little less than 10 per cent of their food expenditure on away-from-home consumption. By 2000, this ratio increased to 15 per cent. It further increased to 22 per cent in 2009 (see Table 3.1). In 2000, the lowest income group of urban residents spent less than 9 per cent on away-from-home consumption and this ratio increased by about two percentage points by 2009. For the highest income group, this ratio was already over 20 per cent in 2000 and jumped further to over 35 per cent in 2009, an increase by almost 15 percentage points. In absolute terms, the highest income group spent 2,684 yuan on average on away-from-home food in 2009; the lowest income group spent 255 yuan (in 2009, 1A\$=5.46¥). Expenditure on awayfrom-home food by the highest income group in 2009 (2,684 yuan) was higher than the total food expenditure of the lowest urban income group, which was 2,294 yuan (Table 3.1). Empirical studies that address food-away-from-home consumption have generated similar observations (Wang and Fan 1999; Ma et al. 2001).

Table 3.1 Food-Away-From-Home (FAFH) Expenditure in Urban China by IncomeGroup (2000-09, yuan, % )

|      | Food<br>exp. | FAFH<br>exp. | Ratio* |
|------|--------------|--------------|--------|--------------|--------------|--------|--------------|--------------|--------|--------------|--------------|--------|
|      | A۱           | /erage       |        | The fi       | rst decil    | е      | The s        | econd d      | ecile  | The se       | cond qu      | intile |
| 2000 | 1958         | 288          | 15     | 1257         | 110          | 9      | 1524         | 165          | 11     | 1749         | 202          | 12     |
| 2001 | 2014         | 314          | 16     | 1301         | 119          | 9      | 1570         | 175          | 11     | 1791         | 228          | 13     |
| 2002 | 2272         | 414          | 18     | 1127         | 99           | 9      | 1458         | 153          | 10     | 1773         | 234          | 13     |
| 2003 | 2417         | 438          | 18     | 1223         | 103          | 8      | 1595         | 171          | 11     | 1926         | 249          | 13     |
| 2004 | 2710         | 533          | 20     | 1418         | 129          | 9      | 1827         | 214          | 12     | 2202         | 317          | 14     |
| 2005 | 2914         | 607          | 21     | 1476         | 144          | 10     | 1926         | 246          | 13     | 2336         | 361          | 15     |
| 2006 | 3112         | 691          | 22     | 1586         | 177          | 11     | 2073         | 289          | 14     | 2484         | 404          | 16     |
| 2007 | 3628         | 761          | 21     | 1904         | 213          | 11     | 2451         | 319          | 13     | 2493         | 458          | 18     |
| 2008 | 4260         | 878          | 21     | 2182         | 221          | 10     | 2846         | 346          | 12     | 3429         | 509          | 15     |
| 2009 | 4479         | 976          | 22     | 2294         | 255          | 11     | 3009         | 396          | 13     | 3640         | 597          | 16     |

\* Ratio = FAFH expenditure / Food expenditure. Source: SSBc, various issues.

|      | Food<br>exp. | FAFH<br>exp. | Ratio* |
|------|--------------|--------------|--------|--------------|--------------|--------|--------------|--------------|--------|--------------|--------------|--------|
|      | The th       | ird quin     | tile   | The fou      | rth quin     | tile   | The          | ninth de     | cile   | The          | tenth dec    | ile    |
| 2000 | 1961         | 273          | 14     | 2216         | 357          | 16     | 2459         | 452          | 18     | 2847         | 588          | 21     |
| 2001 | 2033         | 293          | 14     | 2272         | 387          | 17     | 2510         | 484          | 19     | 2921         | 658          | 23     |
| 2002 | 2140         | 333          | 16     | 2597         | 476          | 18     | 3171         | 685          | 22     | 4101         | 1154         | 28     |
| 2003 | 2294         | 355          | 15     | 2763         | 506          | 18     | 3338         | 703          | 21     | 4333         | 1284         | 30     |
| 2004 | 2581         | 432          | 17     | 3131         | 630          | 20     | 3741         | 894          | 24     | 4915         | 1594         | 32     |
| 2005 | 2839         | 513          | 18     | 3426         | 727          | 21     | 4151         | 1042         | 25     | 5367         | 1834         | 34     |
| 2006 | 3019         | 582          | 19     | 3648         | 835          | 23     | 4392         | 1168         | 27     | 5747         | 2050         | 36     |
| 2007 | 3538         | 647          | 18     | 4230         | 900          | 21     | 5062         | 1305         | 26     | 6440         | 2156         | 33     |
| 2008 | 4181         | 748          | 18     | 5044         | 1080         | 21     | 6087         | 1539         | 25     | 7874         | 2706         | 34     |
| 2009 | 4410         | 831          | 19     | 5367         | 1226         | 23     | 6360         | 1732         | 27     | 8135         | 2864         | 35     |

\* Ratio = FAFH expenditure / Food expenditure.

Source: SSBc, various issues.

#### **Changes in tastes and preferences**

In China, as in many other countries, trying foods from other cultures is popular. Three major factors may have facilitated changes in Chinese consumers' tastes and preferences, leading to their increased interests in trying new foods: (1) increased income; (2) improved availability of different kinds of foods in local markets due to better transportation networks; and (3) increased international cultural exchanges and exposure to different foods and eating habits. In China, dairy products were traditionally not a part of the diet for many consumers, especially in rural areas. Today, it is common to see urban consumers, as well as wealthy rural consumers, consuming milk and other kinds of dairy products such as yoghurt and ice-cream.

#### Better organisation of food production and marketing

Food production and marketing have become better organised. For example, the rapid development of China's animal feed industry has contributed significantly to improving the output of China's animal production industries. Chilled facilities for perishable foods and for long-distance transportation have increased and improved. This means that consumers have access to more and different foods than before.

The concept of supply chains has now become accepted by China's food industries and is encouraged by the government. Foreign food retailers are allowed to operate in China. The entry of some major foreign food retailers such as Carrefour and Wal-Mart has further boosted competition in an already competitive market, leading to increased food varieties and branded food products.

#### **Changes in population structure**

It is estimated that China's population will continue to increase till about the mid-2030s. Given the size of its population, every small increase or decrease in per capita demand for food products will translate into a large sum at the national level. However, in future, it may be that the impact from the size of the population on food consumption may not be as important as the impact from structural changes in the population. The proportion of aged people in the population is increasing much faster than the proportion of younger people. The composition of foods demanded by aged, middle-aged and younger populations is different. A relatively higher proportion of the aged population is likely to have a major impact on the composition and amount of foods demanded in China. For example, there may be reduced consumption of meats, especially red meats, but increased consumption of other foods. Such an impact is yet to emerge or be seen, but is an area that deserves close attention in the future.

# 4. Outlook for China's Food Consumption and Import Demand by 2020

With the exception of rice and wheat, the per capita consumption of foods by Chinese consumers has increased during the last decade. Those factors that have driven these increases will continue to drive higher consumption, with the impact of urbanisation potentially becoming the most influential factor. Consequently, it will be beneficial to know: how China's consumption of various foods will increase in the future; whether

China can produce enough to meet such rising demand; and if imports are needed, how much China must import.

Projecting China's future food production, consumption and trade in food products requires reliable data and forecasting. While there is no shortage of sound forecasting approaches, data of acceptable quality is generally not available. Various individual researchers, governments and international organisations have attempted to conduct such forecasts by using freely available data, mostly from Chinese government publications, plus data obtained from field work, and in some cases self-generated estimates or assumptions. However, food consumption projections vary widely; see, for example, Huang *et al.* (1999), Chen (2004), FAPRI, USDA, OECD-FAO. The discrepancies in such forecasting work arise from several factors including differences in assumptions that underlie any projection work.

Constrained by data, it was not feasible for this study to carry out sophisticated econometric forecasting. Indeed, given the data deficiencies, any new modelling efforts are unlikely to produce results that are any more reliable than those from the USDA (USDA Agricultural Projections), FAPRI (FAPRI World Agricultural Outlook), OECD-FAO (OECD-FAO Agricultural Outlook), for example. In this study, we focus on analysing and evaluating the reliability of previous forecasts based on our understanding of China's current market.

The approach adopted in this study to provide an outlook of China's food consumption and food import needs by 2020 is summarised below.

- 1) Determine per capita food consumption to help understand evolving trends.
- 2) Derive income elasticities of demand for various foods to identify how the demand for various foods may change when consumer income increases.
- 3) Collate and compare existing forecasts of production and consumption of various foods for China.
- 4) Provide an analysis of the likely trends in China's demand for food imports.

#### 4.1 Methodological Considerations

#### Deriving per capita utilisation

Per capita food consumption data available from SSB, as used in Section 2, is valuable in examining the trends of food consumption in China. The data, however, has limited value for understanding China's future total demand for two reasons: (1) it does not include consumers' away-from-home consumption; and (2) it only includes direct human consumption. To better understand future total demand, we need to know current food use on a per capita basis including all uses of a given food item (such as for direct human consumption, feed use, processing etc.). Food balance sheets, such as those produced by the FAO, offer a useful alternative to derive per capita food consumption or utilisation.

Food balance sheets show the quantity of food available (supply) in a country and where the food supply goes (utilisation). Annual food balance sheets tabulated regularly over a period of years are also useful to: (1) show the trends in the overall national food supply; (2) reveal changes that may have taken place in the types of

food consumed (i.e. the pattern of the diet); and (3) reveal the extent to which the food supply of the country as a whole is adequate in relation to nutritional requirements (FAO 2001, p. 3). Many countries compile their food balance sheets regularly, e.g. the Australian Bureau of Statistics compiles the Apparent Consumption of Foodstuffs data (ABS 2007, Cat No. 4306.0) based on the food balance sheet principle.

Food balance sheets by the Chinese government, however, are not publicly available. To work out China's per capita food consumption, we used the food balance sheets compiled by the FAO (Food Balance Sheets) and USDA (PSD). These organisations compile food balance sheets for various countries including China. Following careful examinations of these balance sheets, FAO's food balance sheets were chosen for producing per capita food consumption for this study for three major reasons:

- 1. They cover more food items than others.
- 2. FAO balance sheets are based on official data from each country.
- 3. FAO balance sheets are based on calendar years. Most of China's data, which this study uses such as for income, price, population, are based on calendar years.

However, there are several issues associated with the use of FAO balance sheets:

- 1. Data for China also include Taiwan, Hong Kong and Macau. This will skew the data to a certain extent, though mainland China accounts for an overwhelming share.
- 2. If there are any inaccuracies in China's official statistics, then FAO's data will be inaccurate.
- 3. The latest year included in the FAO food balance sheets is 2007. We used SSB data reported in Section 2 to remedy this problem.

FAO food balance sheets show for each food item the sources of supply and its utilisation. We derived per capita consumption of various food items as follows. The total quantity of a food item produced in China minus the total *net* export quantity, and adjusted for any change in stocks that occurred since the beginning of the year, gives the total supply available during that year. In the FAO balance sheets, total supply is also equal to total consumption (or utilisation). For total utilisation, where appropriate, a distinction is made between the quantities used for other purposes (e.g. animal feed and seed), losses during storage and transportation, processes for food use and non-food use, food supplies available for human consumption at the retail level, and any other utilisation. Finally, the per capita consumption of each food item is obtained by dividing the total consumption quantity by China's population. This per capita consumption includes both direct and indirect consumption.

The food items for which per capita consumption has been calculated in this way include: wheat, rice, maize, barley, soybean, rapeseed, sugarcane, vegetables, fruits, pig meat, beef, mutton and goat meat, poultry, poultry eggs, milk, fish and other seafoods. The balance sheet for each of these food items is presented in Appendix B.

#### **Calculating income elasticities**

To understand China's future food demand, knowledge about the patterns of changes in income elasticities is valuable. Earlier studies have attempted to estimate income elasticities of demand for various foods (see Table A1 in Appendix A). Few, however, have made attempts to calculate income elasticities through time, which help to reveal the patterns of change. Our earlier analysis in Section 2 strongly suggests that income elasticities of demand for various foods are most likely to vary over time in China as income has grown. We estimated income elasticities on an annual basis from 1978 to 2010. An abbreviated version of the estimates is given in Table 4.1 and a full version containing all yearly estimates are given in Appendix A, Table A3.

| Year       | 1978    | 1980    | 1985    | 1990    | 1995    | 2000    | 2005    | 2010    |
|------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Barley     | 1.3205  | 1.1497  | 0.6836  | 0.4638  | 0.2113  | 0.0971  | 0.0066  | -0.0596 |
| Wheat      | 0.8877  | 0.7461  | 0.3597  | 0.1775  | -0.0319 | -0.1266 | -0.2016 | -0.2565 |
| Rice       | -0.0084 | -0.0328 | -0.0994 | -0.1308 | -0.1669 | -0.1833 | -0.1962 | -0.2057 |
| Maize      | 0.3866  | 0.3862  | 0.3850  | 0.3845  | 0.3839  | 0.3837  | 0.3834  | 0.3833  |
| Soybeans   | -0.2968 | -0.1384 | 0.2935  | 0.4972  | 0.7313  | 0.8371  | 0.9209  | 0.9823  |
| Sugarcane  | 0.9374  | 0.8524  | 0.6207  | 0.5114  | 0.3858  | 0.3290  | 0.2840  | 0.2511  |
| Vegetables | 0.8612  | 0.8275  | 0.7357  | 0.6924  | 0.6426  | 0.6202  | 0.6023  | 0.5893  |
| Fruits     | 1.4657  | 1.3667  | 1.0966  | 0.9693  | 0.8229  | 0.7568  | 0.7043  | 0.6660  |
| Rapeseed   | 1.9336  | 1.6886  | 1.0203  | 0.7051  | 0.3429  | 0.1792  | 0.0494  | -0.0455 |
| Pig meat   | 1.5429  | 1.3812  | 0.9400  | 0.7320  | 0.4930  | 0.3849  | 0.2992  | 0.2366  |
| Beef       | 3.1949  | 2.8760  | 2.0058  | 1.5955  | 1.1240  | 0.9108  | 0.7419  | 0.6183  |
| Mutton     | 1.8491  | 1.7381  | 1.4353  | 1.2925  | 1.1284  | 1.0542  | 0.9954  | 0.9524  |
| Poultry    | 2.1630  | 1.9830  | 1.4919  | 1.2603  | 0.9942  | 0.8739  | 0.7785  | 0.7088  |
| Eggs       | 2.1048  | 1.8628  | 1.2027  | 0.8914  | 0.5337  | 0.3720  | 0.2438  | 0.1501  |
| Milk       | -1.4291 | -1.0474 | -0.0064 | 0.4845  | 1.0486  | 1.3037  | 1.5058  | 1.6536  |
| Fish       | 2.1678  | 1.9168  | 1.2321  | 0.9092  | 0.5382  | 0.3705  | 0.2375  | 0.1403  |

#### Table 4.1 Income Elasticity of Main Food Items in China (1978 to 2010)

Source: authors' own calculation.

The trends shown by the calculated elasticities in Table A3 are largely in accordance with expectations. For example, the income elasticities of demand for wheat and rice have declined over years. The income elasticities for animal products are greater than those of food grains.

We have not used the most rigorous econometric methods to estimate income elasticities over time but our estimates do provide a picture of the relationships between consumer food demand and income change.

#### **Comparing existing forecasts**

Several institutions, employing various models with different assumptions, have forecast China's production and consumption of various foods. We also provided consumption forecasts using three simple methods. A brief description of the methods and evaluation of the forecasting results are given in Box 3.

Our forecast results using the three simple methods are reported in Appendix C together with other available forecasts provided by FAPRI, OECD-FAO and USDA. These simpler methods are capable of providing reasonable forecasts for the near future but not for the longer term. In fact, few models, no matter how sophisticated,

can forecast longer-term food demand or supply for China with great confidence. For example, in their 2001 projections of China's 2010 soybean imports, FAPRI's forecast was 16.3 mt (World Oilseeds and Products: FAPRI 2001 Agricultural Outlook, p. 223) and USDA's was 11.2 mt (USDA Baseline Projections, 2001, p. 136). No models predicted that China would import over 50 mt of soybean in 2010.

#### Box 3. Forecasting Methods Used in This Study

- (1) Simple trend extrapolation. This method is based on per capita consumption growth rate (2000-07). The per capita consumption is calculated based on the FAO food balance sheets. This same per capita consumption is used in all the three forecasting methods in this study. For this method, the growth rate from 2000-07, which may have been positive or negative, was used to extrapolate per capita consumption for 2009-2020. Total food consumption for any of the year between 2009 and 2020 was derived using the forecast per capita consumption that year multiplied by the forecast total population of the same year. When extrapolating linearly till 2020, the change in per capita consumption for some food items became very large. Consequently the risk of error is larger. However, the forecasts for the immediate future years seemed reasonable.
- (2) Simple regression against time. With this method, time is the major explanatory variable. The per capita consumption is specified as a function of (1) time and time squared, (2) time only, and (3) time squared only and the models estimated over the 2000-07 period. The calculation of total food consumption involved the same process as in Method 1. Again, the change in per capita consumption for some food items became very large when projecting for years close to 2020.
- (3) Forecasts using income elasticities. The per capita consumption was specified as a function of per capita GDP, the price of the food item, the prices of substitutes and complements. Based on the parameters obtained, income elasticities of demand for various food items were derived (see Appendix A for more details). Then, we assumed three GDP growth scenarios, 6%, 8% and 10%. We also assumed that there will be no variations in the stock level of each of the food items concerned from 2007 and future real prices will remain at the 2007 level. Per capita consumption for future years was then simulated based on the above information. We used a partial equilibrium approach which did not take account for likely adjustments in other markets, leading to changes in relative prices, which in turn will lead to further 'second' round changes in supply and demand. As a consequence, this method also led to continuous increase or decrease in per capita consumption.

We point out that the above simple methods we used for demand forecasting are, by no means, perfect or ideal but they were within resource constraints. Further, to predict future food import demand by China, reliable information about future food supply prospects is also essential. Again, limited by resources, in-depth study of this issue was not pursued. Nonetheless, it is useful to note the following important factors that will affect China's future food supply:

- Arable land area is declining and the potential to develop new arable land is very limited.
- Water availability is very limited and water quality is deteriorating. If a water market is established, how competitive the agricultural sector will be in this market is not yet clear.
- As non-agricultural employment increases, labour costs for agricultural production increase.
- Scale economies from larger farms and mechanization improve land productivity but hard to achieve, limited by the current land system and land terrain in some areas. The impact of possible climate change is unknown; food output fluctuations caused by weather-related disasters may increase.

The need for environmental protection is likely to affect the way some foods are produced, leading to reduced food output or higher costs.

#### 4.2 China's Food Import Needs by 2020

An overview of China's production, consumption and import needs of major food items is presented in Table 4.2. The table has three parts. The first part contains the actual production, consumption and net imports of various food items in 2010 based on the PSD database of the USDA and also imports, exports, and net imports based on UN Comtrade database. These statistics serve as references. In the second part, projections of China's food production, consumption and net imports for 2020 by three organisations are provided. Finally, the judgements derived from this study about the likely trade position in 2020 for each of the major food items are shown. In the rest of this section, more detailed elaborations about China's food import needs by 2020 are given for each of the major food items.

#### Table 4.2 Summary of China's Food Production, Consumption and Net Imports in 2010 and Forecasts in 2020

| <b>!</b>    | ,      | Wheat  | Rice   | Maize  | Barley | Soybean | Rapeseed | Sugarcane | Pork  | Beef  | Mutton | Poultry | Milk |
|-------------|--------|--------|--------|--------|--------|---------|----------|-----------|-------|-------|--------|---------|------|
|             | TP*    | 114.50 | 136.00 | 168.00 | 2.40   | 14.40   | -        |           | 50.00 | 5.55  |        | 12.56   |      |
| USDA        | TC     | 107.80 | 135.00 | 162.00 | 4.60   | 68.85   |          |           | 50.05 | 5.53  |        | 12.53   |      |
|             | NI     | -6.70  | -1.00  | -6.00  | 2.20   | 54.45   |          |           | 0.05  | -0.02 |        | -0.03   |      |
|             | Import | 1.22   | 0.37   | 1.57   | 2.37   | 54.80   | 1.60     | n.a       | 0.20  | 0.02  | 0.06   | 0.54    | 0.75 |
| UN Comtrade | Export | 0.00   | 0.62   | 0.13   | 0.01   | 0.16    | 0.00     | n.a       | 0.11  | 0.02  | 0.01   | 0.21    | 0.03 |
|             | NI     | 1.22   | -0.25  | 1.45   | 2.35   | 54.63   | 1.60     | n.a       | 0.09  | 0.00  | 0.04   | 0.34    | 0.71 |

#### Actual production, consumption and trade in 2010 according to:

#### Forecast production, consumption and trade in 2020 according to:

|           |    | Wheat  | Rice   | Maize  | Barley | Soybean | Rapeseed | Sugarcane | Pork  | Beef  | Mutton | Poultry | Milk  |
|-----------|----|--------|--------|--------|--------|---------|----------|-----------|-------|-------|--------|---------|-------|
|           | TP | 114.31 | 136.30 | 198.83 | 3.09   | 16.65   |          |           | 61.39 | 6.56  |        | 16.47   |       |
| USDA      | ТС | 112.65 | 135.66 | 210.38 | 6.07   | 104.42  |          |           | 61.40 | 6.54  |        | 16.33   |       |
|           | NI | -1.66  | -0.65  | 11.55  | 2.99   | 87.77   |          |           | 0.01  | -0.02 |        | -0.14   |       |
|           | TP | 114.64 |        | 201.80 | 2.93   | 15.00   | 14.05    |           | 65.78 | 7.08  |        |         | 47.2  |
| FAPRI     | ТС | 109.03 |        | 203.94 | 5.62   | 88.08   | 16.33    |           | 66.24 | 7.36  |        |         | 47.4  |
|           | NI | -5.62  |        | 2.15   | 2.69   | 73.09   | 2.28     |           | 0.46  | 0.29  |        |         | 0.16  |
|           | TP | 115.70 | 125.83 | 210.31 |        | 64.96   |          | 17.89     | 61.48 | 7.18  | 4.80   | 20.85   | 59.0  |
| OECD -FAO | ТС | 114.18 | 125.86 | 213.61 |        | 127.34  |          | 23.07     | 61.20 | 7.18  | 4.88   | 20.92   | 56.9  |
|           | NI | -1.52  | 0.03   | 3.30   |        | 62.38   |          | 5.19      | -0.28 | 0.00  | 0.08   | 0.07    | -2.09 |

#### Net import needs in 2020 according to:

|            |    | Wheat | Rice | Maize | Barley | Soybean | Rapeseed | Sugarcane | Pork | Beef | Mutton | Poultry | Milk |
|------------|----|-------|------|-------|--------|---------|----------|-----------|------|------|--------|---------|------|
| This study | NI | 2.00  | 0.00 | 5.00  | 2.00   | 70.00   | 2.00     | 3.00      | 1.00 | 0.50 | 0.30   | 0.50    | 1.50 |

\* TP: total production; TC: total consumption; NI: net imports.

Notes: Maize: OECD-FAO data is for coarse grains. Soybeans: OECD-FAO data is for oilseeds. Sugarcane: OECD-FAO data is for sugar.

Sources: FAO food balance, www.fao.org; USDA 2011 baseline projections, http://www.ers.usda.gov/data/internationalbaseline/sutabs11.htm; OECD-FAO agricultural outlook, http://stats.oecd.org/index.aspx; and FAPRI international agricultural outlook: <u>http://www.fapri.iastate.edu/tools/outlook.aspx</u>; trade data: UN Comtrade.

#### Wheat

Per capita direct human wheat consumption experienced a steady increase from 1978 until 1993. In 1993, the per capita consumption started to decline. Consumers had more choice and could afford other foods of higher value and nutrition such as animal products. Consequently, the consumption of cereal foods including wheat started to decline. This decline in per capita wheat consumption has been continuous and steady (see Table B1 in Appendix B). The income elasticities of demand for wheat in Table A3 also reveal that the demand for wheat declines when income increases.

Since 2005, the decline in per capita consumption of wheat seems to have significantly slowed down and stabilised at a rate of about 80 kg per annum. While FAO's data is only available until 2007, our analysis using SSB data in Section 2 also clearly confirms this trend. Hence, in China, per capita direct consumption of wheat is unlikely to increase in future while further decline may be possible. This decline will likely come from reduced direct wheat consumption by urban poor but more so from reduced consumption by rural residents when their income increases.

Wheat is mainly for human consumption, accounting for 86-88 per cent. Historically, using wheat as animal feed in China was negligible. However, during 2000-2010, it increased, ranging from 4-6 per cent of total use. This is chiefly attributable to surplus production in the good harvests during 1995-98. The use of wheat for feed, and to some extent, for bio-fuel production, during 2000-2010 was to dispose of deteriorating wheat stocks built up in these earlier years. In the future, the use of wheat for feed purpose may decline but will depend on the prices of wheat and other animal feeds. Wheat seed use (for next season's plantings) has declined from about 7 per cent in 1978 to about 4 per cent in 2007. The amount of wheat used for processing is negligible. This structure of wheat utilisation is likely to exist for some time.

China's wheat production reached its highest level in 1997, being 123.3 mt. It had since dropped to a low of 86.5 mt in 2003. With government intervention, wheat output started to recover from 2004 and has since increased every year, reaching 115.2 mt in 2010. The increased output is a result of both increased area sown and yield improvement with the latter's contribution greater. Further increases in the area sown will be difficult. Table D1 in Appendix D indicates that any further significant increase in the area sown to wheat can only be achieved by reducing the area sown to other crops. In 2010, China's wheat yield was 4,748 kg per hectare, well above the world average. Further, most of China's wheat production is based on irrigation. Future water availability and cost can have a major impact on wheat production.

Despite the fact that future significant increases in wheat output may be difficult, the government is unlikely to allow the production level to drop too much given that wheat is one of the two major staple cereals consumed in China. In its 'Outlines of medium- and long-term national grain security plan (2008-2020)', the Chinese government planned to achieve self-sufficiency in wheat and rice, and 95 per cent of self-sufficiency in maize (Government of China 2008).

Table C1 shows the projections by several institutions of wheat production and consumption until 2020. In terms of per capita consumption, all predicted that it will first increase slightly and then start to decline. The level of the per capita consumption,

however, is quite comparable between studies. Any future increased demand for wheat will mainly come from population increases.

Given that China's current wheat output is about 115 mt and this is more than the total demand for 2020 as projected by the three organisations, all things being equal China would be able to achieve self-sufficiency in wheat even with a small surplus by 2020. However, the current level of wheat output was achieved with strong government intervention in the previous years. During those years, wheat exports were also encouraged by the government. Whether the strong government support can be sustained is questionable. Further, China's comparative advantage in wheat production is declining. We anticipate that in 2020, it is likely that China may need to net import around 2 mt of wheat.

#### Rice

Rice is the other major staple cereal food for many Chinese. Since 1978 consumption increased and reached its highest level in 1983 (108.7 kg). The decline in rice consumption (or utilisation) started 10 years ahead of wheat. The income elasticity estimates in Table A3, which suggest rice is regarded as an inferior food, explain why per capita rice consumption started to decline when consumer incomes increased. Since 2004, per capita rice consumption stabilised at around 90-92 kg (see Table B2) per annum. Our earlier analysis in Section 2 confirms this trend. Thus, per capita rice consumption in China is unlikely to increase in the future unless a significant amount of paddy rice is used for animal feed purposes.

In southern China, farmers regularly use paddy rice to feed animals (Zhou and Tian 2003, pp. 64-65). As seen in Table B2, even when food was very short in the late 1970s, about 8 per cent of rice was used for animal feed. The proportion of animal feed use of rice has fluctuated between 8 and 12 per cent. In recent years, this proportion has stayed at around 8 per cent. The use of rice for animal feed is linked to output and price levels. The majority of rice in China is used for food purposes, being around 80-82 per cent. Seed use was about 5-6 per cent in the late 1970s but has now fallen to 3.5-4 per cent. Seed use is expected to further reduce as new seed-saving farming methods become widely used.

Similar to wheat, rice output first experienced an increase and then decrease. It increased from 96 mt in 1978 to the peak of 141 mt in 1997. It then decreased to a low of 112 mt in 2003. Since 2004, it has increased steadily to 137 mt in 2010. Increases in both area and yield contributed to the recovery of rice output. Since 2004, the area sown to rice increased every year except for a small decrease in 2007 by 19100 ha (Table D1). During 2004-2010, the total increase in area sown to rice was 3.37 m ha. Paddy yield also improved significantly. Average yield over the past three years (2008-2010) was over 6.5 t per ha, which was 0.5 t higher than that in 2003 (Table D2). China's paddy yield of 6.5 t per ha is well above world average of 4.3 t per ha, but about 3 t lower than that achieved in Australia (9.8 t per ha in 2006). Rice paddy production is relatively labour-intensive and it is difficult to raise the level of mechanisation due to the tendency for small land blocks in China. Further improving rice paddy yield is also constrained by the increasing cost of labour.

If China can maintain its current rice output level, which is likely, then, based on the current per capita rice consumption level, by 2020 China will have sufficient rice from domestic sources, even with a small surplus for export. The projections by USDA support this scenario (Table C2). The OECD-FAO supply projections are likely on the low side because rice is considered a staple crop by the Chinese government. Hence, it is our judgement that by 2020 China will be largely self-sufficient in rice.

#### Maize

Around 80 per cent of China's maize output is used for animal feed. Direct human consumption has traditionally been around 6-8 per cent. In 1997, "other utilisation" of maize suddenly jumped to about 7 per cent from a consistent low of less than 1 per cent. This proportion has continued to rise and was a little over 17 per cent in 2007. This may reflect China's increased use of maize for producing ethanol, maize starch, the sweetener HFCS (high fructose corn syrup, used for food and beverage manufacturing), and Chinese liquor (although since 2004, bio-fuel production using maize has been limited). In the meantime, the share of maize used for animal feed dropped in the past few years, being 68.5 per cent in 2007 (Table B3). Given that the Chinese government has started to limit the use of cereal foods to produce ethanol, the use of maize for producing ethanol is unlikely to increase much and may decline. A higher proportion of maize is likely to be used for animal feed.

Being one of the three major cereal crops in China, maize output has increased steadily over the past three decades, with only a few occasional drops. Total maize output has increased strongly, from 106 mt in 2000 to 177 mt in 2010. Among the three major cereal crops, maize occupied the largest share in area sown in 2010, being 20.2 per cent, which was also the highest share ever in area sown to maize. It has enjoyed an expansion both in absolute area terms and in its share of total area sown in China.

The area sown to maize and its total output are unlikely to decrease in the foreseeable future due to China's strong demand for maize as animal feed. Yield is high and has been around 5.2-5.5 tonnes per hectare. Further increase in yield is unlikely. Unlike in North America and Western Europe where maize production is one single crop per year, the land for maize production in China is cropped more than once per year (except in China's northeast), which results in lower yields.

Looking at the projections by the three institutions (Table C3), USDA and FAPRI predict that China will have a surplus till 2015 (USDA) or 2016 (FAPRI). After that, the net imports will increase at a fast pace. On the other hand, OECD-FAO forecasts that the shortage would emerge in 2010 and imports continue through to 2020. For 2020, all the projections for per capita utilisation of maize were similar but there were some large discrepancies in years leading up to 2020.

Despite the differences in these projections, it is clear that China will import more maize. In 2010, China had already imported about 1 mt maize and 3 mt maize DDGS (distillers dried grains with solubles, which is a by-product of ethanol production) for animal feed. The 2011 imports were even higher. However, because the demand for maize is chiefly a derived demand (linked to the demand for animal products), the

level of imports will mainly depend on China's choice of policies as to whether it will: (1) increase domestic production of animal products; (2) import live animals; and (3) import animal products. If the first option is chosen, China will definitely need to import more maize for feed purposes. If the third one is chosen, then the net imports of maize may be much smaller. For the second option, maize imports may also rise as more maize is used in feedlots to prepare animals for slaughter.

Depending on the options that China will use to increase its meat supply, there is greater uncertainty in predicting the amount of maize that China may net import. Assuming China will largely rely on producing more domestically to meet the increasing demand, we anticipate that China's net maize imports by 2020 would be around 5 mt.

#### Barley

Barley is a relatively minor crop in China. In the 1970s when food was short, only a small proportion, about 10-15 per cent, was used for animal feed. Processing use (e.g. for beer) was also very low, being about 3.5-4 per cent. The structure of consumption is now very different. In 2007, food use of barley accounted for only 6.5 per cent and animal feed use has also dropped significantly to 3.4 per cent. Processing use rose to 82 per cent, chiefly for beer brewing. Per capita consumption of barley has been low and was only 3 kg in 2007 (see Table B4).

