Importation of Apples from New Zealand

Revised Draft IRA Report
Part B
February 2004
FOREWORD

© Commonwealth of Australia 2004

This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved.

Requests for further authorisation should be directed to the Commonwealth Copyright Administration, Intellectual Property Branch, Department of Communications, Information Technology and the Arts, GPO Box 2154, Canberra ACT 2601 or by email to commonwealth.copyright@dcita.gov.au.
APPENDIX 1A. PATHOGEN CATEGORISATION – MAIN TABLE

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erwinia amylovora (Burrill 1882) Winslow et al. (1920) (Syn. Micrococcus amylovorus (Burrill 1882); Bacillus amylovorus (Burrill 1882) Trevisan 1889; Bacterium amylovorus (sic) (Burrill 1882) Chester (1897)) [Enterobacteriaceae: Enterobacteriales]</td>
<td>Fire blight</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>No E. amylovora was detected in the Melbourne Royal Botanical Garden in 1996; and its eradication was confirmed by a survey in 1997 (Jock et al., 2000)</td>
<td>Likely Fire blight is endemic in New Zealand. Fruit sourced from infected orchards have the potential to carry epiphytic bacteria (Hale et al., 1987) but endophytic infections are rare (van der Zwet, 1990).</td>
<td>Feasible</td>
<td>Significant (Bonn, 1999); (Vanneste, 2000)</td>
<td>Yes</td>
</tr>
<tr>
<td>Pseudomonas syringae pv. syringae van Hall (1902) [Pseudomonadaceae: Pseudomonadales]</td>
<td>Bacterial canker; blast; blister spot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes (Shivas, 1989); (Washington and Nancarrow, 1983); (Cook and Dubé, 1989); (Letham, 1995); (NCOF, 2000)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Rhizobium radiobacter (Beijerinck & van Delden 1902) Young et al. (2001) (Basionym Agrobacterium radiobacter (Beijerinck & van Delden 1902) Conn (1942)) (Syn. Agrobacterium tumefaciens (E.F. Smith & Townsend) Conn (1907) as in list (MAFNZ, 1999a)) [Rhizobiaceae: Rhizobiales]</td>
<td>Crown gall</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Shivas, 1989); (Washington and Nancarrow, 1983); (Cook and Dubé, 1989); (Letham, 1995); (Simmonds, 1966); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternaria alternata (Fr.: Fr.) Keissl. (1912)</td>
<td>Alternaria brown spot; black rot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes (Shivas, 1989); (Pitkethley, 1998); (Washington and Nancarrow, 1983); (Cook and Dubé, 1989); (Letham, 1995); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Antrodia serialis (Fr.: Fr.) Donk (1966)</td>
<td>None</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Armillaria (Fr.) Staude (1857) sp.</td>
<td>Armillaria root rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Uncertain (APPD, 2003)</td>
<td>Not likely it is a root pathogen (MAFNZ, 2002b)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Athelia rolfsii [Curzi] C. C. Tu & Kimbr. (1978)</td>
<td>Southern blight</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Shivas, 1989); (Pitkethley, 1998); (Washington and Nancarrow, 1983); (Letham, 1995); (Simmonds, 1966); as Sclerotium rolfsii (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Auriculariopsis ampla (Lév.) Maire (1902)</td>
<td>None</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Cook and Dubé, 1989)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botryosphaeria Ces. & De Not. (1863) sp. [Dothideales: Botryosphaeriaceae]</td>
<td>Fruit rot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Uncertain (APPD, 2003)</td>
<td>Likely It causes primary fruit rot (MAFNZ, 2002b)</td>
<td>Feasible</td>
<td>Not significant. There are several species belonging to this genus already in Australia (APPD, 2003) but no reports of economic damage in the literature.</td>
<td>No</td>
</tr>
<tr>
<td>Botryosphaeria dothidea (Moug.; Fr.) Ces. & De Not. (1863) (Basionym Sphaeria dothidea Moug. (1823)) (Syn. Dothiorella mali var. fructans Dearn. (1941)) [Dothideales: Botryosphaeriaceae]</td>
<td>Ripe spot; white rot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes (Letham, 1995); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Botryosphaeria obtusa (Schwein.) Shoemaker (1964) (Basionym Sphaeria obtusa Schwein. (1832)) (Syn. Physalospora obtusa (Schwein.) Cooke (1892)) [Dothideales: Botryosphaeriaceae]</td>
<td>Black rot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes (Shivas, 1989); (Cook and Dubé, 1989); (Letham, 1995); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread Comments if applicable</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botryosphaeria ribis Grossenb. & Duggar (1911) (Syn. Botryosphaeria berengeriana De Not. (1863); Dothiorella ribis (Fuckel) Sacc. (1884)) [Dothideales: Botryosphaeriaceae]</td>
<td>Stem canker; limb canker</td>
<td>(CABI, 1999)</td>
<td>Yes (Shivas, 1989); (Washington and Nancarrow, 1983); (Letham, 1995); (Simmonds, 1966); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Botryosphaeria stevensii Shoemaker (1964) [Dothideales: Botryosphaeriaceae]</td>
<td>Black rot; diplodia canker</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes (Shivas, 1989); (Washington and Nancarrow, 1983); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Botryotinia fuckeliana (de Bary) Whetzel (1945) (Basionym Peziza fuckeliana de Bary (18??)) (Syn. Sclerotinia fuckeliana (de Bary) Fuckel (1870); Botryts fuckeliana N. F. Buchw. (1949)) [Helotiales: Sclerotiniaceae]</td>
<td>Dry eye rot; ghost spot; grey mould</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes (Shivas, 1989; Pitkethley, 1998); (Washington and Nancarrow, 1983); (Letham, 1995); (Cook and Dubé, 1989); (Simmonds, 1966); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Calosphaeria Tul. & C. Tul. (1863) sp. [Calosphaeriales: Calosphaeriaceae]</td>
<td>None</td>
<td>(MAFNZ, 1999a)</td>
<td>Uncertain (APPD, 2003)</td>
<td>Not likely It occurs on bark (MAFNZ, 2002b)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Chondrostereum purpureum (Pers.: Fr.) Pouzar (1959) (Basionym Stereum purpureum Pers. (1794)) (Syn. Thelephora purpurea (Pers.) Pers. (1801)) [Polyporales: Meruliaceae]</td>
<td>Silver leaf</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Washington and Nancarrow, 1983); (Cook and Dubé, 1989); (Letham, 1995); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cladosporium herbarum (Pers.: Fr.) Link (1816) (Basionym Dematium herbarum Pers. (1794)) (Syn. Byssus herbarum (Pers.) DC. (1815)) [Anamorphic Mycosphaerella]</td>
<td>Cladosporium rot</td>
<td>(MAFNZ, 2002b)</td>
<td>Yes (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Corticium salmonicolor Berk. & Broome (1873) (Syn. Erythrinium salmonicolor (Berk. & Broome) Burds. (1965); Phanerochaete salmonicolor (Berk. & Broome) Jülich (1975) as in list (MAFNZ, 1999a)) [Polyporales: Corticiaceae]</td>
<td>Root rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Cook and Dubé, 1989); (Simmonds, 1966); as Corticium salmonicolor (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Corticium utriculicum G. Cunn. (1954) [Polyporales: Corticiaceae]</td>
<td>Root rot</td>
<td>(MAFNZ, 1999a)</td>
<td>No (NCOF, 2000); (APPD, 2003)</td>
<td>Not likely It occurs on roots (MAFNZ, 1999a)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Cytospora Ehrenb. (1818) sp. [Anamorphic Valsa]</td>
<td>None</td>
<td>(MAFNZ, 1999a)</td>
<td>Uncertain (Shivas, 1989) (Washington and Nancarrow, 1983); (Letham, 1995); (Simmonds, 1966); (APPD, 2003)</td>
<td>Not likely It occurs on wood (MAFNZ, 2002b)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Diaporthe Nitschke (1870) sp. [Diaporthales: Valsaceae]</td>
<td>Phomopsis rot; fruit rot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Uncertain* (APPD, 2003)</td>
<td>Likely It occurs on fruit (MAFNZ, 2002b)</td>
<td>Feasible</td>
<td>Not significant. It causes secondary rot on fruit (MAFNZ, 2002b) See appendix 1B</td>
<td>No</td>
</tr>
<tr>
<td>Diaporthe actinidiae N. F. Sommer & Beraha (1975) [Diaporthales: Valsaceae]</td>
<td>Phomopsis rot; stem-end rot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes* (NCOF, 2000); (APPD, 2003)</td>
<td>See appendix 1B</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Diaporthe eres Nitschke (1870) (Syn. Diaporthe conorum (Desm.) Niessl (1876)) [Diaporthales: Valsaceae]</td>
<td>Phomopsis rot; stem-end rot</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (Shivas, 1989); (Letham, 1995); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia</th>
<th>Potential for being on pathway</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diplocarpon mespili (Sorauer) B. Sutton (1980) (Basionym Stigmatea mespili Sorauer (1878)) (Syn. Xyloma mespili DC. ex Duby (1830); Entomosporium maculatum Lév. (1857); Entomosporium mespili (DC.) Sacc. (1880)) [Helotiaceae: Dermateaceae]</td>
<td>Fabraea leaf spot; fabraea spot; fruit spot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes (Shivas, 1989); as Entomosporium mespili and Entomosporium maculatum (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Diplodia Fr. in Mont. (1834) sp. [Anamorphic Botryosphaeria]</td>
<td>None</td>
<td>(MAFNZ, 1999a)</td>
<td>Uncertain (Shivas, 1989); (Washington and Nancarrow, 1983); (APPD, 2003)</td>
<td>Not likely It occurs on twigs (MAFNZ, 2002b)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Discostroma corticola (Fuckel) Brockm. (1976) (Basionym Sphaeria corticola Fuckel (1870)) (Syn. Clothidium corticola (Fuckel) Shoemaker & E. Müll. [as Clathridium] (1964) as in list (MAFNZ, 1999a); Griphosphaeria corticola (Fuckel) Höhn. (1918)) [Xylariaceae: Amphisphaeriaceae]</td>
<td>Postharvest rot; moldy core</td>
<td>(MAFNZ, 1999a); (MAFNZ, 2002b)</td>
<td>Yes* as Griphosphaeria corticola and Seimatosporum lichenicola (APPD, 2003)</td>
<td>See appendix 1B</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Elsinoë pyri (Woron.) Jenkins [as ‘piri’] (1932) (Basionym Plectodiscella piri Woron. (1914)) [Myriangiales: Elsinoaceae]</td>
<td>Anthracnose; scab</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes* (Letham, 1995)</td>
<td>See appendix 1B</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Eutypa lata (Pers.: Fr.) Tul. & C. Tul. (1863) (Basionym Sphaeria lata Pers. (1796)) (Syn. Libertella blepharis A. L. Sm. (1900)) [Xylariaceae: Diatrypaceae]</td>
<td>Eutypa canker; fruit rot; moldy rot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes (Cook and Dubé, 1989); (Letham, 1995); (CABI, 1999); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Fusarium Link (1809) sp. [Anamorphic Gibberella]</td>
<td>None</td>
<td>(MAFNZ, 1999a)</td>
<td>Uncertain (APPD, 2003)</td>
<td>Not likely It occurs on twigs (MAFNZ, 2002b)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread Comments if applicable</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusarium culmorum (W. G. Sm.) Sacc. (1895) (Basionym Fusisporium culmorum W. G. Sm. (1884)) [Anamorphic Gibberella]</td>
<td>Storage rot</td>
<td>MAFNZ, 2002c</td>
<td>Yes (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Fusarium oxysporum Schltdl.; Fr. (1824) (Syn. Fusarium bulbigenum (1887)) [Anamorphic Gibberella]</td>
<td>Root rot</td>
<td>MAFNZ, 1999a</td>
<td>Yes (Shivas, 1989); (Pitkethley, 1998); (Cook and Dubé, 1989); (Letham, 1995) (Simmonds, 1966); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Geotrichum candidum Link; Fr. (1809) [Saccharomycetales; Dipodascaceae]</td>
<td>Storage rot</td>
<td>MAFNZ, 2000b</td>
<td>Yes (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Gibberella acuminata C. Booth (1971) (Syn. Fusarium acuminatum Ellis & Everh. (1895)) [Hypocreales; Nectriaceae]</td>
<td>Fruit rot</td>
<td>MAFNZ, 1999a</td>
<td>Yes (NCOF, 2000); as Fusarium acuminatum (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Gibberella avenacea R.J. Cook (1967) (Syn. Fusarium avenaceum (Corda) Sacc. (1886)) [Hypocreales; Nectriaceae]</td>
<td>Fruit rot; fusarium mould</td>
<td>MAFNZ, 2000b; MAFNZ, 2002b</td>
<td>Yes (NCOF, 2000); as Fusarium avenaceum (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Gibberella baccata (Wallr.) Sacc. (1878) (Basionym Sphaeria baccata Wallr. (1833)) (Syn. Fusarium lateritium Nees (1817)) [Hypocreales; Nectriaceae]</td>
<td>Fruit rot; fusarium rot</td>
<td>MAFNZ, 2000b; MAFNZ, 2002b</td>
<td>Yes (NCOF, 2000); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Gibberella intricans Wollenw. (1930) (Syn. Fusarium equiseti (Corda) Sacc. (1886)) [Hypocreales; Nectriaceae]</td>
<td>Fruit rot</td>
<td>MAFNZ, 2000b; MAFNZ, 2002b</td>
<td>Yes (NCOF, 2000); as Fusarium equiseti (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Glomerella cingulata (Stoneman) Spauld. & H. Schrenk (1903) (Basionym Gnomoniopsis cingulata Stoneman (1898)) (Syn. Colletotrichum acutatum J.H. Simmonds (1965)) as in list (MAFNZ, 1998a); Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. (1884)) [Incertaae sedis; Glomerellaceae]</td>
<td>Anthracnose; bitter rot</td>
<td>MAFNZ, 2000b; MAFNZ, 2002b</td>
<td>Yes (Shivas, 1989); (Pitkethley, 1998); (Washington and Nancerrow, 1983); (Letham, 1995); (Simmonds, 1966); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread Comments if applicable</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptosphaeria coniothyrium (Fuckel) Sacc. (1875) (Basionym Sphaeria coniothyrium Fuckel (1870)) (Syn. Coniothyrium fuckeli Sacc. (1878)) [Pleosporales: Leptosphaeriaceae]</td>
<td>Stem canker</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Letham, 1995); (Simmonds, 1966); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Leucostoma persoonii (Nitschke) Höhn. (1828) (Basionym Valsa persoonii Nitschke (1870)) (Syn. Sphaeria leucostoma Pers. (1801); Valsa leucostoma (Pers.) Fr. (1849) as in list (MAFNZ, 1999a)) [Diaporthales: Valsaceae]</td>
<td>Valsa canker</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (NCOF, 2000); as Cytospora leucostoma (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Monilinia fructicola (G. Winter) Honey (1928) (Basionym Ciboria fructicola G. Winter (1883)) (Syn. Sclerotinia fructicola (G. Winter) Rehm (1906); Monilia fructicola L.R. Batra (1991)) [Helotiales: Sclerotiniaceae]</td>
<td>Brown rot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes (Washington and Nancarrow, 1983); (Cook and Dubé, 1989); (Letham, 1995); (Simmonds, 1966); (Sampson and Walker, 1982); (Stuart, 2000); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Monilinia laxa (Aderh. & Ruhland) Honey (1945) (Basionym Sclerotinia laxa Aderh. & Ruhland (1905)) (Syn. Sclerotinia cinerea Wormald (1921)) [Helotiales: Sclerotiniaceae]</td>
<td>Blossom blight</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes (Washington and Nancarrow, 1983); (Cook and Dubé, 1989); (Letham, 1995); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Mycosphaerella pomi (Pass.) Lindau (1897) (Basionym Sphaerella pomi Pass. (1878)) (Syn. Cylindrosporum pomi C. Brooks (?)¹) [Mycosphaerellales: Mycosphaerellaceae]</td>
<td>Brooks fruit spot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes* (Letham, 1995); as Cylindrosporum pomi (APPD, 2003)</td>
<td>See appendix 1B</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

¹ (?) = Publication date unknown.

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread Comments if applicable</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycosphaerella tassiana (De Not.) Johanson (1884) (Basionym Sphaerella tassiana De Not. (?)) (Syn. Cladosporium graminum Corda (1824); Mycosphaerella schoenoprasi Rabenh. (1894)) [Mycosphaerellales: Mycosphaerellaceae]</td>
<td>Cladosporium rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Nectria cinnabarina (Tode) Fr. (1849) (Basionym Sphaeria cinnabarina Tode (1791)) (Syn. Tubercularia vulgaris Tode (1790)) [Hypocreales: Nectriaceae]</td>
<td>Nectria twig blight</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Washington and Nancarrow, 1983); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Nectria discophora Mont. (1854) [Hypocreales:Nectriaceae]</td>
<td>None</td>
<td>(MAFNZ, 1999a)</td>
<td>No (NCOF, 2000); (APPD, 2003)</td>
<td>Not likely</td>
<td>It is recorded on wood (MAFNZ, 2002b).</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Nectria galligena Bres. (1901) (Syn. Fusarium heteronemum Berk. & Broome (1865); Cylindrocarpon heteronema (Berk. & Broome) Wollenw. [as ‘heteronemum’] (1926); *Cylindrocarpon ma) (Allesch.) Wollenw. (1928); Neoneectria galligena (Bres.) Rossman & Samuels (1999)) [Hypocreales: Nectriaceae]</td>
<td>European canker; eye rot; cylindrocarpon fruit rot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>No Has been eradicated from Tasmania (Ransom, 1997)</td>
<td>Likely It causes a primary fruit spot. Latent fruit infections may occur (Swinburne, 1971a)</td>
<td>Feasible</td>
<td>Significant (Swinburne, 1970a)</td>
<td>Yes</td>
</tr>
<tr>
<td>Nectria haematococca Berk. & Broome (1873) (Syn. Fusarium solani (Mart.) Sacc. (1881); Haematonectria haematococca (Berk. & Broome) Samuels & Nirenberg (1999)) [Hypocreales: Nectriaceae]</td>
<td>Storage rot</td>
<td>(MAFNZ, 2002c)</td>
<td>Yes (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neofabraea alba (E. J. Guthrie) Verkley (1999) (Basionym. Pezicula alba E. J. Guthrie (1959) as in list (MAFNZ, 1999a)) (Syn. Gloeosporium album Osterw. (1907); Phlyctema vagabunda Desm. (1847)) [Helotiales: Dermateaceae]</td>
<td>Ripe spot</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Shivas, 1989); (Washington and Nancarrow, 1983); (Simmonds, 1966); as Phlyctema vagabunda (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Neofabraea malicorticis H. S. Jacks. (1913) (Syn. Pezicula malicorticis (H.S. Jacks.) Nannf. (1932) as in list (MAFNZ, 1999a)) [Helotiales: Dermateaceae]</td>
<td>Bull’s eye rot; anthracnose canker; gloeosporium rot; ripe spot</td>
<td>(Pennycook, 1990); (Snowdon, 1990); (Grove, 1990b) (MAFNZ, 2000b)</td>
<td>Yes (APPD, 2003) Preliminary studies were conducted in Victoria using molecular techniques on 8 isolates of Neofabraea malicorticis (=Pezicula malicorticis) obtained from herbaria in Australia. Of these, three isolates from Victoria have been identified as Neofabraea perennans and another as an undescribed species of Neofabraea (Washington, 2003). For the purpose of this IRA, it is considered that N. malicorticis is present in Australia.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pestalotiopsis maculans (Corda) Nag Raj (1985) (Basionym Sporocadus maculans Corda (1839)) (Syn. Pestalotia maculans (Corda) S. Hughes 1958)) [Anamorphic Pestalosphaeria]</td>
<td>Twig dieback</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes* (NCOF, 2000); as Pestalotiopsis guepinii (APPD, 2003)</td>
<td>See appendix 1B</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Phoma cava Schulzer (1871) (Syn. Phoma aposphaerioides Briard & Har. (1890); Pleurophoma cava (Schulzer) Boerema, Loerakker & Hamers (1996)) [Anamorphic Leptosphaeria]</td>
<td>Mouldy core rot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Uncertain (NCOF, 2000); (APPD, 2003)</td>
<td>Likely Fungus is associated with fruit (MAFNZ, 2002b)</td>
<td>Feasible</td>
<td>Not significant. It is a secondary pathogen associated with apple fruit and rarely found in New Zealand (Tyson, 2003)</td>
<td>No</td>
</tr>
<tr>
<td>Phoma exigua f. sp. exigua Malc. & E. G. Gray (?) [Anamorphic Leptosphaeria]</td>
<td>Phoma fruit spot; mouldy core rot; storage rot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes (Shivas, 1989); (Cook and Dubé, 1989); (Letham, 1995); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Phoma glomerata (Corda) Wollenw. & Hochapfel (1936) (Basionym Coniothyrium glomeratum Corda (1840)) (Syn. Phoma alternariaeucum F. T. Brooks & Searle (1921)) [Anamorphic Leptosphaeria]</td>
<td>Phoma leaf and fruit spot; storage rot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes (Shivas, 1989); (Letham, 1995); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

2 (?) = Publication date unknown.

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia</th>
<th>Potential for being on pathway</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phoma macrostoma f. sp. macrostoma Mont. (1849) (Syn. Polyopeus purpureus A. S. Horne (1920)) [Anamorphic Leptosphaeria]</td>
<td>Phoma fruit spot; storage rot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes (Washington and Nancarrow, 1983); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Phoma pomorum Thüm. (1879) (Syn. Phoma prunicola (Opiz ex Sacc.) Wollenw. & Hochapfel (1938); Phyllosticta pyrina Sacc. (1878)) [Anamorphic Leptosphaeria]</td>
<td>Phoma fruit spot</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (Shivas, 1989); (Washington and Nancarrow, 1983); (Cook and Dubé, 1989); (Letham, 1995); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Phomopsis (Sacc.) Bubák (1905) sp. [Anamorphic Diaporthe]</td>
<td>Phomopsis rot</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (APPD, 2003)</td>
<td>Likely It causes fruit rot (MAFNZ, 2002b)</td>
<td>Feasible</td>
<td>Not significant. It causes secondary fruit rot in New Zealand (MAFNZ, 2002b). There are many records of this genus in Australia (APPD, 2003) but no reports of economic damage in the literature. See appendix 1B</td>
<td>No</td>
</tr>
<tr>
<td>Phyllachora pomigena (Schwein.) Sacc. (1883) (Basionym Dothidea pomigena Schwein. (1832)) (Syn. Gloeosporium pomigena (Schwein.) Colby (1920) as in list (MAFNZ, 1999a) [Phyllachorales: Phyllachoraceae]</td>
<td>Sooty blotch</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes (Shivas, 1989); (Letham, 1995); (Simmonds, 1966); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phytophthora cactorum (Lebert & Cohn) J. Schröt. (1886) (Basionym Peronospora cactorum Lebert & Cohn (1870)) [Pythiales: Pythiaceae]</td>
<td>Phytophthora fruit rot</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes (Shivas, 1989); (Washington and Nancarrow, 1983); (Cook and Dubé, 1989); (Letham, 1995); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Phytophthora cambivora (Petri) Buisman (1927) (Basionym Blepharospora cambivora Petri (1917)) [Pythiales: Pythiaceae]</td>
<td>Phytophthora root rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Shivas, 1989); (Cook and Dubé, 1989); (Letham, 1995); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Phytophthora citricola Sawada (1927) (Syn. Phytophthora cactorum var. applanata Chester (1932)) [Pythiales: Pythiaceae]</td>
<td>Phytophthora root rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Shivas, 1989); (Washington and Nancarrow, 1983); (Cook and Dubé, 1989); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Phytophthora cryptogea Pethybr. & Laff. (1919) [Pythiales: Pythiaceae]</td>
<td>Phytophthora root rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Shivas, 1989); (Cook and Dubé, 1989); (Letham, 1995); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Phytophthora drechsleri Tucker (1931) (Syn. Phytophthora erythroseptica var. drechsleri (Tucker) Sarej. (?)) [Pythiales: Pythiaceae]</td>
<td>Crown rot, collar and root rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Shivas, 1989); (Pitkethley, 1998); (Washington and Nancarrow, 1983); (Cook and Dubé, 1989); (Simmonds, 1966); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

³ (?!) = Publication date unknown.

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
APPENDIX 1: PEST CATEGORISATION

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread Comments if applicable</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phytophthora gonapodyides (H. E. Petersen) Buisman (1927) (Basionym Pythiomorpha gonapodyoides H. E. Petersen [as ‘gonapodyides’] (1909)) [Pythiales: Pythiaceae]</td>
<td>Phytophthora root rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Phytophthora megasperma Drechsler (1931) (Syn. Pythiomorpha miyabeana S. Ito & Nagai (?)) [Pythiales: Pythiaceae]</td>
<td>Phytophthora root rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Shivas, 1989); (Cook and Dubé, 1989); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Phytophthora syringae (Kleb.) Kleb. (1909) (Basionym Phloeophthora syringae Kleb. (1906)) [Pythiales: Pythiaceae]</td>
<td>Phytophthora fruit rot</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (Washington and Nancarrow, 1983); (Cook and Dubé, 1989); (APPD, 2003)</td>
<td>See appendix 1B</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Pleospora herbarum Cavara & Mollica: Fr. (? (1863) (Syn. Sphaeria herbarum Pers. (1801); Macrosorium parasiticum Thüm. (?)) [Pleosporales: Pleosporaceae]</td>
<td>Pleospora rot</td>
<td>(MAFNZ, 2002b)</td>
<td>Yes (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Podosphaera leucotricha (Ellis & Everh.) E.S. Salmon (1890) (Basionym Sphaerotheca leucotricha Ellis & Everh. (1888)) (Syn. Sphaerotheca leucotricha Ellis & Everh. (1888); Oidium farinosum Cooke (1887)) [Erysiphales: Erysiphaceae]</td>
<td>Powdery mildew</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes (Shivas, 1989); (Washington and Nancarrow, 1983); (Cook and Dubé, 1989); (Letham, 1995); (Simmonds, 1966); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Polyporus arcularius (Batsch: Fr.) Fr. (1821) (Basionym Boletus arcularius Batsch (1783)) (Syn. Leucoporus arcularius (Batsch: Fr.) Quél. (1888)) [Polyporales: Polyporaceae]</td>
<td>Stem rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

4 (?) = Publication date unknown.

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pythium P. Pringsh [nom. cons.] (1858) sp. [Pythiales: Pythiaceae]</td>
<td>Pythium root rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Uncertain (Shivas, 1989); (Pitkethley, 1998); (Washington and Nancarrow, 1983); (Cook and Dubé, 1989); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>Not likely it is a root pathogen (MAFNZ, 2002b)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Pythium arrhenomanes Drechsler (1928) (Syn. Nematosporangium arrhenomanes (Drechsler) Sideris (?)) [Pythiales: Pythiaceae]</td>
<td>Pythium root rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Letham, 1995); (Simmonds, 1966); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Pythium debaryanum R. Hesse [as ‘de-baryanum’] (1874) (Syn. Eupythium debaryanum (R. Hesse) Neuw. (1916)) [Pythiales: Pythiaceae]</td>
<td>Pythium root rot; damping-off</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Shivas, 1989); (Cook and Dubé, 1989); (Simmonds, 1966); (Sampson and Walker, 1982; Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Pythium echinulatum V. D. Matthews (1931) [Pythiales: Pythiaceae]</td>
<td>Pythium root rot; damping-off</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Shivas, 1989); (Cook and Dubé, 1989); (Sampson and Walker, 1982; (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Pythium irregulare Buisman (1927) [Pythiales: Pythiaceae]</td>
<td>Pythium root rot; damping-off</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Shivas, 1989); (Cook and Dubé, 1989) (Letham, 1995); (Simmonds, 1966); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Pythium paroecandrum Drechsler (1930) [Pythiales: Pythiaceae]</td>
<td>Pythium root rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Cook and Dubé, 1989); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Pythium rostratum E. J. Butler (1907) [Pythiales: Pythiaceae]</td>
<td>Pythium root rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Cook and Dubé, 1989); (Letham, 1995); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pythium ultimum Trow (1901)</td>
<td>Pythium root rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Shivas, 1989); (Pitkethley, 1998); (Cook and Dubé, 1989); (Letham, 1995); (Simmonds, 1966); (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pythium vexans de Bary (1876)</td>
<td>Pythium root rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Shivas, 1989); (Pitkethley, 1998); (Cook and Dubé, 1989); (Letham, 1995); (Simmonds, 1966); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinocladiella Nannf. (1934) sp.</td>
<td>None</td>
<td>(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Uncertain* (APPD, 2003)</td>
<td>Likely It is recorded from fruit (MAFNZ, 2002b)</td>
<td>Feasible</td>
<td>Not significant. There is one species of the genus in WA (APPD, 2003) but no reports of economic damage in the literature. See appendix 1B</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosellinia De Not. (1844) sp.</td>
<td>Root rot</td>
<td>(MAFNZ, 1999a)</td>
<td>Uncertain (APPD, 2003)</td>
<td>Not likely It is a root pathogen (MAFNZ, 2002b)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in AustraliaReference</th>
<th>Potential for being on pathwayComments if applicable</th>
<th>Potential for establishment or spreadComments if applicable</th>
<th>Potential for consequencesComments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
</table>
| Rosellinia necatrix Bert. ex Prill. (1904)
(Syn. Dematophora necatrix R. Hartig (1883))
[Xylariales: Xylariaceae] | Rosellinia root rot | (MAFNZ, 1999a) | Yes
(Shivas, 1989);
(Washington and Nancarrow, 1983);
(APPD, 2003) | - | - | - | No |
| Schizothyrium pomi (Mont. & Fr.) Arx (1959)
(Basionym Labrella pomi Mont. (?)
(Syn. Leptothyrium pomi (Montagne and Fries) Saccardo (1880) as in list (MAFNZ, 1999a); Zygophiala jamaicensis E. W. Mason (1945))
[Microthyriales: Schizothyriaceae] | Fly speck | (MAFNZ, 2000b); (MAFNZ, 2002b) | Yes
(Shivas, 1989);
(Letham, 1995);
(Simmonds, 1966);
(APPD, 2003) | - | - | - | No |
| Sclerotinia sclerotiorum (Lib.) de Bary (1884)
(Basionym Peziza sclerotiorum Lib. (1837)
(Syn. Sclerotinia libertiana Fuckel (1869))
[Helotiales: Sclerotiniaceae] | Calyx end rot; sclerotinia rot; white mould | (MAFNZ, 2000b); (MAFNZ, 2002b) | Yes
(Shivas, 1989);
(Gagné and Harris, 1998);
(Cook and Dubé, 1989);
(Letham, 1995);
(Simmonds, 1966);
(Sampson and Walker, 1982);
(APPD, 2003) | - | - | - | No |
| Sphaerotheca pannosa (Wallr: Fr.) Lév. (1851)
(Basionym Alphitomorpha pannosa Wallr. (1819))
[Erysiphales: Erysiphaceae] | Powdery mildew | (MAFNZ, 2000b); (MAFNZ, 2002b) | Yes
(Pitkethley, 1998);
(Cook and Dubé, 1989);
(Sampson and Walker, 1982);
(APPD, 2003) | - | - | - | No |
| Sporotrichum malorum Kidd & Beaumont (1924)
(Syn. Philophora malorum (Kidd & Beaumont) McCulloch (1944); Cadophora malorum (Kidd & Beaumont) W. Gams (2000))
[Anamorphic Laetiporus] | Side rot | (MAFNZ, 2002b) | Yes
(APPD, 2003) | - | - | - | No |

5 (?) = Publication date unknown.

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread Comments if applicable</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trametes pubescens (Schumach.: Fr.) Pilát (1939) *(Basionym Boletus pubescens Schumach (1803)) (Syn. Polyporus pubescens Schumach.: Fr. (1821)) [Polyporales: Polyporaceae]</td>
<td>Wood rot (MAFNZ, 1999a)</td>
<td>No (NCOF, 2000); (APPD, 2003)</td>
<td>Not likely It is a wood rotting pathogen (MAFNZ, 1999a)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Trametes versicolor (L.: Fr.) Lloyd (1921) *(Basionym Boletus versicolor L. (1753)) (Syn. Polyporus versicolor *(L.: Fr.) Fr. (1821); Polypilicus versicolor *(L.: Fr.) Fr. (1851)) [Polyporales: Polyporaceae]</td>
<td>Wood rot (MAFNZ, 1999a)</td>
<td>Yes *(Washington and Nancarrow, 1983); (Letham, 1995); (Sampson and Walker, 1982); (APPD, 2003))</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Trichothecium roseum *(Pers.: Fr.) Link (1809) *(Basionym Trichoderma roseum Pers. (1797)) (Syn. Cephalothecium roseum Corda (1838)) [Anamorphic Ascomycetes]</td>
<td>Mould; pink rot *(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes *(Shivas, 1989); (Washington and Nancarrow, 1983); (Letham, 1995); (Sampson and Walker, 1982); (APPD, 2003))</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Venturia inaequalis (Cooke) G. Winter (1875) *(Basionym Sphaerella inaequalis Cooke (1866)) (Syn. Spathotheca pomi Fr.: Fr. (1825); Fusicladium dendriticum (Wallr.) Fuckel (1870)) [Pleosporales: Venturiaceae]</td>
<td>Apple scab; black spot *(MAFNZ, 2000b); (MAFNZ, 2002b)</td>
<td>Yes *(Washington and Nancarrow, 1983); (Cook and Dubé, 1989); (Letham, 1995); (Simmonds, 1966); (Sampson and Walker, 1982); under official control in WA (Kumar, 2002))</td>
<td>Likely It causes primary fruit spot (MAFNZ, 2002b)</td>
<td>Feasible</td>
<td>Significant (Biggs, 1990)</td>
<td>Yes*</td>
<td>18</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
<td>Consider species further?</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Verticillium dahliae Kleb. (1913) (Syn. Verticillium albo-atrum var. dahliae (Kleb.) R. Nelson (1950)) [Anamorphic Hypomyces]</td>
<td>Verticillium wilt (MAFNZ, 1999a)</td>
<td>Yes (Shivas, 1989); (Washington and Nancarrow, 1983); (Cook and Dubé, 1989); (Letham, 1995) (Sampson and Walker, 1982); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Zetiasplozna thuemenii (Speg.) Nag Raj (1993) (Basionym Pestalotia thuemenii Speg. (1878)) (Syn. Pestalozzina thuemenii (Speg.). Guba (1961)) [Anamorphic Ascomycetes]</td>
<td>None (MAFNZ, 1999a)</td>
<td>Yes (NCOF, 2000); (Stuart, 2000); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Helicotylenchus labiatus Roman (1965) [Tylenchida: Hoplolaimidae]</td>
<td>Spiral nematode (MAFNZ, 1999a)</td>
<td>Yes (McLeod et al., 1994)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Longidorus elongatus (de Man) Thorne & Swanger (1936) [Dorylaimida: Longidoridae]</td>
<td>Needle nematode (Hooper, 1973)</td>
<td>Yes (McLeod et al., 1994)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Paratrichodorus minor (Colbran, 1956) Siddiqi, 1974 (Syn. Nanidorus minor (Colbran) Siddiqi (?) [Dorylaimida: Trichodoridae]</td>
<td>Stubby root nematode (MAFNZ, 1999a)</td>
<td>Yes (McLeod et al., 1994); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Pratylenchus Filipjev (1936) spp. [Tylenchida: Pratylenchidae]</td>
<td>Root lesion nematode (MAFNZ, 1999a)</td>
<td>Yes (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Pratylenchus penetrans (Cobb (1917)) Chitwood & Oteifa (1952) [Tylenchida: Pratylenchidae]</td>
<td>Root lesion nematode (MAFNZ, 1999a)</td>
<td>Yes (McLeod et al., 1994); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Pratylenchus vulnus Allen & Jensen (1951) [Tylenchida: Pratylenchidae]</td>
<td>Root lesion nematode (MAFNZ, 1999a)</td>
<td>Yes (McLeod et al., 1994); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Xiphinema Cobb (1913) sp. [Dorylaimida: Longidoridae]</td>
<td>Dagger nematode (MAFNZ, 1999a)</td>
<td>Yes (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

6 (?) = Publication date unknown.

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiphinema diversicaudatum (Micoletzky) Thorne (1927) [Dorylaimida: Longidoridae]</td>
<td>Dagger nematode</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes</td>
<td>(APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Viruses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple chlorotic leaf spot trichovirus Cadman (1963); Cropley (1963; 1964) and Lister et al. (1965)</td>
<td>Apple chlorotic leaf spot virus</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes</td>
<td>(Washington and Nancarrow, 1983)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Apple green crinkle virus Atkinson and Robins (1951)</td>
<td>Apple green crinkle</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes</td>
<td>(Goodman, 1983); (Letham, 1995); (Simmonds, 1966); (Sampson and Walker, 1982)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Apple leaf pucker virus</td>
<td>Apple leaf pucker</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes</td>
<td>(Letham, 1995)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Apple mosaic ilanivirus Bradford & Joley (1933); Christoff (1934) and White (1928)</td>
<td>Apple mosaic virus</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes</td>
<td>(Washington and Nancarrow, 1983); (Letham, 1995); (Simmonds, 1966); (Sampson and Walker, 1982); (McLean and Price, 1984)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Apple platycarpa scaly bark virus</td>
<td>Apple platycarpa scaly bark</td>
<td>(MAFNZ, 1999a)</td>
<td>No</td>
<td>(NCOF, 2000); (Stuart, 2000); (APPD, 2003)</td>
<td>Not likely It is transmitted by grafting and budding (MAFNZ, 1999a)</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Apple ring spot virus Atkinson et al. (1954)</td>
<td>Apple ring spot virus</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes</td>
<td>(Letham, 1995); (Sampson and Walker, 1982); (Simmonds, 1966)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple russet ring and associated disorders</td>
<td>Apple russet ring; leaf pucker and fruit russet; leaf fleck; bark blister and fruit distortion</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Letham, 1995); (APPD, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Apple stem grooving capillovirus Lister et al. (1965)</td>
<td>Apple stem grooving virus.</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Washington and Nancarrow, 1983); (Letham, 1995); (Sampson and Walker, 1982)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Apple stem pitting foveavirus Smith (1954)</td>
<td>Apple stem pitting virus</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Washington and Nancarrow, 1983); (Cook and Dubé, 1989); (Letham, 1995); (Simmonds, 1966); (Sampson and Walker, 1982)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Unknown etiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple scaly bark</td>
<td>Scaly bark</td>
<td>(MAFNZ, 1999a)</td>
<td>No (NCOF, 2000); (APPD, 2003)</td>
<td>Not likely; It is transmitted by grafting (MAFNZ, 1999a)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Apple chat fruit phytoplasma</td>
<td>Apple chat fruit; apple small fruit</td>
<td>(MAFNZ, 1999a)</td>
<td>No (NCOF, 2000); (APPD, 2003)</td>
<td>Not likely; It is transmitted by grafting; budding; contact between roots and vector (MAFNZ, 1999a)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Apple rubbery wood phytoplasma</td>
<td>Rubbery wood; flat limb</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Washington and Nancarrow, 1983); (Letham, 1995); (Sampson and Walker, 1982)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

Yes* indicates that this species is present but not widely distributed and being officially controlled or where regional freedoms exist within Australia.

- Three cultural types of *Fusicoccum* Corda fall within the anamorph of *Botryosphaeria dothidea* (Mougeot: Fries) Cesati & de Notaris. These are *Fusicoccum aesculi* Corda; *F. parvum* Pennycook and Samuel and *F. luteum* Pennycook and Samuel (Pennycook and Samuel, 1985).

- Differentiation of *Botryosphaeria* species with *Fusicoccum* anamorphs has depended on recognition of the anamorphs. This has resulted in some confusion in the taxonomy because these anamorphs are very similar morphologically and the characters used for differentiation can be influenced by the substrate (Smith and Stanosz, 2001).

- Cluster analyses of random amplified polymorphic DNA (RAPD) marker data were done for 89 isolates identified as *B. dothidea* (*F. aesculi*); *B. ribis* (*Fusicoccum* sp.); *B. parva* (*F. parvum*) or *B. lutea* (*F. luteum*). These were categorised into three distinct groups; which have been designated Bd (probable *B. dothidea*); Br (probable *B. ribis*; but including isolates of *B. parva*) and F1 (probable *F. luteum*) (Smith and Stanosz, 2001).

- Nucleotide sequence of the nuclear rDNA internal transcribed spacer ITS2 distinguished isolates of *F. luteum* from others in the *B. dothidea* complex. The teleomorph is *Botryosphaeria lutea* A.J.L. Phillips. It is morphologically indistinguishable from other teleomorphs in the *B. dothidea* complex (Phillips et al., 2002).

- Earlier identification of this pathogen may have been as *B. dothidea* (Pennycook and Samuel, 1985).

- *F. luteum* was isolated from kiwifruit (*Actinidia deliciosa*); apple (*Malus x domestica*); and pear (*Pyrus communis*) (Pennycook and Samuel, 1985).

- There are nine records (all from Auckland in 1982 and 1983) of this pathogen affecting apple fruit in New Zealand (Tyson, 2003).

- Available literature suggests that this pathogen affects kiwifruit (Pennycook and Samuel, 1985) and olive (Taylor et al., 2001).

- Australia imports kiwifruit from New Zealand and a pathway already exists for this pathogen to enter Australia.

- The fungus has not been intercepted in Australia on kiwifruit or other plant products imported from New Zealand between June 1988 and January 2003.

- There are no records in the Australian Plant Pest Database (APPD, 2003), (http://www.planthealthaustralia.com.au/APPD/queryForm.asp0) for *Fusicoccum luteum* but there are 27 records of *Fusicoccum* sp. from Victoria, New South Wales, Australian Capitol Territory and Queensland (not from Western Australia).

- However (Shivas, 1989) Shivas has informed Biosecurity Australia that *Fusicoccum luteum* is recorded on kiwifruit, mango (*Mangifera indica*), and avocado in Queensland.

* Western Australian quarantine issue.
Avocado fruit are being sent from Queensland to Western Australia and therefore a pathway exists for this pathogen to gain entry into Western Australia.

- *Fusicoccum luteum* is widely distributed in Australian Proteaceae (Denman et al., 2003).

Botryosphaeria lutea (anamorph: *Fusicoccum luteum*) is recorded on kiwifruit in New Zealand. It is also recorded on kiwifruit and avocado in Queensland and Australian Proteaceae. A pathway already exists for this pathogen to enter Western Australia via kiwifruit imported from New Zealand and on avocado imported from Queensland. Based on this evidence *F. luteum* is not considered a potential quarantine pest for Western Australia.

- There is only one record of this pathogen from Queensland (APPD, 2003).
- It is not recorded in Western Australia. But 71 records of *Botryosphaeria* sp. including four from WA have been reported (APPD, 2003).
- There are only two records of *Botryosphaeria* sp. in Western Australia (Shivas, 1989).
- There are four records of this pathogen on apples in New Zealand between 1975-1991 (Tyson, 2003).
- Literature from New Zealand indicates this pathogen is associated with kiwifruit, avocado, wood/twigs of apple and poplar (*Populus niger*) (Pennycook and Samuel, 1985; Pennycook, 1989; Hartill, 1991; McKenzie et al., 1992; Everett, 1996; Hartill and Everett, 2002).
- This fungus has not been intercepted in Australia on plant products imported from New Zealand from June 1988 to January 2003.
- Three cultural types of *Fusicoccum* Corda, one being the anamorph of *B. dothidea* (*F. aesculi*) recorded in Australia (New South Wales and Victoria) were repeatedly isolated from ripe kiwifruit in New Zealand. They differ in their cultural characteristics (including conidial size and shape) in the stage of fruit ripeness at which their lesions first developed and their sensitivity to benzimidazole fungicide (Pennycook and Samuel, 1985).
- Cultures of conidial and single ascospore isolates from *Fusicoccum* and *Botryosphaeria* fructifications found abundantly in kiwifruit orchards were identical with two of the culture types from fruit rots. These two culture types corresponded to small but consistent differences in ascospore size. The fungi are described as *Botryosphaeria dothidea* (*Fusicoccum aesculi* Corda); *B. parva* (*F. parvum*); and *B. lutea* (*F. luteum*) (Pennycook and Samuel, 1985).
- Most types of fruit will develop rots during ripening. This is caused by latent infections established in the orchard during the growing season. Affected samples of fruit yielded at least two, and usually all three of the culture types. *F. parvum* was present in a small proportion of lesions that developed early, but this fungus was frequently isolated from the later small lesions on ripe and over-ripe fruit. However, *F. aesculi* was isolated invariably from early lesions but less frequently from smaller later developing lesions and rarely on over-ripe fruit (Pennycook and Samuel, 1985).
• There is considerable uncertainty about the nomenclature of *B. dothidea*, *B. ribis* and *B. parva*.

- Cluster analysis of RAPD marker data for 89 isolates identified by collectors as *B. dothidea* (*F. aesculi*), *B. ribis* (*Fusicoccum* sp.), *B. parva* (*F. parvum*) or *B. lutea* (*F. luteum*) identified three distinct groups. They have been designated Bd (probable *B. dothidea*); Br (probable *B. ribis* but including isolates of *B. parva*) and F1 (probable *B. lutea* (*F. luteum*)) (Smith and Stanosz, 2001). This indicates that *B. ribis* and *B. parva* are the same or very closely similar.

- There are 17 records of *B. ribis* in WA (Shivas, 1989).

- *Botryosphaeria ribis* and *B. parva* are related but separable, whereas *B. dothidea* and *B. ribis* are distinct (Zhou-Shiguo et al., 2001).

- The datasheet on *B. dothidea* and *B. ribis* (CABI, 2003a) states *B. dothidea* has been considered by some as synonymous with *B. ribis* while others consider it as a distinct species [with several references given for each group]. Most descriptions of the reported anamorphic stages of *B. dothidea* and *B. ribis* overlap. This controversy in *B. ribis* taxonomy appears mainly due to the variable mycelial and conidial morphology in different growth conditions and stages, rareness of sexual stages, pantropic distribution and ability to cause disease on many plant species.

- Most of the earlier records of *Botryosphaeria dothidea* on several hosts including apple and pear spp. may have included records of recently segregated taxa such as *B. parva* and *F. luteum* (Pennycook, 1989).