Both USDA and FAPRI project that per capita consumption of barley will increase and production will fall short of demand, leading to increased imports. Imports by 2020 are forecasted to be in the vicinity of 2.5 to 3 mt (Table C4). Our judgement is that by 2020 China's barley import will be around 2 mt.

#### Soybean

Owing to a rise in soybean consumption but a slight drop in production, China has increased its soybean imports in recent years. Per capita consumption of soybean has increased by about 400 per cent over the past three decades. It was 8.8 kg in 1978 and increased to 33.5 kg in 2007 (Table B5). The increase is expected to continue as reflected by the positive and large size of the income elasticities given in Table A3. This increase will not last forever and at some point of time the income elasticity will start to decrease. However, in the near future, per capita consumption of soybean may continue to increase. Soybeans are chiefly used for cooking oil and as animal feed. Soybeans are also used to produce soybean-based foods such as tofu (bean curd), which is popular in China.

While China's consumption of soybeans has increased dramatically, increasing from 8.65 mt in 1978 to over 55 mt in 2010, production has not kept pace. It reached a peak in 2004 of 17.4 mt and has since dropped and stagnated at a little over 15 mt (Table D3). Both the decline in area sown and the stagnant yield contributed to the drop in output level. The area sown to soybeans was around 9.5 m ha in the early 2000s. It has dropped gradually and was a little over 9 m ha by 2010 (Table D1). The yield was high in 2004 being 1,815 kg per ha, and had been around 1,700 kg in the past few years (Table D2). It is not expected that soybean will compete strongly in coming years with other crops for available arable land.

With the increase in consumption significantly outpacing the output growth, imports are required to meet demand. In 2004, China imported 24.92 mt of soybeans. Since then, soybean imports have increased, reaching 55 mt in 2010. All three institutions' projections point to further increased imports in the coming years (Table C5). The projection by OECD-FAO is for all oil-crops and hence not comparable to USDA and FAPRI's. Both USDA and FAPRI suggest that the total imports of soybeans by China will reach in the order of 70-80 mt by 2020. However, we believe that the rate of increase in total net imports is likely to slow down in the future and the net imports will not be more than 70 mt.

#### Rapeseed

Rapeseed together with other oil-bearing crops (such as peanuts and soybean) is a major source of cooking oil in China. Animal fats and oils from pigs, cattle and sheep provide other sources of cooking oil. Cooking oil was in serious shortage in the 1970s and was rationed for urban dwellers (3 kg per person per year) and for rural residents who did not produce oil crops (2.4 kg per person per year). Since the early 1980s, rapeseed allowed an increase in cooking oil consumption. Its output level increased from 1.87 mt in 1978 to 13.1 mt in 2010 (Table B6). The output increase is attributed to both area and yield increases.

Despite the fast increase in rapeseed production (and increase in the production of other oils), growth could not keep pace with the increase in demand. From the early 1990s, China started to increase its imports of cooking oil and rapeseed (Table 4.3). Rapeseed imports experienced two peak periods. One was during 1998-2001 and the other 2008-10. Average annual imports in these two periods were about 2 mt. In 2010, the imports were 1.6 mt. Rapeseed imports and rapeseed oil imports may be substituted with each other to some extent. Indeed, the imports of all the oil commodities may substitute each other to some extent, depending on relative prices. Soybean oil imports were above 1 mt during 1994-97 and 2003-10. The highest imports occurred in 2007, being 2.82 mt. We anticipate that China's net rapeseed imports will be around 2 mt in 2020 which is comparable to FAPRI's net import projection (Table C6).

#### Sugarcane

China's sugar consumption has steadily increased, though consumption data is not available. Sugarcane and sugar beets are the two basic sugar crops in China. In 1980, each accounted for almost half of the total area sown to sugar crops (sugarcane: 480,000 ha; sugar beets: 440,000 ha). Since then, the area sown to sugar beets at first increased but has recently declined and by 2010, it was 220,000 ha. On the other hand, the area sown to sugarcane continued to increase and has been around 1.7 m ha in recent years. Sugarcane is one of the few crops in China whose area sown has increased.

| Voar  |          | Soybeans |            |
|-------|----------|----------|------------|
| i cai | Import   | Export   | Net import |
| 1996  | 1107539  | 191744   | 915795     |
| 1997  | 2875907  | 185719   | 2690188    |
| 1998  | 3192490  | 169874   | 3022616    |
| 1999  | 4318634  | 204366   | 4114268    |
| 2000  | 10419057 | 210840   | 10208216   |
| 2001  | 13939479 | 248399   | 13691080   |
| 2002  | 11314372 | 275863   | 11038509   |
| 2003  | 20741006 | 267470   | 20473537   |
| 2004  | 20229966 | 334560   | 19895406   |
| 2005  | 26589957 | 396454   | 26193503   |
| 2006  | 28236901 | 379024   | 27857877   |
| 2007  | 30816562 | 456452   | 30360110   |
| 2008  | 37436262 | 465143   | 36971119   |
| 2009  | 42551649 | 346557   | 42205092   |
| 2010  | 54797749 | 163598   | 54634152   |

| Table 4.3 Import and Export of Oliseeds and Edible Oli in China (1996-2010, Tonne |
|-----------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------|

| Vear  |         | Rapeseed | 1          |
|-------|---------|----------|------------|
| i cai | Import  | Export   | Net import |
| 1996  | 413     | 6042     | -5629      |
| 1997  | 55134   | 42       | 55092      |
| 1998  | 1386413 | 1114     | 1385299    |
| 1999  | 2595305 | 153      | 2595153    |
| 2000  | 2968936 | 1131     | 2967806    |
| 2001  | 1724251 | 65       | 1724186    |
| 2002  | 618170  | 2335     | 615836     |
| 2003  | 166714  | 2913     | 163801     |
| 2004  | 424014  | 269      | 423745     |
| 2005  | 296236  | 147      | 296089     |
| 2006  | 737997  | 144      | 737853     |
| 2007  | 833105  | 849      | 832255     |
| 2008  | 1303023 | 55       | 1302968    |
| 2009  | 3285852 | 221      | 3285631    |
| 2010  | 1599848 | 110      | 1599738    |

| Vear |        | Ground nu | ts         |
|------|--------|-----------|------------|
|      | Import | Export    | Net import |
| 1996 | 346    | 351068    | -350722    |
| 1997 | 4758   | 171473    | -166714    |
| 1998 | 3546   | 214860    | -211314    |
| 1999 | 943    | 340558    | -339615    |
| 2000 | 447    | 399968    | -399521    |
| 2001 | 342    | 493454    | -493112    |
| 2002 | 1506   | 520616    | -519110    |
| 2003 | 392    | 490170    | -489778    |
| 2004 | 1333   | 402996    | -401663    |
| 2005 | 326    | 454083    | -453757    |
| 2006 | 5171   | 324281    | -319110    |
| 2007 | 3358   | 291680    | -288322    |
| 2008 | 9682   | 231512    | -221830    |
| 2009 | 2387   | 236943    | -234556    |
| 2010 | 14233  | 191172    | -176939    |

| Vear  |         | Soybean o | oil        |
|-------|---------|-----------|------------|
| - Car | Import  | Export    | Net import |
| 1996  | 1295396 | 127093    | 1168303    |
| 1997  | 1225160 | 555770    | 669390     |
| 1998  | 831689  | 185891    | 645798     |
| 1999  | 803691  | 53394     | 750297     |
| 2000  | 307619  | 35284     | 272335     |
| 2001  | 69888   | 60007     | 9881       |
| 2002  | 870275  | 47298     | 822977     |
| 2003  | 1884320 | 10650     | 1873670    |
| 2004  | 2516495 | 19442     | 2497053    |
| 2005  | 1694327 | 63034     | 1631292    |
| 2006  | 1542635 | 117709    | 1424927    |
| 2007  | 2822787 | 65717     | 2757070    |
| 2008  | 2585604 | 133912    | 2451693    |
| 2009  | 2391222 | 69246     | 2321977    |
| 2010  | 1340717 | 59297     | 1281420    |

| Year | Ground nut oil |        |            |  |
|------|----------------|--------|------------|--|
|      | Import         | Export | Net import |  |
| 1996 | 5218           | 5887   | -669       |  |
| 1997 | 10670          | 8602   | 2068       |  |
| 1998 | 8723           | 10059  | -1336      |  |
| 1999 | 9616           | 12978  | -3362      |  |
| 2000 | 9954           | 14738  | -4785      |  |
| 2001 | 8612           | 13572  | -4960      |  |
| 2002 | 3992           | 11039  | -7047      |  |
| 2003 | 6633           | 25303  | -18669     |  |
| 2004 | 419            | 14201  | -13783     |  |
| 2005 | 381            | 20242  | -19861     |  |
| 2006 | 312            | 12961  | -12649     |  |
| 2007 | 11163          | 10288  | 876        |  |
| 2008 | 5896           | 10703  | -4807      |  |
| 2009 | 20726          | 9798   | 10928      |  |
| 2010 | 68458          | 7789   | 60668      |  |

### Table 4.3 (continued)

| Year | Rapeseeds oil |        |            |  |
|------|---------------|--------|------------|--|
|      | Import        | Export | Net import |  |
| 1996 | 316047        | 174155 | 141892     |  |
| 1997 | 350634        | 141287 | 209347     |  |
| 1998 | 284706        | 73333  | 211373     |  |
| 1999 | 69184         | 25977  | 43207      |  |
| 2000 | 74663         | 54147  | 20516      |  |
| 2001 | 49423         | 54326  | -4904      |  |
| 2002 | 77830         | 18349  | 59481      |  |
| 2003 | 151578        | 5419   | 146158     |  |
| 2004 | 352933        | 5455   | 347478     |  |
| 2005 | 177558        | 30637  | 146922     |  |
| 2006 | 43995         | 144763 | -100768    |  |
| 2007 | 374767        | 21692  | 353075     |  |
| 2008 | 269777        | 7104   | 262673     |  |
| 2009 | 467526        | 9135   | 458391     |  |
| 2010 | 985309        | 3804   | 981505     |  |

Source: UNcomtrade Database, <u>http://comtrade.un.org</u>.

| Year | Olive oil |        |            |
|------|-----------|--------|------------|
|      | Import    | Export | Net import |
| 1996 | 3028      | n.a    | n.a        |
| 1997 | 7         | 52     | -45        |
| 1998 | 73        | n.a    | n.a        |
| 1999 | 120       | 26     | 94         |
| 2000 | 228       | 51     | 177        |
| 2001 | 302       | 8      | 295        |
| 2002 | 454       | 30     | 425        |
| 2003 | 763       | 29     | 734        |
| 2004 | 2296      | 14     | 2282       |
| 2005 | 3826      | 120    | 3706       |
| 2006 | 4518      | 4      | 4514       |
| 2007 | 7124      | 160    | 6964       |
| 2008 | 10179     | 113    | 10067      |
| 2009 | 12504     | 188    | 12316      |
| 2010 | 21253     | 70     | 21183      |

| Year | Palm oil |        |            |
|------|----------|--------|------------|
|      | Import   | Export | Net import |
| 1996 | 1009184  | 160444 | 848739     |
| 1997 | 1156455  | 109023 | 1047431    |
| 1998 | 929908   | 34544  | 895364     |
| 1999 | 1193510  | 261    | 1193248    |
| 2000 | 1390701  | 334    | 1390367    |
| 2001 | 1517352  | 132    | 1517220    |
| 2002 | 2220617  | 10395  | 2210221    |
| 2003 | 3324757  | 16     | 3324741    |
| 2004 | 3857223  | 20     | 3857203    |
| 2005 | 4330056  | 1203   | 4328852    |
| 2006 | 5068792  | 758    | 5068034    |
| 2007 | 5094752  | 601    | 5094151    |
| 2008 | 5282069  | 1130   | 5280940    |
| 2009 | 6441284  | 473    | 6440811    |
| 2010 | 5695939  | 1548   | 5694391    |
Despite the increase in the area sown to sugar crops, domestic production of sugar is not sufficient to meet the fast-increasing demand, chiefly from industrial food processing. To meet demand China imports sugar at an increasing rate. From 2005 to 2010, average annual imports were 1.25 mt and imports were highest in 2010, reaching 1.78 mt. Sugarcane production is not likely to increase. It is only produced in a few southern provinces and further arable land for more sugarcane is limited. Over the past five years, average sugarcane yield was close to be 70 tonnes per ha in China. In Australia, the average yield was about 87 tonnes per ha with world average being 67 tonnes per ha. Further increase in yield in China will be difficult in the near future because: (1) farms are generally small scale operations; (2) it can be difficult to mechanise due to the terrain, and (3) it is unlikely that new and better varieties will be developed in the near future.

China's sugarcane production reached 114 mt in 2007 (Table B7). In 2008, it increased to 124 mt. But in 2009 and 2010, it dropped to 116 and 111 mt, respectively (Table D3). FAPRI predicts China's sugarcane output will increase in the near future but this projection may be optimistic (Table C7).

Unless the sugar price is very high relative to the price of the sweetener HFCS, we do not anticipate that the deviation of maize to the production of the latter will be very large. Hence, China is likely to continue to import sugar and the level of imports is expected to increase. Chinese companies are also actively looking for opportunities to invest in sugar mills overseas as evidenced by COFCO's recent acquisition of Tully Sugar Limited in Queensland in 2011. By 2020, China's sugar imports are likely to be in the vicinity of 3 mt.

### Vegetables

According to Table B8, the Chinese used to have a low level of vegetable consumption (not including potatoes and sweet potatoes) at around 57 kg per capita in 1978. However, consumption jumped to 324 kg in 2007. It is suspected that either the statistics submitted to FAO by SSB are inaccurate, or this per capita consumption is based on the weight of vegetables produced including a significant amount of wastage. In Table 2.1, we showed that the per capita consumption of vegetables in both rural and urban areas is around 100 kg per capita in 2010.

The area sown to vegetables has increased dramatically, from 3.3 m ha in 1978 to 19 m ha in 2010. China imports a small quantity of vegetables but exports far more. (Table B8). It will likely remain a net exporter for some time to come. By 2020, China's net exports of vegetables may reach 12 mt.

### Fruits

Per capita consumption of fruits has also increased remarkably in China, from less than 8 kg in 1978 to about 74 kg in 2007, according to Table B9. This consumption level is much higher than that given in Table 2.1, which is based on SSB data. Nonetheless, the land area allocated to fruit trees has increased sharply in China, from 1.65 m ha in 1978 to 11.54 m ha in 2010 (Table D1). Given that China's net exports of fruits are fairly small, per capita consumption of fruits in China must have increased quite significantly, although the level of 74 kg per person may have overstated this.

From 1978 to 1984, China both imported and exported fruits, though in small quantities, and was a net exporter. From 1985 to 2002, it became a net importer of fruits, though again the quantity was very small. Since 2003, fruit exports have increased much faster than imports (see Table B9). In the future, China is likely to both import and export fruits in much larger quantities. China will increase its imports of fruits - especially tropical fruits - to meet consumer demand for different varieties and for seasonal fruits all year round. In the meantime, China will increase its export of temperate fruits. In balance, China will remain a net fruit exporter in the years to come. By 2020, its net export of fruits may be up to 5 mt.

### Pork

Per capita pork consumption was low in 1978, at about 9 kg. It has since steadily increased to about 33 kg by 2007. Our analysis in Section 2 shows that consumer demand for pork is still increasing, though perhaps at a slower rate than in the past. Demand is coming mainly from low-income urban consumers and rural consumers, though per capita pork consumption by higher income consumers is still increasing (Figures 2.5 and 2.6).

The increase in per capita consumption of pork is largely attributed to the expansion of pork production in China. In the late 1970s, China's total pork output was a little over 10 mt. It has since expanded rapidly and by 2010, the total output was over 50 mt.

Although pork output has been increasing, the increase has sometimes been uneven between years (Table D4). This was caused by two major reasons: pig diseases and poor price transmission. During 2006-07, the outbreak of Blue Ear diseases had a large impact on pork production. Poor price transmission between the market and the producers is another major cause that contributed to pork output fluctuation. Further, much of the pork is produced by many small-scale operations that tend to respond to price changes in a similar direction and simultaneously. The problem was aggravated by the government's arbitrary interventions in the production and marketing of pork: when the price was increasing, measures to encourage production were used, leading to oversupply and thus lower prices and lower output. There is evidence that some small-scale pig-producing farmers are quitting the industry (Rae and Zhang 2009). On the other hand, intensive pig farming is increasing, and will be increasingly dependent upon the supply of industrial processed animal feeds in which maize is the major ingredient.

Over the past three decades, China had been a net exporter of pork in most years except 2007 (Table B10). FAPRI, USDA and OECD-FAO all forecast that China's per capita pork consumption will continue to increase and will reach around 43-48 kg by 2020 (Table C10). They also predict that China will be able to produce enough pork to meet the rising demand.

Given the importance of pork in the Chinese diet, it is most likely that the Chinese government will try to ensure that it is largely self-sufficient in pork production and, therefore, the level of imports is unlikely to be large. By 2020, net imports of pork will be around 1 mt.

### Beef

Beef is not a traditional meat item for the majority of Chinese consumers and per capita consumption of beef has historically been low. In recent years, as diets and preferences have changed, beef consumption has increased rapidly. According to the food balance sheets by the FAO, in 1978, per capita consumption of beef was negligible, being a mere 0.32 kg. By 2007, however, it increased to over 4 kg (see Table B11). In absolute terms, per capita consumption of beef in China is still very low. However, given the size of the population and changing tastes, further increase in consumption in both total quantity and per capita is likely, though a fast increase should not be expected.

So far, China's increased demand for beef has been largely met by domestic supplies. China both exports and imports beef but in small quantities and, on balance, it is a net importer. FAPRI, USDA and OECD-FAO predict that per capita consumption of beef will have a modest yearly increase from now until 2020. Their projections on total consumption and total production differ quite substantially, as do the projected import needs (see Table C11). China's beef production has already exceeded 6.5 mt, a level predicted to be reached in 2020 by USDA, in 2017 by FAPRI, and in 2015 by OECD-FAO.

The appetite for increased beef consumption is growing and beef imports are likely to increase much faster than each of the three institutions have predicted. By 2020, we anticipate that China's net beef imports will be in the vicinity of 0.5 mt. The majority of imported beef will be high quality and used in hospitality industries (such as upmarket hotels) and purchased by high-income Chinese consumers, expatriates and tourists.

### Mutton and goat meats

Like beef, mutton (and lamb) and goat are not traditional types of meat consumed by the Chinese. Per capita consumption of these meats has been low. In 1978, it was 0.33 kg. By 2007, it increased to 2.83 kg (Table B12). Compared to beef, the rate of increase was slightly lower. This per capita consumption level is nonetheless still higher than that reported by SSB, reflecting likely underestimation by SSB. Based on the income elasticities we derived (Table A3) and the trends hown in Section 2, the consumption of these meats will probably continue to increase in China. In the past three decades, people in the country's south particularly, have increased their consumption of mutton.

The total output of mutton and goat meat is still low. In 1979, it was 0.38 mt and by 2010 it increased to 3.99 mt. China's potential to increase the output of these meats is also limited. If the price of these meats relative to wool in particular becomes more attractive, then more may be produced.

China imports and exports a small amount of mutton and goat meat and overall is a net importer (Table B12). OECD-FAO predicts that per capita consumption of these meats will continue to rise at a modest rate. Total production will continue to fall behind total consumption, leading to continued net imports (Table C12). While their projection on total consumption seems realistic, their projection on China's ability to increase output seems to be a little over optimistic. Hence, we believe the amount of net imports required by China in 2020 may be slightly larger than 0.08 mt, as projected by OECD-FAO, to be 0.30 mt.

### Poultry

In the late 1970s, per capita consumption of poultry meat was about 1.5 kg and it increased quickly to about 11 kg in 2007 (Table B13). According to the positive and still high income elasticities, poultry meat consumption is expected to continue to rise at an impressive rate. The increase in demand will largely come from urban poor and rural consumers as analysed in Section 2.

Poultry meat output experienced a very rapid expansion in the past three decades. In 1985, it was 1.6 mt. By 2010, it jumped to 16.34 mt (Table B13). Compared to raising pigs, cattle and sheep, producing more chickens is relatively easy, assuming that feed is available. China can increase its poultry output levels in the future to meet increasing demand but will probably require increased imports of feed.

In volume terms, imports and exports of poultry meat have been increasing in the past three decades, with imports roughly being twice that of exports, making China a net importer (see Table B13). USDA's projection on production and consumption is likely to be on the low side as China's production level in 2010 had already reached the level predicted to be reached in 2020 by USDA. Also, USDA predicts that China will be a net exporter until 2019. On the other hand, OECD-FAO's projection suggests that China's production and consumption of poultry will rise to a much higher level and China will remain a net importer (Table C13). Our judgement is that China will be a net importer in 2020 and its imports will be around 0.5 mt or slightly higher.

### **Poultry eggs**

Per capita egg consumption increased from 2.7 kg in 1978 to 19 kg in 2007 (Table B14). The increase in its consumption will in all likelihood slow down as suggested by the income elasticities in Table A3. The trends shown in Figure 2.13 also confirm that egg consumption will become flat when consumer income increases.

Total egg production increased from 2.6 mt in 1978 to 25.7 mt in 2007 and further increased to 27.6 mt in 2010 (Table B14). China both imports and exports eggs but has been a net exporter of eggs overall. In the future, China will most likely be self-sufficient in egg production, though it may import some egg powder for industrial food processing purposes.

### **Dairy products**

In the past, milk was mainly consumed by some minority ethnic groups. Not surprisingly, per capita consumption of milk was extremely low in China in the 1970s, being about 3.5 kg (in Chinese statistics, milk is measured in weight rather than in litres). Today, milk has been accepted by many Chinese, especially in urban areas. It is common for many urban residents to consume liquid milk or other dairy products on a regular basis. Even in rural areas, particularly in those wealthier rural areas, residents have also started to consume milk (Table 2.1). By 2007, per capita consumption of milk increased to a little over 30 kg (Table B15). Chinese consumers' demand for milk will continue to rise as suggested by the positive and increasing income elasticities shown in Table A3 and the trends in milk consumption as income increases (Figures 2.16 and 2.17).

In the past three decades, China's milk output has also expanded at an impressive rate. In 1978, it was below 1 mt. It increased from 9.19 mt in 2000 to 37.82 mt in 2008 but then fell to 37.48 mt in 2010. This drop seems to be due to: (1) resource constraints on production; and (2) temporarily reduced consumption due to concerns over milk quality.

China has been importing more milk (or, more precisely, milk-equivalent dairy products) than it exports. FAPRI and OECD-FAO provide quite different projections about China's total milk production and consumption for the years until 2020 (Table C15). While FAPRI's 2020 per capita consumption and the total output levels seem reasonable, its projections for the immediate future years are inconsistent with current data (for example, the projection of output in 2010 is about 8 mt below the actual). OECD-FAO's production and surplus levels seem to be overly optimistic.

China's ability to produce more milk is limited, though there have been recent imports of breeder cattle to improve genetic stock and increase herd numbers. Hence, China will need to import dairy products (such as milk powder and whey). By 2020, China's net imports of milk powder and whey are expected to increase to around 1.5 mt.

### **Aquatic products**

Fish and other seafood are popular in China. In the late 1970s, per capita consumption was a little over 6 kg. It increased to about 36 kg in 2007 (Table B16). Increases in income have led to the rapid increase in the consumption of aquatic products as suggested by the high income elasticities and the stronger preferences for such foods by higher income consumers (see Figures 2.14 and 2.15). The per capita consumption calculated from the FAO balance sheet is much higher than what the SSB data suggests, and this may reflect more away-from-home consumption by higher-income consumers as suggested in Section 2. The demand for aquatic products will continue to increase as consumer income increases but at slower rates, according to the income elasticities shown in Table A3.

The rapid increase in demand for aquatic products has been mainly met by domestic supplies. China's aquacultural output has grown at an annual rate of about 8.5 per cent, and China has become by far the world's largest aquacultural producer. Fish farming, rather than wild-catch product, contributed more significantly to the output expansion. Future expansion in farming seafood is likely while wild-catch product is not expected to increase much.

In terms of quantity, China has been importing more aquatic products than it exports, including whole wild-catch fish imported for processing and re-export. Moreover, in terms of the value of trade, China has been in surplus. This is because imports have included low-value products such as fish feed and fish powder. Both imports and exports have been increasing but the increase in exports has been greater (Table B16), reducing the size of net imports. In the future, the current patterns of trade in aquatic products are expected to continue. That is, in quantity terms, China will continue to import more (most being low-valued products for feed purposes) than it exports (products with higher value); in value term, China will remain in surplus. How China's future soybean imports may affect its needs to import low-value aquatic products for feed purpose is yet to be seen. Soybean imports increase protein feed and reduce the need to import fish and seafood meals (see Table 4.4). By 2020, we anticipate that China's net imports of aquatic products will be around 2 mt.

| Voor | Fish    | and seatood | meal       |
|------|---------|-------------|------------|
| Tear | Import  | Export      | Net import |
| 1996 | 884478  | 1494        | 882985     |
| 1997 | 988455  | 2401        | 986053     |
| 1998 | 420035  | 2288        | 417747     |
| 1999 | 634298  | 1898        | 632400     |
| 2000 | 1189251 | 2712        | 1186539    |
| 2001 | 904130  | 4121        | 900009     |
| 2002 | 960524  | 8327        | 952197     |
| 2003 | 802843  | 8560        | 794282     |
| 2004 | 1127883 | 7037        | 1120846    |
| 2005 | 1582747 | 5927        | 1576821    |
| 2006 | 983211  | 17973       | 965238     |
| 2007 | 969832  | 12298       | 957535     |
| 2008 | 1351353 | 5407        | 1345947    |
| 2009 | 1310528 | 6229        | 1304299    |
| 2010 | 1042377 | 3767        | 1038610    |

| Table 4.4 Import | t and Export | of Protein Feed in | <u> China (1996-2010</u> | , tonnes) |
|------------------|--------------|--------------------|--------------------------|-----------|
|                  | Fich and cor | afood moal         | _                        |           |

| Voar | ç       | Soybean meal |            |
|------|---------|--------------|------------|
| Tear | Import  | Export       | Net import |
| 1996 | 1876478 | 68418        | 1808060    |
| 1997 | 3469508 | 19677        | 3449830    |
| 1998 | 3722302 | 18493        | 3703809    |
| 1999 | 571821  | 13490        | 558331     |
| 2000 | 505310  | 29002        | 476308     |
| 2001 | 53666   | 315120       | -261454    |
| 2002 | 690     | 1013161      | -1012471   |
| 2003 | 1788    | 770633       | -768845    |
| 2004 | 55451   | 657958       | -602508    |
| 2005 | 202562  | 552952       | -350390    |
| 2006 | 674177  | 381543       | 292635     |
| 2007 | 104912  | 849980       | -745068    |
| 2008 | 220296  | 534885       | -314589    |
| 2009 | 132834  | 1123212      | -990378    |
| 2010 | 187743  | 1016007      | -828264    |

| Voar  | R       | apeseed me | eal        |
|-------|---------|------------|------------|
| i cai | Import  | Export     | Net import |
| 1996  | 252     | 582001     | -581749    |
| 1997  | 53366   | 162689     | -109322    |
| 1998  | 107246  | 6881       | 100365     |
| 1999  | 29498   | 339034     | -309536    |
| 2000  | 55724   | 978357     | -922633    |
| 2001  | 8       | 475663     | -475655    |
| 2002  | n.a.    | 259867     | n.a.       |
| 2003  | 14300   | 182262     | -167962    |
| 2004  | 93612   | 124904     | -31292     |
| 2005  | 71562   | 84932      | -13370     |
| 2006  | 253553  | 48519      | 205034     |
| 2007  | 289596  | 93716      | 195880     |
| 2008  | 308435  | 49837      | 258598     |
| 2009  | 247669  | 335013     | -87344     |
| 2010  | 1216219 | 56308      | 1159911    |

Source: UNcomtrade Database, http://comtrade.un.org.

### 4.3 Competing Agricultural Products

There is a range of other non-food agricultural products that compete with food production for limited resources, such as cotton, jute and tobacco. Both jute and tobacco are minor crops, accounting for 0.1 and 0.8 per cent of total area sown respectively in 2010. Cotton production is the major competitor with food production. Its share of total area sown has been around 3-4 per cent in the past three decades. The average share in the past 5 years was 3.5 per cent with an average area sown to cotton being 5.5 m ha (Table D1).

Cotton competes with summer crops, in particular maize and soybeans. In the past 5 years, the area sown to cotton declined by about 1 m ha (It was 5.82 m ha in 2006 and 5.93 m ha in 2007 but dropped to 4.95 m ha in 2009 and 4.85 in 2010) and China's cotton imports have increased (especially after China joined the World Trade Organization in 2001). Imports of cotton were the highest in 2006; being 3.81 mt. Average annual imports between 2007 and 2010 were about 2.4 mt. China is a major cotton textile exporter and partly relies on imported cotton for processing. To ensure there is adequate cotton, China has adopted a less restrictive policy for cotton tariff-rate quota (TRQ). The global economic environment affects China's exports of cotton textile and thus the need for cotton imports.

In the future, if the supply of grain becomes tight and land is allocated to grain production then it is likely that the current less restrictive import policy will remain in place for cotton. This will encourage processing firms to import cotton; thus sparing land for food production. However, it must be noted that cotton is regarded as a commodity of strategic significance in China and therefore it is unlikely that the government will allow the self-sufficiency rate of cotton to drop too low. In 2010, the cotton self-sufficiency rate was 65 per cent and was at its lowest level in recent history. Further reduction in this self-sufficiency rate is likely to be met by a policy response from the Chinese Government to increase production. The maximum scope for increasing the area sown to cotton is about 1 m ha. In 2010, China's total area sown to grain crops was 110 m ha. Hence, any potential impact on grain supply resulting from variations in area sown to cotton is unlikely to be greater than 1 per cent.

Another product whose production may affect China's food supply is wool. Changes in wool production will not directly affect grain supply as the competition from wool for arable land is not that strong. However, the supply of mutton/lamb may be affected. In the past few decades the wool price was relatively low and the relative price of mutton and lamb has become more attractive. Many producers have moved away from wool production to raise sheep for meat or for both wool and meats. This has led to an increase in mutton output in the past few years. It is likely this trend will continue unless the wool price significantly improves relative to prices for mutton and lamb.

China is the largest importer of wool from Australia. Subsequently, changes in wool production in Australia will also affect China's wool production. Some Australian wool growers are shifting to produce sheep meat and this could affect the price of wool imported to China. If this price increase is relatively large, then more Chinese sheep producers will remain in wool production. If this price does not increase much or becomes even lower, then Chinese processors will choose to use more imported wool rather than domestically produced wool (Liu *et al.* 2011). This of course will encourage more Chinese wool growers to shift to produce meats, increasing China's supply of mutton and lamb. Regardless of which scenario

occurs, the potential effect on China's total sheep meat supply is likely to be small and China will still need to import lamb and mutton to meet rising demand.

### 4.4 Further Discussion

Based on the above analyses, a number of useful observations can be drawn.