- Australia has been importing kiwifruit and avocado from New Zealand for some years. A pathway already exists for the pathogen to gain entry should these pathogens occur as latent infection. All three fungal species are likely to be present on fruit as latent infections.

- WA has been sourcing avocado fruit from Queensland, where *B. parva* is known to infect avocado fruit (Shivas, 2003; E-mail communication).

- There is a paucity of information about this pathogen on apple in New Zealand but *F. parvum* (teleomorph: *B. parva*) has been isolated from pycnidia found on apple twigs (Pennycook and Samuel, 1985).

- Although New Zealand has recorded *B. parva* as a primary pathogen, scanning of available literature did not reveal any published technical information on this pathogen (except for one paper on the taxonomy of *Botryosphaeria* and *Fusicoccum* species in New Zealand (Pennycook and Samuel, 1985). It could be assumed that it is not a major problem causing economic losses.

There are four unidentified species of *Botryosphaeria* in WA and a pathway already exists for *B. parva* to enter WA via imported kiwifruit or avocado from Queensland. Therefore, *B. parva* is not considered a potential quarantine pest for WA.
Diaporthe Nitschke (1870) spp.

- There are several species of *Diaporthe* affecting many plant species (Farr *et al.*, 1995).
- *D. tanakae* T. Kobayashi & Sakuma (anamorph *Phomospsis* tanakae T. Kobayashi & Sakuma) is only recorded on apple and pear in Japan (Nakatani and Fujita, 1990).
- The pathogen primarily affects stems, twigs and flowers (Nakatani and Fujita, 1990).
- *D. eres* (syn. *D. perniciosa*) is present in WA (Shivas, 1989).
- *D. perniciosa* is considered a synonym of *D. eres* by Farr *et al.* (1995) and Rosenberger (1990a) but not by CABI (2003a) or New Zealand Landcare database.
- There is an unidentified *Diaporthe* sp. in WA on the host *Kennedia coccinea* Ventenat (Shivas, 1989). There is also one record of *Diaporthe* sp. in WA on lupin (APPD, 2003).
- The genus has not been intercepted in Australia on plant products imported from New Zealand between June 1988 and January 2003.

There are unidentified species of *Diaporthe* in WA. Based on this evidence it is not considered a potential quarantine pest for WA.

Diaporthe actinidiae N. F. Sommer & Beraha (1975)

- There is one record of *D. actinidiae* in NSW and 13 records of *Diaporthe* sp. including two from WA (APPD, 2003).
- It is primarily a postharvest pathogen of kiwifruit causing stem-end rot (Sommer and Beraha, 1975; Palma and Piontelli, 2000; Lee *et al.*, 2001) and it also causes damage during storage, transportation, and marketing (Pratella, 1995). A study in Spain (Pintos-Varela *et al.*, 2000) claims that it can affect many other parts of kiwifruit plants.
- This pathogen has been isolated from apple trees in New Zealand but was most common on kiwifruit (Hawthorne *et al.*, 1982; Pennycook, 1989).
- There are two reports of its occurrence in 1975 on apples in New Zealand (Tyson, 2003).
- New Zealand has listed it as a secondary pathogen of apple; however, there are no reports of it associated with apple fruit in the databases searched.
- New Zealand kiwifruit have been imported into Australia for many years.
- The fungus has not been intercepted in Australia on plant products imported from New Zealand between June 1988 and January 2003.

Diaporthe actinidiae is a secondary pathogen of kiwifruit in New Zealand. Kiwifruit have been imported into WA. Therefore, a pathway already exists for it to gain entry into WA. Based on this evidence it is not considered a potential quarantine pest for WA.
Discostroma corticola (Fuckel) Brockmann (1976) (anamorph: *Seimatosporium lichenicola* (Corda) Shoemaker & E. Müller)

- This pathogen is recorded as *Griphosphaeria corticola* (Fuckel) Höhnel (Syn. *Clethridium corticola* (Fuckel) Shoemaker & E. Müller. [as ‘Clathridium’]) (1964) in NSW and as *Seimatosporium lichenicola* (Corda) Shoemaker & E. Müller (APPD, 2003). There are no records for WA.
- There is some confusion in the manner in which the genus part of this pathogen is spelt in literature; some spelling it as *Clethridium* while others as *Clathridium*; however, the former spelling is correct.
- Bibliographic searches do not return any records for *Clethridium corticola* but give 24 records for *Clathridium corticola*, mostly research papers from India, but with one Scottish and one Australian group also using this spelling (WinSpirs databases (ver. 4.01), 2003).
- Rosenberger uses the spelling *Clethridium corticola* (Rosenberger, 1990a). New Zealand pest list also spelt it as *Clethridium corticola*.
- As *Griphosphaeria corticola* there is one record in (WinSpirs databases (ver. 4.01), 2003).
- In New Zealand’s updated disease list this is considered a secondary pathogen (MAFNZ, 2002b).
- There is only one record of its occurrence in New Zealand in 1981 but no published literature is available (Tyson, 2003).
- The fungus has not been intercepted in Australia on plant products imported from New Zealand between June 1988 and January 2003.
- Indian literature on *Clethridium corticola* indicates it to be causing fruit rot of apples there.
- Rosenburger considers *Clethridium corticola* to be rarely found in apples from commercially tended orchards if the fruit are stored under cold storage conditions (Rosenberger, 1990a).
- Absence of technical information suggests that it is an unimportant pathogen.

Discostroma corticola is a secondary pathogen in New Zealand. There is no technical information on this pathogen probably because it is not an economically significant disease. Based on this evidence it is not considered a potential quarantine pest.

Elsinoë pyri (Woronichin) Jenkins [as ‘piri’] (1932) (anamorph: *Sphaceloma pyrinum* (Peglion) Jenkins (1946) [as ‘pirinum’])

- It is recorded as *E. piri* affecting quince (*Cydonia* spp.), apple and pear (Farr et al., 1995).
- There are seven records *E. piri* on apple fruit; six in NSW and one in Qld. (APPD, 2003) where it is not considered a major pathogen (Heaton et al., 1991; Dullahide, 2003; Hetherington and Dullahide, 2003; e-mail communication). It is not recorded in WA.
- Symptoms occur on the leaves and fruit of both apple and pear in New Zealand (Atkinson, 1971).
• It is relatively common in New Zealand apple fruit (62 records from 1921-1993) (Tyson, 2003). The number of specimens collected has been increasing and may become more important in the future (Atkinson, 1971) but there is little published literature on this pathogen.
• It is of secondary importance but on the increase (Lemoine, 1998).
• Only the anamorph has been found in New Zealand (Dingley, 1969).
• Fungicides applied to control Venturia inaequalis (apple scab) are also effective in controlling E. pyri (Dingley, 1969).
• It is generally not considered to be of economic importance. Little work has been done on this disease and information about it is scanty (Atkinson, 1971).
• The disease causes damage to the epidermis leaving the fruit unfit for sale (Lemoine, 1998). Infected fruit are likely to be detected at pre-clearance inspection.
• Between June 1988 and January 2003 there has been only one interception (in December 2000) of Elsinoë sp. on fruit (type not specified) from New Zealand.
• A search of the WinSpirs databases returned only one published paper (Lemoine, 1998) from France (WinSpirs databases (ver. 4.01), 2003).
• It is not reported in the Compendium of Apple and Pear Diseases published by the American Plant Pathological Society (Jones and Aldwinckle, 1990).
• There is no datasheet on this pathogen in the CABI Compendium (CABI, 2003a).

Elsinoë pyri is a secondary pathogen and it not considered economically significant. Fungicides used in New Zealand to control scab control this pathogen. Based on this evidence it is not considered a potential quarantine pest.

Mycosphaerella pomi (Passerini) Lindau (1897) (anamorph: Cylindrosporium pomi C. Brooks (?)7)

• It is recorded in NSW (eight records) as Cylindrosporium pomi (APPD, 2003). It is not recorded in WA.
• Brooks fruit spot is caused by a minor disease in the northeastern and mid-Atlantic apple-growing regions of the USA. It is also reported from Canada (Yoder, 1990).
• A search of the WinSpirs databases returns 30 records for this fungus 19 from USA; eight from Japan; two from South Korea, one from China but none from New Zealand (WinSpirs databases (ver. 4.01), 2003).
• The disease first appears on immature fruit. As the fruit mature, lesions change colour and dark specks appear. Severe infection may result in pitting and cracking of fruit (Yoder, 1990).
• Infected fruit may have colourless conidia (Cylindrosporium stage), colourless spores from pycnidia (Phoma pomi Schulzer & Saccardo) or chlamydospores. Perithecia have not been found in New Zealand (Cunningham, 1925).

7 (?) = Publication date unknown.
• This pathogen is found in most apple-growing areas of New Zealand but only occasionally. It is of no economic importance in New Zealand (Atkinson, 1971).

• Field observations suggest that control measures for apple scab and powdery mildew would also be effective against this disease (Dingley, 1969).

• Although it is recorded in New Zealand as a primary pathogen of apple fruit, literature searches revealed only scanty published information on the pathogen in New Zealand.

• According to information provided recently (Tyson, 2003) there is only one record of this pathogen in New Zealand and it is only very rarely isolated from apple in Hawke’s Bay (MAFNZ, 2003).

• The fungus has not been intercepted in Australia on plant products imported from New Zealand between June 1988 and January 2003.

• Fruit with disease symptoms would be detected at pre-clearance inspection.

Mycosphaerella pomi is very rarely detected on apple and is of no economic importance. Fungicides used for controlling scab and powdery mildew in New Zealand are also effective in combating this pathogen. Based on this evidence it is not considered a potential quarantine pest for WA.

Pestalotiopsis maculans (Corda) Nag Jaj (1985) (Syn. Pestalotia guepinii Desmazières [‘as guepini’] (1840))

• This fungus with the synonym Pestalotia guepini Desmazières. (1840) [as’guepini’](Farr et al., 1995) is present in Australia (APPD, 2003). The latter is also recorded as a synonym in the New Zealand Landcare database but not in the CABI Index Fungorum database.

• It is recorded on Camellia japonica in WA (Shivas, 1989).

• The five records for Pestalotiopsis guepini are from NSW but none from WA (APPD, 2003). It appears that the information given above (Shivas, 1989) has not been recorded in the APPD (APPD, 2003).

Pestalotiopsis maculans is already present in WA as the synonym Pestalotia guepini. Therefore, it is not considered a potential quarantine pest for WA.

Phoma cava Schulzer (1871) (Syn. Pleurophoma cava (Schulzer) Boerema, Loerakker & Hamers (1996))

• Phoma cava is not recorded in Australia. However, there are 467 records of Phoma sp., of which eight are from WA (APPD, 2003).

• According to (Shivas, 1989) Phoma sp. from nine hosts in WA have not been identified to species level.
New Zealand considers it as a secondary pathogen in apple associated with moulidy core rot of fruit (MAFNZ, 2002b).

Eight records of this pathogen are reported from 1980-1998 on apples in New Zealand (Tyson, 2003) but little published information could be found on the pathogen.

The fungus has not been intercepted in Australia on plant products imported from New Zealand between June 1988 and January 2003.

No citation of literature of this pathogen on apple in the databases were examined.

The fungus is associated with the decomposition of sugar maple leaf (Kuter, 1986).

It is pathogenic to several species of oak (Manicone, 1991; Luisi et al., 1995).

One report claims that it causes aural dermatitis in deer (Gordon et al., 1975) and another connects the fungus to skin lesions in a human (Zaitz et al., 1997).

There are reports on toxin production by this fungus (Evidente, 1987; Evidente et al., 1985).

Introduction of *Poma cava* into WA is unlikely because it is a secondary pathogen with limited distribution in New Zealand. Therefore it is not considered a potential quarantine pest.

Phomopsis (Saccardo) Bubák (1905) spp.

- According to (APPD, 2003) there are over 25 different species of *Phomopsis* and 395 records not identified to species (i.e. *Phomopsis* sp.) in Australia including WA.
- There are records of *Phomopsis* sp. on six host species in WA including *Malus sylvestris* (Shivas, 1989).
- Phomopsis canker and Phomopsis fruit rot are caused by *Diaporthe eres* (anamorph *Phoma pithya* Saccardo (not listed as anamorph in Index Fungorum)); (syn. *D. perniciosa* (not listed as anamorph in Index Fungorum)) (Rosenberger, 1990a).
- Fruit rot by *Phomopsis* sp. seldom occurs until late in storage (Rosenberger, 1990a).
- Between June 1988 and January 2003 there have been five interceptions of *Phomopsis castanea* on seeds and nuts from New Zealand.

There are unidentified species of *Phomopsis* on apple in WA. Therefore, it is not considered a potential quarantine pest.

Phytophthora syringae (Klebahn) Klebahn (1909)

- New Zealand included this pest in their list (1999a) and it was therefore considered in the Draft IRA of 2000. However, New Zealand has removed it from their 2002 pest list (MAFNZ, 2002b). A decision has been taken to consider all pests in New Zealand’s 1999a, 2000b and 2002b pest lists in the revised draft IRA.
The pathogen has been recorded (one record) only in NSW (APPD, 2003). But according to (Washington and Nancarrow, 1983; Cook and Dubé, 1989) it is present in Vic. and SA.

There are 266 records of *Phytophthora* sp. in (APPD, 2003); which include NSW, Vic., SA, Tas., Qld, NT and ACT but not WA. However, *Phytophthora* isolates from 11 hosts in WA have not been identified to species level (Shivas, 1989).

There are three records (two from soil and root; one unknown source) of its occurrence from 1974 to 1997 in New Zealand.

The fungus has not been intercepted in Australia on plant products imported from New Zealand between June 1988 and January 2003.

This pathogen caused collar rot and stem canker on apricot, cherries and peaches in orchards near Christchurch in New Zealand in 1955 (Dingley, 1969).

This pathogen is widespread in apple orchard soils and commonly infects roots, fruits and leaves fallen on the orchard floor. Fruit (particularly on dwarf trees) close to the soil level are prone to infection from soil splash (Covey and Harris, 1990).

Fruit infected early in the season are unlikely to be harvested.

Fruit contaminated with the pathogen late in the season or at harvest might be infected during long-term storage and are likely to be discarded at pre-export inspection.

There are only a few records of *Phytophthora syringae* in New Zealand. It is primarily a soil pathogen. Storage rot can develop on fruit contaminated by this pathogen, which can be detected at pre-export inspection. Based on this evidence, it is not considered a potential quarantine pest.

Rhinocladiella Nannfeldt (1934) spp.

R. atrovirens Nannfeldt in Melin & Nannfeldt is recorded from *Pinus* sp. (Farr *et al.*, 1995).

There is one record of this pathogen on apples in 1981 in New Zealand but no published information was found (Tyson, 2003).

The genus has not been intercepted in Australia on plant products imported from New Zealand between June 1988 and January 2003.

There is one record of *Rhinocladiella mansonii* (Castellani) Schol-Schwarz in WA (APPD, 2003) on *Triticum aestivum* (collection date 1973) but Shivas does not list this (Shivas, 1989).

A species of *Rhinocladiella* is already present in WA. It is rarely found in New Zealand. There is no published technical information on this pathogen. Therefore it is not considered a potential quarantine pest for WA.
Venturia inaequalis (Cooke) G. Winter (1875)

- Under the current State Regulations, there is a prohibition on apple fruit and plants importation from Countries, States and Territories that have known diseases that are exotic to Western Australia’ (Kumar, 2002). This measure constitutes official control of the pathogen (IPPC, 1996a).
- Between June 1988 and January 2003, there was one interception of the pathogen (in June 2000) on fruit from New Zealand.
- There is only one strain of this pathogen in New Zealand (Patterson *et al.*, 2003) which is also present in Australia (Heaton *et al.*, 1991).
- A data sheet on *V. inaequalis* is in Appendix 3.

On the basis that *Venturia inaequalis* is under official control in WA, it is considered a potential quarantine pest.
APPENDIX 2 ARTHROPOD CATEGORISATION

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insects - Blattodea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blattella germanica (L.) [Blattodea: Blattellidae]</td>
<td>German cockroach</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Insects - Coleoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agonum spp. [Coleoptera: Carabidae]</td>
<td>Ground beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Not likely Adults are orchard or packhouse contaminants, adults and larvae are predatory in soil (MAFNZ, 2000b). No records of interceptions of species of this genus from New Zealand (DAFF-PDI, 2003).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Agrypnus variabilis (Candéze) [Coleoptera: Elateridae]</td>
<td>Variable wireworm, surgar cane wireworm</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (CSIRO/AFF A, 2001)</td>
<td>Not likely Adults are orchard or packhouse contaminants, larvae feed in soil on herbaceous hosts (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2003).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Ahasverus advena (Walt.) [Coleoptera: Silvanidae]</td>
<td>Foreign grain beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Alticinae (Halticinae) [Coleoptera: Chrysomelidae]</td>
<td>Flea beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Not likely Larvae can be primary pests on foliage (MAFNZ, 1999a).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Anobumens spp. [Coleoptera: Carabidae]</td>
<td>Ground beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Not likely Adults are orchard or packhouse contaminants, adult larval are predatory in soil (MAFNZ, 2000b). No records of interceptions of species of this genus from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Anobium punctatum (de Geer) [Coleoptera: Anobiidae]</td>
<td>House borer</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Potential for being on pathway</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Consider species further?</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>--------------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>Anthicus floralis L. [Coleoptera: Anthicidae]</td>
<td>Narrowneck ed grain beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (CSIRO/AFFA, 2001)</td>
<td>Likely</td>
<td>Adults are orchard or packhouse contaminants, larvae are secondary feeders on decaying plant material (MAFNZ, 2000b). Intercepted in Australia on berries from New Zealand (DAFF-PDI, 2002).</td>
<td>Feasible</td>
<td>Not significant</td>
</tr>
<tr>
<td>Araecerus palmaris (Pascoe) (= Doticus palmaris) [Coleoptera: Anthribidae]</td>
<td>Fungus weevil, Dried apple beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (CSIRO/AFFA, 2001)</td>
<td>Not likely</td>
<td>Larvae normally feed in mummified fruit only (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arhopalus ferus (Mulsant) [Coleoptera: Cerambycidae]</td>
<td>Burnt pine longhorn beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Wang, 2000)</td>
<td>Likely</td>
<td>MAFNZ (2000b) stated that adults are orchard or packhouse contaminants, larvae are woodboring plant feeders of pine trees. (MAFNZ, 2003a) clarified it as packhouse contaminants. New Zealand timber exported to Australia requires fumigation for this pest. Intercepted on timber and dunnage from New Zealand (some as A. tristis) (DAFF-PDI, 2002). The intercepted A. sp. on avocados from New Zealand is most likely A. ferus. A species in the same genus such as the introduced A. syriacus has become established in pine plantations in NSW (Wylie, 1998).</td>
<td>Feasible</td>
<td>Significant Pest of Pinus radiata and plantation Pinus spp. in New Zealand (Hosking, 1978); (Hosking and Hutcheson, 1979)</td>
</tr>
<tr>
<td>Arhopalus tristis (F.) (A junior syn of A. rusticus (L.) according to Wang (2000). All references to A. tristis in New Zealand should actually refer now to A. ferus (Wang, 2000) [Coleoptera: Cerambycidae]</td>
<td>Burnt pine longhorn beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Actually not in New Zealand (Wang, 2000)</td>
<td>All references to A. tristis in New Zealand should actually refer now to A. ferus above (Wang, 2000).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Comments if applicable</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>--</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Aridius bifasciatus (Reitter) [Coleoptera:Corticariidae]</td>
<td>Minute brown scavenger beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (AQIS, 1998a)</td>
<td>Likely Intercepted in Australia on avocado, kiwifruit and lettuce from New Zealand (DAFF-PDI, 2002).</td>
<td>Feasible</td>
<td>Not significant Adults are orchard or packhouse contaminants, secondary feeder on decaying plant material (MAFNZ, 2000b).</td>
<td>No</td>
</tr>
<tr>
<td>Aridius nodifer (Westwood) [Coleoptera: Corticariidae]</td>
<td>Minute brown scavenger beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (AQIS, 1998a)</td>
<td>Likely Intercepted in Australia on kiwifruit, persimmons and pumpkin from New Zealand (DAFF-PDI, 2002).</td>
<td>Feasible</td>
<td>Not significant Adults are orchard or packhouse contaminants, secondary feeder on decaying plant material (MAFNZ, 2000b).</td>
<td>No</td>
</tr>
<tr>
<td>Asynyonychus cervinus (Boheman) [Coleoptera: Curculionidae]</td>
<td>Fuller’s rose weevil</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Carabid beetle [Coleoptera: Carabidae]</td>
<td>Ground beetle</td>
<td>(HortResearch, 1999b)</td>
<td>Uncertain</td>
<td>Not likely Carabid beetles are primarily ground beetles that are predators that feed on a wide variety of insects (CSIRO, 1991).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Carpophilus davidsoni (Dobson) [Coleoptera: Nitidulidae]</td>
<td>Dried fruit beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Carpophilus gaveni Dobson [Coleoptera: Nitidulidae]</td>
<td>Dried fruit beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (AQIS, 1998a), (James et al., 1995)</td>
<td>Not likely Adults are contaminants/secondarily on fruit. Adult and larvae of Carpophilus species are attracted to ripe and fermenting fruit (Kuschel, 1990; MAFNZ, 2000b). The damaged ripe and fermenting fruit would be removed from the quality control process. No records of interceptions of C. gaveni from New Zealand although other species of this genus (including unidentified) have been intercepted in Australia from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Carpophilus humeralis (Fabricius) (as Urophorus humeralis in MAFNZ, 2000b) [Coleoptera: Nitidulidae]</td>
<td>Fruit beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>---------------------------------------</td>
<td>---------------------------</td>
</tr>
</tbody>
</table>
| Carpophilus spp.
[Coleoptera: Nitidulidae] | Dried fruit beetle | (MAFNZ, 2000b) | Uncertain 12 species known in New Zealand (Leschen, 2000); six of these are not in Australia see next column for details | Not likely
In the draft IRA (Biosecurity Australia, 2000), ‘Carpophilus spp.’ were considered further and a full risk assessment was undertaken. However, based on further information provided by New Zealand, it is now accepted that the potential for importation of ‘Carpophilus spp.’ would be unlikely as explained below.
Altogether, 12 species of Carpophilus are reported from New Zealand (MAFNZ, 2001; Leschen, 2000). Among the species, six of them (C. davidsoni Dobson, C. gaveni Dobson (not in WA), C. hemipterus (L.), C. marginellus Motschulsky C. mutilatus (Erichson) and C. dimidiatus (Fabricius)) are recorded from Australia (James et al., 1995; CABI, 2001). Specimens of six other species C. ligneus Murray, C. maculatus, C. obsoletus, C. oculatus, C. oculatus gilloglyi, C. pilosellus Motschulsky) are present in the New Zealand Arthropod Collections (Leschen, 2000) but none of them are recorded on fresh apple fruit.
The single identified specimen of C. sexpustulatus (Fabricius) in New Zealand Arthropod Collection is actually an incomplete specimen of a misidentified Nitidula carnaria.
Based on the above information, it is highly likely that ‘Carpophilus spp.’ included in (MAFNZ, 2000b) either belong to the species that are already listed in the same reference or are species already in Australia (C. gaveni is not in WA but see separate entry for this species in this table). The species recorded in New Zealand but not in Australia are not associated with fresh apple and are not likely on pathway. Therefore, it is not necessary to take ‘Carpophilus spp.’ into further consideration in this analysis. | - | - | No (as yes in the draft IRA, but see comments at left column) |
| Cartodere spp.
[Coleoptera: Corticariidae] | Fungus beetle | (MAFNZ, 2000b) | No (Hetschko, 1926); (Hinton, 1945) | Likely
Species of this genus intercepted in Australia on persimmons and ornamentals from New Zealand (DAFF-PDI, 2002). | Feasible
Contaminants/secondary feeder on decaying plant material (MAFNZ, 2000b). Feeds on decaying plant material and moulds in damp situations (MAFNZ, 2000b); (Ebeling, 2002a) | No |
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway</th>
<th>Comments if applicable</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences</th>
<th>Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catoptes coronatus (Sharp) [Coleoptera: Curculionidae]</td>
<td>Broadnosed weevil</td>
<td>(MAFNZ, 2002b)</td>
<td>No</td>
<td>Not likely Adults occur in dead wood of a wide range of plants; larvae live in the soil and feed on various scrub roots (plant feeder); casual on apple; distribution restricted to the South Island of New Zealand (MAFNZ, 2002b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Chrysomela aeneicollis Schaeffer (as Atrichatus aeneicollis in MAFNZ, 1999a) [Coleoptera: Chrysomelidae]</td>
<td>Chrysomelid beetle</td>
<td>(MAFNZ, 1999a)</td>
<td>No</td>
<td>Not likely No biological information available on this species, presumably foliage feeders like other chrysomelids (MAFNZ, 1999a). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Coccinella undecimpunctata L. [Coleoptera: Coccinellidae]</td>
<td>Elevenspotted ladybird</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticaria pubescens (Gyllenhal) [Coleoptera: Corticariidae]</td>
<td>Fungus beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (AQIS, 1998a)</td>
<td>Likely Species of this genus intercepted in Australia on berries, capsicum, kiwifruit, persimmons, etc. from New Zealand (DAFF-PDI, 2002).</td>
<td>Feasible</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
<td>Consider species further?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>---------------------------------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>--</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticaria serrata (Paykull) [Coleoptera: Corticariidae]</td>
<td>Fungus beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>No</td>
<td>Likely Species of this genus intercepted in Australia on berries, capscicum, kiwifruit, persimmons, etc. from New Zealand (DAFF-PDI, 2002).</td>
<td>Feasible</td>
<td>Not significant Adults are orchard or packhouse contaminants, secondary feeder on decaying plant material (MAFNZ, 2000b); (Ebeling, 2002b)</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticaria spp. [Coleoptera: Corticariidae] Five species of this genus are recognised in New Zealand: C. elongata (Gyllenhal), C. fenestralis (Linnaeus), C. formicaephila (Broun), C. pubescens and C. serrata. The last two species C. pubescens and C. serrata (see both above-listed species) are the most likely species to be involved (MAFNZ, 2001).</td>
<td>Fungus beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Likely Species of this genus have been intercepted in Australia on berries, capscicum, kiwifruit, and persimmons from New Zealand (DAFF-PDI, 2002).</td>
<td>Feasible</td>
<td>Not significant Adults are orchard or packhouse contaminants, secondary feeder on decaying plant material (MAFNZ, 2000b).</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortinicara hirtalis (Broun) [Coleoptera: Corticariidae]</td>
<td>Minute scavenger beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (CSIRO/AFF A, 2001)</td>
<td>Likely Intercepted in Australia on kiwifruit from New Zealand (DAFF-PDI, 2002).</td>
<td>Feasible</td>
<td>Not significant Orchard or packhouse contaminants, saprophyte/fungal feeder (MAFNZ, 2000b).</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortinicara spp. [Coleoptera: Corticariidae] Two species, C. hirtalis (Broun) and C. meridiana Johnson are recognised for New Zealand. The species C. hirtalis is the commoner species, and is the likely species to be involved (MAFNZ, 2001).</td>
<td>Fungus beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Likely C. hirtalis has been intercepted in Australia on kiwifruit from New Zealand (DAFF-PDI, 2002).</td>
<td>Feasible</td>
<td>Not significant Adults are orchard or packhouse contaminants, secondary feeder on decaying plant material (MAFNZ, 2000b).</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Comments if applicable</td>
<td>Consider species further?</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>---------------------------------------</td>
<td>----------------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>Costelytra zealandica (White) [Coleoptera: Scarabaeidae]</td>
<td>Grass grub</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Cassis et al., 1992)</td>
<td>Not likely</td>
<td>-</td>
<td>-</td>
<td>Adults are packhouse contaminants, polyphagous; adults defoliate; larvae are root feeders (MAFNZ, 2000b); can be a serious pasture plant feeder (Landcare Research, 1999). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Cryptolaemus montrouzieri Mulsant [Coleoptera: Coccinellidae]</td>
<td>Mealybug ladybird</td>
<td>(Valentine, 1967)</td>
<td>Yes (CSIRO/AFFA, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Cryptolestes spp. [Coleoptera: Laemophloeidae]</td>
<td>Flat grain beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Hetschko, 1926)</td>
<td>Not likely</td>
<td>-</td>
<td>-</td>
<td>Adults are orchard or packhouse contaminants, secondary feeders on decaying/dried plant material (MAFNZ, 2000b). No records of interceptions of Cryptolestes capensis from New Zealand (DAFF-PDI, 2002).</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Cryptophagus spp.</td>
<td>Cryptophagid fungus beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>No</td>
<td>Likely</td>
<td>Feasible</td>
<td>Not significant</td>
<td>Intercepted in Australia on garlic and timber from New Zealand (DAFF-PDI, 2002).</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Dermestes maculatus De Geer [Coleoptera: Dermestidae]</td>
<td>Hide beetle, skin beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFFA, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Emobius mollis (Linnaeus) [Coleoptera: Anobiidae]</td>
<td>Pine knot borer</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (CSIRO/AFFA, 2001)</td>
<td>Not likely</td>
<td>-</td>
<td>-</td>
<td>Adults are orchard or packhouse contaminants, occasionally feed on apple foliage (MAFNZ, 2002b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
<td>Consider species further?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucolaspis brunnea (Fabricius) [Coleoptera: Chrysomelidae]</td>
<td>Bronze beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>No</td>
<td>Not likely Adults are orchard or packhouse contaminants, feed on apple foliage (MAFNZ, 1999a). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goniipterus scutellatus (Gyllenhall) [Coleoptera: Curculionidae]</td>
<td>Gum tree weevil</td>
<td>(Spiller and Wise, 1982); (MAFNZ, 2002b)</td>
<td>Yes</td>
<td>(CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnetron pascuorum (Gyllenhall) [Coleoptera: Curculionidae]</td>
<td>Native weevil</td>
<td>(MAFNZ, 2000b)</td>
<td>No</td>
<td>Not likely Adults are orchard or packhouse contaminants, larvae feed on Plantago spp. (weeds) (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halmus chalybeus (Boisduval) [Coleoptera: Coccinellidae]</td>
<td>Steelblue ladybird</td>
<td>(HortResearch, 1999b)</td>
<td>Yes*</td>
<td>(CSIRO/AFF A, 2001)</td>
<td>Not likely Adults and larvae of this species prey on scale insects including black scale (Saissetia oleae), blue gum scale and San José scale (Diaspidiotus perniciosus) on fruit (HortResearch, 1999b). Adults of steelblue ladybird would drop off when disturbed. Any remaining larvae would be eliminated during packing house processing.</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Harmonia conformis (Boisduval) (= Leis conformis) [Coleoptera: Coccinellidae]</td>
<td>Ladybird</td>
<td>(Valentine, 1967)</td>
<td>Yes</td>
<td>(CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harpalinae [Coleoptera: Carabidae]</td>
<td>Predatory ground beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td></td>
<td>Not likely Adults are orchard or packhouse contaminants, phytophagous (seeds and pollen), larvae predatory in soil (MAFNZ, 2000b).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Hylesia ater Paykull [Coleoptera: Scolytidae]</td>
<td>Black pine bark beetle</td>
<td>(Spiller and Wise, 1982)</td>
<td>Yes</td>
<td>(CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irenimus compressus (Broun) [Coleoptera: Curculionidae]</td>
<td>Compressed weevil</td>
<td>(MAFNZ, 2002b)</td>
<td>No</td>
<td>Not likely Attacks brassicas, carrots, lucerne, clover (MAFNZ, 2002b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listroderes difficilis Germain (was L. obliquus Klug) [Coleoptera: Curculionidae]</td>
<td>Vegetable weevil</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes</td>
<td>(AQIS, 1998a)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listronotus bonariensis (Kuschel) [Coleoptera: Curculionidae]</td>
<td>Argentine stem weevil</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes</td>
<td>(AQIS, 1998a)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia</td>
<td>Potential for being on pathway</td>
<td>Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Comments if applicable</td>
<td>Consider species further?</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>---------------------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>---------------------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Longitarsus fuliginosus (Broun) [Coleoptera: Chrysomelidae]</td>
<td>Native chrysomelid, golden flea beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>No</td>
<td>Not likely Adults are orchard or packhouse contaminants, possibly feed on grasses (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Micrambia rutila (Broun) [Coleoptera: Cryptophagidae]</td>
<td>Plaster beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>No</td>
<td>Not likely Adults are orchard or packhouse contaminants, secondary feeders on dead leaf and stem material (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Mitrastethus barioides Redtenbacher [Coleoptera: Curculionidae]</td>
<td>Kauri weevil</td>
<td>(MAFNZ, 2000b)</td>
<td>No</td>
<td>Not likely Adults are orchard or packhouse contaminants, larvae feed on damp pine logs (MAFNZ, 2000b). Intercepted in Australia once on rough sawn pine from New Zealand but there are no records of interception on pallets or horticultural produce (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Navomorpha sulcatus F. [Coleoptera: Cerambycidae]</td>
<td>Cerambycid beetle</td>
<td>(Spiller and Wise, 1982)</td>
<td>No</td>
<td>Not likely Larvae feed only on twigs and branches of apple and almond trees (Miller, 1922). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Notagonum submetallicum (White) [Coleoptera: Carabidae]</td>
<td>Submetallic ground beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (Kuschel, 1990)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Oeromna hirta (F.) [Coleoptera: Cerambycidae]</td>
<td>Lemon tree borer</td>
<td>(MAFNZ, 1999a)</td>
<td>not reported</td>
<td>Not likely Record is on shoots, polyphagous on wide range of woody hosts (MAFNZ, 1999a). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Otiorhynchus sp. [Coleoptera: Curculionidae]</td>
<td>Strawberry root weevil or Black vine weevil</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (CABI, 2002); (Williams, 2000)</td>
<td>Three species of Otiorhynchus in New Zealand: O.sulcatus, O. ovatus, O. rugosostriatus (MAFNZ, 2000b) are in Australia. No records of interceptions of species of this genus from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Phlyctinus callosus Boheman [Coleoptera: Curculionidae]</td>
<td>Garden weevil</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CABI, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Potential for being on pathway</td>
<td>Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Consider species further?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>--------------------------------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyronota festiva (Fabricius) [Coleoptera: Scarabaeidae]</td>
<td>Manuka beetle</td>
<td>(Spiller and Wise, 1982)</td>
<td>No</td>
<td>(Cassis et al., 1992)</td>
<td>Not likely</td>
<td>A high country insect, only found close to Manuka bushes (Leptospermum scoparium) (Spiller and Wise, 1982; Miller, 1936). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Rhinocyllus conicus Froelich [Coleoptera: Curculionidae]</td>
<td>Nodding thistle receptacle weevil</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes*</td>
<td>(CABI, 2001)</td>
<td>Not likely</td>
<td>Adults are orchard or packhouse contaminants, larvae are associated with nodding thistle (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Rhyzobius ventralis (Erichson) [Coleoptera: Coccinellidae]</td>
<td>Gumtree scale ladybird</td>
<td>(Valentine, 1967)</td>
<td>Yes</td>
<td>(CSIRO/FAAF, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scopodes fossulatus (Blanchard) (as Scopodes elaphroides (White) in (MAFNZ, 2000b) [Coleoptera: Carabidae]</td>
<td>Ground beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>No</td>
<td>As endemic in New Zealand in (Larochelle and Larivière, 2001)</td>
<td>Not likely</td>
<td>Adults are orchard or packhouse contaminants and predators, which are normally found under stones or bark exposed to the sun (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Sitona discoideus Gyllenhal [Coleoptera: Curculionidae]</td>
<td>Sitona weevil</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes</td>
<td>(CSIRO/FAAF, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitophilus oryzae (L.) [Coleoptera: Curculionidae]</td>
<td>Rice weevil</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes</td>
<td>(CSIRO/FAAF, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylinidae indet. [Coleoptera: Staphylinidae]</td>
<td>Rove beetle</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td></td>
<td>Not likely</td>
<td>Adults are orchard contaminants, whose species may be both predators and scavengers. Both adults and larvae are mobile and often highly active predators attacking eggs, larvae, pupae and adults of most soft bodied soil arthropods (MAFNZ, 2000b; Scott, 1984).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Stethorus bifidus Kapur [Coleoptera: Coccinellidae]</td>
<td>Ladybird</td>
<td>(MAFNZ, 2000b)</td>
<td>No</td>
<td></td>
<td>Not likely</td>
<td>Adults and larvae are predators on mites and adults are packhouse contaminants, (MAFNZ, 2000b). The host mites can be found around calyx (HortResearch, 1999b). Adults of the ladybirds would drop off when disturbed and any remaining larvae would be eliminated during packing house processing.</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
<td>Consider species further?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>-------------------------------------</td>
<td>---</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stethorus histrio Chazeau</td>
<td>Mite-eating ladybird</td>
<td>(HortResearch, 1999b) Yes (Houston, 1980), (Waterhouse and Sands, 2001)</td>
<td>-</td>
<td>Not likely Adults and larvae of Stethorus are predators. Stethorus adults are active when in fruit trees and if disturbed will often fall to the ground. They are good fliers and therefore tend to concentrate in areas of the orchard where mites are plentiful and disappear when the mite population becomes low. Eggs are laid mostly on the undersides of the leaf, near the primary veins (Hodek, 1973). The host mites can be found around calyx (HortResearch, 1999b). Adults of the ladybirds would drop off when disturbed and any remaining larvae would be eliminated during packing house processing.</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stethorus sp.</td>
<td>Mite-eating ladybird</td>
<td>(HortResearch, 1999b) Uncertain</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xyleborus saxeseni (Ratzeburg)</td>
<td>Keyhole ambrosia beetle</td>
<td>(MAFNZ, 1999a) Yes (Abbott, 1985)</td>
<td>-</td>
<td>Not likely Record is on stems, adults usually found on trunks and thicker branches of dead trees and shrubs; larvae presumably are boring in these plant parts, hosts include many native and introduced woody trees and shrubs (MAFNZ, 1999a). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xyloteles laetus White</td>
<td>Cerambycid beetle</td>
<td>(MAFNZ, 1999a) No</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insects - Demaptera</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forficula auricularia L.</td>
<td>European earwig</td>
<td>(MAFNZ, 2000b) Yes (CSIRO/AFFA, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insects - Diptera</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allograpta ropalus (Walker) (= Syrphus ropalus)</td>
<td>Syrphid fly</td>
<td>(Valentine, 1967; HortResearch, 1999b) No (Evenhuis, 2001)</td>
<td>-</td>
<td>Not likely Light brown apple moth Epiphyas postvittana was listed as a host species of this syrphid fly by Valentine (1967). However, this species is not listed in HortResearch (1999b) as a natural enemy of the light brown apple moth, indicating that the species is not an important predator of this moth in apple orchards.</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anomalomyia guttata (Hulton)</td>
<td>Fungus gnat</td>
<td>(MAFNZ, 2000b) No (McLaren and Fraser, 1994)</td>
<td>-</td>
<td>Not likely Adults are orchard or packhouse contaminants, larvae associated with decomposing vegetable matter (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
<td>Consider species further?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>---</td>
<td>----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antipodiphora tonnoiri (Schmitz) [Diptera: Phoridae]</td>
<td>Native phorid fly</td>
<td>(MAFNZ, 2000b)</td>
<td>No (McLaren and Fraser, 1994)</td>
<td>Not likely Adults are orchard or packhouse contaminants, larvae are secondary feeders on decaying plant material (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrocnodax sp. (= Arthrocnodax) [Diptera: Cecidomyiidae]</td>
<td>Cecidomyiid fly</td>
<td>(HortResearch, 1999b)</td>
<td>Yes (HortResearch, 1999b)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brady sia sp. Winnertz [Diptera: Sciaridae]</td>
<td>Fungus gnat</td>
<td>(MAFNZ, 2002b)</td>
<td>Uncertain (genus present) (CSIRO/AFFA, 2001)</td>
<td>Not likely Larvae feed on decomposing plant material but some species may be damaging to seedlings in greenhouses (MAFNZ, 2002b). No records of interceptions of species of this genus from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brevicornu maculata (Tonnoir) [Diptera: Tachinidae]</td>
<td>Fungus gnat</td>
<td>(MAFNZ, 2000b)</td>
<td>No (McLaren and Fraser, 1994)</td>
<td>Not likely Adults are orchard or packhouse contaminants, larvae associated with decomposing vegetative matter (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caliptora stygia F. [Diptera: Calliphoridae]</td>
<td>Brown blowfly</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (McLaren and Fraser, 1994)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptochetum iceryae Williston [Diptera: Cryptochetidae]</td>
<td>Cryptochetid fly</td>
<td>(Valentine, 1967)</td>
<td>Yes* (Evenhuis, 1996b); (Fasulo and Brooks, 1993)</td>
<td>Not likely Icerya purchasi listed as host. This fly was introduced from Australia. It is a parasite that lays its eggs in the mature larva and pupae of the cottony cushion scale that are not on fruit (Fasulo and Brooks, 1993). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culex pervigilans Bergroth [Diptera: Culicidae]</td>
<td>Vigilant mosquito</td>
<td>(MAFNZ, 2000b)</td>
<td>No (McLaren and Fraser, 1994)</td>
<td>Not likely Adults are orchard or packhouse contaminants, and they are nectar and blood feeders, larvae are aquatic (MAFNZ, 2000b). The species has potential veterinary importance including as potential intermediate host for dog heartworm Dirofilaria immitis (MAFNZ, 2000d). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in Australia</td>
<td>Presence in New Zealand</td>
<td>Potential for being on pathway</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Consider species further?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
<td>-------------------------------------</td>
<td>-------------------------</td>
<td>--------------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dasineura mali Keiffer [Diptera: Cecidomyiidae]</td>
<td>Apple leafcurling midge</td>
<td>(MAFNZ, 2000b)</td>
<td>No (McLaren and Fraser, 1994)</td>
<td>Likely Larvae are primary pest on foliage; larvae can pupate on fruit (MAFNZ, 2000b).</td>
<td>Feasible</td>
<td>Significant Apple tree shoots damaged and tree growth retarded resulting in decreased fruit yield in Europe and New Zealand (Tomkins et al., 1994); (Smith and Chapman, 1995); (CABI, 2002; Smith and Chapman, 1995; CABI, 2002)</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diadiplosis koebelei [Diptera: Cecidomyiidae]</td>
<td>Cecidomyiid fly</td>
<td>(HortResearch, 1999b)</td>
<td>Yes Introduced into New Zealand from Australia (HortResearch, 1999b)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diadiplosis sp. [Diptera: Cecidomyiidae]</td>
<td>Cecidomyiid fly</td>
<td>(HortResearch, 1999b)</td>
<td>Uncertain</td>
<td>Not likely Larvae of this fly have been recorded feeding on mealybugs (HortResearch, 1999b). Mealybugs can be found in calyx and stem end of fruit (HortResearch, 1999b; Scott, 1984). However, packinghouse processes have been shown to eliminate most mealybugs (Whiting et al., 1998) and consequently their associated predators.</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drosophila spp. [Diptera: Drosophilidae]</td>
<td>Vinegar flies</td>
<td>(HortResearch, 1999b)</td>
<td>Uncertain</td>
<td>Likely Species of this genus have been intercepted in Australia on tulips, vegetables, etc from New Zealand (DAFF-PDI, 2002).</td>
<td>Feasible</td>
<td>Not significant. These flies lay their eggs in rotting fruit where larvae may occur in large numbers. Drosophila do not attack sound fruit (HortResearch, 1999b)</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euryomma peregrinum (Meigen) [Diptera: Fanniidae]</td>
<td>Muscid fly</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (McLaren and Fraser, 1994)</td>
<td>Not likely Adults are orchard or packhouse contaminants, larvae associated with animal skins and hides (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Comments if applicable</td>
<td>Consider species further?</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>--</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Hydrellia tritici Coquillett [Diptera: Ephydridae]</td>
<td>Black pasture fly</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (McLaren and Fraser, 1994)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Melangyna novaezealandiae Macquart (= Syrphus orta) [Diptera: Syrphidae]</td>
<td>Syrphid fly</td>
<td>(Valentine, 1967; HortResearch, 1999b)</td>
<td>No (Evenhuis, 2001)</td>
<td>Not likely</td>
<td>Light brown apple moth Epiphyas postvittana was listed as a host species of this syrphid fly by Valentine (1967). However, this species is not listed in HortResearch (1999b) as a natural enemy of the light brown apple moth, indicating it is not an important predator of this moth in apple orchards.</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Melanostoma fasciatum Macquart [Diptera: Syrphidae]</td>
<td>Syrphid fly</td>
<td>(HortResearch, 1999b)</td>
<td>No (Evenhuis, 2001)</td>
<td>Not likely</td>
<td>Larvae of this native hover fly have been recorded feeding on longtailed mealybug (Pseudococcus longispinus) found on the leaves, bark and fruit of apple. However, packinghouse processes have been shown to eliminate most mealybugs (Whiting et al., 1998) and consequently their associated predators.</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Mycetophila spp. [Diptera: Mycetophilidae]</td>
<td>Fungus gnats</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Likely</td>
<td>Species of this genus have been intercepted in Australia on fresh Lisianthus/Eustoma from New Zealand (DAFF-PDI, 2002).</td>
<td>Feasible</td>
<td>Not significant</td>
<td>Adults are orchard or packhouse contaminants, secondary feeder on decaying plant material (MAFNZ, 2000b).</td>
<td>No</td>
</tr>
<tr>
<td>Pales feredayi (Hutton) [Diptera: Tachinidae]</td>
<td>Tachinid fly</td>
<td>(Valentine, 1967)</td>
<td>No (Evenhuis, 1996a)</td>
<td>Not likely</td>
<td>A parasitic fly of tortricids, noctuids and other species. Leafroller caterpillars parasitised by this fly continue to develop, usually to the pupal stage before dying. By this stage the parasite has formed a puparium inside the leafroller pupa from which the adult fly later emerges (HortResearch, 1999b). Although larvae and pupae of host can be found on fruit and in calyx (HortResearch, 1999b; Scott, 1984), it is considered unlikely that this fly will remain on the pathway because (1) only a small percentage of leafroller larvae are parasitised, and (2) most leafroller larvae actually feed on leaves rather than fruit.</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Pales funesta (Hutton) [Diptera: Tachinidae]</td>
<td>Tachinid fly</td>
<td>(Valentine, 1967)</td>
<td>No (Evenhuis, 1996a)</td>
<td>Not likely</td>
<td>Leafroller caterpillars parasitised by this fly parasitic continue to develop, usually to the pupal stage before dying. By this stage the parasite has formed a puparium inside the leafroller pupa from which the adult fly later emerges (HortResearch, 1999b). Although larvae and pupae of host can be found on fruit and in calyx (HortResearch, 1999b; Scott, 1984), it is considered that it is unlikely that this fly will be on pathway because (1) only less than 0.5% of lightbrown apple moths, and 1-6% of Greenheaded leafrollers were parasitised by Pales funesta in a three year study of an Auckland apple orchard (HortResearch, 1999b), and (2) most leafroller larvae actually feed on leaves rather than fruit.</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia</td>
<td>Potential for being on pathway</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Consider species further?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>---------------------------------------</td>
<td>-----------------------</td>
<td>------------------------------</td>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syrphidae [Diptera: Syrphidae]</td>
<td>hoverflies</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Not likely MAFNZ (2000b) stated that adults are orchard or packhouse contaminants and predators on aphids. However, this record was removed in (MAFNZ, 2002b). It is considered that the Syrphidae as listed in (MAFNZ, 2000b) are not likely to be on the pathway.</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigonospila brevifacies (Hardy) [Diptera: Tachinidae]</td>
<td>Tachinid fly</td>
<td>(Munro, 1998)</td>
<td>Yes (McLaren and Fraser, 1994)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uclesiella irregularis Malloch (misspelled as U. irregulqaris) [Diptera: Tachinidae]</td>
<td>Tachinid fly</td>
<td>(Valentine, 1967; Evenhuis, 1996a)</td>
<td>No (Evenhuis, 1996a)</td>
<td>Not likely Valentine (1967) listed light brown apple moth, Epiphyas postvittana, as a host species of this tachinid fly. However, there is no recent record of this fly as a biocontrol agent of light brown apple moth in HortResearch (1999b), indicating U. irregularis is either no longer found or is unimportant in apple orchards in New Zealand.</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insects - Hemiptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acyrthosiphon pisum (Harris) [Hemiptera: Aphididae]</td>
<td>Pea aphid</td>
<td>(MAFNZ, 2002b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphipsalta cingulata (Fabricius) [Hemiptera: Cicadidae]</td>
<td>Short-winged clapping cicada</td>
<td>(HortResearch, 1999b)</td>
<td>No (Fletcher, 1998)</td>
<td>Not likely Cicada eggs are often laid in groups beneath the surface of plant tissues, such as in stems or fruits. Apple fruits often present with diagonal rows of oviposition (egg-laying) scars made by female cicadas (HortResearch, 1999b). MAFNZ (2003a) states that this species is “Occasional/very infrequent but quite conspicuous damage, graded out in packhouse.” This information indicates that it is unlikely that this species will be on export quality apples.</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphipsalta zelandica (Boisdoual) [Hemiptera: Cicadidae]</td>
<td>Long-winged clapping cicada</td>
<td>(HortResearch, 1999b)</td>
<td>No (Fletcher, 1998)</td>
<td>Not likely Cicada eggs are often laid in groups beneath the surface of plant tissues, such as in stems or fruits. Apple fruits often present with diagonal rows of oviposition (egg-laying) scars made by female cicadas (HortResearch, 1999b). MAFNZ (2003a) states that this species is “Occasional/very infrequent but quite conspicuous damage, graded out in packhouse.” This information indicates that it is unlikely that this species will be on export quality apples.</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzora unicolor (Walker) (syn=Sephena cinerea Kirkaldy) [Hemiptera: Flatidae]</td>
<td>Flatid hopper</td>
<td>(Spiller and Wise, 1982)</td>
<td>Yes (Fletcher, 1979); (Fletcher and Larivière, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Consider species further?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aonidiella aurantii (Maskell)</td>
<td>[Hemiptera: Diaspididae]</td>
<td>California red scale (MAFNZ, 2000b)</td>
<td>Yes (Smith et al., 1997)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aphis gossypii Glover</td>
<td>[Hemiptera: Aphididae]</td>
<td>Melon aphid (MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspidiotus nerii Bouché</td>
<td>[Hemiptera: Diaspididae]</td>
<td>Oleander scale (MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aulacorthum solani (Kaltenbach)</td>
<td>[Hemiptera: Aphididae]</td>
<td>Foxglove aphid (MAFNZ, 1999a)</td>
<td>Yes (CABI, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brentiscerus putoni (F.B. White)</td>
<td>[Hemiptera: Lygaeidae]</td>
<td>Lygaeid bug (MAFNZ, 2000b)</td>
<td>Yes* (AQIS, 1998a)</td>
<td>Not likely Orchard or packhouse contaminants, normally seed-feeder on native hosts (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calocoris norvegicus (Gmelin)</td>
<td>[Hemiptera: Miridae]</td>
<td>Potato mind (MAFNZ, 1999a)</td>
<td>Yes* (Williams, 2000)</td>
<td>Not likely Record is on leaves (no life stage recorded); probably an adult contaminant; nymphs of this species are usually found on low growing vegetables and herbs; nymphs are primary feeders (MAFNZ, 1999a). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiastethus consors White</td>
<td>[Hemiptera: Anthocoridae]</td>
<td>Anthocorid bug (Larivière, 2000)</td>
<td>No (Cassis and Gross, 2002a)</td>
<td>Not likely A predatory bug related to the pirate bug (Orius victinus). C. consors is reported to feed on twospotted spider mite and is a probable predator of psocids. It is not likely that this predatory bug will be on the pathway because it is encountered only occasionally in pipfruit orchards (HortResearch, 1999b).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiastethus poweri White (+ Cardiastethus power)</td>
<td>[Hemiptera: Anthocoridae]</td>
<td>Anthocorid bug (Larivière, 2000)</td>
<td>No (Cassis and Gross, 2002a)</td>
<td>Not likely A predatory bug related to the pirate bug that is reported to feed on twospotted spider mite (HortResearch, 1999b). It is not likely that this predatory bug will be on the pathway because it is encountered only occasionally in apple orchards.</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cavariella aegopodii (Scopoli)</td>
<td>[Hemiptera: Aphididae]</td>
<td>Carrot aphid (MAFNZ, 2002b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
<td>Consider species further?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>-------------------------------------</td>
<td>--</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cermada punctimargo (Walker) (as Cixius punctimargo Walker in (MAFNZ, 2002b) [Hemiptera: Cixiidae])</td>
<td>Cixiid plant hopper</td>
<td>(MAFNZ, 2002b)</td>
<td>No (Fletcher and Larivière, 2001)</td>
<td>Not likely Nymphs feed on roots of shrubs, broadleaf and podocarp trees. Genus Cixius is cosmopolitan (MAFNZ, 2002b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cermatulus nasalis (Westwood) [Hemiptera: Pentatomidae]</td>
<td>Pentatomid bug</td>
<td>(Larivière, 2000)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceroplastes sinensis Del Guerro [Hemiptera: Coccidae]</td>
<td>Chinese wax scale</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Qin and Gullan, 1994)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccus hesperidum L. [Hemiptera: Coccidae]</td>
<td>Brown soft scale</td>
<td>(Spiller and Wise, 1982)</td>
<td>Yes (Ben-Dov, 2002)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaspidiotus ostreaeformis (Curtis) (as Quadraspoidius ostreaeformis (Curtis) in (MAFNZ, 2000b) [Hemiptera: Diaspididae])</td>
<td>Oystershell scale, Pear Oyster Scale</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (CSIRO/AFF A, 2001)</td>
<td>Likely Oystershell scale infection is usually concentrated around the calyx or stem end, but may occur anywhere on the fruit surface (HortResearch, 1999b). Feasible Significant Oystershell scale is a major scale pest of apple and pear in the southern regions of New Zealand (HortResearch, 1999b)</td>
<td>Yes*</td>
<td>-</td>
<td>Yes*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaspidiotus perniciosus (Comstock) (as Quadraspoidius perniciosus in (MAFNZ, 2000b) [Hemiptera: Diaspididae])</td>
<td>San Jose scale</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dictyotus caenosus (Westwood) [Hemiptera: Pentatomidae]</td>
<td>Brown shield bug</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (Ingram, 1998)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieuches notatus (Dallas) [Hemiptera: Lygaeidae]</td>
<td>Lygaeid bug</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (May, 1965)</td>
<td>Not likely Adults are orchard or packhouse contaminants, primary feeders on water cress in water courses (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
<td>Consider species further?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>--</td>
<td>--------------------------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>---</td>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edwardsiana crataegi (Douglas) [Hemiptera: Cicadellidae]</td>
<td>Froggatt’s apple leafhopper</td>
<td>(MAFNZ, 2000b) but unconfirmed (Fletcher and Larivière, 2002)</td>
<td>No (Fletcher and Larivière, 2002)</td>
<td>Not likely</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eriococcus coccineus Cockerel [Hemiptera: Eriococcidae]</td>
<td>Spine scale insect</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Miller and Gimpel, 2002b)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eriosoma lanigerum (Hausmann) [Hemiptera: Aphididae]</td>
<td>Woolly apple aphid</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halticus minutus Reuter [Hemiptera: Miridae]</td>
<td>Mirid bug</td>
<td>(MAFNZ, 2002b)</td>
<td>Yes* (Cassis and Gross, 2002a)</td>
<td>Not likely</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiberlesia lataniae (Signoret) [Hemiptera: Diaspididae]</td>
<td>Lataniae scale</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CABI , 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiberlesia rapax (Comstock) [Hemiptera: Diaspididae]</td>
<td>Greedy scale</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icerya purchasi Maskell [Hemiptera: Margarodidae]</td>
<td>Cottony cushion scale</td>
<td>(Spiller and Wise, 1982)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidosaphes ulmi (L) [Hemiptera: Diaspididae]</td>
<td>Apple mussel scale</td>
<td>(CABI , 2001)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lindingaspis rossi (Maskell) [Hemiptera: Diaspididae]</td>
<td>Ross’ black scale</td>
<td>(Spiller and Wise, 1982)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycocoris camplant feeders (Fabricius) [Hemiptera: Anthocoridae]</td>
<td>Debris bug</td>
<td>(Larivière, 2000)</td>
<td>No (Cassis and Gross, 2002a)</td>
<td>Not likely</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
<td>Consider species further?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrosiphum euphorbiae (Thomas)</td>
<td>Potato aphid</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (CABI, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrosiphum rosae (L.)</td>
<td>Rose aphid</td>
<td>(Spiller and Wise, 1982)</td>
<td>Yes (CSIRO/AFFA, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myzus persicae (Sulzer)</td>
<td>Green peach aphid</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (CABI, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nabis kinbergii Reuter (also as Nabis capsiformis (German); however, Nabis capsiformis is not listed by (Larivière, 2000) as present in New Zealand, reference to Nabis capsiformis (German) in (Valentine, 1967) should be referred to N. kinbergii the species that has consistently been misidentified in both Australia and New Zealand as N. capsiformis see (Woodward, 1982); (Woodward and Strommer, 1982))</td>
<td>Nabid bug</td>
<td>(Larivière, 2000)</td>
<td>Yes (Cassis and Gross, 2002a) (Woodward and Strommer, 1982)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nezara viridula (L.)</td>
<td>Green vegetable bug</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (CABI, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nipaecoccus aurilanus (Maskell) (= Pseudococcus aurilanus (Maskell)) [Hemiptera: Pseudococcidae]</td>
<td>Golden mealybug</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (Williams, 1985)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
<td>Consider species further?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>---------------------------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>-----------------------------------</td>
<td>---</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nysius huttoni White [Hemiptera: Lygaeidae]</td>
<td>Wheat bug</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Cassis and Gross, 2002b)</td>
<td>Likely MAFNZ (2003a) indicates that this species is a contaminant of apple fruit. It is a seed feeder on grasses and herbaceous hosts (MAFNZ, 2000b), and considered a quarantine pest on apples exported to the USA (Lay-Yee et al., 1997).</td>
<td>Feasible</td>
<td>Significant An economic pest of cruciferous crops and wheat (Landcare Research, 1999). An important pest of wheat (Swallow and Cressey, 1987) and brassica crops (Ferguson, 1994).</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oechalia schellenbergii Guérin [Hemiptera: Pentatomidae]</td>
<td>Predatory shield bug</td>
<td>(Lariviére, 2000)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orius vicinus Ribaut [Hemiptera: Anthocoridae]</td>
<td>Anthocorid bug</td>
<td>(HortResearch, 1999b)</td>
<td>No (Cassis and Gross, 2002a)</td>
<td>Not likely HortResearch (1999b) indicates that this large predatory bug was discovered in Otago in 1992 and has since been found in Canterbury; it feeds on a wide variety of insects and mites, including European red mite, twospotted spider mite, rust mites, aphids, and Froggatt’s apple leafhopper. It is considered packing house processes would eliminate it.</td>
<td>-</td>
<td></td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pachybrachius inornatus (Walker) (as Remaudiereana inornatus in (MAFNZ, 2000b)) [Hemiptera: Lygaeidae]</td>
<td>Weed seed bug</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (AQIS, 1998a)</td>
<td>Not likely Adults are orchard or packhouse contaminants, seed feeder on herbaceous hosts (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td></td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paracoccus cavaticus Cox [Hemiptera: Pseudococcidae]</td>
<td>Mealy bug</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Ben-Dov and German, 2002b)</td>
<td>Not likely It is not clear why this species is listed as having pest status on apple fruit (potential primary); it is normally found on bark and cracks on woody stems of native hosts. This species was listed in the draft IRA (Biosecurity Australia, 2000) but further investigation of the reference cited (Cox, 1987) indicates that apple is not listed as its host.</td>
<td>-</td>
<td></td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paracoccus glaucus (Maskell) (= Pseudococcus glaucus) [Hemiptera: Pseudococcidae]</td>
<td>Mealybug</td>
<td>(Spiller and Wise, 1982), (Cox, 1987)</td>
<td>No (Ben-Dov and German, 2002c)</td>
<td>Not likely Occurs on undersides of leaves (Cox, 1987; Spiller and Wise, 1982). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td></td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paracoccus sp. nr. cavaticus [Hemiptera: Pseudococcidae]</td>
<td>Mealy bug</td>
<td>Uncertain</td>
<td></td>
<td>Not likely It is most likely not on pathway because P. cavaticus, a species closely related to Paracoccus sp. nr. cavaticus, is normally found on bark and cracks on woody stems of native hosts (MAFNZ, 1999a). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td></td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
<td>Consider species further?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>--</td>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parlatoria desolator McKenzie (All records of Parlatoria pergandii Comstock in New Zealand actually refer to P. desolator (Charles and Henderson, 2002) [Hemiptera: Diaspididae]</td>
<td>Diaspidid scale</td>
<td>(McKenzie, 1960)</td>
<td>No (Miller and Gimpel, 2002a)</td>
<td>Not likely Specimens occur on stems of host (McKenzie, 1960). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parlatoria pittospori Maskell (Reference of Parlatoria camelliae Comstock on apple in (Spiller and Wise, 1982) should be referred to P. pittospori Maskell, no other reference of P. camelliae in New Zealand (Henderson, 2000) [Hemiptera: Diaspididae]</td>
<td>Mauve pittosporum scale</td>
<td>(HortResearch, 1999b)</td>
<td>Yes (CSIRO/AFFA, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parthenolecanium corni (Bouché) [Hemiptera: Coccidae]</td>
<td>Brown scale, Plum scale</td>
<td>(Ben-Dov, 1993); (Hodgson and Henderson, 2000); Hodgson and Henderson, 2000</td>
<td>Yes* (CSIRO/AFFA, 2001)</td>
<td>Not likely This soft scale sucks plant juices from leaves and twigs. They settle mostly on the underside of leaves, especially along the veins during spring moving back to the twigs in autumn (Henderson, 2001). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenacoccus graminicola Leonardi [Hemiptera: Pseudococcidae]</td>
<td>Mealybug</td>
<td>(Cox, 1987)</td>
<td>Yes (Williams, 1985)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philaenus spumarius L. [Hemiptera: Cercopidae]</td>
<td>Spittle bug</td>
<td>(Larivière, 2000)</td>
<td>No (Fletcher, 1998)</td>
<td>Not likely Spittle bugs do not feed on apples or pears but are sometimes seen feeding on the shoots and stems. Nymphs produce spittle (thick foam) masses on their host plants in which they hide (CABI, 2001). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phyllacteophaga froggatti Rick. [Hymenoptera: Pergidae]</td>
<td>Leafblister sawfly</td>
<td>(MAFNZ, 2002b)</td>
<td>Yes (CSIRO/AFFA, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Consider species further?</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Phylloxera sp. [Hemiptera: Phylloxeridae]</td>
<td>Gall phylloxera</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Not likely</td>
<td>Only the oak leaf phylloxera P. glabra (von Heyden) is recorded in New Zealand (MAFNZ, 2000b). No records of interceptions of species of this genus from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Planococcus mali Ezzat & McConnell [Pseudococcidae]</td>
<td>Mealybug</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (Williams, 1985)</td>
<td>Likely</td>
<td>Two specimens were intercepted in New York on apple fruit from Tasmania in 1946 (Ezzat and McConnell, 1956). It has also been recorded on apple (Malus pumila) in New Zealand (Cox, 1987).</td>
<td>Feasible</td>
<td>Significant</td>
<td>Yes*</td>
<td></td>
</tr>
<tr>
<td>Plinthus spp. [Hemiptera: Lygaeidae]</td>
<td>Seed bug</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Not likely</td>
<td>Adults are orchard or packhouse contaminants, seed feeder on herbaceous hosts (MAFNZ, 2000b). No records of interceptions of species of this genus from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Ploia antipoda (Bergroth) [Hemiptera: Reduviidae]</td>
<td>Fragile assassin bug</td>
<td>(Larivière, 2000)</td>
<td>No (Cassis and Gross, 2002a)</td>
<td>Not likely</td>
<td>Adults are mostly generalist predators in gardens and fields. No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
<td>Consider species further?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>-------------------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>-------------------------------------</td>
<td>---</td>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudococcidae species [Hemiptera: Pseudococcidae]</td>
<td>Mealybugs</td>
<td>(MAFNZ, 2000b)</td>
<td>nine species of mealybug are known from apple of which six species are known from Australia and three Paracoccus are not from Australia see next column for details</td>
<td>Not likely In the draft IRA (Biosecurity Australia, 2000), ‘Pseudococcidae species’ was considered further and a full risk assessment was undertaken. However, in its submission on the draft IRA, New Zealand Government provided clarification about the reference to ‘Pseudococcidae species’ in their list. The following are excerpts from their response (Horticulture Australia Ltd., 2000): “Appendix 1 of the draft IRA lists all pest species known to be associated with apple in New Zealand (table 15). Included in this list are 10 species of the family Pseudococcidae. Of these, six species are considered by AFFA to be present in the entry pathway and therefore of quarantine interest. However, all six species are already established in Australia and are therefore not of concern. “The apple pest list includes a Pseudococcidae sp. record but this is almost certainly one of the 10 species mentioned specifically elsewhere in the pest list. MAF has in place an official surveillance system for mealybugs as part of USDA pre-clearance program. In this program adult pseudococcids are identified to species level to monitor any changes in the mealy bug species complex (as USDA do not require immature mealybugs to be identified). This surveillance data provides evidence to support our contention that all mealybugs on apple fruit are those listed on the apple pest list.” Further assessment of the available information clearly supports New Zealand’s statements. The nine identified species of mealybugs on apple in New Zealand are: Paracoccus cavaticus, Paracoccus glaucus, and Paracoccus sp. near cavaticus, Phenacoccus graminicola, Planococcus mali and Pseudococcus calcocariae, Pseudococcus longispinus, Pseudococcus similans, and Pseudococcus viburni. The three species of Paracoccus are not reported from Australia but they attack only leaves and are not found on fruit and therefore not likely on pathway. The other six species found on fruit belonging to the genera Phenacoccus, Planococcus and Pseudococcus are all present in Australia. Also, (MAFNZ, 2000b) state Pseudococcidae is a one-off record, citing the book ‘Insects of Australia’ (CSIRO, 1970) as reference. From the above evidence, it is justifiable to remove ‘Pseudococcidae species’ from further consideration in this analysis.</td>
<td>-</td>
<td>-</td>
<td>No (as yes in the draft IRA but see comments at the left)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Consider species further?</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>--------------------------------------</td>
<td>--------------------------------</td>
<td>------------------------------</td>
<td>------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
</tbody>
</table>
| *Pseudococcus calceolariae* (Maskell)
[Hemiptera: Pseudococcidae]
(*Pseudococcus similans* (Lidgitt) listed in (MAFNZ, 2000b) is now a junior synonym of *Pseudococcus calceolariae* (Maskell) (Charles et al., 2000)) | Citrophilus mealybug | (MAFNZ, 2000b) | Yes* (Ben-Dov and German, 2002a) | | Likely
Can be on citrus and apple fruit; occurring on the aerial parts of the host-plant (Cox, 1987). | Feasible | Significant
This is a highly polyphagous species, reported as a pest of citrus and grapevines (CABI, 2002) | Yes* |
| *Pseudococcus longispinus* (Targioni-Tozzetti)
[Hemiptera: Pseudococcidae] | Long-tailed mealybug | (MAFNZ, 2000b) | Yes (Ben-Dov and German, 2002d) | | | - | - | No |
| *Pseudococcus viburni* (Signoreti)
(< *P. affinis*)
[Hemiptera: Pseudococcidae] | Obscure mealybug | (MAFNZ, 2000b) | Yes (AQIS, 1998a) | | | - | - | No |
| *Rhopalosiphum insertum* (Walker)
[Hemiptera: Aphididae] | apple-grass aphid | (CABI, 2001) | Uncertain
As yes in (Ridland and Carver, 1987) quoted in (CABI, 2001), as Uncertain in (CSIRO/AFF A, 2001) | | Not likely
The species is found on leaves, stems, roots, and growing points (CABI, 2001). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002). | - | - | No |
| *Rhopalosiphum padi* (Linnaeus)
[Hemiptera: Aphididae] | Cereal aphid | (MAFNZ, 2002b) | Yes (CSIRO/AFF A, 2001) | | | - | - | No |
| *Rhypodes clavicornis* (F)
[Hemiptera: Lygaeidae] | Seed bug | (MAFNZ, 2000b) | No | | Not likely
Adults are orchard or packhouse contaminants, seed feeder on herbaceous hosts (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002). | - | - | No |
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhypodes serricatus Usinger [Hemiptera: Lygaeidae]</td>
<td>Seed bug</td>
<td>(MAFNZ, 2000b)</td>
<td>No</td>
<td>Not likely Adults are orchard or packhouse contaminants, seed feeder on herbaceous hosts (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Saissetia oleae (Olivier) [Hemiptera: Coccidae]</td>
<td>Black scale</td>
<td>(CABI, 2001)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Scolypopa australis (Walker) [Hemiptera: Ricianidae]</td>
<td>Passionvine leafhopper</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Sejanus albisignatus (Knight) (= Idatiella albisignata) [Hemiptera: Miridae]</td>
<td>Midir bug</td>
<td>(Collyer, 1976)</td>
<td>Yes (Cassis and Gross, 1995)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Sidinia kinbergi (Stål) [Hemiptera: Miridae]</td>
<td>Australian crop mirid</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Sidinia kinbergi (Stål) (= Euryystylus australis) [Hemiptera: Miridae]</td>
<td>Mirid bug</td>
<td>(Lariviére, 2000)</td>
<td>Yes (Cassis and Gross, 2002a)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Siphanta acuta (Walker) [Hemiptera: Fatidae]</td>
<td>Green plant hopper</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Theroaophis trifolii (Monell) form maculata [Hemiptera: Aphididae]</td>
<td>Spotted alfalfa aphid</td>
<td>(MAFNZ, 2002b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Insects - Hymenoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adelius sp. [Hymenoptera: Braconidae]</td>
<td>Braconid parasitic wasp</td>
<td>(Valentine, 1967)</td>
<td>Uncertain</td>
<td>Not likely Valentine (1967) listed the Brownheaded leafroller Ctenopseutis obliquana as host species of this parasitic wasp. However, there is no recent record of this species in HortResearch (1999b), indicating the wasp is either no longer found or is unimportant in apple orchards in New Zealand. It is therefore unlikely that the wasp will be on the pathway.</td>
<td></td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Apanteles tasmanicus Carneron [Hymenoptera: Braconidae]</td>
<td>Leafroller parasite</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (AQIS, 1998a), (Clunie and Berry, 2002)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences if applicable</td>
<td>Consider species further?</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>Aphelinus abdominalis (Dalman) [Hymenoptera: Aphelinidae]</td>
<td>Aphelinid parasitic wasp</td>
<td>(HortResearch, 1999b)</td>
<td>Yes (Waterhouse and Sands, 2001: 115)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Aphelinus mali (Haldeman) [Hymenoptera: Aphelinidae]</td>
<td>Aphelinid parasitic wasp</td>
<td>(Wearing et al., 1978)</td>
<td>Yes (CABI, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Aphytis chilensis Howard [Hymenoptera: Aphelinidae]</td>
<td>Aphelinid parasitic wasp</td>
<td>(HortResearch, 1999b)</td>
<td>Yes (Waterhouse and Sands, 2001: 194), (Rosen and De Bach, 1979: 352)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Aphytis chrysomphali (Mercet) [Hymenoptera: Aphelinidae]</td>
<td>Red scale parasite</td>
<td>(Valentine, 1967)</td>
<td>Yes (CSIRO/AFFA, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Aphytis diaspidis (Howard) [Hymenoptera: Aphelinidae]</td>
<td>Aphelinid parasitic wasp</td>
<td>(HortResearch, 1999b)</td>
<td>Yes (Waterhouse and Sands, 2001: 178)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Aphytis mytilaspidis (Le Baron) [Hymenoptera: Aphelinidae]</td>
<td>Aphelinid parasitic wasp</td>
<td>(HortResearch, 1999b)</td>
<td>No (Rosen and De Bach, 1979: 464)</td>
<td>Likely This parasitic wasp is widespread and frequent in armoured scale populations of various species throughout New Zealand. Its preferred armoured scale host is the mussel scale, Lepidosaphes ulmi (HortResearch, 1999b). Mussel scale is found on fruit as well as the bark and stems of apple trees. Fruit infection by this scale is not confined to the calyx or stem end and is frequently all over the surface, accompanied by fruit discoloration (HortResearch, 1999b).</td>
<td>Feasible</td>
<td>Not significant As this wasp is used as a biocontrol agent against pest armoured scales (HortResearch, 1999b) and these pests are also present in Australia, it is expected that the wasp would not have a negative impact in Australia.</td>
<td>No</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
<td>Consider species further?</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Ascogaster quadridentata Wesmael [Hymenoptera: Braconidae]</td>
<td>Braconid parasitic wasp</td>
<td>(Valentine, 1967)</td>
<td>No introduced but failed to establish (Waterhouse and Sands, 2001): 362</td>
<td>Not Likely Cydia pomonella listed as host species. This wasp lays its eggs individually in codling moth eggs. After hatching the codling moth caterpillar completes its development in the fruit and overwinters under the bark. The adult parasitoid wasp does not emerge until the following spring, having taken a full year to develop within the codling moth caterpillar. As a result of its slow development, this wasp does not protect the fruit from damage and its benefit is in reducing codling moth populations long-term. Although this parasitoid can survive in organic and IFP orchards, the codling moth populations should be too low for it to be important. It is considered that this wasp is unlikely to be on the pathway because (1) orchards designated for export will have very low populations of codling moth as stated above, (2) not every codling moth will be parasited, and (3) fruit infested by codling moth will likely be removed from export.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aspicolpus hudsoni Turner (misspelt as Apsicolpus) [Hymenoptera: Braconidae]</td>
<td>Braconid parasitic wasp</td>
<td>(Wang and Shi, 1999)</td>
<td>No (Shenefelt, 1970)</td>
<td>Not likely Parasitoid of lemon tree borer Oemona hirta that bores in the trunk and branches of its host tree often damaging the framework of the host tree (Clearwater, 1989).</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Caliroa carasi (L.) [Hymenoptera: Tenthredinidae]</td>
<td>Cherryslug, pear slug sawfly</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (CABI, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Campoplex sp. [Hymenoptera: Ichneumonidae]</td>
<td>Ichneumonid parasitic wasp</td>
<td>(Wang and Shi, 1999)</td>
<td>Uncertain</td>
<td>Not likely Parasitoid of lemon tree borer Oemona hirta that bores in the trunk and branches of its host tree often damaging the framework of the host tree (Clearwater, 1989).</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coccophagus gurneyi Compere [Hymenoptera: Aphelinidae]</td>
<td>Aphelinid parasitic wasp</td>
<td>(HortResear ch, 1999b)</td>
<td>Yes (Waterhouse and Sands, 2001): 228</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Coccophagus scutellaris (Dalman) [Hymenoptera: Aphelinidae]</td>
<td>Aphelinid parasitic wasp</td>
<td>(Valentine, 1967)</td>
<td>Yes (Waterhouse and Sands, 2001): 168</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>---------------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Cotesia ruficrus (Haliday) (= Apanteles ruficrus)</td>
<td>Braconid parasitic wasp</td>
<td>(Valentine, 1967)</td>
<td>Yes (Waterhouse and Sands, 2001: 354), (Austin and Dangerfield, 1992 : 22)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diadegma sp. [Hymenoptera: Ichneumonidae]</td>
<td>Ichneumonid parasitic wasp</td>
<td>(HortResearch, 1999b)</td>
<td>Uncertain</td>
<td>Not Likely This wasp parasitises a very small percentage of brownheaded leafroller, greenheaded leafroller or light brown apple moths in orchards (HortResearch, 1999b). Since only a small percentage of the host leafroller caterpillars will be found on fruit, it is considered unlikely that this wasp would be on the pathway.</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Diplazon laetatorius (Fabricius)</td>
<td>Ichneumonid parasitic wasp</td>
<td>(HortResearch, 1999b)</td>
<td>Yes (Waterhouse and Sands, 2001: 262, 401)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Echthromorpha intricatoria (Fabricius) (misspell as Echthromorpha intricatoria) [Hymenoptera: Ichneumonidae]</td>
<td>Ichneumonid parasitic wasp</td>
<td>(Valentine, 1967)</td>
<td>Yes (CSIRO/AFFA, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Encarsia citrina (Craw) (Aspidiotiphagus citrus) [Hymenoptera: Aphelinidae]</td>
<td>Aphelinid parasitic wasp</td>
<td>(HortResearch, 1999b)</td>
<td>Yes (Astridge and Elder, 2000)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
<td>Consider species further?</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>---------------------------------------</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Encarsia perniciosa (Tower) (= Prospaltella perniciosa) [Hymenoptera: Aphelinidae]</td>
<td>Red scale parasite</td>
<td>(HortResearch, 1999b) Yes (CSIRO/AFFA, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Epitetracnemus zetterstedti (Westwood) (= Anabrolepis zetterstedti) [Hymenoptera: Encyrtidae]</td>
<td>Encrytid parasitic wasp</td>
<td>(Valentine, 1967) No</td>
<td>Not likely This species is a parasitoid of Mussel scale, San Jose scale and Oystershell scale. However, the importance of Epitetracnemus zetterstedti in control of these scales in New Zealand is unknown but it has been rarely reported (HortResearch, 1999b). Based on this evidence, it is considered that this parasitoid is unlikely to be on the pathway.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Eupsenella sp. [Hymenoptera: Bethylidae]</td>
<td>Bethylid parasitic wasp</td>
<td>(Berry, 1998) Yes introduced into New Zealand from Australia see (Berry, 1998)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Eupteromalus sp. [Hymenoptera: Pteromalidae]</td>
<td>Pteromalid parasitic wasp</td>
<td>(Valentine, 1967) Uncertain</td>
<td>Not likely Valentine (1967) listed the Light brown apple moth, Epiphyas postvittana, as a host species of this parasitoid. However, there is no recent record of this species in HortResearch (1999b), indicating the wasp is either no longer found or is unimportant in apple orchards in New Zealand. It is therefore unlikely that the wasp will be on the pathway.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Euxanthellus philippiae Silvestri [Hymenoptera: Aphelinidae]</td>
<td>Aphelinid parasitic wasp</td>
<td>(HortResearch, 1999b) No introduced NSW but failed to establish (Waterhouse and Sands, 2001): 148 Not likely The host species Coccus hesperidum is found on stems, leaves and green twigs where they are associated with veins (Copland and Ibrahim, 1985).</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Glabridorsum stokesii (Cameron) (misspelt as Glabridorsum stokesi) [Hymenoptera: Ichneumonidae]</td>
<td>Ichneumonid parasitic wasp</td>
<td>(HortResearch, 1999b) Yes (Waterhouse and Sands, 2001): 361, (Townes et al., 1961), (Yu and Horstmann, 1997a):248</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Goniozus sp. [Hymenoptera: Bethylidae]</td>
<td>Bethylid parasitic wasp</td>
<td>(Berry, 1998)</td>
<td>Yes introduced into New Zealand from Australia see (Berry, 1998)</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Liotryphon caudatus (Ratzburg) (=Apistephialtes caudatus) [Hymenoptera: Ichneumonidae]</td>
<td>Ichneumonid parasitic wasp</td>
<td>(HortResearch, 1999b)</td>
<td>No</td>
<td>(Yu and Horstmann, 1997b)</td>
<td>Not likely A parasitoid of codling moth Cydia pomonella introduced to New Zealand and reported from Hawke's Bay northwards. Only a very small percentage of codling moth caterpillars are attacked by this wasp, which is only rarely reported (HortResearch, 1999b). Based on this evidence it is considered that Liotryphon caudatus is unlikely to be on the pathway.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metaphycus claviger (Timberlake) (misspelt as Metaphychus claviger) [Hymenoptera: Encyrtidae]</td>
<td>Encrytid parasitic wasp</td>
<td>(Noyes, 1988)</td>
<td>Yes</td>
<td>(Noyes, 1988)</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Meteorus pulchricornis (Wesmael) [Hymenoptera: Braconidae]</td>
<td>Braconid parasitic wasp</td>
<td>(Berry, 1997); (HortResearch, 1999b)</td>
<td>No</td>
<td>(Huddleston, 1983), (Stevens et al., 2000)</td>
<td>Not likely This species is a parasitoid of several families of Lepidoptera including Tortricidae and Noctuidae. Light brown apple moth is also a host (Berry, 1997). When feeding on fruit, larvae of Noctuidae usually chew on the surface, also only a small percentage of Light brown apple moth larvae will bore into the fruit and these are not likely to be parasited by this wasp. It is therefore considered that this wasp is unlikely to be on the pathway.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Monomorium antarcticum (Smith) (=Chelaner antarcticum) [Hymenoptera: Formicidae]</td>
<td>Southern ant</td>
<td>(MAFNZ, 2000b)</td>
<td>No</td>
<td>(Shattuck, 1999)</td>
<td>Likely Unidentified species of this genus have been intercepted in Australia on asparagus, avocado, berries, capsicum, from New Zealand (DAFF-PDI, 2002).</td>
<td>Feasible</td>
<td>Not significant Adults are orchard or packhouse contaminants, general scavengers (MAFNZ, 2000b)</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>-----------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Platygaster demades (Walker) [Hymenoptera: Platygasteridae]</td>
<td>Platygasterid parasitic wasp</td>
<td>(HortResearch, 1999b), (Tomkins et al., 2000)</td>
<td>No (Vlug, 1995)</td>
<td>Likely Parasitoid of apple leafcurling midge Dasineura mali. Mature larvae and pupae of the apple leafcurling midge can be found in calyx (Tomkins et al., 2000).</td>
<td>-</td>
<td>Feasible</td>
<td>Not significant</td>
</tr>
<tr>
<td>Signiphora merceti Malenotti (misspelt as mercati) [Hymenoptera: Signiphoridae]</td>
<td>Signiphorid wasp</td>
<td>(Blank et al., 1995)</td>
<td>No</td>
<td>Not likely Parasitoid of greedy scale Hemiberlesia rapax. In New Zealand the host Greedy scale is present in most North Island regions, and so far has been found as far south as Canterbury. Greedy scale is a continual pest on kiwifruit and feijoas, and an infrequent pest on apples, figs, quinces, pears, and peaches (HortResearch, 1999b).</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sympiesis sp. [Hymenoptera: Eulophidae]</td>
<td>Eulophid parasitic wasp</td>
<td>(HortResearch, 1999b)</td>
<td>Uncertain</td>
<td>Not likely Several of these eulophid wasps are produced from a single leafroller caterpillar. Even in unsprayed or organic apple orchards a very small percentage of leafrollers (< 3%) are found to be parasitised by these wasps (HortResearch, 1999b). Since there are very few caterpillars found on apple fruit and less than 3% are parasitised it is considered that this wasp is unlikely to be on the pathway.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tetracnemoidea peregrina (Compère) (= Hungariella peregrina) [Hymenoptera: Encyrtidae]</td>
<td>Encyrid parasitic wasp</td>
<td>(HortResearch, 1999b)</td>
<td>Yes (Waterhouse and Sands, 2001): 233, 235</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tetracnemoidea sp. (= Hungariella sp.) [Hymenoptera: Encyrtidae]</td>
<td>Encyrid parasitic wasp</td>
<td>(Valentine, 1967)</td>
<td>Uncertain</td>
<td>Not likely Nipaecoccus aurilanatus listed as host species, which occurs on the small branches and young stems of its host plants (Ben-Dov and German, 2002f).</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
<td>Consider species further?</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>---------------------------------------</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Tetracnemoidea sydneyensis (Timberlake) (= Anarhopus sydneynsis) [Hymenoptera: Encyrtidae]</td>
<td>Encyrtid parasitic wasp</td>
<td>(HortResearch, 1999b)</td>
<td>Yes*</td>
<td>Likely Tetracnemoidea sydneyensis (Timberlake) appears to be a recent and accidental introduction and was first recorded in New Zealand in 1962. It originates from Australia. In a survey of mealybug natural enemies from 1990-92, this species was recorded in all regions surveyed, from Northland to Hawke’s Bay, but always from longtailed mealybugs. It was present on citrus, persimmon, and grapes, and may be expected also to occur on longtailed mealybugs attacking pipfruit (HortResearch, 1999b).</td>
<td>Feasible</td>
<td>Not significant This wasp is a biocontrol agent of longtailed mealybug in New Zealand (HortResearch, 1999b). It would have a positive impact because it would attack longtailed mealybug if introduced into Australia.</td>
<td>No</td>
</tr>
<tr>
<td>Theocolax formiciformis Westwood [Hymenoptera: Pteromalidae]</td>
<td>Parasitic wasp</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Trichogrammanzia funiculatum Carver [Hymenoptera: Trichogrammatidae]</td>
<td>Trichogrammatid parasitic wasp</td>
<td>(Stevens, 2000)</td>
<td>Yes (Carver, 1978), (Oatman and Pinto, 1987)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Trissolcus basalis (Wollaston) (= Aso lucus basalis) [Hymenoptera: Scelionidae]</td>
<td>Scelionid parasitic wasp</td>
<td>(Valentine, 1967)</td>
<td>Yes (CSIRO/AFFA, 2001), (Waterhouse and Sands, 2001): 207)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
<td>Consider species further?</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Vespula germanica (Fabricius) [Hymenoptera: Vespoidea)]</td>
<td>European wasp</td>
<td>(HortResearch, 1999b)</td>
<td>Yes* (CSIRO/AFFA, 2001)</td>
<td>Not likely The European wasp is a general predator that feeds on a variety of insects and damages fruit (Spradbery, 1973).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Xanthocryptus novozelandicus (Dalla Torre) [Hymenoptera: Ichneumonidae]</td>
<td>Ichneumonid parasitic wasp</td>
<td>(HortResearch, 1999b)</td>
<td>Yes (Townes et al., 1961), (Yu and Horstmann, 1997a)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Xanthopimpla rhopaloceros (Krieger) [Hymenoptera: Ichneumonidae]</td>
<td>Ichneumonid parasitoid</td>
<td>(Munro, 1998)</td>
<td>Yes (Munro, 1998)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Insects - Lepidoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Aenetus virescens (Doubleday) [Lepidoptera: Hepialidae]</td>
<td>Puriri moth</td>
<td>(MAFNZ, 1999a)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely Record is of larva boring into trunks of apple; attacks a wide range of native hosts, and some introduced hosts (MAFNZ, 1999a). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Agonopterix alstroemeriana (Clerck) [Lepidoptera: Oecophoridae]</td>
<td>Hemlock moth</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely Adults are packhouse contaminants and larvae feed on hemlock (weed in orchard). (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Agrotis ipsilon (Hufnagel) (as A. ipsilon anaituma (Walker) in (MAFNZ, 2000b) [Lepidoptera: Noctuidae]</td>
<td>Greasy cutworm</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (Nielsen et al., 1996)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia</td>
<td>Potential for being on pathway</td>
<td>Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>---------------------------------------</td>
<td>-----------------------</td>
<td>------------------------------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Capua semiferana (Walker) [Lepidoptera: Tortricidae]</td>
<td>Leafroller</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely</td>
<td>This species has been reported as infesting fruit on two properties in Nelson (MAFNZ, 2002a). BA sought further information and clarification with New Zealand MAF. MAFNZ (2003a) responded that this species “feeds on dried organic matter, e.g. dried seed heads of weeds, etc., occasionally found round the calyx of apple fruit”. Further information was provided in a subsequent email after MAF consulted with entomologists John Dougdale, a lepidopterist, and Jim Walker, apple entomologist of HortResearch. The email states: “It has only occasionally been found on apples - the last I [John Dougdale] knew of was in Nelson about 5 years ago. It is very uncommon for it to infest apples and these events (as we re-call) were associated with a wet season, rank understory vegetation and low branching trees. In this situation a few infested fruit were found where larvae had moved on to fruit. These infestations were found either on the stem or calyx of the fruit and are actually quite rare. Infestation could be more likely found around the old floral parts in the calyx - but it has to be considered as a rare and uncommon occurrence under normal orchard management. “Normal orchard management (mowing) and insect control within the sector’s IFP programmes should ensure that these events remain classified as rare or very infrequent.”</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chrysodeixis eriosoma (Doubleday) [Lepidoptera: Noctuidae]</td>
<td>Green looper</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (Nielsen et al., 1996)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleora scriptaria (Walker) [Lepidoptera: Geometridae]</td>
<td>Geometrid moth</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely</td>
<td>Adults are packhouse contaminants and have “habit of resting with outstretched wings on walls of sheds and other buildings; larvae feed on a great variety of shrubs”, causing damage to pepper tree ‘Kawakawa’ Macropiper excelsum (Hodge et al., 1998). No records of larva feeding in apple fruit (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>'Cnephasia' jactatana (Walker) [Lepidoptera: Tortricidae]</td>
<td>Black lyre moth</td>
<td>(MAFNZ, 2000b), (Hoare, 2000a)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely</td>
<td>There are no published records of this species feeding on apple. However, Hoare (2000b) indicates that “it is a highly polyphagous species, which is likely to feed on apple occasionally”. However, clarification was sought from New Zealand about the species’ status on apple. MAFNZ (2003c) replied: “this species is recorded only from citrus, kiwifruit and nectarine (once). It has no status as a pest of apple.” and there have been “0 interceptions on apple exports to the USA over the last 10 years.”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>---------------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Ctenopseustis herana (Feld. & Rogen.) [Lepidoptera: Tortricidae]</td>
<td>Brownhead leafroller</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Likely</td>
<td>Apples and other fruits may suffer considerable internal damage, and larvae eject frass (droppings) outside the fruit or protective shelter (Thomas, 1979).</td>
<td>Feasible</td>
<td>Significant</td>
</tr>
<tr>
<td>Ctenopseustis obliquana (Walker) [Lepidoptera: Tortricidae]</td>
<td>Brownhead leafroller</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Likely</td>
<td>Apples and other fruits may suffer considerable internal damage, and larvae eject frass (droppings) outside the fruit or protective shelter (Thomas, 1979).</td>
<td>Feasible</td>
<td>Significant</td>
</tr>
<tr>
<td>Cydia pomonella (L.) [Lepidoptera: Tortricidae]</td>
<td>Codling moth</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (CSIRO/AFF A, 2001)</td>
<td>Likely</td>
<td>Codling moth larvae cause important damage that is confined to the fruit (Wearing, 1998).</td>
<td>Feasible</td>
<td>Significant</td>
</tr>
<tr>
<td>Diasemia grammalis Doubleday [Lepidoptera: Pyralidae]</td>
<td>Pyralid moth</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely</td>
<td>Adults are orchard or packhouse contaminants, larvae feed on native grasses and herbaceous spp. (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Elachista sp. [Lepidoptera: Elashistidae]</td>
<td>Grass miner moth</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Not likely</td>
<td>Associated with grasses (MAFNZ, 2000b). No records of interceptions of species of this genus from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Endrosis sarcitrella (L.) [Lepidoptera: Oecophoridae]</td>
<td>White shouldered house moth</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ephyaxa rosearia (Doubleday) [Lepidoptera: Geometridae]</td>
<td>Light brown apple moth</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ephyaxa rosearia (Doubleday) [Lepidoptera: Geometridae]</td>
<td>Native looper</td>
<td>(MAFNZ, 2002b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely</td>
<td>Very minor plant feeder; biology, including host species, not well known (MAFNZ, 2002b). Apparently only feeds on leaves since this species has been reported as a most significant defoliating insect on Caucasian clover (Watson et al., 1996). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s (References)</td>
<td>Presence in New Zealand (Reference)</td>
<td>Potential for being on pathway</td>
<td>Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Consider species further?</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Eudonia paltomacha (Meyrick) [Lepidoptera: Pyralidae]</td>
<td>Sod webworm (MAFNZ, 2000b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely</td>
<td>Adults are orchard or packhouse contaminants, larvae feed on grasses and herbaceous hosts (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Eudonia psammitis (Meyrick) [Lepidoptera: Pyralidae]</td>
<td>Sod webworm (MAFNZ, 2000b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely</td>
<td>Adults are orchard or packhouse contaminants, larvae feed on grasses and herbaceous hosts (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Eudonia sp. nr. lepatalea Meyrick [Lepidoptera: Pyralidae]</td>
<td>Pyralid moth (MAFNZ, 2002b)</td>
<td>Uncertain</td>
<td>Not likely</td>
<td>Most Eudonia spp. feed on moss but some are grass feeders; identifier classified species as native, plant feeder status unknown (MAFNZ, 2002b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Graphania lignana Walker [Lepidoptera: Noctuidae]</td>
<td>Cutworm moth (MAFNZ, 2002b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely</td>
<td>Plant feeder. Minor plant feeder of pasture and rangeland plants (MAFNZ, 2002b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Graphania mutans (Walker) [Lepidoptera: Noctuidae]</td>
<td>Grey brown cutworm (MAFNZ, 1999a)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Likely</td>
<td>Eggs sometimes laid on fruit and larvae can feed on fruit (Landcare Research, 1999). Intercepted in Australia from New Zealand (DAFF-PDI, 2002).</td>
<td>Feasible</td>
<td>Significant</td>
<td>Yes</td>
</tr>
<tr>
<td>Graphania sp. [Lepidoptera: Noctuidae]</td>
<td>Cutworm (Collyer and van Geldermalsen, 1975)</td>
<td>Uncertain</td>
<td>Not likely</td>
<td>Larvae feed on leaves and young fruit (Collyer and van Geldermalsen, 1975). There have apparently been no other records of Graphania sp. This species is unlikely to be on pathway because it only feeds on young fruit (Collyer and van Geldermalsen, 1975).</td>
<td>-</td>
<td>-</td>
<td>No (as yes in the draft IRA but see comments at the left)</td>
</tr>
<tr>
<td>Graphania ustistriga (Walker) [Lepidoptera: Noctuidae]</td>
<td>Large grey cutworm moth (MAFNZ, 2000b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely</td>
<td>Larvae feed on a wide range of dicotyledonous plants and Pinus radiata (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Consider species further?</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>--------------------------------------</td>
<td>----------------------------------</td>
<td>------------------------------</td>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Grapholita molesta Busck (=?Cydia molesta) [Lepidoptera: Tortricidae]</td>
<td>Oriental fruit moth</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (CSIRO/AFFA, 2001)</td>
<td>Likely Oriental fruit moth has been recorded feeding on apple fruit (CABI, 2002).</td>
<td>Feasible</td>
<td>Significant</td>
<td>Yes*</td>
</tr>
<tr>
<td>Gymnobathra parca (Butler) [Lepidoptera: Oecophoridae]</td>
<td>Oecophorid moth</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely Adults are orchard or packhouse contaminants, case bearing larvae feed in leaf litter (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Helastia corcularia Guenee [Lepidoptera: Geometridae]</td>
<td>Geometrid moth</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely Adults are orchard or packhouse contaminants, larvae feed in moss (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Helastia cryptica Craw [Lepidoptera: Geometridae]</td>
<td>Geometrid moth</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely Adults are orchard or packhouse contaminants, larvae feed on dead leaves (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Helicoverpa armigera Hubner (= Heliothis armiger confertus Walker in AGWEST Submission, (Matthews, 1999): 111) considers Heliothis armiger confertus Walker as part of Helicoverpa armigera Hubner [Lepidoptera: Noctuidae]</td>
<td>Tomato fruit worm, Corn earworm, Cotton bollworm, Tobacco budworm</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFFA, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Hofmannophila pseudospretella (Stainton) [Lepidoptera: Oecophoridae]</td>
<td>Oecophorid moth (Brown House Moth)</td>
<td>(Spiller and Wise, 1982)</td>
<td>Yes* (Nielsen et al., 1996)</td>
<td>Not likely Spiller and Wise (1982) question whether Malus sylvestris is a host for this species. BA sought further information about the species association with apple. MAFNZ (2003a) replied: “There are no recent records of this moth infesting the tree or fruit and no research is planned or ever been done.” Based on this information, it can be concluded that this species is unlikely to be associated with apple fruit.</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia</td>
<td>Potential for being on pathway</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Consider species further?</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>--------------------------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Hyalophora cecropia (L.) [Lepidoptera: Saturniidae]</td>
<td>"Robin moth"</td>
<td>(MAFNZ, 1999a)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely</td>
<td>Record is on "tree" (life stage not recorded), polyphagous (MAFNZ, 1999a). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hygraula nitens Butler [Lepidoptera: Pyralidae]</td>
<td>Pyralid water moth</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (Nielsen et al., 1996)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Leucania stenographa Lower (Synonym = Mythimna stenographa, Leucania loreyi, Mythimna loreyimima) [Lepidoptera: Noctuidae]</td>
<td>Sugarcane army worm</td>
<td>(MAFNZ, 2002b)</td>
<td>Yes (Nielsen et al., 1996)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Liotula omnivora Fereday [Lepidoptera: Psychidae]</td>
<td>Bagmoth</td>
<td>(MAFNZ, 1999a)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely</td>
<td>Record on leaves, polyphagous (MAFNZ, 1999a).</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lyonetidae [Lepidoptera: Lyonetiidae]</td>
<td>Lyonetid moth</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Not likely</td>
<td>Adults are orchard or packhouse contaminants, larvae can be primary on other hosts, mostly saprophytic (MAFNZ, 2000b). No records of interceptions of species of this family from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mythimna separata Walker (was Pseudaletia separata (Walker)) [Lepidoptera: Noctuidae]</td>
<td>Cosmopolitan armyworm</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (Nielsen et al., 1996)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Opodiphthera eucalypti (Scott) [Lepidoptera: Saturniidae]</td>
<td>Gum emperor moth</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Nielsen et al., 1996)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Opogona osmosopa (Meyrick) [Lepidoptera: Tineidae]</td>
<td>Detritus moth</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Orocrambus spp. [Lepidoptera: Pyralidae]</td>
<td>Grass and moss moths</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Not likely</td>
<td>Adult orchard or packhouse contaminants (MAFNZ, 2000b). No records of interceptions of species of this genus from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phthorimaea operculella Zeller [Lepidoptera: Gelechiidae]</td>
<td>Potato tuber moth</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CABI, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Consider species further?</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>--------------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Phyllonorycter messaniella (Neller) [Lepidoptera: Gracillariidae]</td>
<td>Gracillariid moth</td>
<td>(Spiller and Wise, 1982) (CSIRO, 1991)</td>
<td>Yes (Nielsen et al., 1996)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Planotortrix excessana (Walker) [Lepidoptera: Tortricidae]</td>
<td>Greenheaded leafroller</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Likely The calyx of various fruits, especially pip fruits, may be invaded by young larvae but show no external damage (Green, 1979).</td>
<td>Feasible</td>
<td>Significant Naturally polyphagous, primary orchard pest in New Zealand (Dugdale, 1990); (Wearing et al., 1991)</td>
<td>Yes</td>
</tr>
<tr>
<td>Planotortrix octo Dugdale [Lepidoptera: Tortricidae]</td>
<td>Greenheaded leafroller</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Likely The calyx of various fruits, especially pip fruits, may be invaded by young larvae but show no external damage (Green, 1979).</td>
<td>Feasible</td>
<td>Significant Naturally polyphagous, primary orchard pest in New Zealand (Dugdale, 1990), (Wearing et al., 1991)</td>
<td>Yes</td>
</tr>
<tr>
<td>Plutella xylostella (L.) [Lepidoptera: Yponomeutidae]</td>
<td>Diamond back moth</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (Nielsen et al., 1996)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Pseudocoremia suavis Butler [Lepidoptera: Geometridae]</td>
<td>Black-waved brown moth</td>
<td>(MAFNZ, 1999a)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Not likely Record on twigs (MAFNZ, 1999a). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Pyralidae [Lepidoptera: Pyralidae]</td>
<td>Pyralid moth</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Not likely It is most likely that this is an orchard or packhouse contaminants record as the other eight records of this family listed in New Zealand are all contaminants (Diasemia grammalis, Ephestia elutella, Eudonia paltomacha, Eudonia psammitis, Eudonia sp. nr. lepatala, Hygraula nitens, Orocrambus spp., and Scoparia spp.) The assessment for these eight species indicate that they are either present in Australia or have an unlikely potential for importation. Therefore, the potential for importation of this ‘Pyralidae’ could also be rated unlikely.</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Pyrgotis plagiata (Walker) [Lepidoptera: Tortricidae]</td>
<td>Native leafroller</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Nielsen et al., 1996)</td>
<td>Likely This native leafroller species is occasionally found attacking apples and pears, particularly in Otago (HortResearch, 1999b).</td>
<td>Feasible</td>
<td>Significant Naturally polyphagous, incidental orchard pest of apples and pears in New Zealand (Wearing et al., 1991)</td>
<td>Yes</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia</td>
<td>Potential for being on pathway</td>
<td>Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>--------------------------------------</td>
<td>-----------------------</td>
<td>------------------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Scoparia spp. [Lepidoptera: Pyralidae]</td>
<td>Sod webworms</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Not likely</td>
<td>Adults are orchard or packhouse contaminants, larvae feed on herbaceous and grass hosts (MAFNZ, 2000b). No records of interceptions of species of this genus from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Scopula rubraria Doubleday [Lepidoptera: Geometridae]</td>
<td>Common pasture moth</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes</td>
<td>(Nielsen et al., 1996)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Spodoptera litura (F.) [Lepidoptera: Noctuidae]</td>
<td>Cluster caterpillar</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes</td>
<td>(Nielsen et al., 1996)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Stathmopoda horticola Dugdale (as Stathmopoda sp. (skelloni auct. nec. Butler) in (AQIS, 1998a) [Lepidoptera: Oecophoridae])</td>
<td>Oecophorid moth (Garden Featherfoot)</td>
<td>(Landcare Research, 1999)</td>
<td>No</td>
<td>(Nielsen et al., 1996)</td>
<td>Likely Larvae colonise calyx of the fruit feeding on the dead flower sepals; last 2 instars cause direct damage to fruit surfaces around the calyx (Scott, 1984).</td>
<td>Feasible</td>
<td>Significant Becoming a pest of kiwifruit and apples in New Zealand (Scott, 1984)</td>
</tr>
<tr>
<td>Strepsicerates macropetana (Meyrick) [Lepidoptera: Tortricidae]</td>
<td>Eucalyptus leafroller</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes</td>
<td>(CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Symmetrischema plaesiosa Turner (=Symmetrischema tangolias (Gyen)) [Lepidoptera: Gelechiidae]</td>
<td>Tomato stem borer</td>
<td>(MAFNZ, 2002b)</td>
<td>Yes</td>
<td>(CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Tachystola acroxantha Meyrick (=Parocystola acroxantha) [Lepidoptera: Oecophoridae]</td>
<td>Oecophorid moth</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes*</td>
<td>(Nielsen et al., 1996)</td>
<td>Not likely Adults are orchard or packhouse contaminants, larvae feed on dead foliage and stems (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tineola bisselliecta (Hummel) [Lepidoptera: Tineidae]</td>
<td>Clothes moth</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes</td>
<td>(CSIRO/AFF A, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Consider species further?</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Tingena spp. [Lepidoptera: Oecophoridae]</td>
<td>Native litter feeding moth</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Not likely Adults are orchard or packhouse contaminants, native, feeding habits not known (MAFNZ, 2000b). No records of interceptions of species of this genus from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Tortricinae species [Lepidoptera: Tortricidae]</td>
<td>Leafrollers</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Likely but not consider further (see reason below) In the draft IRA, ‘Tortricinae species’ was considered further. However, in its submission on the draft IRA, New Zealand Government provided clarification about the reference to ‘Tortricinae species’ in their list. The following are excerpts from their response: “the apple fruit pest list contains records from over 20 years of export inspection records. Any members of the Tortricinae family that have been found on apple fruit have been identified to species level and are individually recorded on the apple pest list presented to AFFA.” Therefore, the unidentified species of Tortricinae most likely belong to one of the species already on the list and are not considered further in this analysis.</td>
<td>-</td>
<td>-</td>
<td>No (as yes in the draft IRA, but see comments at left column)</td>
</tr>
<tr>
<td>Insects - Neuroptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptosocena australiensis (Enderlein) [Neuroptera: Coniopterygidae]</td>
<td>Lacewings</td>
<td>(Charles, 1993)</td>
<td>Yes (New, 1996)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Drepanacra binocula (Newman) [Neuroptera: Hemerobiidae]</td>
<td>lacewings</td>
<td>(HortResearch, 1999b)</td>
<td>Yes (New, 1996)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Micromus tasmaniae (Walker) [Neuroptera: Memerobiidae]</td>
<td>Tasmanian lacewing</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (AQIS, 1998a)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Insects - Psocoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectopsocus spp. [Psocoptera: Ectopsociidae]</td>
<td>Psocid/book lice</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Likely Secondary feeders on decaying plant material (MAFNZ, 2000b). Species of this genus have been intercepted in Australia on kiwifruit and other commodities from New Zealand (DAFF-PDI, 2002).</td>
<td>Feasible</td>
<td>Not significant Secondary feeders on decaying plant material (MAFNZ, 2000b).</td>
<td>No</td>
</tr>
<tr>
<td>Insects - Thysanoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeolothrips fasciatus (Linn.) [Thysanoptera: Aeolothripidae]</td>
<td>Banded thrips</td>
<td>(HortResearch, 1999b)</td>
<td>Yes* (Mound, 2001)</td>
<td>Not likely Feed incidentally on the foliage of apples (HortResearch, 1999b). On potato foliage (Cottier, 1931).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