- (1) An overwhelming majority of the available arable land is used for producing food in China. In 2010, the total area sown to all crops in the nation was 161 m ha. Of this, 96 per cent was devoted to food production. This suggests that the room for China to reduce land used for non-food crop production in order to produce more food crops is very minimal. Within food crops, an increase in area sown to a particular crop has to be at the expense of the area sown to another crop or crops. An increase in total food output in the future can only be achieved through yield improvement or claiming new land for crops.
- (2) China's capacity to produce more animal products is stretched. More pork output will require more feed, chiefly, maize. China's ability to substantially increase its maize output is very limited. Small-scale pig production is declining and pig farming is becoming more intensified. Imports of maize are likely to increase; the quantity imported and the speed of this increase depend on China's needs for animal feed for pork production.
- (3) Small increases in beef and sheep meat production are possible. The production of these meats will not directly compete for limited arable land as such. In agricultural areas they eat crop residuals with little reliance on high valued grains. Their production in agricultural areas has now become more important than that in pastoral areas. If we roughly treat those west and north-west provinces as pastoral regions (including Tibet, Qinghai, Xinjiang, Gansu, Shaanxi, Ningxia and Inner Mongolia), these regions together only produce about 20 per cent of China's total beef and 45 per cent of China's total lamb. Cattle and sheep farming are also intensifying. The impact of increased production of cattle and sheep in both agricultural and pastoral areas on the environment is a cause for concern.
- (4) China has managed to produce a large amount of food to meet the rising demand by Chinese consumers. Looking into the future, China's ability to provide staple cereal foods, (rice and wheat) from domestic sources is quite promising. However, China's high level grain self-sufficiency tends to place a major downward pressure on the income prospects for farmers in major grain-producing regions who may have to forego more profitable alternatives.
- (5) China's future imports of soybean and rapeseed will remain sizeable. It will continue to be a net importer of other edible oils such as palm oil. Sugar imports are expected to further increase. Both imports and exports of fruits will expand. China will export more temperate fruits and import more tropical fruits and out of season temperate fruits.
- (6) The size of food imports of plant origin will depend on two important factors. One is whether the Chinese government can effectively avoid the further decline of available arable land. The demand for land for non-agricultural use is strong; e.g. for road construction and urban expansion. The other is whether the Chinese government can effectively boost R&D investment, thus improving crop yields.
- (7) Meat consumption is expected to increase strongly as income further increases. How China is going to supply more animal products to its consumers is not yet clear. There

are three major options available for the Chinese government: (1) produce more at home; (2) import live animals; and (3) import animal products. For pork, if China wants to produce more at home, then more maize imports will be needed. It is most likely that China will increase its poultry meat imports.

(8) The large amount of soybean imports has helped China to "create" over 30 m ha new land. This is substantial, considering China's total annual area sown to crops is 160 m ha. Should China need to import more maize, which is most likely, more land can then be "created". This is an attractive strategy for China to ensure its food security (or more precisely, grain security) as this helps China to devote limited arable land for production of the key food grains such as paddy rice and wheat.

Our analysis of China's food consumption trends and its likely import needs should be read in light of the following:

- (1) A systematic approach is needed to assess China's future food supply. Assessing the supply of one particular food item without due attention to the supply of other foods is inadequate because of the very tight resource availability. The increase in the production of one food item domestically is likely to affect the output level of other foods, especially among crops.
- (2) Interpreting projections of China's future food supply must be done with caution. Any projections require reliable data and information as inputs. The quality of data and information from China is often a concern. This is partly related to possible inflation or deflation in statistics reporting. It is also partly related to the fast changes in the economy which often lead to changes in statistical indicators. When changes are made to indicators, their definition and scope of coverage could all differ from existing ones, making data incomparable and reducing the usefulness of a time series. Data unreliability may have also been related to the fact that little attention has been paid to some key parameters such as government food buffer stock levels. Of most concern regarding forecasting accuracy are the abrupt changes in policy made possible by China's centralised government. The timing and the scale of the changes are generally hard to predict and incorporate into forecast models. Hence, caution should be always exercised when interpreting any forecasts on China's food supply. Generally, the forecasts for immediate coming years will have some accuracy but the accuracy declines rapidly for those beyond 4 or 5 years, although they may still provide useful information about likely directions of change.

### 4.5 Prospects of Food Trade between Australia and China

Given the sheer size of China's population, the huge gap in consumption between the poor and the rich, and that between rural and urban consumers, the potential for the Chinese food market to expand is immense should the income level of the poor move towards the rich, and that of the rural move towards urban. The analysis in this study shows that China will not be able to meet all the increased demand with domestic supplies. Imports will be required, which renders exciting opportunities to food exporting countries such as Australia.

Australia is better positioned than most to benefit from China's needs for increased food imports, due to the strong complementarity in the trade of agricultural products between Australia and China, as discovered by Zhou *et al.* (2007). Currently, the volume of trade between the two countries is still relatively small. Yet the scope of commodities already

traded is relatively extensive. Further expansion in food trade between the two countries will render huge benefits to both partners.

China offers a potentially huge market for Australian food exports. As shown in this study, its demand for food products will continue to rise. This is driven by several important factors such as: (1) limited land and other natural resources; (2) increased demand as a result of rising income, and to some extent, by population increase; and (3) the increasing demand for higher quality and diverse products as consumer tastes and preferences change. Australia's reputation for producing good quality products is advantageous to increasing its food exports to China.

China is competitive in the production of labour-intensive food products and processed foods such as some Asian vegetables, horticultural products, and aquatic products. There is also great potential for China to increase its exports of many speciality foods to Australia such as dried lily flower and dried fungi, due to both the number of people of Asian descent living in Australia and the changing tastes of local Australians willing to try Asian foods.

Australia's competitiveness lies in the production of land-intensive food products, such as grains (e.g., barley and wheat), and animal foods (meats and dairy products). However, in the near future, China is unlikely to import large amounts of wheat or animal products except for speciality, niche or high quality products. It will, however, need to import oilseeds (such as rapeseed), coarse grains (particularly barley and perhaps maize), and dairy products.

According to the study by Zhou *et al.* (2007), total food trade between Australia and China is expected to further increase. While Australia's exports to China are expected to grow, so are imports from China. However, Australia will continue to export more to China than it imports from China. More importantly, they concluded that increased exports from Australia to China are unlikely to generate any shock to China's domestic production. This is mainly due to the fact that imports from Australia are chiefly for niche markets. Australian products, because of their higher quality or scarcity in China, are not competing with locally produced low-cost products. Likewise, increased imports from China will not generate large negative impacts on the Australian agricultural sector, although producers in some industries, such as the horticultural sector, parts of the fisheries industries and the food processing sector, may face increased competition.

An important complementarity, attractive to food traders in both countries, is the opportunity to import and export products based on seasonal differences.

Australia will benefit, directly and indirectly, from China's rising demand for foods. Directly, Australia will be able to export more foods to China. Indirectly, China's increased imports from the world market will push up overall global demand, creating opportunities for Australia to increase its food exports to other parts of the world. Resulting higher global food prices will also bring benefits to Australia.

## **5. Conclusions and Implications**

This report examined China's food consumption trends since 2000 and assessed China's likely food import needs by 2020. In making our assessments we used data from the SSB, food balance sheets from FAO and projections of production and consumption trends from FAPRI, USDA, OECD-FAO and some less sophisticated modelling of our own.

Based on our analyses, China's food consumption since 2000 has exhibited the following trends:

- Total expenditure on foods continued to increase as income rose. However, the proportion of food expenditure out of total living expenditure continued to decline.
- The per capita direct consumption of staple foods, chiefly, rice and wheat, continued to decline. The per capita consumption of such foods by high-income urban consumers has largely stabilised. On a per capita basis, there will be further decline in the consumption of staple foods. The decline will come from lower-income urban residents but chiefly from all rural residents, both rich and poor, if their income continues to increase.
- The consumption of higher value foods, especially animal products, is increasing. The foods with higher rates of growth include milk and dairy products, aquatic products, poultry meats and fruits.
- Rural consumption is significantly behind urban consumption. In terms of the level of animal product consumption, rural China is at least 30 years behind urban areas. In 2010, the consumption level of several food items by high income rural residents (top 20 per cent) was below that of the bottom 20 per cent of residents in urban areas.
- There is a significant gap in the level of consumption between the rich and poor consumers in both rural and urban areas. For some foods of higher value such as aquatic and dairy products, the gap is several times larger.
- Both food consumption levels and patterns differ between regions. Consumption convergence is taking place but slowly.
- Chinese consumers have started to demand safe and high quality foods. Instances of foods of dubious quality have negatively affected consumer demand for foods. Foods with health-damaging ingredients, such as milk/milk powder with melamine, have led to reduced consumption of such foods.
- Some very wealthy Chinese consumers demand foods of superior quality. Some of them mainly consume imported foods due to concerns over safety of foods produced in China.
- Food diversity has increased rapidly in recent years and consumers have more choice.
- In response to consumer needs for convenience, retail-processed foods have also increased rapidly.
- Some more educated consumers have increasingly paid attention to food nutrition.
- Younger consumers more readily try foods from different cultures.

In the future, the scope and size of food imports by China will depend on whether the foods are plant origin or animal origin and whether the foods are staples.

• By 2020, China is expected to be largely self-sufficient in wheat and rice; a small amount of net wheat imports is possible.

- Maize imports are to increase but the amount is uncertain depending on China's choice of options in increasing its meat supply.
- Soybean imports may slightly increase above the current 55 mt imported. The imports of other oil-bearing crops such as rapeseed may vary depending on the amount of oil imported such as rapeseed oil and palm oil.
- China has limited capacity to boost its sugar production and sugar imports will continue.
- China will continue to be a net barley importer but the size of imports will be comparable to current levels.
- The imports of high quality beef and mutton/lamb are expected to increase to meet the demands of high-end hospitality industries, foreigners (expatriates and tourists) and rich local consumers.
- China is likely to be less restrictive on pork imports. Pork imports are unlikely to have a major impact on the domestic market given that domestic output is so high, being about 50 per cent of world's total production.
- It is also highly possible that China will increase poultry meat imports. However, China is expected to be self-sufficient in egg supply.
- China will need to import dairy products, chiefly milk powder and whey.
- In the foreseeable future, China seems to have sufficient protein feed assuming China continues to import a large amount of soybean. But it will be short of energy feed supplies such as maize. China's imports of energy feed will increase if it chooses to produce more animal products at home.

Given the size of the population, increased disposable income is turning China into a huge food market. In view of the huge gap in consumption levels between the poor and rich consumers and between rural and urban residents, the potential for the Chinese food market to expand is considerable as incomes rise and these gaps close. China's inability to meet all the increased demand with domestic supplies renders significant opportunities to food exporting countries such as Australia.

Australia will benefit, directly and indirectly, from China's rising demand for foods. Directly, it is expected that Australia will be able to export more foods to China. Indirectly, China's increased imports from the world market will put pressure on supplies from elsewhere, creating opportunities for Australia to increase its exports to other parts of the world.

### References

- ABS (Australian Bureau of Statistics) (2007), *CAT 4306.0 Apparent Consumption of Foodstuffs, Australia, 1997-98 and 1998-99*, accessed 15 December 2011. http://www.abs.gov.au/AUSSTATS/abs@.nsf/mf/4306.0
- Bouis, H. (1991), 'Rice in Asia: is it becoming an inferior good? Comment', *American Journal of Agricultural Economics*, Vol. 73, pp. 522-527.
- Brown, L. (1995), Who Will Feed China? Norton & Company Inc, New York.
- Chen, Y. (2004), *China's Food: Supply, Demand and Projections*. China Agricultural Press, Beijing.
- Coyle, W. Gehlhar, M., Hertel, T., Wang, Z. and Yu, W. (1998), 'Understand the determinants of structural changes in world food market', Staff Paper 98-05, GTAP Centre, Purdue University.
- Cranfield, J., Hertel, T., Eales, J. and Preckel, P. (1998), 'Changes in the structure of global food demand', Staff Paper 98-05, GTAP Centre, Purdue University.
- Dairy Association of China, *China Dairy Industry Yearbook*, various issues, China Agricultural Press, Beijing.
- FAO (Food Agriculture Organization of the United Nation) (2001), *Food Balance Sheets: a hand book*, FAO, Rome.
- FAOSTAT agricultural data, Food and Agriculture Organization of the United Nations, accessed 21 September, (2011),

http://faostat.fao.org/site/617/DesktopDefault.aspx?PageID=617#ancor.

- FAPRI (Food and Agriculture Policy Research Institute) (2001), FAPRI 2001 U.S. and World Agricultural Outlook (World Oilseeds and Products), accessed 16 December 2011. Available from: <u>http://www.fapri.iastate.edu/outlook/2001/text/outlk2001Oil.pdf</u>.
- FAPRI-ISU World Agricultural Outlook Database, Food and Agriculture Policy Research Institute, updated May 2011, viewed 25 September, (2011), <u>http://www.fapri.iastate.edu/tools/outlook.aspx</u>.
- Fan, S., Wailes, E. and Cramer, G. (1995), 'Household demand in rural China: a two-stage LES-AIDS model', *American Journal of Agricultural Economics*, Vol. 77, pp. 54-62.
- Fan, S. and Agcaoili-Sombilla, M. (1997), 'Why projections on China's future food supply and demand differ', *Australian Journal of Agricultural and Resource Economics*, Vol. 41, pp. 169-90.
- Fuller, F., Hayes, D. and Smith, D. (2000), 'Reconciling Chinese meat production and consumption data', *Economic Development and Cultural Change*, Vol. 49, pp. 23-43.
- Gandhi, V. and Zhou, Z. (2010), 'Rising demand for livestock products in India: nature, patterns and implications', *Australasian Agribusiness Review*, Vol. 18, pp. 103-135.
- Garnaut, R. and Ma, G. (1992), *Grain in China*, East Asia Analytical Unit, Department of Foreign Affairs and Trade, Canberra.
- Gould, B.W. (2002), 'Household composition and food expenditure in China', *Agribusiness*, Vol. 18, pp. 387-402.
- Government of China (2008), 'Outlines of medium- and long-term national grain security plan (2008-2020), <u>www.gov.cn</u>, 13 November 2008, accessed 15 December 2008.
- Guo, X., Mroz, T., Popkin, B. and Zhai, F. (2000), 'Structural change in the impact of income on food consumption in China, 1989-1993', *Economic Development and Cultural Change*, Vol. 48, pp. 737-760.

- Halbrendt, C. and Tuan, F., Gempeshaw, C. and Dolk-Etz, (1994), 'Rural Chinese food consumption: the case of Guangdong', *American Journal of Agricultural Economics*, Vol. 76, pp. 794-799.
- He, X. and Tian, W. (2000), 'Livestock consumption: diverse and changing preferences', in Yang, Y. and Tian, W. (eds), *China's Agriculture at the Crossroads*, Macmillan Press, London, pp. 78-97.
- Huang, J, Rozelle, S and Rosegrant, M 1999, 'China food economy to the 21st century: supply, demand and trade', *Economic Development and Cultural change*, vol. 47, no. 4, pp. 737-766.
- Huang, J. and David, C. (1993), 'Demand for cereal grains in Asia: the effect of urbanization', *Agricultural Economics*, Vol. 8, pp. 107-124.
- Huang, J. and Rozelle, S. (1998), 'Market development and food demand in rural China', *China Economic Review*, Vol. 9, pp. 25-45.
- Huang, J. and Bouis, H. (2001), 'Structural changes in the demand for food in Asia: empirical evidence from Taiwan', *Agricultural Economics*, No. 1, pp. 40-45.
- Ishida, A., Law, S. and Aita, Y. (2003), 'Changes in food consumption expenditure in Malaysia', *Agribusiness*, Vol. 19, pp. 61-76.
- Ito, S. Peterson, E. and Grant, W. (1989), 'Rice in Asia: is it becoming an inferior good?' *American Journal of Agricultural Economics*, Vol. 71, pp. 32-42.
- Jones, E., Akbay, C., Roe, B. and Chern, W.S. (2003), 'Analyses of consumers' dietary behaviour: an application of the AIDS model to supermarket scanner data', *Agribusiness*, Vol. 19, pp. 203-221.
- Liu, H., Parton, K., Zhou, Z. and Cox, R. (2009), 'At-home meat consumption in China: an empirical study', *Australian Journal of Agricultural and Resource Economics*, Vol. 53, pp. 485-501.
- Liu, H., Zhou, Z. and Malcolm, B. (2011), 'China's wool import demand: implications for Australia', *Australasian Agribusiness Review*, Vol. 19, pp. 16-34.
- Ma, H, Huang, J and Hu, D 2001, 'Empirical research on rural FAFH consumption in China' (in Chinese), *Chinese Rural Economy*, no. 1, pp. 25-32.
- Ma, H., Rae, A., Huang, J. and Rozelle, S. (2004), 'Chinese animal product consumption in the 1990s', *Australian Journal of Agricultural and Resource Economics*, Vol. 48, pp. 569-590.
- OECD Stat Extracts Country Statistical Profiles 2011, Organization for Economic Cooperation and Development, viewed 23 September, (2011), http://stats.oecd.org/index.aspx.
- Rae, A. and Zhang, X. (2009), 'China's booming livestock industry: household income, specialization, and exit', *Agricultural Economics*, Vol. 40, pp. 603-616.
- Regmi, A., Deepak, M., Seale, J. and Bernstein, J (2001), 'Cross-country analysis of food consumption patterns', in Regmi, A. (ed.), *Changing Structure of Global Food Consumption and Trade*, ERS WRS No. 01-1, USDA, Washington, D.C.
- SSBa (State Statistical Bureau), *China Statistical Yearbook*, various issues, China Statistical Press, Beijing.
- SSBb, *Yearbook of Rural Household Surveys in China,* State Statistical Bureau of China, Beijing.
- SSBc, *Statistical Yearbook of Price and Urban Income and Expenditure in China*, State Statistical Bureau of China, Beijing.
- USDA (United States Department of Agriculture) (2001), USDA Agricultural Baseline Projections to 2010 (Soybean Trade Baseline Projections, p. 136), accessed 16 December 2011. Available from: http://www.ers.usda.gov/publications/waob011/waob011.pdf.

- USDA-ERS International Agricultural Projections Data, Economic Research Service, United States Department of Agriculture, viewed 18 September, (2011), <u>http://www.ers.usda.gov/data/internationalbaseline/sutabs11.htm</u>.
- USDA-PSD Production, Supply and Distribution Online, Foreign Agricultural Service, United States Department of Agriculture, viewed 22 September, (2011), http://www.fas.usda.gov/psdonline/psdQuery.aspx.
- Wan, G. (1998), 'Nonparametric measurement of preference changes: the case of food demand in rural China', *Applied Economics Letters*, Vol. 5, pp. 433-436.
- Wang, J. and Fan, Y. (1999), 'A study on animal product consumption by rural and urban residents in China', Research Report for a project commissioned by the Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing.
- Wang, J. and Zhou, Z. (2005), 'Animal product consumption." in Zhou, Z.Y. and Tian, W.M. (eds), *Grains in China: Food grain, Feedgrain and World Trade*, Aldershot, Ashgate, pp. 87-107.
- Wu, Y. and Li, E. (1995), 'Food consumption in urban China: An empirical analysis', *Applied Economics*, Vol. 27, pp. 509-515.
- Wu, Y. (1999), China's Consumer Revolution, Edward Elgar, Cheltenham.
- Zhou, J. (2001), 'A study on the dairy market in China', unpublished Ph.D. Dissertation, China Agricultural University, Beijing.
- Zhou, Z. and Tian, W. (2003), *China's Regional Feedgrain Markets: Developments and Prospects*, The University of Sydney.
- Zhou, Z. and Tian, W. (eds) (2005), *Grains in China: Food grain, Feedgrain and World Trade*, Ashgate Publishing Company, Burlington.
- Zhou, Z., Tian, W. and Malcolm, B. (2008), 'Supply and demand estimates for feed grains in China', *Agricultural Economics*, Vol. 39, pp. 111-122.
- Zhou, Z., Tian, W. and Zhou, J. (2002), 'The emerging dairy economy in China: production, consumption and trade prospects', *Australasian Agribusiness Review*, Vol. 10, Paper 8.
- Zhou, Z., Tian, W., Liu, X. and Wan, G. (2003), 'Studying China's feedgrain demand and supply: research methodological issues', in Zhou, Z.Y. and Tian, W.M. (eds), *China's Regional Feedgrain Markets: Developments and Prospects*, Grains Research and Development Corporation, Canberra.
- Zhou, Z., Wu, Y. and Si, W. (2007), 'Evolving patterns of agricultural trade between Australia and China', *Australasian Agribusiness Review*, Vol. 15, pp. 27-45.

# Appendix

### **Appendix A. Income Elasticity Estimates**

Numerous efforts have been made to estimate income elasticities of demand for food for China. Fan and Agcaoili-Sombilla (1997), Chen (2004, pp. 12-15) and Zhou and Tian (2005, p. 132), provide summaries of earlier estimates. ERS of USDA and FAPRI at their websites also collate such estimates from diverse sources. The differences in such estimates between foods and over time can be seen in Table A1.

Few existing studies have made attempts to calculate yearly income elasticities, which help to reveal the patterns of change. Income elasticities of demand for various foods, however, are most likely to vary over time in China. Further, elasticities calculated using data from the 2000s are rare. Such 2000s data is available and an attempt was made in this study to estimate income elasticities on an annual basis.

It must be noted that we do not imply that our estimates of income elasticities are superior or more accurate. Our sole objective is to disclose the patterns of relationships between consumer food demand and income change through time.

Quantity demanded (in this study, per capita food utilisation) was specified as a function of income and related prices, taking the general form:

 $\ln Q_{it} = \alpha_{0i} + \alpha_{1i} \ln GDPPC_t + \alpha_{2i} / GDPPC_t \sum \beta_{ij} \ln P_{jt} + \mu_i$ 

where:

 $Q_{it}$ : the quantity of demand/utilisation for commodity *i* in year *t*; GDPPC: per capita GDP in year *t*; and  $P_{it}$ : price of commodity *j* in year *t*.

The time-varying income elasticity for commodity *i* is then calculated as:

 $e_{it} = \hat{\alpha}_{1i} - \hat{\alpha}_{2i} / GDPPC_t$ 

It can be seen from the formulae that the income elasticity may increase ( $\hat{\alpha}_{2i} > 0$ ), constant ( $\hat{\alpha}_{2i} = 0$ ), or decrease ( $\hat{\alpha}_{2i} < 0$ ). When GDPPC grows large, the income elasticities will converge to  $\hat{\alpha}_{1i}$ .

Data from Chinese government sources, FAO, USDA and other publications were gathered, examined and compared. It was found that the data were not always consistent in terms of commodity definitions and coverage. Particularly, some of the price series were incomplete. Proxies for some missing price series were used in this study as control variables. Given that our primary focus was to estimate income elasticities and examine their patterns, the use of proxies is unlikely to cause serious problems. The estimated parameters of income variables are shown in Table A2.

Out of the 16 food products covered, 13 have negative  $\alpha_2$ , indicating declining income elasticities as per capita income rises. Maize demand has constant income elasticity, and

soybean and milk have increasing income elasticities. The parameter  $\alpha_1$  was negative for wheat, rice, barley and rapeseed, suggesting that these products tend to become inferior food items in the long run. The derived income elasticities for all the food items are given in Table A3.

The trends shown in these elasticities are largely in accordance with our assertions as shown in Section 2. For example, the income elasticities of demand for wheat and rice have declined over years. The income elasticities for animal products are greater compared to those of cereal foods. However, due to data limitations, it was not possible to estimate elasticities for direct and indirect consumption of some foods, and to derive the elasticities for rural and urban areas separately.

Caution needs to be exercised in explaining the size of the elasticities. The reliability of any estimated income elasticities depends largely on the appropriateness of the econometric models used and the quality of the data. While we believe the models used to estimate those elasticities in Table A3 are largely appropriate for the purpose of this study, it should be kept in mind that the quality and availability of some data is less than desirable and in some cases proxies had to be used, particularly for prices. Further, the functional form we used was not flexible enough to fully reflect direction changes in income elasticities, which might have occurred for some food items as income rose. As such, the elasticities for some food items needed to be read with extreme caution, especially for soybean and milk. In the longer term, demand behavior will change as a result of the changes in other forces. From the mid-1990s, the demand for soybean and dairy products (chiefly, milk) has increased remarkably. Such fast increases on a per capital basis are unlikely to continue for long and their income elasticities are expected to reach a high point and then start to decrease.

| Study                    | Data<br>time<br>period | Area    | Food grains                                                                | Meats* | Pork  | Beef  | Mutton | Poultry | Dairy<br>products | Eggs  | Aquatic<br>products |
|--------------------------|------------------------|---------|----------------------------------------------------------------------------|--------|-------|-------|--------|---------|-------------------|-------|---------------------|
| Lewis and Andrews (1989) | 1982-85                | Average | 0.34                                                                       |        |       |       |        |         |                   |       |                     |
| Tian (1990)              | 1984-88                | Urban   |                                                                            |        | 1.040 | 1.190 | 1.190  | 1.620   |                   | 1.180 | 1.510               |
|                          |                        | Rural   |                                                                            |        | 1.410 | 0.610 | 0.610  | 1.990   |                   | 1.140 |                     |
| Ma (2003)                | 1980s                  | Urban   |                                                                            |        | 0.682 | 1.684 | 1.293  | 1.954   | 1.589             | 1.245 |                     |
|                          |                        | Rural   |                                                                            |        | 0.795 | 1.085 | 0.454  | 1.694   |                   | 1.643 |                     |
| Yan (2002)               | 1981-93                | Urban   | -0.490                                                                     | 0.350  |       |       |        |         |                   |       |                     |
|                          |                        | Rural   | 0.010                                                                      | 0.630  |       |       |        |         |                   |       |                     |
| Fan and Wailes (1994)    | 1993                   | Rural   |                                                                            | 0.550  |       |       |        | 0.540   |                   |       |                     |
| Shen (1995)              | 1980-94                | Urban   | 0.310                                                                      |        |       |       |        |         |                   |       |                     |
| Liu and Chern (2001)     | 1992-96                | Average | 1.30 <sup>a</sup> /1.04 <sup>b</sup> /0.20 <sup>c</sup> /0.32 <sup>d</sup> |        |       |       |        |         |                   |       |                     |
| Mei (2001)               | 1996                   | Rural   | 0.009                                                                      | 0.126  |       |       |        | 1.481   |                   | 1.131 | 3.010               |
| Ma (2003)                | 1990s                  | Urban   |                                                                            |        | 0.659 | 1.411 | 1.246  | 1.412   | 1.488             | 1.334 |                     |
|                          |                        | Rural   |                                                                            |        | 0.764 | 1.121 | 0.749  | 1.389   |                   | 1.697 |                     |
| FAO                      |                        | Average | 0.25(Rice)/0.3(Wheat)                                                      |        | 0.45  | 1.16  | 0.45   | 0.60    | 0.75              |       |                     |
| IFPRI                    |                        | Average | 0(Rice) /0.3(Wheat)                                                        |        | 0.40  | 1.20  |        | 0.60    | 0.50              |       |                     |
| FAPRI                    |                        | Urban   |                                                                            |        | 0.10  | 0.45  |        | 0.45    |                   |       |                     |
|                          |                        | Rural   |                                                                            |        | 0.12  | 0.46  |        | 0.46    |                   |       |                     |

### Table A1. Expenditure/Income Elasticities from Earlier Studies

\* Meats include pork, beef and mutton; a-d: elasticity calculated by LA/AIDS, AIDS, LES, and QES, respectively. Sources: Fan and Agcaoili-Sombilla (1997), Chen (2004, pp. 12-15), Zhou and Tian (2005, p. 132), ERS of USDA (www.ers.usda.gov/Data/Elasticities/app/), FAPRI (www.fapri.iastate.edu/tools/elasticity.aspx).

| Table | A2. | Resul | ts of | Regr | ession |
|-------|-----|-------|-------|------|--------|
|-------|-----|-------|-------|------|--------|

|                   | Constant  | LOG(GDPPC)           | 1/GDPPC                | LOG(GRP/CPI) | LOG(LPP/CPI)         | LOG(VEP/CPI) | LOG(MTP/CPI) | LOG(FPP/CPI)         | R <sup>2</sup> |
|-------------------|-----------|----------------------|------------------------|--------------|----------------------|--------------|--------------|----------------------|----------------|
| Barley            | 3.7100    | -0.1602              | -564.1416              | 0.7844       | -0.5282              | -0.9698      |              |                      | 0 7650         |
|                   | (4.8834)  | (-1.4644)            | (-6.3972)              | (6.2976)     | (-2.8633)            | (-4.2818)    |              |                      | 0.7659         |
| Wheat             | 7.4039    | -0.3399              | -467.7449              | 0.0291       | 0.0181               | -0.1113      |              |                      | 0 0687         |
|                   | (41.4016) | (-14.0595)           | (-22.2506)             | (0.9577)     | (0.4058)             | (-2.8061)    |              |                      | 0.9007         |
| Rice              | 6.1145    | -0.2200              | -80.6396               | 0.0031       | -0.1263              | 0.2891       |              |                      | 0 5823         |
|                   | (19.8876) | (-5.0759)            | (-2.2498)              | (-0.0605)    | (-1.6749)            | (3.4579)     |              |                      | 0.0020         |
| Maize             | 1.9439    | 0.3830               | -1.3436                | 0.4403       | -0.4238              | -0.3728      |              |                      | 0 9458         |
|                   | (3.8216)  | (5.1422)             | (-0.0228)              | (5.3285)     | (-3.4526)            | (-2.3469)    |              |                      | 0.0400         |
| Soybean           | -5.4575   | 1.0755               | 522.8380               | 0.1060       | 0.0005               | -0.4794      |              |                      | 0 9677         |
|                   | (-7.0137) | (11.0106)            | (5.9255)               | (0.6967)     | (0.0023)             | (-3.4280)    |              |                      | 0.0011         |
| Sugarcane         | 2.9732    | 0.2011               | -280.5175              | -0.2604      | 0.3104               | -0.2724      |              |                      | 0 9010         |
|                   | (3.7432)  | (1.7658)             | (-3.0401)              | (-1.9944)    | (1.6101)             | (-1.1806)    |              |                      | 0.0010         |
| Vegetables        | 0.9055    | 0.5695               | -111.1578              | -0.0134      | -0.6372              | 0.4677       |              |                      | 0 9953         |
|                   | (2.3242)  | (10.3269)            | (-2.4489)              | (-0.2075)    | (-6.6816)            | (4.3453)     |              |                      | 0.0000         |
| Fruits            | -0.7489   | 0.6077               | -326.9144              | 0.4701       | -0.5396              | 0.1360       |              |                      | 0.9949         |
|                   | (-1.4942) | (8.8265)             | (-5.5642)              | (5.5591)     | (-4.3444)            | (1.1247)     |              |                      | 0.0010         |
| Rapeseed          | 4.1324    | -0.1898              | -809.0096              | 0.1846       | -0.3983              | -0.4055      |              |                      | 0.9332         |
|                   | (3.8683)  | (-1.4284)            | (-6.5233)              | (0.9193)     | (-1.4696)            | (-2.8183)    |              |                      | 0.000          |
| Pork              | 2.8679    | 0.1413               | -533.9836              | 0.1020       |                      | -0.2333      | -0.2440      |                      | 0.9905         |
| <b>-</b> <i>'</i> | (7.5003)  | (2.5467)             | (-12.0028)             | (1.6133)     |                      | (-2.0070)    | (-2.6279)    |                      |                |
| Beet              | -1.0701   | 0.4305               | -1053.2720             | 1.0919       |                      | -0.5216      | -1.0433      |                      | 0.9830         |
|                   | (-0.9044) | (2.7040)             | (-7.5662)              | (5.3410)     |                      | (-2.0610)    | (-3.5182)    |                      |                |
| Mutton            | -5.2825   | 0.8870               | -366.5691              | 0.0822       |                      | -0.6730      | -0.2953      |                      | 0.9892         |
| Devilter          | (-7.8458) | (9.1220)             | (-4.6752)              | (0.7361)     |                      | (-3.3492)    | (-1.8016)    |                      |                |
| Poultry           | -1.0302   | 0.6028               | -594.4680              | 0.7335       |                      |              | -0.8478      |                      | 0.9810         |
|                   | (-1.7402) | (4.7476)             | (-5.3716)              | (4.5287)     |                      | (-2.5517)    | (-3.6057)    |                      |                |
| Eggs              | 2.9362    | 0.0076               | -799.0402              | 0.7072       |                      | 0.1758       | -0.0011      |                      | 0.9889         |
| Mille             | (4.3279)  | (0.0630)             | (-10.0062)             | (0.1112)     | 0 2022               | (1.2013)     | (-3.6990)    | 1 2220               |                |
| IVIIIK            | -13.1308  | 1.0704               | 1200.1400              | -0.2201      | -U.2933<br>( 1 5067) |              |              | 1.2320               | 0.9842         |
| Fich              | 3 8/21    | (21.0479)<br>-0.0075 | (13.2311)<br>-828.8139 | (-1.0103)    | -0.2606              |              |              | (12.3272)<br>-0.0967 |                |
| 1 1311            | (5 0892)  | (-0.0841)            | (-8.6038)              | (4 1995)     | (-1.3292)            |              |              | (-0.9403)            | 0.9861         |

t-value in brackets.