73
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apterogthrips collyerae Mound & Walker [Thysanoptera: Phlaeothripidae]</td>
<td>Thrips</td>
<td>(MAFNZ, 1999a)</td>
<td>No (Mound, 1996); (Mound, 2001)</td>
<td>Not Likely Apterogthrips collyerae is predatory on a wide range of mites (including European red mite Panonychus ulmi (Koch)) and other small arthropods and has only been recorded on leaves and twigs (MAFNZ, 1999a). It is therefore considered that this thrips species is unlikely to be on the pathway. (Collyer, 1976).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Baenothrips moundi (Stannard) [Thysanoptera: Phlaeothripidae]</td>
<td>Thrips</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (Mound, 1996); (Mound, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Frankliniella occidentalis (Pergande) [Thysanoptera: Thripidae]</td>
<td>Western flower thrips</td>
<td>(CABI, 2001)</td>
<td>Yes, official control in Tas (CSIRO/AFF A, 2001); (Mound, 2001)</td>
<td>Not likely CABI (2002) indicates that the species affect leaves, and inflorescence of the plants. It can be associated with apple fruit at harvest if the population and infestation is high but this is an unlikely scenario in export orchards because of pest control in IFP.</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Haplothrips kurdjumovi Karny (=H. faurei) [Thysanoptera: Phlaeothripidae]</td>
<td>Thrips</td>
<td>(MAFNZ, 1999a)</td>
<td>No (Mound, 1996); (Mound, 2001)</td>
<td>Not likely Haplothrips kurdjumovi feeds on eggs of the European red mite Panonychus ulmi, and also on other mites and moth eggs. It has only been recorded on flowers (MAFNZ, 1999a), therefore it is considered that the species is unlikely to be on the pathway.</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Haplothrips niger (Osborn) [Thysanoptera: Phlaeothripidae]</td>
<td>Red clover thrips</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (Mound, 1996); (Mound, 2001)</td>
<td>Usually confined to red and white clover flowers (Loan and Holdaway, 1955). Status on apple not known, probably a contaminants from ground cover clovers (MAFNZ, 2000b).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Haplothrips niger (Osborn) [Thysanoptera: Phlaeothripidae]</td>
<td>Red clover thrips</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes* (Mound, 1996); (Mound, 2001)</td>
<td>Not likely Record is on flowers, usually found on red and white clover where it is a pest, status on apple not known, probably a contaminant from ground cover clovers (MAFNZ, 1999a). Based on the above information, it is unlikely that this species will be on export apple fruit, although it is intercepted in Australia on tulip (not fruit) from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Heliothrips haemorrhoidalis (Bouche) [Thysanoptera: Thripidae]</td>
<td>Greenhouse thrips</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFF A, 2001); (Mound, 2001)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Limothrips cerealium (Haliday) [Thysanoptera: Thripidae]</td>
<td>Cereal thrips</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Mound, 1996); (Mound, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Macrophthalmothrips argus (Karney) [Thysanoptera: Phlaeothripidae]</td>
<td>Thrips</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes* (Mound, 1996); (Mound, 2001)</td>
<td>Not likely Record is on dead wood, saprophytic (MAFNZ, 1999a). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nesothrips propinquus (Bagnall) [Thysanoptera: Phlaeothripidae]</td>
<td>Thrips</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes* (Mound, 1996); (Mound, 2001)</td>
<td>Likely Record is on dead wood and leaves, possibly saprophytic, associated with leaf litter, bases of grasses, sedges and tussocks, bird's nests (MAFNZ, 1999a). Intercepted in Australia on apricots from New Zealand (DAFF-PDI, 2002).</td>
<td>Feasible</td>
<td>Not significant No evidence of it producing any damage (Blank and Gill, 1997).</td>
<td>-</td>
</tr>
<tr>
<td>Sigmothrips aotearoana (Ward) [Thysanoptera: Thripidae]</td>
<td>Thrips</td>
<td>(MAFNZ, 2002b)</td>
<td>No (Mound, 2001)</td>
<td>Not likely Feeds on Coprosma, and some Fuchsias (MAFNZ, 2002b) No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thrips australis (Bagnall) [Thysanoptera: Thripidae]</td>
<td>Eucalyptus thrips</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Mound, 1996); (Mound, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thrips obscuratus (Crawford) [Thysanoptera: Thripidae]</td>
<td>New Zealand flower thrips</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Mound, 1996); (Mound, 2001)</td>
<td>Likely MAFNZ (2003a) states that Thrips obscuratus is “not attracted to apple fruit.” “It is attracted to apple blossom but leave as soon as the blossom dries off. Records exist of the pest on apple fruit but these are of accidental contamination possibly from nearby stonefruit orchards.” (MAFNZ, 2003a) Intercepted in Australia on stone fruit from New Zealand (DAFF-PDI, 2002).</td>
<td>Feasible</td>
<td>Significant Damage considerable damage to grape and passionfruit flowers (Mound and Walker, 1982); pest of summer (stone) fruit (McLaren et al., 1999).</td>
<td>-</td>
</tr>
<tr>
<td>Thrips tabaci Lindeman [Thysanoptera: Thripidae]</td>
<td>Onion thrips</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Mound, 1996); (Mound, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Presence in Australia</td>
<td>Potential for being on pathway Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>--</td>
<td>---------------------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Xylaplothrips sp. nr fuliginosus (Schille) [Thysanoptera: Phlaeothripidae]</td>
<td>Thrips</td>
<td>(Collyer, 1976)</td>
<td>Uncertain</td>
<td>Not likely</td>
<td>Collyer (1976) reported that this species is a predator of European red mite (Panonychus ulmi (Koch)). However, there are no records of this species associated with European red mite in HortResearch (1999b) indicating that this species is not an important natural enemy of pest mites in pipfruit orchards.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agistemus longisetus González-Rodriguez [Acari: Stigmaeidae]</td>
<td>Stigmaeid mite</td>
<td>(HortResearch, 1999b)</td>
<td>Yes (Halliday, 1998) (Halliday, 2001)</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amblyseius harrowi Collyer [Acari: Phytoseiidae]</td>
<td>Phytoseid mite</td>
<td>(Schicha, 1980)</td>
<td>Yes (Halliday, 1998)</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amblyseius perlongisetus (Berlese) (=Typhlodromus perlongisetus) [Acari: Phytoseiidae]</td>
<td>Phytoseid mite</td>
<td>(Thomas and Chapman, 1978)</td>
<td>No (Halliday, 1998)</td>
<td>Not likely</td>
<td>Thomas and Chapman (1978) listed this species as a predatory mite that fed on phytophagous mites in commercial orchards. However, HortResearch (1999b) does not record this species in the key to pipfruit pests, indicating that this species is not an important natural enemy of pest mites in pipfruit orchards. In addition Collyer (1964) recorded this mite from many plant species including apple but did not mention whether this mite was actually found on the apple fruit. Zhang (2001) has since found this mite living in very specialised niches on the leaves of capsicum.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anystis baccarum Berlese [Acari: Anystidae]</td>
<td>Anystid mite, whirlygig mite</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (Halliday, 1998)</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Brevipalpus obovatus Donnadieu [Acari: Tenuipalpidae]</td>
<td>Tenuipalpid mite</td>
<td>(Manson, 1987)</td>
<td>Yes (Halliday, 1998)</td>
<td>Not likely</td>
<td>This species has been recorded from apple orchards in Auckland and Nelson (Manson, 1987; Collyer, 1973b). This species feeds on the ventral surface of the leaves and on stems and petioles (Jeppson et al., 1975).</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bryobia graminum (Schrank) (as B. cristata in (Manson, 1967a) on bark) [Acari: Tetranychidae]</td>
<td>Clover mite</td>
<td>(Bollard et al., 1998)</td>
<td>Yes* (Bollard et al., 1998); (Halliday, 1998)</td>
<td>Not likely</td>
<td>These mites are found on grass, clover and weeds along roadsides as well as on azalea, Polyanthus, vetch, Tradescantia pot plant and the bark of apple, pear and European plum in New Zealand (Manson, 1967a).</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Potential for establishment or spread:
- Yes
- No

Potential for consequences Comments if applicable:
- -

Consider species further?
- -
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway</th>
<th>Comments if applicable</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryobia praetiosa Kock</td>
<td>Clover mite</td>
<td>(Bollard et al., 1998)</td>
<td>Yes (Bollard et al., 1998); (Halliday, 1998)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Bryobia rubrioculus (Scheuten)</td>
<td>Brown mite</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (Halliday, 1998)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Bryobia vasiljevi Reck</td>
<td>Pasture mite</td>
<td>(Bollard et al., 1998)</td>
<td>Yes* (Bollard et al., 1998); (Halliday, 1998)</td>
<td>Not likely This species found on clover, vetch, strawberry and Passiflora mollissima and clover under apple tree (Manson, 1967a).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Calepitrimerus baileyi Keifer</td>
<td>Bailey’s apple rust mite</td>
<td>(Manson, 1987)</td>
<td>No (Halliday, 1998)</td>
<td>Not likely On undersurface of apple leaves (Manson, 1984a).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Diptacus gigantorhynchus (Nalepa)</td>
<td>Big-beaked plum mite</td>
<td>(Manson, 1984a)</td>
<td>Yes* (Knihinicki, 2000)</td>
<td>Not likely On the undersurface of apple leaves but causing no apparent damage (Manson, 1984a). Apple (Malus pumila) and ornamental apple species listed as alternate hosts (CABI, 2002; Becker et al., 1992).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Eotetranychus sexmaculatus (Riley)</td>
<td>Six spotted mite</td>
<td>(Bollard et al., 1998)</td>
<td>Yes* (Bollard et al., 1998); (Halliday, 1998)</td>
<td>Not likely It is very likely that the mite occurs on leaves of apple because on citrus the six-spotted mite feeds primarily on the lower leaf surface. Leaves are first attacked along the petiole and the midvein. The mite lives in localized colonies on the underside of interior leaves with heavy infestations spreading to the outer canopy leaves. Eggs are deposited on the lower leaf surface (Childers and Fasulo, 1995).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway Comments if applicable</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences Comments if applicable</td>
<td>Consider species further?</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Eriophyes mali Burts [Acari: Eriophyidae]</td>
<td>Apple blister mite</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Halliday, 1998)</td>
<td>Not likely In the draft IRA, ‘Eriophyes mali’ was considered further and a full risk assessment was undertaken. This was because it was considered that the species is on the pathway based on the statement by MAFNZ (2000b) that the mite is ‘Occasionally on fruit’. In their submission to the draft IRA, New Zealand Government provided further clarification about this statement: ‘E. mali occurs primarily on foliage and only occasionally on fruit. In the original data sheet prepared by Landcare Research it was noted that these mites were not likely to occur on fruit. Furthermore, the pest has never been found on harvested apples during the USDA pre-clearance program that has been running for over 20 years. The record on the New Zealand pest list is one from Malus domestica, with no part of the plant specified. This has been left on the pest list because of the “possibility” that it may also occur on fruit” (NZ Government, 2000). All the published references on this mite indicate that it is only found on leaves or buds. In addition, this mite was only recorded once on Malus pumila in Levin, New Zealand, and there are no subsequent records of this species in other localities in New Zealand.</td>
<td>-</td>
<td>-</td>
<td>No (as yes in the draft IRA but see comments at the left)</td>
<td></td>
</tr>
<tr>
<td>Eryngiopus nr. nelsonensis [Acari: Stigmaeidae]</td>
<td>Stigmaeid mite</td>
<td>(HortResearch, 1999b)</td>
<td>No (Halliday, 1998)</td>
<td>Not likely A predatory stigmaeid mite that feeds on a variety of species. They can be found amongst scale insect colonies on the bark of apple and pear trees (HortResearch, 1999b).</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Hemisarcoptes coccophagus Meyer [Acari: Hemisarcoptidae]</td>
<td>Predatory mite</td>
<td>(Charles et al., 1998); (HortResearch, 1999b)</td>
<td>No (Gerson, 1994); (Halliday, 1998); (Halliday, 2001)</td>
<td>Likely A predatory mite of diaspidid scale insects, which can be found under the scale coverings. Introduced to control armoured scale insects (Diaspididae) (Charles et al., 1998). Introduction to the North Island has been successful but unsuccessful in the South Island. San Jose Scale infests mostly the bark on the stem and branches of the tree and very occasionally on the apple fruit. Oystershell scale and Apple mottle scale however infest the whole plant including the fruit (CABI, 2001).</td>
<td>Feasible</td>
<td>Not significant As this predatory mite is used as a biocontrol agent to control pest armoured scales (HortResearch, 1999b) and these pests are also present in Australia, it is expected that the mite would not have a negative impact in Australia.</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia</td>
<td>Reference</td>
<td>Potential for being on pathway</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Comments if applicable</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>---------------------------------------</td>
<td>-----------------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Neoseiulus cucumeris (Oudemans) [Acari: Phytoseiidae]</td>
<td>Phytoseid mite</td>
<td>(Thomas and Chapman, 1978)</td>
<td>Yes</td>
<td>(Beard, 1999); (Halliday, 2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neoseiulus fallacis (Garman) (=Amblyseius fallacis) [Acari: Phytoseiidae]</td>
<td>Phytoseid mite</td>
<td>(Penman and Chapman, 1980)</td>
<td>Yes</td>
<td>(Halliday, 1998)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neoseiulus womersleyi (Schicha) (=Amblyseius longispinosus) [Acari: Phytoseiidae]</td>
<td>Phytoseid mite</td>
<td>(Thomas and Chapman, 1978)</td>
<td>Yes</td>
<td>(Halliday, 1998)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oribatid mites [Acari: Oribatidae]</td>
<td>Oribatid mites</td>
<td>(HortResearch, 1999b)</td>
<td>Uncertain</td>
<td>Likely</td>
<td>These algal and fungal feeding mites can also occur at the calyx of apples at harvest time (HortResearch, 1999b).</td>
<td>Feasible</td>
<td>Not significant, No reports of oribatids as pests.</td>
<td>-</td>
</tr>
<tr>
<td>Orthotydeus californicus (Banks) [Acari: Tydeidae]</td>
<td>Tydeid mite</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes</td>
<td>(Smith et al., 1997)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Orthotydeus spp. [Acari: Tydeidae]</td>
<td>Tydeid mite</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Likely</td>
<td>Secondary scavengers on honeydew, fungi (MAFNZ, 2000b). Species of this genus such as Orthotydeus californicus (also known as Tydeus californicus) have been intercepted in Australia on apricots, avocados, etc from New Zealand (DAFF-PDI, 2002).</td>
<td>Feasible</td>
<td>Not significant Secondary scavengers on honeydew and fungi (MAFNZ, 2000b)</td>
<td>-</td>
</tr>
<tr>
<td>Panonychus citri (McGregor) [Acari: Tetranychidae]</td>
<td>Citrus red mite</td>
<td>(Bollard et al., 1998)</td>
<td>Yes*</td>
<td>(Bollard et al., 1998); (Halliday, 1998)</td>
<td>Not likely The citrus red mite occurs in New Zealand and (Bollard et al., 1998) list apple as its host plant. However, there is no record of this species on apple in New Zealand (MAFNZ, 2003b). Limited distribution in NSW and under quarantine control (Smith et al., 1997).</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Panonychus ulmi (Koch) [Acari: Tetranychidae]</td>
<td>European red mite</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes*</td>
<td>(Halliday, 1998); (AQIS, 1998a)</td>
<td>Likely Although direct damage to the fruit rarely occurs, winter eggs can be laid in both the calyx and stalk ends of the fruit (Collyer, 1998). Under official control and there is regulation in place to prevent its entry (WAQIS, 1999).</td>
<td>Feasible</td>
<td>Significant Damage to leaf function results in decreased fruit load and quality (CABI, 2002)</td>
<td>-</td>
</tr>
<tr>
<td>Tenuipalpus aberrans Collyer [Acari: Tenuipalpidae]</td>
<td>Tenuipalpid mite</td>
<td>(Manson, 1987)</td>
<td>No</td>
<td>(Halliday, 1998)</td>
<td>Not likely Species with limited host plant range found on leaves of Nothofagus menziesii, N. fusca, Dacrydium bidwillii, Sophora tetrapeta, Phymatodes diversifolium, Astelia sp. and roadside Pyrus malus in Nothofagus forest (Collyer, 1973a).</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name/s</td>
<td>Reference for presence in New Zealand</td>
<td>Presence in Australia Reference</td>
<td>Potential for being on pathway</td>
<td>Potential for establishment or spread</td>
<td>Potential for consequences</td>
<td>Consider species further?</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>Tetranychus lambi Pritchard & Baker [Acari: Tetranychidae]</td>
<td>Spider mite</td>
<td>(Manson, 1987)</td>
<td>Yes (Halliday, 1998)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Tetranychus ludeni Zacher [Acari: Tetranychidae]</td>
<td>Bean spider mite</td>
<td>(Bollard et al., 1998: 191)</td>
<td>Yes</td>
<td>(Bollard et al., 1998); (Halliday, 1998)</td>
<td>Not likely Although apple is not listed as a host in New Zealand by (Manson, 1967b), Malus domestica is listed as host of Bean spider mite in (Bollard et al., 1998). This mite feeds on leaves and it is not likely to be on fruit. Also gathers on twigs and branches and in autumn, under bark (Pritchard and Baker, 1952).</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Tetranychus neocaledonicus (André) [Acari: Tetranychidae]</td>
<td>Vegetable spider mite</td>
<td>(Bollard et al., 1998)</td>
<td>Yes*</td>
<td>(Bollard et al., 1998); (Halliday, 1998)</td>
<td>Not likely Bollard et al. (1998) list this species as present in New Zealand citing Manson (1967b). However there is no mention of this mite in New Zealand in this reference. This species has not actually been reported from New Zealand (Zhang, 2002).</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Tuckerellid mites [Acari: Tuckerellidae]</td>
<td>Tuckerellid mites</td>
<td>(HortResearch, 1999b)</td>
<td>Uncertain</td>
<td>Not likely The family consists of 20 described species all in the genus Tuckerella. They are detritus feeding mites that occur on the bark of apple trees. Australian species of Tuckerella tend to be found on the stems of woody plants usually in the cracks on small twigs (Walter, 1999).</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typhlodromus pyri (Scheuten) [Acari: Phytoseiidae]</td>
<td>Predatory mite</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes</td>
<td>(Halliday, 1998)</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Tyroglyphid mites [Acari: Tyroglyphidae]</td>
<td>Tyroglyphid mites</td>
<td>(HortResearch, 1999b)</td>
<td>Uncertain</td>
<td>Likely Detritus feeding mites that are usually found under the bark and sometimes in the calyx of apples at harvest time (HortResearch, 1999b). Feasible Not significant Normally detritus feeders feeding on moulds (HortResearch, 1999b).</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zetzellia ?subreticulata [Acari: Stigmaeidae]</td>
<td>Stigmaeid mite</td>
<td>(HortResearch, 1999b)</td>
<td>Uncertain</td>
<td>Not likely In New Zealand the feeding habits of Zetzellia ?subreticulata and its possible role as a predator of European red mite and twospotted spider mite are unknown (HortResearch, 1999b). These two pest mites are usually found on leaves and direct damage to the fruit rarely occurs (HortResearch, 1998). European red mite can also cause damage by infecting the fruit with (overwintering) eggs at harvest time (HortResearch, 1999b). However it is not known whether this predacious mite preys on the eggs of European red mite. Based on this evidence it is considered that the species is unlikely to be on the pathway.</td>
<td>-</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Snails
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/s</th>
<th>Reference for presence in New Zealand</th>
<th>Presence in Australia Reference</th>
<th>Potential for being on pathway Comments if applicable</th>
<th>Potential for establishment or spread</th>
<th>Potential for consequences Comments if applicable</th>
<th>Consider species further?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cochlicopa lubrica (Muller)</td>
<td>Slippery moss snail</td>
<td>(MAFNZ, 2000b)</td>
<td>No (Smith, 1992)</td>
<td>Not likely Orchard or packhouse contaminants, feeds on living and dead plant material, most common in wet, shaded areas (MAFNZ, 2000b). No records of interceptions of this species from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Helix aspersa (Müller)</td>
<td>Common garden snail</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes (CSIRO/AFFA, 2001)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Vallonia excentrica (Sterki)</td>
<td>Eccentric grass snail</td>
<td>(MAFNZ, 2000b)</td>
<td>Yes* (Barker, 1999)</td>
<td>Not likely Orchard or packhouse contaminants, polyphagous foliage feeder (MAFNZ, 2000b).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Spiders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ixoeuticus martius (Simon)</td>
<td>Spider</td>
<td>(Baker, 1983)</td>
<td>Yes (Main, 1976)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Mynoglenes sp.</td>
<td>Money spider</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Not likely Orchard or packhouse contaminants (MAFNZ, 2000b). No records of interceptions of species of this genus from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Poecilopachys australasia (Griffith & Pidgeon) [Araneida: Araneidae]</td>
<td>Two-spined spider</td>
<td>(MAFNZ, 1999a)</td>
<td>Yes (CSIRO/AFFA, 2001)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Trite spp. [Araneida: Salticidae]</td>
<td>Jumping spider</td>
<td>(MAFNZ, 2000b)</td>
<td>Uncertain</td>
<td>Not likely Orchard or packhouse contaminants (MAFNZ, 2000b). No records of interceptions of species of this genus from New Zealand (DAFF-PDI, 2002).</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>
PATHOGENS

Apple scab

Venturia inaequalis (Cooke) G. Winter (1875) [Pleosporales: Venturiaceae]

Synonyms and changes in combination:

Endostigme inaequalis (Cooke) Syd. (1923), _Fusicladium dendriticum_ (Wallr.) Fuckel (1870), _Sphaerella inaequalis_ Cook (1866), _Spilosticta inaequalis_ (Cooke) Petr. (1940) [synonyms]; _Fusicladium pomi_ (Fr.) Lind (1913), _Spilocaea pomi_ Fr. (1825) [anamorphs] (CABI, 2003b).

Common names:

Apple scab, black spot (CABI, 2003a).

Hosts:

Cotoneaster spp. (Cotoneaster), _Crataegus oxyacantha_ (Midland hawthorn), _Eriobotrya japonica_ (loquat), _Malus_ spp. (ornamental apple), _Malus domestica_ (cultivated apple), _Pyracantha_ spp. (firethorn), _Pyrus_ spp. (pear), _Pyrus communis_ (European pear), _Sarcocephalus esculentus, Sorbus_ spp. (Mountain ash), _Viburnum_ spp. (arrow-wood). (MacHardy, 1996; CABI, 2002).

Based on a genetic and pathogenic study (Le-Cam _et al._, 2002), proposed that pathogens responsible for scab on _Malus_ spp. and _Pyracantha_ spp. are considered as two formae speciales belonging to _V. inaequalis_.

Plant part(s) affected:

Most commonly leaves, petioles, blossoms, sepals, fruits, pedicels, and less frequently on young shoots and bud scales. Most obvious symptoms occur on leaves and fruits (Biggs, 1990; MacHardy, 1996).

Distribution:

Afghanistan, Argentina, Australia (except Western Australia), Austria, Belgium, Bhutan, Bolivia, Brazil, Bulgaria, Canada, Chile, China, Colombia, Cyprus, Czechoslovakia, Denmark, Egypt, Ethiopia, Finland, France, Germany, Ghana, Greece, Guatemala, Hungary, India, Iran, Iraq, Ireland, Israel, Italy, Japan, Jordan, Kenya, Korea, Democratic Peoples’ Republic, Korea, Republic of, Lebanon, Libya, Malta, Mexico, Morocco, Netherlands, New Zealand, Norway, Pakistan, Peru, Poland, Portugal, Romania, Russian Federation, Saudi Arabia, South Africa, Sweden, Switzerland, Syria, Turkey, United Kingdom, USA, Uruguay, Yugoslavia, Zimbabwe (CABI, 2003a).
Since the first outbreak of apple scab in Western Australia (WA) in 1930 (Pitman, 1930), there had been five more outbreaks of scab between 1930 and 1996 (MacHardy, 1996). Apple scab has been eradicated in WA and it is declared free of scab (McKirdy et al., 2001). In WA, the pathogen is under official control.

Biology:

Apple scab, caused by *Venturia inaequalis* is the most important disease of apple worldwide (MacHardy, 1996; CABI, 2003a). They have indicated that scab is a serious problem mainly in temperate regions with humid cool weather conditions in spring and warm hot dry summers. In regions with semi-arid conditions such as western North America, Western Australia and parts of South Africa, the incidence of scab is less common (CMI, 1978).
The life cycle of the apple scab or black spot fungus is given Figure 1. The pathogen overwinters mainly in dead scabbed leaves and fruit on the ground as immature pseudothecia (Biggs, 1990). The fungus can also overwinter as mycelium in shoots (Moosherr and Kennel, 1995), in lesions on twigs (Stensvand et al., 1996) and bud scales (Salmon and Ware, 1931), or as dormant conidia in buds (Becker et al., 1992), but these are less common. Vegetative structures of *V. inaequalis* exposed to low temperatures in the winter rarely survive until the next growing season but an average of c. 2 viable conidia per bud were detected inside buds (Becker and Burr, 1988; Becker et al., 1992). In regions where wood pustules are common conidia can be an important source of primary inoculum (Cooke, 1974; Hill, 1975). Overwintering conidia in buds did not lead to more scab in orchards (Heijne and Anbergen, 1995).

After leaf fall, the scab fungus continues to grow inside the infected leaves with the initiation of pseudothecia. Most pseudothecial initials are formed within 4 weeks after leaf fall (Biggs, 1990). The rate of further development of pseudothecia depends on temperature and moisture levels (MacHardy and Sutton, 1997). At least 20 min of exposure to light is required for pseudothecia to develop normally and that low or no light will reduce the number of pseudothecia produced (Holz, 1939). Leaves in lower layers of the leaf litter have fewer pseudothecia, and this was most likely due to less exposure to light (Hirst and Stedman, 1962). Moisture is a limiting factor in pseudothecial development (James and Sutton, 1982). Summarising the work of several researchers (MacHardy, 1996) concluded that scabbed leaves must be wetted occasionally by rain or dew after leaf fall for pseudothecia to be produced and develop, but prolonged or continuous moisture can result in fewer pseudothecia, retard their maturation or lead to abnormal development.
Above a certain moisture threshold, the rate at which pseudothecia mature is determined primarily by temperature. Maturation accelerates with increasing temperatures in late winter and spring (CABI, 2003a). The optimum temperature range for ascogonial development is 8-12°C (James and Sutton, 1982) and the temperature for ascospore maturation i.e. 20°C (Wilson, 1928), corresponded very closely to ascospore germination in water reported by (Keitt and Jones, 1926). The maturation of pseudothecia, ascii and the ascospores within them coincides mostly with bud break (CABI, 2003a).

Two important factors likely to contribute to *V. inaequalis* inoculum density in spring are the incidence of black spot on leaves prior to leaf fall in the previous autumn and the density of leaf litter remaining in the spring (Horner and Horner, 2002). They found that blocks with high autumn black spot generally had high spring ascospore production. These two factors are important components of the Potential Ascospore Dose (PAD) prediction systems (MacHardy and Jeger, 1982) and it serves as a useful tool on the management of apple scab (MacHardy, 1998).

When overwintered leaves on the orchard floor become wet in the spring, mature ascii expand through the ostiole and forcibly discharge ascospores in the air (Biggs, 1990). Ascospores continue to mature and are discharged over a period of 5-9 weeks. The peak period of ascospore discharge usually occurs between the pink and full-bloom stages of bud development (Biggs, 1990). This period coincides with abundance of infectable leaves. At least 0.2 mm rainfall per hour, lasting one to several hours, uninterrupted or interrupted by a maximum of 2 dry hours is needed for distinct ascospore ejection (Rossi et al., 2001). They also found that wetness caused by dew was insufficient to allow ascospores to disperse into the air. In contrast, ascospore release also occurred during periods of dew but it was triggered mainly by free moisture from rainfall and by light (Villalta et al., 2002). In all seasons, less than 17.5% of a season’s ascospores were trapped during darkness. The airborne ascospores which serve as primary inoculum are disseminated by wind and carried to susceptible tissue on apple trees that have begun growth and flowering in spring.

Most ascospores are deposited in close proximity to their inoculum (source (CABI, 2003a)). Ascospores were released over distances ranging from 0.1 to 8.1 mm (one reached 13.2 mm) from the source, inside small chambers in still air (Aylor and Anagnostakis, 1991). They also showed that 75% of the ascospores were projected less than 4.1 mm from the source and only 1% were projected as far as 6.6 mm. The aerial concentration of ascospores decreased rapidly with height above the ground, and on average values of ascospores at 3 m height were only approximately 6% of ascospores measured at 0.15 m, the decrease in spore numbers was attributed to rapid increase of wind speed and turbulent eddydiffusivity with height above the ground (Aylor, 1995).

Nearly all ascospores are ejected less than 6 mm into still air, and with the water film on the leaf surface, the distance ascospores are propelled decreases to less than 0.25 mm and are seldom carried into the tree canopy under windless conditions. The ascospores ejected from leaf litter may get deposited on ground vegetation. Ascospores reaching the turbulent air must then pass through tree canopies and the surrounding boundary layer of the orchard (Frinking, 1993). It is generally accepted that most spores remain within a crop and fewer than 10% spores released in a crop are released beyond the crop boundary layer (Gregory, 1973). He showed that ascospores are dispersed by wind, and the dispersal gradient from an inoculum source is steep.

Several researchers concluded that most airborne ascospores are deposited in close proximity (less than 100 m) to their source (MacHardy, 1996). Ascospores dispersed from a high-inoculum orchard during the production of primary inoculum, will not cause a detectable
amount of scab in an orchard greater than 200 m downwind. It also appears that ascospores dispersed from a large inoculum source during a single rain event will cause a detectable increase in scab in an unprotected orchard 50-100 m downwind (MacHardy, 1996). Holb monitored the ascospore spread by Burkard spore traps and symptoms on susceptible and tolerant cultivars (Holb, 2002). He found that the number of ascospores in the air and symptom production decreased with increasing distance of the spore trap and inoculum source, respectively. Ascospore concentration was reduced by half or one-third at 21 m and one-tenth at 45 m. The 15- to 21 m distance from the inoculum source can be considered as the upper limit of ascospore spread. Beyond 33 m, the number of infected trees decreased further and at 57 and 66 m, only a minimum number of trees with symptoms were reported.

After ascospores are ejected the temperature and moisture are the most critical determinants of ascospore viability and the rate at which ascospores germinate and grow. Germination and germ tube elongation occur over a wide temperature range (0.5 to 32°C) but these two processes are reduced greatly below 11°C and above 26°C, the optimum being 17°C (MacHardy, 1996). The minimum number of hours of continuous leaf wetness required for infection at various temperatures has been examined in detail (Mills, 1944; MacHardy and Gadoury, 1989; Stensvand et al., 1997; Gadoury and Seem, 1997). In general, for infection to occur the ascospores must be continuously wet for 28 hours at 6°C, for 14 hours at 10°C, for 9 hours at 18-24°C or for 12 hours at 26°C (Agrios, 1997).

Ascospore germination and first infection is mostly on apple leaf or fruit, but initial infection can occur on sepals at ‘bud break’ stage which can then be a source of secondary inoculum for developing fruits. On germination the ascospore germ tube pierces the cuticle and grows between the cuticle and the outer wall of the epidermal cells and the initial hypha ramifies to form a subcuticular stroma. The mycelium produces conidiophores and large numbers of conidia, which push outwards, rupture the cuticle, and within 8-15 days of inoculation, form olive-green, velvety scab lesions. Although, the mycelium remains mostly as a subcuticular stroma, first the epidermal cells and later the palisade and mesophyll cells of the leaves show a gradual depletion of their contents, eventually collapsing and drying (Agrios, 1997). The viability of ascospores can last up to 19 days at 5°C (Boric, 1985).

Production of conidia occurs mainly on the leaves, shoots, sepals, and fruit and less commonly on pustules that develop on bud scales. Conidia produced on these plant tissues increase the inoculum potential and contribute to the secondary spread of scab. Rarely, conidia present between bud scales constitute a part of the primary inoculum (MacHardy, 1996).

Conidia are disseminated mainly by rain-splash from scab lesions to other susceptible tissues within the canopy of the same tree (CABI, 2003a; MacHardy, 1996). Rain accompanied by wind provides a means for conidial spread to a limited distance within an orchard. In exceptional circumstances conidia were caught by a spore trap in an aircraft flying at 610 m (Hirst and Stedman, 1961), presumably disseminated by high-altitude air currents. The distance conidia travel is dependent mainly on wind speed and the size of the water drops. Based on orchard and laboratory data, it appears highly unlikely that these conidia would cause an outbreak of scab at a location far way from the source (Hirst and Stedman, 1961) became the steep gradient of dispersal of conidia within a few meters of the source and the vulnerability of detached conidia to dry conditions.

Conidia sporulated at c.70% to 100% relative humidity. It was optimal at 90% relative humidity, but reduced to approximately 50% at 80% and 100% relative humidity, and did not occur in dry atmosphere c.60% relative humidity (Studt and Weltzien, 1975). Conidia sporulated over a wide range of temperature 4-28°C (optimum 10-20°C). Light has no
discernable influence on sporulation. Up to 100,000 conidia may be produced in each leaf lesion (Biggs, 1990).

Several researchers concluded that free water is essential for conidial germination and they germinate over a wide range of temperatures from 0 to 30-32°C, but 5-25°C is the most favourable range, with an optimal range of 16-20°C (MacHardy, 1996). The rate of germination and appressorium formation of conidia was directly proportional to temperature from 5-20°C, but conidia germinated and formed appressoria more quickly than ascospores (Turner et al., 1986). Conidial viability is greatest when they are young, and desiccation and high temperature appear to have the greatest detrimental effect to conidia that remain attached to conidiophores in a lesion. Conidia germinate and cause further infection in the same way that ascospores do. The successive production of abundant conidia in each lesion may give rise to a scab epidemic.