Source: authors' own calculation.

| Year | Barley | Wheat   | Rice    | Maize  | Soybean | Sugarcane | Vegetables | Fruits | Rapeseed | Pig meat | Beef   | Mutton | Poultry | Eggs   | Milk    | Fish   |
|------|--------|---------|---------|--------|---------|-----------|------------|--------|----------|----------|--------|--------|---------|--------|---------|--------|
| 1978 | 1.3205 | 0.8877  | -0.0084 | 0.3866 | -0.2968 | 0.9374    | 0.8612     | 1.4657 | 1.9336   | 1.5429   | 3.1949 | 1.8491 | 2.1630  | 2.1048 | -1.4291 | 2.1678 |
| 1979 | 1.2348 | 0.8166  | -0.0206 | 0.3864 | -0.2173 | 0.8947    | 0.8443     | 1.4160 | 1.8106   | 1.4617   | 3.0348 | 1.7934 | 2.0727  | 1.9833 | -1.2375 | 2.0418 |
| 1980 | 1.1497 | 0.7461  | -0.0328 | 0.3862 | -0.1384 | 0.8524    | 0.8275     | 1.3667 | 1.6886   | 1.3812   | 2.8760 | 1.7381 | 1.9830  | 1.8628 | -1.0474 | 1.9168 |
| 1981 | 1.1004 | 0.7053  | -0.0398 | 0.3860 | -0.0928 | 0.8279    | 0.8178     | 1.3382 | 1.6180   | 1.3346   | 2.7841 | 1.7061 | 1.9311  | 1.7931 | -0.9375 | 1.8445 |
| 1982 | 1.0129 | 0.6327  | -0.0524 | 0.3858 | -0.0117 | 0.7844    | 0.8006     | 1.2874 | 1.4925   | 1.2517   | 2.6206 | 1.6493 | 1.8389  | 1.6691 | -0.7419 | 1.7159 |
| 1983 | 0.9135 | 0.5502  | -0.0666 | 0.3856 | 0.0805  | 0.7350    | 0.7810     | 1.2298 | 1.3499   | 1.1576   | 2.4350 | 1.5846 | 1.7341  | 1.5282 | -0.5198 | 1.5698 |
| 1984 | 0.7843 | 0.4432  | -0.0850 | 0.3853 | 0.2002  | 0.6707    | 0.7556     | 1.1550 | 1.1647   | 1.0353   | 2.1938 | 1.5007 | 1.5980  | 1.3453 | -0.2313 | 1.3801 |
| 1985 | 0.6836 | 0.3597  | -0.0994 | 0.3850 | 0.2935  | 0.6207    | 0.7357     | 1.0966 | 1.0203   | 0.9400   | 2.0058 | 1.4353 | 1.4919  | 1.2027 | -0.0064 | 1.2321 |
| 1986 | 0.6267 | 0.3125  | -0.1076 | 0.3849 | 0.3463  | 0.5923    | 0.7245     | 1.0636 | 0.9386   | 0.8861   | 1.8995 | 1.3983 | 1.4319  | 1.1220 | 0.1208  | 1.1484 |
| 1987 | 0.5564 | 0.2542  | -0.1176 | 0.3847 | 0.4114  | 0.5574    | 0.7106     | 1.0229 | 0.8378   | 0.8196   | 1.7683 | 1.3526 | 1.3578  | 1.0225 | 0.2778  | 1.0452 |
| 1988 | 0.4942 | 0.2026  | -0.1265 | 0.3846 | 0.4691  | 0.5265    | 0.6984     | 0.9869 | 0.7486   | 0.7607   | 1.6522 | 1.3122 | 1.2923  | 0.9344 | 0.4167  | 0.9538 |
| 1989 | 0.4784 | 0.1895  | -0.1288 | 0.3846 | 0.4837  | 0.5186    | 0.6953     | 0.9777 | 0.7259   | 0.7457   | 1.6226 | 1.3019 | 1.2756  | 0.9120 | 0.4521  | 0.9306 |
| 1990 | 0.4638 | 0.1775  | -0.1308 | 0.3845 | 0.4972  | 0.5114    | 0.6924     | 0.9693 | 0.7051   | 0.7320   | 1.5955 | 1.2925 | 1.2603  | 0.8914 | 0.4845  | 0.9092 |
| 1991 | 0.4192 | 0.1405  | -0.1372 | 0.3844 | 0.5385  | 0.4892    | 0.6836     | 0.9434 | 0.6411   | 0.6898   | 1.5122 | 1.2635 | 1.2133  | 0.8282 | 0.5842  | 0.8437 |
| 1992 | 0.3533 | 0.0858  | -0.1467 | 0.3843 | 0.5997  | 0.4564    | 0.6706     | 0.9052 | 0.5465   | 0.6273   | 1.3890 | 1.2206 | 1.1438  | 0.7348 | 0.7315  | 0.7468 |
| 1993 | 0.2956 | 0.0379  | -0.1549 | 0.3841 | 0.6532  | 0.4277    | 0.6593     | 0.8718 | 0.4638   | 0.5727   | 1.2813 | 1.1831 | 1.0830  | 0.6531 | 0.8604  | 0.6620 |
| 1994 | 0.2474 | -0.0020 | -0.1618 | 0.3840 | 0.6978  | 0.4038    | 0.6498     | 0.8439 | 0.3947   | 0.5272   | 1.1914 | 1.1519 | 1.0323  | 0.5849 | 0.9679  | 0.5913 |
| 1995 | 0.2113 | -0.0319 | -0.1669 | 0.3839 | 0.7313  | 0.3858    | 0.6426     | 0.8229 | 0.3429   | 0.4930   | 1.1240 | 1.1284 | 0.9942  | 0.5337 | 1.0486  | 0.5382 |
| 1996 | 0.1811 | -0.0570 | -0.1713 | 0.3839 | 0.7593  | 0.3708    | 0.6367     | 0.8054 | 0.2996   | 0.4643   | 1.0675 | 1.1087 | 0.9623  | 0.4909 | 1.1162  | 0.4938 |
| 1997 | 0.1552 | -0.0784 | -0.1750 | 0.3838 | 0.7832  | 0.3579    | 0.6316     | 0.7904 | 0.2626   | 0.4399   | 1.0193 | 1.0920 | 0.9351  | 0.4543 | 1.1738  | 0.4559 |
| 1998 | 0.1351 | -0.0951 | -0.1778 | 0.3837 | 0.8018  | 0.3479    | 0.6276     | 0.7788 | 0.2337   | 0.4209   | 0.9818 | 1.0789 | 0.9139  | 0.4259 | 1.2187  | 0.4263 |
| 1999 | 0.1166 | -0.1104 | -0.1805 | 0.3837 | 0.8190  | 0.3387    | 0.6240     | 0.7681 | 0.2072   | 0.4033   | 0.9472 | 1.0669 | 0.8944  | 0.3996 | 1.2601  | 0.3991 |
| 2000 | 0.0971 | -0.1266 | -0.1833 | 0.3837 | 0.8371  | 0.3290    | 0.6202     | 0.7568 | 0.1792   | 0.3849   | 0.9108 | 1.0542 | 0.8739  | 0.3720 | 1.3037  | 0.3705 |
| 2001 | 0.0791 | -0.1415 | -0.1858 | 0.3836 | 0.8537  | 0.3201    | 0.6166     | 0.7463 | 0.1534   | 0.3679   | 0.8772 | 1.0425 | 0.8549  | 0.3465 | 1.3438  | 0.3440 |
| 2002 | 0.0607 | -0.1568 | -0.1885 | 0.3836 | 0.8708  | 0.3109    | 0.6130     | 0.7356 | 0.1270   | 0.3504   | 0.8428 | 1.0305 | 0.8355  | 0.3204 | 1.3851  | 0.3169 |
| 2003 | 0.0418 | -0.1725 | -0.1912 | 0.3835 | 0.8883  | 0.3015    | 0.6093     | 0.7247 | 0.0999   | 0.3325   | 0.8076 | 1.0183 | 0.8156  | 0.2937 | 1.4272  | 0.2892 |
| 2004 | 0.0244 | -0.1869 | -0.1937 | 0.3835 | 0.9045  | 0.2929    | 0.6058     | 0.7146 | 0.0749   | 0.3161   | 0.7751 | 1.0069 | 0.7972  | 0.2690 | 1.4661  | 0.2636 |

Table A3. Income Elasticities of Main Food Items in China (1978 to 2010)

| Year | Barley  | Wheat   | Rice    | Maize  | Soybean | Sugarcane | Vegetables | Fruits | Rapeseed | Pig meat | Beef   | Mutton | Poultry | Eggs   | Milk   | Fish   |
|------|---------|---------|---------|--------|---------|-----------|------------|--------|----------|----------|--------|--------|---------|--------|--------|--------|
| 2005 | 0.0066  | -0.2016 | -0.1962 | 0.3834 | 0.9209  | 0.2840    | 0.6023     | 0.7043 | 0.0494   | 0.2992   | 0.7419 | 0.9954 | 0.7785  | 0.2438 | 1.5058 | 0.2375 |
| 2006 | -0.0113 | -0.2165 | -0.1988 | 0.3834 | 0.9376  | 0.2751    | 0.5988     | 0.6939 | 0.0237   | 0.2823   | 0.7084 | 0.9837 | 0.7596  | 0.2184 | 1.5459 | 0.2112 |
| 2007 | -0.0291 | -0.2313 | -0.2013 | 0.3834 | 0.9540  | 0.2663    | 0.5953     | 0.6836 | -0.0018  | 0.2654   | 0.6752 | 0.9722 | 0.7409  | 0.1932 | 1.5856 | 0.1850 |
| 2008 | -0.0400 | -0.2403 | -0.2029 | 0.3833 | 0.9642  | 0.2609    | 0.5931     | 0.6773 | -0.0174  | 0.2551   | 0.6548 | 0.9651 | 0.7294  | 0.1778 | 1.6100 | 0.1690 |
| 2009 | -0.0496 | -0.2482 | -0.2042 | 0.3833 | 0.9730  | 0.2561    | 0.5912     | 0.6717 | -0.0312  | 0.2460   | 0.6369 | 0.9589 | 0.7193  | 0.1642 | 1.6314 | 0.1549 |
| 2010 | -0.0596 | -0.2565 | -0.2057 | 0.3833 | 0.9823  | 0.2511    | 0.5893     | 0.6660 | -0.0455  | 0.2366   | 0.6183 | 0.9524 | 0.7088  | 0.1501 | 1.6536 | 0.1403 |

Source: authors' own calculation.

### **Appendix B. Food Balance Sheets**

Notes:

- 1. Per capita consumption in kg. All other quantities are in thousand tonnes. Annual growth rates are in percentages (%).
- 2. The food balance sheets are compiled from the FAOSTAT database, supplemented by data from other sources, e.g., SSBa.
- 3. FAOSTAT database is located at <u>http://faostat.fao.org/site/617/DesktopDefault.aspx?PageID=617#ancor</u>.
- 4. FAO data include statistics from mainland China, Hong Kong, Macau, and Taiwan. No separate data for the mainland only are available. Hong Kong, Macau, and Taiwan account for about 2% of the total population of China. Some of the agricultural products are not produced in these three regions. Indeed, while Taiwan produces some of the agricultural products, few are produced in Hong Kong and Macau. Nonetheless, because of the inclusion of these three regions, data from FAO food balance sheet are not the exact statistics for mainland China. However, given that mainland accounts for an overwhelming majority, the discrepancy is likely very small for most products.
- 5. FAO food balance sheets are available till 2007. Production and trade statistics from 2008 to 2010 for some products (where data available) are included in the balance sheets to show the trends. Production data is from SSBa, export and import data is from UN Comtrade. Because of different data sources, annual growth rates were calculated for 2000-2007, not 2000-2010.

|      |            |        |        |            | _               | _                                  | Utilization |       |      |       |            |            |                           |  |
|------|------------|--------|--------|------------|-----------------|------------------------------------|-------------|-------|------|-------|------------|------------|---------------------------|--|
| Year | Production | Import | Export | Net export | Stock variation | Domestic<br>supply<br>/consumption | Feed        | Food  | Seed | Waste | Processing | Other Util | Per capita<br>consumption |  |
| 1978 | 53842      | 8576   | 61     | -8514      | -2310           | 60047                              | 452         | 50575 | 4250 | 4220  | 0.1        | 550        | 61.3                      |  |
| 1980 | 55213      | 11910  | 82     | -11828     | 374             | 67415                              | 462         | 58875 | 3950 | 3583  | 0.1        | 545        | 67.0                      |  |
| 1985 | 85807      | 6586   | 146    | -6439      | -1027           | 91220                              | 181         | 80765 | 4500 | 4926  | 0.1        | 848        | 84.3                      |  |
| 1990 | 98232      | 13970  | 240    | -13731     | -7412           | 104550                             | 204         | 92052 | 4650 | 6393  | 0.1        | 1252       | 89.2                      |  |
| 1995 | 102211     | 13211  | 621    | -12590     | -972            | 113829                             | 700         | 99075 | 5120 | 7258  | 4.4        | 1672       | 91.7                      |  |
| 2000 | 99636      | 2615   | 488    | -2126      | 11195           | 112958                             | 4000        | 95927 | 5000 | 5624  | 4.4        | 2402       | 87.0                      |  |
| 2001 | 93873      | 2281   | 1032   | -1249      | 16914           | 112036                             | 5500        | 94767 | 4800 | 4277  | 3.5        | 2688       | 85.7                      |  |
| 2002 | 90290      | 2312   | 1328   | -984       | 18570           | 109844                             | 6000        | 92733 | 4400 | 4033  | 5.1        | 2673       | 83.5                      |  |
| 2003 | 86488      | 2220   | 2911   | 691        | 22290           | 108087                             | 5500        | 91559 | 4500 | 3870  | 11.1       | 2647       | 81.7                      |  |
| 2004 | 91952      | 8913   | 1559   | -7354      | 5903            | 105209                             | 2500        | 91354 | 4800 | 3657  | 21.3       | 2877       | 79.1                      |  |
| 2005 | 97445      | 5414   | 1106   | -4309      | 3398            | 105152                             | 3800        | 91034 | 4600 | 3803  | 35.0       | 1880       | 78.6                      |  |
| 2006 | 108466     | 2187   | 2046   | -140       | -2735           | 105872                             | 5600        | 91159 | 4130 | 2682  | 35.0       | 2266       | 78.7                      |  |
| 2007 | 109298     | 2061   | 3759   | 1699       | -1486           | 106114                             | 6800        | 90141 | 4100 | 2511  | 31.2       | 2531       | 78.5                      |  |
| 2008 | 112464     | 32     | 126    | 94         |                 |                                    |             |       |      |       |            |            |                           |  |
| 2009 | 115115     | 894    | 8      | -885       |                 |                                    |             |       |      |       |            |            |                           |  |
| 2010 | 115181     | 1219   | 0      | -1219      |                 |                                    |             |       |      |       |            |            |                           |  |

#### Growth Rate

|         | c         |        |        | ÷         | iation     | c supply<br>ption  |      |      |      | ta<br>otion |                |               |                      |
|---------|-----------|--------|--------|-----------|------------|--------------------|------|------|------|-------------|----------------|---------------|----------------------|
| Year    | Productio | Import | Export | Net expor | Stock vari | Domesti<br>/consum | Feed | Food | Seed | Waste       | Process<br>ing | Other<br>Util | Per capit<br>consump |
| 1980-90 | 5.9       | 1.6    | 11.3   |           |            | 4.5                | -7.8 | 4.6  | 1.6  | 6.0         | 4.8            | 8.7           | 2.9                  |
| 1990-00 | 0.1       | -15.4  | 7.4    |           |            | 0.8                | 35   | 0.4  | 0.7  | -1.3        | 43.5           | 6.7           | -0.3                 |
| 2000-07 | 1.3       | -3.3   | 33.9   |           |            | -0.9               | 7.9  | -0.9 | -2.8 | -11.0       | 32.1           | 0.7           | -1.5                 |

There is no wheat production in Hong Kong, Macau, and Taiwan. FAO and SSB wheat production statistics are identical.

|      |            |        |        |            | 2              |                                    |       |        | Utiliza | tion  |            |            |                           |
|------|------------|--------|--------|------------|----------------|------------------------------------|-------|--------|---------|-------|------------|------------|---------------------------|
| Year | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply<br>/consumption | Feed  | Food   | Seed    | Waste | Processing | Other Util | Per capita<br>consumption |
| 1978 | 93396      | 533    | 1680   | 1147       | -28            | 92221                              | 7354  | 74061  | 5264    | 5250  | 4.8        | 288        | 94.1                      |
| 1980 | 95299      | 534    | 1383   | 848        | 2098           | 96549                              | 8450  | 76255  | 5240    | 6303  | 5.0        | 295        | 95.9                      |
| 1985 | 114270     | 626    | 1059   | 433        | 2856           | 116693                             | 10963 | 92675  | 5079    | 7618  | 5.3        | 353        | 107.9                     |
| 1990 | 127807     | 498    | 457    | -40        | -8064          | 119783                             | 10170 | 96899  | 4940    | 7368  | 10.0       | 395        | 102.2                     |
| 1995 | 124928     | 2063   | 309    | -1754      | -3727          | 122955                             | 12412 | 96830  | 5134    | 7990  | 10.2       | 584        | 99.0                      |
| 2000 | 126606     | 630    | 3102   | 2472       | 4503           | 128637                             | 13353 | 102032 | 4613    | 7357  | 8.2        | 1275       | 99.1                      |
| 2001 | 119596     | 691    | 2060   | 1369       | 12635          | 130862                             | 15354 | 102071 | 4546    | 7351  | 68.1       | 1476       | 100.1                     |
| 2002 | 117620     | 739    | 2097   | 1359       | 13857          | 130119                             | 14740 | 102006 | 4478    | 7352  | 72.3       | 1475       | 98.9                      |
| 2003 | 108257     | 794    | 2605   | 1811       | 20269          | 126715                             | 12096 | 101387 | 4744    | 6684  | 131.9      | 1677       | 95.8                      |
| 2004 | 120409     | 1309   | 989    | -320       | 2687           | 123415                             | 10126 | 101456 | 4811    | 5337  | 12.4       | 1678       | 92.8                      |
| 2005 | 121431     | 986    | 689    | -297       | -407           | 121321                             | 8042  | 102074 | 4678    | 4673  | 112.0      | 1747       | 90.7                      |
| 2006 | 122245     | 1225   | 1304   | 79         | 2638           | 124804                             | 10082 | 102741 | 4411    | 5814  | 12.4       | 1749       | 92.8                      |
| 2007 | 124994     | 1000   | 1312   | 312        | 172            | 124854                             | 10140 | 102640 | 4411    | 5851  | 132.1      | 1683       | 92.4                      |
| 2008 | 134327     | 296    | 969    | 674        |                |                                    |       |        |         |       |            |            |                           |
| 2009 | 136572     | 338    | 784    | 446        |                |                                    |       |        |         |       |            |            |                           |
| 2010 | 137033     | 366    | 619    | 253        |                |                                    |       |        |         |       |            |            |                           |

#### Growth Rate

Table B2. Rice

|         |            |        |        |            | ç              | -                                  | Utilization |      |      |       |            |            |                           |
|---------|------------|--------|--------|------------|----------------|------------------------------------|-------------|------|------|-------|------------|------------|---------------------------|
| Year    | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply<br>/consumption | Feed        | Food | Seed | Waste | Processing | Other Util | Per capita<br>consumption |
| 1980-90 | 3.0        | -0.7   | -10.5  |            |                | 2.2                                | 1.9         | 2.4  | -0.6 | 1.6   | 7.2        | 3.0        | 0.6                       |
| 1990-00 | -0.1       | 2.4    | 21.1   |            |                | 0.7                                | 2.8         | 0.5  | -0.7 | 0.0   | -1.9       | 12.4       | -0.3                      |
| 2000-07 | -0.2       | 6.8    | -11.6  |            |                | -0.4                               | -3.9        | 0.1  | -0.6 | -3.2  | 48.6       | 4.0        | -1.0                      |

FAO rice production statistics are lower than those of SSBa and USDA (PSD) by about 5%. SSB and USDA statistics are similar.

|             |            |        |        |            | Ę              | _                                  | Utilization |      |         |       |            |            |                           |
|-------------|------------|--------|--------|------------|----------------|------------------------------------|-------------|------|---------|-------|------------|------------|---------------------------|
| Year        | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply<br>/consumption | Feed        | Food | Seed    | Waste | Processing | Other Util | Per capita<br>consumption |
| 1978        | 56057      | 3230   | 34     | -3196      | 55             | 59308                              | 46939       | 4626 | 1331    | 4696  | 50         | 1667       | 60.5                      |
| 1980        | 62715      | 4712   | 117    | -4595      | 463            | 67773                              | 54443       | 4885 | 1261    | 5304  | 54         | 1827       | 67.4                      |
| 1985        | 64102      | 3439   | 6360   | 2921       | -112           | 61069                              | 46764       | 4932 | 1331    | 4766  | 65         | 3213       | 56.5                      |
| 1990        | 97214      | 5586   | 3408   | -2179      | -25946         | 73447                              | 57974       | 5153 | 1452    | 7819  | 114        | 935        | 62.7                      |
| 1995        | 112362     | 12029  | 162    | -11867     | -16091         | 108138                             | 87637       | 8713 | 1602    | 9562  | 179        | 445        | 87.1                      |
| 2000        | 106178     | 5059   | 10593  | 5533       | 22482          | 123127                             | 93931       | 8406 | 1741    | 9728  | 615        | 8705       | 94.8                      |
| 2001        | 114254     | 5391   | 6133   | 742        | 9814           | 123326                             | 92212       | 8694 | 1901    | 9238  | 599        | 10682      | 94.3                      |
| 2002        | 121497     | 5195   | 11875  | 6679       | 12843          | 127661                             | 94079       | 8950 | 1801    | 9240  | 814        | 12776      | 97.0                      |
| 2003        | 115998     | 5204   | 16684  | 11480      | 24520          | 129038                             | 95002       | 9190 | 1901    | 8246  | 1515       | 13184      | 97.5                      |
| 2004        | 130434     | 4996   | 2519   | -2476      | 1425           | 134336                             | 96853       | 9169 | 2001    | 6244  | 1971       | 18097      | 101.0                     |
| 2005        | 139498     | 5186   | 8949   | 3762       | 2392           | 138128                             | 99470       | 9480 | 1151    | 6253  | 1766       | 20009      | 103.3                     |
| 2006        | 151731     | 5310   | 3443   | -1867      | -13558         | 140040                             | 97572       | 8926 | 1201    | 5951  | 2585       | 23805      | 104.1                     |
| 2007        | 152419     | 4656   | 5591   | 935        | -4989          | 146496                             | 100332      | 8994 | 1301    | 6331  | 4210       | 25328      | 108.4                     |
| 2008        | 165914     | 49     | 253    | 203        |                |                                    |             |      |         |       |            |            |                           |
| 2009        | 163974     | 84     | 130    | 46         |                |                                    |             |      |         |       |            |            |                           |
| 2010        | 177245     | 1572   | 127    | -1445      |                |                                    |             |      |         |       |            |            |                           |
| Growth rate |            |        |        |            |                |                                    |             |      |         |       |            |            |                           |
|             |            |        |        |            | Ę              | _                                  |             |      | Utiliza | ation |            |            |                           |
| Year        | Production | Import | Export | Net export | Stock variatic | Domestic<br>supply<br>/consumptior | Feed        | Food | Seed    | Waste | Processing | Other Util | Per capita<br>consumption |
| 1980-90     | 4.5        | 1.7    | 40.1   |            |                | 0.8                                | 0.6         | 0.5  | 1.4     | 4.0   | 7.8        | -6.5       | -0.7                      |
| 1990-00     | 0.9        | -1.0   | 12.0   |            |                | 5.3                                | 4.9         | 5.0  | 1.8     | 2.2   | 18.4       | 25.0       | 4.2                       |
| 2000-07     | 5.3        | -1.2   | -8.7   |            |                | 2.5                                | 0.9         | 1.0  | -4.1    | -6.0  | 31.6       | 16.5       | 1.9                       |

FAO maize data is consistent with those of SSBa.

|             |            |        |        |            |                    | c -                                            | دUtilization |       |         |       |            |            |                           |
|-------------|------------|--------|--------|------------|--------------------|------------------------------------------------|--------------|-------|---------|-------|------------|------------|---------------------------|
| Year        | Production | Import | Export | Net export | Stock<br>variation | Domestic<br>supply<br>quantity<br>/consumptior | Feed         | Food  | Seed    | Waste | Processing | Other Util | Per capita<br>consumption |
| 1978        | 3401       | 351    | 1      | -350       | -25                | 3726                                           | 356          | 2913  | 152     | 169   | 125        | 10         | 3.8                       |
| 1980        | 2700       | 426    | 1      | -425       | 487                | 3612                                           | 514          | 2591  | 126     | 159   | 205        | 16         | 3.6                       |
| 1985        | 2700       | 394    | 1      | -393       | 149                | 3241                                           | 405          | 1746  | 116     | 144   | 756        | 76         | 3.0                       |
| 1990        | 3000       | 930    | 3      | -928       | 9                  | 3937                                           | 490          | 1495  | 173     | 179   | 1599       | 1          | 3.4                       |
| 1995        | 4420       | 1524   | 55     | -1469      | -299               | 5590                                           | 647          | 1055  | 168     | 275   | 3444       | 1          | 4.5                       |
| 2000        | 2646       | 2174   | 87     | -2087      | 248                | 4980                                           | 226          | 324   | 81      | 239   | 4107       | 3          | 3.8                       |
| 2001        | 2893       | 2611   | 95     | -2517      | -23                | 5387                                           | 236          | 562   | 96      | 261   | 4217       | 15         | 4.1                       |
| 2002        | 3324       | 2126   | 109    | -2017      | -238               | 5103                                           | 204          | 468   | 81      | 257   | 4088       | 5          | 3.9                       |
| 2003        | 2717       | 1482   | 133    | -1350      | 282                | 4348                                           | 193          | 452   | 83      | 211   | 3409       | 1          | 3.3                       |
| 2004        | 3222       | 1925   | 157    | -1768      | -4                 | 4986                                           | 214          | 533   | 87      | 244   | 3905       | 3          | 3.7                       |
| 2005        | 3444       | 2400   | 189    | -2211      | -15                | 5640                                           | 175          | 524   | 91      | 279   | 4569       | 3          | 4.2                       |
| 2006        | 3369       | 2339   | 207    | -2132      | 0                  | 5501                                           | 148          | 456   | 97      | 273   | 4519       | 9          | 4.1                       |
| 2007        | 3451       | 1056   | 598    | -459       | 49                 | 3959                                           | 136          | 256   | 105     | 214   | 3240       | 7          | 2.9                       |
| 2008        | 2823       | 1076   | 15     | -1062      |                    |                                                |              |       |         |       |            |            |                           |
| 2009        | 2318       | 1738   | 14     | -1724      |                    |                                                |              |       |         |       |            |            |                           |
| 2010        | 2500       | 2367   | 13     | -2354      |                    |                                                |              |       |         |       |            |            |                           |
| Growth Rate |            |        |        |            |                    |                                                |              |       |         |       |            |            |                           |
|             |            |        |        |            |                    | c -                                            |              |       | Utiliza | ation |            |            | -                         |
| Year        | Production | Import | Export | Net export | Stock<br>variation | Domestic<br>supply<br>quantity<br>/consumptio  | Feed         | Food  | Seed    | Waste | Processing | Other Util | Per capita<br>consumption |
| 1980-90     | 1.1        | 8.1    | 5.8    |            |                    | 0.9                                            | -0.5         | -5.4  | 3.2     | 1.2   | 22.8       | -24.3      | -0.7                      |
| 1990-00     | -1.2       | 8.9    | 41.9   |            |                    | 2.4                                            | -7.4         | -14.2 | -7.3    | 2.9   | 9.9        | 12.4       | 1.3                       |
| 2000-07     | 3.9        | -9.8   | 31.8   |            |                    | -3.2                                           | -7.0         | -3.3  | 3.8     | -1.5  | -3.3       | 11.1       | -3.8                      |

Large difference exists between SSBa, FAO and USDA (PSD) statistics for barley before 2000. After 2000, difference between different sources remained but became smaller.

|             |            |        |        |            | Ę              | _                                  |      |      | Utiliz | ation |            |            |                           |
|-------------|------------|--------|--------|------------|----------------|------------------------------------|------|------|--------|-------|------------|------------|---------------------------|
| Year        | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply<br>/consumption | Feed | Food | Seed   | Waste | Processing | Other Util | Per capita<br>consumption |
| 1978        | 7611       | 1174   | 116.5  | -1058      | -21.3          | 8647                               | 233  | 3943 | 762.1  | 258.1 | 3450       | 0.5        | 8.8                       |
| 1980        | 7966       | 1541   | 142.2  | -1399      | 85.2           | 9450                               | 260  | 4161 | 842.8  | 263.7 | 3922       | 0.4        | 9.4                       |
| 1985        | 10512      | 1502   | 1148.4 | -353       | -292.1         | 10573                              | 700  | 4046 | 871.7  | 130.0 | 4825       | 0.5        | 9.8                       |
| 1990        | 11008      | 2031   | 970.5  | -1060      | -386.7         | 11682                              | 250  | 4556 | 902.3  | 266.6 | 5707       | 0.6        | 10.0                      |
| 1995        | 13511      | 2921   | 413.7  | -2507      | 236.9          | 16255                              | 450  | 6013 | 1108.0 | 773.1 | 7911       | 0.7        | 13.1                      |
| 2000        | 15411      | 12776  | 279.0  | -12497     | -896.7         | 27012                              | 2009 | 5396 | 1393.2 | 432.3 | 17780      | 0.8        | 20.8                      |
| 2001        | 15407      | 16440  | 322.3  | -16118     | -753.0         | 30772                              | 2655 | 5345 | 1317.1 | 507.0 | 20947      | 0.8        | 23.5                      |
| 2002        | 16505      | 13896  | 362.2  | -13534     | 1514.2         | 31554                              | 1907 | 4776 | 1354.4 | 614.9 | 22901      | 0.7        | 24.0                      |
| 2003        | 15393      | 23242  | 350.5  | -22891     | -1160.6        | 37124                              | 2911 | 4995 | 1344.0 | 481.3 | 27392      | 0.7        | 28.1                      |
| 2004        | 17404      | 22303  | 402.8  | -21900     | 220.3          | 39525                              | 3594 | 5097 | 1354.7 | 650.5 | 28828      | 0.7        | 29.7                      |
| 2005        | 16350      | 29083  | 468.1  | -28615     | -1740.6        | 43224                              | 3014 | 5520 | 1275.7 | 612.6 | 32802      | 0.7        | 32.3                      |
| 2006        | 15500      | 30702  | 449.4  | -30253     | 14.2           | 45767                              | 3216 | 5426 | 1237.0 | 557.8 | 35330      | 0.7        | 34.0                      |
| 2007        | 12725      | 33198  | 532.9  | -32665     | -90.8          | 45299                              | 1708 | 5298 | 1260.1 | 549.5 | 36482      | 0.7        | 33.5                      |
| 2008        | 15540      | 37436  | 465.1  | -36971     |                |                                    |      |      |        |       |            |            |                           |
| 2009        | 14980      | 42552  | 346.6  | -42205     |                |                                    |      |      |        |       |            |            |                           |
| 2010        | 15100      | 54798  | 163.6  | -54634     |                |                                    |      |      |        |       |            |            |                           |
| Growth rate |            |        |        |            |                |                                    |      |      |        |       |            |            |                           |

|         |            |        |        |            | Ę              | _                                  | C Utilization |      |      |       |            |            |                           |  |
|---------|------------|--------|--------|------------|----------------|------------------------------------|---------------|------|------|-------|------------|------------|---------------------------|--|
| Year    | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply<br>/consumption | Feed          | Food | Seed | Waste | Processing | Other Util | Per capita<br>consumption |  |
| 1980-90 | 3.3        | 2.8    | 21.2   |            |                | 2.1                                | -0.4          | 0.9  | 0.7  | 0.1   | 3.8        | 3.3        | 0.6                       |  |
| 1990-00 | 3.4        | 20.2   | -11.7  |            |                | 8.7                                | 23.2          | 1.7  | 4.4  | 5.0   | 12.0       | 2.7        | 7.6                       |  |
| 2000-07 | -2.7       | 14.6   | 9.7    |            |                | 7.7                                | -2.3          | -0.3 | -1.4 | 3.5   | 10.8       | -2.2       | 7.0                       |  |

FAO soybean data is consistent with SSBa data.

|             |            |        |        |            | ç              | Ę                                         |        |      | Utiliza | tion       |      |            |                           |
|-------------|------------|--------|--------|------------|----------------|-------------------------------------------|--------|------|---------|------------|------|------------|---------------------------|
| Year        | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply quanti<br>/consumption | Feed   | Seed | Waste   | Processing | Food | Other Util | Per capita<br>consumption |
| 1978        | 1871       | 0.0    | 0.2    | 0.2        | 0.0            | 1871                                      | 3.0    | 97   | 75      | 1642       | 0.0  | 55         | 1.9                       |
| 1980        | 2386       | 0.0    | 0.6    | 0.5        | 200.2          | 2586                                      | 2.0    | 133  | 103     | 2298       | 0.0  | 49         | 2.6                       |
| 1985        | 5607       | 0.3    | 18.0   | 17.7       | 0.0            | 5590                                      | 300.5  | 172  | 224     | 4500       | 0.2  | 393        | 5.2                       |
| 1990        | 6962       | 1.3    | 5.9    | 4.6        | 0.0            | 6958                                      | 303.8  | 215  | 279     | 6100       | 0.7  | 60         | 5.9                       |
| 1995        | 9797       | 94.2   | 2.1    | -92.1      | -800.0         | 9089                                      | 618.8  | 236  | 396     | 7800       | 1.5  | 37         | 7.3                       |
| 2000        | 11406      | 2973.2 | 2.5    | -2970.7    | -1250.0        | 13126                                     | 2023.4 | 249  | 575     | 10200      | 2.9  | 76         | 10.1                      |
| 2001        | 11344      | 1728.6 | 1.1    | -1727.4    | 0.0            | 13072                                     | 1762.1 | 250  | 523     | 10500      | 3.2  | 33         | 10.0                      |
| 2002        | 10565      | 621.8  | 3.0    | -618.9     | 750.0          | 11934                                     | 1112.0 | 253  | 477     | 10000      | 3.0  | 89         | 9.1                       |
| 2003        | 11435      | 170.3  | 3.5    | -166.9     | 0.0            | 11602                                     | 1513.9 | 255  | 464     | 9300       | 3.0  | 66         | 8.8                       |
| 2004        | 13197      | 427.8  | 1.0    | -426.7     | -1200.0        | 12424                                     | 1414.0 | 255  | 545     | 10100      | 2.8  | 107        | 9.3                       |
| 2005        | 13068      | 300.3  | 0.7    | -299.6     | -504.4         | 12864                                     | 964.9  | 210  | 535     | 11050      | 3.1  | 101        | 9.6                       |
| 2006        | 10981      | 742.4  | 1.2    | -741.2     | 1254.1         | 12976                                     | 914.1  | 198  | 519     | 11287      | 3.2  | 55         | 9.6                       |
| 2007        | 10589      | 837.6  | 2.2    | -835.4     | 500.3          | 11925                                     | 765.4  | 231  | 477     | 10353      | 3.4  | 95         | 8.8                       |
| 2008        | 12102      | 1303.0 | 0.1    | -1303.0    |                |                                           |        |      |         |            |      |            |                           |
| 2009        | 13657      | 3285.9 | 0.2    | -3285.6    |                |                                           |        |      |         |            |      |            |                           |
| 2010        | 13082      | 1599.8 | 0.1    | -1599.7    |                |                                           |        |      |         |            |      |            |                           |
| Growth rate |            |        |        |            |                |                                           |        |      |         |            |      |            |                           |
|             |            |        |        |            | Ę              | , Ę                                       |        | ,    | Utiliza | tion       |      |            |                           |
| Year        | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply quanti<br>/consumption | Feed   | Seed | Waste   | Processing | Food | Other Util | Per capita<br>consumption |
| 1980-90     | 11.3       | 39.3   | 26.2   |            |                | 10.4                                      | 65.3   | 4.9  | 10.4    | 10.3       | 32.7 | 1.9        | 8.7                       |
| 1990-00     | 5.1        | 116.8  | -8.1   |            |                | 6.6                                       | 20.9   | 1.5  | 7.5     | 5.3        | 15.2 | 2.5        | 5.5                       |
| 2000-07     | -1.1       | -16.6  | -2.0   |            |                | -1.4                                      | -13.0  | -1.0 | -2.6    | 0.2        | 2.3  | 3.2        | -1.9                      |

### Table B6. Rapeseed

FAO statistics are lower than those of SSBa.

|             |            |        |        |            | 2              |                                    | C Utilization |            |       |                           |
|-------------|------------|--------|--------|------------|----------------|------------------------------------|---------------|------------|-------|---------------------------|
| Year        | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply<br>/consumption | Feed          | Processing | Food  | Per capita<br>consumption |
| 1978        | 29394      | 0.1    | 4.7    | 4.6        | -600.0         | 28790                              | 517.0         | 27936      | 33.6  | 29.4                      |
| 1980        | 31978      | 6.5    | 3.5    | -3.0       | 0.0            | 31981                              | 207.0         | 31448      | 32.6  | 31.8                      |
| 1985        | 58711      | 4.3    | 0.2    | -4.0       | -2700.0        | 56015                              | 4049.2        | 51623      | 34.3  | 51.8                      |
| 1990        | 63451      | 2.3    | 4.7    | 2.4        | -1500.0        | 61949                              | 4740.7        | 56956      | 25.2  | 52.9                      |
| 1995        | 70279      | 1.7    | 4.8    | 3.2        | 2000.0         | 72276                              | 11512.2       | 60561      | 20.2  | 58.2                      |
| 2000        | 69299      | 3.0    | 2.1    | -0.9       | 0.0            | 69300                              | 6327.9        | 62844      | 12.8  | 53.4                      |
| 2001        | 77966      | 282.1  | 3.5    | -278.6     | 4000.0         | 82244                              | 4258.6        | 77860      | 12.5  | 62.9                      |
| 2002        | 92203      | 1.9    | 0.0    | -1.9       | 0.0            | 92204                              | 3021.9        | 89058      | 12.5  | 70.1                      |
| 2003        | 92039      | 1.8    | 0.0    | -1.8       | 0.0            | 92041                              | 2000.0        | 89931      | 11.0  | 69.6                      |
| 2004        | 91044      | 1.3    | 0.0    | -1.3       | -1500.0        | 89546                              | 1249.4        | 88229      | 6.7   | 67.3                      |
| 2005        | 87578      | 1.2    | 0.0    | -1.2       | -1500.0        | 86079                              | 621.0         | 85392      | 6.6   | 64.4                      |
| 2006        | 93306      | 1.0    | 0.0    | -1.0       | 3000.0         | 96307                              | 392.0         | 95851      | 6.4   | 71.6                      |
| 2007        | 113732     | 1.0    | 0.0    | -1.0       | 0.0            | 113733                             | 7451.0        | 106221     | 6.1   | 84.1                      |
| 2008        | 124152     | 526    | 4.3    | -522       |                |                                    |               |            |       |                           |
| 2009        | 115587     | 607    | 3.2    | -604       |                |                                    |               |            |       |                           |
| 2010        | 110789     | n.a    | n.a    | n.a        |                |                                    |               |            |       |                           |
| Growth rate |            |        |        |            |                |                                    |               |            |       |                           |
|             |            |        |        |            | ç              |                                    | Ut            | ilization  |       |                           |
| Year        | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply<br>/consumption | Feed          | Processing | Food  | Per capita<br>consumption |
| 1980-90     | 7.1        | -10.0  | 2.9    |            |                | 6.8                                | 36.8          | 6.1        | -2.5  | 5.2                       |
| 1990-00     | 0.9        | 2.8    | -7.8   |            |                | 1.1                                | 2.9           | 1.0        | -6.6  | 0.1                       |
| 2000-07     | 7.3        | -14.6  | -100.0 |            |                | 7.3                                | 2.4           | 7.8        | -10.0 | 6.7                       |

Prior to 1996, production by FAO is higher than that of SSB, around 5-40%. Between 1997 and 2000, the gaps are within 5%. After 2000, the gap became further closed.

|             |            |        |        |            | ç               | Utilization                        |       |         |       |            |            |                           |
|-------------|------------|--------|--------|------------|-----------------|------------------------------------|-------|---------|-------|------------|------------|---------------------------|
| Year        | Production | lmport | Export | Net export | Stock variatio  | Domestic<br>supply<br>/consumption | Feed  | Food    | Waste | Processing | Other Util | Per capita<br>consumption |
| 1978        | 56546      | 374    | 930    | 556        | 30              | 56020                              | 792   | 50899   | 4316  | 0          | 13         | 57.2                      |
| 1980        | 55405      | 488    | 1193   | 705        | 3               | 54703                              | 782   | 49661   | 4244  | 0          | 16         | 54.4                      |
| 1985        | 94409      | 535    | 1290   | 755        | -6              | 93647                              | 1338  | 84589   | 7720  | 0          | 16         | 86.6                      |
| 1990        | 128382     | 736    | 2077   | 1340       | 0               | 127042                             | 1418  | 114958  | 10664 | 0          | 15         | 108.4                     |
| 1995        | 202698     | 810    | 3008   | 2198       | 4               | 200503                             | 2494  | 181540  | 16510 | 0          | 14         | 161.5                     |
| 1996        | 226364     | 762    | 3056   | 2294       | 15              | 224085                             | 2984  | 202905  | 18255 | 0          | 13         | 178.7                     |
| 1997        | 242678     | 760    | 3173   | 2413       | 33              | 240298                             | 3553  | 217138  | 19652 | 0          | 13         | 189.8                     |
| 1998        | 251434     | 927    | 3645   | 2717       | 37              | 248754                             | 3693  | 224795  | 20337 | 0          | 14         | 194.7                     |
| 1999        | 280155     | 1062   | 3919   | 2858       | -5              | 277292                             | 4409  | 250309  | 22755 | 0          | 15         | 215.2                     |
| 2000        | 328801     | 1122   | 4153   | 3031       | 5               | 325775                             | 13099 | 285983  | 26725 | 0          | 17         | 250.9                     |
| 2001        | 356515     | 1128   | 5283   | 4155       | -4              | 352357                             | 17798 | 305483  | 29076 | 0          | 17         | 269.5                     |
| 2002        | 389244     | 1163   | 6052   | 4888       | -9              | 384347                             | 19360 | 333491  | 31486 | 0          | 17         | 292.2                     |
| 2003        | 400619     | 1139   | 6985   | 5847       | -12             | 394760                             | 22350 | 340406  | 31987 | 0          | 17         | 298.4                     |
| 2004        | 410615     | 1181   | 7702   | 6521       | -40             | 404054                             | 23473 | 347930  | 32633 | 0          | 18         | 303.7                     |
| 2005        | 423392     | 1287   | 8896   | 7610       | 21              | 415803                             | 24758 | 357418  | 33609 | 0          | 18         | 310.9                     |
| 2006        | 438381     | 1304   | 9497   | 8192       | 32              | 430221                             | 26541 | 368902  | 34764 | 0          | 14         | 319.9                     |
| 2007        | 447701     | 1380   | 11083  | 9702       | 23              | 438022                             | 27654 | 374089  | 35357 | 900        | 22         | 324.0                     |
| Growth rate |            |        |        |            |                 |                                    |       |         |       |            |            |                           |
|             |            |        |        |            | c               |                                    |       | Utiliza | ation |            |            |                           |
| Year        | Production | Import | Export | Net export | Stock variation | Domestic<br>supply<br>/consumption | Feed  | Food    | Waste | Processing | Other Util | Per capita<br>consumption |
| 1980-90     | 8.8        | 4.2    | 5.7    |            |                 | 8.8                                | 6.1   | 8.8     | 9.7   |            | -0.8       | 7.1                       |
| 1990-00     | 9.9        | 4.3    | 7.2    |            |                 | 9.9                                | 24.9  | 9.5     | 9.6   |            | 1.0        | 8.8                       |
| 2000-07     | 4.5        | 3.0    | 15.1   |            |                 | 4.3                                | 11.3  | 3.9     | 4.1   |            | 4.1        | 3.7                       |

## Table B8. Vegetables

FAO data is lower than those reported by SSB (around 10-30%).

|             |            |        |        |            | 2              |                                    | Utilization |            |        |            |                           |
|-------------|------------|--------|--------|------------|----------------|------------------------------------|-------------|------------|--------|------------|---------------------------|
| Year        | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply<br>/consumption | Waste       | Processing | Food   | Other Util | Per capita<br>consumption |
| 1978        | 7824       | 549    | 687    | 138        | 13             | 7699                               | 641         | 146        | 6903   | 10         | 7.9                       |
| 1980        | 8416       | 629    | 758    | 129        | 7              | 8295                               | 666         | 280        | 7339   | 10         | 8.2                       |
| 1985        | 13502      | 665    | 652    | -13        | 0              | 13515                              | 1012        | 583        | 11909  | 11         | 12.5                      |
| 1990        | 20952      | 1009   | 838    | -171       | -7             | 21115                              | 1405        | 701        | 19189  | 15         | 18.0                      |
| 1995        | 44423      | 1720   | 1317   | -403       | -1             | 44825                              | 3239        | 2398       | 39169  | 19         | 36.1                      |
| 1996        | 48778      | 2279   | 1508   | -771       | 0              | 49549                              | 3658        | 2570       | 43300  | 20         | 39.5                      |
| 1997        | 53326      | 2538   | 1707   | -831       | 0              | 54157                              | 3869        | 2959       | 47306  | 23         | 42.8                      |
| 1998        | 56687      | 2342   | 1755   | -586       | 0              | 57273                              | 4201        | 4334       | 48716  | 22         | 44.8                      |
| 1999        | 64826      | 2362   | 1892   | -470       | 0              | 65296                              | 4642        | 4642       | 55992  | 20         | 50.7                      |
| 2000        | 64491      | 2718   | 2143   | -575       | -1             | 65065                              | 4762        | 5035       | 55247  | 21         | 50.1                      |
| 2001        | 68941      | 2753   | 2339   | -414       | -3             | 69352                              | 4884        | 4889       | 59557  | 22         | 53.1                      |
| 2002        | 72003      | 3011   | 2973   | -38        | 3              | 72043                              | 5036        | 5212       | 61771  | 24         | 54.8                      |
| 2003        | 78152      | 3039   | 3823   | 784        | -5             | 77363                              | 5435        | 5524       | 66380  | 24         | 58.5                      |
| 2004        | 86340      | 3016   | 4352   | 1336       | 0              | 85004                              | 5967        | 5827       | 73187  | 23         | 63.9                      |
| 2005        | 90399      | 3131   | 4930   | 1799       | 0              | 88600                              | 6237        | 5997       | 76342  | 23         | 66.2                      |
| 2006        | 96772      | 3268   | 5059   | 1791       | 0              | 94981                              | 6648        | 6189       | 82120  | 25         | 70.6                      |
| 2007        | 102430     | 3437   | 6443   | 3007       | 3              | 99426                              | 6989        | 6326       | 86094  | 24         | 73.5                      |
| Growth rate |            |        |        |            |                |                                    |             | 1 14:11    | 41.0.0 |            |                           |
|             |            |        |        |            | 2              |                                    |             | Utiliza    | tion   |            |                           |

|         |            |        |        |            | Ľ              |                                    | -     |            |      |            |                           |
|---------|------------|--------|--------|------------|----------------|------------------------------------|-------|------------|------|------------|---------------------------|
| Year    | Production | Import | Export | Net export | Stock variatic | Domestic<br>supply<br>/consumptior | Waste | Processing | Food | Other Util | Per capita<br>consumption |
| 1980-90 | 9.5        | 4.8    | 1.0    |            |                | 9.8                                | 7.7   | 9.6        | 10.1 | 3.8        | 8.1                       |
| 1990-00 | 11.9       | 10.4   | 9.8    |            |                | 11.9                               | 13.0  | 21.8       | 11.2 | 3.8        | 10.8                      |
| 2000-07 | 6.8        | 3.4    | 17.0   |            |                | 6.2                                | 5.6   | 3.3        | 6.5  | 1.5        | 5.6                       |

Before 2003, FAO data is slightly higher than SSB (around 5%). In 2003, SSB adjusted its statistical criteria, and since then FAO data is much lower than SSB (around 44%).

|             |            |        |        |            | c              |                                    |            | Utilization |            |                           |
|-------------|------------|--------|--------|------------|----------------|------------------------------------|------------|-------------|------------|---------------------------|
| Year        | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply<br>/consumption | Processing | Food        | Other Util | Per capita<br>consumption |
| 1978        | 8772.2     | 29.5   | 101.6  | 72.0       | 0.0            | 8700.2                             | 1.1        | 8692.5      | 6.6        | 8.9                       |
| 1980        | 12125.4    | 43.4   | 143.9  | 100.5      | 0.0            | 12024.9                            | 1.6        | 12015.6     | 7.7        | 11.9                      |
| 1985        | 17567.0    | 91.8   | 300.2  | 208.4      | 0.0            | 17358.5                            | 2.3        | 17346.0     | 10.2       | 16.1                      |
| 1990        | 24015.7    | 138.7  | 444.0  | 305.3      | 0.1            | 23710.5                            | 3.2        | 23695.9     | 11.4       | 20.2                      |
| 1995        | 33401.3    | 180.6  | 662.3  | 481.7      | 15.2           | 32934.8                            | 4.5        | 32918.1     | 12.2       | 26.5                      |
| 2000        | 40751.6    | 512.0  | 197.6  | -314.4     | 0.0            | 41066.0                            | 5.6        | 41047.1     | 13.3       | 31.6                      |
| 2001        | 41654.3    | 438.5  | 293.2  | -145.3     | 0.0            | 41799.6                            | 5.7        | 41779.9     | 14.0       | 32.0                      |
| 2002        | 42322.8    | 536.0  | 384.6  | -151.5     | 0.0            | 42474.2                            | 5.8        | 42454.6     | 13.9       | 32.3                      |
| 2003        | 43433.5    | 607.6  | 510.0  | -97.6      | 0.0            | 43531.1                            | 5.9        | 43510.3     | 14.8       | 32.9                      |
| 2004        | 44478.8    | 535.8  | 672.3  | 136.5      | 0.0            | 44342.3                            | 12.2       | 44299.4     | 30.8       | 33.3                      |
| 2005        | 46621.9    | 416.9  | 607.4  | 190.5      | 0.0            | 46431.4                            | 12.8       | 46403.8     | 14.9       | 34.7                      |
| 2006        | 47591.0    | 436.0  | 669.6  | 233.7      | 0.0            | 47357.3                            | 13.0       | 47328.7     | 15.6       | 35.2                      |
| 2007        | 43933.0    | 619.6  | 505.0  | -114.6     | 0.0            | 44047.7                            | 12.0       | 44017.1     | 18.6       | 32.6                      |
| 2008        | 46205.0    | 373.3  | 82.2   | -291.1     |                |                                    |            |             |            |                           |
| 2009        | 48907.6    | 135.0  | 87.4   | -47.6      |                |                                    |            |             |            |                           |
| 2010        | 50712.4    | 201.3  | 110.1  | -91.2      |                |                                    |            |             |            |                           |
| Growth rate |            |        |        |            |                |                                    |            |             |            |                           |
|             |            |        |        |            | ç              |                                    |            | Utilization |            |                           |
| Year        | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply<br>/consumption | Processing | Food        | Other Util | Per capita<br>consumption |
| 1980-90     | 7.1        | 12.3   | 11.9   |            |                | 7.0                                | 7.2        | 7.0         | 3.9        | 5.4                       |
| 1990-00     | 5.4        | 14.0   | -7.8   |            |                | 5.6                                | 5.7        | 5.6         | 1.6        | 4.6                       |
| 2000-07     | 1.1        | 2.8    | 14.3   |            |                | 1.0                                | 11.7       | 1.0         | 4.9        | 0.4                       |

Table B10. Pork

Taiwan accounts for 2.5% of pork production. 99% of pork is used for food.

|             |            |        |        |            | ç              |                                    |            | Utilization |            |                           |
|-------------|------------|--------|--------|------------|----------------|------------------------------------|------------|-------------|------------|---------------------------|
| Year        | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply<br>/consumption | Processing | Food        | Other Util | Per capita<br>consumption |
| 1978        | 282.1      | 37.8   | 10.2   | -27.6      | -0.7           | 309.0                              | 0.0        | 307.8       | 1.2        | 0.32                      |
| 1980        | 342.1      | 36.5   | 18.2   | -18.2      | 0.7            | 361.0                              | 0.0        | 359.8       | 1.2        | 0.36                      |
| 1985        | 511.1      | 71.2   | 58.0   | -13.2      | 0.0            | 524.3                              | 0.0        | 522.7       | 1.6        | 0.48                      |
| 1990        | 1301.9     | 106.7  | 226.6  | 119.8      | 0.5            | 1182.6                             | 0.0        | 1180.8      | 1.8        | 1.01                      |
| 1995        | 3597.7     | 159.1  | 159.7  | 0.6        | 0.0            | 3597.1                             | 0.0        | 3595.4      | 1.7        | 2.90                      |
| 2000        | 5155.7     | 170.2  | 72.2   | -98.0      | 0.0            | 5253.7                             | 0.0        | 5251.9      | 1.8        | 4.05                      |
| 2001        | 5107.8     | 164.4  | 82.9   | -81.5      | 0.0            | 5189.4                             | 0.0        | 5187.6      | 1.7        | 3.97                      |
| 2002        | 5239.9     | 194.9  | 85.3   | -109.6     | 0.0            | 5349.5                             | 0.0        | 5347.7      | 1.9        | 4.07                      |
| 2003        | 5445.1     | 204.8  | 80.0   | -124.7     | 0.0            | 5569.8                             | 0.0        | 5567.9      | 1.9        | 4.21                      |
| 2004        | 5624.7     | 182.8  | 93.3   | -89.6      | 0.0            | 5714.3                             | 0.0        | 5712.4      | 1.9        | 4.30                      |
| 2005        | 5702.6     | 200.5  | 129.5  | -71.0      | 0.0            | 5773.6                             | 0.0        | 5771.6      | 2.0        | 4.32                      |
| 2006        | 5788.3     | 222.8  | 150.5  | -72.4      | 0.0            | 5860.7                             | 0.0        | 5858.6      | 2.1        | 4.36                      |
| 2007        | 6153.5     | 257.1  | 172.3  | -84.9      | 0.0            | 6238.3                             | 0.0        | 6236.1      | 2.3        | 4.61                      |
| 2008        | 6131.7     | 4.2    | 22.7   | 18.5       |                |                                    |            |             |            |                           |
| 2009        | 6355.4     | 14.2   | 13.4   | -0.8       |                |                                    |            |             |            |                           |
| 2010        | 6530.6     | 23.6   | 22.1   | -1.5       |                |                                    |            |             |            |                           |
| Growth Rate |            |        |        |            |                |                                    |            |             |            |                           |
|             |            |        |        |            | u              |                                    |            | Utilization |            |                           |
| Year        | Production | Import | Export | Net export | Stock variatic | Domestic<br>supply<br>/consumption | Processing | Food        | Other Util | Per capita<br>consumption |
| 1980-90     | 14.3       | 11.3   | 28.7   |            |                | 12.6                               |            | 12.6        | 4.2        | 10.9                      |

1990-00

2000-07

14.8

2.6

4.8

6.1

-10.8

13.2

Before 1996, FAO data is higher than SSB data, especially before 1985, around 40%. After 1996, the gaps are around 1%. 99.5% of beef is used for food.

16.1

2.5

16.1

2.5

-0.1

3.7

14.9

1.9
|             |            |        |        |            |                    | ç                                 | Utilization |                          |
|-------------|------------|--------|--------|------------|--------------------|-----------------------------------|-------------|--------------------------|
| Year        | Production | Import | Export | Net export | Stock<br>variation | Domestic<br>supply<br>/consumptio | Food        | Per capita<br>consumptio |
| 1978        | 321        | 3      | 1      | -3         | 0                  | 323                               | 323         | 0.33                     |
| 1980        | 451        | 7      | 4      | -3         | 0                  | 454                               | 454         | 0.45                     |
| 1985        | 594        | 10     | 2      | -8         | 0                  | 601                               | 601         | 0.55                     |
| 1990        | 1069       | 16     | 4      | -12        | 0                  | 1081                              | 1081        | 0.91                     |
| 1995        | 1749       | 21     | 2      | -19        | 0                  | 1768                              | 1768        | 1.41                     |
| 2000        | 2690       | 46     | 5      | -42        | 0                  | 2731                              | 2731        | 2.07                     |
| 2001        | 2721       | 53     | 4      | -49        | 0                  | 2770                              | 2770        | 2.08                     |
| 2002        | 2838       | 69     | 5      | -63        | 0                  | 2902                              | 2902        | 2.16                     |
| 2003        | 3090       | 64     | 13     | -51        | 0                  | 3141                              | 3141        | 2.34                     |
| 2004        | 3332       | 67     | 24     | -43        | 0                  | 3375                              | 3375        | 2.50                     |
| 2005        | 3504       | 77     | 30     | -47        | 0                  | 3552                              | 3552        | 2.62                     |
| 2006        | 3642       | 73     | 34     | -39        | 0                  | 3681                              | 3681        | 2.71                     |
| 2007        | 3830       | 81     | 23     | -58        | 0                  | 3888                              | 3888        | 2.83                     |
| 2008        | 3803       | 55     | 15     | -41        |                    |                                   |             |                          |
| 2009        | 3894       | 66     | 10     | -57        |                    |                                   |             |                          |
| 2010        | 3989       | 57     | 13     | -43        |                    |                                   |             |                          |
| Growth rate |            |        |        |            |                    |                                   |             |                          |
|             |            |        |        |            |                    | <u>ہ</u>                          | Utilization | Ę                        |
| Year        | Production | Import | Export | Net export | Stock<br>variation | Domestic<br>supply<br>/consumptic | Food        | Per capita<br>consumptio |
| 1980-90     | 9.0        | 8.0    | -1.2   |            |                    | 9.1                               | 9.1         | 7.4                      |
| 1990-00     | 9.7        | 11.2   | 3.1    |            |                    | 9.7                               | 9.7         | 8.6                      |
| 2000-07     | 5.2        | 8.3    | 24.9   |            |                    | 5.2                               | 5.2         | 4.6                      |

Table B12. Mutton and Goat Meat

FAO data is consistent with USDA (PSD) data. 100% of mutton and goat meat are used for food.

|             |            |        |        |            | ç              |                                    |            | Utilization |            |                           |
|-------------|------------|--------|--------|------------|----------------|------------------------------------|------------|-------------|------------|---------------------------|
| Year        | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply<br>/consumption | Processing | Food        | Other Util | Per capita<br>consumption |
| 1978        | 1531.5     | 53.5   | 36.5   | -17.0      | 0.0            | 1548.5                             | 0.0        | 1546.6      | 1.9        | 1.58                      |
| 1980        | 1662.9     | 70.3   | 45.8   | -24.6      | 0.0            | 1687.5                             | 0.0        | 1685.2      | 2.3        | 1.68                      |
| 1985        | 2016.6     | 82.8   | 18.3   | -64.6      | 0.0            | 2081.2                             | 0.0        | 2078.3      | 2.8        | 1.92                      |
| 1990        | 3739.8     | 250.0  | 129.7  | -120.3     | 0.0            | 3860.1                             | 1.0        | 3854.1      | 5.0        | 3.29                      |
| 1995        | 8673.8     | 966.5  | 640.6  | -325.8     | -65.0          | 8934.6                             | 1.0        | 8919.4      | 14.2       | 7.20                      |
| 2000        | 12688.6    | 1971.0 | 1343.5 | -627.5     | 40.0           | 13356.1                            | 1.5        | 13332.4     | 22.3       | 10.29                     |
| 2001        | 12523.8    | 1696.7 | 1250.5 | -446.2     | 0.0            | 12970.0                            | 10.5       | 12940.4     | 19.1       | 9.92                      |
| 2002        | 12732.0    | 1447.8 | 1135.2 | -312.6     | 30.0           | 13074.5                            | 1.5        | 13056.2     | 16.9       | 9.94                      |
| 2003        | 13135.1    | 1473.3 | 1017.1 | -456.2     | 45.0           | 13636.3                            | 1.5        | 13611.2     | 23.7       | 10.31                     |
| 2004        | 13236.5    | 817.0  | 440.0  | -377.0     | -70.0          | 13543.5                            | 1.5        | 13488.6     | 53.4       | 10.18                     |
| 2005        | 14055.2    | 1011.2 | 609.7  | -401.5     | -15.0          | 14441.6                            | 1.5        | 14429.9     | 10.2       | 10.80                     |
| 2006        | 14285.7    | 1288.8 | 706.4  | -582.5     | 20.0           | 14888.1                            | 1.5        | 14875.4     | 11.2       | 11.07                     |
| 2007        | 15039.3    | 1559.8 | 817.8  | -742.0     | 65.0           | 15846.3                            | 1.5        | 15829.3     | 15.5       | 11.72                     |
| 2008        | 15337.0    | 833.0  | 168.0  | -665.0     |                |                                    |            |             |            |                           |
| 2009        | n.a        | 749.7  | 173.8  | -575.9     |                |                                    |            |             |            |                           |
| 2010        | n.a        | 542.0  | 205.9  | -336.1     |                |                                    |            |             |            |                           |
| Growth rate |            |        |        |            |                |                                    |            |             |            |                           |
|             |            |        |        |            | Ę              |                                    |            | Utilization |            |                           |
| Year        | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply<br>/consumption | Processing | Food        | Other Util | Per capita<br>consumption |
| 1980-90     | 8.4        | 13.5   | 11.0   |            |                | 8.6                                |            | 8.6         | 8.1        | 7.0                       |
| 1990-00     | 13.0       | 22.9   | 26.3   |            |                | 13.2                               |            | 13.2        | 10.1       | 12.1                      |

FAO data is higher than SSB data. Before 1994, the difference was around 10-20%. After 1994, it was around 5%. 99.9% of poultry are used for food.