However, inoculum dose, host growth, and environmental conditions can all determine the severity of a scab attack. Susceptibility of leaves and fruit declines with age (Kollar, 1996). Infections are most abundant during cool, wet periods of summer, and autumn, while they are infrequent or absent in dry hot summer weather.

Apple scab attacks predominantly the leaves and fruit. As the leaves emerge, the lower surface in particular, and the surface adjacent to the midrib gets infected first and then the upper surface as the leaves unfold. Infected leaves usually become distorted as scab lesions enlarge (CABI, 2003a).

Infection of sepals may serve as an important source of secondary inoculum for developing fruits (Kennel, 1987). Fruit is highly susceptible to infection through petal fall and fruit set (MacHardy, 1996). Lesions on young fruit are darker with distinct margins and these eventually become corky spots. When fruits enlarge, cracks appear in the skin and fruit flesh, but early-infected fruit usually drop prematurely. Apples become more resistant to scab as they approach maturity (Keitt and Jones, 1926). Lesions develop more slowly when infections occur late in the season particularly on the stem-end of fruit before cork formation restricts the fungal growth prior to harvest (Bratley, 1937). These ‘pin-head’ or ‘pin-point’ size lesions (0.1 to 4 mm diameter), appear shortly before harvest and they are frequently followed by ‘storage’ scab, which may not appear until after 10 to 12 weeks in storage (MacHardy, 1996). ‘Storage scab’ is typically seen as shiny, black, sunken spots in contrast to velvety-like appearance of lesions that develop on fruit in the orchard (MacHardy, 1996). He indicated that as lesions enlarge during cold storage, the cuticle is either broken or show alternate concentric bands of smooth and rough ridges on the cuticle.

A study was made of the conditions for scab development during fruit storage (Bratley, 1937). He identified several important factors, amongst them were, (i) presence of free moisture affected lesion size (ii) orchard conditions before picking influenced the number of lesions that developed in storage (iii) lesions size was smallest at 0°C but the lesion size and number increased at high temperature and high relative humidity and (iv) new lesions appeared at the stem-end of fruit. An investigation of the relationship between scab development on mature fruit (cv. Ganny Smith) and temperature (1-2°C and 20°C) during storage after inoculation was carried out (Schwabe, 1982). It took 80 days for apples stored at 1-2°C to develop lesions compared to 35-45 days at 180 days at 20°C. It took 180 days for maximum lesion development for fruit stored at the lower temperature compared to c.100-120 days at the higher temperature. Lesions that appeared during storage developed from infections that occurred before harvest, and the number of infections that developed into lesions is directly related to temperature. At higher temperatures (and high relative humidity), lesions appear earlier and are more numerous.
Moisture is the most important factor affecting the size of lesions, particularly free moisture on apples packed tightly in storage cartons (Bratley, 1937). At a given temperature, increasing the relative humidity by 20% generally doubles the size of old lesions. He concluded that infections 1-2 weeks before harvest were unlikely to cause visible lesions during normal storage time (Bratley, 1937). Temperature determines how soon and at what rate lesions appear in storage. Apples were graded for scab severity before storage, at 0.5, 2.8°C or a cycle of 2.8 and 0.5°C in a room held at c.80% relative humidity (Tomerlin and Jones, 1983). The increase in lesion diameter from one orchard was significantly greater at 2.8°C than at 0.5°C regardless of scab severity. Most new lesions that developed in storage were on apples that had visible lesions when stored. Of apples graded initially as scab-free, none from one orchard and 7% of fruit from the second orchard developed new lesions during storage.

A study conducted by inoculating 20 cultivars with V. inaequalis collected from natural infection in three locations widely separated geographically, not all cultivars were susceptible to all isolates (Palmiter, 1932; Palmiter, 1934). These results showed that natural populations of V. inaequalis included pathotypes that were unable to incite infection on some cultivars. In another study, the random amplified polymorphic DNA (RAPD) marker technique revealed that conidia collected from each cultivar caused lesions on that cultivar and not on another two cultivars (Sierotzki et al., 1994a; Sierotzki et al., 1994b). They interpreted this as indicating race-specific (major gene) response that can stop infection by V. inaequalis before symptom expression. They also found that there are other genes which condition a different level of parasitic fitness if the appropriate virulence is present. It follows, for example, that a mixed planting of apple cultivars with different levels of resistance to scab, the difference in scab incidence and severity among the cultivars would become less over time due to selection pressure for spores with genotypes best fit to attack each cultivar.

Natural genetic resistance to apple scab exists in some Malus species, the best known being Malus floribunda (designated as Vf from Malus floribunda 821), and used in breeding programs (Hough, 1944). Resistance to scab in Malus atrosanguinea 804 is similar to the resistance in M. floribunda and M. micromalus (Williams and Dayton, 1968; Williams et al., 1966). The resistance is determined after the cuticle is penetrated (Valsangiacomo and Gessleer, 1988) and involvement of phytoalexins (Hrazdina, 1998; Borejsza-Wysocki et al., 1999) and flavanols (Mayr et al., 1997; Feucht et al., 1998) has been proposed.

Different physiologic races are present in wild-type populations of V. inaequalis, which differ in pathogenicity to species and varieties of Malus (Parisi et al., 1993). Occurrence of 7 physiologic races of V. inaequalis is distinguished on the basis of pathogenicity to different Malus hosts (CABI, 2003a). Testing 9 isolates of V. inaequalis obtained from three states in Australia, using five race differential selections of apple from the USA showed that they belong to race 1 (Heaton et al., 1991). There is a high degree of variation amongst the V. inaequalis population in New Zealand, but only one race (race 1) has been detected (Patterson et al., 2003).

Differential interactions in respect of virulence and aggressiveness were found between V. inaequalis isolates and apple varieties (Zhdanov, 1989). Based on genetic and pathogenic data, the pathogens responsible for scab on Malus spp. and Pyracantha spp. are designated as two formae speciales belonging to V. inaequalis (Le-Cam et al., 2002).

Strains of V. inaequalis resistant or sensitive to fungicides have been reported from different countries. Benomyl tolerant strains have been isolated from commercial orchards in USA (Lalancette et al., 1987). Resistance to Dodine has been shown to be persistent (Koller et al., 1999). In some instances, 5 to 30% of dodine-resistant strains have been detected in the population of V. inaequalis in majority of orchards investigated in Poland (Meszka and
Bielenin, 2001). No dodine resistance was detected in New Zealand and it is still an effective fungicide (Backer and O’Callaghan, 1999). Similarly, since the first report of tolerance to the sterol demethylation inhibitors (DMIs) (Stains and Jones, 1985), scab strains with reduced sensitivity to DMIs have been reported from several countries including New Zealand (Whelan et al., 1992). The strobilurine-analogues (beta-methoxyacrylates) after a few years of use have also shown a shift in sensitivity to V. inaequalis (Palm, 1999).

Economic impact:

Over a period, losses from scab far exceed those from any other disease or pest of apples (CABI, 2003a). Crop losses can be severe (70% or more) when humid, cool weather occurs during the spring months (Biggs, 1990). The major economic loss to the grower is the reduction of fruit quality of scabbed apples. A severe attack on the leaves will cause mid-season defoliation and reduction of tree vigour, which in turn may lead to failure of fruit bud formation, and stunted and reduced growth. Young fruit affected by scab may be reduced in size and asymmetrical when it has matured, and the keeping quality of scabbed fruit may be greatly impaired (MacHardy, 1996). In regions and years with favourable weather conditions for scab infection and with a high PAD, nearly all the fruit may be infected. In such regions, about 70% of the pesticides applied are used in relation to scab control (CABI, 2003a).

In the early 1900’s yield losses in unsprayed orchards in New York was estimated at around US $ 3.5 million (Warren, 1905; Wallace, 1913). More recently in 1983, nearly 10% of the apples in Himachal Pradesh in India were considered not marketable and were destroyed, resulting in a loss of US $ 1.5 million (MacHardy, 1996). Losses caused by ‘storage’ scab were also common in several European countries in the late 1920’s and early 1930’s, but substantial losses are uncommon today (MacHardy, 1996). More recently, loss in yield due to fruit damage as a result of scab infection was reported at around 56-74% (Jurjevic et al., 2001).

Control:

The fungicides available to control scab can be divided into two different groups on the basis of their mode of action, the non-systemic multi-site fungicides and the specific uni-site inhibitors (CABI, 2003a). Multi-site fungicides included several inorganic (e.g., sulphur, copper) and organic chemicals (e.g., thiram, ferbam, zineb, mancozeb) and are used as protective fungicides, applied before the initiation of infection. Captan, a new class of organic fungicide remained one of the most widely used products in scab control. Together with dithianon, captan is often used as a partner for site-specific fungicides in an anti-resistance strategy (CABI, 2003a). Intensive use of Dodine resulted in control failures due to resistance and it was persistent when treatments were interrupted over a number of years (Koller et al., 1991).

Single-site inhibitors include benzimidazoles (e.g., carbendazim, benomyl and thiophanate-methyl); sterol demethylation inhibitors (DMIs) used in integrated fruit production (IFP) programs (e.g., bitertanol, fenarimol, triflumizole); anilino-pyrimidines (e.g., pyrimethanil, cyprodinil); and strobilurine-analogues derived from the natural antifungal antibiotic strobilurine A from the fungus Strobilurus tenacellus (e.g., kresoxim-methyl and trifloxystrobin) (CABI, 2003a). The most extensive group of fungicides is the DMIs and the mode of action is inhibition of fungal sterol biosynthesis (Kuck and Scheinpflug, 1987). Tolerance of V. inaequalis to DMIs has been reported from first in Germany (Stains and Jones, 1985) and later from several countries including New Zealand (Whelan et al., 1992). The primary target of anilino-pyrimidines in the infection process of V. inaequalis is just after the formation of
primary stroma (Winter et al., 1994; Milling, R.J. and Daniels, 1996). The mode of action includes inhibition of methionine biosynthesis and secretion of hydrolytic enzymes. Strobilurine-analogues strongly inhibit spore germination at very low dose rates, a higher retention after rainfall, and prevent the formation of conidiophores (CABI, 2003a). A shift in the sensitivity of *V. inaequalis* to strobilurines has been reported (Palm, 1999). Resistance monitoring of orchard population of the pathogen in relation to the base line curves is needed to follow up the evolution of sensitivity and to warn of tolerant strains in different regions (Koller et al., 1991; Kung et al., 1999).

European Canker

Nectria galligena Bresadola (1901). [Hypocreales: Hypocreaceae]

Synonyms and changes in combination:

Common names:

European canker, nectria canker, crotch canker, eye rot (CABI, 2003a; Grove, 1990a).

Hosts:

Acer circinatum (vine maple); *Acer macrophyllum* (bigleaf maple); *Acer pensylvanicum*; *Acer rubrum* (red maple); *Acer saccharum* (hard maple); *Aesculus* sp. (horse-chestnut); *Alnus incana* (grey alder); *Betula papyrifera* (paper birch); *Betula pendula* (European white birch); *Betula lenta* (sweet birch); *Betula nigra* (river birch); *Betula populifolia* (grey birch); *Carpinus betulus* (common hornbeam); *Carya cordiformis* (Bitternut hickory); *Carya glabra* (pignut hickory); *Carya illinoinsensis* (pecan); *Carya ovata* (shagbark hickory); *Carya tomentosa* (mockernut hickory); *Cornus nuttallii* (Pacific dogwood); *Corylus avellana* (hazel); *Fagus grandifolia* (American beech); *Fagus sylvatica* (European beech); *Frangula alnus* (Alder buckthorn); *Fraxinus excelsior* (common ash); *Fraxinus nigra* (black ash); *Juglans cinerea* (butternuttree); *Juglans nigra* (black walnut tree); *Liriodendron tulipifera* (yellow poplar); *Malus domestica* (apple); *Nyssa sylvatica* (blackgum); *Populus grandidentata* (bigtooth aspen); *Populus tremuloides* (trembling aspen); *Prunus serotina* (black cherry tree); *Pyrus communis* (pear); *Pyrus pyrifolia* var. culta (oriental pear tree); *Quercus alba* (white oak); *Quercus bicolor* (swamp white oak); *Quercus coccinea* (scarlet oak); *Quercus garryana* (Oregon white oak); *Quercus laurifolia* (laurel oak); *Quercus rubra* (Northern red oak); *Quercus velutina* (black oak); *Rosa* spp. (rose); *Rhus typhina* (staghorn sumac); *Salix alba* (white willow); *Salix amygdaloides* (peachleaf willow); *Sorbus aucuparia* (rowan tree); *Tilia americana* (American basswood); *Ulmus americana* (American elm); *Ulmus glabra* (mountain elm) (CABI, 2003a).

Plant part(s) affected:

stem, fruit.
Distribution:

Afghanistan; Argentina; Austria; Belgium; Bulgaria; Canada (British Columbia, New Brunswick, Nova Scotia, Ontario, Prince Edward Island, Quebec); Chile; China (Taiwan); Czechoslovakia (former); Denmark; Estonia; Faeroe Islands; France; Germany; Greece; Hungary; Iceland; India (Himachal Pradesh); Indonesia (Java); Iran; Iraq; Ireland; Italy; Japan; Korea (Republic of); Lithuania; Lebanon; Macedonia; Mexico; Netherlands; New Zealand; Norway; Poland; Portugal (Azores, Madeira); Romania; Russian Federation; Saudi Arabia; Slovakia; South Africa; Spain (Canary Islands); Sweden; Switzerland; Syria; Ukraine; United Kingdom; the USA (California, Connecticut, Florida, Illinois, Indiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, New Hampshire, New York, North Carolina, North Dakota, Oregon, Pennsylvania, Rhode Island, South Dakota, Vermont, Virginia, Washington, West Virginia); Uruguay; Yugoslavia (CABI, 2003a).

Note that the pathogen has been eradicated from Tasmania in Australia (Ransom, 1997).

Biology:

Nectria galligena is the pathogen responsible for one of the most important diseases *Nectria* canker or European canker of apples and pears and many species of hardwood forest trees in most parts of the world (Agrios, 1997; Swinburne, 1975). The disease affects mostly trunks and branches of tree causing cankers but in apple and pear fruit is also infected causing rot. Foliage is not affected (Butler, 1949). The life cycle of the pathogen is given in Figure 2.
On tree trunks and branches *Nectria* cankers usually develop around bud scars, wounds, twig stubs or in the crotches of limbs. In young trees cankers could girdle the trunks killing the whole tree. In older trees girdling kills only small branches but canker on main trunk or large branches reduce the vigour and value or productivity of the tree.

The fungus survives adverse environmental conditions as mycelium in twig and branch cankers and sporulates after the onset of moist conditions. It produces both the asexual stage, (creamy sporodochia producing conidia) and the sexual stage (bright red perithecia producing asci, each containing eight ascospores). Sporodochia and conidia generally form under cool moist conditions in spring, summer and autumn (Munson, 1939; Grove, 1990a). Conidia are commonly two- to four-celled macroconidia or rarely single-celled microconidia. Perithecia are formed on the cankers approximately one year after infection or on infected fruit that is left to mummify and over-winter on the tree. They form in autumn, mature in winter and spring (Munson, 1939; Grove, 1990a) releasing ascospores.

Spores are spread by wind and rain splash and perhaps by insects and birds (Munson, 1939; Butler, 1949; Agrios, 1997). Conidia are dispersed mainly by rain splash (Grove, 1990a). The most probable maximum distance for conidial dispersal is 10 m (Marsh, 1940; Taylor and Byrde, 1954; Taylor and Byrde, 1954) although under storm conditions this might extend to about 125 m (Swinburne, 1975; CABI, 2003a). Ascospores are forcibly ejected and wind-disseminated or exuded in a gelatinous matrix and water dispersed (Munson, 1939; Grove, 1990a). Woolly aphids have been observed to carry conidia on their bodies (Munson, 1939).
Birds are suspected to spread spores probably because they inhabit branches of trees. However, spread of the disease by insects and birds has not been demonstrated.

Known points of infection for tree trunks and branches are newly exposed leaf scars, cracks on leaf scars with onset of bud burst, scars left after the removal of fruit petioles, tree tie wounds, lesions caused by other pathogens such as *Venturia inaequalis* and *Myxosporium corticola*, pruning cuts, frost damage, bark fissures at branch crotches, burr knots, and abnormal buds (Swinburne, 1975) and woolly aphid injury (Brook and Bailey, 1965).

Liquid phase water is required for the germination of conidia and ascospores and their viability is affected by temperature, relative humidity and desiccation, it being sharply reduced when exposed to relative humidities between 85-100% at 11°C and 19°C for 3-12 hours (Dublin and English, 1975a). Conidia and ascospores germinate over a wide range of temperatures from 2°C to 30°C and optimum for the growth of the fungus is between 18°C and 24°C (Munson, 1939; Butler, 1949). The disease becomes troublesome in regions where fog, moderate temperatures and annual mean rainfall exceeds 1000 mm (Grove, 1990a).

While spores and potential infection sites are available almost all through the year, the most important period for infection vary in different parts of the world (Swinburne, 1975). In Europe, autumn leaf fall is considered to be the most critical period. In Northern Ireland the critical period for infection in Bramley’s seeding apple appears to be spring and summer, infection sites being scars of bud scales, distal leaf scars of previous year’s that crack as stem growth increases and crotches that form as divergent buds elongate. In N.W. America and California, infection occurs during the dormant winter period between leaf fall and bud burst as it coincides with the distinct rainy season there.

Both ascospores and conidia act as inocula (Butler, 1949; Grove, 1990a). In California, where the main rainy period and infection is in winter, conidia are considered the major infective propagules, ascospores playing an insignificant role in infection (Dublin and English, 1975b). However, ascospores are considered an important epidemiological factor in disease development in Northern Ireland where summer infection is prevalent (Grove, 1990a).

Approximately 1000 conidia are required for leaf scar infection (CABI, 2003a). In California five conidia were insufficient to initiate lesions at leaf scars but 50-500 did so readily (Dublin and English, 1974). In recent artificial inoculations in nursery plants during nursery practices such as de-feathering, budding and heading back, as few as 12 conidia have produced infection and these conidial numbers were considered to resemble natural situations (McCraken *et al.*, 2003b).

The fungus exists in several strains differing in cultural characteristics, but they appear to be largely non-specific in their pathogenicity to different strains (Ng and Roberts, 1974; Flack and Swinburne, 1977). However it was found that the incitant of canker in ash (*Fraxinus* spp.) to be *forma specialis*, *N. galligena* f.sp. *fraxini* as distinct from the incitant of apple canker *N. galligena* f.sp. *mali* (Flack and Swinburne, 1977).

In apple, varieties vary in their susceptibility to the disease but none are immune (McKay, 1947). Cross-inoculation experiments found species such as poplar, hawthorn and beech common in hedgerows, windbreaks and woodlands to be external sources of inoculum for infection of apple plantations, with poplar being highly susceptible and unsuitable for use as a wind break (Flack and Swinburne, 1977).

Early studies on the origin of the inoculum responsible for initiation of epidemics in young orchards indicated that it might originate within nurseries (CABI, 2003a). Reports from a
recent study in UK, called the ‘Millennium project’ to understand the roles of nursery origin and spread from adjacent infected orchards towards canker development in young orchards (Berrie et al., 2000; Lovelidge, 2003; McCraken et al., 2003a; McCraken et al., 2003b) conclude that (a) approximately 5% of the infection in young orchards could be associated with nurseries but sometimes the problem could be bigger; this type of infection can become important in low rainfall areas; the disease that gets into trees through nurseries can remain symptomless for 3-4 years; there is no cost effective method for detecting the pathogen in symptomless wood which makes it difficult to get a handle on the size of the problem; and (b) in situations of high disease pressure inoculum movement from neighbouring sources is more important than nursery infection.

Contamination of the fruit occurs on the tree by spores emitted by the cankers and will depend essentially on whether the disease is present on the tree (Bondoux and Bulit, 1959). Excessive summer rains in Europe cause tree infection common in summer and hence more common fruit infection. In N.W. America and California both suitable rainfall and infection generally occur during winter (Swinburne, 1975) and therefore fruit infection is rare (Nichols and Wilson, 1956; McCartney, 1967); it only occurring when there is unusually high summer rain (McCartney, 1967).

Fruit infection typically takes place at the blossom end of the fruit; either through open-calyx, lenticels, scab lesions or wounds caused by insects and is called ‘eye rot’ (Swinburne, 1975). Fruit rot can also develop at the stem end (Swinburne, 1964; Bondoux and Bulit, 1959) and rarely on the general fruit surface when the skin is damaged (Bondoux and Bulit, 1959). In France, the rot was found to spread to the seed cavity where the fungus could be isolated from the mycelium that surrounds in seed (Bondoux and Bulit, 1959) but this was not observed in California (McCartney, 1967). In dessert varieties fruit infection generally leads to the development of a rot before harvest (Swinburne, 1964; Swinburne, 1975) but at times could remain latent and express only during storage (Snowdon, 1990), especially if the contamination is towards the end of the season (Bondoux and Bulit, 1959). In cooking varieties rotting is rarely apparent until 3-7 months of storage (Swinburne, 1975).

The mechanism of latent infection has been attributed to the accumulation of benzoic acid in the fruit, a substance fungi-toxic to the pathogen in the acid condition in the unripe fruit (Swinburne, 1975). If an infection point starts in the young/immature fruit it will not grow due to high benzoic acid toxicity in the acid condition. As acidity decreases and sugar level increases with ripening, the toxicity of benzoic acid decreases and the fungus resumes growth.

Economic impact:

Cankers on branches and stems can necessitate tree replacement ranging from 10% of trees (Lovelidge, 1995) to whole plantations (Grove, 1990a). In Northern Ireland storage losses for fruit of the Bramley’s seeding variety varied from 3-60% depending on the type of storage about half of these rots being attributed to *Nectria galligena*, (Swinburne, 1964; Swinburne, 1970a). Bramley’s seedling is more a cooking variety where losses before harvest are generally negligible (Swinburne, 1970a), rots appearing only after storage (Swinburne, 1971a). In France, 0.5% and 2% of stored apples of varieties Reinettes du Mans and Rinettes blanches du Canada respectively rotted in storage due to *Nectria* (Bondoux and Bulit, 1959). Economic damage to host species used for timber, through reduction in both quality and quantity of marketable logs, particularly in North America, has been reported (CABI, 2003a) but there is no estimates of the magnitude of this loss.
Control:

Control of European canker in apple is by chemical and cultural control in orchards, development of resistance in host plants and preventing fruit rotting. Because epidemics of the disease are localised, control measures are not essential in every orchard. Chemical and cultural measures are applied only when an outbreak is detected. However, once the disease is established in young orchards it can be very difficult to control (CABI, 2003a).

With the early recognition that leaf scars are a primary infection point in trees, chemical control uses copper based protectant fungicides to protect leaf scars during autumn leaf fall. In areas with significant summer rainfall fungicides used to control apple scab also provide good control of European canker (Swinburne, 1975). Protectant fungicides such as dodine and dithianon are recommended in integrated pest management programs to control both diseases (Cooke et al., 1993). Some fungicides such as carbendazim, although ineffective as a protectant at leaf fall effectively reduce sporulation of the fungus from canker lesions (Swinburne, 1975). Demethylation-inhibiting fungicides such as myclobutanil and penconazole have also been found to be effective against both scab and European canker. Paints containing fungicides are widely used to protect pruning scars from new infection.

Saure (1962) observed that infected branches removed during pruning continued to produce spores up to 2 years. This led to the recommendation to removal of pruning material from the orchard and destruction. However because of the cost associated with this operation, pruned infected branches are now chipped and left in the orchards, with tests indicating that this does not increase the incidence of the disease in orchards.

Although all cultivars of apple are susceptible to European canker, prevalence and severity of the disease is much greater on some varieties. This knowledge is currently being used to develop resistant cultivars but these studies are still in early stages.

Pre-harvest application of fungicides to prevent fruit rot does not appear practical due to difficulties in providing adequate cover under commercial conditions. Further, because these fungicides are generally the same ones used to control apple scab it tends to increase the number of fungicide application per season. Therefore to reduce pre-harvest fungicide applications approaches identifying orchards at most risk and periods in the season when spore dispersal and infection are most likely using predictive models based on meteorological conditions are being used. After harvest, in many countries fruit are dipped in a cocktail of compounds containing fungicides to control rots due to fungi including *N. galligena* (CABI, 2003a).

Fire Blight

Erwinia amylovora (Burrill 1882) (Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith, 1920) [Enterobacteriaceae: Enterobacterales]

Synonyms and changes in combination:

Micrococcus amylovorus Burrill (1882); *Bacillus amylovorus* (Burrill) Trevisan, 1889; *Bacterium amylovorus*(sic) (Burrill) Chester, 1897) (CABI, 2002).
E. amylovora is a highly homogeneous species, but recent studies show that some differences exist at the molecular level between strains of different origins (Beer et al., 1996; Lecomte et al., 1997; Momol et al., 1997).

Strains of E. amylovora pathogenic to Rubus sp. were originally described as E. amylovora f.sp. rubi (Starr et al., 1951). These strains did not show cross pathogenicity with Maloideae strains. They were later shown to be more heterogeneous than strains from Maloideae, and to exhibit different profiles from these isolates in RAPD analysis (McManus and Jones, 1995b). A subgroup within this group of E. amylovora f.sp. rubi strains seemed to be capable of cross-pathogenicity with Maloideae (Momol et al., 1997).

Pathovars have not been described in the species E. amylovora, but stable differences in virulence of some strains on certain genotypes (differential virulence) have been assessed on apple (Meijneke, 1974). The magnitude of these differences is not considered significant in the context of phytosanitary risk management.

Strains from Japan, isolated from Japanese pear (Pyrus pyrifolia), taxonomically identical to E. amylovora showed limited range of pathogenicity on Pyrus and Malus cultivars (Beer et al., 1996).

Common names:

Fire blight.

Hosts:

Besides the species in genera Malus and Pyrus, there are 129 species of plants belonging to 37 genera of the family Rosaceae that have been reported to be susceptible to E. amylovora (van der Zwet and Keil, 1979). These authors showed that most of the hosts are susceptible only when inoculated artificially. The natural host range of E. amylovora is now generally considered to be restricted to genera of the sub-family Maloideae (formerly: Pomoideae) of the family Rosaceae (CABI, 2002).

Primary hosts of economic and epidemiological significance are Cotoneaster spp. (cotoneaster); Crataegus spp. (hawthorn); Cydonia spp. (quince); Eriobotrya japonica (loquat); Malus spp. (apple); Pyracantha spp. (firethorn); and Pyrus spp. (pear).

Secondary hosts are Amelanchier spp. (serviceberry); Chaenomeles spp. (flowering quince) Mespilus spp. (medlar); Photinia spp. (photinia); Rubus spp. (blackberry, raspberry); Sorbus spp. (mountain-ash); and Stranvaesia davidiana (CABI, 2002; Deseö, 1970).

Of these, the most susceptible hosts are: Cotoneaster bullatus; C. dammeri (except cv. Eichholz No. 1); C. lacteus; C. lucidus; C. microphyllus; C. moupinensis; C. salicifolius; C. watereri; Malus (most species); Crataegus (most species); Cydonia (most species); Pyracantha fortuneana (cv. Orange Glow); Pyrus (most species); Sorbus aria; Stranvaesia davidiana (Deseö, 1970).

Within each genus given as hosts of fire blight, there are species or cultivars that may show a high level of resistance under natural conditions or artificial inoculations (CABI, 1999; van der Zwet and Keil, 1979).

Occasionally fire blight symptoms have been described on plants not belonging to the sub-family Maloideae under natural conditions. For example, natural infections of Rubus spp.
(raspberry and blackberry) plants, which belong to the Rosoideae sub-family have been reported (Starr et al., 1951). Strains of E. amylovora isolated from Rubus spp. are not pathogenic on pear (Pyrus communis) or apple (Starr et al., 1951; Ries and Otterbacher, 1977; Heimann and Worf, 1985). The distinct group of strains affecting Rubus idaeus (raspberry) and Rubus sp. (thornless blackberry) is presently described as E. amylovora f.sp. rubi (Starr et al., 1951). This disease may sometimes be destructive (Evans, 1996). It has not been described outside North America (USA, Canada).

Natural infection of Prunus salicina (Japanese plum) belong to the Amygdaloideae (Prunoideae) sub-family, in close proximity to an active source of fire blight infection on Maloideae has been confirmed in Idaho in USA (Mohan and Thomson, 1996). Based on cultural and physiological and inoculation tests Prunus strains were not different from an apple strain (FB93-1) of E. amylovora (Momol and Aldwinckle, 2000). In Germany, E. amylovora was detected on young fruits of P. domestica (plum) (Vanneste et al., 2002b). They also confirmed natural infections on young fruit of Rosa rugosa (potato rose) (Rosoideae) in Germany.

Records on other rosaceous hosts are based on artificial inoculations and inconclusive evidence. Results from field inoculations showed varying degrees of susceptibility among several species to E. amylovora. In general, P. salicina (Japanese plum) and P. armeniaca (apricot) were most susceptible followed by P. domestica (European plums). Varieties of P. persica (peach), P. persica var. nucipersica (nectarine), P. avium (sweet cherry) and P. cerasus (sour cherry) were much less susceptible, while P. dulcis (almond) were the most resistant (Mohan et al., 2001). Confirmed and doubtful hosts of fire blight have been listed (Bradbury, 1986; van der Zwet and Keil, 1979).

The hosts in genera of Aruncus sp.; Fragaria spp.; Prunus spp.; Rosa spp.; Rubus spp. and Spiraea spp. are reported to be affected by fire blight bacterium under unusual conditions (AQIS, 1998a). There are several Australian native plant species belonging to the family Rosaceae, but their susceptibility to fire blight disease is unknown (AAPGA, 1996).

Plant part(s) affected:

Leaves, stems, flowers and fruits (CABI, 2002).

Distribution:

Albania; Armenia; Austria; Belgium; Bermuda; Bosnia and Herzegovina; Bulgaria; Canada (Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland, Northwest Territories, Nova Scotia, Ontario, Prince Edward Island, Quebec, Saskatchewan, Yukon Territory); Croatia; Cyprus; Czech Republic; Czechoslovakia (former); Denmark; Egypt; France; Germany; Greece (Crete); Guatemala; Hungary; Iran; Ireland; Israel; Italy (Po Valley, Sicily); Jordan; Lebanon; Luxembourg; Macedonia; Mexico; Moldova; Netherlands; New Zealand; Norway; Poland; Romania; Serbia; Spain; Sweden; Switzerland; Turkey; United Kingdom (England and Wales, Northern Ireland (eradicated), Scotland); USA (Alabama, California, Colorado, Connecticut,
Georgia, Illinois, Louisiana, Maine, Maryland, Michigan, New York, North Carolina, Ohio, Oregon, Pennsylvania, Texas, Utah, Virginia, Washington, West Virginia, Wisconsin); Yugoslavia (former) (CABI, 2002; Bonn and van der Zwet, 2000).

In Japan, Goto (1992) described the disease affecting Asian pear (*Pyrus pyrifolia*) occurring in Hokkaido as ‘bacterial shoot blight of pear (BSBP)’. The symptoms described by him were identical to those on fire blight and the causal agent as nearly identical to *E. amylovora*, except for some specific but unidentified properties. The causal agent affecting pear was identified as *E. amylovora* (Tanii et al., 1976), but later reported that several isolates showed limited range of pathogenicity on certain Asian pear cultivars. A study on the characterization of bacterial isolates (Beer et al., 1996) showed that irrespective of the host tree specificity or bacterial strain involved BSBP is identical to fire blight.

Fire blight-like symptoms were detected on three different rosaceous plants in the Royal Botanic Gardens, Melbourne in April 1997 (Rodoni et al., 1999). However, some controversy remains over both the identity of the bacterium and whether or not the disease was actually present (van der Zwet and Bonn, 1999; Jock et al., 2000). The results from two attempts to isolate the pathogen appeared contradictory; two reports confirmed the identity as *E. amylovora* (Jock et al., 2000; Kim et al., 1999a), while another stated that the bacterium was at the lower level of detection (Rodoni et al., 1999). Diagnostic tests confirmed that these isolates were not *E. amylovora* (Rodoni et al., 1999). National surveys conducted for three years have failed to confirm the presence of fire blight (Rodoni et al., 1999).

A disease affecting Asian pear (*Pyrus* spp.) in the Republic of Korea that resembles BSBP in symptoms, host specificity and biology was reported (Kim et al., 1999b). The causal organism of this disease affecting Asian pear was designated as a new species of *Erwinia* (*E. pyrifolia*) (Rhim et al., 1999).

Biology:

Disease cycle:

Figure 3 illustrates the key steps in the disease cycle of fire blight caused by *E. amylovora*. This bacterial pathogen overwinters almost exclusively along the margins of living bark tissues of overwintering (hold-over) cankers formed during the previous seasons in spurs, twigs and branches. The overwintering cankers with ill-defined margins (‘indeterminate’ cankers) are likely to provide inoculum in the spring as trees come out of dormancy. Under warm and humid conditions some of these cankers become active and exude bacteria-laden oozes that acts as the primary inoculum. Overwintering cankers are clearly visible on stems and large limbs but cankers on twigs and smaller limbs are not easily distinguished. The smaller cankers, especially those around cuts made in the previous season to remove blighted limbs are also important sources of inoculum. Bacteria may also move into the orchard from neighbouring infection sites, including ornamental and wild hosts.
The pathogen is disseminated by insects, rain, wind or wind-driven rain (as aerosols) to open blossoms, succulent shoot tips and tender leaves, where infection may occur. Open blossoms are the most susceptible tissues on the apple tree. Bacteria deposited on the stigmatic surface of blossoms multiply to very high numbers but usually do not cause disease (infestation); it is then in an epiphytic phase. Further spread of the pathogen occurs when pollinating insects (mainly bees) carry bacteria from infected/infested to non-infested blossoms. Rain and dew wash the bacteria into the base of the hypanthium (floral cup) and gain entry through natural openings, mainly nectarthodes or wounds, resulting in symptom expression (infection) under conditions of warm temperatures and high humidity. Bacteria multiply intercellularly within floral tissues causing disease symptoms and infected blossoms eventually die. The spurs bearing the dead blossom clusters are retained on the tree and persist into the winter. Under suitable environmental and host conditions bacteria multiply rapidly and move intercellularly through succulent host tissues.

Secondary infections can occur throughout the growing season and develop as a result of the primary infections in blossoms, late blossoms (rat-tails) and shoots, as well as from oozing cankers. Pruning using contaminated tools can also hasten the spread of fire blight.

There are six distinct types of disease symptoms associated with fire blight infections. These are blossom blight, shoot blight, trauma blight, fruit blight, canker blight and rootstock blight. Blossom infection will result initially in producing water-soaked lesions on the sepals (outer
most part of the blossom) and receptacle (expanded part of the flower stem) followed by wilting and browning or blackening. Droplets of bacterial ooze may sometimes be seen on the pedicel (flower stalk). Blossom infection may also lead to invasion of neighbouring spur leaves and eventually the twigs and branches. These infections may lead to the development of cankers.

After blossoms, succulent shoots, water sprouts and suckers are rapidly infected. Shoot blight symptoms are observed throughout the spring and summer often when blossom blight symptoms and active cankers are present. Tips of blighted shoots or suckers bend over, producing a characteristic symptom referred to as the shepherd’s crook. As the bacteria move down the shoot, its tissues become discoloured (brown) and shrivelled. Older shoots that become infected after they develop about 20 leaves may not show the curling symptom at the tip. Bacterial exudation could occur on blighted shoots. As a result, petioles (leaf stalk) and mid-vein of leaves turn brown or black sometimes accompanied by bacterial ooze along the mid-vein. Dead leaves are attached to the shoot throughout the growing season and persist into the winter.

After blossom infection, immature fruitlets may be infected through internal invasion from an infected spur, through lenticels on fruit or through wounds caused by insects and mechanical damage (e.g. wind, hail) resulting in fruit blight. Infected fruitlets, appear shrivelled, dried, do not mature and appear mummified as they remain attached to the spur. Generally apple fruit exhibit a premature reddening of the area bordering the infection. Sometimes secretion of bacterial ooze from lenticels can occur on infected immature fruit. In some fruitlets flower parts may be infested with bacteria and these could get retracted into the calyx-end as the fruit matures. These bacteria in or on remnant flower parts remain protected in the calyx-end of mature fruit after harvest. Wounds caused by mechanical damage, especially hail storms, predispose mature fruit to infection. Such infections are easily recognisable. Although uncommon endophytic (internal) fruit infection may occur when fruit are located close to severely blighted shoots. Surface infestation of mature fruit may also occur as a result of bacteria spreading with rainwater splashed from infected sources present within the tree canopy and neighbouring infected trees.

Fire blight spreads from infected sites in blossoms, shoots or fruit through twigs to branches causing localised stem cankers causing canker blight. During rain or humid periods bacterial ooze could be seen on the surface of the cankers. When dry it remains as a hardened gummy substance on canker surfaces for several months. Bacteria may be spread by visiting insects, splashing rain or pruning tools. Two types of cankers are formed; ‘determinate’ and ‘indeterminate’. In ‘determinate’ cankers (rough margins) the infected area is surrounded by callus tissue, these cankers generally become inactive and seldom serve as sources of inoculum the following spring. In contrast, the bacteria in most ‘indeterminate’ cankers (smooth margins) overwinter successfully to cause renewal of bacterial activity in the spring to continue the disease cycle. Canker blight may develop before, during or shortly after bloom depending on spring orchard temperature. Under favorable conditions the infection may spread into adjacent water spouts, the scaffold limbs and the main stem killing the tree.

Trauma blight develops as a result of infection following injuries associated with spring frosts, hail storms or damage to leaves, shoots and fruit by winds.

Rootstock blight can occur in most rootstocks but especially M.9 and M.26 dwarfing rootstocks on apples. Invasion of *E. amylovora* into the rootstock may occur through infected suckers or water sprouts, bacteria washed down from infected blossoms and twigs into the soil containing roots or internal translocation from infected scion wood. Rootstock blight often occurs at
ground level below the graft union in the rootstock part of the tree. This type of blight frequently kills trees.

Survival:

In order to continue the disease cycle, *E. amylovora* must survive the winter on dormant host plants. *E. amylovora* survives almost exclusively in living bark tissues along the margins of overwintering (hold-over) cankers on hosts that have been infected in previous growing seasons (Brooks, 1926; Miller, 1929; Rosen, 1933; Parker, 1936; Schroth *et al.*, 1974; Eden-Green and Billing, 1974; Beer and Norelli, 1977).

Survival of the pathogen in a proportion of cankers usually stops or is reduced during the period after leaf fall, when the temperature is low (Billing, 1974a). Often a corky layer is formed on cankers which arrests the spread of the pathogen into healthy tissue (Hockenhull, 1974). The activity of the bacterium was completely suppressed in symptomless woody stem tissues 11 weeks and nine weeks after stem and root inoculation, respectively (Gowda and Goodman, 1970). This has been attributed to the defense mechanisms operating in the plant during the growing season and especially during dormancy. The host defense reactions have been identified as the reason for the failure to isolate *E. amylovora* from majority of cankers after the winter (Schroth *et al.*, 1974). These cankers are likely to develop into inactive ‘determinate’ cankers. Cankers with ‘indeterminate’ margins are more likely to become active sources of infection than those with ‘determinate’ margins (van der Zwa et al., 1969; Beer and Norelli, 1977).

Cankers initiated earlier in the season were more likely to be ‘determinate’, and late-season infections on susceptible cultivars may carry over inoculum to the following season as ‘indeterminate’ cankers (Biggs, 1994; Beer and Norelli, 1977). Earlier workers noted that a higher percentage of cankers were hold-over cankers on susceptible than on resistant cultivars (Brooks, 1926). Susceptible cultivars are more likely to develop cankers with ‘indeterminate’ margins (Biggs, 1994). The bacteria do not overwinter in the dead tissue of ‘indeterminate’ cankers but in living bark that surrounds them (Steiner, 2000). Most, but not all cankers with ‘determinate’ margins are benign (Beer and Norelli, 1977).

Majority of cankers formed in one season do not become active hold-over cankers the following season (Thomson *et al.*, 1975). Usually only a small proportion of cankers formed in the current season become active overwintering cankers and produce visible ooze the following year (Brooks, 1926; Miller, 1929; van der Zwa et al., 1969). Estimates of the proportion of active overwintering cankers are reported to vary from 2-46% (Miller, 1929; Tullis, 1929) to 2-11% (Brooks, 1926; Rosen, 1929; Pierstorff, 1931; Goodman, 1954; van der Zwa et al., 1969). Survival of *E. amylovora* has been demonstrated up to 2 years in healthy buds and tissues adjacent to old cankers in a controlled greenhouse experiment. The bacteria isolated were virulent on pear shoots (Keil and van der Zwa, 1972a). The fire blight bacterium has also been isolated from cankers that were one and 1.5-2 years-old (Nachtragall *et al.*, 1985), from wood in at least four year-old ‘indeterminate’ cankers (Beer and Norelli, 1977) or even from six-year old cankers (van der Zwa, 1969). Several investigators have indicated that cankers on older and larger trees are more important as potential sources of inoculum (Schroth *et al.*, 1974; Beer and Norelli, 1977). However, the pathogen can also overwinter in twigs 3-13 mm in diameter and serve as important sources of inoculum (Parker, 1936) but detection of active cankers is sometimes complicated by the absence of definite margins (Tullis, 1929) and therefore are less likely to be removed during pruning (Beer and Norelli, 1977). The number of cankers required to initiate a fire blight outbreak may be as few as 1-4 ha’ (Brooks, 1926; Tullis, 1929).
The multiplication of inoculum from overwintering cankers is influenced by environmental and host factors (Beer and Opgenorth, 1976). They indicated that in general, the canker activity is preceded by warm and moist conditions. They showed that the number of bacteria increased at temperatures >17°C and with rainfall. Few cankers were active immediately following very cool temperature (<5°C) or frost (Beer and Opgenorth, 1976). Exudation of ooze by new infections and hold-over cankers was favoured by relative humidity >80% and temperature between 18.3-29.5°C (Brooks, 1926).

In spring, bacteria multiply at the margins and adjacent bark tissues of ‘indeterminate’ hold-over cankers that are active, often exuding drops of ooze containing viable bacteria that serve as the most important source of primary inoculum to start the disease cycle at blossoming (van der Zwet, 1969; Schroth et al., 1974; Beer and Norelli, 1977). The bacteria in ooze are usually virulent (van der Zwet, 1994). Bacterial ooze containing up to 1010 viable \(E. \) amylovora cells/ml have been detected from host tissue, especially during warm humid periods (Beer, 1979).

The isolation of \(E. \) amylovora from overwintering canker surfaces one to three weeks before the occurrence of blossom infection has been confirmed (Beer and Opgenorth, 1976). The bacteria could sometimes multiply before the detection of bacterial ooze (Thomson et al., 1975) or even before the appearance of fire blight symptoms (Schroth et al., 1974; Thomson et al., 1975). \(E. \) amylovora may be present on the surface of cankers apparently free from ooze (Beer and Opgenorth, 1976). They were able to detect \(E. \) amylovora sporadically throughout the growing season on cankers that were formed in the previous year. They also found that some cankers were active for most of the spring, others were temporarily active and in still others the bacterium was not isolated from the surface.

The pathogen can survive in dried ooze on host plants. Its survival in this state is strongly influenced by moisture status. Bacteria can survive in the dry exudate for over a year at low relative humidity (Rosen, 1938). Under dry conditions the pathogen survived in the ooze for more than two years (Hildebrand, 1939). The non-bacterial components of the ooze, which includes a polysaccharide (cited by (Beer, 1979), assist the pathogen to survive (Reinhardt, 1958; Beer, 1979). However, Hildebrand (1939) showed that the survival time of the pathogen was much shorter in the field under humid conditions. In general, survival of epiphytic \(E. \) amylovora is likely to be limited to a few weeks (Dueck and Morand, 1975; Maas Geesteranus and de Vries, 1984). Failure of \(E. \) amylovora to survive in ooze in the orchard may be attributed to the combination of high relative humidity and fluctuating temperatures (Rosen, 1938).

Blighted twigs can also serve as important sources of inoculum (Miller, 1929). Their size could vary from 2-5 mm in diameter. However, the majority of twigs that served as overwintering sites averaged 6 mm in diameter (Brooks, 1926; Miller, 1929). Bacteria were found in cankers formed on twigs as small as 0.4 cm diameter without the presence of visible ooze (Brooks, 1926; Ritchie and Klos, 1975). Bacteria have been recovered from non-oozing cankers (Miller and Schroth, 1972; Beer and Norelli, 1977).

The pathogen also survives as latent infections (Schroth et al., 1974; van der Zwet and van Buskirk, 1984) primarily in overwintering shoots (Gowda and Goodman, 1970; Keil and van der Zwet, 1972a), which are likely to initiate cankers to serve as primary inoculum (Aldwinckle and Prezewski, 1976).

Survival of \(E. \) amylovora in hibernating shoots in the absence of disease symptoms has been reported (Crepel et al., 1996). These authors have detected fire blight bacteria in variable concentrations (10^3 and 10^7 cfu/ml of plant extract) in 30% of artificially inoculated and overwintered shoots. There is no consensus about the primary pathway for migration of the
pathogen in plant tissues. Most studies indicate that there is rapid movement through xylem vessels (Rosen, 1929; Shaw, 1934; Crosse et al., 1972; Eden-Green and Billing, 1974; Aldwinckle and Preczewski, 1976; Huang and Goodman, 1976). Distinctive xylem streaking in advance of visible external symptoms have been observed (Aldwinckle and Preczewski, 1976). Other studies have detected the movement of *E. amylovora* in the phloem (Lewis and Goodman, 1995; Gowda and Goodman, 1970). Bacteria have been observed in phloem sieve tubes near canker margins (Miller, 1929). Where the pathogen persists in tissues as a latent infection, cutting-off of such tissues during the growing season could induce the formation of overwintering cankers that provide inoculum for the next season (Steiner and Suleman, 1993). Migration of the bacterium in the cortical paraenchyma has been observed (Nixon, 1927; Eden-Green and Billing, 1974).