#### 96

2.5

2.5

-5.0

1.9

#### Table B13. Poultry

2000-07

2.5

-3.3

-6.8

|      |            |        |        |            | ç              |                                    | C Utilization |       |       |            |                           |  |
|------|------------|--------|--------|------------|----------------|------------------------------------|---------------|-------|-------|------------|---------------------------|--|
| Year | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply<br>/consumption | Seed          | Waste | Food  | Other Util | Per capita<br>consumption |  |
| 1978 | 2644       | 64     | 49     | -15        | 0              | 2660                               | 87            | 141   | 2390  | 41         | 2.7                       |  |
| 1980 | 2935       | 73     | 64     | -8         | 0              | 2943                               | 95            | 157   | 2645  | 46         | 2.9                       |  |
| 1985 | 5545       | 75     | 57     | -19        | 0              | 5563                               | 130           | 291   | 5055  | 87         | 5.1                       |  |
| 1990 | 8175       | 89     | 46     | -44        | 0              | 8219                               | 203           | 424   | 7463  | 129        | 7.0                       |  |
| 1995 | 17085      | 93     | 31     | -62        | 0              | 17146                              | 421           | 874   | 15581 | 270        | 13.8                      |  |
| 2000 | 22213      | 89     | 69     | -20        | 0              | 22233                              | 550           | 1134  | 20176 | 373        | 17.1                      |  |
| 2001 | 22497      | 91     | 65     | -26        | 0              | 22523                              | 554           | 1149  | 20442 | 378        | 17.2                      |  |
| 2002 | 23039      | 91     | 90     | -1         | 0              | 23041                              | 538           | 1175  | 20939 | 388        | 17.5                      |  |
| 2003 | 23711      | 92     | 102    | 10         | 0              | 23700                              | 553           | 1209  | 21540 | 398        | 17.9                      |  |
| 2004 | 24081      | 94     | 97     | 3          | 0              | 24078                              | 570           | 1227  | 21876 | 405        | 18.1                      |  |
| 2005 | 24726      | 95     | 93     | -2         | 0              | 24728                              | 599           | 1258  | 22454 | 416        | 18.5                      |  |
| 2006 | 24598      | 95     | 92     | -3         | 0              | 24601                              | 592           | 1252  | 22343 | 414        | 18.3                      |  |
| 2007 | 25654      | 100    | 135    | 34         | 0              | 25620                              | 618           | 1306  | 23264 | 432        | 19.0                      |  |
| 2008 | 27022      | 0.00   | 84     | 84         |                |                                    |               |       |       |            |                           |  |
| 2009 | 27425      | 0.00   | 78     | 78         |                |                                    |               |       |       |            |                           |  |
| 2010 | 27627      | 0.02   | 100    | 100        |                |                                    |               |       |       |            |                           |  |

#### Growth rate

|         |            |        |        |            | c              | _                                  |      | Utiliza | tion |            |                           |
|---------|------------|--------|--------|------------|----------------|------------------------------------|------|---------|------|------------|---------------------------|
| Year    | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply<br>/consumption | Seed | Waste   | Food | Other Util | Per capita<br>consumption |
| 1980-90 | 10.8       | 2.1    | -3.4   |            |                | 10.8                               | 7.9  | 10.5    | 10.9 | 10.8       | 9.1                       |
| 1990-00 | 10.5       | 0.0    | 4.2    |            |                | 10.5                               | 10.5 | 10.3    | 10.5 | 11.2       | 9.3                       |
| 2000-07 | 2.1        | 1.7    | 10.1   |            |                | 2.0                                | 1.7  | 2.0     | 2.1  | 2.1        | 1.5                       |

FAO data is consistent with SSB data. Around 90% of eggs are used for food. 2-3% of eggs are used as seed, around 2% are for other use, and 5% are losses.

|             |            |        |        |            | c              |                                    |      | Ut    | ilization | l          |            |                           |
|-------------|------------|--------|--------|------------|----------------|------------------------------------|------|-------|-----------|------------|------------|---------------------------|
| Year        | Production | Import | Export | Net export | Stock variatio | Domestic<br>supply<br>/consumption | Feed | Food  | Waste     | Processing | Other Util | Per capita<br>consumption |
| 1978        | 2811       | 746    | 15     | -732       | 0              | 3543                               | 395  | 2981  | 148       | 15         | 4          | 3.6                       |
| 1980        | 2928       | 748    | 21     | -726       | -1             | 3653                               | 461  | 3000  | 164       | 17         | 11         | 3.6                       |
| 1985        | 4758       | 1132   | 58     | -1074      | 0              | 5832                               | 667  | 4847  | 257       | 27         | 34         | 5.4                       |
| 1990        | 7037       | 1211   | 102    | -1109      | 0              | 8146                               | 833  | 6905  | 360       | 34         | 16         | 7.0                       |
| 1995        | 9458       | 1844   | 502    | -1342      | 0              | 10799                              | 926  | 9405  | 453       | 0          | 18         | 8.7                       |
| 2000        | 12374      | 2109   | 545    | -1565      | 5              | 13943                              | 989  | 12376 | 563       | 0          | 19         | 10.7                      |
| 2001        | 14515      | 1900   | 370    | -1530      | 5              | 16050                              | 1102 | 14283 | 629       | 0          | 40         | 12.3                      |
| 2002        | 17335      | 2233   | 362    | -1870      | 0              | 19206                              | 1136 | 17334 | 723       | 0          | 14         | 14.6                      |
| 2003        | 21871      | 2283   | 397    | -1886      | -1             | 23757                              | 1158 | 21720 | 868       | 1          | 11         | 18.0                      |
| 2004        | 27023      | 2432   | 464    | -1968      | -1             | 28989                              | 1114 | 26834 | 1030      | 1          | 12         | 21.8                      |
| 2005        | 32023      | 2090   | 508    | -1582      | 3              | 33607                              | 1187 | 31219 | 1189      | 1          | 13         | 25.1                      |
| 2006        | 36472      | 2465   | 530    | -1935      | 1              | 38408                              | 1221 | 35848 | 1329      | 1          | 11         | 28.6                      |
| 2007        | 39824      | 2266   | 1009   | -1257      | 2              | 41083                              | 1273 | 38354 | 1435      | 1          | 21         | 30.4                      |
| 2008        | 37815      | 351    | 121    | -230       |                |                                    |      |       |           |            |            |                           |
| 2009        | 36777      | 597    | 37     | -560       |                |                                    |      |       |           |            |            |                           |
| 2010        | 37480      | 745    | 34     | -712       |                |                                    |      |       |           |            |            |                           |
| Growth rate |            |        |        |            |                |                                    |      |       |           |            |            |                           |
|             |            |        |        |            | Ę              | _ ·                                |      | Ut    | ilization | l .        |            |                           |
| Year        | Production | Import | Export | Net export | Stock variatic | Domestic<br>supply<br>/consumptior | Feed | Food  | Waste     | Processing | Other Util | Per capita<br>consumption |

1980-90

1990-00

2000-07

Major differences exist between statistics from different providers.

9.2

5.8

18.2

17.1

18.2

9.2

4.9

5.7

1.0

8.3

5.5

16.7

6.1

1.7

3.7

8.2

4.6

14.3

7.2

-36.2

13.9

3.4

2.0

0.8

6.7

4.4

16.0

8.7

6.0

17.5

|      |            |        |        |            |                    | 2                                 |       | -     | ~    |            |                           |
|------|------------|--------|--------|------------|--------------------|-----------------------------------|-------|-------|------|------------|---------------------------|
| Year | Production | Import | Export | Net export | Stock<br>variation | Domestic<br>supply<br>/consumptio | Feed  | Food  | Seed | Other Util | Per capita<br>consumptior |
| 1978 | 5653       | 891    | 430    | -461       | 0                  | 6115                              | 759   | 5333  | 1    | 21         | 6.2                       |
| 1980 | 5571       | 1004   | 511    | -493       | -19                | 6045                              | 840   | 5173  | 2    | 30         | 6.0                       |
| 1985 | 8501       | 2900   | 739    | -2161      | -4                 | 10658                             | 2830  | 7826  | 2    | 0          | 9.9                       |
| 1990 | 14779      | 3982   | 1522   | -2459      | 4                  | 17242                             | 3742  | 13228 | 1    | 270        | 14.7                      |
| 1995 | 29720      | 7031   | 2188   | -4843      | -6                 | 34557                             | 6871  | 25324 | 1    | 2360       | 27.8                      |
| 1996 | 33020      | 7547   | 2289   | -5257      | -11                | 38266                             | 8186  | 27599 | 1    | 2480       | 30.5                      |
| 1997 | 33657      | 7826   | 2446   | -5380      | 5                  | 39042                             | 8955  | 28485 | 1    | 1601       | 30.8                      |
| 1998 | 35121      | 4267   | 2623   | -1645      | -15                | 36751                             | 5499  | 29750 | 1    | 1500       | 28.8                      |
| 1999 | 36224      | 5911   | 3126   | -2786      | 20                 | 39029                             | 7012  | 30316 | 1    | 1700       | 30.3                      |
| 2000 | 37299      | 9578   | 3753   | -5825      | -11                | 43113                             | 9882  | 31230 | 1    | 2000       | 33.2                      |
| 2001 | 37976      | 8191   | 4413   | -3778      | 18                 | 41771                             | 8486  | 31434 | 1    | 1850       | 32.0                      |
| 2002 | 39514      | 8432   | 4789   | -3644      | 0                  | 43157                             | 8726  | 32280 | 1    | 2150       | 32.8                      |
| 2003 | 40518      | 7590   | 5219   | -2371      | 0                  | 42889                             | 8203  | 32484 | 1    | 2200       | 32.4                      |
| 2004 | 41986      | 9551   | 6059   | -3492      | -18                | 45460                             | 9687  | 33272 | 1    | 2500       | 34.2                      |
| 2005 | 43563      | 12106  | 6884   | -5222      | 18                 | 48803                             | 12132 | 33869 | 1    | 2800       | 36.5                      |
| 2006 | 45331      | 9311   | 7988   | -1323      | -1                 | 46653                             | 8979  | 34573 | 1    | 3100       | 34.7                      |
| 2007 | 46841      | 9407   | 8173   | -1235      | -1                 | 48075                             | 8910  | 35364 | 1    | 3800       | 35.6                      |

#### Table B16. Aquatic Products

#### Growth rate

|         | S Utilization |        |        |            |                    |                                   |      |      |      | c          |                          |
|---------|---------------|--------|--------|------------|--------------------|-----------------------------------|------|------|------|------------|--------------------------|
| Year    | Production    | Import | Export | Net export | Stock<br>variation | Domestic<br>supply<br>/consumptic | Feed | Food | Seed | Other Util | Per capita<br>consumptio |
| 1980-90 | 10.2          | 14.8   | 11.5   |            |                    | 11.0                              | 16.1 | 9.8  | -1.7 | 24.4       | 9.4                      |
| 1990-00 | 9.7           | 9.2    | 9.4    |            |                    | 9.6                               | 10.2 | 9.0  | -3.1 | 22.2       | 8.5                      |
| 2000-07 | 3.3           | -0.3   | 11.8   |            |                    | 1.6                               | -1.5 | 1.8  | 0.0  | 9.6        | 1.0                      |

Prior to 1995, FAO data is 20% higher than SSB. The gap has since become smaller. From 2000 onwards, FAO data were about 1% higher than those of SSB.

#### Appendix C. Projections on China's Food Production and Consumption by 2020

#### Notes:

- 1. There have been various attempts to project China's future food production and consumption. Only the projections from three major institutions are included in this summary; namely, USDA 2011 baseline projections; OECD-FAO agricultural outlook, and FAPRI international agricultural outlook.
- 2. USDA 2011 baseline projections can be found at <u>http://www.ers.usda.gov/data/internationalbaseline/sutabs11.htm</u>; OECD-FAO agricultural outlook can be found at <u>http://stats.oecd.org/index.aspx</u>, and FAPRI international agricultural outlook can be found at <u>http://www.fapri.iastate.edu/tools/outlook.aspx</u>.
- 3. Projections for some products are provided by two or even only one of the three institutions.
- 4. PCC: per capita consumption, TC: total consumption, PRO: production. "Gap" indicates the likely net imports or exports. All are in thousand tonnes except PCC which is in kg. PCC is calculated by the authors, which is equal to total consumption/availability divided by the projected population of China.
- 5. Consumption projections by this study using three simple methods are also reported in this appendix for information. The three simple methods are detailed in Box 3.

Table C1. Wheat

| Source   |     | 2009   | 2010   | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
|----------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|          | PCC | 80.8   | 81.0   | 81.6   | 81.8   | 82.4   | 81.9   | 82.0   | 81.7   | 81.5   | 81.5   | 81.4   | 81.4   |
|          | тс  | 107000 | 107800 | 109027 | 109900 | 111162 | 111086 | 111677 | 111673 | 111880 | 112166 | 112443 | 112650 |
| USDA     | PRO | 115120 | 114500 | 115592 | 114375 | 113293 | 112449 | 113009 | 113027 | 113220 | 113589 | 114059 | 114314 |
|          | Gap | 8120   | 6700   | 6565   | 4475   | 2131   | 1363   | 1332   | 1354   | 1340   | 1423   | 1616   | 1664   |
|          |     |        |        |        |        |        |        |        |        |        |        |        |        |
|          | PCC | 80.8   | 81.0   | 82.8   | 84.0   | 83.2   | 82.6   | 81.9   | 81.3   | 80.7   | 79.9   | 79.1   | 78.7   |
| FAPRI    | тс  | 107000 | 107800 | 110721 | 112856 | 112219 | 111993 | 111560 | 111200 | 110709 | 110060 | 109219 | 109026 |
|          | PRO | 115120 | 114500 | 113162 | 117365 | 115167 | 114976 | 114248 | 114563 | 114498 | 114488 | 113681 | 114641 |
|          | Gap | 8120   | 6700   | 2442   | 4509   | 2947   | 2983   | 2688   | 3364   | 3788   | 4428   | 4462   | 5615   |
|          |     |        |        |        |        |        |        |        |        |        |        |        |        |
|          | PCC | 82.4   | 83.8   | 82.2   | 82.4   | 81.9   | 81.6   | 81.6   | 81.6   | 81.3   | 81.0   | 80.7   | 80.4   |
|          | тс  | 112590 | 114990 | 113367 | 114148 | 113824 | 113932 | 114369 | 114706 | 114577 | 114528 | 114264 | 114183 |
| UECD-FAU | PRO | 115115 | 115100 | 115685 | 116742 | 115587 | 115873 | 117138 | 116067 | 115554 | 115426 | 115504 | 115702 |
|          | Gap | 2525   | 110    | 2319   | 2594   | 1764   | 1942   | 2769   | 1361   | 978    | 899    | 1240   | 1518   |

| Source        |     | 2009   | 2010   | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
|---------------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Method 1      | PCC | 76.2   | 75.1   | 74.0   | 72.9   | 71.9   | 70.8   | 69.8   | 68.8   | 67.8   | 66.8   | 65.8   | 64.8   |
|               | тс  | 104087 | 103060 | 102027 | 100986 | 99934  | 98865  | 97775  | 96663  | 95532  | 94383  | 93218  | 92039  |
| Method 2      | PCC | 89.5   | 89.9   | 90.4   | 90.8   | 91.2   | 91.6   | 92.0   | 92.4   | 92.8   | 93.2   | 93.6   | 94.0   |
|               | тс  | 122280 | 123422 | 124550 | 125665 | 126759 | 127824 | 128853 | 129842 | 130793 | 131704 | 132577 | 133413 |
| Method 3, 6%  | PPC | 77.1   | 75.3   | 74.2   | 73.0   | 71.9   | 70.8   | 69.6   | 68.5   | 67.4   | 66.3   | 65.2   | 64.1   |
|               | тс  | 105286 | 103299 | 102224 | 101116 | 99972  | 98790  | 97568  | 96307  | 95011  | 93684  | 92330  | 90953  |
| Method 3, 8%  | PPC | 77.1   | 75.3   | 73.8   | 72.3   | 70.8   | 69.3   | 67.8   | 66.4   | 64.9   | 63.5   | 62.0   | 60.6   |
|               | тс  | 105286 | 103299 | 101725 | 100111 | 98460  | 96770  | 95044  | 93285  | 91498  | 89691  | 87867  | 86034  |
| Method 3, 10% | PCC | 77.1   | 75.3   | 73.4   | 71.6   | 69.7   | 67.9   | 66.1   | 64.3   | 62.5   | 60.7   | 59.0   | 57.3   |
|               | тс  | 105286 | 103299 | 101234 | 99125  | 96978  | 94796  | 92585  | 90352  | 88105  | 85851  | 83600  | 81357  |

| Table C2. Mille | ed Rice |
|-----------------|---------|
|-----------------|---------|

| Source   |     | 2009   | 2010   | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
|----------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|          | PCC | 102.0  | 102.0  | 102.0  | 102.3  | 101.3  | 100.6  | 100.0  | 99.9   | 99.6   | 99.0   | 98.5   | 98.2   |
|          | тс  | 134320 | 135000 | 135654 | 136743 | 136030 | 135825 | 135616 | 135987 | 136095 | 135905 | 135616 | 135659 |
| USDA     | PRO | 136570 | 136000 | 136989 | 138041 | 137073 | 136642 | 136574 | 136945 | 136735 | 136470 | 136188 | 136304 |
|          | Gap | 2250   | 1000   | 1335   | 1298   | 1043   | 817    | 958    | 958    | 640    | 565    | 572    | 645    |
|          | PCC | 92.5   | 92.8   | 93.8   | 93.1   | 92.4   | 91.9   | 91.3   | 91.0   | 90.5   | 89.9   | 89.4   | 88.7   |
|          | тс  | 126346 | 127334 | 129278 | 128953 | 128481 | 128226 | 127929 | 127918 | 127609 | 127142 | 126659 | 125859 |
| UECD-FAU | PRO | 133646 | 134534 | 133125 | 130597 | 129778 | 129504 | 128851 | 128359 | 127865 | 127216 | 126572 | 125832 |
|          | Gap | 7300   | 7200   | 3847   | 1644   | 1296   | 1278   | 922    | 441    | 257    | 74     | -88    | -27    |

| Source        |     | 2009   | 2010   | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
|---------------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Method 1      | PCC | 90.5   | 89.6   | 88.7   | 87.8   | 87.0   | 86.1   | 85.2   | 84.4   | 83.5   | 82.7   | 81.9   | 81.1   |
|               | тс  | 123617 | 122970 | 122306 | 121625 | 120920 | 120186 | 119417 | 118611 | 117771 | 116898 | 115996 | 115065 |
| Method 2      | PCC | 92.2   | 91.6   | 90.9   | 90.3   | 89.6   | 88.9   | 88.2   | 87.4   | 86.7   | 85.9   | 85.1   | 84.3   |
|               | ТС  | 125937 | 125682 | 125374 | 125012 | 124590 | 124100 | 123537 | 122898 | 122184 | 121398 | 120542 | 119618 |
| Method 3, 6%  | PPC | 91.3   | 89.5   | 88.5   | 87.4   | 86.4   | 85.3   | 84.3   | 83.3   | 82.2   | 81.2   | 80.3   | 79.3   |
|               | тс  | 124665 | 122863 | 121959 | 121035 | 120087 | 119108 | 118093 | 117041 | 115956 | 114839 | 113694 | 112522 |
| Method 3, 8%  | PPC | 91.3   | 89.5   | 88.1   | 86.7   | 85.4   | 84.0   | 82.6   | 81.3   | 80.0   | 78.7   | 77.4   | 76.2   |
|               | тс  | 124665 | 122863 | 121489 | 120100 | 118693 | 117260 | 115800 | 114311 | 112797 | 111261 | 109706 | 108136 |
| Method 3, 10% | PCC | 91.3   | 89.5   | 87.8   | 86.1   | 84.4   | 82.7   | 81.1   | 79.4   | 77.9   | 76.3   | 74.8   | 73.2   |
|               | ТС  | 124665 | 122863 | 121029 | 119187 | 117335 | 115468 | 113583 | 111681 | 109765 | 107839 | 105907 | 103973 |

| Table | C3. | Mai | ize |
|-------|-----|-----|-----|
|-------|-----|-----|-----|

| Source   |     | 2009   | 2010   | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
|----------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|          | PCC | 120.1  | 121.8  | 124.9  | 128.3  | 131.2  | 133.6  | 136.3  | 139.2  | 142.2  | 145.4  | 148.6  | 151.9  |
|          | тс  | 159000 | 162000 | 167007 | 172380 | 177083 | 181178 | 185637 | 190250 | 195112 | 200128 | 205203 | 210379 |
| USDA     | PRO | 158000 | 168000 | 174378 | 179478 | 182310 | 184390 | 186566 | 188695 | 190774 | 192860 | 195574 | 198828 |
|          | Gap | -1000  | 6000   | 7371   | 7098   | 5227   | 3212   | 929    | -1555  | -4338  | -7268  | -9629  | -11551 |
|          | PCC | 120.1  | 121.8  | 122.7  | 124.7  | 127.6  | 130.1  | 133.2  | 136.0  | 138.9  | 141.7  | 144.5  | 147.3  |
| FAPRI    | тс  | 159000 | 162000 | 164032 | 167439 | 172217 | 176443 | 181315 | 185960 | 190529 | 195047 | 199571 | 203940 |
|          | PRO | 158000 | 168000 | 170422 | 170035 | 174736 | 177481 | 182555 | 186374 | 190019 | 193606 | 197785 | 201795 |
|          | Gap | -1000  | 6000   | 6390   | 2596   | 2519   | 1038   | 1240   | 414    | -510   | -1440  | -1787  | -2145  |
|          | PCC | 127.8  | 133.0  | 135.2  | 136.7  | 138.5  | 140.0  | 142.0  | 143.5  | 145.3  | 146.9  | 148.8  | 150.5  |
|          | тс  | 174527 | 182554 | 186327 | 189283 | 192545 | 195496 | 198902 | 201693 | 204827 | 207677 | 210761 | 213610 |
| UECD-PAU | PRO | 173149 | 181912 | 184881 | 188312 | 191855 | 193959 | 197236 | 199120 | 202496 | 204701 | 208210 | 210311 |
|          | Gap | -1378  | -642   | -1445  | -971   | -690   | -1538  | -1666  | -2573  | -2331  | -2976  | -2551  | -3299  |

| Source        |     | 2009   | 2010   | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
|---------------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Method 1      | PCC | 112.6  | 114.7  | 116.9  | 119.2  | 121.5  | 123.8  | 126.2  | 128.6  | 131.1  | 133.6  | 136.2  | 138.8  |
|               | тс  | 153732 | 157443 | 161214 | 165048 | 168936 | 172866 | 176829 | 180821 | 184839 | 188885 | 192958 | 197059 |
| Method 2      | PCC | 119.4  | 123.2  | 127.0  | 131.0  | 135.1  | 139.3  | 143.6  | 148.0  | 152.6  | 157.2  | 162.0  | 166.9  |
|               | тс  | 163071 | 168990 | 175091 | 181373 | 187827 | 194437 | 201192 | 208083 | 215107 | 222259 | 229537 | 236940 |
| Method 3, 6%  | PPC | 118.3  | 122.7  | 125.5  | 128.3  | 131.2  | 134.2  | 137.2  | 140.3  | 143.5  | 146.7  | 150.0  | 153.4  |
|               | тс  | 161603 | 168367 | 172967 | 177662 | 182445 | 187303 | 192227 | 197212 | 202257 | 207362 | 212529 | 217759 |
| Method 3, 8%  | PPC | 118.3  | 122.7  | 126.4  | 130.2  | 134.1  | 138.1  | 142.2  | 146.5  | 150.8  | 155.4  | 160.0  | 164.8  |
|               | тс  | 161603 | 168367 | 174211 | 180226 | 186408 | 192747 | 199236 | 205872 | 212656 | 219591 | 226680 | 233927 |
| Method 3, 10% | PCC | 118.3  | 122.7  | 127.3  | 132.0  | 136.9  | 142.0  | 147.3  | 152.8  | 158.4  | 164.3  | 170.5  | 176.8  |
|               | тс  | 161603 | 168367 | 175440 | 182779 | 190382 | 198246 | 206365 | 214743 | 223384 | 232295 | 241486 | 250965 |

OECD-FAO data is for coarse grains.

| Tal | ble | C4. I | Barl | ley |
|-----|-----|-------|------|-----|
|-----|-----|-------|------|-----|

| Source |     | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
|--------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|        | PCC | 3.4   | 3.5   | 3.6   | 3.6   | 3.8   | 3.9   | 4.0   | 4.0   | 4.1   | 4.2   | 4.3   | 4.4   |
|        | тс  | 4500  | 4600  | 4855  | 4887  | 5084  | 5254  | 5405  | 5514  | 5624  | 5749  | 5911  | 6074  |
| USDA   | PRO | 2500  | 2400  | 2447  | 2592  | 2682  | 2770  | 2829  | 2867  | 2903  | 2955  | 3018  | 3086  |
|        | Gap | -2000 | -2200 | -2408 | -2295 | -2402 | -2484 | -2576 | -2647 | -2721 | -2794 | -2893 | -2988 |
| FAPRI  | PCC | 3.4   | 3.5   | 3.3   | 3.6   | 3.5   | 3.7   | 3.7   | 3.8   | 3.8   | 3.9   | 4.0   | 4.1   |
|        | тс  | 4500  | 4600  | 4358  | 4791  | 4756  | 4953  | 5031  | 5171  | 5269  | 5394  | 5519  | 5621  |
|        | PRO | 2500  | 2400  | 2480  | 2703  | 2576  | 2702  | 2697  | 2767  | 2791  | 2849  | 2888  | 2929  |
|        | Gap | -2000 | -2200 | -1879 | -2089 | -2180 | -2251 | -2334 | -2404 | -2478 | -2546 | -2631 | -2692 |

| Source        |     | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
|---------------|-----|------|------|------|------|------|------|------|------|------|------|------|------|
| Method 1      | PCC | 3.5  | 3.4  | 3.3  | 3.2  | 3.2  | 3.1  | 3.0  | 3.0  | 2.9  | 2.8  | 2.8  | 2.7  |
|               | тс  | 4760 | 4672 | 4585 | 4498 | 4412 | 4327 | 4242 | 4157 | 4072 | 3988 | 3904 | 3821 |
| Method 2      | PCC | 3.7  | 3.6  | 3.5  | 3.4  | 3.4  | 3.3  | 3.2  | 3.1  | 3.0  | 2.8  | 2.7  | 2.6  |
|               | тс  | 5012 | 4941 | 4860 | 4770 | 4670 | 4560 | 4440 | 4310 | 4170 | 4020 | 3860 | 3690 |
| Method 3, 6%  | PPC | 2.9  | 2.9  | 2.9  | 2.9  | 2.9  | 2.8  | 2.8  | 2.8  | 2.8  | 2.8  | 2.8  | 2.8  |
|               | тс  | 3972 | 3971 | 3975 | 3976 | 3976 | 3974 | 3969 | 3962 | 3953 | 3941 | 3927 | 3912 |
| Method 3, 8%  | PPC | 2.9  | 2.9  | 2.9  | 2.9  | 2.8  | 2.8  | 2.8  | 2.8  | 2.8  | 2.7  | 2.7  | 2.7  |
|               | тс  | 3972 | 3971 | 3970 | 3966 | 3959 | 3949 | 3936 | 3921 | 3902 | 3882 | 3858 | 3833 |
| Method 3, 10% | PCC | 2.9  | 2.9  | 2.9  | 2.9  | 2.8  | 2.8  | 2.8  | 2.8  | 2.7  | 2.7  | 2.7  | 2.6  |
|               | тс  | 3972 | 3971 | 3965 | 3955 | 3941 | 3924 | 3902 | 3878 | 3850 | 3820 | 3786 | 3751 |

Table C5. Soybean

| Source   |     | 2009   | 2010   | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
|----------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|          | PCC | 44.9   | 51.8   | 56.0   | 58.8   | 61.1   | 63.2   | 65.4   | 67.6   | 69.6   | 71.6   | 73.6   | 75.4   |
|          | тс  | 59430  | 68850  | 74855  | 78971  | 82404  | 85733  | 89033  | 92360  | 95445  | 98515  | 101570 | 104419 |
| USDA     | PRO | 14700  | 14400  | 15040  | 15622  | 16083  | 16221  | 16403  | 16521  | 16618  | 16668  | 16665  | 16654  |
|          | Gap | -44730 | -54450 | -59815 | -63349 | -66321 | -69512 | -72630 | -75839 | -78827 | -81847 | -84905 | -87765 |
|          | PCC | 44.9   | 51.8   | 53.0   | 53.9   | 55.0   | 56.2   | 57.4   | 58.6   | 59.8   | 61.0   | 62.3   | 63.6   |
|          | ТС  | 59430  | 68850  | 70842  | 72363  | 74168  | 76159  | 78088  | 80068  | 82002  | 83980  | 86005  | 88084  |
| FAFRI    | PRO | 14700  | 14400  | 14458  | 14404  | 14410  | 14529  | 14601  | 14684  | 14770  | 14865  | 14939  | 14997  |
|          | Gap | -44730 | -54450 | -56384 | -57959 | -59759 | -61629 | -63487 | -65384 | -67231 | -69115 | -71066 | -73087 |
|          | PCC | 78.1   | 79.1   | 80.8   | 81.8   | 82.3   | 83.5   | 84.7   | 85.8   | 86.7   | 87.8   | 88.7   | 89.7   |
|          | ТС  | 106674 | 108487 | 111451 | 113295 | 114471 | 116592 | 118614 | 120603 | 122281 | 124165 | 125705 | 127341 |
| UECD-FAU | PRO | 55348  | 55980  | 57329  | 58079  | 58964  | 59833  | 60581  | 61494  | 62287  | 63218  | 64136  | 64958  |
|          | Gap | -51326 | -52507 | -54123 | -55216 | -55507 | -56759 | -58033 | -59108 | -59994 | -60947 | -61569 | -62383 |

| Source        |     | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
|---------------|-----|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| Method 1      | PCC | 38.4  | 41.1  | 44.0  | 47.1  | 50.4  | 54.0  | 57.8   | 61.8   | 66.2   | 70.9   | 75.9   | 81.2   |
|               | тс  | 52435 | 56399 | 60653 | 65216 | 70106 | 75343 | 80943  | 86930  | 93328  | 100163 | 107465 | 115265 |
| Method 2      | PCC | 39.9  | 42.5  | 45.3  | 48.1  | 51.0  | 54.1  | 57.2   | 60.5   | 63.8   | 67.3   | 70.9   | 74.5   |
|               | тс  | 54499 | 58354 | 62380 | 66577 | 70942 | 75469 | 80153  | 84989  | 89974  | 95107  | 100383 | 105802 |
| Method 3, 6%  | PPC | 40.4  | 44.3  | 46.9  | 49.7  | 52.7  | 55.8  | 59.2   | 62.8   | 66.6   | 70.6   | 75.0   | 79.6   |
|               | тс  | 55154 | 60782 | 64671 | 68817 | 73233 | 77932 | 82926  | 88230  | 93862  | 99841  | 106190 | 112929 |
| Method 3, 8%  | PPC | 40.4  | 44.3  | 47.8  | 51.6  | 55.7  | 60.2  | 65.0   | 70.3   | 76.1   | 82.3   | 89.1   | 96.4   |
|               | тс  | 55154 | 60782 | 65876 | 71422 | 77455 | 84010 | 91126  | 98849  | 107227 | 116313 | 126168 | 136854 |
| Method 3, 10% | PCC | 40.4  | 44.3  | 48.7  | 53.5  | 58.9  | 64.8  | 71.4   | 78.7   | 86.8   | 95.7   | 105.6  | 116.6  |
|               | тс  | 55154 | 60782 | 67084 | 74084 | 81854 | 90470 | 100019 | 110595 | 122307 | 135272 | 149625 | 165509 |

OECD-FAO data is for all oilseeds.

| Tab | le C6. | Rapes | seed |
|-----|--------|-------|------|
|-----|--------|-------|------|

| Source |     | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
|--------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|        | PCC | 11.4  | 11.5  | 11.8  | 11.6  | 11.5  | 11.6  | 11.6  | 11.6  | 11.6  | 11.7  | 11.7  | 11.8  |
| FAPRI  | тс  | 15114 | 15250 | 15730 | 15554 | 15575 | 15708 | 15772 | 15851 | 15968 | 16079 | 16200 | 16330 |
|        | PRO | 13657 | 12800 | 13562 | 13495 | 13567 | 13666 | 13717 | 13774 | 13857 | 13932 | 13987 | 14047 |
|        | Gap | -1457 | -2450 | -2168 | -2058 | -2008 | -2042 | -2055 | -2077 | -2111 | -2147 | -2213 | -2284 |

| Source        |     | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
|---------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Method 1      | PCC | 8.5   | 8.3   | 8.2   | 8.0   | 7.8   | 7.7   | 7.5   | 7.4   | 7.3   | 7.1   | 7.0   | 6.8   |
|               | ТС  | 11586 | 11417 | 11248 | 11080 | 10912 | 10744 | 10575 | 10405 | 10234 | 10063 | 9891  | 9719  |
| Method 2      | PCC | 10.2  | 10.3  | 10.5  | 10.6  | 10.7  | 10.9  | 11.0  | 11.1  | 11.2  | 11.3  | 11.4  | 11.5  |
|               | ТС  | 13895 | 14168 | 14432 | 14686 | 14929 | 15161 | 15380 | 15585 | 15778 | 15956 | 16121 | 16272 |
| Method 3, 6%  | PPC | 8.8   | 8.8   | 8.7   | 8.7   | 8.7   | 8.6   | 8.6   | 8.6   | 8.5   | 8.5   | 8.4   | 8.4   |
|               | ТС  | 12011 | 12025 | 12046 | 12060 | 12065 | 12062 | 12050 | 12030 | 12001 | 11965 | 11922 | 11871 |
| Method 3, 8%  | PPC | 8.8   | 8.8   | 8.7   | 8.7   | 8.6   | 8.6   | 8.5   | 8.5   | 8.4   | 8.3   | 8.3   | 8.2   |
|               | ТС  | 12011 | 12025 | 12034 | 12031 | 12016 | 11990 | 11953 | 11904 | 11846 | 11778 | 11701 | 11616 |
| Method 3, 10% | PCC | 8.8   | 8.8   | 8.7   | 8.7   | 8.6   | 8.5   | 8.5   | 8.4   | 8.3   | 8.2   | 8.1   | 8.0   |
|               | тс  | 12011 | 12025 | 12021 | 12001 | 11965 | 11914 | 11848 | 11769 | 11678 | 11577 | 11465 | 11345 |

| Tab | le | C7. | Sugar | cane |
|-----|----|-----|-------|------|
|-----|----|-----|-------|------|

| Sources  |     | 2009   | 2010   | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
|----------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| FAPRI    | PRO | 115587 | 125000 | 129060 | 131129 | 132968 | 134544 | 136104 | 137699 | 139300 | 140858 | 142399 | 143884 |
|          | PCC | 11.4   | 11.4   | 11.8   | 12.2   | 12.7   | 13.1   | 13.6   | 14.0   | 14.6   | 15.1   | 15.7   | 16.3   |
|          | тс  | 15500  | 15600  | 16216  | 16904  | 17601  | 18302  | 18988  | 19742  | 20545  | 21356  | 22179  | 23074  |
| UECD-FAU | PRO | 11650  | 12062  | 13331  | 14032  | 14592  | 15204  | 15659  | 16086  | 16513  | 16981  | 17442  | 17887  |
|          | Gap | -3850  | -3538  | -2885  | -2873  | -3009  | -3099  | -3328  | -3656  | -4032  | -4376  | -4737  | -5187  |

| Sources       |     | 2009   | 2010   | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
|---------------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Method 1      | PCC | 74.9   | 76.8   | 78.6   | 80.5   | 82.5   | 84.5   | 86.6   | 88.7   | 90.9   | 93.1   | 95.4   | 97.7   |
|               | тс  | 102314 | 105315 | 108386 | 111528 | 114735 | 118001 | 121320 | 124690 | 128109 | 131578 | 135099 | 138672 |
| Method 2      | PCC | 77.5   | 78.9   | 80.2   | 81.6   | 83.0   | 84.3   | 85.7   | 87.1   | 88.5   | 89.8   | 91.2   | 92.6   |
|               | тс  | 105810 | 108201 | 110594 | 112987 | 115373 | 117745 | 120094 | 122416 | 124710 | 126974 | 129208 | 131412 |
| Method 3, 6%  | PPC | 88.0   | 90.1   | 91.4   | 92.7   | 94.1   | 95.4   | 96.7   | 98.1   | 99.4   | 100.8  | 102.2  | 103.5  |
|               | тс  | 120104 | 123607 | 126000 | 128396 | 130790 | 133171 | 135533 | 137871 | 140185 | 142475 | 144741 | 146984 |
| Method 3, 8%  | PPC | 88.0   | 90.1   | 91.8   | 93.6   | 95.3   | 97.1   | 98.9   | 100.7  | 102.5  | 104.3  | 106.2  | 108.0  |
|               | тс  | 120104 | 123607 | 126585 | 129576 | 132576 | 135575 | 138565 | 141544 | 144511 | 147466 | 150409 | 153343 |
| Method 3, 10% | PCC | 88.0   | 90.1   | 92.2   | 94.4   | 96.6   | 98.8   | 101.0  | 103.3  | 105.6  | 107.9  | 110.2  | 112.5  |
|               | тс  | 120104 | 123607 | 127160 | 130738 | 134337 | 137949 | 141568 | 145190 | 148815 | 152445 | 156082 | 159726 |

OECD-FAO data is for sugar.