Systemic movement of bacteria has been recorded in excess of 15 cm in 7 h (Lewis and Goodman, 1995) and symptom development is reported to be up to 30 mm day⁻¹. When infected shoots were pruned at the base of visible symptoms, 57% of the stumps remaining on the tree developed fire blight symptoms (Clarke et al., 1991). They also demonstrated that pruning 20-25 cm beyond visible symptoms still produced disease symptoms in 12% of the cut stubs.

E. amylovora is not a strict phylloplane epiphyte (Leben, 1965) but can only be present after blossom infection has occurred in the orchard (Miller and Schrotth, 1972; Miller and van Diepen, 1978). Bacteria on apple leaves were not detected before infection (Crosse et al., 1972). However, the presence of *E. amylovora* epiphytically on apparently healthy leaves has been reported (van der Zvet and van Buskirk, 1984; Sholberg et al., 1988) who reported that 100% of the apple leaves sampled were contaminated with *E. amylovora* even after the fruit harvest in September. *E. amylovora* is a competent epiphyte capable of colonizing and multiplying on the surface of plants and it makes little difference whether the plants colonized are susceptible or resistant to fire blight (Steiner, 2001). Plant trash has the potential to be a source of inoculum, if present as a contaminant with apple fruit.

Erwinia amylovora has been isolated from buds during the winter and spring (Baldwin and Goodman, 1963). The role of buds as a source of primary inoculum is uncertain (Beer, 1979) but current scientific opinion is that buds are unlikely to be an important source in the transmission of the pathogen in orchards.

Early attempts to isolate *E. amylovora* from soil were negative (Pierstorff, 1931). The ability of *E. amylovora* to survive in the orchard soil for a limited period during the growing season (up to 10 November) was demonstrated in Utah (Ark, 1932). However, when the soil was artificially inoculated with *E. amylovora*, viable bacteria were recovered from soil up to a maximum 54 days (Ark, 1932). Studies conducted later in Utah showed that up to 44% of isolates recovered from soil near blighted trees in the spring were *E. amylovora* (Thomson, 1969). The decline in *E. amylovora* cells is much higher in non-sterile than in sterile soil, where the number of living bacteria was stable over 11 weeks (Hildebrand et al., 2001). They showed that in untreated field soil *E. amylovora* declined rapidly, and the pathogen was no longer detected 5 weeks after inoculation. Bacteriophages that lyse *E. amylovora* are readily isolated from soil beneath apples and pears (Baldwin and Goodman, 1963; Vanneste and Pauline, 1990) but they are not specific to *E. amylovora* and often have a host range that includes several species (Hendry et al., 1967; Vanneste and Pauline, 1990). Resting spores are not produced by *E. amylovora*, and its survival in soil is not considered epidemiologically significant (Roberts et al., 1998). However, soil cannot be totally overlooked as a source of inoculum and suggested that bacteria are likely to be splashed on to foliage of nursery plants but are unlikely to contaminate flowers and shoot tips of plants in the orchard (Thomson, 2000).
The ability of *E. amylovora* to survive in bee hives for a limited period has been demonstrated but the transfer of bacteria from the hives to flowers is considered unlikely (Pierstorff and Lamb, 1934; de Wael *et al.*, 1990). There is no evidence that *E. amylovora* overwinters in hives and bees are important agents in the primary spread of inoculum (Pierstorff and Lamb, 1934; Hildebrand and Phillips, 1936).

Dissemination:

There are four principal forms in which *E. amylovora* occurs: ooze, strands, epiphytic bacteria, and endophytic bacteria (van der Zwet, 1994). (i) bacterial ooze or exudate, originating mostly from active cankers in the spring, but also later from infected blossoms and shoots (Schroth *et al.*, 1974); (ii) dry bacterial strands on shoots and fruit (Keil and van der Zwet, 1972b); strands in the form of thicker tendrils have been reported from lenticels of apple and pear (van der Zwet *et al.*, 1988); (iii) bacteria are present epiphytically on the surface of various host tissues including cankers, blossoms especially on stigmas, leaves, buds and fruits as well as in the calyx-end (Keil and van der Zwet, 1972a); and (iv) endophytic bacteria present inside the xylem vessels (Aldwinckle and Preczewski, 1976) and in the phloem (Gowda and Goodman, 1970).

Several mechanisms are involved in the medium- to short-range dissemination of bacteria to blossoms, fruitlets, young leaves and actively growing shoots. They include crawling and flying insects (van der Zwet and Keil, 1979), wind (van der Zwet and Keil, 1979), rain (Thomson and Gouk, 1992), wind-driven rain (Bauske, 1967), aerosols (Southey and Harper, 1971) and aerial strands (Keil and van der Zwet, 1972b; Deckers and Heggen, 1989). Long-range spread of the pathogen occurs through contaminated propagative material (van der Zwet and Keil, 1979), possibly by aerial strands (dried ooze that consist of linear arrays of bacterial cells embedded in an ooze matrix) transported in air currents (Eden-Green and Billing, 1972) and by birds (Mazzucchi, 1994).

Although specific insects have not been identified in the primary spread of fire blight, several are definitely involved in the secondary spread. Insects are the most important agents of dissemination of *E. amylovora* (van der Zwet and Keil, 1979). They listed 77 genera of insects associated with the spread of the disease within and between orchards. Several crawling, browsing, flying insects or other animals have been identified as potential agents to spread ooze of *E. amylovora* from overwintering cankers to open blossoms (Schroth *et al.*, 1974). Muscoid flies in large numbers have been detected in traps adjacent to ooze cankers, with a significant increase in the muscoid fly population on the traps a few days before the colonisation of flowers (Thomson *et al.*, 1999). Ooze can contain 10^{10} cells per ml (Beer, 1979) and in this situation, insects are very efficient inoculating agents carrying up to 10^5 cells per insect (Miller and Schroth, 1972).

Pollinating insects are the most effective carriers of *E. amylovora* from infected or infested blossoms to non-infested blossoms. Honey bees (*Aphis mellifera* L.) because of their importance as pollinators have been intensively studied with regard to disease transmission (Keitt and Ivanoff, 1941; van Laere *et al.*, 1981). Bees are recognised as important agents of disease transmission from flower to flower but not from overwintering cankers to flowers (van der Zwet and Keil, 1979; Thomson, 1992). Foraging bees visited about 400 blossoms per hour (Johnson *et al.*, 1993). The estimated efficiency of bees to disperse *E. amylovora* from infested hives to pome fruit blossoms averaged 20 blossoms per hour of foraging activity (Johnson *et al.*, 1993).
The flight range of bees in each foraging area is quite variable and is influenced primarily by the resource distribution, population levels of bees that are competing in the respective areas and the productivity of the plant (Gray, 1992). In general, bees have a strong tendency to forage at the nearest source for each floral species in the area (Gray, 1992). It has been observed that honey bees can readily fly 4 km in all directions of their hive (Hoopingarner and Waller, 1992). These authors also refer to the possibility of in-hive pollen transfer from bee to bee that has implications in the transfer of E. amylovora from contaminated pollen in the hive to blossoms. Experiments have demonstrated that honeybees were able to disseminate E. amylovora from beehives to healthy pear flowers for less than 48 h after initial contamination of the beehives with 10^8 cfu per ml (Alexandrov et al., 2002). Bees from hives in a desert will fly as much as 13.7 km to a food source, if no other sources are closer to the hive (Eckert, 1933).

Some investigators (e.g. Brooks, 1926) consider water to be another important agent for spread of fire blight. Rain disseminates primary inoculum within orchards (Parker, 1936) from overwintering cankers to blossoms and young vegetative shoots (van der Zwet, 1994). Bacteria present at the top of the canopy were responsible for cone-shaped downward spread of the pathogen during rain (Miller, 1929). It also facilitates the movement of bacteria from the stigma to the hypanthium (floral cup) of blossoms, where infection generally occurs (Thomson, 1986). Dispersion of E. amylovora bacteria in water droplets has been demonstrated for short-distance (1m at a wind velocity of 22 km/h, the maximum distance attempted) spread in wind-borne rain (Bauske, 1971). Air movement of 7 and 14 mph is capable of moving water droplets at least 40 inches, the usual distance between two rows (Bauske, 1971). Air samples collected during rain near active shoots infections with conspicuous ooze always contained E. amylovora (McManus and Jones, 1994) but only a few during dry periods. The dried ooze rehydrated quickly during rain and is splashed-dispersed during rain (Eden-Green and Billing, 1972).

Wind dissemination of bacteria could occur as tiny ooze droplets or strands over short- to medium-distances which have not been specified (van der Zwet and Keil, 1979). Wind acts primarily as a means of transport for insects, contaminated pollen (Hildebrand and Phillips, 1936), dry bacterial clumps, water-borne bacteria (Bauske, 1971) and aerial strands (Ivanoff and Keitt, 1937).

Infected plant tissues exude aerial strands of E. amylovora cells embedded in an ooze matrix (Eden-Green and Billing, 1972), which could serve as short-range inoculum sources under dry conditions (Ivanoff and Keitt, 1937) but the role of aerial strands as a source of inoculum is yet to be demonstrated (Ivanoff and Keitt, 1937). Aerial strands are readily broken off the plant surfaces and transported by wind currents (Bauske, 1967; Bauske, 1971). Bacterial strands are easily rehydrated in water (Keil and van der Zwet, 1972b). Once the strands are rehydrated, the bacteria are only viable for a few days (Eden-Green and Billing, 1972). The importance of bacterial strands in dissemination of the pathogen is still conjectural (Schroth et al., 1974).

Long-range dissemination could be over land or sea (van der Zwet, 1994). Most important factors that contribute to this method of spread are infected or infested nursery or propagative material (Schroth et al., 1974; van der Zwet, 1994). E. amylovora was isolated from buds of apple scion wood imported into Italy from The Netherlands (Calzolari et al., 1999). Birds have been implicated in the spread of fire blight (Norelli et al., 1984) but circumstantial evidence to correlate the distribution of the fire blight disease to the feeding and roosting habits of migratory starlings (Billing, 1974b) is not supported by scientific evidence. Deposition of solid aerosols transported by high altitude air currents (Mazzucchi, 1994) has also been implicated in long-range spread. These methods of spread of fire blight bacteria, except for movement through
propagation material, are more difficult to study and conclusive evidence is lacking for several proposed means (Roberts et al., 1998).

Inoculum potential:

Epiphytic populations of *E. amylovora* were found predominantly on the stigmatic surfaces of pistils in blossoms, with populations often reaching 10^6-10^7 colony-forming-units (cfu) per healthy flower (Tomkins et al., 2000). The population of *E. amylovora* on the stigmas was usually greater than the population on the remaining flower parts by a magnitude of one to six log units (Thomson, 1986).

There is no accepted threshold number of bacteria that will cause infection. Research shows that the threshold may vary with environmental conditions (temperature, humidity, competitive ability etc.). A single cell could not cause infection on pear flowers in the greenhouse unless the blossoms were maintained at high humidity (Hildebrand, 1937). However, he successfully inoculated receptacles of excised apple blossoms in moist chambers at 24°C. Inoculation with one bacterium/blossom resulted in 60% infection, the success rate with two bacteria/blossom was also 60% but with five or more than 10 bacteria/blossom infection rates increased to 80% and 100%, respectively (Hildebrand, 1937). Artificial inoculation of blossoms of pears in the greenhouse using 10^1 cfu/blossom was effective in 66% of tests vs. 91% effective for inoculations using 10^2 cfu/blossom (Ivanoff and Keitt, 1941).

Pear flowers inoculated with 10^2 cfu/blossom did not develop symptoms frequently, but symptoms are likely to develop in five days when inoculated at 10^3 cfu/blossom (Beer and Norelli, 1975). They also showed that the rate of disease development was slower when blossoms were inoculated with c.10^4 cfu/blossom than with 10^6 cfu/blossom, but there was little difference in the rate of disease development between 10^5 cfu/blossom and 10^6 cfu/blossom. Similar observations were made when blossoms were inoculated with a bacterial concentration of 10^3 than with 10^7 cfu/blossom (Thomson, 1986). Only concentrations at 10^7 cfu/ml caused significantly greater blossom and cluster infection than the control treatment (van der Zwet et al., 1994).

Natural bacterial populations of 10^3 to 10^7 cfu/blossom were detected on stigmas of pear blossoms of several rosaceous hosts in California and Utah, often without causing disease symptoms (Thomson, 1986). Low populations of *E. amylovora* inoculated on to healthy stigmas can multiply rapidly to high populations (up to10^5 to 10^6 cfu/blossom) under optimum temperature (Thomson, 1986; Thomson et al., 1999). They showed that flowers were colonised rapidly over a period of two to six days but the incidence of blossom infection increased from 0-100% usually in only two days. In contrast, infections were likely to occur when epiphytic population of *E. amylovora* in flowers reached 10^6 to 10^7 cfu under high relative humidity and not at 10^2cfu (Beer and Norelli, 1975). They also showed that blossoms from orchards with populations of 10^7cfu generally developed into apparently healthy fruit. Rain and dew facilitates the the transfer of bacteria from the stigma to the hypanthium or to the flower parts where infection may occasionally occur (Thomson, 1986; Thomson and Gouk, 1992), resulting in infection when the temperature is right. The movement of high populations of epiphytic bacteria from the stigma of apparently healthy blossoms to hypanthia explains in part how severe outbreaks develop following a rain storm (Thomson, 1986).

Severe fire blight symptoms (blackening of flower parts) were only seen in apple blossoms when stigmas of individual blossoms were inoculated with 10^7 and 10^8 cfu/blossom (Hale et al., 1996b). They detected the pathogen from infected tissues in the blossoms using the DNA
hybridization method (Hale and Clark, 1990) and confirmed by a polymerase chain reaction (PCR) test. However, these authors found that with 10^5 cfu/blossom only slight browning of apple pedicels was observed but the bacterium was not detected. When blossoms were inoculated with 10^6 to 10^7 cfu there were no disease symptoms and the pathogen was not detected in blossoms (Hale et al., 1996b). When inoculated with 10^2 to 10^3 cfu, E. amylovora was detected in blossoms and fire blight symptoms were not seen. The rate of development of fire blight was slower when blossoms were inoculated with 10^4 than with 10^6 cfu/blossom (cited by van der Zwet et al., 1988).

Epiphytic populations of E. amylovora from 10^5 to 10^7 cfu per healthy blossom have been detected on fire blight hosts in western United States (Thomson et al., 1982), but only a small percentage of blossoms developed fire blight symptoms and only very seldom did disease result in fruit infestation (Thomson, 1986). Although more than 50% of healthy flowers in some orchards were infested with c.10^6 cells of E. amylovora per blossom, subsequent disease incidence was only one to three strikes/tree (Thomson et al., 1975). In New Zealand, epiphytic populations of E. amylovora in healthy flowers reached 10^4 to 10^6 cfu/blossom during full bloom, but fire blight infection was less than one strike/tree (Thomson and Hale, 1987). The incidence of fire blight was always significantly less than the percentage of blossoms colonised (Thomson, 1986). He showed that in many cases, 90-100% of the blossoms were colonised, but less than 1% of the blossoms were infected. He also showed that even with populations of 10^7 cfu per blossom, these blossoms generally developed into apparently healthy fruit.

Several reasons have been attributed to the absence of blossom blight and these include insufficient inoculum to initiate an infection (Hildebrand, 1937), unfavourable environmental conditions prior to bloom (Powell, 1965) or during and after bloom (Mills, 1955), non-susceptibility of blossoms (Thomson et al., 1975) or a combination of these factors. The age of flowers had an influence on the growth and establishment of E. amylovora (Gouk and Thomson, 1999). They showed that under New Zealand conditions one to three day-old blossoms supported exponential growth of E. amylovora, but the bacterial populations did not increase on blossoms older than three days.

Fruit infestation/infection:

Epiphytic survival of E. amylovora on symptomless immature apple fruit has been reported (Schroth et al., 1974; Hale et al., 1987). E. amylovora was detected in calyxes of immature fruit sourced from orchards with no fire blight symptoms or with less than one-two strikes per tree, but with infected alternative hosts present in the vicinity of these orchards (Clark & Harte 1993 #640)). These authors detected E. amylovora in 8.7% and 7% of fruit sourced from two orchards with no fire blight symptoms in one season. E. amylovora was detected in 50% of immature fruit sampled from orchards with severe blight (75 strikes/tree) (Hale et al., 1987). These authors showed that the fire blight bacterium was only occasionally detected in immature fruit from orchards with a low level of infection (one to two strikes/tree). In New Zealand, a close correlation between results of orchard inspections for fire blight and the results of DNA testing of c.60,000 immature fruit for the presence of E. amylovora over three seasons has been demonstrated (Barnes M.M., 1991).

Fire blight bacteria were detected from apple fruit harvested in orchards or trees which had fire blight outbreak (Goodman, 1954; Sholberg et al., 1988; Janisiewicz et al., 1986; Clark et al., 1993; Hale et al., 1987; Hale and Clark, 1990; van der Zwet et al., 1990). Isolation of E. amylovora from healthy mature apple fruit from trees in close proximity with severely blighted pear trees has been demonstrated (Sholberg et al., 1988). Recovery of E. amylovora from the
calyx of two cultivars (cvs. Delicious and York) from a blight-free orchard in West Virginia has been reported (van der Zwet et al., 1986). *E. amylovora* was detected from 3% of mature fruit when the bacterium was detected in 50% of the immature fruit (Hale et al., 1987). They frequently isolated the pathogen from the calyx-end of fruit and rarely from washings from the main portion of the fruit. They indicated that the DNA technique used for testing could have detected both dead and live bacterial cells. *E. amylovora* was not detected any fruit, even when harvested from trees with or directly adjacent to fire blight (Roberts, 2002).

Three DNA techniques were used to assess the calyx infestation of symptomless mature apple fruit (McManus and Jones, 1995b). *Erwinia amylovora* was detected in 4% of fruit in first round PCR (detection level 200 cfu), 27% of the fruit infestation using PCR-dot-blot hybridization test (detection level 20 cfu) and 75% infestation with nested PCR (detection level <1 cell), but these techniques did not allow the differentiation of DNA of dead cells from DNA in live cells. They believed that DNA came mostly from dead cell (AQIS, 1998a).

Erwinia amylovora was not detected in core tissues or washings from 1555 mature symptomless fruit harvested from blighted trees of seven apple cultivars grown in five locations in Washington State (Roberts et al., 1989). The detection sensitivities for these tests were about 20 and 30 bacterial cells per fruit for external and internal assays, respectively. Similarly, epiphytic populations of *E. amylovora* were not found on mature symptomless apple fruit (cv. Wealthy) harvested from naturally infected trees in Canada (Dueck, 1974a).

The calyxes of apple were inoculated with *Erwinia amylovora* with c.10^6 cfu per ml and hung in orchard trees at flowering (Taylor et al., 2002). They showed that the bacterial population declined to 10^2 cfu per ml during the 20-day sampling period and also could not detect the pathogen either in rainwater or on insects trapped and tested. The bacteria population in calyxes infested with 10^3 cfu per ml were reduced to 10^3 cfu per ml (Taylor et al., 2002). They concluded that *E. amylovora* in calyxes of apple were not transferred to susceptible hosts even under conditions conducive for infection.

Recovery of endophytic populations of *E. amylovora* has been reported from fruit harvested close to visibly blighted shoots (van der Zwet et al., 1986). They reported that fruit from which the pathogen was recovered were attached within 30 cm of severely blighted shoots but the pathogen could not be isolated from fruit picked 60 or 200 cm away from the same source of infection. These authors showed that fire blight bacterium was not detected from core tissues of apple fruit of four cultivars harvested from apparently healthy trees grown in four regions of North America (Utah, West Virginia, Washington, Ontario). In West Virginia, none of the fruit harvested from apparently healthy trees (cvs. York and Delicious) in blighted orchards
contained internal populations of the pathogen (van der Zwet et al., 1990). These authors could not recover bacterium from 100 fruit of four resistant cultivars grown in West Virginia and 210 fruit (cv. Delicious) collected in Washington State. *E. amylovora* could not be detected in fruit harvested from blighted trees of seven apple cultivars grown in five locations in Washington State (Roberts et al., 1989).

Erwinia amylovora was not recovered from internal tissues of mature apples harvested from trees with or without fire blight in Ontario (Canada), West Virginia or Washington (van der Zwet et al., 1990). *Erwinia amylovora* was not detected in washings of fruit harvested from orchards with low level (one to two strikes/tree) or no infection (Hale et al., 1987). *E. amylovora* could not be detected either from calyxes of immature and mature fruit or on the surface of mature fruit sampled from within 5 cm even after heavy inoculation of open blossoms in adjacent blossom clusters (Hale et al., 1996b). *E. amylovora* was not detected in calyxes of either immature or mature apple fruit even from within 20 cm of inoculated sites (Barnes M.M., 1991).

The role of fruit as a vector of fire blight disease has been questioned (Schroth et al., 1974). The Ministry of Agriculture and Fisheries and Food in UK (Ministry of Agriculture, Fisheries and Food, United Kingdom., 1969) considered that fruit are unlikely to spread the fire blight bacterium, *E. amylovora*. Mature healthy fruit harvested from blighted trees do not appear to be a suitable substrate to carry *E. amylovora* (Roberts et al., 1989). It has also been shown that *E. amylovora* was not present on mature fruit harvested from blighted trees in Canada (Dueck, 1974a; McLarty, 1923). It has also been shown that fruit (cv. Delicious) sourced from orchards free from fire blight symptoms in Washington State were free from *E. amylovora* (van der Zwet et al., 1990).

Survival of *E. amylovora* in mature apples has been reported after a period of cold storage, when high inoculum doses were injected into the apple cortex (Anderson, 1952; Goodman, 1954; Dueck, 1974a; Nachtigall et al., 1985). Populations of surface bacteria declined to a non-culturable level on artificially-infested and naturally contaminated apples after five months in cold storage at 2°C (Sholberg et al., 1988). The culturability of *E. amylovora* in calyxes of apple fruit was lost during cold storage and the bacterium could not multiply to culturable levels when the temperature is increased to c. 20°C (Hale and Taylor, 1999). Fruit harvested from blighted and blight-free orchards adjacent to infected orchards developed rots in storage (van der Zwet et al., 1986). However, they could not isolate *E. amylovora* and found it difficult to distinguish the symptoms from other rots. Storage of apple fruit (c. 30,000) sourced from trees adjacent to infected trees when cold stored for 2-3 months did not develop external and internal disease symptoms and *E. amylovora* was not isolated (Roberts, 2002). Population levels of *E. amylovora* on apple calyxes decreased from 10^6 cfu to 10^4 per fruit over a 20-day period in cold storage (Taylor and Hale, 2003). They also observed that *E. amylovora* on apple calyxes infested with 10^4 cfu per fruit decreased to non-culturable levels after 14 days. Similarly, calyxes infested with 10^2cfu per fruit decreased to non-culturable levels after eight days in cold storage. The PCR assay detected *E. amylovora* in calyxes infested with 10^6 cfu and 10^4cfu per fruit after 20-day period of cold storage but not in calyxes infested with 10^2cfu per fruit (Taylor and Hale, 2003).

Control:

Routinely most orchadists remove as much infected infected limbs as possible during the dormant season with the aim of reducing the primary inoculum and also to maintain a high proportion of fruiting wood and to control the tree size and shape. This is followed by an early-
season copper spray, at the green tip stage of bud development, to reduce the efficacy of any remaining inoculum (van der Zwet and Keil, 1979). To enhance the efficacy of copper and also to improve the overall efficacy of the orchard pest control program, oil is usually added to copper. It is aimed at reducing the inoculum or multiplication of *E. amylovora*, thus preventing the development of new blossom infections (Psallidas and Tsiantos, 2000). Application of chemicals during the blossoming period aimed to protect flowers from infection and prevent a build up of inoculum for shoot infections. In New Zealand antibiotics such as streptomycin are used at blossoming. These applications are based on computer forecasting programs. In Europe, other chemicals such as flumequin (Firestop™, Fructil™) which is a non-antibiotic are used (Deckers et al., 1990). Other chemical that have been tried are oxytertracycline, Kasugamycin, Oxolinic acid, Fosetyl-aluminium (fosetyl-Al) (Psallidas and Tsiantos, 2000). The bacterial species *Pseudomonas fluorescens* A 506 (PfA506) and *Erwinia herbicola* strain C9-1 (EhC9-1) (synonym: *Pantoea agglomerans* strain C9-1) have been widely tested to suppress floral infection by *E. amylovora* (Vanneste, 1996). Competition for nutrients or sites (Wilson and Lindow, 1993) and antibiotic (Vanneste et al., 1992) are the mechanisms involved in the antagonism. PfA506 is available commercially as BlightBan A506™ (Johnson and Stockwell, 2000). A new strain of *Pantoea agglomerans* (P10c) isolated from pears in New Zealand has shown to be the most effective bacteria for control of fire blight (Vanneste et al., 2002a). It is the major component of a commercial product now on sale in New Zealand. Apple scion and roostock breeding programs have been initiated (Lespinasse and Aldwinckle, 2000). Four resistant rootstock have been released from this program (Robinson et al., 1997).

ARTHROPODS

Apple leafcurling midge

Dasineura mali Kieffer (1904) [Diptera: Cecidomyiidae]

Synonyms and changes in combination:

D. mali (Kieffer) was originally described in the genus *Perrisia; Dasyneura mali* (sic, misspelling of *Dasineura); Cecidomyia mali* (Kieffer, 1904).

Common name(s):

Apple leafcurling midge (ALCM), Apple leaf-curling midge, Apple leaf midge.

Host(s):

Malus domestica (apple). Apple trees are the only host of the apple leaf-curling midge, infestation can differ between apple cultivars, although this can vary through the season depending on the availability of shoots suitable for oviposition however, no apple cultivar has been found to be free from infestation (CABI, 2003a).

Plant part(s) affected:

Leaves, terminal shoots, larvae can pupate on fruit.
Distribution:

Austria, Belgium, Bulgaria, Canada (New Brunswick), Central Russia, Czechoslovakia (former), Finland, France, Germany, Hungary, Italy, Macedonia, Netherlands, New Zealand, Norway, Poland, Romania, Russian Far East, Siberia, Sweden, Switzerland, USA (Massachusetts, New York), Yugoslavia (former) (CABI, 2003a).

D. mali is presumably native to the Palaearctic region, where it will have originally adapted to cultivated apple (CABI, 2003a). Country records for the Palaearctic were summarized by (Skuhrava, 1986). *D. mali* has been accidentally introduced into North America; Massachusetts in 1928 and was recorded in New Brunswick in 1964 (MacPhee and Finnamore, 1978; Gagné, 1989b) and New Zealand in about 1950 (Berry and Walker, 1989; Gagné, 1989b). Apple leafcurling midge has been recorded in New Zealand apple orchards from Clyde to Auckland and is probably found wherever apple trees can be grown (Tomkins, 1998).

Biology:

The following biological data is taken from several sources, most notably (Allison et al., 1995; CABI, 2003a; Harris et al., 1996; HortResearch, 1999b; Todd, 1959; Tomkins, 1998).

Apple leafcurling midge is a gall midge and is a fly with four life stages: adult, egg, larva (or maggot) and pupa. The larvae cause severe distortion (galling) of young leaves.

The adult apple leafcurling midge is a small fly, 1.5 to 2.5 mm long, with dusky wings 1.5-2 mm long covered in fine dark hairs. Female midges have a characteristic red abdomen, and the antennae of male and female adults can be used to distinguish the sexes. The adult females are very docile when approached, and can be readily observed laying eggs on the apple shoots. Although leaves are the preferred site for oviposition (egg-laying), eggs may also be laid under the bracts of buds and on developing flowers in spring, when fewer leaves are available. Eggs are transparent pink to orange-red in colour and cigar-shaped, approximately 5 times as long as wide. They are sometimes laid singly but are usually in groups (sometimes large groups) on the margin or upper side of unfolding leaves. Their bright colour makes them easily visible on shoot tips using a hand lens, and this is used when monitoring populations. A maximum of 500 eggs per leaf has been recorded, although 30-40 eggs per leaf is more typical. Eggs take 3-10 days to hatch depending on prevailing temperatures. Larvae are legless maggots. They are red-coloured when they hatch from the eggs, then change to clear-white until the final instar (stage), when they become a bright orange/red colour. They need about 20 days to reach maturity in summer. The larvae spend most of their life within a rolled leaf that typically contains 20-30 larvae, with the number varying from 1-500. Often both margins of infested leaves are rolled towards the midvein but sometimes only one margin is rolled. The edges of two leaves may also be rolled together, especially on spur growths where leaves are clustered. Larval feeding prevents the opening leaf from unfolding, with the roll becoming tighter as the leaf growth continues.

Once larvae mature, they leave the leafroll and crawl or fall to find a site to pupate. Most descend to the ground and crawl under the soil surface. The largest numbers of larvae escape from rolled leaves when they have been thoroughly soaked by rain. A few larvae may remain inside their rolled leaf to pupate, while a larger proportion (10% or possibly higher) may crawl down the trunk of the tree and pupate under the loose bark or around pruning cuts. Some mature larvae, dispersing from their leaf rolls, get caught up on and use apple fruit as a cocooning and pupation site. They construct and firmly attach their cocoons to the fruit skin, at
the stalk or calyx ends. Only a single cocoon contaminates most fruit, although up to 40 cocoons per fruit have been found under extreme populations. The larvae spin tough, white silken cocoons which are mainly just beneath the surface of the ground, among debris or loose pebbles of earth, or fastened to bark. The pre-pupa (the stage between larva and pupa) has the same orange colour as mature larvae and is clearly visible inside the cocoon.

The larva transforms to an orange pre-pupa inside the white cocoon. During the summer generations, the pupal stage lasts 13-18 days. For the overwintering generation, the midges remain as mature larvae or pre-pupae inside their cocoons over the winter and then pupate in spring. The fully developed mature brown-coloured pupa works its way partially out from the cocoon before the adult fly emerges.

Damage

Apple leafcurling midge larvae can feed on apple leaves, flowers, and young fruits. Flower and fruit damage occurs when high populations of apple leafcurling midge occur in early spring during flowering. Larvae developing from the eggs laid on flowers can affect developing fruitlets resulting in fruit whose skin is distorted by bumps. The flower stems and petals can also be distorted. Feeding on shoots and leaves is the most common form of damage. The larvae attack the edges of the young unfurling leaves of apple shoots and tight rolls (galls) develop containing the larvae. It is the tightness of the rolls that distinguishes them from the loose leaf-rolls made by leafroller caterpillars. There is also a reddening, and later browning, of the midge leaf rolls as the larvae mature and the leaves age. Old rolls are dry and brittle and may break up. At the tips of the shoots, two or more young leaves may become rolled together resulting in major shoot distortion. This rolling may prevent the leaves from fully expanding and they may drop prematurely. Leaf and shoot damage to young trees and grafts can be very severe, resulting in poor shoot development, and distorting the shape of the developing tree. On the other hand, mature trees can tolerate the shoot damage encountered with normal populations of the midge. It is only where there are extremely high populations, that crop yields may be affected. Leaf and shoot damage may affect crop yields, with field trials conducted overseas showing that where insecticide applications reduced tree infestation by apple leafcurling midge, an average yield increase of 10% occurred on apple trees (Kolbe, 1982). Apple leafcurling midge has been shown to reduce photosynthesis in damaged leaves and has also been implicated in the incidence of fireblight in apples however they do not vector fire blight (Gouk and Boyd, 1999).

Life cycle

The number of generations of apple leafcurling midge completed each year decreases from north to south in New Zealand. There are 6-7 generations annually in the north of New Zealand. Populations in the north reach particularly high levels in the wetter regions (e.g. the Waikato), whereas dry weather and the cessation of terminal shoot growth often prevents population build up during mid- and late-summer on the east coast (e.g. Hawke’s Bay). Only the first two generations in spring are discrete, and there is considerable overlap in the later generations. This overlapping of later generations also occurs in Palmerston North, Nelson and Marlborough in central New Zealand, where there are usually 5 generations per year. Further south in Canterbury and Otago, the 4 generations are more discrete, although this varies from season to season and the timing of generations is influenced by temperature, drought conditions, and rainfall episodes. Summer droughts can have a major influence on both the abundance and phenology (life cycle timing) of apple leafcurling midge. Rainfall softens the leafrolls and
makes it easier for mature larvae to escape; delays of up to 10 days can occur in this process in the absence of rainfall. Studies in the southern North Island have shown that the length of a generation cycle varies from over 50 days in spring to 35-40 days in summer. In the southern South Island, the equivalent periods are from over 60 days to about 40 days.

Life history

The apple leafcurling midge overwinters as a dormant, cocooned larva in the top 7.5 cm of surface soil and in debris beneath apple trees, with some also cocooned on the bark. The larvae pupate in spring and the adults of the first generation lay eggs from pre- to post-flowering depending on temperatures and latitude. Pupation occurs from budburst in the north, from just pre-flowering in central New Zealand, to flowering in the south. This discrete adult emergence and associated egg-laying is completed over the flowering/post flowering period. The eggs are laid in batches mainly on the edges of unfurling leaves in the tips of growing shoots, although this spring generation also uses bracts and flowers for egg laying. Like the first generation, the second is also discrete in all regions, but overlapping of generations increases subsequently, particularly in the north. Depending on temperatures, the eggs and larvae take respectively 3-10 days and 20-30 days to develop.

Studies have shown that volatile chemicals released by apple foliage are important in host-finding behaviour of female apple leafcurling midges. The female selects very young leaves for egg laying, normally only those leaves, which are just beginning to unfold in the shoot tips, or are up to about two-thirds unfolded. She also prefers undamaged shoots that are growing vigorously. However, on heavily infested trees, a few eggs may be laid on older leaves with existing larval infestations. Females also share the same shoot when egg-laying with individual females ovipositing on several leaves. Young foliage is more attractive to the females than mature foliage, and the response is greater in the afternoon than the morning. This appears compatible with a daily pattern in which mating dominates in the morning and oviposition later in the day. The ability to see the apple foliage plays a much lesser role in host finding than the chemical cues. Unlike the females, male apple leafcurling midges do not respond to the odour of apple foliage.

Field evidence indicates that adult midges live only a few days (perhaps up to a week). Swarming of adults has been observed to precede egg laying by the females, and mating is assumed to occur in these swarms. The female produces a pheromone that attracts the males for mating (Harris *et al.*, 1999). Most eggs are laid in groups and on the upper edges of the unfurling leaves; one female may lay up to 200 eggs. The eggs require 3-10 days for development, and the larvae take a further 20-30 days to reach maturity, when they start leaving the ends of their leaf rolls to seek cocooning sites. This is usually beneath the trees on which they developed and population dispersal is mainly achieved by the winged adult flies. Laboratory studies indicate that the pupal stage is completed in 13-18 days, and that adults live 2-6 days. Adults in the field or in breeding cages have also been observed to live only a few days.

Adult eclosion showed a diel periodicity, peak eclosion occurring between 06:00 and 10:00 hours. Within this period, peak male eclosion typically occurred 1-2.5 hours earlier than peak female eclosion. No adults emerge after noon. For males, wing fanning, mating and flight first occurred, on average 30, 32 and 41 minutes after eclosion, respectively. For virgin females, calling behaviour and mating first occurred, on average 16 and 38 minutes after eclosion, respectively. Calling events were of variable duration (0.3-55 minutes) and occurred most frequently between 09:00 and 15:00 hours. The sex pheromone of apple leafcurling midge has
not been identified. Males of apple leafcurling midge do not respond to calling virgin females of pear leafcurling midge. Males mated many times, whereas females mated only once or twice. After mating, females sat for approximately 1 hour before taking their first flight. Males are most active or abundant in the area under the tree canopy rather than in the canopy itself. This is probably linked to the emergence of females from the soil (Harris et al., 1999).

A series of 4-7 generations are completed over the summer, the number again depending on latitude and temperature. Female midges seek out actively-growing shoots to lay their eggs, and the numbers of available healthy shoots has a major impact on the success of each generation. The surge of new growth in early summer is particularly suitable for rapid population increase in the second and third generations, while the cessation of growth in mid- to late-summer often helps to reduce late season populations. This effect is most pronounced in dry seasons and regions. In addition, adult females lay few eggs on shoots already damaged by the midge. The larval stages cause tight curling of the edges of leaves, with from 1-500 larvae on a single leaf.

Reproduction

Sexual reproduction is obligatory in apple leafcurling midge. Virgin females produce a sex pheromone that attracts males for mating, and swarming of males has been observed around virgin female midges. Males are not attracted to mated females, including those mated just 1-2 hours previously. Females mate once or twice, whereas males mate many times. For example, males have been observed to mate an average of 11 times in 30 minutes.

Rainfall is important in the emergence of the fully developed midge larvae from their tightly-rolled leaf galls. Under drought conditions, larvae are unable to leave the rolls and the delay in this process limits the numbers of generations of midge that can be completed in summer. Drought conditions also limit the production of new shoot growth essential for egg laying by female midges. However, the level of mortality, which can be attributed to drought, has not been determined.

Population dynamics

The apple leafcurling midge has not been studied in detail in New Zealand or any other country. Research in Palmerston North in the 1950s showed that the greatest population increase of apple leafcurling midge occurred in the second and third generations. This was mainly attributed to the abundance of growing shoots at this time available for egg laying by females, which have a strong preference for vigorous undamaged shoots. Later generations of the midge suffer from a lack of undamaged vigorous terminal shoots, and populations often decline in late summer under these conditions. This is strongly affected by the level of rainfall. Where this is abundant and terminal growth continues, the later generations can be devastating, as has occurred in the Waikato in the 1990’s and 2000’s. Apart from providing abundant egg-laying sites through terminal growth, rainfall also softens the leaf galls and allows undelayed emergence of fully-developed larvae. The abundance of vigorous shoots on young trees and grafts are a further demonstration of the importance of this factor. Very high populations and damage can occur on these trees.

Research in the 1990’s and 2000’s has generally confirmed these findings. However, another major factor affecting midge populations today is the apple cultivar. Modern cultivars vary considerably in their susceptibility to damage, with Gala types and cultivars with Gala parentage associated with highest midge populations. Major varietal differences in
susceptibility have also been reported from the U.S.A. The mechanism causing this effect is unknown.

Dispersal

The dispersal of apple leafcurling midge has been little studied. Both adult male and female are winged. Maximum flight activity has been observed under warm, calm conditions, although small numbers have been seen on the wing even when the weather is cool, overcast, and windy. The adult life of both sexes is only a few days (range 2-6 in laboratory studies), limiting long distance migration. Nevertheless, some researchers consider them strong fliers able to disperse well in wind, and apple leafcurling midge has a history of rapid spread when introduced to new areas.

Long distance movement of apple leafcurling midge has been achieved by a mixture of adult flight and the transportation of infested apple trees. The latter is particularly likely given the frequent infestation of nursery trees by the midge and its liking for spinning cocoons in the soil beneath the trees. This is a favoured overwintering site and midges could readily be associated with nursery trees being despatched for planting in winter. Apple leafcurling midge has been reported to have arrived in the North Island of New Zealand on apple stocks shipped from the Netherlands (1950), and was probably transported to other parts of New Zealand on nursery trees in the years following its introduction. By 1956, it was already present in many North Island locations.

Natural enemies

A small complex of natural enemies is known to attack apple leafcurling midge in New Zealand. In the absence of insecticides, these natural enemies combine with other factors (e.g. dry conditions, cultivar 'resistance') to often maintain midge populations below economic damage levels. In wet warm seasons, when there is abundant shoot growth for the midges to lay eggs, the populations may increase to damaging levels despite the activities of natural enemies. This is particularly likely on some susceptible cultivars (e.g. Gala and Gala types), and on young apple trees and grafts producing numerous growing shoots. The contributions of the different predators and parasites in reducing apple leafcurling midge numbers are not well understood but the most important natural enemy both here and in Europe is the wasp *Platygaster demades* (Walker). Parasitism in New Zealand ranges from 40% in the first generation of the midge to >90% in the final summer generation. However, lack of synchronisation with the second generation of the midge results in low parasitism (1-3%) in early summer which allows rapid population increase at that time.

Larvae of apple leafcurling midges are susceptible to predation when seeking cocooning sites, by spiders, predatory beetles, predatory bugs, and ants. Similarly, the cocooned larvae may be susceptible to attack by ground predators, particularly through the long overwintering period. This natural mortality of apple leafcurling midges has not been studied.

Other predators of the apple leafcurling midge include a native dolichopodid fly, *Chrysosoma mobile* (Hutton), and a native damsel fly, *Australestes colensonis* (White). In addition, the whirligig mite, *Anystis baccarum* (L.), is a general predator, which is abundant in apple orchards feeding on a range of insect eggs and young larvae including apple leafcurling midges.

The known natural enemies of apple leafcurling midge in New Zealand are: birds (unspecified), European earwig, *Forficula auricularia* L., an introduced predatory anthocorid bug (pirate bug) *Orius vicinus* (Ribault), a small black parasitoid wasp *Platygaster demades* (Walker), an
introduced predatory and plant-feeding mirid bug *Sejanus albisignata* (Knight), and a predatory phytoseiid mite *Typhlodromus pyri* Scheuten.

Control

There are several cultural factors that can contribute to the management of apple leafcurling midge. The selection of apple scion varieties, soil cultivation, and ensuring the planting of midge-free stock, can all play a part. Tree training, irrigation, and nutrition may also affect midge abundance.

There is strong evidence that apple scion cultivars differ in their susceptibility to apple leafcurling midge. For instance, early studies in the U.S.A. of 12 varieties ranked 'Delicious' as prone to severe infestation, 'Gravenstein' and 'Red Gravenstein' as only moderately affected, and infestation of 'Wealthy' as minimal. Among modern cultivars, 'Braeburn', 'Gala' and 'Royal Gala' types are particularly prone to infestation, as are other varieties, which include 'Gala' in their parentage (e.g. 'Pacific Rose') (Smith and Chapman, 1997). The timing of peak egg laying has also been found to vary between cultivars, such as being earlier on 'Royal Gala' than on 'Braeburn'. Major varietal differences in susceptibility have been reported from U.S.A. (HortResearch, 1999b) and Germany (Kolbe, 1982). Early studies in the U.S.A. of 12 varieties ranked 'Delicious' as prone to severe infestation, 'Gravenstein' and 'Red Gravenstein' as only moderately affected, and infestation of 'Wealthy' as minimal (HortResearch, 1999b). Cox’s Orange Renette, Frieherr von Berlepsch, Golden Delicious, Karmjin de Sonnaville, Melrose and Roter Boskoop were heavily infested in 1982 while there were no signs of infestation on other (unspecified) cultivars (Kolbe, 1982). The mechanism causing this effect is unknown. In New Zealand apple leafcurling midge infestation can also differ between apple cultivars, although this can vary through the season depending on the availability of shoots suitable for oviposition.

Cultural methods, which have been shown to provide some useful control of apple leafcurling midge include soil cultivation and mulches. Soil cultivation just prior to the emergence of adult midges from pupation sites in the soil has been shown to reduce midge populations by up to 99%. This may be an option of special value in young blocks of trees, which are particularly susceptible to structural damage by the midge affecting terminal growth. Addition of mulches that result in the midge cocoons being buried at greater depth is also reported to reduce adult emergence.

One of the primary methods of dispersal of apple leafcurling midge in the past has been through midge-infested stock from nurseries. Care should be taken to ensure that young trees are free of infestation when despatched from the nursery.

Other cultural techniques, which might be used to influence apple leafcurling midge populations, are tree training, irrigation, and nutrition. The success of this pest is strongly influenced by the numbers of vigorous growing shoots and the duration of new growth. Over vigorous vegetative growth that favours the midge should not be encouraged at the expense of efficient fruit production. An increase in the abundance of apple leafcurling midge in Switzerland was attributed in part to increased fertilization with nitrogen.

Biological control of apple leafcurling midge is usually very effective, provided chemicals toxic to its natural enemies are avoided. Within the complex of natural enemies, the most important is *Platygaster demades*, a parasitoid wasp that causes high mortality of midge larvae. *P. demades* is today common in organic orchards and in orchards practising IFP. Care should be exercised to avoid toxic pesticides. The wasp (and other natural enemies) is susceptible to organophosphates.
There are some natural enemies of apple leafcurling midge overseas which are not present in New Zealand. These include an egg parasitoid (*Torymus* sp., Torymidae), an unnamed larval ectoparasitoid, a eulophid, *Eulophus nebulosus* and several predatory anthocorid bug species.

Since the 1960’s, chemical control of apple leafcurling midge has been based on the use of organophosphates. These highly toxic chemicals have provided effective control of apple leafcurling midge and other pests but they have had the disadvantage of toxicity to many natural enemies. More recently, insect growth regulator compounds have been developed for insect control. These are more selective chemicals usually allowing survival of many natural enemies. Unfortunately, there is no insect growth regulator yet developed which is effective against apple leafcurling midge, and chemical control still relies on organophosphates. The apple leafcurling midge parasite, *Playgaster demades*, is so important for control of this pest in IFP and organic production that every effort is now being made to eliminate the use of chemical control, and to rely instead on biological control for this pest.

Where organophosphate sprays are still required for the control of apple leafcurling midge in summer (e.g. use of diazinon based on monitoring), these uses must be efficiently integrated with the control of other pests, such as Woolly Apple Aphid and scale insects. Organophosphate spraying may be especially required to protect young apple trees and young grafts from damage by apple leafcurling midge. A major increase in the pest status of apple leafcurling midge in the 1990’s was thought at first to be related to insecticide resistance. However, tests showed that this was not the case and there are no reports of apple leafcurling midge in New Zealand developing resistance to insecticides (HortResearch, 1999b).

Brown-headed leafroller

Ctenopseustis herana (Felder and Rogenhofer, 1875) [Lepidoptera: Tortricidae]

Ctenopseustis obliquana (Walker, 1863) [Lepidoptera: Tortricidae]

Adapted from HortResearch (1999b).

Synonyms and changes in combination:

Ctenopseustis obliquana: *Cacoecia charactana* Meyrick, 1881; *Tortrix herana* Felder & Rogenhofer, 1875; *Cacoecia inana* Butler, 1877; *Ctenopseustis herana* (Felder & Rogenhofer); *Ctenopseustis obliquana* Type II of Foster *et al.* 1986), Foster and Dugdale (1988) (Dugdale, 1990; MAFNZ, 1999b).

Ctenopseustis obliquana: *Teras obliquana* Walker, 1863; *Sciaphila transtrigana* Walker, 1863; *Sciaphila turbulentana* Walker, 1863; *Teras spurcatana* Walker, 1863; *Tortrix ropeana* Felder & Rogenhofer, 1875; *Cacoecia charactana* Meyrick, 1881; *Ctenopseustis obliquana* Types I and III of Foster *et al.* (1986); *Ctenopseustis obliquana* Types I of Foster and Dugdale (1988) (Dugdale, 1990; MAFNZ, 1999b).

Common name(s):

Brown-headed leafroller (BHLR).
Host(s):

Brownheaded leafroller caterpillars have been recorded on more than 200 plant species. While many of these are true host plants, which enable the insect to complete its full life cycle, others may be only temporary hosts for the caterpillars, which move off onto other host plants. Some of the more important and common hosts are: kiwifruit, apples, pears, grapes, citrus varieties, stonefruits, feijoa, and berryfruits. Other host plants include pohutakawa, karaka, mahoe, poroporo, coprosma, willow, honeysuckle, privet, poplar, eucalyptus, ivy, cyclamen, orchids, roses, and clover. Many shelter species are excellent hosts of leafrollers. Wherever possible, new plantings should use non-hosts, such as *Casuarina* spp. (sheoke) and bamboo.

The following plant species contain plants on which caterpillars of brownheaded leafroller have been recorded. Most of these are known to be true host plants on which brownheaded leafroller is able to complete its life cycle. The caterpillars of the two *Ctenopseustis* species cannot be separated in the field. It is not known, therefore, whether they occur equally frequently on the host plants listed below, or whether there are different host plant preferences of the two species. In addition to recent species-specific records, analysis of past records in relation to the known host plants listed below, or whether there are different host plant preferences of the two species.

Cytisus scoparius (Scotch broom), Dahlia sp., Daphne sp., Deutzia scabra, Diospyros khaki (persimmon), Escallonia sp. (escallonia), Euonymus japonicus, Ficus carica, Garrya elliptica, Geranium pratense, Hypochaeris radicata, Ilex aquifolium (holly), Juglans regia, Liquidambar styraciflua, Lotus pedunculatus, Lupinus albus, Lupinus arboreus, Lupinus luteus, Lupinus sp. (lupin), Magnolia liliiflora, Magnolia stellata, Malva parviflora, Mentha spicata, Pelargonium sp., Phaseolus vulgaris, Pieris japonica, Pinus nigra (Austrian pine), Pinus nigra (laricio) (Corsican pine), Pinus patula, Pinus radiata (Monterey pine, radiata pine), Pinus strobes, Plantago lanceolata (plantain), Podranea ricasoliana, Pseudotsuga menziesii (Douglas fir), Racosperma longifolium, Rhododendron sp., Rumex obtusifolius (Dock), Rutula sp., Salvia sp., Sequoia sempervirens (Coast redwood), Sonchus oleraceus, Thuja orientalis, Thuja plicata, Tilia cordata, Trifolium pratense, Trifolium repens (clover), Ulex europaeus, Ulma sp., Vaccinium corymbosum, Verbena sp., Veronica sp., Vicia faba, Vinca major, Weigela florida, Wisteria sinensis, Wisteria sp.,

Native hosts include Aristotelia serrata, Carmichaelia sp., Carpodetus serratus (marble-leaf, putaputaweta), Clanthus puniceus (kake beak), Coprosma australis, Coprosma repens, Coprosma rotundifolia, Coprosma sp., Corynocarpus laevigatus (karaka), Fuchsia excorticata, Griselinia littoralis, Griselinia lucida, Hebe speciosa, Hebe spp., Hoheria populnea, Leptospermum scoparium, Leptospermum sp. (tea-tree), Lophomyrtus bullata (ramarama), Macropiper excelsum (kawakawa), Melicytus ramiflorus, Metrosideros excelsa (pohutukawa, rata), Muehlenbeckia sp., Olearia rani, Olearia sp., Parahebe catarractae, Pittosporum crassifolium, Pittosporum eugenioides, Pittosporum sp., Pittosporum tenuifolium (kohuhu), Pseudopanax arboreum, Pseudowintera colorata, Solanum aviculare.

Plant part(s) affected:

Mainly leaves, sometimes buds, stems and fruits.

Distribution:

Ctenopseustis herana is found on both North and South Islands of New Zealand. It is absent from the Auckland, Bay of Plenty, Gisborne, Hawke’s Bay, Wellington, Manawatu-Wanganui and Taranaki regions of the North Island. It is a pest species mainly in Nelson, Canterbury and the Waikato.

Ctenopseustis obliquana is also found in both the North and South Islands but is less frequent on the east coast of the South Island where it may be replaced by *C. herana*. *C. obliquana* is a major pest of apples in Hawke’s Bay, Gisborne, Waikato, and Nelson.

Biology:

There are two species of brownheaded leafroller, *Ctenopseustis obliquana* and *Ctenopseustis herana*. Their appearance is identical at all stages - adult moths, eggs, larvae, or pupae. The two species produce different pheromones, and pheromone trapping enables the populations of each species to be monitored independently. In addition, the distribution of the species varies in different parts of New Zealand.

Adult brownheaded leafrollers are extremely variable in colour and forewing pattern. In both sexes the forewings are often walnut brown, but vary from dark brown (almost black) to a pale fawn, and have a variety of colour combinations. Females have a characteristic darker oblique mark halfway down the edge of each forewing. The body length is generally 8-12 mm and the
wingspan 20-28 mm. Males too have an oblique forewing mark, plus a characteristic dark, transverse stripe (often black) across the front part of the folded wings about 2 millimetres behind the head. Their body length is generally 8-11 mm, and wingspan 17-24 mm. Adults often have other darker areas that vary in position, and in shade from pale to dark brown. Males have a 'fan' of large scales at the tail end of the abdomen whereas the brown ovipositor can be seen when viewing the tip of the female abdomen from below. Hindwings of both sexes are a uniform or mottled, pale brown, but are hidden beneath the folded forewings when the adult is at rest. The length of the resting moth is about half the wingspan.

Eggs of all leafroller species are laid in rafts or batches of 2 - 216, usually on the upper surface of host plant leaves. The eggs are flat, and with a pebbled surface. They overlap each other within the raft to form a smooth mass. This makes it difficult to distinguish the eggs from the surrounding leaf surface. Eggs are approximately 0.7 mm by 1.0 mm and the batches have a sparse coating of particles over the surface. They are initially pale green and change to a more yellow green as they develop. Prior to hatching the dark head of the developing caterpillar is visible through the egg wall, giving the egg batches a blotchy or speckled appearance. Eggs parasitised by minute wasps (e.g. Trichogramma spp.) are black just prior to wasp emergence.

Larvae of BHLR are difficult to distinguish from the larvae of lightbrown apple moth and greenheaded leafrollers, when occurring together in the same habitat. However, their colour, markings and size provide some distinguishing features. There are five or six larval instars (stages) in all species. The first larval instar is about 1.5 to 2.0 mm long and has a pale brown head with a dark mark on each side and the body is often pale green. The head becomes strikingly black in the second instar, and changes again, through subsequent instars, from dark brown to reddish or pale brown. Body colour varies. The mature larva may have faint red or red-brown stripes on its head, and is up to 20 mm long.

The pupa (chrysalis) is at first green, but soon becomes brown after rapidly hardening, and then darkens during development. The pupa is typically found in a thin-walled silken cocoon between two leaves webbed together, and is usually 10-15 mm long; the female pupae are larger than those of the male. Males and females can be distinguished by examining the pupa from the lower surface. In the female, three dark segmental bands are visible beyond the tip of the wing cases whereas there are four in the male. At the end of the abdomen, two prominent broad-based laterally-projecting spines and a number of hooks support the pupa in its cocoon. Each abdominal segment also has a series of short, backward-projecting spines that are used by the pupa to move partially out of its cocoon prior to moth emergence.

Female Ctenopseustis obliquana lays egg-masses of 30 or more eggs on leaves of the host-plant. The mass is covered with a translucent pale green secretion. Larvae feed between leaves spun together with silk, and may also feed on shoots, buds, stems or the surface of fruits. Full grown larvae are about 20 mm long, greenish or yellowish and with the head and prothoracic plate shining dark brown. They usually pupate within the larval shelter. There are several generations per year, and in summer a generation from egg to adult can be completed in 4-6 weeks.

Damage

All five species of leafroller larvae (BHLR, GHLR and lightbrown apple moth) cause similar damage to foliage and fruits; there is no way of distinguishing the damage of different species. Early instars often settle on the under surface of leaves close to the main veins, where they construct silken shelters and feed on the leaf tissue; this feeding typically creates small windows
in the leaves. Other young larvae are commonly found on the shoot tips or areas of new growth, where they web the leaves together with silk. A third settlement site is the calyx of fruits such as apple, where their presence is detected only from observing the fine silken webbing among the sepals. Larger larvae migrate from these settlement positions to construct feeding niches between adjacent leaves, between a leaf and a fruit, in a developing bud, or on a single leaf, where the leaf roll develops. The late stage larvae feed on all leaf tissue except main veins. Buds of deciduous host plants are especially vulnerable to attack in the winter and early spring, when the interior of the buds may be eaten.

Surface fruit damage is common in short-stemmed apple varieties, which form compact fruit clusters. Leaves are webbed to the fruit and feeding injury takes place under the protection of the leaf; or larvae spin up between fruits of a cluster. Small, circular 'stings' are caused by young larvae biting through the skin. This is typically on the green side of the apple (such as where a leaf and fruit have come in contact), in contrast to codling moth stings which are on the ripe side of the fruit. In crops such as kiwifruit, plum, grapefruit, and apple, the maturing fruit produces a layer of corky tissue over the damage by leafrollers; this helps prevent secondary infection by pathogens. Internal damage to apple, and pear fruits is much less common than surface damage, but a young larva may enter the interior of an apple or pear through the calyx. The presence of extensive silk distinguishes this damage from that of codling moth. In addition, the excreta (frass) of leafrollers occur as distinct pellets and are usually ejected and scattered on to the outside of the fruit. In contrast, codling moth frass is pushed to the surface in a sticky mass where it is often seen at the entry hole. Leafrollers can cause internal damage to apricots, peaches, and walnuts as well as apples.

Life cycle

The life cycle of brownheaded leafroller is different in different parts of New Zealand and similar to that of lightbrown apple moth. Brownheaded leafroller passes through three generations annually in the central New Zealand region and has no winter resting stage. There is considerable overlap in the generations, especially in late summer, although development is driven by temperature. In northern New Zealand three generations and partial fourth generation are completed annually, with major flight periods in Auckland hard to distinguish because of the continuous overlapping of generations. In Canterbury, the number of complete generations is reduced to two due to the cooler climatic conditions. Brownheaded leafroller also completes two generations in Otago (at the same time as greenheaded leafroller flights) but these species occur at extremely low levels in apple orchards, even though common on other host plants.

Life history

In central regions, adults produced by the overwintering larval generation emerge during October and November (November/January in the south). Eggs are laid in clusters of 2-216 on the upper surface of leaves, and take about 9 days at 20° to hatch (longer at cooler temperatures). These give rise to the first summer generation, in which final instar larvae mature between January and mid-February (January to March in the south). Second generation larvae reach maturity during March and April, and the adults from this generation provide third generation eggs in central regions. Normally, the rate of larval development is slowed considerably during the winter; thus the majority of larvae over-winter in the prolonged early juvenile phases of the second, third, and fourth instars. During this period they normally feed on herbaceous plants, although some feed on the buds of deciduous trees and shrubs. Re-invasion of apple trees takes place during October-December, when moths from the
overwintered generation start laying eggs again on the apple leaves. In the north of the North Island, flights of adults occur during the winter, which is warmer than further south.

Most of the brownheaded leafroller population spends the winter as young (2nd to 4th stage) caterpillars on ground cover plants, on fallen leaves, in fruit buds, or occasionally under the bark. There is no true dormancy and the caterpillars feed on warm winter days. The caterpillars complete their development, spin a loose silken cocoon, and change to pupae in the spring and early summer before emerging as adult moths. In southern areas with two generations per year, emergence begins in mid November and is spread over December and into January. Males emerge a short time ahead of females. The second generation emerges from February to May. In northern areas, the emergence of the overwintered generation is completed by December, the second generation of adults occurs over January/early March, and overlapping third or partial fourth generations occurs through to July. However, all stages are present at most times in the north making it difficult to distinguish generations. Females are normally mated only once and egg laying usually begins on the following day, reaching a peak after a few days. They mature and lay a series of egg batches on the upper surface of leaves during their lifetimes, which is about 3-4 weeks at 20ºC. The caterpillars hatch within 1-2 weeks and disperse to settle on the lower surfaces of leaves, often against the midrib and main veins. As the caterpillar grows, it moves to new sites, such as between two leaves, between leaf and fruit, or within a roll created by folding the edge of a leaf. Larval development is completed on apple leaves in about 30 days at 20ºC (Ctenopseustis obliquana). Prior to pupation, the majority of larvae leave their feeding sites and prepare new rolls or spin up specially for pupation and emergence. The threshold temperature for development has been determined as 4.8ºC.

Reproduction

The two pest species of brownheaded leafrollers produce distinct female sex pheromones for long-range communication with males seeking a mate. Pheromone traps exploit this by being baited with the distinct pheromone of each species; this enables each species to be monitored separately. The main pheromone components are: Ctenopseustis obliquana: (Z)-8-tetradecenyl acetate, (Z)-5-tetradecenyl acetate; Ctenopseustis herana: (Z)-5-tetradecenyl acetate.

The ratios of Z5-14:OAc to Z8-14:OAc in C. obliquana vary in different parts of the country. The pheromones are released in the evening and night, but particularly around dusk, and attract males over long distances. Females are normally mated once, although both sexes are capable of mating more often. The male passes sperm to the female in a sac (spermatophore), which the female stores in the bursa copulatrix. Most mating occurs 1-4 days after adult emergence.

The female lays a series of egg batches, averaging on apples in the field about 56 per batch (range 2 - 216), almost exclusively on the upper leaf surface. Fecundity is highly variable between individual females and is determined primarily by weather conditions, and probably the quality and succession of host plants. Females fed by freeze-dried apple leaves as larvae produced an average of 193-429 eggs at 11.5ºC, an average of 58-143 eggs at 18ºC, and an average of 69-182 eggs at 22.5ºC. Higher average fecundities were obtained at 11.5ºC than at 18 or 22.5ºC. Egg infertility in New Zealand under natural conditions is rare at <1%. Egg mortality from other causes is also low with inviability (failure to hatch) averaging only 2% of eggs. New Zealand lacks many of the predators, which feed on leafroller eggs overseas. High mortality of (neonate) caterpillars occurs when they disperse after hatching from their egg batch.
Population dynamics

The population dynamics of brownheaded leafrollers have not been investigated. Those ecological studies that have been carried out suggest that some of the factors, which are known to be important for lightbrown apple moth populations, are also probably key factors affecting the populations of brownheaded leafrollers. These include high mortality of young caterpillars after hatching from the eggs and wide variation in fecundity (the total numbers of eggs laid) between females, generations, and host plants. Predation by a wide variety of predators plays the key role in the mortality of young caterpillars of lightbrown apple moth in Australia and it is likely that a similar complex of predators (e.g. spiders) occurs in New Zealand and feeds on young brownheaded leafrollers. Many of the parasitoids which attack brownheaded leafroller eggs and caterpillars cause only minor mortalities but there is circumstantial evidence of leafroller population decline following the introduction of Trigonospila brevifacies and Xanthopimpla rhopaloceros from Australia, particularly in populations outside orchards.

Dispersal

The dispersal ability of brownheaded leafrollers has very important implications for management. With high levels of control achieved by insecticides or Bacillus thuringiensis, the resident population of brownheaded leafrollers in most orchards is extremely low. As a result, the immigration of adult moths into orchards is often greater than the resident population, and the removal of outside sources (e.g. weeds like blackberry and honeysuckle) can contribute to control. There have been no mark-recapture studies of the dispersal of brownheaded leafrollers. Like lightbrown apple moth, brownheaded leafrollers also have numerous alternative host plants in the environment of orchards and immigration of wild moths into orchards can be very high. This can be both a problem for control of brownheaded leafroller damage and a benefit for resistance management by diluting the effects of insecticidal selection. Immigrant moths from wild host plants normally contain a high proportion of insecticide-susceptible individuals.

Brownheaded leafrollers are predominantly nocturnal fliers, with maximum activity 2-6 hours after sunset. The lower temperature threshold for flight in Auckland has been estimated at 7-8°C but further data is required in this and other regions.

Another important aspect of movement is the dispersal ability of larvae, especially 1st stage caterpillars hatching from their egg batches. This has been detected in water traps placed alongside apple trees. Major mortality occurs during this process but the caterpillars are able to spread out and reduce competition for food, as well as move to new host plants. Caterpillars may disperse into apple crops from surrounding shelter, such as Acmena spp. and Populus spp.

Natural enemies

The natural enemies of the brownheaded leafroller species have not been studied as much as those of lightbrown apple moth in apple orchards. However, they have many natural enemies in common and much of the description and pictures provided for the natural enemies of lightbrown apple moth are also applicable to brownheaded leafrollers. The following information is based on that for lightbrown apple moth but contains adjustments where differences have been shown from specific studies on brownheaded leafrollers. Brownheaded leafrollers in New Zealand are attacked by a range of parasites and by predators and diseases, which make a major contribution to control, particularly if broad-spectrum insecticides are avoided. With the introduction of selective insect growth regulator chemicals and organic production methods for leafroller control, these natural enemies are now playing a greater part
in leafroller management in orchards. Biological control by the introduction of natural enemies from overseas has never been specifically undertaken for brownheaded leafrollers. However, some parasitoids introduced from Australia for the control of lightbrown apple moth have also attacked brownheaded leafrollers and are now found in their populations.

The greatest mortality occurs to young larvae hatching from egg batches and before they have settled (spun shelters) on the leaves. These losses are probably due to a number of predators, including spiders and predatory bugs, as occurs in lightbrown apple moth.

Natural enemies and diseases include (this is not an exhaustive list): parasitic or predatory wasps - Ancistrocerus gazella, Brachymeria phya (Walker) and Brachymeria teuta (Walker), Diadegma sp., Dolichogenidea tasmanica, Dolichogenidea carposinae and Dolichogenidea sp. 3 formerly referred to as Apanteles sicarius, Sympiesis sp. and Zealachertus sp., Eupsenella spp., Goniozus jacintae, Glabriformosum stokesii (Cameron), Glytapanteles demeter (Wilkinson), Trichogramma sp., Trichogramma (Trichogrammanza) funiculatum and Trichogrammatoida bactrae fumata, Vespuella spp. and Xanthopimpla rhopaloceros Kreiger; common earwig Forficula auricularia L., predatory bugs - Orius vicinus (Ribault), Oechalia schellenbergii (Guerin Meneville) and Cermatulus nasalis (Westwood), and Sejanus albisignata (Knight); parasitic flies - Pales funesta (Hutton), Pales feredayi (Hutton), and Trigonomisia brevifacies (Hardy); whirligig mite Anystis baccarum (L.); a number of bird species including the silvereye Zosterops lateralis; a range of spider species (including theridiid Achaearanea veruculata, Achaearanea veruculata, Ixeuticus martius (Amaurobiidae), Trite planiceps and Trite sp. (Salticidae), several Diaea spp. (Thomisidae) and Clubiona sp. (Clubionidae)).

Control

Brownheaded leafrollers are attacked by a wide range of predators, and parasitoids. However, these benefical species have never been the primary method of control in commercial orchards. This is because brownheaded leafrollers are quarantine pests and must be controlled to extremely low levels. Natural enemies are rarely effective in controlling pest populations at these low densities. However, with the introduction of more selective insecticides, such as insect growth regulators, and the increase in organic production, the natural enemies of brownheaded and other leafrollers have become more important. Classical biological control of brownheaded leafrollers, which are native insects, has never been attempted. However, parasitoids introduced for control of lightbrown apple moth (an Australian species) have been found parasitising brownheaded leafrollers. These are contributing to reducing pest populations of brownheaded leafrollers not only in orchards but also on their many host plants in the surrounding environment. This could minimise immigration of moths into orchards and reduce the need for chemical control.

Insect pathogens, such as bacteria and viruses, offer an alternative method of biological control. The bacterium Bacillus thuringiensis is widely used for control of leafrollers.

Another biological method of controlling brownheaded leafrollers is mating disruption, which uses high concentrations of the insect pheromone to prevent mating.

The same insecticidal chemicals are used to control the whole complex of five leafroller species on apples. There are three main approaches to chemical control. Since the 1960s, chemical control has been based on the use of broad-spectrum insecticides, such as organophosphates, carbamates, and to a limited extent, synthetic pyrethroids. These highly toxic products have provided very effective control of leafrollers and other pests but they have had the disadvantage of wider toxicity to many natural enemies. More recently, the chemical industry has developed
effective insect growth regulator compounds, which combine high toxicity to leafrollers with
safety to many important beneficial species, such as predators and parasitoids. These selective
qualities are also present in a new group of natural insecticidal products, the first of which is
Success Naturolyte™.

IFP aims to eliminate the use of organophosphate and carbamate chemicals in apple orchards
and replace these with selective chemicals. At present, all three groups of chemicals are
permitted in IFP but with a strong preference for the use of insect growth regulators and the
other selective materials. Organophosphates or carbamates may still be required for the control
of some pests (e.g. woolly apple aphid) and these uses must be efficiently integrated with the
control of leafrollers. Several leafroller species in New Zealand have developed resistance to
insecticides.

Pheromone trapping can be used to monitor leafroller populations and trap catches provide
action thresholds for guiding spray decisions.

All the pest leafroller species have many host plants. A valuable measure which can greatly
assist with control is the destruction, mowing or grazing of host plants of leafrollers outside or
within the orchard. Annual weeds and ground covers (dock, plantains, clovers) in the orchard
are especially important for overwintering by the leafroller caterpillars. Mowing in summer and
grazing in winter and early spring can substantially reduce leafroller populations on the ground
cover plants. Similar benefits can be obtained by topping shelter trees which host leafrollers
(e.g. willow, poplar, alder) to a manageable height; caterpillars may descend from these shelter
trees onto the crop prior to harvest.

The short-stemmed (e.g. Cox's Orange Pippin, Sturmer Pippin) and late season apple varieties
have the greatest risk of infestation by leafrollers. Short stems and large fruit bunches create
well protected feeding niches for leafroller caterpillars. Careful pruning and thinning can help
to achieve good spray penetration of the trees and the fruit clusters, as well as reducing the
number of feeding niches, particularly on the short-stemmed varieties. Mummified fruits are
used by leafrollers for overwintering and their removal can help to reduce overwintering
populations.

Burnt Pine Longhorn Beetle

Arhopalus ferus Mulsant, 1839) [Coleoptera: Cerambycidae]

Adapted from several sources (CABI, 2002; Duffy, 1946; Duffy, 1953; Hosking, 1978;
Landcare Research, 1999)

Synonyms or changes in combination or taxonomy:

Arhopalus ferus was originally described in the genus *Criocephalus;* *Criocephalus ferus*
Mulsant, 1839; *Arhopalus polnicus* Motschulsky, 1845; *Criocephalus polonicum* Motschulsky,
1845; *Criocephalus epibata* Schiodte, 1864; *Arhopalus tristis* (Fabricius, 1787)
[misidentification]; *Callidium triste* Fabricius, 1787.

Common name(s):

Burnt Pine Longhorn beetle (BPLB), Burnt Pine Longicorn.
Host(s):
Several *Pinus* species; rarely *Picea abies* (Norway spruce) (Duffy, 1946).

Plant part(s) affected:
Trunk, branches and roots (larvae are internal feeders).

Distribution:
Burnt pine longhorn beetle is found around the Mediterranean basin ranging from Europe (Austria, Denmark, England, Finland, France, Germany, Italy, Russia, Sweden, United Kingdom (Duffy, 1953), North Africa, Asia Minor (Syria) and the Far East (CABI, 2003a); New Zealand (introduced).

Biology:
Burnt pine longhorn beetle has a lifecycle consisting of four stages: adult, egg, larva, and pupa.
Adults are 12-30 mm in length; males are light brown and females are dark brown to black; larvae are cerambycoid and lack well-developed legs. Adults live for several weeks and the emergence period is from November to April in New Zealand. The adults represent the short-lived reproductive phase while the larva is long lived often taking several years (2-4 years in Europe) to develop to the pupal stage within its host tree.

Females prefer to lay eggs on scorched host material of *Pinus* spp., in groups of 5 to 50 in bark crevices as early as 24 hrs after fire in New Zealand or in the scales of bark in slightly decaying or recently dead stumps and standing boles especially those of which have been scorched by fire in the Northern Hemisphere. A single adult lays approximately 60 eggs.

Larvae hatch in less than 10 days and bore towards the phloem and cambium of tree trunks in New Zealand. The larvae prefer cambium; however, under crowded conditions larvae may ingest sapwood and can severely damage trees 6 months after attack. Larval tunnels are oval in cross section and up to 12 mm wide. In the Northern Hemisphere larvae evidently prefer the large exposed roots, and seldom tunnel for more than a foot or so up the bole. First they bore downward, making winding galleries until about two-thirds grown; they then tunnel in an upward direction.

Pupation occurs during June and July in exposed or underground roots or in the base of standing boles. The pupal cell is elongate-ovoid and packed at both ends with coarse wooden shavings. When in a root, it is usually near the surface, parallel to the grain of the wood, but if the bark is very thick, pupation often takes place in the bark itself. In New Zealand pupation occurs in sapwood. Pupae of this species are very active, and frequently move up and down the cell while performing gyratory movements.

The last instar larva completes its development to pupal stage in the inner heartwood. The adult then bores out of the timber through the bark leaving a characteristic oval hole. Adults are mobile and are capable of flight over long distances. The flight period of adults in the Southern Hemisphere extends over the summer period from November to April. When disturbed longhorn beetles often take to flight or fall to the ground and feign death. Adults are known to shelter in packets of sawn timber exported from some New Zealand localities. The BPLB is a
hitchhiker pest, which lands on timber and other goods while being loaded in New Zealand, especially during the night when it is attracted to lights.

This species will occasionally attack growing and apparently quite healthy trees.

Citrophilus Mealybug

Pseudococcus calceolariae Maskell [Hemiptera: Pseudococcidae]

Adapted from Poole et al. (2001).

Synonyms and changes in combination:

Dactylopius calceolariae Maskell, 1879; *Erium calceolariae* (Maskell) Lindinger, 1935; *Pseudococcus citrophilus* Clausen, 1915; *Pseudococcus fragilis* Brain, 1912; *Pseudococcus gahani* Green, 1915.

Common name(s):

Citrophilus mealybug, Currant mealybug, Scarlet mealybug.

Host(s):

Plant part(s) affected:

Foliage, fruit and twigs.
Distribution:

Africa, Asia, Australia, Europe, New Zealand, North and South America (Ben-Dov and German, 2002a). In Australia this species occurs in New South Wales (Smith et al., 1997), Queensland (Williams, 1985), South Australia (Smith et al., 1997), Tasmania (Williams, 1985) and Victoria (Smith et al., 1997).

Biology:

Citrophilus mealybug, *Pseudococcus calceolariae*, is a slow moving oval shaped insect approximately 3-4 mm in length, native to eastern Australia. Developmental stages include egg, 3-4 nymphal stages, pupae (male only) and adults. Eggs are laid in groups of up to 500 in egg sacs and 3-4 generations can occur throughout the year (Smith et al., 1997).

The economically important stage of this pest is the female adult and nymphs. During feeding, citrophilus mealybug produce honeydew, an exudate high sugar that encourages the development of sooty mould (Hely et al., 1982). The presence of honeydew and sooty mould on the fruit downgrades its quality. Citrophilus mealybug is considered a pest of citrus in South Australia (Smith et al., 1997) and has been recorded from 40 host families (CABI, 1999). Dispersal mechanisms for citrophilus mealybug include wind, animals and orchard workers. Dispersal between orchards can be attributed to infested fruit, animals and workers (Hely et al., 1982).

Click Beetle

Conoderus exsul (Sharp, 1877) [Coleoptera: Elateridae]

Adapted from CABI (2002).

Synonyms or changes in combination or taxonomy:

Monocrepidius exsul Sharp; Monocrepidius exul Sharp [misspelling of exsul]; Conoderus exul (Sharp) [misspelling of exsul]; *C. exsul* (Sharp) was originally described in the genus Monocrepidius.

Common name(s):

Click beetle, wireworm

Host(s):

Saccharum officinarum (sugarcane) and grasses

Plant part(s) affected:

Roots.
Distribution:
Fiji, New Zealand, USA (Arizona, California, Hawaii).

Biology:
Click beetles have a lifecycle consisting of four stages: adult, egg, larva (or wireworm), and pupa. Details of the life history of this species of click beetle can be found in (Stone, 1976); (Robertson, 1987).

Adults are 8.5-13 mm in length and reddish-brown to dark brown in colour covered with a yellowish pubescence. The antennae are slender and thread-like extending beyond the apex of hind angles of the pronotum in the male and just reaching the hind angles of the pronotum in the female. The female is more robust and larger than the male.

A small percentage of larvae mature in the same season while the majority complete their life cycle in the year following. Females lay their eggs in the soil. Newly hatched larvae are whitish turning cream coloured on the second moult. Mature larvae have the head, thorax and apical abdominal segment dark reddish in colour. The pupa forms a cell in the soil and is cream coloured. Under laboratory conditions the larval period ranges from 54 to 103 days while the pupal period ranges from 14 to 18 days (average 15.7 days). The adult is the short-lived reproductive stage ranging from 25 to 65 days (average 38 days) also under laboratory conditions.

Codling Moth

Cydia pomonella Linnaeus [Lepidoptera: Tortricidae]

Adapted from Poole et al. (2001).

Synonyms and changes in combination:
Carpocapsa pomonella Linnaeus; *Carpocapsa pomonana* Treitschke; *Enarmonia pomonella* Linnaeus; *Laspeyresia pomonella* Linnaeus; *Phalaena pomonella* Linnaeus.

Common name(s):
Codling moth.

Host(s):
Plant part(s) affected:

Fruit.

Distribution:

Africa, Asia, Australia, Europe, New Zealand, North and South America (CABI, 2002). In Australia this species occurs in New South Wales (Vickers, 1993), Queensland (Swaine et al., 1991), South Australia (Wicks and Granger, 1989), Tasmania (Hely et al., 1982), Victoria (Vickers, 1993).

Biology:

The life cycle of codling moth consists of four life stages: adult, egg, larva, and pupa.

Adult is a small grey-brown tortricid with a wingspan of approximately 18 mm. Forewings have a large coppery circular marking near the tip and the hind wings are brown. Eggs are flattened and oval in shape and translucent when first laid, measuring about 1.0 mm in size. About 250-300 eggs are laid singly on or near developing fruits or on leaves and twigs near the fruit. Eggs hatch in 10-15 days depending on temperature. First instar larvae are whitish, developing later to appear pale pink. The head and prothoracic plate are brown. Accurate identification of codling moth larvae depends on setal characteristics. Larvae can measure up to 20 mm in length. Pupae are 8.0-11.5 mm long and dark brown in colour. Life cycle development varies seasonally but is an average of 68 days.

Codling moths over winter as cocooned larvae and can be found on the host in cracks and under bark. Cocoons can also be found in fruit containers and other equipment (Hely et al., 1982). Overwintering larvae usually emerge from mid-October to early January, with second generation larvae emerging from mid-December to mid-February (Hely et al., 1982). Codling moth can disperse within an orchard by flight, but as tortricid moths are not strong fliers, dispersal between orchards is most likely to be attributed to infested fruit and infested equipment such as picking boxes (Hely et al., 1982).

European Red Mite

Panonychus ulmi Koch [Acarina: Tetranychidae]

Adapted from Poole et al. (2001).

Synonyms and changes in combination:

Metatetranychus pilosus (Canestrini and Fanzago); *Metatetranychus mali*; *Metatetranychus ulmi* Koch; *Oligonychus ulmi*; *Paratetranychus pilosus* (Canestrini and Fanzago); *Paratetranychus pilosus occidentalis*; *Paratetranychus ulmi*; *Tetranychus pilosus*; *Tetranychus ulmi*.
Common name(s):
European red mite, European fruit tree red spider mite, European red spider mite, Fruit tree red spider mite.

Host(s):
Acacia longifolia (Sydney golden wattle), Aesculus hippocastanum (horse chestnut), Alnus glutinosa (common alder), Alnus incana (grey alder), Alnus spp. (alder), Amaranthus spp. (amaranth), Amelanchier spp. (amelanchier), Artocarpus heterophyllus (jackfruit), Atropa belladonna (deadly nightshade), Avena sativa (oats), Betula pubescens (birch), Betula spp. (birch), Betula verrucosa (birch), Calystegia sepium (greater bindweed), Camellia sinensis (tea), Castanea sativa (sweet chestnut), Chenopodium spp. (goosefoots), Citrus aurantifolia (lime fruit), Citrus aurantium (Seville orange), Citrus grandis (pummelo), Convolvulus arvensis (field convolvulus), Corylus avellana (hazel), Crataegus monogyna (common hawthorn), Crataegus spp. (hawthorns), Crataegus succulenta (fleshy hawthorn), Cucumis spp. (cucumber), Cucurbita maxima (winter squash), Cucurbita pepo (pumpkin), Cydonia oblonga (quince), Dalbergia sissoo (Indian rosewood), Daucus carota (wild carrot), Desmodium canadense (Canada tick-trefoil), Diospyros spp. (persimmon), Eriobotrya japonica (loquat), Fagus sylvatica (beech), Ficus carica (common fig), Fragaria spp. (strawberry), Fragaria vesca (wild strawberry), Frangula alnus (glossy buckthorn), Fraxinus excelsior (ash), Fraxinus spp. (ash), Gardenia jasminoides (cape jasmine), Hibiscus spp. (hibiscus), Hydrangea macrophylla (lace cap hydrangea), Juglans regia (walnut), Juncus maritimus (sea rush), Laburnum alpinum (alpine laburnum), Lonicera japonica (Japanese honeysuckle), Malus domestica (apple), Malus spp. (apples), Malva spp. (mallows), Medicago sativa (alfalfa), Morus nigra (common mulberry), Morus spp. (mulberry), Myrica pennsylvanica (bayberry), Petroselinum crispum (parsley), Phaseolus spp. (beans), Phlox spp. (phlox), Polygonum aviculare (knotweed), Populus spp. (poplar), Populus tremula (quaking aspen), Potentilla fruticosa (shrubby cinquefoil), Prunus americana (choke cherry), Prunus armeniaca (apricot), Prunus avium (wild cherry), Prunus cerasus (sour cherry), Prunus divaricata, Prunus domestica (plum), Prunus dulcis (sweet almond), Prunus insititia (bucklace), Prunus padus (bird cherry), Prunus persica (peach), Prunus sargentii (sargent cherry), Prunus spinosa (sloe), Pyracantha spp. (firethorn), Pyrus baccata (Chinese crab apple), Pyrus communis (pear), Pyrus pyrifolia (Chinese pear), Pyrus spp. (pears), Quercus spp. (oak), Rhamnus frangula (buckthorn), Rhamnus spp. (buckthorns), Ribes aureum (golden currant), Ribes sanguineum (pink flowered currant), Ribes spp. (currants), Robinia pseudacacia (black locust), Rosa canina (dog rose), Rosa multiflora (multiflora rose), Rosa palustris (swamp rose), Rosa spp. (roses), Rubus idaeus (raspberry), Rubus occidentalis, (Virginian raspberry), Rubus spp. (raspberry), Rumex obtusifolius (round-leaved dock), Salix alba (white willow), Salix caprea (kilmarnock willow), Sapindus saponaria (Florida soapberry), Sasa kurilensis (shimofuri), Sophora japonica (pagoda tree), Sorbus aria (common whitebeam), Sorbus aucuparia (mountain ash), Sorbus fennica (Swedish service tree), Sorghum halepense (johnsongrass), Syzygium spp. (cloves), Tilia cordata (littleleaf linden), Trifolium pratense (red clover), Trifolium spp. (clover), Triticum aestivum (wheat), Ulmus americana (American elm), Ulmus campestris (English elm), Ulmus glabra (English elm), Ulmus hollandica (Dutch elm), Ulmus procera (common elm), Ulmus rubra (slippery elm), Ulmus scabra (Scotch elm), Ulmus spp. (elms), Vicia sativa (common vetch), Vitis labrusca (wild vine), Vitis spp. (grapes), Vitis vinifera (wine), Wisteria sinensis (Chinese wisteria), Zea mays (Indian corn) (Bollard et al., 1998).
Plant part(s) affected:
Leaves, stems and fruit.

Distribution:
Africa, Asia, Australia, Europe, New Zealand, North and South America (CABI, 2002). In Australia this species occurs in New South Wales (Thwaite, 1991), Queensland (Thwaite, 1991), South Australia (Thwaite, 1991), Tasmania (Thwaite, 1991) and Victoria (Thwaite, 1991).

Biology:
Developmental stages of European red mite include adult, egg, larvae, protonymph and deutonymph.

The European red mite is a small arthropod ranging in size from 0.25-0.5mm. European red mites are brownish red with conspicuous white spots at the base of the long dorsal setae. The female body is oval and strongly convex and has short pale legs. The adult male is smaller, yellowish-green to bright red and with a narrower pear-shaped body, tapering to the rear with legs longer relative to the body. The destructive stages of this pest include the nymphal and adult stages.

Female European red mites produce two types of eggs, namely winter and summer eggs. Resilient winter eggs enable the mite to ‘overwinter’ and are produced from late summer to late autumn. The majority of winter eggs are laid on the bark of the host trees. However, winter eggs can be laid on leaves (Beament, 1951) and on late season fruit (Hely et al., 1982) if population pressures are high enough. Summer eggs are usually produced from adults hatched from winter eggs and hatch within 12 days depending on weather conditions. Lifecycle development from eggs to adult usually takes 28 days depending on weather conditions and successive generations can occur over a season.

European red mite is considered a major pest of deciduous fruit and in particular pome fruit throughout the world. European red mite has an extensive host range with pome fruit, stone fruit, grapevine and citrus included in the 45 genera within 17 families listed as host species. Damage caused by European red mite results from leaf feeding injury. Symptoms initially present as leaf speckling, progressing to leaf bronzing and defoliation under heavy infestation pressures. Depending on the severity of an infestation, fruit production can be affected via small size and poor quality fruit.

Garden Featherfoot

Stathmopoda horticola Dugdale, 1988 [Lepidoptera: Oecophoridae]

Adapted from Landcare Research (1999).

Synonyms or changes in combination:

Stathmopoda horticola Dugdale, 1988; *Stathmopoda skelloni* in the sense of authors, but not of Butler, 1880.
Common name(s):
Garden Featherfoot.

Host(s):
Probably polyphagous on fruits of a wide range of trees. Hosts include Actinidia deliciosa (kiwifruit), Malus domestica (apple), Prunus persica (peach).

Plant part(s) affected:
May be found feeding at the calyx or stem end of apples (HortResearch, 1999b).

Distribution:
New Zealand.

Biology:
The garden featherfoot (GFF), Stathmopoda horticola Dugdale, has four life stages: adult, egg, larva (or caterpillar) and pupa.

Very little has been published on the life history of this species, but on orchard trees, the larvae are known to feed on the surface of fruit from a silken shelter under the dying calyces.

Larvae are dark purplish brown, with a dark reddish brown head and paler intersegmental divisions. They are about 8 mm long when full grown. They form a white silken cocoon, often on the surface of the fruit; when on kiwifruit the larva incorporates fruit hairs which camouflage the cocoon. Larvae diapause over winter in the cocoon, and pupate in the spring.

According to HortResearch (1999b), caterpillars of Stathmopoda spp. are occasional pests of apples in the north of New Zealand. They may be found feeding at the calyx or stem end of apples. The fruits of kiwifruit are more often attacked by this pest and, after they have completed feeding, the caterpillars may spin their cocoons on the bark of the vine.

Green-headed leafroller
Planotortrix excessana (Walker, 1863) [Lepidoptera: Tortricidae]
Planotortrix octo Dugdale, 1990 [Lepidoptera: Tortricidae]

Adapted from HortResearch (1999b).

Synonyms or changes in combination:
Planotortrix excessan: Teras excessana Walker, 1863; Teras biguttana Walker, 1863; Cacoecia excessana (Walker, 1863); Tortrix excessana (Walker, 1863); Planotortrix excessana Type B of Foster et al. (1986); Planotortrix excessana Types B and C of Foster and Dugdale (1988) (Dugdale, 1990).
Common name(s):
Green-headed leafroller (GHLR).

Host(s):
Greenheaded leafroller caterpillars have been recorded on more than 200 plant species. While many of these are true host plants, which enable the insect to complete its full life cycle, others may be only temporary hosts for the caterpillars, which move off onto other host plants. Some of the more important and common hosts are: apples, pears, grapes, citrus varieties, stonefruits, kiwifruit, walnut, lupin, tree lupin, ivy, camellia, laurel, hebe, polyanthus, coprosma and young conifers. Many shelter species are excellent hosts of leafrollers. Wherever possible, new plantings should use non-hosts, such as Casuarina spp. (sheoke) and bamboo.

The following plant species contain plants on which caterpillars of greenheaded leafroller have been recorded. Most of these are known to be true host plants on which greenheaded leafroller is able to complete its life cycle. The caterpillars of the two Planotortrix species cannot be separated in the field. It is not known, therefore, whether they occur equally frequently on the host plants shown below, or whether there are different host plant preferences of the two species. In addition to recent species-specific records, analysis of past records in relation to the known distribution of the two species has been done to give the underlined coded information. Plant species not underlined refer to both species of greenheaded leafroller. Where only one species was likely to be present in the area sampled, is underlined as follows: Planotortrix excessana and Planotortrix octo.

Common hosts include: Acacia spp., Achillea millefolium, Acmena smithii, Actinidia deliciosa (chinensis), Aesculus hippocastanum, Aquilegia vulgaris, Arctotis stoechadifolia, Boronia ledifolia, Boronia megastigma, Carduus nutans, Cassia corymbosa, Cedrus deodara, Chaenomeles speciosa, Chamaecyparis lawsoniana, Choisya ternata, Chrysanthenum sp., Cirsium arvense, Cirsium vulgare, Citrus grandis, Citrus limon, Citrus sinensis, Citrus spp., Clematis tangutica, Clematis vitalba, Cotoneaster frigidis, Cotoneaster lacteus, Crateagus monogyna, Crateagus oxycahnta, Cupressus sempervirens, Cupressus spp., Cydonia oblonga, Cydonia speciosa, Cytisus multiflorus, Cytisus scoparius, Dahlia sp., Eriobotrya japonica, Eucalyptus spp., Fagus sylvatica, Feijoa sellowiana, Fragaria moschate, Fragaria xanxanassa, Fuchsia magellonica, Hedera helix, Hedera sp., Kerria japonica, Laburnum anagyroides, Laurus nobilis, Lupinus albus, Lupinus arboreus, Lupinus luteus, Malus baccata, Malus x domestica, Prunus persica (var. nectarina), Persea americana, Persea gratissima, Phaseolus vulgaris, Phebalium squameum, Photinia glabra, Picea abies, Picea spp., Pinus muricate, Pinus nigra (cv austriaca), Pinus nigra (laricio), Pinus patula, Pinus radiata, Pism sativum, Polygonum persicaria, Populus alba, Populus deltoides, Populus nigra, Prunus amygdalus, Prunus armeniaca, Prunus avium, Prunus campanulate, Prunus cerasifera, Prunus cerasus, Prunus laurocerasus, Prunus persica, Prunus serrulata, Prunus x domestica, Pseudotsuga menziesii, Pyracantha angustifolia, Pyrus communis, Pyrus pyrifolia, Pyrus ussuriensis, Quercus ilex, Quercus robur, Quercus spp., Quercus suber, Raacosperma longifolium, Rhaphiolepis umbellate, Ribes nigrum, Ribes rubrum, Ribes sanguineum, Ribes uva-crispa, (includes many fruit crops), Rosa sp., Rubus fruticosus, Rubus idaeus, Rubus occidentalis, Rubus spp., Rumex acetosa, Rumex acetosella, Rumex crispus, Rumex obtusifolius, Rumex

Plant part(s) affected:
Leaves and fruit (HortResearch, 1999b).

Distribution:
Greenheaded leafrollers, *Planotortrix excessana* and *P. octo* only occur in New Zealand, including some offshore islands. They inhabit most lowland forest margins and horticultural areas (Thomas, 1998).

Planotortrix excessana is rare or infrequent in the eastern regions of the country. It is a major pest of apples in Nelson and the Waikato. *Planotortrix octo* is found in both the North and South Islands and is particularly important in the eastern apple growing regions of Poverty Bay, Hawkes Bay, Marlborough, Canterbury, and Central Otago. It is also a pest in the Waikato (HortResearch, 1999a).
Biology:

There are two species of greenheaded leafroller, *Planotortrix excessana* and *Planotortrix octo*. Their appearance is identical at all stages - adults, eggs, larvae, or pupae. The two species produce different pheromones, and pheromone trapping enables the populations of each species to be monitored independently. In addition, the distribution of the species varies in different parts of New Zealand.

Note that, as presented in HortResearch (1999b), many aspects of the biology of green-headed leafrollers are either very similar to or the same as the ones for the brown-headed leafrollers. However, for the completeness, such information is also repeated below although it has been stated under BHLR and this information is underlined.

Greenheaded leafroller moths are larger than the other leafroller species. The body length of female moths is 8-14 mm and the wingspan 22-30 mm; males tend to have a smaller body length, 7-12 mm, and a wingspan of 18-25 mm. Females are normally pale to dark brown, often with a series of broad, darker-brown, variable zig-zag bands across the forewings. A prominent, dark-brown spot is almost always present about one-third the distance in from the tip of the forewing. The male forewings are a uniform medium to dark coppery brown (often darker than the female), sometimes with a distinct greyish surface sheen. Markings are indistinct compared to those of females, but colour varieties are common. One variety has a conspicuous white or pale area centrally on the forewings, about one-third the distance from the base. Males have a 'fan' of large scales at the tail end of the abdomen (body) whereas the brown ovipositor can be seen when viewing the tip of the female abdomen from below. Hindwings of both sexes are a uniform or mottled, pale brown, but are hidden beneath the folded forewings when the adult is at rest. The length of the resting moth is about half the wingspan.