### Table C8. Vegetables

|               |     | · · · · · | <b>J</b> = 1 = - |        |        |        |        |        |        |        |        |        |        |
|---------------|-----|-----------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|               |     | 2009      | 2010             | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
| Method 1      | PCC | 348.6     | 361.5            | 375.0  | 388.9  | 403.4  | 418.4  | 434.0  | 450.1  | 466.8  | 484.2  | 502.2  | 520.9  |
|               | тс  | 476004    | 496083           | 516919 | 538537 | 560936 | 584101 | 608023 | 632704 | 658164 | 684421 | 711501 | 739430 |
| Method 2      | PCC | 394.1     | 415.3            | 437.1  | 459.6  | 482.7  | 506.5  | 530.9  | 556.0  | 581.7  | 608.1  | 635.2  | 662.9  |
|               | тс  | 538144    | 569790           | 602520 | 636334 | 671197 | 707053 | 743851 | 781551 | 820131 | 859566 | 899841 | 940937 |
| Method 3, 6%  | PPC | 358.4     | 379.0            | 392.2  | 405.8  | 420.0  | 434.5  | 449.6  | 465.2  | 481.2  | 497.8  | 515.0  | 532.7  |
|               | тс  | 489434    | 519987           | 540628 | 561956 | 583962 | 606623 | 629922 | 653857 | 678438 | 703678 | 729596 | 756211 |
| Method 3, 8%  | PPC | 358.4     | 379.0            | 396.5  | 414.8  | 434.0  | 453.9  | 474.8  | 496.6  | 519.3  | 543.0  | 567.8  | 593.7  |
|               | тс  | 489434    | 519987           | 546603 | 574419 | 603458 | 633725 | 665235 | 698013 | 732102 | 767549 | 804409 | 842734 |
| Method 3, 10% | PCC | 358.4     | 379.0            | 400.8  | 423.9  | 448.2  | 473.8  | 500.9  | 529.4  | 559.5  | 591.2  | 624.7  | 660.1  |
|               | тс  | 489434    | 519987           | 552528 | 586909 | 623199 | 661456 | 701743 | 744143 | 788757 | 835690 | 885063 | 936998 |

#### Table C9. Fruits

|               |     | 2009   | 2010   | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
|---------------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Method 1      | PCC | 82.1   | 86.7   | 91.6   | 96.7   | 102.2  | 107.9  | 114.0  | 120.4  | 127.2  | 134.4  | 142.0  | 150.0  |
|               | тс  | 112071 | 118953 | 126236 | 133942 | 142086 | 150684 | 159748 | 169300 | 179361 | 189958 | 201117 | 212867 |
| Method 2      | PCC | 86.4   | 91.4   | 96.5   | 101.8  | 107.3  | 112.8  | 118.6  | 124.5  | 130.5  | 136.7  | 143.1  | 149.6  |
|               | тс  | 118028 | 125424 | 133076 | 140984 | 149140 | 157532 | 166147 | 174978 | 184018 | 193262 | 202706 | 212346 |
| Method 3, 6%  | PPC | 82.5   | 87.9   | 91.4   | 95.0   | 98.7   | 102.5  | 106.5  | 110.6  | 114.9  | 119.3  | 123.8  | 128.5  |
|               | тс  | 112700 | 120627 | 125969 | 131501 | 137220 | 143124 | 149210 | 155478 | 161931 | 168573 | 175411 | 182451 |
| Method 3, 8%  | PPC | 82.5   | 87.9   | 92.5   | 97.3   | 102.4  | 107.6  | 113.2  | 118.9  | 125.0  | 131.3  | 137.9  | 144.8  |
|               | тс  | 112700 | 120627 | 127538 | 134778 | 142356 | 150276 | 158545 | 167170 | 176167 | 185549 | 195333 | 205535 |
| Method 3, 10% | PCC | 82.5   | 87.9   | 93.6   | 99.7   | 106.1  | 112.9  | 120.1  | 127.6  | 135.7  | 144.1  | 153.1  | 162.6  |
|               | тс  | 112700 | 120627 | 129095 | 138066 | 147564 | 157608 | 168219 | 179423 | 191251 | 203735 | 216913 | 230821 |

Table C10. Pork

| Source   |     | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
|----------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | PCC | 36.9  | 37.6  | 38.6  | 39.1  | 39.6  | 40.4  | 41.0  | 41.7  | 42.3  | 43.1  | 43.8  | 44.3  |
|          | тс  | 48823 | 50050 | 51590 | 52485 | 53504 | 54723 | 55834 | 56954 | 58085 | 59323 | 60441 | 61397 |
| USDA     | PRO | 48905 | 50000 | 51500 | 52470 | 53494 | 54700 | 55804 | 56931 | 58059 | 59300 | 60423 | 61390 |
|          | Gap | 82    | -50   | -90   | -15   | -10   | -23   | -30   | -23   | -26   | -23   | -18   | -7    |
|          | PCC | 36.9  | 37.6  | 38.2  | 39.3  | 40.3  | 41.5  | 42.6  | 43.7  | 44.7  | 45.8  | 46.8  | 47.8  |
|          | тс  | 48823 | 50050 | 51123 | 52771 | 54394 | 56238 | 57979 | 59693 | 61362 | 63033 | 64664 | 66244 |
| FAFRI    | PRO | 48905 | 50000 | 50931 | 52547 | 54129 | 55943 | 57657 | 59347 | 60991 | 62634 | 64231 | 65781 |
|          | Gap | 82    | -50   | -192  | -224  | -266  | -295  | -321  | -346  | -371  | -399  | -434  | -463  |
|          | PCC | 35.7  | 36.4  | 37.2  | 37.7  | 38.1  | 38.7  | 39.3  | 40.1  | 40.7  | 41.4  | 42.2  | 43.1  |
|          | тс  | 48814 | 49901 | 51290 | 52180 | 53039 | 54027 | 55065 | 56298 | 57430 | 58580 | 59808 | 61202 |
| UECD-FAU | PRO | 49021 | 50098 | 51500 | 52390 | 53251 | 54244 | 55285 | 56541 | 57677 | 58829 | 60081 | 61482 |
|          | Gap | 207   | 197   | 210   | 210   | 212   | 218   | 220   | 242   | 247   | 249   | 273   | 280   |

| Consumption | projections | s using simp | le methods |
|-------------|-------------|--------------|------------|
| eeneun puen | p. 0,000.00 |              |            |

| oonounpiion r |     |       |       |       |       |       |       |       |       |       |       |       |       |
|---------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Source        |     | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
| Method 1      | PCC | 32.9  | 33.0  | 33.1  | 33.3  | 33.4  | 33.6  | 33.7  | 33.9  | 34.0  | 34.1  | 34.3  | 34.4  |
|               | тс  | 44874 | 45282 | 45685 | 46083 | 46475 | 46857 | 47227 | 47583 | 47925 | 48254 | 48570 | 48873 |
| Method 2      | PCC | 38.8  | 39.7  | 40.7  | 41.6  | 42.5  | 43.5  | 44.4  | 45.4  | 46.3  | 47.3  | 48.2  | 49.2  |
|               | тс  | 52952 | 54501 | 56054 | 57610 | 59166 | 60718 | 62260 | 63790 | 65307 | 66811 | 68300 | 69775 |
| Method 3, 6%  | PPC | 34.8  | 35.6  | 36.1  | 36.6  | 37.1  | 37.5  | 38.0  | 38.5  | 39.0  | 39.4  | 39.9  | 40.3  |
|               | тс  | 47545 | 48875 | 49775 | 50667 | 51550 | 52419 | 53271 | 54105 | 54921 | 55718 | 56499 | 57261 |
| Method 3, 8%  | PPC | 34.8  | 35.6  | 36.3  | 36.9  | 37.5  | 38.2  | 38.8  | 39.4  | 40.0  | 40.6  | 41.2  | 41.8  |
|               | тс  | 47545 | 48875 | 49990 | 51095 | 52187 | 53264 | 54323 | 55362 | 56382 | 57383 | 58365 | 59330 |
| Method 3, 10% | PCC | 34.8  | 35.6  | 36.4  | 37.2  | 38.0  | 38.7  | 39.5  | 40.3  | 41.0  | 41.7  | 42.5  | 43.2  |
|               | тс  | 47545 | 48875 | 50200 | 51512 | 52808 | 54087 | 55346 | 56583 | 57801 | 58999 | 60179 | 61341 |

Table C11. Beef

| Source   |     | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
|----------|-----|------|------|------|------|------|------|------|------|------|------|------|------|
|          | PCC | 4.3  | 4.2  | 4.1  | 4.0  | 4.1  | 4.2  | 4.3  | 4.4  | 4.5  | 4.5  | 4.6  | 4.7  |
|          | тс  | 5749 | 5528 | 5441 | 5439 | 5518 | 5641 | 5795 | 5958 | 6113 | 6256 | 6393 | 6535 |
| USDA     | PRO | 5764 | 5550 | 5450 | 5451 | 5532 | 5656 | 5812 | 5978 | 6134 | 6278 | 6415 | 6558 |
|          | Gap | 15   | 22   | 9    | 12   | 14   | 15   | 17   | 20   | 21   | 22   | 22   | 23   |
|          | PCC | 4.3  | 4.2  | 4.3  | 4.4  | 4.4  | 4.5  | 4.6  | 4.8  | 4.9  | 5.0  | 5.2  | 5.3  |
|          | тс  | 5749 | 5528 | 5702 | 5867 | 6000 | 6159 | 6331 | 6515 | 6712 | 6925 | 7144 | 7364 |
| FAPRI    | PRO | 5764 | 5550 | 5711 | 5856 | 5967 | 6100 | 6244 | 6395 | 6555 | 6725 | 6900 | 7077 |
|          | Gap | 15   | 22   | 9    | -11  | -33  | -59  | -87  | -120 | -157 | -199 | -244 | -287 |
|          | PCC | 4.7  | 4.5  | 4.5  | 4.5  | 4.6  | 4.6  | 4.6  | 4.7  | 4.7  | 4.8  | 4.9  | 5.1  |
|          | тс  | 6366 | 6123 | 6174 | 6243 | 6344 | 6421 | 6504 | 6565 | 6690 | 6831 | 6980 | 7184 |
| UECD-FAO | PRO | 6413 | 6174 | 6220 | 6292 | 6380 | 6442 | 6507 | 6559 | 6682 | 6820 | 6964 | 7180 |
|          | Gap | 47   | 51   | 47   | 48   | 36   | 20   | 2    | -6   | -8   | -11  | -15  | -3   |

| Source        |     | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
|---------------|-----|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|
| Method 1      | PCC | 4.8  | 4.9  | 5.0  | 5.1  | 5.2  | 5.3  | 5.4   | 5.5   | 5.6   | 5.7   | 5.8   | 5.9   |
|               | тс  | 6543 | 6699 | 6857 | 7018 | 7182 | 7347 | 7513  | 7680  | 7849  | 8018  | 8189  | 8360  |
| Method 2      | PCC | 5.2  | 5.3  | 5.5  | 5.7  | 5.9  | 6.1  | 6.3   | 6.4   | 6.6   | 6.8   | 7.0   | 7.2   |
|               | ТС  | 7054 | 7336 | 7620 | 7905 | 8191 | 8477 | 8761  | 9045  | 9327  | 9608  | 9887  | 10164 |
| Method 3, 6%  | PPC | 5.3  | 5.6  | 5.8  | 6.0  | 6.2  | 6.4  | 6.7   | 6.9   | 7.1   | 7.3   | 7.6   | 7.8   |
|               | тс  | 7208 | 7685 | 8001 | 8324 | 8653 | 8988 | 9328  | 9672  | 10022 | 10376 | 10736 | 11100 |
| Method 3, 8%  | PPC | 5.3  | 5.6  | 5.9  | 6.1  | 6.4  | 6.7  | 7.0   | 7.3   | 7.6   | 8.0   | 8.3   | 8.6   |
|               | ТС  | 7208 | 7685 | 8092 | 8511 | 8941 | 9382 | 9833  | 10294 | 10766 | 11249 | 11742 | 12247 |
| Method 3, 10% | PCC | 5.3  | 5.6  | 5.9  | 6.3  | 6.6  | 7.0  | 7.4   | 7.8   | 8.2   | 8.6   | 9.0   | 9.5   |
|               | ТС  | 7208 | 7685 | 8182 | 8697 | 9229 | 9778 | 10344 | 10928 | 11530 | 12150 | 12789 | 13448 |

| Source   |     | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
|----------|-----|------|------|------|------|------|------|------|------|------|------|------|------|
|          | PCC | 2.9  | 2.9  | 2.9  | 3.0  | 3.1  | 3.1  | 3.2  | 3.2  | 3.3  | 3.3  | 3.4  | 3.4  |
|          | тс  | 3921 | 3965 | 4057 | 4149 | 4242 | 4333 | 4425 | 4516 | 4606 | 4695 | 4785 | 4876 |
| OECD-FAU | PRO | 3865 | 3901 | 3991 | 4082 | 4173 | 4263 | 4353 | 4443 | 4532 | 4620 | 4709 | 4798 |
|          | Gap | -56  | -64  | -65  | -67  | -69  | -70  | -72  | -73  | -74  | -75  | -76  | -77  |

| Source        |     | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018  | 2019  | 2020  |
|---------------|-----|------|------|------|------|------|------|------|------|------|-------|-------|-------|
| Method 1      | PCC | 3.1  | 3.3  | 3.4  | 3.6  | 3.8  | 3.9  | 4.1  | 4.3  | 4.5  | 4.7   | 4.9   | 5.1   |
|               | тс  | 4294 | 4512 | 4740 | 4979 | 5228 | 5488 | 5760 | 6043 | 6337 | 6644  | 6963  | 7296  |
| Method 2      | PCC | 3.4  | 3.6  | 3.8  | 4.0  | 4.2  | 4.4  | 4.6  | 4.8  | 5.1  | 5.3   | 5.5   | 5.8   |
|               | тс  | 4631 | 4913 | 5204 | 5505 | 5815 | 6134 | 6462 | 6798 | 7141 | 7493  | 7851  | 8218  |
| Method 3, 6%  | PPC | 3.5  | 3.8  | 4.0  | 4.2  | 4.5  | 4.7  | 5.0  | 5.3  | 5.6  | 5.9   | 6.2   | 6.5   |
|               | тс  | 4735 | 5207 | 5529 | 5869 | 6227 | 6603 | 6999 | 7415 | 7852 | 8310  | 8792  | 9297  |
| Method 3, 8%  | PPC | 3.5  | 3.8  | 4.1  | 4.4  | 4.7  | 5.1  | 5.5  | 5.9  | 6.3  | 6.8   | 7.2   | 7.8   |
|               | ТС  | 4735 | 5207 | 5628 | 6080 | 6564 | 7083 | 7638 | 8231 | 8865 | 9543  | 10268 | 11042 |
| Method 3, 10% | PCC | 3.5  | 3.8  | 4.2  | 4.5  | 5.0  | 5.4  | 5.9  | 6.5  | 7.1  | 7.7   | 8.4   | 9.2   |
|               | тс  | 4735 | 5207 | 5727 | 6293 | 6911 | 7585 | 8317 | 9114 | 9981 | 10923 | 11947 | 13060 |

Table C13. Poultry

| Source   |     | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
|----------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | PCC | n.a   | 9.5   | 9.8   | 9.9   | 10.1  | 10.4  | 10.6  | 10.9  | 11.2  | 11.4  | 11.7  | 11.9  |
|          | тс  | n.a   | 12527 | 12921 | 13161 | 13557 | 13960 | 14371 | 14794 | 15239 | 15605 | 15985 | 16334 |
| USDA     | PRO | n.a   | 12556 | 13006 | 13332 | 13729 | 14125 | 14543 | 14959 | 15398 | 15759 | 16134 | 16474 |
|          | Gap | n.a   | 29    | 85    | 171   | 172   | 165   | 172   | 165   | 159   | 154   | 149   | 140   |
|          | PCC | 11.5  | 11.9  | 12.3  | 12.4  | 12.6  | 12.9  | 13.2  | 13.6  | 13.9  | 14.1  | 14.4  | 14.7  |
|          | тс  | 16070 | 16524 | 17015 | 17212 | 17600 | 18060 | 18610 | 19130 | 19604 | 20017 | 20466 | 20921 |
| OECD-FAO | PRO | 15765 | 16347 | 16940 | 17161 | 17542 | 18004 | 18540 | 19063 | 19542 | 19953 | 20419 | 20849 |
|          | Gap | -305  | -177  | -75   | -51   | -58   | -56   | -71   | -67   | -62   | -65   | -47   | -72   |

| I I           |     |       |       |       |       |       |       |       |       |       |       |       |       |
|---------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Source        |     | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
| Method 1      | PCC | 12.2  | 12.4  | 12.6  | 12.9  | 13.1  | 13.4  | 13.6  | 13.9  | 14.1  | 14.4  | 14.7  | 14.9  |
|               | тс  | 16616 | 17010 | 17410 | 17817 | 18230 | 18646 | 19066 | 19489 | 19914 | 20341 | 20772 | 21205 |
| Method 2      | PCC | 12.5  | 12.9  | 13.3  | 13.7  | 14.2  | 14.6  | 15.0  | 15.4  | 15.8  | 16.2  | 16.6  | 17.0  |
|               | тс  | 17095 | 17739 | 18385 | 19034 | 19684 | 20333 | 20981 | 21625 | 22265 | 22902 | 23534 | 24162 |
| Method 3, 6%  | PPC | 13.6  | 14.5  | 15.1  | 15.8  | 16.4  | 17.1  | 17.8  | 18.5  | 19.2  | 20.0  | 20.8  | 21.6  |
|               | тс  | 18541 | 19930 | 20863 | 21828 | 22826 | 23855 | 24916 | 26007 | 27131 | 28286 | 29475 | 30698 |
| Method 3, 8%  | PPC | 13.6  | 14.5  | 15.3  | 16.2  | 17.1  | 18.0  | 18.9  | 20.0  | 21.0  | 22.1  | 23.3  | 24.5  |
|               | тс  | 18541 | 19930 | 21138 | 22403 | 23726 | 25107 | 26547 | 28048 | 29612 | 31242 | 32939 | 34708 |
| Method 3, 10% | PCC | 13.6  | 14.5  | 15.5  | 16.6  | 17.7  | 18.9  | 20.2  | 21.5  | 22.9  | 24.3  | 25.9  | 27.5  |
|               | ТС  | 18541 | 19930 | 21412 | 22979 | 24637 | 26387 | 28234 | 30182 | 32235 | 34400 | 36682 | 39088 |

# Table C14. Eggs

|               |     | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
|---------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Method 1      | PCC | 19.5  | 19.8  | 20.1  | 20.4  | 20.7  | 21.0  | 21.3  | 21.6  | 21.9  | 22.2  | 22.5  | 22.9  |
|               | тс  | 26641 | 27160 | 27683 | 28213 | 28745 | 29280 | 29815 | 30349 | 30882 | 31414 | 31945 | 32476 |
| Method 2      | PCC | 21.9  | 22.6  | 23.3  | 23.9  | 24.6  | 25.3  | 26.0  | 26.7  | 27.4  | 28.0  | 28.7  | 29.4  |
|               | тс  | 29892 | 30973 | 32058 | 33147 | 34237 | 35326 | 36411 | 37490 | 38563 | 39628 | 40687 | 41737 |
| Method 3, 6%  | PPC | 20.0  | 20.3  | 20.5  | 20.6  | 20.8  | 20.9  | 21.1  | 21.2  | 21.3  | 21.5  | 21.6  | 21.7  |
|               | тс  | 27294 | 27835 | 28203 | 28558 | 28898 | 29222 | 29529 | 29818 | 30090 | 30344 | 30581 | 30802 |
| Method 3, 8%  | PPC | 20.0  | 20.3  | 20.5  | 20.7  | 20.9  | 21.1  | 21.3  | 21.5  | 21.6  | 21.8  | 21.9  | 22.0  |
|               | тс  | 27294 | 27835 | 28277 | 28699 | 29100 | 29478 | 29832 | 30164 | 30472 | 30758 | 31023 | 31267 |
| Method 3, 10% | PCC | 20.0  | 20.3  | 20.6  | 20.8  | 21.1  | 21.3  | 21.5  | 21.7  | 21.9  | 22.0  | 22.2  | 22.3  |
|               | тс  | 27294 | 27835 | 28349 | 28834 | 29289 | 29714 | 30108 | 30473 | 30809 | 31117 | 31400 | 31659 |

Table C15. Milk

| Source   |     | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
|----------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | PCC | 21.8  | 22.2  | 23.1  | 24.2  | 25.3  | 26.4  | 27.6  | 28.8  | 30.1  | 31.4  | 32.8  | 34.3  |
|          | тс  | 28895 | 29580 | 30922 | 32502 | 34120 | 35802 | 37577 | 39408 | 41323 | 43270 | 45319 | 47451 |
| FAFKI    | PRO | 28445 | 29100 | 30473 | 32087 | 33737 | 35451 | 37258 | 39120 | 41067 | 43045 | 45126 | 47290 |
|          | Gap | -450  | -480  | -448  | -415  | -383  | -351  | -320  | -288  | -256  | -225  | -193  | -160  |
|          | PCC | 24.4  | 26.7  | 28.7  | 30.3  | 31.7  | 33.1  | 34.5  | 35.9  | 37.4  | 38.8  | 40.2  | 40.1  |
|          | ТС  | 33328 | 36654 | 39583 | 41959 | 44066 | 46213 | 48362 | 50511 | 52666 | 54823 | 56974 | 56974 |
| UECD-FAU | PRO | 39451 | 41669 | 43598 | 45630 | 47431 | 49039 | 50674 | 52327 | 53979 | 55660 | 57352 | 59064 |
|          | Gap | 6124  | 5015  | 4015  | 3671  | 3366  | 2825  | 2312  | 1815  | 1313  | 838   | 379   | 2091  |

| Source        | -   | 2009  | 2010  | 2011  | 2012  | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
|---------------|-----|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| Method 1      | PCC | 40.9  | 47.5  | 55.1  | 63.9  | 74.1   | 86.0   | 99.8   | 115.8  | 134.3  | 155.8  | 180.8  | 209.7  |
|               | тс  | 55862 | 65123 | 75906 | 88459 | 103066 | 120050 | 139787 | 162713 | 189334 | 220237 | 256104 | 297722 |
| Method 2      | PCC | 27.5  | 29.1  | 30.7  | 32.4  | 34.1   | 35.9   | 37.8   | 39.6   | 41.6   | 43.5   | 45.6   | 47.6   |
|               | тс  | 37543 | 39902 | 42344 | 44867 | 47470  | 50148  | 52897  | 55715  | 58600  | 61550  | 64564  | 67640  |
| Method 3, 6%  | PPC | 40.0  | 46.7  | 51.4  | 56.7  | 62.5   | 69.0   | 76.2   | 84.2   | 93.1   | 103.0  | 114.0  | 126.2  |
|               | тс  | 54560 | 64025 | 70854 | 78455 | 86911  | 96313  | 106762 | 118370 | 131267 | 145594 | 161512 | 179197 |
| Method 3, 8%  | PPC | 40.0  | 46.7  | 53.0  | 60.3  | 68.7   | 78.4   | 89.5   | 102.2  | 116.9  | 133.8  | 153.2  | 175.5  |
|               | тс  | 54560 | 64025 | 73099 | 83547 | 95577  | 109424 | 125358 | 143693 | 164791 | 189072 | 217018 | 249186 |
| Method 3, 10% | PCC | 40.0  | 46.7  | 54.7  | 64.2  | 75.5   | 88.9   | 104.9  | 123.9  | 146.5  | 173.3  | 205.4  | 243.5  |
|               | тс  | 54560 | 64025 | 75376 | 88890 | 104981 | 124139 | 146951 | 174114 | 206467 | 245007 | 290926 | 345647 |

The authors' projections are based on FAO STAT database for milk excluding butter.

Table C16. Aquatic Products

|               | •   | 2000  | 2010  | 2011  | 2012  | 2012  | 2014  | 2015  | 2016  | 2017  | 2019  | 2010  | 2020  |
|---------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|               |     | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2010  | 2017  | 2010  | 2019  | 2020  |
| Method 1      | PCC | 36.3  | 36.6  | 37.0  | 37.3  | 37.7  | 38.1  | 38.5  | 38.8  | 39.2  | 39.6  | 40.0  | 40.4  |
|               | ТС  | 49524 | 50252 | 50981 | 51713 | 52443 | 53168 | 53885 | 54594 | 55293 | 55982 | 56662 | 57333 |
| Method 2      | PCC | 41.3  | 42.5  | 43.8  | 45.0  | 46.3  | 47.5  | 48.7  | 50.0  | 51.2  | 52.4  | 53.7  | 54.9  |
|               | ТС  | 56393 | 58363 | 60341 | 62326 | 64312 | 66296 | 68272 | 70236 | 72189 | 74128 | 76052 | 77961 |
| Method 3, 6%  | PPC | 36.6  | 37.1  | 37.4  | 37.7  | 38.0  | 38.2  | 38.4  | 38.7  | 38.9  | 39.1  | 39.3  | 39.4  |
|               | ТС  | 49985 | 50930 | 51573 | 52191 | 52781 | 53340 | 53865 | 54357 | 54815 | 55240 | 55634 | 55996 |
| Method 3, 8%  | PPC | 36.6  | 37.1  | 37.5  | 37.9  | 38.2  | 38.5  | 38.8  | 39.1  | 39.3  | 39.5  | 39.8  | 39.9  |
|               | ТС  | 49985 | 50930 | 51699 | 52429 | 53117 | 53761 | 54361 | 54915 | 55425 | 55893 | 56321 | 56710 |
| Method 3, 10% | PCC | 36.6  | 37.1  | 37.6  | 38.0  | 38.4  | 38.8  | 39.1  | 39.4  | 39.7  | 39.9  | 40.2  | 40.4  |
|               | тс  | 49985 | 50930 | 51821 | 52654 | 53429 | 54146 | 54804 | 55405 | 55950 | 56444 | 56888 | 57285 |

| fear        | Fotal sown<br>area | Brain<br>crops | %    | Cereals | %    | Rice  | %    | Wheat | %    | Maize | %    | Soybean | 8   |
|-------------|--------------------|----------------|------|---------|------|-------|------|-------|------|-------|------|---------|-----|
| 1978        | 150104             | 120587         | 80.3 | n.a     | n.a  | 34421 | 22.9 | 29183 | 19.4 | 19961 | 13.3 | n.a     | n.a |
| 1980        | 146380             | 117234         | 80.1 | n.a     | n.a  | 33878 | 23.1 | 28844 | 19.7 | 20087 | 13.7 | n.a     | n.a |
| 1985        | 143626             | 108845         | 75.8 | n.a     | n.a  | 32070 | 22.3 | 29218 | 20.3 | 17694 | 12.3 | n.a     | n.a |
| 1990        | 148362             | 113466         | 76.5 | n.a     | n.a  | 33064 | 22.3 | 30753 | 20.7 | 21401 | 14.4 | n.a     | n.a |
| 1995        | 149879             | 110060         | 73.4 | 89310   | 59.6 | 30744 | 20.5 | 28860 | 19.3 | 22776 | 15.2 | 11232   | 7.5 |
| 2000        | 156300             | 108463         | 69.4 | 85264   | 54.6 | 29962 | 19.2 | 26653 | 17.1 | 23056 | 14.8 | 12660   | 8.1 |
| 2001        | 155708             | 106080         | 68.1 | 82596   | 53.0 | 28812 | 18.5 | 24664 | 15.8 | 24282 | 15.6 | 13268   | 8.5 |
| 2002        | 154636             | 103891         | 67.2 | 81466   | 52.7 | 28202 | 18.2 | 23908 | 15.5 | 24634 | 15.9 | 12543   | 8.1 |
| 2003        | 152415             | 99410          | 65.2 | 76810   | 50.4 | 26508 | 17.4 | 21997 | 14.4 | 24068 | 15.8 | 12899   | 8.5 |
| 2004        | 153553             | 101606         | 66.2 | 79350   | 51.7 | 28379 | 18.5 | 21626 | 14.1 | 25446 | 16.6 | 12799   | 8.3 |
| 2005        | 155488             | 104278         | 67.1 | 81874   | 52.7 | 28847 | 18.6 | 22793 | 14.7 | 26358 | 17.0 | 12901   | 8.3 |
| 2006        | 152149             | 104958         | 69.0 | 84931   | 55.8 | 28938 | 19.0 | 23613 | 15.5 | 28463 | 18.7 | 12149   | 8.0 |
| 2007        | 153464             | 105638         | 68.8 | 85777   | 55.9 | 28919 | 18.8 | 23721 | 15.5 | 29478 | 19.2 | 11780   | 7.7 |
| 2008        | 156266             | 106793         | 68.3 | 86248   | 55.2 | 29241 | 18.7 | 23617 | 15.1 | 29864 | 19.1 | 12118   | 7.8 |
| 2009        | 158614             | 108986         | 68.7 | 88401   | 55.7 | 29627 | 18.7 | 24291 | 15.3 | 31183 | 19.7 | 11949   | 7.5 |
| 2010        | 160675             | 109876         | 68.4 | 89851   | 55.9 | 29873 | 18.6 | 24257 | 15.1 | 32500 | 20.2 | 11276   | 7.0 |
| Growth rate |                    |                |      |         |      |       |      |       |      |       |      |         |     |
|             | l sown             | с s            |      | als     |      |       |      | at    |      | e     |      | oean    |     |
| Year        | Tota<br>area       | Graii<br>crop  | %    | Cere    | %    | Rice  | %    | Whe   | %    | Maiz  | %    | Soyt    | %   |
| 80-90       | 0.1                | -0.3           |      | n.a     |      | -0.2  |      | 0.6   |      | 0.6   |      | n.a     |     |
| 90-00       | 0.5                | -0.4           |      | n.a     |      | -1.0  |      | -1.4  |      | 0.7   |      | n.a     |     |
| 00-10       | 0.3                | 0.1            |      | 0.5     |      | 0.0   |      | -0.9  |      | 3.5   |      | -1.2    |     |
| 78-10       | 0.7                | -0.9           |      | n.a     |      | -1.4  |      | -1.8  |      | 5.0   |      | n.a     |     |