Eggs are laid in rafts or batches of 3 - 186, usually on the upper surface of host plant leaves. The eggs are flat, and with a pebbled surface. They overlap each other within the raft to form a smooth mass. This makes it difficult to distinguish the eggs from the surrounding leaf surface. The greenheaded leafroller egg batch is densely coated with characteristic white particles deposited during egg laying and this makes it difficult to see individual eggs. This enables egg batches of these species to be distinguished from the other leafrollers. Eggs are approximately 1.3 by 1 mm. They are initially blue-green and change to a paler yellow green as they develop. Prior to hatching the dark head of the developing caterpillar is visible through the egg wall, giving the egg batches a blotchy or speckled appearance. Eggs parasitised by minute wasps (e.g. *Trichogramma* spp.) are black just prior to wasp emergence.

Larvae of GHLR are difficult to distinguish from the larvae of lightbrown apple moth and brownheaded leafrollers, when occurring together in the same habitat. However, their colour, markings and size provide some distinguishing features. There are five or six larval instars (stages) in all species. The first larval instar is about 1.5 to 2.0 mm long and has a pale brown head capsule with a dark mark on each side. During development, the head and the plate behind it become paler and almost transparent, until in the final instar they appear shining green. At this stage the body is up to 25 mm long and is pale bluish-green with diffuse, white, longitudinal bands.

The pupa (chrysalis) is at first green, but soon becomes brown after rapidly hardening, and then darkens during development. The pupa is typically found in a thin-walled silken cocoon between two leaves webbed together, and is usually 10-15 mm long; the female pupae are larger than those of the male. Males and females can be distinguished by examining the pupa from the lower surface. In the female, three dark segmental bands are visible beyond the tip of the wing.
cases whereas there are four in the male. At the end of the abdomen, two prominent broad-based laterally projecting spines and a number of hooks support the pupa in its cocoon. Each abdominal segment also has a series of short, backward-projecting spines that are used by the pupa to move partially out of its cocoon prior to moth emergence.

Damage

All five species of leafroller larvae (BHLR, GHLR and lightbrown apple moth) cause similar damage to foliage and fruits; there is no way of distinguishing the damage of different species. Early instars often settle on the under surface of leaves close to the main veins, where they construct silken shelters and feed on the leaf tissue; this feeding typically creates small windows in the leaves. Other young larvae are commonly found on the shoot tips or areas of new growth, where they web the leaves together with silk. A third settlement site is the calyx of fruits such as apple, where their presence is detected only from observing the fine silken webbing among the sepals. Larger larvae migrate from these settlement positions to construct feeding niches between adjacent leaves, between a leaf and a fruit, in a developing bud, or on a single leaf, where the leaf roll develops. The late stage larvae feed on all leaf tissue except main veins. Buds of deciduous host plants are especially vulnerable to attack in the winter and early spring, when the interior of the buds may be eaten.

Surface fruit damage is common in short-stemmed apple varieties, which form compact fruit clusters. Leaves are webbed to the fruit and feeding injury takes place under the protection of the leaf; or larvae spin up between fruits of a cluster. Small, circular ‘stings’ are caused by young larvae biting through the skin. This is typically on the green side of the apple (such as where a leaf and fruit have come in contact), in contrast to codling moth stings which are on the ripe side of the fruit. In crops such as kiwifruit, plum, grapefruit, and apple, the maturing fruit produces a layer of corky tissue over the damage by leafrollers; this helps prevent secondary infection by pathogens. Internal damage to apple, and pear fruits is much less common than surface damage, but a young larva may enter the interior of an apple or pear through the calyx. The presence of extensive silk distinguishes this damage from that of codling moth. In addition, the excreta (frass) of leafrollers occur as distinct pellets and are usually ejected and scattered on to the outside of the fruit. In contrast, codling moth frass is pushed to the surface in a sticky mass where it is often seen at the entry hole. Leafrollers can cause internal damage to apricots, peaches, and walnuts as well as apples.

Hatching leafroller caterpillars settle mainly on the lower surfaces of leaves where they feed near the main veins or in shoot tips. Some settle at the calyx or stem end of fruit and may cause stings on the surface. Leaf feeding and shoot damage often include leaf folding and rolling. The fruit surface is eaten and some caterpillars bore into the fruit, particularly through the calyx. Faecal pellets (frass) are often found with damage. Leafroller damage is characterised by silken webbing on both fruits and foliage, and even bud damage in winter/spring. Shoot distortion is caused by feeding and the tying of the young leaves and growing point with silk.

Life cycle

The life cycle of greenheaded leafroller is different in different parts of New Zealand and similar to that of lightbrown apple moth. Greenheaded leafroller passes through two to three generations annually in the central New Zealand region, and has no winter resting stage. There is some overlap in the generations, especially in late summer, although development is driven by temperature. In northern New Zealand three overlapping generations are completed annually, with major flight periods in Auckland occurring during November-December,
February-March, and May-July. In Canterbury, and particularly in Otago and Southland, the number of complete generations is reduced to two due to the cooler climatic conditions.

In central regions, adults produced by the overwintering larval generation emerge during October and November (November/January in the south). Eggs are laid in clusters of 3-186 on the upper surface of leaves, and take about 8 days at 20°C to hatch (longer at cooler temperatures). These give rise to the first summer generation, in which final instar larvae mature between January and mid-February (January to March in the south). Second generation larvae reach maturity during March and April, and the adults from this generation provide third generation eggs in central regions. Normally, the rate of larval development is slowed considerably during the winter; thus the majority of larvae over-winter in the prolonged early juvenile phases of the second, third, and fourth instars. During this period they normally feed on herbaceous plants, although some feed on the buds of deciduous trees and shrubs. Re-invasion of apple trees takes place during October-December, when moths from the overwintered generation start laying eggs again on the apple leaves. In the north of the North Island, flights of adults occur during the winter, which is warmer than further south.

Most of the greenheaded leafroller population spends the winter as young (2nd to 4th stage) caterpillars on ground cover plants, on fallen leaves, in fruit buds, or occasionally under the bark. There is no true dormancy and the caterpillars feed on warm winter days. The caterpillars complete their development, spin a loose silken cocoon, and change to pupae in the spring and early summer before emerging as adult moths. In southern areas with two generations per year, emergence begins in mid November and is spread over December and January. Males emerge a short time ahead of females. The second generation emerges from February to May. In northern areas, the emergence of the overwintered generation is completed by December, the second generation of adults occurs over February/March, and overlapping with the third generation occurs through to July in the north. Females are normally mated only once and egg laying usually begins on the following day, reaching a peak after a few days. They mature and lay a series of egg batches on the upper surface of leaves over a period of up to three weeks. The caterpillars hatch within 1-2 weeks and disperse to settle on the lower surfaces of leaves, often against the midrib and main veins. As the caterpillar grows, it moves to new sites, such as between two leaves, between leaf and fruit, or within a roll created by folding the edge of a leaf. Larval development is completed on apple leaves in 26-30 days at 20°C (Planotortrix octo).

Prior to pupation, the majority of larvae leave their feeding sites and prepare new rolls or spin up specially for pupation and emergence. The threshold temperature for development has been determined as 6.1°C.

The two pest species of greenheaded leafrollers produce distinct female sex pheromones for long range communication with males seeking a mate. Pheromone traps exploit this by being baited with the distinct pheromone of each species; this enables each species to be monitored separately. The main pheromone components are: Planotortrix excessana: (Z)-5-tetradecenyl acetate, (Z)-7-tetradecenyl acetate, (Z)-9-tetradecenyl acetate; Planotortrix octo: (Z)-8-tetradecenyl acetate, tetradecyl acetate

The ratios of Z5-14:OAc to Z7-14:OAc in P. excessana vary in different parts of the country. The pheromones are released in the evening and night, but particularly around dusk, and attract males over long distances. Females are normally mated once, although both sexes are capable of mating more often. The male passes sperm to the female in a sac (spermatophore) which the female stores in the bursa copulatrix. Most mating occurs 1-4 days after adult emergence.

The female lays a series of egg batches, averaging on apples in the field about 54 per batch (range 3 - 186), almost exclusively on the upper leaf surface. Fecundity is highly variable
between individual females and is determined primarily by weather conditions, and probably the quality and succession of host plants. Greenheaded leafroller females which had been fed freeze-dried apple leaves as larvae produced an average of 52-87 eggs at 11.5ºC, an average of 53-282 eggs at 18ºC, and an average of 84-141 eggs at 22.5ºC. Egg infertility in New Zealand under natural conditions is rare at <1%. Egg mortality from other causes is also low with inviability (failure to hatch) averaging only about 2% of eggs. New Zealand lacks many of the predators, which feed on leafroller eggs overseas. High mortality of (neonate) caterpillars occurs when they disperse after hatching from their egg batch.

Population dynamics

The population dynamics of greenheaded leafrollers have not been investigated. Those ecological studies, which have been carried out, suggest that some of the factors that are known to be important for lightbrown apple moth populations are also probably key factors affecting the populations of greenheaded leafrollers. These include high mortality of young caterpillars after hatching from the eggs and wide variation in fecundity (the total numbers of eggs laid) between females, generations, and host plants. Predation by a wide variety of predators plays the key role in the mortality of young caterpillars of lightbrown apple moth in Australia and it is likely that a similar complex of predators (e.g. spiders) occurs here and feeds on young greenheaded leaf rollers. Many of the parasitoids which attack greenheaded leafroller eggs and caterpillars cause only minor mortalities but there is circumstantial evidence of leaf roller population decline following the introduction of *Trigonospila brevifacies* and *Xanthopimpla rhopaloceros* from Australia, particularly in populations outside orchards. This requires investigation.

The dispersal ability of greenheaded leaf rollers has very important implications for management. With high levels of control achieved by insecticides or *Bacillus thuringiensis*, the resident population of greenheaded leaf rollers in most orchards is extremely low. As a result, the immigration of adult moths into orchards is often greater than the resident population, and the removal of outside sources (e.g. Pittosporum spp.) can contribute to control. There have been limited mark-recapture studies of the dispersal of greenheaded leafrollers. Preliminary results indicate that this is similar to lightbrown apple moth with most male moths recaptured within 100 m of their release point and a maximum dispersal of 400 m. Like lightbrown apple moth, greenheaded leafrollers also have numerous alternative host plants in the environment of orchards and immigration of wild moths into orchards can be very high. This can be both a problem for control of greenheaded leafroller damage and a benefit for resistance management by diluting the effects of insecticidal selection. Immigrant moths from wild host plants normally contain a high proportion of insecticide-susceptible individuals.

Greenheaded leafrollers are predominantly nocturnal fliers, with maximum activity 2-6 hours after sunset. The lower temperature threshold for flight in Auckland has been estimated at 10-12ºC but further data is required in this and other regions.

Another important aspect of movement is the dispersal ability of larvae, especially 1st stage caterpillars hatching from their egg batches. This has been detected in water traps placed alongside apple trees. Major mortality occurs during this process but the caterpillars are able to spread out and reduce competition for food, as well as move to new host plants. Caterpillars may disperse into apple crops from surrounding shelter.

The natural enemies of the greenheaded leafroller species have not been studied as much as those of lightbrown apple moth. However, they have many natural enemies in common and
much of the description and pictures provided for the natural enemies of lightbrown apple moth are also applicable to greenheaded leafrollers. The following information is based on that for lightbrown apple moth but contains adjustments where differences have been shown from specific studies on greenheaded leafrollers. Greenheaded leafrollers in New Zealand are attacked by a range of parasites and by predators and diseases, which make a major contribution to control, particularly if broad-spectrum insecticides are avoided. With the introduction of selective insect growth regulator chemicals and organic production methods for leafroller control, these natural enemies are now playing a greater part in leafroller management in orchards. Biological control by the introduction of natural enemies from overseas has never been specifically undertaken for greenheaded leafrollers. However, some parasitoids introduced from Australia for the control of lightbrown apple moth have also attacked greenheaded leafrollers and are now found in their populations.

The greatest mortality occurs to young larvae hatching from egg batches and before they have settled (spun shelters) on the leaves. These losses are probably due to a number of predators, including spiders and predatory bugs, as occurs in lightbrown apple moth.

Natural enemies and diseases include (this is not an exhaustive list): parasitic or predatory wasps - *Ancistrocerus gazella*, *Brachymeria phya* (Walker), *Brachymeria teuta* (Walker), *Diadegma* sp., *Dolichogenidea tasmanica*, *Dolichogenidea carposinae*, *Dolichogenidea* sp. 3 (formerly referred to as *Apanteles sicarius*), *Eupsenella* sp., *Glabridorsum stokesii* (Cameron), *Glyptapanteles demeter* (Wilkinson), *Goniozus jacintae*, *Goniozus* sp., *Sympees* sp., *Trichogramma* sp., *Trichogramma* (*Trichogrammanza*) *funiculatum*, *Trichogrammatoidae bactrae fumata*, *Vespula* spp., *Xanthopimpla rhopaliceros* Kreiger and Zealabout sp.; common earwig *Forficula auricularia* L.; predatory bugs - *Cermatulus nasalis* (Westwood), *Oechalia schellenbergii* (Guerin Meneville), *Orius vicinus* (Ribault), and *Sejanus albisignata* (Knight); parasitic tachinid flies - *Pales funesta* (Hutton), *Pales feredayi* (Hutton), and *Trigonospila brevifacies* (Hardy); predatory mite *Anystis baccarum* (L.); a range of spider species - such as *Achaearanea veruculata*, *Ixeuticus martius* (Amaurobiidae), *Trite planiceps* and *Trite* sp. (Salticidae), several *Diaea* spp. (Thomisidae) and *Clubiona* sp. (Clubionidae); birds including the silvereye *Zosterops lateralis*; *Eugregarine* (protozoan) parasites. Note that many of these natural enemies are originally introduced from Australia to New Zealand to control lightbrown apple moth.

Control:

Greenheaded leafrollers are attacked by a wide range of predators, and parasitoids. However, these beneficial species have never been the primary method of control in commercial orchards. This is because greenheaded leafrollers are quarantine pests and must be controlled to extremely low levels. Natural enemies are rarely effective in controlling pest populations at these low densities. However, with the introduction of more selective insecticides, such as insect growth regulators, and the increase in organic production, the natural enemies of greenheaded and other leafrollers have become more important. Classical biological control of greenheaded leafrollers, which are native insects, has never been attempted. However, parasitoids introduced for control of lightbrown apple moth (an Australian species) have been found parasitising greenheaded leafrollers. These are contributing to reducing pest populations of greenheaded leafrollers not only in orchards but also on their many host plants in the surrounding environment. This could minimise immigration of moths into orchards and reduce the need for chemical control.

Insect pathogens, such as bacteria and viruses, offer an alternative method of biological control. The bacterium *Bacillus thuringiensis* is widely used for control of leafrollers.
Another biological method of controlling greenheaded leafrollers is mating disruption, which uses high concentrations of the insect pheromone to prevent mating.

The same insecticidal chemicals are used to control the whole complex of five leafroller species on apples. There are three main approaches to chemical control. Since the 1960s, chemical control has been based on the use of broad-spectrum insecticides, such as organophosphates, carbamates, and to a limited extent, synthetic pyrethroids. These highly toxic products have provided very effective control of leafrollers and other pests but they have had the disadvantage of wider toxicity to many natural enemies. More recently, the chemical industry has developed effective insect growth regulator compounds which combine high toxicity to leafrollers with safety to many important beneficial species, such as predators and parasitoids. These selective qualities are also present in a new group of natural insecticidal products, the first of which is Success Naturolyte™.

IFP aims to eliminate the use of organophosphate and carbamate chemicals in apple orchards and replace these with selective chemicals. At present, all three groups of chemicals are permitted in IFP but with a strong preference for the use of insect growth regulators and the other selective materials. Organophosphates or carbamates may still be required for the control of some pests (e.g. woolly apple aphid) and these uses must be efficiently integrated with the control of leafrollers. Several leafroller species in New Zealand have developed resistance to insecticides.

Pheromone trapping can be used to monitor leafroller populations and trap catches provide action thresholds for guiding spray decisions.

All the pest leafroller species have many host plants. A valuable measure which can greatly assist with control is the destruction, mowing or grazing of host plants of leafrollers outside or within the orchard. Annual weeds and ground covers (dock, plantains, clovers) in the orchard are especially important for overwintering by the leafroller caterpillars. Mowing in summer and grazing in winter and early spring can substantially reduce leafroller populations on the ground cover plants. Similar benefits can be obtained by topping shelter trees which host leafrollers (e.g. willow, poplar, alder) to a manageable height; caterpillars may descend from these shelter trees onto the crop prior to harvest.

The short-stemmed (e.g. Cox's Orange Pippin, Sturmer Pippin) and late season apple varieties have the greatest risk of infestation by leafrollers. Short stems and large fruit bunches create well-protected feeding niches for leafroller caterpillars. Careful pruning and thinning can help to achieve good spray penetration of the trees and the fruit clusters, as well as reducing the number of feeding niches, particularly on the short-stemmed varieties. Mummified fruits are used by leafrollers for overwintering and their removal can help to reduce overwintering populations.

Insect growth regulators are chemicals that interfere with the development of insects. Many are of low human toxicity and are selective because they are specifically targeted at processes occurring in particular stages of insects e.g. moultng of caterpillars. Many IGRs have increased selectivity because the target insect must eat them. There are IGRs currently registered (below) which provide control of both leafrollers and codling moth, and their selectivity makes them among the preferred chemicals for use in IFP. The registered chemicals are:

Lufenuron (Match®). This IGR interferes with formation of the caterpillar’s exoskeleton (= a CSI or chitin synthesis inhibitor). Match® must be eaten by the caterpillars, and this rapidly leads to mortality, particularly during moulting. It also affects egg hatch and is highly selective, being non-toxic or of low toxicity to many beneficial species.
Tebufenozide (Mimic®). This IGR induces early moulting of caterpillars before they are ready (= a MAC or moultng accelerator compound). Mimic® must be eaten, and it then causes immediate cessation of feeding and a lethal moult. Sublethal effects at the caterpillar stage may also prevent later pupation and reduce the egg production of female moths. It is highly selective, being non-toxic or of low toxicity to many beneficial species. Greenheaded leafroller, *Planotortrix octo*, is resistant to Mimic® in some parts of New Zealand.

Triflumuron (Alsystin®) is another CSI which interferes with insect moulting. Like other chemicals in this group, it is mainly taken up by ingestion and also reduces the hatching of eggs that have been sprayed or are laid on treated surfaces. It is most effective against young caterpillars, and is highly selective, being non-toxic or of low toxicity to many beneficial species.

Grey-brown Cutworm

Graphania mutans Walker, 1857 [Lepidoptera: Noctuidae]

Adapted from Landcare Research (1999) and HortResearch (1999b).

Synonyms or changes in combination:

G. mutans (Walker) was originally described in the genus *Hadena*.

Hadena debilis Butler, 1877; *Hadena lignifusca* Walker, 1857; *Hadena mutans* Walker, 1857; *Mamestra acceptrix* Felder & Rogenhofer, 1875; *Mamestra passa* Morrison, 1874; *Maoria mutans* ab. *pallescens* Warren, 1912; *Melanchra mutans* (Walker); *Morrisonia mutans* (Walker); *Xylina spurcata* Walker, 1857; *Xylina vexata* Walker, 1865.

Common name(s):

Grey-brown cutworm, common garden noctuid.

Host(s):

Graphania mutans is polyphagous on a wide range of dicotyledonous herbaceous plants and occasionally trees or shrubs; rarely on grasses. Hosts include *Brassica rapa* (cabbage), *Malus domestica* (apple), *Pisum sativum* (garden pea), *Plantago sp.* (plantain), *Triticum aestivum* (bread wheat).

Plant part(s) affected:

Leaves, occasionally also buds and young fruit.

Distribution:

New Zealand.
Biology:

The grey-brown cutworm (GBC) has four life stages: adult, egg, larva (or caterpillar) and pupa. Eggs are laid in batches on leaves or sometimes under the calyces of apple fruit. Each is in the shape of a flattened sphere, and cream to yellow in colour, with irregular brown markings in the upper half. Egg batches are also sometimes laid on the fruit close to harvest (HortResearch, 1999b).

Newly hatched larvae are pale yellow in colour with distinct black spots and covered in stiff, erect hairs. The young larva first consumes the egg-shell before commencing to feed on the foliage of the host-plant: occasionally when eggs are laid on young fruit they will damage the surface of the fruit. Larvae continue to feed on foliage of host trees until fully grown (Landcare Research, 1999). HortResearch (1999b) states that most of the young caterpillars of *G. mutans* descend from the trees to the ground cover of the orchard after a short time, where they feed on a variety of pasture plants. *Graphania mutans* caterpillars, which were artificially prevented from their normal behaviour of descending to the orchard understorey, cause considerable damage to the surface of apple fruit (HortResearch, 1999b). Mature larvae are approximately 25 mm long, light to dark brown in colour with a broken, white longitudinal stripe down each side (Landcare Research, 1999). In coloration the final instar larva is very variable, but the more distinctive and diagnostic features include a characteristic 3-pronged dark pattern which is usually present on the dorsum of abdominal segment 8, and segments 7-9 lacking dark patterning sublaterally and ventrally.

Planococcus mali

Planococcus mali Ezzat and McConnell, 1956 [Hemiptera: Pseudococcidae]

Synonyms and changes in combination:

None.

Common name(s):

None.

Host(s):

Plant part(s) affected:
Foliage, fruit and twigs.

Distribution:
Australia and New Zealand. In Australia the species occurs in New South Wales (Williams, 1985; Ben-Dov, 1994) and Tasmania (Williams, 1985; Ben-Dov, 1994).

Biology:
Adult female mealybugs of *Planococcus mali* are dark red, 2.3-3.3 mm long, and covered with a powdery white wax that extends into 12-18 short lateral filaments (Cox, 1987).

Specific details on the biology/life history of *Planococcus mali* are not available. The published literature mainly deals with the systematic aspects of the species (Ezzat and McConnell, 1956; Williams, 1985; Cox, 1987; Cox, 1989).

Planococcus mali is recorded from Australia and New Zealand on apple, blackcurrant and a variety of other woody host plants (Cox, 1989). This species was intercepted in the USA: on *Olearia chathamica* from New Zealand in Honolulu in 1937, and on apple (*Pyrus malus*) from Tasmania in New York and Massachusetts in 1946 (Ezzat and McConnell, 1956). Williams (1985) indicates that *Planococcus mali* is probably fairly common in Tasmania. This species is reasonably common and widespread in New Zealand and is mainly found on introduced plants (Cox, 1987).

Native leafroller

Pyrgotis plagiatana (Walker, 1863) [Lepidoptera: Tortricidae]

Synonyms or changes in combination:
Conchylis plagiatana Walker, 1863; *Conchylis recusana* Walker, 1863; *Paedisca luciplagana* Walker, 1863; *Grapholitha punana* Felder and Rogenhofer, 1875; *Grapholitha xylina* Felder and Rogenhofer, 1875; *Catamacta trichroa* Meyrick, 1901; *Pyrgotis tornota* Meyrick, 1907; *Epagoge parallela* Salmon and Bradley, 1956.

Common name(s):
Native leafroller.

Host(s):
Cassinia sp.; *Coprosma foetidissima* and *C. spp.*; *Dacrydium sp.*; *Hebe elliptica, Pittosporum tenifolium; Pleurophyllum spp.* and *Podocarpus spp.* (Hudson, 1928; Dugdale, 1971; Patrick, 1994); apple and pear (HortResearch, 1999b).
Plant part(s) affected:

Occasionally attacking apples and pears (HortResearch, 1999b; MAFNZ, 2000b) and no parts specified.

Distribution:

The species appears to be widespread in New Zealand and has been recorded from North and South Islands and some offshore islands (Dugdale, 1971; Dugdale, 1988).

Biology:

The Native leafroller has the following life stages: adult, egg, larva (or caterpillar) and pupa. There is no published study on the biology of this species. This native leafroller species is occasionally found attacking apples and pears, particularly in Otago (HortResearch, 1999b).

From the illustration provided in (Dugdale, 1971) the larva of *P. plagiatana* is about 10 – 11 mm in length.

New Zealand flower thrips

Thrips obscuratus (Crawford, 1941) [Thysanoptera: Thripidae]

Synonyms or changes in combination:

Isoneurothrips obscuratus Crawford, 1941; *Isothrips (Isoneurothrips) obscuratus* (Crawford, 1941); *Thrips (Isothrips) obscuratus* (Crawford, 1941).

Common name(s):

New Zealand flower thrips (NZFT).

Host(s):

This species is polyphagous, and is noted for its ecological and physiological plasticity. Although it has been collected in New Zealand more often than any other thrips, the range of plants used for breeding is not clear. *T. obscuratus* has previously been reported on at least 225 plant species from 177 genera and 78 families (Teulon and Penman, 1990). The complete list is available from the authors. In addition, they listed the following breeding hosts of *T. obscuratus* (i.e. hosts on which larvae have been collected), based on a survey in the Canterbury region:

Achillea millefolium (common yarrow, thousand seal), *Aesculus hippocastanum* (horse chestnut), *Aesculus indica* (Indian horse chestnut), *Althea officinalis* (marshmallow), *Anisotome aromatic* (aniseed), *Aruncus dioicus* (goat’s beard), *Brassica oleracea* (variety not stated), *Brassica hirta* (mustard), *Buddleia davidii* (butterfly bush, summer lilac), *Carmichaelia odorata*

Plant part(s) affected:

Flowers (unopened buds), leaves, fruit such as stone fruit.

Distribution:

Throughout New Zealand (excluding the Chatham Islands), from alpine regions down to sea level in both introduced and native habitats (McLaren and Walker, 1998).

Biology:

New Zealand flower thrips has the following life stages: adult, egg, larva, prepupa and pupa.

Adults variable in size (2-5 mm), and variable in colour, usually pale to dark brown, but sometimes yellowish. The eggs are kidney-shaped, transparent and are buried in plant tissue. The tiny nymph hatches from the egg, feeds and grows, and then moult into a second nymph stage. Both prepupa and pupa have wing buds. The antennae of the pupa are folded down. All
the immature stages range in colour from white to creamy yellow, and cannot be easily separated from other species of thrips. The adults too are superficially very similar to many other species of thrips present in New Zealand, and sometimes more than one species may be present in a single flower. Moreover, the New Zealand flower thrips is a highly variable species and can only be identified accurately from a good microscope slide. Compared with closely related species, the head of *T. obscuratus* is not produced in front of the eyes, and the postocular region is shorter than the dorsal length of the eyes; tergites II-V have the lines of sculpturing interrupted medially, and with the median pair of setae smaller than the 2 lateral pairs.

Life History

(Based on (McLaren and Walker, 1998)). Details of the life cycle vary with host plant, locality, and time of year. Males and females occur throughout the year in the northern part of the North Island, but in regions with colder winters only the females over-winter. In Central Otago during winter females and occasionally second-instar larvae are found in old flower heads of the introduced weeds flannel-leaf and horehound, and in the alpine zone on the native trees *Podocarpus hallii* and *Phyllocladus alpinus*.

On warm, calm days in Central Otago females fly into tart cherry flowers, where they feed on nectar, petals, and probably pollen. Eggs are laid singly into the flower stalks, with a small portion of the egg remaining visible at the surface; old egg sites are surrounded by a ring of necrotic plant tissue. After hatching, the larvae move to the bracts at the base of the stalks to complete larval development. In Central Otago development from the egg to the start of the adult stage on tart cherries generally takes 28 days in October.

On apricots and nectarines the eggs are deposited under the epidermis of the calyx, but the larvae migrate to the inside of the flower. On roses the eggs are laid at the base of petals. On New Zealand flax the eggs are laid in the flower bud, stalks, and sepals. The larvae feed deep within the bracts, around the unopened flowers and in the opened flowers. The prepupae drop to the ground, where they complete the pupal stage.

In the laboratory a female completes development from newly laid egg to adult in 21.6 days at a constant 15ºC; the male takes 19.5 days. Another 10.4 days are required for the adult female to commence egg-laying.

Mated females lay eggs that produce female thrips, whereas eggs from unmated females produce males. A pollen supply is necessary for continuous egg laying.

Damage

(Based on (HortResearch, 1999a)). (The following description of damage applies to other thrips as well as New Zealand flower thrips.) Thrips feed on pollen and are commonly seen on the anthers in stonefruit flowers. They also rasp the surface of petals and cause browning. Similar feeding on the surface of the ovary and young fruit within the flower develops into unsightly scarring of the fruit surface. This damage can result in downgrading of the fruit at harvest and exclusion from export. Ripening stonefruits, especially peaches and nectarines, are attractive to thrips. They may congregate in large numbers on the surface of fruits where their feeding causes damage, most easily seen as loss of colour. Adult thrips sometimes lay eggs in the surface of the fruit, leading to young thrips that may cause further fruit damage. Thrips are often seen on fruits along the suture line and in protected sites around the stem. Thrips also feed on the leaves of many plants and this causes silvering and loss of leaf colour. However, leaf damage on stonefruits has not been recorded.
New Zealand flower thrips can cause economic damage to stonefruit but it does not cause damage to apple. On apple, this thrips occurs on apple flowers in spring and is also seen on the foliage. However, it does not cause economic damage to pipfruit. Some brown flecking of apple petals may be due to its feeding.

Vector

New Zealand flower thrips is a vector for brown rot.

Oriental Fruit Moth

Grapholita molesta (Busck) [*Lepidoptera: Tortricidae*]

Adapted from Poole et al. (2001).

Synonyms and changes in combination:

Carpocapsa molesta Busck; *Cydia molesta* Busck; *Laspeyresia molesta* Busck.

Common name(s):

Oriental Fruit Moth, Oriental peach moth, Peach tip moth.

Host(s):

Plant part(s) affected:

Fruit and vegetative shoots.

Distribution:

Africa, Asia, Australia, Europe, New Zealand, North and South America ((CABI, 2002)). In Australia this species occurs in New South Wales (Jones et al., 1984), Queensland (Swaine et al., 1991), South Australia (Bailey, 1979), Tasmania (Terauds et al., 1989) and Victoria (McLaren and Rye, 1981).

Biology:

Oriental fruit moth has four life stages: adult, egg, larva, and pupa.
Oriental fruit moth is a small dark-grey moth with a wing span of 10-16 mm. When resting, the moth’s wings are held in a roof-like position over the body with the antennae bent backward over the wings. However, a definitive identification of Oriental fruit moth involves investigation of the genitalia. Eggs are white to yellow, round to slightly oval, measuring about 0.7 mm across. The final instar larvae are approximately 12 mm long and are pink to red in colour. The head, pronotum and anal plate are brown and a black anal fork, above the anal opening, is also present (Rothschild and Vickers, 1991).

Egg deposition usually begins 2-5 days after the females emerge and continues for 7-10 days. Some 50-200 eggs are laid on the underside of leaves near the growing tips. Larval development lasts 6-22 days, varying with temperature, humidity and feeding conditions. Life cycle development is temperature dependant and ranges from 11-40 days.

Oriental fruit moth overwinters as cocooned larvae. The cocoon is the protective covering for the full-grown larva and pupa. It is made of silken threads and particles of the objects on which it rests. The pupa itself is reddish-brown. Cocoons can be found on the host within fissures, under bark, on the ground beneath the leaf litter, under mummified fruit and within the soil. Overwintering larvae usually emerge from August to October. The adults of the first generation survive 30-40 days, compared to 11-17 days in later generations (Rothschild and Vickers, 1991). Dispersal of Oriental fruit moth within an orchard is by flight, however as the moths are not strong fliers, dispersal between orchards can be attributed to infested nursery stock, fruit and equipment such as picking boxes (Hely et al., 1982).

A feature of the life cycle of OFM is that there is an extended period during each season (late autumn/winter) during which the available rosaceous host plants are without shoots or fruit. Prevailing temperatures during this period are also low. OFM overcomes these problems by entering diapause during the final larval instar. The main determinant of diapause is photoperiod modulated by temperature (Dickson, 1949). The factors governing the breakage of diapause are not fully understood, although temperature and photoperiod are both involved (Rothschild and Vickers, 1991). Russell (1986) has demonstrated that diapause breakage is not linked to any requirement for exposure to a particular cold period, and he concludes that the termination of diapause is, in part, related to an as yet undefined interaction between photoperiod and temperature.

Adults of G. molesta can disperse locally by flight. International movement is likely to occur on fruit, possibly in packing material (CABI and EPPO, 1997b).

Oriental fruit moth is native to northwest China and is thought to have established in Australia at the beginning of the twentieth century. Oriental fruit moth is considered a major pest of stone fruit throughout the world and has a host range including peach, nectarine, cherry, apricot, plum, almond, pear, quince, apple, and loquat. In spring, larvae infest the young shoots of fruit trees and fruits in summer. An infestation results in tip dieback and damaged fruit. Tip dieback results from larvae burrowing into the growing tips, this type of injury interferes with the structural development of young trees (Hely et al., 1982). Fruit can be attacked at any stage resulting in a downgrading of fruit quality and an increase in fruit drop. Injuries from Oriental fruit moth often predispose fruit to brown rot infections.

Oriental fruit moth has been previously detected in Western Australia at Bickley in 1952 (Department of Agriculture, Western Australia., 1952). A delimiting survey of the Bickley valley east of Perth found extensive tunnelling of peach tips typically caused by this species. Eradication measures were initiated in the area and established the valley as an Oriental fruit moth quarantine area. Eradication began in 1953 (Department of Agriculture, Western
Australia., 1953) with applications of DDT or DDT and Parathion on a weekly rotation basis. A winter survey of twig growth in adjoining areas showed no evidence that the outbreak had spread. Eradication procedures continued in 1954 and 1955 (Department of Agriculture, Western Australia., 1954); (Department of Agriculture, Western Australia., 1955) with no infestations recorded. In 1955, with no infestations recorded, the pest was considered eradicated. The latest survey for Oriental fruit moth (using pheromone traps) was conducted in 1994 to 1996 in the Darling Scarp horticultural area, including the Bickley Valley (Poole et al., 1998). This survey did not detect the presence of the pest.

Oystershell scale

Diapsidiotus ostreaeformis (Curtis) [Hemiptera: Diaspididae]

Adapted from Poole et al. (2001).

Synonyms and changes in combination:

Aspidiotus almaatensis Borchsenius, 1935; *Aspidiotus betulae* Baerensprung, 1849; *Aspidiotus hippocastani* Signoret, 1869; *Aspidiotus ostreaeformis* Curtis, 1843; *Aspidiotus ostreaeformis* var. oblongus Goethe, 1899; *Aspidiotus oxyacanthae* Signoret, 1869; *Diapsidiotus ostreaeformis* (Curtis) Borchsenius; *Mytilococcus ellipticus* (Amerling, 1858); *Quadraspidiotus williamsi* (Takagi, 1958) Danzig, 1993.

Common name(s):

Oystershell scale, European fruit scale, yellow plum scale.

Host(s):

Plant part(s) affected:

Fruit, branches (Davidson and Miller, 1990)

Distribution:

Africa, Asia, Australia, Europe, New Zealand, North and South America (CABI, 2003a). In Australia this species occurs in South Australia (Brookes and Hudson, 1969), Tasmania (Brookes and Hudson, 1969) and Victoria (Brookes and Hudson, 1969).
Biology:

The female life stages of oystershell scale include adult, egg and nymph while the male has adult, egg, nymph, pre-pupa and pupa stages.

The mature adult female oystershell scale is grey coloured, conically shaped and approximately 1.3 mm in diameter. Oystershell scale has a similar appearance and is often confused with the more important San Jose scale (*Quadraspidiotus perniciosus*) (McLaren, 1989), which is established in Western Australia (Woods *et al.*, 1996) and other regions of Australia (Brookes and Hudson, 1969). Developmental stages for Oystershell scale include adult, eggs and nymphs. The mature male is typical of diaspid scales, being seldom seen and approximately 1 mm in length (Giliomee, 1990). The male develops through the pupal stages and emerges as a mobile winged insect devoid of mouthparts and lives from 1-3 days. The male is attracted to the female by pheromones and dies after mating. Oystershell scale reproduces sexually with one annual generation. Oviposition occurs in the early summer with eggs being laid under the female covering. Mobile crawlers emerge from late summer to early autumn and as such are unlikely to settle on cherry fruit as the main harvest occurs before this point. Overwintering occurs as a diapausing second instar larvae.

Oystershell scale does not cause serious damage to its host plants but its similarity to San Jose scale makes oystershell scale a pest of quarantine concern in areas where San Jose scale is not established or in low numbers (McLaren, 1989). Mobile crawlers are the dispersal mechanism for diaspid scales, including oystershell scale, with most crawlers settling within the host plant. However, wind assisted dispersal can also occur (McClure, 1990). Long distance dispersal is facilitated by the distribution of infested nursery stock (Beardsley and Gonzalez, 1975). The nymphs and adult female are the destructive stage of this pest where they settle on fruit and branches of the host plant.

Wheat bug

Nysius huttoni White, 1878 [Hemiptera: Lygaeidae]

Adapted from CABI (2002) and Landcare Research (1999).

Synonyms or changes in combination:

None.

Common name(s):

Wheat bug.

Host(s):

Anagallis arvensis (scarlet pimpernel), *Brassica napobrassica* (swede; rutabaga), *Brassica napus* (rape), *Brassica oleracea* (marrow-stem kale), *Brassica rapa* (turnip), *Calandrinia caulescens* (Curnow’s curse), *Capsella bursa-pastoris* (shepherd’s purse), *Coronopus didymus* (twin cress), *Cotula* (bachelor’s buttons), *Cytisus scoparius* (broom), *Fragaria* sp. (strawberry), Grasses (various species), *Juncus bufonius* (toad rush), *Linum usitatissimum* (linen flax),
Medicago sativa (lucerne), Nasella trichotoma (nasella tussock), Polygonum aviculare (wireweed), Rumex acetosella (sheep’s sorrel), Silene gallica (catchfly), Soliva sessilis (Onehunga weed), Spergularia campestris (sand spurrey), Stellaria media (chickweed), Trifolium dubium (suckling clover), Trifolium pratense (red clover), Trifolium repens (white clover), Trifolium subterraneum (subterranean clover), Triquetrella papillata (moss), Triticum aestivum (wheat).

Plant part(s) affected:
Grain (wheat), seedlings, stems, leaf veins, leaf petioles.

Distribution:
New Zealand.

Biology:
The species goes through one egg stage and five nymphal stages before becoming adult.

Adults are 2.3-4.4 mm in length, variegated black or greyish in colour with a paler colour pattern on the forewings. A complete double row of punctures following the claval suture, and the long erect hairs and dense decumbent pubescence of the forewings distinguish *N. huttoni* from other New Zealand species. Macropterous, sub-brachypterous and brachypterous forms occur in both sexes, but brachypterous individuals are more commonly encountered in the field.

Eggs are laid in cracks in the soil singly or in clusters, e.g., under sheep’s sorrel, wireweed, or they are attached to seed heads. Total duration of nymphal plus embryonic development of *N. huttoni* reared in greenhouse was 23-46 days and 9-26 days respectively (Eyles, 1963b; Eyles, 1965) reported at least 3, and possibly 4, generations per season in the field, but it is more likely to be 2 generations with some generation overlap between years. In New Zealand adults are mostly active from August to May and mating occurs from October to March.

Wheat bug flight activity has been recorded in sticky traps (Farrell and Stufkens, 1993), peak flight activity coincided with the migration of the bugs from overwintering sites to new habitats in early spring. Trapped females were reproductively immature.

This bug lives very close to the ground amongst food plants in summer, some shelter plants (e.g., Agrostis tenuis (brown top), Hyperboeris radicata (catsear), Juncus bufonius (toad rush) and grass debris in autumn, and in shelter of tufts of plants such as Holcus lanatus (Yorkshire fog), Lolium perenne (perennial ryegrass) or Paspalum dilatatum (paspalum) in winter. Adults do not remain completely motionless throughout the winter, but may move to the surface of a grass tuft during the warmest part of sunny days.

In summer, both adults and nymphs seek the shade of plants (e.g., suckling clover, catsear, and Onehunga weed) during the warmest part of the day. In general, the species thrives under hot conditions where direct sunlight strikes through to the ground; a common condition in crucifer crops where *N. huttoni* can be the most damaging. In grain, feeding damage by *N. huttoni* is caused by glutenin proteolysis as a result of the action of salivary enzymes, resulting in poor baking quality of the grain. Feeding on young crucifers cause cankerous growth of the tissues and collapse of the plants.
Based on rearing experiments and damage to leaf veins and seedlings of Cruciferae, it is considered that seeds are not vital to the diet of this species. In addition to the host plants listed above, this bug has also been taken on (sitting records only) *Cassinia leptophylla* (cottonwood, tauhinu), Chenopodiaceae, *Linum* sp., Myoporaceae, Myrtaceae, Araliaceae, Azioaceae, but these are not confirmed hosts.

According to (Farrell and Stufkens, 1993), “The success of the wheat bug may be linked with flexibility in behaviour and habitat used arising from a series of options during the life cycle”. It is mobile and polyphagous, feeding on a succession of annual weeds and crops; eggs are buried in the ground or attached to seed heads; adults exploit resources at the breeding site or emigrate to new habitats; second generation adults may diapause or reproduce; migrants to overwintering sites may choose from large areas of relatively exposed habitat or restricted numbers of very sheltered sites. One at least of these options will allow survival under harsh conditions while other options allow exploitation of good conditions. As an agricultural pest, the wheat bug is difficult to control because it breeds and overwinters in fallow land outside commercial crops. Wheat and fruit may be colonised by invasions of migrant adults which inflict economic damage before detection.

155

Berry, J.A. and Walker, J.T.S. (1989) Dasineura pyri (Bouché), pear leafcurling midge and Dasineura mali (Kieffer), apple leafcurling midge (Diptera: Cecidomyiidae). In:
Wallingford, UK. CAB International.

Cassis, G. and Gross, G.F. (2002a) Hemiptera: Heteroptera (Coleorrhyncha to Cimicomorpha),

160
REFERENCES

CSIRO (1970) The Insects of Australia. A textbook for students and research workers. 1

Company.

REFERENCES

Dugdale, J.S. (2000) Personal communication from J.S. Dugdale of New Zealand through email with Dr R. Hoare of Landcare Research New Zealand about Graphania ustistriga (Walker) and Stathmopoda plumbiflua Meyrick. HoareR@landcare.cri.nz//Tingkui.Qin@aquis.gov.au.

Dullahide, S. (2003) E-mail communication.

Family Cryptochetidae. WEB site: http://hbs.bishopmuseum.org/aocat/cryptochet.html.

REFERENCES

REVISED DRAFT IRA REPORT: APPLES FROM NEW ZEALAND

166

Hetherington, S. and Dullahide, S. (2003) E-mail communication. E-mail communication (dated 21 July 2003).

Hoare, R. (2000a) Personal communication from Dr R. Hoare of Landcare Research New Zealand relating to Graphania ustistriga and Stathmopoda plumbiflora. T. Qin; Tingkui.Qin@aqis.gov.au; HoareR@landcare.cri.nz.

Hooper, D.J. (1973) C.I.H. Descriptions of Plant-parasitic Nematodes. CAB International. Set 2 (No. 30)

HortResearch (1999a) Intergrated management plan for fire blight in 1999 and beyond. Prepared by HortResearch for ENZAFRUIT New Zealand (Int.) and HEINZ-WATTIE’S (New Zealand) Ltd.

Huang, P. and Goodman, R.N. (1976) Ultrastuctural modifications in apple stems induced by
REFERENCES

Keitt, G.W. and Jones, I.K. (1926) Studies of the epidemiology and control of apple scab. Wisconsin Agriculture Experiment Station Bullerin. 73 : 194 pp.

Kumar, S. (2002) Status of apple scab in Western Australia. Department of Agriculture

MAFNZ (1999a) The list of organisms recorded in New Zealand associated with parts other than fruit of apple (*Malus sylvestris* var. *domestica*).

MAFNZ (1999b) Data sheets compiled by MAFNZ on AQIS request (received in May 1999).

MAFNZ (2000b) The list of organisms recorded in New Zealand associated with apple fruit (*Malus sylvestris* var. *domestica*) as categorised by Australia.

MAFNZ (2001) List of species of some groups of insects reported in New Zealand.

MAFNZ (2002a) Development of pest and disease risk models for horticultural production

MAFNZ (2002b) Updated pest list: Apple v17 split pest list.

MAFNZ (2003) Correspondence with AQIS.

MAFNZ (2003a) MAFNZ's response to the list of issues to clarify sent by Plant Biosecurity.

MAFNZ (2003b) Apple pest interceptions - preclearance of New Zealand apples to USA.

MAFNZ (2003c) Response to questions provided by DAFF.

McLarty, H.R. (1923) Experiment to determine the possibility of fire blight bacteria living in apparently healthy fruit in badly blighted districts. Canadian Department of Agriculture Dominion Botanical Report 1923. 31-32 pp.

REFERENCES

Nixon, E.L. (1927) The migration of *Bacillus amylovorus* in apple tissue and its effects on the
host cells. *Pennsylvania Agricultural Experiment Station Bulletin.* 212 : 3-16 pp.

Reis, W., Nora, I. and Melzer, R. (1988) Population dynamics of *Grapholita molesta*, Busck,
REFERENCES

Rosen, H.R. (1933) Further Studies on the overwintering and dissemination of the fire blight pathogen. *Arkansas Agricultural Experiment Station Bulletin.* 283

Salmon, E.S. and Ware, W.M. (1931) *Garden Chronical.* **89**: 437-438 pp.

Shaw, L. (1934) Studies on resistance of apple and other rosaceous plants to fire blight. *Journal of Agricultural Research.* **49**: 283-313 pp.

Shivas, R.G. (2003) E-mail communication. *E-mail communication.*

Swinburne, T.R. (1971a) The infection of apples, cv. Bramley's Seedling, by *Nectria galligena*
REFERENCES

Tyson, J.L. (2003) Notes on selected fungi recorded on apple in New Zealand (Report to
REFERENCES

Pipfruit Growers New Zealand Incorporated. 10053 New Zealand. The Horticulture and Food Research Institute of New Zealand Ltd.

Wang, Q. (2000) Personal communication from Dr Q. Wang of Massey University on the status of *Arhopalus tristis* and *Arhopalus ferus* in New Zealand.

Watson, R.N., Neville, F.J. and Bell, N.L. (1996) Insect pests associated with white and

Williams, M. (2000) Personal communication from M. Williams of Tasmanian Department of Primary Industry and Fisheries on the Pest List for apples from New Zealand.

REFERENCES