# Appendix D. Sown Area, Yield, Crop Output and Output of Animal Products

Table D1. Area Sown to Crops and Share out of Total Area Sown in China (1978-2010, thousand hectare, %)

# Table D1 (continued)

| _           | ers    |     | bearing<br>os    |     | nuts  |     | eseed |     | ton    |     | er crops |     |
|-------------|--------|-----|------------------|-----|-------|-----|-------|-----|--------|-----|----------|-----|
| Yea         | Tub    | %   | Oil-l<br>crop    | %   | Pea   | %   | Rap   | %   | Cot    | %   | Fibe     | %   |
| 1978        | 11796  | 7.9 | 6222             | 4.1 | 1768  | 1.2 | 2600  | 1.7 | 4866   | 3.2 | 751      | 0.5 |
| 1980        | 10153  | 6.9 | 7928             | 5.4 | 2339  | 1.6 | 2844  | 1.9 | 4920   | 3.4 | 666      | 0.5 |
| 1985        | 8572   | 6.0 | 11800            | 8.2 | 3318  | 2.3 | 4494  | 3.1 | 5140   | 3.6 | 1231     | 0.9 |
| 1994        | 9121   | 6.1 | 12081            | 8.1 | 3776  | 2.5 | 5783  | 3.9 | 5528   | 3.7 | 372      | 0.3 |
| 1995        | 9519   | 6.4 | 13102            | 8.7 | 3809  | 2.5 | 6907  | 4.6 | 5422   | 3.6 | 376      | 0.3 |
| 2000        | 10538  | 6.7 | 15400            | 9.9 | 4856  | 3.1 | 7494  | 4.8 | 4041   | 2.6 | 262      | 0.2 |
| 2001        | 10217  | 6.6 | 14631            | 9.4 | 4991  | 3.2 | 7095  | 4.6 | 4810   | 3.1 | 323      | 0.2 |
| 2002        | 9881   | 6.4 | 14766            | 9.5 | 4921  | 3.2 | 7143  | 4.6 | 4184   | 2.7 | 338      | 0.2 |
| 2003        | 9702   | 6.4 | 14990            | 9.8 | 5057  | 3.3 | 7221  | 4.7 | 5111   | 3.4 | 337      | 0.2 |
| 2004        | 9457   | 6.2 | 14431            | 9.4 | 4745  | 3.1 | 7271  | 4.7 | 5693   | 3.7 | 332      | 0.2 |
| 2005        | 9503   | 6.1 | 14318            | 9.2 | 4662  | 3.0 | 7278  | 4.7 | 5062   | 3.3 | 335      | 0.2 |
| 2006        | 7877   | 5.2 | 11738            | 7.7 | 3960  | 2.6 | 5984  | 3.9 | 5816   | 3.8 | 283      | 0.2 |
| 2007        | 8082   | 5.3 | 11316            | 7.4 | 3945  | 2.6 | 5642  | 3.7 | 5926   | 3.9 | 263      | 0.2 |
| 2008        | 8427   | 5.4 | 12825            | 8.2 | 4246  | 2.7 | 6594  | 4.2 | 5754   | 3.7 | 221      | 0.1 |
| 2009        | 8636   | 5.4 | 13654            | 8.6 | 4377  | 2.8 | 7278  | 4.6 | 4949   | 3.1 | 160      | 0.1 |
| 2010        | 8750   | 5.4 | 13890            | 8.6 | 4527  | 2.8 | 7370  | 4.6 | 4849   | 3.0 | 133      | 0.1 |
| Growth rate |        |     |                  |     |       |     |       |     |        |     |          |     |
|             | (0     |     | aring            |     | ts    |     | eed   |     | -      |     | crops    |     |
| Year        | Tubers | %   | Oil-bea<br>crops | %   | Peanu | %   | Rapes | %   | Cottor | %   | Fiber o  | %   |
| 80-90       | -1.1   |     | 3.2              |     | 2.2   |     | 6.8   |     | 1.3    |     | -2.9     |     |
| 90-00       | 1.5    |     | 3.5              |     | 5.3   |     | 3.1   |     | -3.2   |     | -6.2     |     |
| 00-10       | -1.8   |     | -1.0             |     | -0.7  |     | -0.2  |     | 1.8    |     | -6.6     |     |
| 78-10       | -2.9   |     | 8.4              |     | 9.9   |     | 11.0  |     | 0.0    |     | -15.9    |     |

| Table D1 (cor | ntinued)    |     |           |      |          |     |         |     |            |      |             |     |          |     |
|---------------|-------------|-----|-----------|------|----------|-----|---------|-----|------------|------|-------------|-----|----------|-----|
| Year          | Sugar Corps | %   | Sugarcane | %    | Beetroot | %   | Tobacco | %   | Vegetables | %    | Plantations | %   | Orchards | %   |
| 1978          | 879         | 0.6 | 549       | 0.40 | 331      | 0.2 | 784     | 0.5 | 3331       | 2.2  | 1048        | 0.7 | 1657     | 1.1 |
| 1980          | 922         | 0.6 | 480       | 0.30 | 443      | 0.3 | 512     | 0.3 | 3163       | 2.2  | 1041        | 0.7 | 1783     | 1.2 |
| 1985          | 1525        | 1.1 | 965       | 0.70 | 560      | 0.4 | 1313    | 0.9 | 4753       | 3.3  | 1077        | 0.8 | 2736     | 1.9 |
| 1990          | 1755        | 1.2 | 1057      | 0.70 | 670      | 0.5 | 1593    | 1.1 | 6338       | 4.3  | 1061        | 0.7 | 5179     | 3.5 |
| 1995          | 1820        | 1.2 | 1125      | 0.80 | 695      | 0.5 | 1470    | 1.0 | 9515       | 6.3  | 1115        | 0.7 | 8098     | 5.4 |
| 2000          | 1514        | 1.0 | 1185      | 0.80 | 329      | 0.2 | 1437    | 0.9 | 15237      | 9.7  | 1089        | 0.7 | 8932     | 5.7 |
| 2001          | 1654        | 1.1 | 1248      | 0.80 | 406      | 0.3 | 1340    | 0.9 | 16402      | 10.5 | 1141        | 0.7 | 9043     | 5.8 |
| 2002          | 1872        | 1.2 | 1393      | 0.90 | 424      | 0.3 | 1328    | 0.9 | 17353      | 11.2 | 1134        | 0.7 | 9098     | 5.9 |
| 2003          | 1657        | 1.1 | 1409      | 0.90 | 248      | 0.2 | 1264    | 0.8 | 17954      | 11.8 | 1207        | 0.8 | 9437     | 6.2 |
| 2004          | 1568        | 1.0 | 1378      | 0.90 | 190      | 0.1 | 1266    | 0.8 | 17560      | 11.4 | 1262        | 0.8 | 9768     | 6.4 |
| 2005          | 1564        | 1.0 | 1354      | 0.90 | 210      | 0.1 | 1363    | 0.9 | 17721      | 11.4 | 1352        | 0.9 | 10035    | 6.5 |
| 2006          | 1567        | 1.0 | 1378      | 0.90 | 189      | 0.1 | 1189    | 0.8 | 16639      | 10.9 | 1431        | 0.9 | 10123    | 6.7 |
| 2007          | 1802        | 1.2 | 1586      | 1.00 | 216      | 0.1 | 1164    | 0.8 | 17329      | 11.3 | 1613        | 1.1 | 10471    | 6.8 |
| 2008          | 1990        | 1.3 | 1743      | 1.10 | 246      | 0.2 | 1326    | 0.8 | 17876      | 11.4 | 1719        | 1.1 | 10734    | 6.9 |
| 2009          | 1884        | 1.2 | 1697      | 1.10 | 186      | 0.1 | 1391    | 0.9 | 18390      | 11.6 | 1849        | 1.2 | 11140    | 7.0 |
| 2010          | 1905        | 1.2 | 1686      | 1.00 | 219      | 0.1 | 1345    | 0.8 | 19000      | 11.8 | 1970        | 1.2 | 11544    | 7.2 |
| Growth rate   |             |     |           |      |          |     |         |     |            |      |             |     |          |     |
| Year          | Sugar Corps | %   | Sugarcane | %    | Beetroot | %   | Tobacco | %   | Vegetables | %    | Plantations | %   | Orchards | %   |
| GR 80-90      | 6.2         | -   | 7.7       | -    | 4.2      |     | 12.0    | -   | 7.2        |      | 0.2         | -   | 11.3     |     |
| GR 90-00      | -1.0        |     | 1.6       |      | -6.9     |     | -1.0    |     | 9.2        |      | 0.3         |     | 5.6      |     |
| GR 00-10      | 2.3         |     | 3.6       |      | -4.0     |     | -0.7    |     | 2.2        |      | 6.1         |     | 2.6      |     |
| GR 78-10      | 8.0         |     | 11.9      |      | -4.1     |     | 5.5     |     | 19.0       |      | 6.5         |     | 21.4     |     |

Source: SSBa, various issues.

Table D2 Yield of Crops in China (1978-2010, kg/ha, %)

| Year        | Grain | Cereal | Rice | Wheat | Corn | Beans | Soybean | Tubers | Cotton | Oil-bearing<br>crops | Peanuts | Rapeseed | Fiber crops | Sugarcane | Beetroot |
|-------------|-------|--------|------|-------|------|-------|---------|--------|--------|----------------------|---------|----------|-------------|-----------|----------|
| 1978        | 2527  | n.a    | 3978 | 1845  | 2803 | n.a   | 1059    | 2691   | 445    | 839                  | 1344    | 718      | 1800        | 38496     | 8166     |
| 1980        | 2734  | n.a    | 4130 | 1914  | 3116 | n.a   | 1099    | 2829   | 550    | 970                  | 1539    | 838      | 2155        | 47562     | 14242    |
| 1985        | 3483  | n.a    | 5256 | 2937  | 3607 | n.a   | 1361    | 3037   | 807    | 1338                 | 2008    | 1248     | 3614        | 53430     | 15913    |
| 1990        | 3933  | n.a    | 5726 | 3194  | 4524 | n.a   | 1455    | 3008   | 807    | 1480                 | 2191    | 1264     | 2216        | 57118     | 21668    |
| 1995        | 4240  | 4659   | 6025 | 3541  | 4917 | 1591  | 1661    | 3428   | 879    | 1718                 | 2687    | 1415     | 2386        | 58133     | 20132    |
| 2000        | 4261  | 4753   | 6272 | 3738  | 4597 | 1588  | 1656    | 3497   | 1093   | 1919                 | 2973    | 1519     | 2023        | 57626     | 24518    |
| 2001        | 4267  | 4800   | 6163 | 3806  | 4698 | 1547  | 1625    | 3488   | 1107   | 1958                 | 2888    | 1597     | 2109        | 60625     | 26807    |
| 2002        | 4399  | 4885   | 6189 | 3777  | 4924 | 1787  | 1893    | 3710   | 1175   | 1962                 | 3011    | 1477     | 2853        | 64663     | 30232    |
| 2003        | 4332  | 4873   | 6061 | 3932  | 4813 | 1649  | 1653    | 3621   | 951    | 1875                 | 2654    | 1582     | 2528        | 64023     | 24925    |
| 2004        | 4620  | 5187   | 6311 | 4252  | 5120 | 1744  | 1815    | 3762   | 1111   | 2125                 | 3022    | 1813     | 3233        | 65199     | 30829    |
| 2005        | 4642  | 5225   | 6260 | 4275  | 5287 | 1672  | 1705    | 3650   | 1129   | 2149                 | 3076    | 1793     | 3301        | 63970     | 37523    |
| 2006        | 4745  | 5310   | 6280 | 4593  | 5326 | 1649  | 1621    | 3429   | 1295   | 2249                 | 3254    | 1833     | 3147        | 70450     | 39767    |
| 2007        | 4748  | 5320   | 6433 | 4608  | 5167 | 1460  | 1454    | 3474   | 1286   | 2270                 | 3302    | 1874     | 2768        | 71228     | 41360    |
| 2008        | 4951  | 5548   | 6563 | 4762  | 5556 | 1686  | 1703    | 3537   | 1302   | 2302                 | 3365    | 1835     | 2822        | 71210     | 40754    |
| 2009        | 4871  | 5447   | 6585 | 4739  | 5258 | 1615  | 1630    | 3469   | 1289   | 2310                 | 3361    | 1877     | 2429        | 68093     | 38536    |
| 2010        | 4974  | 5524   | 6553 | 4748  | 5454 | 1682  | n.a.    | 3559   | 1229   | 2326                 | 3455    | 1775     | 2393        | 65700     | 42498    |
| Growth rate |       |        |      |       |      |       |         |        |        |                      |         |          |             |           |          |
| ar          | ain   | real   | e    | ieat  | Ę    | ans   | ybean   | bers   | tton   | -bearing<br>ops      | anuts   | peseed   | oer crops   | garcane   | etroot   |

| Ye    | Gra | Cel | Ric | Wh  | ပိ  | Bei | Sol  | Tul | Ŝ   | Oil | Pe  | Raj | Fib  | Suj | Be  |
|-------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|------|-----|-----|
| 80-90 | 3.7 | n.a | 3.3 | 5.3 | 3.8 | n.a | 2.8  | 0.6 | 3.9 | 4.3 | 3.6 | 4.2 | 0.3  | 1.8 | 4.3 |
| 90-00 | 0.8 | n.a | 0.9 | 1.6 | 0.2 | n.a | 1.3  | 1.5 | 3.1 | 2.6 | 3.1 | 1.8 | -0.9 | 0.1 | 1.2 |
| 00-10 | 1.6 | 1.5 | 0.4 | 2.4 | 1.7 | 0.6 | n.a. | 0.2 | 1.2 | 1.9 | 1.5 | 1.6 | 1.7  | 1.3 | 5.7 |
| 78-10 | 2.1 | n.a | 1.6 | 3   | 2.1 | n.a | n.a. | 0.9 | 3.2 | 3.2 | 3   | 2.9 | 0.9  | 1.7 | 5.3 |

Source: SSBa, various issues.

|             |        |        | grain    |        | ain      |        | grain   |        | ain     |
|-------------|--------|--------|----------|--------|----------|--------|---------|--------|---------|
| Year        | Grain  | Cereal | Cereal/ç | Rice   | Rice/gra | Wheat  | Wheat/g | Corn   | Corn/gr |
| 1978        | 304765 | n.a    | n.a      | 136930 | 45       | 53840  | 18      | 55945  | 18      |
| 1980        | 320555 | n.a    | n.a      | 139905 | 44       | 55205  | 17      | 62600  | 20      |
| 1985        | 379108 | n.a    | n.a      | 168569 | 44       | 85805  | 23      | 63826  | 17      |
| 1990        | 446243 | n.a    | n.a      | 189331 | 42       | 98229  | 22      | 96819  | 22      |
| 1995        | 466618 | 416116 | 89       | 185226 | 40       | 102207 | 22      | 111986 | 24      |
| 2000        | 462175 | 405224 | 88       | 187908 | 41       | 99636  | 22      | 106000 | 23      |
| 2001        | 452637 | 396482 | 88       | 177580 | 39       | 93873  | 21      | 114088 | 25      |
| 2002        | 457058 | 397987 | 87       | 174539 | 38       | 90290  | 20      | 121308 | 27      |
| 2003        | 430695 | 374287 | 87       | 160656 | 37       | 86488  | 20      | 115830 | 27      |
| 2004        | 469469 | 411572 | 88       | 179088 | 38       | 91952  | 20      | 130287 | 28      |
| 2005        | 484022 | 427760 | 88       | 180588 | 37       | 97445  | 20      | 139365 | 29      |
| 2006        | 498042 | 450992 | 91       | 181718 | 36       | 108466 | 22      | 151603 | 30      |
| 2007        | 501603 | 456324 | 91       | 186034 | 37       | 109298 | 22      | 152300 | 30      |
| 2008        | 528709 | 478474 | 90       | 191896 | 36       | 112464 | 21      | 165914 | 31      |
| 2009        | 530821 | 481563 | 91       | 195103 | 37       | 115115 | 22      | 163974 | 31      |
| 2010        | 546477 | 496371 | 91       | 195761 | 36       | 115181 | 21      | 177245 | 32      |
| Growth rate |        |        |          |        |          |        |         |        |         |
|             |        |        | grain    |        | ain      |        | grain   |        | rain    |
| Year        | Grain  | Cereal | Cereal/  | Rice   | Rice/gr  | Wheat  | Wheat/  | Corn   | Corn/g  |
| 80-90       | 3.4    | n.a    |          | 3.1    |          | 5.9    |         | 4.5    |         |
| 90-00       | 0.4    | n.a    |          | -0.1   |          | 0.1    |         | 0.9    |         |
| 00-10       | 1.7    | 2.0    |          | 0.4    |          | 1.5    |         | 5.3    |         |
| 78-10       | 1.8    | n.a    |          | 1.1    |          | 2.4    |         | 3.7    |         |

# Table D3 Output of Crops in China (1978-2010, thousand tonnes, %)

#### Table D3 (continued)

| Year | Beans | Soybean | Soybean/<br>beans | Oil-bearing<br>crops | Peanuts | Peanuts/<br>oil-bearing | crops<br>Rapeseed | Rapeseed/<br>oil-bearing | crops<br>Sesame | Sesame/<br>oil-bearing<br>crops |
|------|-------|---------|-------------------|----------------------|---------|-------------------------|-------------------|--------------------------|-----------------|---------------------------------|
| 1978 | n.a   | 7565    | n.a               | 5218                 | 1868    | 46                      | 1868              | 36                       | 322             | 6.2                             |
| 1980 | n.a   | 7940    | n.a               | 7691                 | 2384    | 47                      | 2384              | 31                       | 259             | 3.4                             |
| 1985 | n.a   | 10500   | n.a               | 15784                | 5607    | 42                      | 5607              | 36                       | 691             | 4.4                             |
| 1990 | n.a   | 11000   | n.a               | 16132                | 6958    | 39                      | 6958              | 43                       | 469             | 2.9                             |
| 1995 | 17875 | 13502   | 76                | 22503                | 9777    | 45                      | 9777              | 43                       | 583             | 2.6                             |
| 2000 | 20100 | 15409   | 77                | 29548                | 11381   | 49                      | 11381             | 39                       | 811             | 2.7                             |
| 2001 | 20528 | 15406   | 75                | 28649                | 11331   | 50                      | 11331             | 40                       | 804             | 2.8                             |
| 2002 | 22412 | 16505   | 74                | 28972                | 10552   | 51                      | 10552             | 36                       | 895             | 3.1                             |
| 2003 | 21275 | 15393   | 72                | 28110                | 11420   | 48                      | 11420             | 41                       | 593             | 2.1                             |
| 2004 | 22321 | 17401   | 78                | 30659                | 13182   | 47                      | 13182             | 43                       | 704             | 2.3                             |
| 2005 | 21577 | 16348   | 76                | 30771                | 13052   | 47                      | 13052             | 42                       | 625             | 2.0                             |
| 2006 | 20037 | 15082   | 75                | 26403                | 10966   | 49                      | 10966             | 42                       | 662             | 2.5                             |
| 2007 | 17201 | 12725   | 74                | 25687                | 10573   | 51                      | 10573             | 41                       | 557             | 2.2                             |
| 2008 | 20433 | 15542   | 76                | 29528                | 12102   | 48                      | 12102             | 41                       | 586             | 2.0                             |
| 2009 | 19303 | 14982   | n.a               | 31543                | 13657   | 47                      | 13657             | 43                       | 622             | 2.0                             |
| 2010 | 18965 | n.a     | n.a               | 32301                | 13082   | 48                      | 13082             | 40                       | 587             | 1.8                             |

#### Growth rate

| Year  | Beans | Soybean | Soybean/<br>beans<br>Oil-bearing<br>crops | Peanuts | Peanuts/<br>oil-bearing<br>crops<br>Rapeseed | Rapeseed/<br>oil-bearing<br>crops<br>Sesame | Sesame/<br>oil-bearing<br>crops |
|-------|-------|---------|-------------------------------------------|---------|----------------------------------------------|---------------------------------------------|---------------------------------|
| 80-90 | n.a   | 3.3     | 7.7                                       | 5.9     | 11.3                                         | 6.1                                         |                                 |
| 90-00 | n.a   | 3.4     | 6.2                                       | 8.5     | 5.0                                          | 5.6                                         |                                 |
| 00-10 | -0.6  | n.a     | 0.9                                       | 0.8     | 1.4                                          | -                                           |                                 |
| 78-10 | n.a   | n.a     | 5.9                                       | 6.1     | 6.3                                          | 1.9                                         |                                 |

| Table D | 3 (con | itinue | d) |
|---------|--------|--------|----|
|         |        |        |    |

| ear         | u      | ar             | arcane | arcane<br>Jar<br>SS       | troot  | troot/<br>ar crops | etables | suc    | ts     |
|-------------|--------|----------------|--------|---------------------------|--------|--------------------|---------|--------|--------|
| ×           | cott   | Sug            | Sug    | Sug<br>/suç<br>croț       | Bee    | Bee                | veg     | Melo   | Frui   |
| 1978        | 2167   | 23819          | 21116  | 89                        | 2702   | 11.3               | n.a     | n.a    | n.a    |
| 1980        | 2707   | 29113          | 22807  | 78                        | 6305   | 21.7               | n.a     | n.a    | n.a    |
| 1985        | 4147   | 60468          | 51549  | 85                        | 8919   | 14.7               | n.a     | n.a    | n.a    |
| 1990        | 4508   | 72147          | 57620  | 80                        | 14525  | 20.1               | n.a     | n.a    | 18744  |
| 1995        | 4768   | 79401          | 65417  | 82                        | 13984  | 17.6               | 257267  | n.a    | 42146  |
| 2000        | 4417   | 76353          | 68280  | 89                        | 8073   | 10.6               | n.a     | n.a    | 62251  |
| 2001        | 5324   | 86551          | 75663  | 87                        | 10889  | 12.6               | 484224  | 68436  | 66580  |
| 2002        | 4916   | 102927         | 90107  | 88                        | 12820  | 12.5               | 528606  | 74226  | 69520  |
| 2003        | 4860   | 96416          | 90235  | 94                        | 6182   | 6.4                | 540323  | 69659  | 145174 |
| 2004        | 6324   | 95707          | 89849  | 94                        | 5857   | 6.1                | 550647  | 69467  | 153409 |
| 2005        | 5714   | 94519          | 86638  | 92                        | 7881   | 8.3                | 564515  | 72846  | 161201 |
| 2006        | 7533   | 104600         | 97092  | 93                        | 7508   | 7.2                | 539531  | 75027  | 171020 |
| 2007        | 7624   | 121882         | 112951 | 93                        | 8931   | 7.3                | 564520  | 76160  | 181363 |
| 2008        | 7492   | 134196         | 124152 | 93                        | 10044  | 7.5                | 592403  | 78813  | 192202 |
| 2009        | 6377   | 122766         | 115587 | 94                        | 7179   | 5.8                | n.a     | n.a    | 203955 |
| 2010        | 5961   | 120085         | 110789 | 92                        | 9296   | 7.7                | n.a     | n.a    | 214014 |
| Growth rate |        |                |        |                           |        |                    |         |        |        |
|             |        |                | ane    | ane                       | ot     | ot/<br>crops       | bles    |        |        |
| Year        | cotton | Sugar<br>crops | Sugarc | Sugarc<br>/sugar<br>crops | Beetro | Beetro<br>sugar c  | vegetal | Melons | Fruits |
| 80-90       | 5.2    | 9.5            | 9.7    |                           | 8.7    |                    |         |        | n.a    |
| 90-00       | -0.2   | 0.6            | 1.7    |                           | -5.7   |                    |         |        | 12.8   |
| 00-10       | 3.0    | 4.6            | 5.0    |                           | 1.4    |                    |         |        | 13.1   |
| 78-10       | 3.2    | 5.2            | 5.3    |                           | 3.9    |                    |         |        | n.a    |

Source: SSBa, various issues.

|             | - <b>F</b>    |                       |                            | (     | ,        | S                          | -,                   | , , cj |           |                      |                      |
|-------------|---------------|-----------------------|----------------------------|-------|----------|----------------------------|----------------------|--------|-----------|----------------------|----------------------|
| Year        | <b>l</b> leat | ork, beef &<br>nutton | ork, beef &<br>nutton/meat | ork   | ork/meat | slaughtered<br>attened hog | logs ( year<br>end ) | 3eef   | seef/meat | Cattle (year<br>and) | blaughtered<br>attle |
| 1978        | 8563          | 8563                  | 100                        | n a   | n a      | 161095                     | 301290               | n a    | na        | 70724                | 2403                 |
| 1980        | 12054         | 12054                 | 100                        | 11341 | 94       | 198607                     | 305431               | 269    | 2.2       | 71676                | 2400                 |
| 1985        | 19265         | 17607                 | 91                         | 16547 | 86       | 238752                     | 331396               | 467    | 2.2       | 86820                | 4565                 |
| 1990        | 28570         | 25135                 | 88                         | 22811 | 80       | 309910                     | 362408               | 1256   | 44        | 102884               | 10883                |
| 1995        | 52601         | 42653                 | 81                         | 36484 | 69       | 480510                     | 441690               | 4154   | 79        | 132060               | 30490                |
| 2000        | 60139         | 47432                 | 79                         | 39660 | 66       | 518623                     | 416336               | 5131   | 8.5       | 123532               | 39650                |
| 2001        | 61058         | 48321                 | 79                         | 40517 | 66       | 532811                     | 419505               | 5086   | 8.3       | 118092               | 41180                |
| 2002        | 62343         | 49284                 | 79                         | 41231 | 66       | 541439                     | 417762               | 5219   | 8.4       | 115678               | 44010                |
| 2003        | 64433         | 50898                 | 79                         | 42386 | 66       | 557018                     | 413818               | 5425   | 8.4       | 114344               | 57030                |
| 2004        | 66087         | 52343                 | 79                         | 43410 | 66       | 572785                     | 421234               | 5604   | 8.5       | 112354               | 50190                |
| 2005        | 69389         | 54735                 | 79                         | 45553 | 66       | 603674                     | 433191               | 5681   | 8.2       | 109908               | 41487                |
| 2006        | 70890         | 55910                 | 79                         | 46505 | 66       | 612073                     | 418504               | 5767   | 8.1       | 104651               | 42220                |
| 2007        | 68657         | 52838                 | 77                         | 42878 | 62       | 565083                     | 439895               | 6134   | 8.9       | 105948               | 43595                |
| 2008        | 72787         | 56140                 | 77                         | 46205 | 63       | 610166                     | 462913               | 6132   | 8.4       | 105760               | 44461                |
| 2009        | 76497         | 59157                 | 77                         | 48908 | 64       | 645386                     | 469960               | 6355   | 8.3       | 107265               | n.a                  |
| 2010        | 79258         | 61231                 | 77                         | 50712 | 64       | 666864                     | 464600               | 6531   | 8.2       | 106264               | n.a                  |
| Growth rate |               |                       |                            |       |          |                            |                      |        |           |                      |                      |
|             |               | beef &<br>n           | beef &<br>n/meat           |       | neat     | htered<br>ed hogs          | ( year               |        | neat      | (year                | ntered               |
| Year        | Meat          | Pork, I<br>muttoi     | Pork, I<br>muttoi          | Pork  | Pork/n   | Slaugh<br>fattene          | Hogs (<br>end )      | Beef   | Beef/n    | Cattle<br>end)       | Slaugh<br>cattle     |
| 80-90       | 9.0           | 7.6                   | -1.3                       | 7.2   | -1.6     | 4.5                        | 1.7                  | 16.7   |           | 3.7                  | 12.6                 |
| 90-00       | 7.7           | 6.6                   | -1.1                       | 5.7   | -1.9     | 5.3                        | 1.4                  | 15.1   |           | 1.8                  | 13.8                 |
| 00-10       | 2.8           | 2.6                   | -0.3                       | 2.5   | -0.3     | 2.5                        | 1.1                  | 2.4    |           | -1.5                 | n.a                  |
| 78-10       | 7.2           | 6.3                   | -0.8                       | n.a   | n.a      | 4.5                        | 1.4                  | n.a    |           | 1.3                  | n.a                  |

# Table D4 Output of Animal Products in China (1978-2010, thousand tonnes, thousand head, %)

# Table D4 (continued)

| Year        | lutton      | lutton/meat | laughtered<br>heep& goat | oultry   | oultry/meat | ĬĬ              | ow milk  | ow milk/milk | oultry eggs | quatic<br>roducts |
|-------------|-------------|-------------|--------------------------|----------|-------------|-----------------|----------|--------------|-------------|-------------------|
| 1079        | _ <u>≥</u>  | 2           | <u>00 00</u>             | <u> </u> | <u> </u>    | <u>≥</u><br>071 | <u> </u> | 01           | <u> </u>    | <u>4500</u>       |
| 1978        | 11.a<br>115 | 11.a<br>2.7 | 20219                    | n.a      | n.a         | 1267            | 11/1     | 91           | n.a         | 4090              |
| 1985        | 440<br>502  | 3.7         | 42419<br>50805           | 1602     | 11.a<br>o   | 2904            | 2400     | 86           | 11.a        | 7052              |
| 1905        | 1068        | 3.1         | 80317                    | 3220     | 11          | 2094<br>1751    | 2499     | 87           | 7046        | 12370             |
| 1005        | 2015        | 3.7         | 165370                   | 03/7     | 10          | 6728            | 5764     | 86           | 16767       | 25170             |
| 2000        | 2013        | 5.0         | 204727                   | 11011    | 20          | 0120            | 8274     | 00           | 21820       | 27062             |
| 2000        | 2041        | 4.4         | 204727                   | 11761    | 10          | 11220           | 10255    | 90<br>Q1     | 21020       | 37002             |
| 2001        | 2835        | 4.5         | 232808                   | 11071    | 10          | 1/223           | 12008    | 91           | 22101       | 305/0             |
| 2002        | 2000        | 4.8         | 259583                   | 12390    | 10          | 18486           | 17463    | 93<br>94     | 22007       | 40770             |
| 2003        | 3329        | 4.0<br>5.0  | 283430                   | 12578    | 10          | 23684           | 22606    | 95           | 23706       | 42466             |
| 2004        | 3501        | 5.0         | 200400                   | 13442    | 10          | 28648           | 27534    | 96           | 24381       | 42400             |
| 2006        | 3638        | 5.0         | 240320                   | 13631    | 19          | 33025           | 31934    | 97           | 24001       | 45836             |
| 2007        | 3826        | 5.6         | 255707                   | 14476    | 21          | 36334           | 35252    | 97           | 25290       | 47475             |
| 2008        | 3803        | 5.2         | 261723                   | 15337    | 21          | 37815           | 35558    | 94           | 27022       | 48956             |
| 2009        | 3894        | 5.1         | na                       | na       | na          | 36777           | 35188    | 96           | 27425       | 51164             |
| 2010        | 3989        | 5.0         | n.a                      | n.a      | n.a         | 37480           | 35756    | 95           | 27627       | 53730             |
| Growth rate |             | 0.0         | nia                      | nia      | ma          | 01100           |          |              | LIGET       | 00100             |
| r           | c           | n/meat      | htered<br>& goat         | ~        | y/meat      |                 | zi k     | nilk/milk    | y eggs      | ic<br>cts         |
| Yeć         | uttoi       | uttoi       | augl                     | oultr    | oultr       | Ĭ               |          |              | oultr       | quat              |
|             | ž           | ž           | SI:<br>sh                | Рс       | Pc          | Ξ               | ŭ        | ŭ            | Бс          | Pr.               |
| 80-90       | 9.1         |             | 7.7                      | n.a      |             | 13.3            | 13.8     |              | n.a         | 10.6              |
| 90-00       | 9.5         |             | 8.6                      | 13.9     |             | 6.8             | 7.1      |              | 10.6        | 11.6              |
| 00-10       | 4.2         |             | n.a                      | n.a      |             | 15.1            | 15.8     |              | 2.4         | 3.8               |
| 78-10       | n.a         |             | n.a                      | n.a      |             | 12.1            | 12.3     |              | n.a         | 8.0               |

Source: SSBa, various issues.